PHYSICS: A BRIEF SUMMARY

MIGUEL A. LERMA

1. INTRODUCTION

This is a brief introduction to Physics intended for “the impatient”.
Its purpose is to give a brief summary of a number of core theories in
Physics. Usually it takes several years for a Physics student to learn
these theories, but for some practical purposes all you need to know
can be told in the time it takes to read a booklet like this one.

This work is conceived as a dynamic document, that will be posted
on the web and modified periodically to expand some sections, correct
possible mistakes, and include further subjects of interest. Look for it
at

http://www.math.northwestern.edu/

“mlerma/courses/el1-99s/physics.pdf
Please, send me your suggestions—email address at the end.

2. MECHANICS

2.1. Newton’s Laws. Ordinary Mechanics is ruled by Newton’s laws.
The motion of a particle is described by

(2.1) F = ma,

where F is the applied force, m is the mass of the particle, and a =
dv/dt = d*r/dt? is the particle’s acceleration, with v being its velocity
and r is position vector.

In coordinates equation (2.1) looks like this:

dQZL'i
dt?
2.2. Euler-Lagrange equations. Newton’s law as described above is
easy to use in Cartesian coordinates for mechanical problems without
constrains, but it can be generalized in a way that makes it easier to

apply to more general situations.
In one dimension Newton’s law is

(2.3) mi — F(x,t) =0,

(2.2) F,=m

(i=1,2,3).
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where the dot denotes time derivative. If the force derives from a
potential V(z,t), then F(z,t) = —0V (z,t)/0z. On the other hand, by
using the kinetic energy T'(#) = m?/2, and the momentum p = mz =
0T /0 we see that mi = dp/dt, hence

dor v

(2-4) E% + % =0.

Now we introduce the Lagrangian function, L(z,z) = T(&) — V(z),
and the equation becomes:

d OL(x,x) OL(x,%)

2.5 =0.
(2:5) dt 0z Ox
[ts generalization to any number of (non necessarily Cartesian) coor-
dinates g1, qo, ..., q, is the Euler-Lagrange equation:
d oL Ik, t) OL Ik, t
(26) “w (Qkaqka ) o (Qk7Qk7 ) -0 (k: 172’”"”)'

dt  Oq Iqr,

It turns out that not only mechanical systems but also many other
physical systems can be described by an equation like (2.6) with a
suitable Lagrangian L. The choice of Lagrangian is dictated by physi-
cal experience, although some authors (such as Landau) have tried to
derive it from general principles.

2.3. Hamilton’s Principle. The action of a physical system with a
given Lagrangian L(q, Gk,t) between times t; and ¢, is defined by the
integral

(27) S0 = [ L0000, 0

to

That integral depends on the path q(t) followed by the system between
to and t;. Equation (2.6) turns out to be equivalent to the fact that
the action (2.7) is a critical point (usually a minimum) in the space of
paths with fixed endpoints gx(ty) and g (t1):

t1
(2.8) 55:5/ L(ge e t) dt = 0.
to

The symbol 65 (variation of S) represents the first order approximation
of the change of S after a small perturbation dg(t) of the path ¢x(t).
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2.4. Calculus of Variations. Here we derive the Euler-Lagrange equa-
tions (2.6) from Hamilton’s principle (2.8).

Consider a variation produced by perturbing the correct path g (t) by
ang(t), where ny(t) is an arbitrary differentiable function that vanishes
at ty and t1, and « is a real parameter:

(2.9) S(qr(t) + ang(t)) = /tl L(qi, + ang, g, + ang, t) dt.

to

Differentiating respect to a at @« = 0, and taking into account that
a = 0 is a critical point we get:

OL oL
(2.10) / Z (nk + ik - ) dt = 0.
k

Integrating by parts and using that n(tg) = n(t1) = 0:

oL d oL
SN

Since n(t) is arbitrary we obtain the Euler-Lagrange equations:
(2.12) — ———=0

These considerations are very general and can be applied not only
to mechanical systems, but also to the dynamics of fields—see section

9.2).

2.5. Hamilton’s equations. Hamilton’s equations are similar to the
Euler-Lagrange equations, but instead of using the generalized coordi-
nates g and its derivatives ¢, we use qr and the generalized momenta
pr = OL/Oq,. Note that for a particle of mass m, p = ma is the
ordinary momentum.

If we define the Hamiltonian function

(213) Qkaplﬁ ZQJpj Qk7Qk7t)7

then the Lagrange-Euler equatlons can be replaced by Hamilton’s equa-
tions:

. OH
(2.14) k. = a_pk

. oH
(2.15) Dr = —8—%
(2.16) oL  OH

o ot
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which have a symmetric look and consists of first order equations only.

For a single particle in a potential V', we have that H = T + V,
i.e., H is the total energy of the particle. In general, for a conservative
system® H represents the total energy of the system.

2.6. Poisson brackets. The Poisson bracket of two functions A(pg, gk, t)
and B(py, gk, t) is defined as

0A OB 0A OB
3 ABY=) |55 —7 7"

The time evolution of a function A can be expressed with Poisson
brackets in the following way:

dA 0A
2.18 — ={AH} + —
(215) Y=+ S
where H is the Hamiltonian.
Two variables r and s satisfying {r,s} = 1 are called canonically

conjugate. In particular p, and ¢, are canonically conjugate.

3. STATISTICAL PHYSICS

3.1. Thermodynamics. Given a physical system, say a gas, its ther-
modynamic state is defined by a number of variables such as its tem-
perature T', volume V', pressure p, energy U, etc. The evolution of the
state obeys the following laws:

(1) First Law: conservation of energy. In any system:
(3.1) dU = dQ + dW,

where U is the energy of the system, () is the heat that flows
into the system, and W is the work done on the system. For a
gas with volume V' and pressure p, dW = —pdV, so the first
law for a gas is dU = d@Q — pdV.

