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PREFACE TO THE PRESENT EDITION

The present book titled, Electromagnetics: General theory of the electromagnetic
field. Classical and relativistic approaches, is an extended form of the previous two
editions of the books titled Electromagnetics: General theory of the electromagnetic field.

The new book, at the difference of the previous ones, contains four new appendices,
devoted to several topics, as follows: a. A study on the divergence of tensors related to
the curvature of the space-time continuum; b. The energy-momentum tensor of the
electromagnetic field in the theory of relativity; ¢. The Sagnac effect in The General
theory of relativity; d. A new approach to the calculation of the magnetic field strength of
a solenoid and to the introduction of magnetic quantities.

In this book, apart from some improvements, new results have been included, some of
them belonging to the author. These last ones have been presented at the ICAEM
International Conference of Applied and Engineering Mathematics, held in London the
last four years (2008-2011). The book will appear in both forms electronic and print.

The volume has been built in order to avoid the reader to resort to books of
mathematics, all mathematical developments being included in the book.

The purpose of this book has been to present in a legible manner some important
subjects of the concerned topics. At the same time, the text has been so prepared that a
reader not interested in the Special Theory of Relativity and General Theory of Relativity
could read it, avoiding the text connected with the relativistic treatment.

The book is devoted to all readers interested in these topics.

PREFACE TO THE FIRST EDITION

In the present work the physical fundamentals of electromagnetic phenomena are
studied having in view their technical applications.

The book contains the general theory of the electromagnetic field necessary for the
study of the principal applications in the following domains: Electrostatics,
Electrokinetics, Electrodynamics and Magnetostatics.

The general theory contains the introduction (i.e., the definition) of fundamental
concepts among which: field and substance, electric charge, electric current, state
quantities of electric and magnetic fields, as well as the study of laws and energy of the
electromagnetic field.

The general theory is presented in four chapters. Further, three appendices are added.

For practical applications, the consideration of electromagnetic phenomena at a
macroscopic scale is of special interest. However, in many applications, it is necessary to
know the phenomena at a microscopic scale.

At the same time, it is useful to have in view that the physical model is, in many cases,
relatively simple in the case of a microscopic study. For this reason, in this work, the
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following procedure has been used: The various quantities and phenomena have been first
examined at a microscopic scale, and then, by calculating the average values, the passage
to macroscopic quantities describing the phenomena has been accomplished.

Concerning the presentation of the general laws, there are, in principle, two
possibilities:

a. The introduction of these laws directly, as a generalization of experimental facts;

b. The derivation of these laws starting from the Coulomb law and the Special Theory

of Relativity.

The Special Theory of Relativity has been used because it permits the derivation of the
equations of the theory of electromagnetic field starting from a small number of general
equations.

Appendix 3, which contains the main formulae of the Special Theory of Relativity,
and the derivation of certain relations between forces, given by the author, facilitates to
follow the calculations of Chapters 2 and 3.

Also, some relatively recent considerations on the theory of relativity have been
mentioned in Introduction.

The text has been elaborated so that all references to the special theory of relativity
may be omitted; however, in this case, the number of basic general equations that are not
derived from more general relations is greater.

The study of the mentioned domains, namely Electrostatics, Electrokinetics,
Electrodynamics, Magnetostatics, can be carried out by using the general laws of
electromagnetic field for these various cases. Certain important problems concerning the
mentioned domains are analysed in the present work.

A more detailed study of the mentioned domains can be found in several works
devoted to these subjects, including the works of the author, mentioned in Bibliography.

The system of units used in this work is the International System of Units (SI) and all
formulae are written in this rationalized system.

This work differs to some extent from many other usual textbooks and works by the
attention paid to certain subjects like the passage from the microscopic theory to the
macroscopic one, the way of using the Special Theory of Relativity, and the simplicity of
the presentation.

Certain parts of this work, especially those related to the Theory of Relativity,
represent the content of the lectures of an extra-course given by the author at the
Université Bordeaux 1 (France) in the summer semester of 2001.

The author thanks especially Doctors of Physics: Jean-Claude GIANDUZZO, Head of
the Centre of Electrical and Electronic Resources, and Jacques CURELY, both from the
Université Bordeaux 1 (France), for their support for the presentation of these lectures
and for their valuable comments.