(2) Second Law: increase of entropy. In any closed system:

dq)
(3.2) ds = T >0,

where S is the entropy of the system, () is the heat produced in
the system, and T is the absolute temperature of the system.
A process is called reversible if dS = 0, otherwise (dS > 0) it is
called irreversible. All real processes are irreversible.

(3) Third Law: inaccessibility of the absolute zero. The
entropy of a system at 7" = 0 is constant: d.S = 0.

LA system is called conservative if all its forces verify § Fds = 0 along any closed
path. This is equivalent to F = —VV for some potential V.
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3.2. Equilibrium Statistical Mechanics. For one mole of an ideal
gas:

(3.3) pV = RT,

where p is the pressure, V' is the volume and R = 8.3143 J/mol K is a
constant. In (3.3) only “macroscopic” variables occur, but nothing is
said about the physical state of the individual molecules that compose
the gas. In order to connect the behavior of the gas to the statistical
properties of its molecules we make the following assumptions:

(1) The thermodynamic properties of a macroscopic system are av-
erages of the physical properties of the particles that compose

the system.
(2) To each macroscopic state of the system it corresponds a num-
ber of possible microscopic states s, 52, 53, ..., 5j, ..., each with

a probability P; and an energy Ej;.
(3) All configurations of the system with the same energy have the
same probability of occurring.

So, for instance, the thermodynamic internal energy U of the system
is the average energy U = ) ; P E;.

Now we find P; for a volume of gas in contact with a large heat
reservoir at a given temperature 7. If the total energy is E and the
energy of the gas in state s; is E;, the energy of the reservoir will be
E—FE;. Let Q(E — E;) be the number of distinct states of the reservoir
with energy E — Ej, so that P; ~ Q(F — E;). If E; is very small
compared to £, we have: In P; = InQ(E — E;) =~ In Q(F) — fE;, where
B = (0Q/OF)E is the so called Boltzmann factor. From here we get
the Boltzmann equation:

(3.4) P =

where

(3.5) Z=Y et

is the partition function.
The partition function allows us to find several thermodynamic vari-
ables, such as the internal energy:

olnZz
B

(3.6) U:ZEJ‘PJZ_
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and the pressure

10InZ

where p; = —(0E;/JV) is the pressure associated with the j-th state.
We have that Z is a function of g and V, so:

olnZz olnZz

(3.8) A7 = Z5e= d5 + Z= dV = ~d(BU) + 5T ds,
hence:
(3.9) TdS = % d(In Z + BU).

This implies 1/ = kT for some constant k—the Boltzmann constant
k =1.3805 x 107* J/K—, and

(3.10) kETInZ = —F,
where F' = U—T'S is the Helmholtz free energy. From S = kIn Z+U/T

we also get the entropy relationship:
(3.11) S=-kY PiInP;
J
In systems with low energy fluctuations most states lay in a narrow
band of €2 states around energy U, and then the entropy is given by

(3.12) S =knQ.

4. ELECTROMAGNETISM

4.1. Maxwell’s equations. The laws of electromagnetism can be sum-
marized by Maxwell’s equations:

10B
VxE = T (Farady’s law)
4 1 E
(4.1) VxB = : . 8 (Amper’s law)
V-E = dmp (Coulomb’s law)
V-B =0 (no magnetic monopoles)

where E represents the electric field, B is the magnetic field, J is the
current density, p is the charge density, and c is the speed of light.
From the second and third equations we derive the continuity equation
expressing the conservation of electric charge:

dp
4.2 ap _
(4.2) o P ivi=o.
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4.2. Potentials. Gauge Transformations. The description of the
electromagnetic field can be simplified by introducing the potentials V'
and A.

If the magnetic field is static, since Vx E = 0, there is some potential
V such that E = VV. Similarly, because V - B = 0, we can write
B =V x A for some vector field A. More generally, we can define V'
and A with the following differential equations:

B=VxA

(4.3) 10A
E=-— -
V-

This automatically ensures that two of the four Maxwell’s equations
are satisfied. Next we may rewrite the other two equations in terms
of V and A. Note, however, that V' and A are not uniquely defined,
since they can be changed to

A—>A+VM
4.4
c Ot

for some scalar field M without altering E and B. Picking an M is
called setting the gauge.

Two gauges commonly used are the Lorenz gauge, for which V- A +
oV/ot =0, and the Coulomb gauge, for which V- A = 0.

In the Lorenz gauge, Maxwell’s equations look like this:

V2A _ 1 9*A _ Ar
(45) 62 8t2 N &
' .. 10%V

4.3. Electromagnetic waves. In regions where there are no charges
and no current, equations (4.5) become a pair of wave equations with
a propagation velocity equal to c.

In terms of E and B, the wave equations are the following;:

1 0’E 1 0°B
2, 2p —
The plane-wave solutions to these equations are
(4.7) B =By " and E = Ege™*"

where k is the wave vector that points in the direction of wave propaga-
tion, w is the wave frequency (units of radians/time), r is the position
vector, and By and Ej are constants. The wave length is 27 /k.
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Note that the solutions shown are complex functions. Of course,
only the real part of those functions have a physical meaning, but a
complex representation makes mathematics easier.

4.4. Force on moving charges. The force experienced by a distri-
bution of charges with density p and velocity v in an electromagnetic
field is called Lorentz force and is given by the following equation:

(4.8) f:p(E+%va>.

The actual force F' on a volume of charge is obtained by integrating f
on that volume. For a single particle with charge ¢ the force is

(4.9) F:q(E—l—%va).

The dynamics of a charged particle in an electromagnetic field can
be described by the Euler-Lagrange equations with a potential

(4.10) U:q(V—%A-V).