At the same time, the author wishes to thank Professor Florin Teodor TANASESCU,
from the Polytechnica University of Bucharest, secretary general of the Academy of
Technical Sciences in Romania, for his valuable support and suggestions.

Finally, the author should like to gratefully thank Dr. Phys. Jacques CURELY, from the
Université Bordeaux 1, for the attention paid to the review of the manuscript and for his
valuable comments and suggestions.

Andrei NICOLAIDE
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INTRODUCTION

1. CONTENT OF ELECTROMAGNETICS

In this work, the foundations of Electromagnetics, including theory and applications
are treated. It is useful to note that Electromagnetics and Electromagnetism can be
considered synonyms.

The theory of electromagnetism includes the introduction (i.e., the definition) of
several fundamental concepts among which: Field and substance, electric charge, electric
current, state quantities of electric and magnetic fields. Also, it contains the study of
forces acting upon electric charge carriers in motion, laws and energy of electromagnetic
field. The applications concern the corresponding topics.

2. THE THEORIES USED IN THE STUDY OF
ELECTROMAGNETISM

We recall that the Electromagnetism is a branch of Physics in which the
electromagnetic phenomena are studied. It contains the study of physical bases and of the
propagation of electromagnetic field. This work refers to physical bases only.

The principal domains of electromagnetism are the following ones: Electrostatics,
Electrokinetics, Magnetostatics and Electrodynamics. These domains are very useful for
the study of macroscopic phenomena and in practical applications.

The study of the domains above can be carried out by using the general laws of
electromagnetism in these various cases. Certain important problems of the mentioned
domains are analysed in the present work. A more detailed study of the mentioned
domains can be found in several works devoted to these subjects, including the works of
the author, mentioned in Bibliography.

In the study of electromagnetism, the following theories are utilized: Theory of
electromagnetic field (Theory of Maxwell), Theory of electrons (Theory of Lorentz),
Theory of relativity and Quantum Mechanics.

The theory of Maxwell is the macroscopic theory of electromagnetic phenomena. In
the framework of this theory, relationships between the quantities that characterize the
electric and magnetic state of the substance are given in the form of a set of differential
equations. The theory refers to media at rest. An extension of this theory to moving media
was made by Heinrich HERTZ.

The Theory of electrons is the microscopic theory of electromagnetic phenomena,
which admits the existence of certain elementary charged particles, called electrons. The
electron is characterized by its electric charge, mass, and magnetic moment. In the
framework of this theory, the ponderomotive forces of the electromagnetic field are
exclusively determined from the forces exerted upon particles and expressed by the
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Lorentz formula. The electromagnetic field equations are obtained by applying the
Maxwell equations for empty space (i.e., vacuum) at microscopic scale.

The theory of electrons can be presented in either quantum or non-quantum form,
respectively. The non-quantum form of the theory of electrons has also two forms,
namely: non-relativistic and relativistic one. In the framework of the non-relativistic form,
the existence of a privileged reference frame is assumed. This reference frame is at rest
with respect to the group of fixed stars and is referred to as Lorentz inertial reference
frame. The theory of electrons refers to media at rest as well as to moving media.

The non-quantum theory of electrons cannot be put in accordance with some
properties of elementary particles and the utilisation of Quantum Mechanics then
becomes necessary.

Finally we shall recall that the fundamental physical interactions or forces, in nature,
are of the following four types: Electromagnetic, Weak, Heavy and Gravitational.

3. SHORT HISTORICAL SURVEY

In this Section, certain data of the history of the development of the knowledge of
electromagnetic phenomena will be presented. The first knowledge about electric and
magnetic phenomena refers to natural magnetism and to electrification by friction.
Magnet and magnetism are so termed because the loadstone (iron ore) pdyvng (magnes)
was originally found in the Thessalian Magnesia.

Also, in Antiquity the electrification by friction of amber, called in Ancient Greek
keypumapt (kehrimpari, read kechrimpari) or fiextpov (elektron, read ilektron), was
known. This manner of electrification was described by THALES of Millet (640 ~ 547
BC).

The development of electromagnetism was related to a great extent to the discovery of
the law of the force exerted between two point-like bodies, charged with electricity (i.e.,
having electric charge). The establishment of this law had several stages due to the
research of Benjamin FRANKLIN (1706 — 1790), Joseph PRIESTLEY (1733 — 1804), John
ROBISON (1739 — 1805), Henry CAVENDISH (1731 — 1810) and Charles-Augustin de
COULOMB (1736 — 1806). Coulomb performed experiments by two different methods.