5. SPECIAL RELATIVITY

5.1. Change of frame of reference. An inertial frame of reference is
a Cartesian system of coordinates that is either fixed or moving linearly
at a constant speed relative to the fixed stars. Events are identified by
their space coordinates (z,y, z), plus their time coordinate t.

Before Einstein, the relation between two frames F' and F” such that
F’" moves with speed v in the direction of the X axis was the Galilean
transformation:

=z — vt
6) {

t'=t

where (z,t) are the position and time of a given event in frame F' and
(«',t") are the position and time of the same event in frame F”. Note
that if a body moves in the direction of the X axis at a speed u respect
to F', then its speed respect to F’ would be u — v.

The Galilean transformation is incompatible with Maxwell’s equa-
tions, since they predict that electromagnetic waves move at speed
c regardless of the frame of reference. Various experiments (such as
Michelson-Morley’s) also supported the principle of invariance of the
speed of light, so the Galilean transformation must be replaced with a
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different one that leaves ¢ invariant. That is the Lorentz transforma-
tion:
- T — vt
V1—=v?/c?

t—ovx/c?
V1—v?/c?

The Lorentz transformation also leaves the following 2-form invari-
ant:

(5.3) ds® = dt* — da* — dy® — dz*.

/

(5.2)
t =

The integral of ds along a space-time path can be considered as the
“length” of the path. So, by using coordinates z¢o = ct, r1 =z, x5 = v,
r3 = 2z, we get that ds is the length element in a flat 4-dimensional
pseudo-Riemannian manifold with metric tensor 7,, such that 7y = 1,
ni = —1fori=1,2,3, and 1, = 0 for p # v.?

The time 7 as measured by a clock accompanying a moving body is
called proper time of the body, and it verifies cdr = ds along the path
followed by the body.

5.2. Tensor notation. In general vectors are represented by their co-
ordinates A", with upper indices u = 0, 1,2,3. These are called coun-
tervariant coordinates of the vector. The scalar product by a given
vector A* defines a linear form of coordinates A, = Zi:o N AV, that
we write with lower indices. These are also called covariant coordinates
of the vector. Whenever an index appears repeated in two places of an
expression we assume that we must sum respect to all values of that
index (Einstein’s convention), so for instance we can write A, = 7, A”
without explicitly writing the summation sign. The length squared of
a 4-vector A* is A, A*. The coordinates are represented as 4-vectors,
hence they must use upper indices: x*. The expression defining ds can
be written ds? = 1, dz* dz".

We can raise or lower indices in the coordinates of a general tensor
by contraction with 7, or with its countervariant version n*¥, which
turns out to be equal to 1,,—in a more general system of coordinates
with ds* = g, dat dz¥, g" is defined so that g, g" = 0%, where
6, is Kronecker’s delta (see below). So, for instance, given a tensor
A, we represent AM, = ¢ Ag,. AV = S A, AW o= P A,
Ay = Nue up A% ete.

I am following the timelike (+,—,—,—) convention. Some authors use the
spacelike (—, +,+, +) convention.
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If A, is a tensor field, its partial derivative respect to x is sometimes
represented A, o = 0,A,,, where 0, = aga' Also o* = n* 0,.
Several useful symbols are the following:

(1) Kronecker’s delta §%s = 1 if a = /3, and 0 otherwise.
(2) The completely antisymmetric symbol €,444, such that €yio3 =
1, and is antisymmetric in its indices.

Given a tensor A, ., by enclosing n of its indices between brackets
we denote the result of antisymmetrizing respect to those indices. i.e.:

1
(54) Aa...[,u...@]...w = m Z J(:U“/a s 70/) Aa...[,u/...@/]...wa

where the sum is carried out through all permutations (4, ...,¢") of
(i, ...,0),and o(y/,...,0") is the signature of the permutation.

5.3. Covariance. A formula representing some law of Nature is said
to be covariant if it has the same form in any frame of reference.
Maxwell’s equations are not covariant under Galileo’s transformation,
but they are under Lorentz’s transformation. However Newton’s sec-
ond law, which is covariant under Galileo’s transformation, is not under
Lorentz’s transformation, so the dynamics of a particle needs to be re-
formulated.

5.4. Dynamics of a particle. The relativistic version of Newton’s
second law can be expressed with 4-vectors in the following way:?

dm#

(5.5) ==

where 7# is the 4-momentum, and ¢* is the Minkowski force. The
components of 7 are 7 = mey, and 7 = mity for i = 1,2,3, v =
1/4/1 —v2%/c? v = speed of the particle, m = rest mass of the particle.
So the space components of 7# are the momentum of a particle with
mass m' = m/y/1 —v%/c2. The time component of the relativistic
momentum is 7° = T'/c, where T = relativistic kinetic energy. For
small speed v we have:

(5.6) T=——  ~amd+—.

The second term is the non-relativistic kinetic energy of the body, and
the first term £ = mc? is its rest energy.

3This formula fits the dynamics of a charged particle in an electromagnetic field,
and is assumed to apply to other types of force too.
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The energy of a moving body can also be expressed with the equa-
tion:
(5.7) E? = p*c® + m*c

For a free particle equation (5.5) becomes dr* /dr = 0, which can be
derived from a variational principle with the following action:

(5.8) S = —mc/ ds,

i.e., a particle follows a path of extremal length or geodesic.

5.5. Electromagnetism. The relativistic version of Maxwell’s equa-
tions uses the 4-vectors A*and j*, where A° =V, its space components
are those of the usual vector potential; j° = 4mp, and j* = %Ji for
i = 1,2,3. Then Maxwell’s equations with the Lorenz gauge 9, A" = 0
become:

(5.9) 0"0,A” = j°.
The Minkowski force on a moving charge is given by ¢, = K3 U
c
where
(5.10) F,=0,A,—0,A,

is the field-strength tensor, and u* = daz*/dr.
In terms of F,,,, Maxwell’s equations are:

iz
0, F" = j

5.11

Equivalently, they can be expressed as *Fjy,,; = j* and Fy,, = 0
respectively, where *F),, = %Faﬂ €apuv is the dual tensor of F},, and the
brackets denote antisymmetrization.