In the first method, he used a torsion balance and measured the angle proportional to
the force exerted between electrified bodies.

In the second method, he used an apparatus with an oscillating device and determined
the number of oscillations that depends on the force exerted between the electrified
bodies; the results were published in 1785.

With respect to the previous experiments, he established the results more directly and
also mentioned that the force is directly proportional to the product of the quantities of
electricity (electric charges) of the two electrified bodies.

He established with a high precision that the force exerted between two electrified
point-like bodies is inversely proportional to the square of the distance between them.

Carl Friedrich GAUSS (1777 — 1855) established important formulae in Electrostatics
and Magnetostatics.

Hans Christian OERSTED (1777 — 1851) experimentally remarked the action exerted
by an electrical conductor carrying an electric current, on a magnetic needle. This
experiment was determined by the remark that the magnetic needle of a compass makes
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oscillations during a storm. The result was published in 1820. This result has been of a
great importance, because it has allowed the establishment of the relation between two
classes of phenomena, previously independently treated.

At the same time, in the year 1820, Jean-Baptiste BIOT (1774 — 1862), Félix SAVART
(1791 — 1841) and Pierre-Simon de LAPLACE (1749 — 1827) established the relation
expressing the interaction between an element of electric current and a magnetic pole.

Continuing this research, André-Marie AMPERE (1775 — 1836) established the same
year 1820, that forces are exerted between two conductors carrying electric currents. He
also introduced the difference between electric potentials (potential difference, voltage,
electric tension) and electric current. He showed that a permanent magnet in the form of a
bar is equivalent to a coil carrying an electric current. It is worth noting that at present the
Ampere conception lies at the base of the theory of magnetism.

Georg Simon OHM (1789 — 1854) established in 1826 the relationship between electric
tension (voltage) and the intensity of the electric current.

Two very important discoveries lie on the ground of the theory of electromagnetic
field.

The first one is the fundamental discovery made by Michael FARADAY (1791 — 1867)
and consists in the fact that a magnetic field varying with time induces (i.e., produces) an
electric field, what he experimentally established. A historical survey of the research
carried out by several scientists on this subject can be found in literature [13], [25].

The second one belongs to James Clerk MAXWELL (1831 — 1879). Maxwell
established in a theoretical way that, conversely, an electric field varying with time
induces (i.e., produces) a magnetic field. Therefore, the electric fields varying with time
have the same effect as the conduction currents concerning the production of the
magnetic fields. Hence, the variation with time of the electric field may be considered as
corresponding to an electric current, called by Maxwell displacement current.

To the previous two components of the electric current (i.e., conduction current and
displacement current) it is to be added a third component namely the convection current.
It is produced by the motion of electrified bodies with respect to a reference system. This
component was studied by several scientists, among which Henry ROWLAND (1848 —
1901) and N. VASILESCU KARPEN (1870 — 1964).

At the same time, Faraday introduced the concept of line of force, in order to visualize
the magnetic field and subsequently the electric field.

Faraday thought the seat of electric phenomena as going on a medium, whereas
previously, mathematicians thought the same phenomena as being produced by centres of
forces acting at a distance. The conception of Faraday allowed him to replace the concept
of action at distance by the concept of a local interaction between electrified bodies and a
field of forces, what has had a great importance for the subsequent development of the
theory of electromagnetic field.

After six years of experimental researches, Faraday discovered in the year 1831 the
phenomenon of electromagnetic induction mentioned above. In the first experiment, he
utilized a soft iron ring having the cross section diameter of about 2.22 c¢cm and the
exterior diameter of about 15.24 cm. On this ring, there were wound two coils of
insulated copper wires. The ends (terminals) of the first coil could be connected with an
electric battery (of cells). The ends of the second coil were connected each other by a
copper wire placed in the neighbourhood of a magnetic needle. When connecting or
breaking the connection of the first coil with the battery, he remarked oscillations of the
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magnetic needle that then ceased. This experiment led Faraday to the conclusion that the
second coil carried during this time interval “an electricity wave”. Hence, the
phenomenon of electromagnetic induction by transformation was discovered.