These equations can be derived from a variational principle with the

following action:

1
(5.12) S = _Z/FWFW d*x dt.

Here the components of the tensor F),, play the role of generalized
coordinates.

On the other hand, the action of a charged particle in an electro-
magnetic field is

(5.13) S = % /AM da™.
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6. GENERAL RELATIVITY

6.1. Newtonian Gravitation. Newton’s gravitational law states that
the force between two masses m; and mo at a distance r is

(6.1) F=—p

)
7”2

where k = 6.670 x 10" Nm?kg™? is Newton’s gravitational constant.

The corresponding potential produced by a mass m is ¢ = km/r, and
for a continuous fluid of density p it is given by the Poisson’s equation:

(6.2) V3¢ = 47k p.

Since Poisson’s equation is not Lorentz invariant, it is not appropriate
for a relativistic theory of gravity.

There are various ways of developing a covariant theory of gravita-
tion in the frame of Special Relativity, but they are inconsistent or
lead to predictions that do not match experimental observations. So a
completely new approach is needed.

6.2. The Principle of Equivalence. In General Relativity it is pos-
tulated that a gravitational field is locally indistinguishable from an
accelerated frame. In Relativity non inertial frames are represented by
non Cartesian coordinates in 4-space. So gravitation is not a “force”,
but a change in the geometry of space-time. Particles that are not un-
der the action of some other field behave like free particles, and their
paths are still geodesics in space-time.

6.3. Geometry in a curved space-time. Space-time is represented
by a pseudo-Riemannian 4-dimensional manifold. Its geometry is given
by the (symmetric) metric tensor g,,.* The line element is

6.3 ds? = g, dz" dz”.
“w

The usual derivatives of the components of a tensor respect to the co-
ordinates are not covariant in a general frame, particularly in a curved
space-time. This is due to the fact that the basic vectors e, = are
not constant. So, in particular

(6.4) 0,(A%e,) = (0,A") e, + A" Ove, = (0, A" +T",, A%) e,

5

_0_
oxH

where I'¥,, are the components of d,e,.” The components of 0,A
are denoted A", = 0,A, + I'",,A®. There are similar formulas for
covariant coordinates and for tensors of higher rank. Since A*, are

4if the space-time is flat then Jguv = N in any inertial frame.
5Tt can be proved that Jap I"@W =Tauw = %(a'u,gya + Ov9ap — Oaguv). The
symbols I'*,,,, and I'y,,, are called Christoffel symbols.
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the components of a tensor, its covariant derivative respect to x” also
makes sense, and is denoted A*,, ..

Note that covariant derivatives do not commute in general, so that
for instance

(6-5) Aa;ﬁ"/ - Aawﬂ = Ruaﬁv Auv
where
(6-6) R“aﬁw = GBF“M - &,I‘“ag + Iwow Fﬂuﬂ - Iwoeﬁ Fuw

is the Riemann tensor. Other related tensors are the Ricci curvature
tensor Rag = R'opy, the scalar curvature R = R, and the Finstein
curvature tensor G%g = R%3 — %50‘5 R. Two important properties are
the Bianchi identities:

(67) RO[,B ] = 07

where the brackets denote antisymmetrization, and the contracted Bianchi
identities:

(6.8) G"., = 0.

)

6.4. Dynamics in a curved space-time. Free particles follow geodesics,
given by the equation:

(6.9) B4 T, i i =0,

where the dot denotes derivative respect to s. This equation can also
be expressed as ¢, ¥ = 0.

When matter is distributed continuously in space-time (like a fluid),
its dynamical properties can be represented by the (symmetric) energy-
momentum tensor T, defined so that T*,u” gives the density of
4-momentum that flows in the direction of the unit 4-vector u*. In
particular, for a “dust” of non interacting particles: T = pc? i# 1",
where p is the proper density of the dust (as measured in a frame re-
spect to which the fluid is locally at rest). For the electromagnetic field:
T = Fr* RV, — ig““ Fop F°8 where F, =A,,— A, In terms
of the energy-momentum tensor, the conservation of 4-momentum is
given by the equation:

(6.10) ™., = 0.

)

6In a flat space-time the Riemann tensor is always zero.
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6.5. Einstein’s gravitational equations. The gravitational equa-
tions in a curved space-time must generalize Poisson’s equation (6.2).
In a weak gravitational field we can write ds? ~ (1+ (x)) c*dt* — dx?,
where ¢ is small. In that field the equations of geodesics (6.9) become
approximately X ~ —%ch, hence goo ~ 1+ 2¢/c?, where ¢ is the grav-
itational potential. Also, for low velocities: Tyo = pc®. So Poisson’s
equation becomes approximately: V2gyy = T—f Too. This suggests that
the gravitational equations must be of the form G, = kT, where
G, is some symmetric 2-rank tensor such that

(1) it is constructed solely from ¢,., guv:a and g, and is linear
n JuviaBs

(2) it has a vanishing divergence G*,, = 0, and

(3) it vanishes when space-time is flat.

It turns out that the only tensor fulfilling these conditions is, up to
a multiplicative constant, Einstein’s curvature tensor G,, = R,, —
% guw R. After adjusting the constant we get Einstein’s gravitational
equations:

(611) G,uz/ = KvT;wa

where r = 87k/c*.
Those equations also can be obtained from Hilbert’s variational prin-
ciple, with the following action:

C3

12 =
(6.12) 167k

/R\/—_ng,

where R is the scalar curvature, g is the determinant of g,,,, and d€) =
dx® dx' dz? d2? is the 4-volume element.