In another experiment, he utilised a coil of wound wire forming a helix cylinder.
When displacing, inside the coil, a permanent magnet in the form of a bar of about 1.905
cm in diameter, and of about 21.590 c¢m in length, he remarked that the needle of a
galvanometer, connected with the ends of the coil, moved in different directions
depending on the direction in which the permanent magnet had been displaced. Hence,
the phenomenon of electromagnetic induction by the relative motion of a conductor with
respect to the field lines produced by the permanent magnet was discovered. Therefore,
the law of electromagnetic induction is also called the Faraday law.

The mathematical expression of the electromagnetic induction law was subsequently
established by Maxwell.

Also, in 1831, Faraday invented the first direct current generator composed of a
copper plate that could rotate between magnetic poles, and the external electrical circuit
was connected between the centre and the rim of the plate. In 1851, he described a
machine consisting of a rotating wire rectangle with an attached commutator, this being
the prototype from which derived the direct current machines with commutator.

The self-induction phenomenon was discovered by Joseph HENRY (1797 — 1878) in
the year 1832.

The conversion into heat of the energy due to electric currents flowing through
conducting wires is called electro-heating effect.

James Prescott JOULE (1818 — 1889) carried out experimental research on the heat
generated by electric currents. He established the relation expressing that the heat
produced by electro-heating effect, in a given time, is proportional to the square of the
current, and his results were published in 1840.

Heinrich Friedrich Emil LENZ (1804 — 1865) made investigations on the variation of
the resistance of a conducting wire carrying an electric current and showed that the
resistance increases with temperature, these results were reported in 1833. Afterwards, he
performed research on the electro-heating effect.

He also established the statement that an electric current produced by the
electromagnetic induction phenomenon, in any circuit, flows in a direction such that the
effect of that current opposes the cause that produced the current. This statement is
known as the Lenz rule.

Emil WARBURG (1846 — 1931) and John Henry POYNTING (1852 — 1914) established
useful relations referring to the transformation and propagation of electromagnetic
energy.

The study of electromagnetic field for the case of moving bodies was developed in the
researches of Heinrich HERTZ (1857 — 1894), Hendrik Antoon LORENTZ (1853 — 1928),
Hermann MINKOWSKI (1864 — 1909), Albert EINSTEIN (1879 — 1955).

Lorentz developed the theory of electrons which allowed the explanation of many
electromagnetic phenomena; he also established the relation for the transformation of co-
ordinates and of time, when passing from a reference frame to another, from the condition
that the form of Maxwell equations remain unchanged.
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Einstein developed the Special Theory of Relativity published in 1905, and the
General Theory of Relativity formulated in the year 1916, a presentation of which can be
found in [27].

The Special Theory of Relativity, is also referred to by one of the following
denominations: Theory of Special Relativity, Restricted Theory of Relativity, Theory of
Restricted Relativity. In the framework of the Special Theory of Relativity, Einstein
obtained the Lorentz transformation relations, without utilizing the Maxwell equations.

Utilizing the theory of relativity, it has been possible to express the equations of the
electromagnetic field in a general form for the case of moving bodies. The Theory of
Relativity implies to assume a constant velocity of light in empty-space with respect to
any reference frame. This assumption leads to a local time at the points taken in various
reference systems.

An interesting interpretation of the Lorentz theory was given by Henri POINCARE
(1854 — 1912), [39]. In this interpretation, he stated that when considering a body in
motion, any perturbation propagates more rapidly along the direction of motion than
along the cross direction and the wave surfaces would be no more spheres but ellipsoids.
These considerations have been analysed by Edouard GUILLAUME but their development
has not been continued [39].

It is interesting to be noted that Einstein and Poincaré obtained the same formula for
the composition of velocities but with quite different derivations. The derivation of
Einstein starts from relations of Mechanics and the postulates of the Special Theory of
Relativity, whereas the derivation of Poincaré starts from the transformation relations of
Lorentz.

After the special theory of relativity became known, it has been possible to derive the
Maxwell equations starting from the Coulomb formula and the transformation relation of
forces when passing from an inertial reference frame to another one.

Several mathematical explanations of the special theory of relativity can be found in
literature, among which a derivation starting from the four-dimensional structure assumed
for the universe [37].

The theory of relativity has been based on the postulate mentioned above, according to
which the velocity of light in empty-space is constant with respect to any reference frame.
This postulate was based on the experiments first carried out by Michelson in 1881, and
repeated with improved accuracy by Michelson and Morley in 1887. These experiments
concern the propagation of a monochromatic light, emitted from a source on the Earth,
taking into account the revolution motion of the Earth around the Sun. For this purpose,
an apparatus containing an interferometer was used.

From the mentioned experiments, it follows that the velocity of light on the Earth is
not affected by the orbital motion of the Earth around the Sun.

Later, the above postulate was checked by several direct experiments. An example is
mentioned in [18, p. 4] and refers to the experiment performed in 1964 by Alviger,
Farley, Kjellman and Wallin. They determined the velocity of photons arisen from the

decay of m°- mesons. It is recalled that from the decay of each of these mesons, two
photons arise. The velocity of the mesons above was found, using the equations of the
Special Theory of Relativity, to be very close to the velocity of light. The velocity of the
photons obtained as mentioned above was found to be very close to that of the mentioned
mesons, except a very small deviation. Therefore, the velocity of photons was not added
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to the velocity of mesons and, hence, the velocity of light was not surpassed. Thus, the
mentioned postulate was verified in this case.

Despite the success of the theory of relativity it cannot be considered to be a complete
one. Indeed, there are electrodynamic phenomena that cannot be satisfactorily explained
by the known theories, the theory of relativity included. Further, an example of such a
phenomenon will be given namely the experiment of G. Sagnac [28]-[31]. For a long time
this phenomenon has been mentioned in literature, e.g., by Lucien FABRE [38], although
not enough analysed.

The experiment carried out by Georges SAGNAC (1869 — 1928) in 1913, [31], is a very
curious one. The experiment consists in achieving the interference of two light beams
travelling in inverse directions along the same way. The light source, the interferometer
and the reflecting mirrors which ensure the desired paths (ways) for the beams (namely
approximately a circular trajectory), photographic plate, hence the set of apparatus is
placed on a disc, outside which nothing related with the experiment occurs.

The light beams travelling around the same way but in opposite directions are
reflected from the interferometer to a photographic plate. The disc can rotate with any
angular velocity o.

We recall that the ether (aether), mentioned below, is the denomination of a certain
substance assumed by certain scientists to fill all space (between particles of air and other
substances) through which electromagnetic waves and light may be transmitted. However,
according to several researches, among which the experiment of Albert A. MICHELSON
and Edward W. MORLEY, the concept of ether appears as being non-consistent.

Sagnac obtained that the time for a light beam to travel around a way parallel to the
disc surface differed, according to whether the travelling direction was with or against the
rotation sense of the disc. Hence, the light beams had different velocities with respect to a
reference frame fixed to the disc. The result, referred to as Sagnac effect, seems to be not
in concordance with the Theory of Relativity. Indeed, the phenomenon appears, as if
ether would exist at rest, independently of the existing motion [38, p. 111, 248-251]. This
result determined many thorough analyses, one of the most recent and interesting being
carried out in papers [34]-[36].

In these papers, A.G. KELLY made a thorough analysis examining the arguments for
and against the theory of relativity by considering the Sagnac effect. His analysis is based
on the most important studies and reports concerning this effect. His main remarks are the
following ones:

1° Many experiments performed with a high precision, including laser light, have
confirmed with a good accuracy the results of the Sagnac experiment. It can be mentioned
a very precise experiment carried out by investigators using laser-light in a piping system
filled with a helium-neon gas [35, p. 7]. In fact, the Sagnac effect proves that light does
not travel with the same velocity in both directions relative to the interferometer on a
spinning disc [35, p. 10].

2° According to the internationally agreed method of synchronizing clocks on Earth,
using electromagnetic signals, the following three effects are considered [35, p. 10, 16]:

a. Correction calculated according to the special theory of relativity.

b. Correction calculated for the difference of the gravitational potential, according to

the general theory of relativity.
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c. Correction for the rotation of the Earth about its axis. The last correction
corresponds to the Sagnac effect (although it is not denominated as such). The last
correction is necessary because light does not travel around the globe Eastward
and Westward with the same velocity (i.e., in equal times).

3° The measurements of high precision made by several investigators showed that the

velocity of light on the Earth is not influenced by the rotation of the Earth around the Sun
but it is influenced by the rotation of the Earth about its axis.