7. QUANTUM MECHANICS

7.1. Introduction. In spite of its success, classical Mechanics (New-
tonian Mechanics extended with Relativity) cannot explain a number
of phenomena, such as

(1) Stability of electrons in discrete orbits in an atom.
(2) Spectrum of the black body radiation.

(3) Photoelectric effect.

(4) Diffraction of electrons.

(5) Quantization of angular momentum (Stern-Gerlach).

Everything seemed to suggest that

(1) Energy comes in discrete units (quanta).
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(2) Light is made up of particles (photons), of energy £ = hv and
momentum p = h/\, where v = frequency, A = wave length,
h = 6.6256 x 1073* J s, Planck’s constant.

(3) Particles have wavelike properties.

(4) Some details of the state of small physical systems cannot be
determined exactly and we must resort to a probabilistic de-
scription.

7.2. The wave function. The state of a single particle can be de-
scribed with its wave function, which is a complex function 1 (x,t) €
L?(R3), such that |¢(x,t)|? represents the probability density for the
particle being at point x. That function is assumed normalized by
[(x,t)d®>x = 1, where the integral extends to the whole space. In
Dirac’s notation the state of the particle is represented with a ket [1)).

The set of possible wave functions of the particle form a Hilbert space
H with inner product

(7.1) (€,0) = / £ (x, 1) dx,

where the bar denotes complex conjugation.

The symbol (£], also called a bra, represents an element of the dual
Hilbert space consisting of the map [¢) — (&|¢) = (£, ¢).

In general, the set of possible states of a physical system is repre-
sented by a complex Hilbert space H, usually assumed to be separable.

7.3. Composite systems. For composite systems consisting of two
or more subsystems with Hilbert spaces HW, H® .. HW respec-
tively, the space of states is the tensor product H = H® @ H® @
@ HW) A typical example is a system of two particles with wave
functions ¥ (x,t) and ¥ (x,t) respectively. The state of the join
system is represented by a wave function of the form (x;,xs,t) =

¢(1) (Xh t) w(Q) (X27 t)

7.4. Observables. Observable quantities such as position, momen-
tum, energy, etc., are represented by selfadjoint linear operators that
act on the Hilbert space.

A linear operator A is said to be Hermitian or selfadjoint if AT = A,
where AT is the adjoint operator of A, defined by the relation (£, Ay) =
(ATE 1h). As a matter of notation: (¥|A = (Ay|, and if A is selfadjoint,
(EIAN) = (£, Av) = (AL, ).

For a particle the position is represented by multiplication by x, time
is multiplication by ¢, linear momentum is —ihV, where h = h/2m,
energy is ih%.
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The possible values of an observable are represented by its eigenval-
ues, and its eigenvectors represent states for which that observable has
a well defined value. For instance, a plane wave 9(x,t) = ek*=wb jg
an eigenvector for both the momentum and energy operators:’

—ihV(x,t) = hk(x,t)

ih% Y(x,t) = hwp(x,t).

So the momentum of a plane wave is hk, and its energy is Aw.

If a given state [¢)) is not an eigenvector for the operator A associated
to a given observable, we still can define the average value of that
observable in that state in the following way:

(7.2)

(7:3) (A) = (V]AJ).
The dispersion of an observable A in a state |v) is
(T4)  ApA= (A= (A = (4%, — ()3)"".

7.5. Uncertainty relations. Given two observables A and B, their
dispersions in any state |¢) satisfy the following relation:

(75) AVAAB > S|4, Bl)y),

where [A, B] = AB — BA. Hence, if two observables do not commute,
they cannot have well defined values in the same state. In particular,

for the position z and momentum p = —ih% of a particle in one
dimension:
(7.6) [z,p] =ih = AypxAyp>h/2.

Similarly for the time ¢ and energy E = ih%:

7.6. Complete sets of commuting observables. A complete set of
commuting observables is a set of observables which all commute with
one another and for which there is only one simultaneous eigenstate
belonging to any set of eigenvalues.

The existence of a complete set of commuting observables allows to
set up an orthogonal basis for the Hilbert space consisting of simulta-
neous eigenstates for those observables. The elements of the basis can
be distinguished by their different eigenvalues.

A plane wave is a special case, since it cannot be normalized in the usual sense.
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7.7. Measurements. Assume that an observable A has eigenvectors
|¢,) with different eigenvalues a,, (n = 1,2,3,...). A measurement of
A on a physical system initially in a state |¢)) will yield the value a,
with probability p, = |(¥,|¢)|*. After the measurement the state of
the system becomes |t,).

Formally the effect of the measurement is an statistical mixture rep-
resented by the following density operator:

(7.8) p= an |¥n) (¥l

where ) p, = 1. The entropy of the mixture is
(7.9) s(p) = =Tr(plnp) = an Inp,,

where Tr(A) = > (¥n|Altb,) ({|n)} form a Hilbert basis) represents
the trace of an operator A. For a pure state [¢)) the entropy is always
zero, but for a mixture it is positive in general, which indicates a loss
of information.

7.8. Schrodinger’s equation. The time evolution of a physical sys-
tem is given by the time dependent Schrodinger’s equation:

L0
(7.10) i ) = H ),

where H is the Hamiltonian operator representing the energy of the
system. The form of H depends on the system. Often in can be
obtained from the classical Hamiltonian H(qx,pk,t) by substituting
the variables g and py by their associated quantum operators.

If H does not depend explicitly on time, the wave function can be
written as e~ 7P 1)), where |1)) verifies the time independent Schrédinger’s
equation:

(7.11) Hp) = El).