4° Some authors, among which A.G. Kelly, have considered that the Sagnac effect

could not be explained by the Theory of Relativity. This opinion has been justified,
because the modification of the light velocity in the Sagnac effect is much greater than

any relativistic effect, by a factor of the order of magnitude 107 [34, p. 8], [35, p. 14].
However, as we have proved, and also described in Appendix 9 of this book, the relations
obtained using the relationships of the General Theory of Relativity are in good
agreement with the results shown by the Sagnac effect.

5° Tests were carried out in order to determine the effect corresponding to the General
Theory of Relativity on the time indicated by airborne clocks relative to a standard clock
system fixed on the Earth. The clocks had to be carried Eastward, and Westward,
respectively by aeroplane in both cases approximately at the same latitude. Atomic clocks
with caesium were used. The results have not been conclusive because the clocks had not
sufficient stability required by the experiment [36, p. 5].

According to paper [35, p. 22], the light moves on the Earth together with the
gravitational field of the Earth.

Kelly has shown the importance of modifying the Theory of Relativity in order to
avoid the mentioned discrepancies with respect to experiments.

Other remarks concerning the difficulties in using the Theory of Relativity can be
found in paper [20].

Despite the difficulties encountered in utilizing the Theory of Relativity for explaining
certain phenomena it can be considered as a very convenient mathematical and physical
procedure for calculating the electromagnetic field state quantities in the case of moving
bodies charged with electricity. Also, the Theory of Relativity proved a higher accuracy
than any other known theory.

We should add that the derivation of the Maxwell equations starting from the
Coulomb law, was performed by Leigh PAGE (1882 — 1952) in 1912, and developed
subsequently by certain authors in several works, among which the following references
(treatises and textbooks) of the Bibliography [6], [11], [13], [18], [23], [25].

Classical Mechanics and classical Electrodynamics when applied for the explanation
of phenomena produced at atomic scale lead to results which are in contradiction with the
experimental results. So, for the study of phenomena at atomic scale, the Quantum
Mechanics also called Undulatory Mechanics has to be used. The bases of these
Mechanics were built up by Louis-Victor-Pierre-Raymond de BROGLIE (1892 — 1987) in
1924 and Erwin SCHRODINGER (1887 — 1961) in 1926. It is recalled that in Quantum
Mechanics, the notion of trajectory of a particle does not exist. This circumstance is
expressed by the non-determination principle (incertitude principle) that was formulated
by Werner HEISENBERG (1901 — 1976) in 1927 and is one of the fundamental principles
of Quantum Mechanics.
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It can be added that certain models proposed by R.L. VALLEE [20], based on the
analysis of trapped electromagnetic waves and some principles, allowed the find of
certain results as by means of Quantum Mechanics.

It is to be noted that Quantum Mechanics is very useful for both theoretical and
practical purposes. Indeed, most of the phenomena that occur in semiconductors and
magnetic materials may be explained only by the use of this mechanics. Also, the
achievement of new materials (semiconductors and magnetic materials) is related to
Quantum Mechanics.

4. THE SYSTEM OF UNITS OF MEASURE

There are several systems of units that can be used in electromagnetism [42]-[47]. For
practical purposes at the “Congrés International des Electriciens” held in Paris in 1881,
the following units of measure have been adopted: ohm, volt, ampere, farad.

Giovanni GIORGI (1871 — 1950) proposed in 1902 a system of units from which the
International System of Units, SI (abbreviation from the French denomination Systéme
International d’Unités), utilised at present, was derived. In 1935, the International
Electrotechnical Commission (IEC or in French CEI - Commission Electrotechnique
Internationale) recommended that preparation be made for the transition to the system of
units suggested by Giorgi. In this system the basic units were the following: unit of length
— the metre, unit of mass — the kilogram, unit of time — the second, magnetic permeability
of free-space — | . This proposal was not universally accepted and instead of the
magnetic permeability, it was suggested that the fourth basic unit was to be the ampere.
The corresponding system of units was denoted MKSA. The International System of
Units denoted SI was adopted by the eleventh Conférence générale des Poids et Mesures
(General Conference of Weights and Measures) in 1960. The base (basic, fundamental)
units of this system are the following: metre, kilogram, second, ampere, kelvin (for
thermodynamic temperature), mole (for amount of substance), candela (for luminous
intensity).

In respect to electrical quantities, the SI system differs from the MKSA system by the
denomination of the unit of magnetic induction that is tesla (T) in the SI system and
Whb/m® in the MKSA system.

It is useful to add the concept of rationalization. The rationalization of the equations of
the electromagnetic field means the presentation of the main equations, i.e., the Maxwell
equations, in a form not containing the factor 4w . In this way, certain symmetry in the

equations connecting electric and magnetic quantities appears. In fact, the rationalization
consists in adopting for €5 and pg appropriate values in order to ensure the symmetry
mentioned above. The SI system ensures the rationalization of the equations of the
electromagnetic field, hence it is a rationalized system of units.



1. GENERALITIES ON THE THEORY OF THE
ELECTROMAGNETIC FIELD AND ON THE
STRUCTURE OF SUBSTANCE

1.1. FIELD AND SUBSTANCE

Field and substance are fundamental forms strictly connected in which matter exists.
There are many varieties of fields. For the electromagnetic field, the following definition
can be used. The electromagnetic field is a different form of existence of the substance of
bodies, and exists in the regions of space in which ponderomotive actions (forces or
torques) of electromagnetic nature can act on the bodies. By ponderomotive actions of
electromagnetic nature we understand forces and torques exerted on bodies and which
have not a cause of mechanical or thermal nature.

The major part of the properties of the electromagnetic field is indirectly studied by
the effect that it produces (for instance, mechanical and thermal effects), because most of
the manifestation manners of the electromagnetic field are not directly accessible to the
human senses. Only the electromagnetic waves of certain wave-length within 0.4 pm and
0.76 um are directly perceptible as light waves.

It has been established that the electric and magnetic phenomena are transmitted in
space at a finite velocity even in vacuo, from a body to another. It follows that, in space, a
physical system, termed field, exists and allows the transmission of ponderomotive
actions in space and time. This statement is in accordance with the principle of continuity
[38, p. 230, 231], [1, Vol. I, Arts. 7, 59, 60]; namely two distinct bodies can act to one
another only by an inter-medium. Thus, the action is exerted not at distance, but through a
medium. Therefore, all the laws could be expressed in a differential form between
infinitely close points. At the same time, according to the principle of causality, the laws
can contain only quantities that can be observed directly or indirectly.

In the study of the properties of bodies and generally of their substance, hence media
presented by various bodies, we can distinguish: a — homogeneous media and non-
homogeneous media; b — isotropic and anisotropic media.

Homogeneous medium shows the same properties at all points. Isotropic medium
shows the same properties along any direction.

To any field of physical nature characterized by scalar or vector quantities, there
corresponds a field with mathematical meaning, namely a field of scalars or vectors,
respectively. It means that, to any point of the physical field, there corresponds a scalar or
a vector. The physical field under consideration will be called scalar or vector field,
respectively.

The vectors may be of polar or axial types; thus there are polar vectors and axial
vectors. To any rotation motion of a body about an axis, a vector having the axis direction
is attributed for representing the angular rotation velocity of the body about the axis. In
this case, the vector designates the axis about which the rotation is accomplished. Such a
vector is called an axial vector. The case is similar for the vector representing the torque
acting on a body. To the gravitational force acting on a body, a vector is attributed for
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representing the force. Such a vector is called a polar vector. Starting, for instance, from
the expression of a torque it follows that a vector product ¢ =a x b yields an axial vector
if each vector from the right-hand side is a polar vector. From the mathematical form of a
polar vector, it follows that its components, in a three-orthogonal rectilinear (Cartesian)
right-handed system of co-ordinates, change their sign if the positive direction of every
co-ordinate axis is inverted. From the mathematical form of the vector product, it follows
that its components, in a system of co-ordinates described above, do not change in sign if
the factors are polar vectors. Consequently, in a vector equation, all the terms must be
vectors of the same type.

The scalar function of a scalar field or the vector function of a vector field depends on
the position vector:

r=ix+jy+kz, (1.1)

and may be written @(r) and G(r), respectively:
o(r)=p(x.y.z2). (123)
G=G(r)=iG, +jG, +kG.. (1.2b)

In the study of vector fields, the use of Vector Calculus is very convenient and will be
utilized further on.

It is worth noting that the terms of direction have to be used in many sentences.
Direction is the course taken by a moving person or thing. The word direction is used
especially for straight-line ways (paths), but it is not compulsory. A direction normally
shows two senses but the word sense will be considered to have the same meaning as
direction. Each of them can be used.