For a particle in a potential V' (x), the classical Hamiltonian is H =
p?/2m + V(x). By using the quantum momentum p = —ihVz instead
we get H = —%VQ + V(x). The time independent Schrodinger’s
equation in this case becomes:

h2
(7.12) —5 -V [) + VI) = ElY).
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7.9. Pictures. Schrodinger’s equation (7.10) is valid in the so called
Schrodinger’s picture, in which states are assumed to evolve in time,
and operators are time independent.
An alternate point of view is given by Heisenberg’s picture, in which
states are time independent, while the operators now change with time.
Let U(t) = e *#*/" be the unitary operator that maps [1/(0)) to [1(t))
in Schrodinger’s picture:

(7.13) [¥(1)) = U () [4(0))-

In Heisenberg’s picture the states remain constant and equal to [1(0)),
while operators evolve in time. If Ag is an operator in Schrodinger’s
picture, then the corresponding operator in Heisenberg’s picture is

(7.14) Ap(t) = U(t) As(t) UT(t),
and it evolves in time according to the equation
dAy 1
1 —— = —[H, Ag].

In both pictures the matrix elements (£|A|y) are the same, so they
provide physically equivalent descriptions of the system.

7.10. S-matrix. In some interactions, such as a collision, the Hamil-
tonian can be written as H = Hy + H;, where is Hy corresponds to
a free particle, and Hjy, the part that rules the interaction, vanishes
asymptotically at large distances. For t — 400 the state of the system
|1)(t)) approaches asymptotic states |1, (t)) and [tou(t)) respectively,
which evolve according to the Schrédinger equation with Hamiltonian
Hy. The S-matrix is the operator that relates the asymptotic states:

(7.16) St (t)) = [out (£)) -

7.11. Canonical quantization. In general, given a classical system
with Hamiltonian H (g, px,t), in the corresponding quantum system
we consider gx(t) and pg(t) as operators satisfying the commutation
relations

(7.17) (@, 2] = ihow,

where dy; is Kronecker’s delta. In Heisenberg’s picture the time evolu-
tion of an operator A(t) is given by Heisenberg’s equation:
dA(t) 0A(t)

(7.18) ih = = [A(), H(8)] + ih ==,

which is analogous to the classical one (2.18).
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7.12. Momentum representation. Given a one-dimensional wave
function ¢ (x), we can write it as

R ipx/h
(7.19) wie) = [ 0) G do
where
R —ipz/h
(7.20) i) = [ vle) o o

is its Fourier transform. The function ¢ (p) is the momentum rep-
resentation of the state; i(z) is the position representation. In the
momentum representation, the momentum operator is multiplication
by p, and the position operator is x = iha%.

7.13. Harmonic oscillator. A harmonic oscillator is a particle in a
potential V(x) = kz?/2. With this potential, equation (7.12) becomes
h? o2 k
7.21 —_— —2%|¢) = E|y).
(7.21) ) + 52 ) = El)
This differential equation may be solved by standard techniques, but
it is more convenient to use an operational approach—the “ladder”

method. Instead of x and p = —iha% we use the operators:
1 mw
7.22 P = and =4/,
(7:22) Vi O=y

where w = /k/m= frequency of the oscillator. These operators verify
[P, Q] = i. Next we define

(7.23) a:%(QJriP), aT:%(Q—iP), N =d'a,
which verify [a,al] = 1, [N,a] = —a, [N,a] = al. The Hamiltonian
becomes:

(7.24) H=3jhw (P*+ Q%) = jhw (a'a+ 1) = Jhw (N +1).

The eigenvalues of N are integers n = 0,1,2,3..., and the correspond-

ing eigenvectors, which are also eigenvectors of H with eigenvalues
shw(n + 3), are represented |n).® The operators a' and a increase
and decrease n respectively: af|n) ~ |n + 1), a|n) ~ |n — 1), so that
In) ~ af™0).

An harmonic oscillator can be interpreted as a system of n identical
particles of energy fuw each. The ground state |0) represents a system

8Note that the energy of the ground state (n = 0) is not zero—this is a conse-
quence of the uncertainty principle.
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with no particles, i.e.: vacuum. The operators a and a' are called
annthilation and creation operators respectively, since they map a state
with n particles to another state with n — 1 or n 4 1 particles. N is
the number operator, since it represents the number of particles in the
system.

7.14. Angular momentum. Angular momentum is defined the same
as in classical Mechanics, but using the quantum linear momentum
in the definition: L = r x p = —ihr x V. In order to represent a
more general type of angular momentum, including spin, we use letter
J instead of L. Its components J,, J, and J, verify:

(7.25) o J) =ides [Jy ) =ide,  [Jo) Jo] =i,

However they commute with J2, i.e., [J;,J?] = 0 for k = x,y,2. The
eigenvalues and eigenvectors of J? and one of its components, say .J,,
can be found by an operational method similar to the one used in the
harmonic oscillator. With the help of the ladder operators J, = J,+iJ,
and J_ = J, —iJ,, we get that the eigenvectors of J* and J, are of the
form |J, M), where J and M are integers or half-integers representing
the total angular momentum and its z-component respectively. The
number J is non negative, and M can take the values M = —J,—J +
1,—J+2,...,J—1,J. The eigenvalues are:

(7.26) J2|J, MYy = R2J(J 4+ 1)|J, M), J.|J,M)=hM|J,M).

The operators Ji increase and decrease M respectively: Ji|J, M) ~
J, M +1).

A particular type of angular momentum is the intrinsic angular mo-
mentum or spin S. Besides the trivial case of a particle of spin 0, the
most simplest situation is that of spin 1/2. In this case the Hilbert
space is 2-dimensional, and in the base {|%, %), |%, —%)}, the operators
can be represented as Sy = gak, where

0 1 0 —1 1 0
(7.27) 0'30:(1 0), Uy:<z' 0>, O'Z:<O _1),

are Pauli’s matrices.

For a particle with spin the total angular momentum is J = L +
S, and the Hilbert space of angular momentum is the tensor product
HY) = HE) @ K. The eigenvectors of J? and J, are of the form
|L, S, My, St) = |L, M)|S, Ms), where |L, M) is an eigenvector of L?
and L., and |S, Mg) is an eigenvector of S? and S..
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7.15. Translations. If ¢ represents position and p = —iha% is the
momentum operator, a translation ¥ (q) — 1(g+a) of the wave function
can be represented with the operator T'(a) = e*?/h°

Similarly, from the time dependent Schrodinger equation we get that
time translation is given by the operator U(t) = e~®*H/" where H is the
Hamiltonian. This operator can be applied to a state vector in order
to obtain its time evolution: |1 (t)) = U(t)[(0)).

A similar relation holds for azimuthal angle o and z-component of the
angular momentum J,, so that a rotation about the z-axis is given by
the operator R(a) = e~*’=/"_If the angular momentum consists of the
spin S = h's of a particle, then the rotation operator is R(a) = e~ 10

In general, if p and ¢ are two canonically conjugate variables, trans-
lations in ¢ are given by an operator of the form T(a) = /" In
“Infinitesimal form” this is equivalent to T'(dq) = Id + i pdq/h, where
Id is the identity. The operator p is said to be the generator of trans-
lations in q. If we keep the state vectors fixed, then we may assume
that observables are transformed in the following way in a translation:

(7.28) A(g+a) =T(a)" A(q) T(a).

In infinitesimal form it becomes:
(7.29) dA(q) = [A(q), p] 7 dq.

7.16. Symmetry and conservation laws. Consider a physical sys-
tem that is symmetric respect to translations ¢ — ¢ + a. In particular
that implies that its Hamiltonian is invariant respect to infinitesimal
translations ¢ — q 4 dgq, hence

(7.30) [H,p] =0,

where p is the generator of translations. But this implies that in Heisen-
berg’s picture dp/dt = 0, i.e.: the observable p is conserved.

In general each kind of symmetry leads to a conservation law (Noether’s
Theorem):

9By Taylor (assuming that v(q) is analytic):

— - a” 9" _ - -n a™ p" __ aip/h
Y(g+a) = 7;) H@lﬂ@) = T;)Z H}Tniﬁ@) = e"PM)(q)
1ONote that for an eigenstate of s, with eigenvalue 1/2, R(2w) = —1, hence a

rotation of 27 about the z-axis changes the sign of the wave function.
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the following symmetry: | implies conservation of:
space linear momentum

time energy

rotational angular momentum

7.17. Identical particles. Two particles are identical if they cannot
be distinguished by observables.

Let P be the operator that permutes the particles: P |i1)|iq) =
[1a) [1h1). Tts eigenvectors are symmetrized states

1
[Ys) = 7 () 2) + [92)[41)) ,

with eigenvalue +1, and antisymmetrized states

1
[Ya) = 7 (lon)|wb2) = [2)[41)

with eigenvalue —1. If the particles are identical then P must commute
with any observable of the system, in particular with the Hamiltonian
[P, H] = 0. This implies that its eigenvalues must be constant in time,
so that a symmetric (resp. antisymmetric) state must remain always
symmetric (resp. antisymmetric).

A combination of various theoretical considerations and experimen-
tal results shows that, in fact, every system of two or more identical
particles can be only in either symmetric or antisymmetric states. Fur-
thermore, the Spin-Statistics Theorem states that if the spin of the
particles is integral then the states are symmetric, and if it is half-
integral then the states are antisymmetric. Particles with integral spin
are called bosons, and those with half-integral spin are called fermions.
For instance, photons (spin 1) and pions (spin 0) are bosons, while
proton, neutrons and electrons (spin 1/2) are fermions.

A consequence of the spin-statistics theorem is Pauli’s exclusion
principle: two fermions cannot be in the same state, because otherwise
they would be in a state simultaneously symmetric and antisymmetric,
which can only be zero.

7.18. Feynman’s formulation of QM. In Classical Mechanics a par-
ticle going from a point (xg,to) to another (x,t) follows a path y(t')
that minimizes the action S = fti L(y,y,t)dt'. In Quantum Mechan-
ics other paths are also possible, but they contribute to the probability
of the particle going from (xg, %) to (x,t) with an amplitude propor-
tional to exp{£S(y(t'))}. The probability is the integral

T31) Glbatuxt) = [ exp{ESr()} Dy()
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for all possible paths y(#') connecting (xg,t) and (x,¢). The integral
in (7.31) is defined as a limit for N — oo of an mtegral of the form

(7.32) // /exp{hS yn)} ', d° X29 dxy 1

where yy(t') is a polygonal path through the points (xg, ), k =
0,1,...,N, (XN,tN) = (X t) tk+1 -t = (tN - to)/N and 6 is a
normalizing factor chosen so that the result can be interpreted as a
probability.

Schrodinger’s equation and the other principles of Quantum Mechan-
ics can be derived from this formulation. Also, for macroscopic systems
the contribution to the integral of all paths tend to cancel out except
for the one that corresponds to the minimum action—which yields the
classical Hamilton’s principle.

8. RELATIVISTIC QUANTUM THEORY

(Note: in the following we use natural units in which ¢ = h = 1.)

8.1. Klein-Gordon equation. Schrodinger’s equation (7.12) is not
Lorentz invariant, so it is incompatible with (special) relativity. A first
attempt to replace it with a relativistic equation consists of replacing
the non-relativistic Hamiltonian H = p?/2m + V (x) used in its deriva-
tion with a relativistic one. For a spin-zero particle of mass m and
charge e in an electromagnetic field A* = (p, A), we have

(8.1) H=cp++/(p—ecA)Z+m?.
Eliminating the square root we get
(8.2) (H —ep)* — (p—eA)* =m?,

and replacing the Hamiltonian and momentum with the corresponding
quantum operators H = id/0t, p = —iV, we get the Klein-Gordon
equation:

(8.3 [(% - eso)z - Gv - eA) ] 16) = m2l,

which can be written
(8.4) (0 +ieA,) (0" + ieA") +m?|[¢) =0,

obviously Lorentz invariant.
For a null field the equation becomes

(8.5) @O+m*)|) =0,
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5?2
where [1= preie V2 is the D’Alembert operator.

A difficulty with this equation is that its solutions may have a prob-
ability density that is not defined positive. In the context of quantum
field theory this difficulty is overcome by reinterpreting the probability
density as a charge density instead.

8.2. Dirac equation. The Dirac equation is a generalization of the
Klein-Gordon equation for particles of spin 1/2 (such as an electron).

We start by replacing the non-relativistic Hamiltonian with a rela-
tivistic one, as we did for the Klein-Gordon equation, but instead of
eliminating the square root by squaring, we “calculate” the square root

VH? —p?2= (—% + V2)1/2 by finding appropriate A, B, C, D verifying

] 0 0 A% 0
8.6 A—+B—+C—+D= | =V>— .
(8.6) <8x+ oy Tzt at) Vi a

This can be accomplished using 4 x 4 matrices for A, B,C, D. At the
end the Dirac equation (in a null field) becomes

0 .
(8.7) i %) = (mie -V + fm) [¢)).
where a = (a1, g, a3), and 3, aq, ag, a3 are the Dirac matrices:
(8.8)

0010 0 -1 00
5_0001_012 -1 0 00| (-0
“ |t o000 \L o)t 0 0 o01] L0 o

0100 0 0 10

0 i 0 0 ~100 0
|-i00 0| (-0, O o 10 0| (-0
“2=1lo o0 —=| " Lo o/ [o o1 0| o

0 04 0 0 00 —1

where 0., 0,,0, are Pauli’s matrices.
For a particle of mass m and charge e in an electromagnetic field
A" = (p, A), the equation becomes:

(8.9) Kz’% - ego) — - (—iV —eA) — ﬁm] ) =0.

The Lorentz invariance of the Dirac equation is easier to see by
rewriting it like this:

(8.10) (10, — eAu) —mllp) =0,
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where 70 = 8, v¥ = Bay, k = 1,2, 3 are the y-Dirac matrices:
(8.11)

0 __ 0 [2 1 0 Oy 2 0 Oy 3 0 0,
7_(12 0)7 " \~o. 0)7 “\0, 0)"7 T\-0. 0)"

The solutions to the Dirac equations have four components:

U

|| (Y _ (" (¥
(8.12) V= Vs | (@/)ir) A (%)  ¥-= (¢4> '
(o7

In the non-relativistic limit (for a particle of positive energy) the two
lower components ©_ become negligible, and the two upper compo-
nents 1, obey the non-relativistic Schrodinger equation for a spin-1/2
particle, with each of 1,9y representing a component of spin.

An important aspect of the Dirac equation is the existence of solu-
tions with negative energy, which can be illustrated as follows. In a
null field consider a solution of the form 1 (x) = u(p)e®*, where u(p)
is a 4-component spinor independent from x. The latter is determined
by the equation:

(8.13) Hu(p) = Eu(p),

where H = a-p+pm, and E = ++/p? + m2. The solutions with £ < 0
correspond to negative energy (for these “negative energy” solutions the
two upper components ¥, are “small”, and the two lower components
Y_ are “large”).

The existence of negative energy solutions is problematic, because
particles could jump to negative energy states by emitting energy, and
actual particles do not behave that way. In order to solve the problem
Dirac postulated that all negative energy states are occupied (Dirac’s
sea), and the Pauli exclusion principle prevents positive energy particles
from falling to those states. However, a negative energy particle could
absorb energy and jump to a positive state leaving behind a “hole”,
which would behave as a particle with opposite charge. The hole left
by an electron jumping from negative energy state to positive energy
was identified with a new particle, the positron.

A refinement of these ideas leads to quantum field theory.

9. QuaNTUM FIELD THEORY

9.1. Introduction. Quantum field theory is developed under the as-
sumption that fields, and not particles, are fundamental entities in
nature. So, in the same way the photon is the particle associated to
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the electromagnetic field, the electron will be only a manifestation of
some “electron field”. There are various reasons to take fields and not
particles as fundamental:

(1) Locality. There is no “action at a distance”, every action be-
tween two separate points in space propagates through a field.

(2) The combination of quantum mechanics and special relativity
implies that the number of particles is not constant. This is
a consequence of the uncertainty principle together with the
relativistic mas/energy relation: a particle trapped in a small
box may have an uncertainty in its moment/energy larger than
the mass of the particle, and at that scale (the Compton wave-
length) pairs particle-antiparticle may appear spontaneously.

(3) Particle identity: the exchange of two identical particles (such
as two electrons or two photons) leave their joint state un-
changed (apart from a possible minus sign). They behave as
made of the same “thing”—in fact they are manifestations of
the same field.

9.2. Field dynamics. A field is a quantity defined at every point of
space and time (x,t). In classical particle mechanics a finite number of
generalized coordinates g (t) is used. In field theory those generalized
coordinates are replaced with the values of the components of the field
or(x,t) at each point of space and time. The number of degrees of
freedom is now infinite.

The dynamics of the field is governed by a Lagrangian that is a
function of ¢(x,t), ¢(x,t), and V(x,t), and can be written as follows:

(9.1 L) = [ 000,60,

where £ is called Lagrangian density.
The action is

(9.2) S = /tzL(t) dt = /Ld3xdt.

t1
The equations of motion are determined by the principle of least
action 0.5 = 0, which yields the following Euler-Lagrange equations:

0L 0L
(9.3) N < ) — =0.
O 0udr)) Oy
An example is equation (5.12), where a variational principle is used to
derive Maxwell’s equations using Lagrangian density £ = —iFWFW.

(***** This section is under construction. ****¥)
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