Certain concepts that often occur in a study of the electromagnetic field will be further
considered.

1.2. LINES OF FIELD. TUBES OF LINES OF FIELD.
EQUIPOTENTIAL SURFACES. FLUXES.

1.2.1. Lines of Field

A line of field also termed a line of force, is a curve that is tangent at any point to the
vector of the field strength at that point (Fig. 1.1). Hence, starting from any point of a
vector field, and adding up, from this point, along the direction of the field strength an
infinitely small straight-line segment, we obtain a next point, after the starting point, of
the line of field. Continuing in this manner, we shall obtain the curve representing the line
of field that passes through the given starting point.

In accordance with the definition given for the lines of field, it follows that the
element of a line of field is:

dl=idx+jdy+kdz. (1.3)
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Fig. 1.1. Explanation concerning the lines of field:
a — line of field; b — tube of field lines.

The element of a line of field and the field strength vector at the same point are homo-
parallel (i.e., parallel and of the same direction). It follows that in a three-orthogonal
rectilinear system of co-ordinates we have:

dx _dy_dz
G. G, G,

X y z

1.4)

In the case of a scalar field, by line of field we understand the line of field of the
vector field, the vector at any point being the gradient of the scalar field at the same point.

In the case of a vector field of the velocities of the particles of a fluid in motion, the
vector at any point being the instantaneous velocity of the particle of the moving fluid,
the field lines are called lines of current. In the case of a force field, they are called /ines
of force (denomination also used in the case of any vector field).

We may imagine each line of field represented by a thread (thin cord, thin rope)
having at every point the direction (sense) of the field vector at that point. Moreover, the
lines can also be supposed to be elastic. Then, they can suggest the forces that could
appear in the considered field. As an example we may consider the lines of force between
two bodies charged with electricity of opposite sign. The lines of force can suggest the
attraction forces exerted between the two bodies.

Further on, we shall make some remarks concerning mathematical aspects.

The lines of field of a potential field with sources (i.e., the case of a field
caharacterized by the curl equal to zero and the divergence different from zero, at any
point) are open lines. These lines diverge from the positive sources of the field (i.e., the
points where the divergence is positive) and converge towards the negative sources of the
field (i.e., the points where the divergence is negative).

The lines of field of a curl solenoidal field (i.e., a field with the curl different from
zero and the divergence equal to zero, at any point) can be: a — lines of a relatively simple
form which are closed at finite distances or at infinity; b — lines of relatively complicated
form, which may be closed lines as well as open lines, as certain conditions are fulfilled
or not.
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A case of type b given in literature [7] is that of the magnetic field lines corresponding
to the following configuration of two electric currents: One current flows along a
circumference, the other flows along a straight line perpendicular to the plane of the
circumference at its centre.

The lines of field are also termed flux lines.

1.2.2. Tubes of Field Lines

A tube of field lines is called a surface formed by a set of field lines (of a vector field)
which pass through all the points of a closed simply curve, and has the form of a tube.

The concept of tube of field lines has a geometrical meaning only in the case of the
field lines of type a.

1.2.3. Equipotential Surface

Equipotential surface is called a surface, in a scalar field, formed by the set of points
for which the field scalar has the same value.
For a given scalar field (p(x, y, z), it is possible to deduce a gradient vector as

a(x, ¥, Z)z + grad(p(x, Vv, z), where the plus or minus sign has to be taken according to
the adopted convention. Therefore, the vector field a(x, Y, Z) derives from the potential
(p(x, ¥, Z) of the scalar field. This is the case in which the concept of equipotential

surface is important.
In the case above, equipotential surface is thus the surface formed by the set of points
for which the potential has the same value:

(p(x, ¥, z) = const. (1.5)

The equipotential surfaces serve to the study of a scalar field (e.g., the field of an
electrostatic potential) from the qualitative point of view, because it permits to follow the
directions along which the scalar function increases, decreases or remains constant. In
addition, from a quantitative point of view, it permits to appreciate the rate of variation of
the scalar field function.

The equipotential surfaces, as stated above, are surfaces on which the scalar potential
(from which the vector field derives) shows the same value at any point. In this situation,
the lines of the vector field are the orthogonal trajectories of the equipotential surfaces.
Let us give some examples according to the nature of the vector field: Surfaces of equal
electric potential (in electrostatic or in electrokinetic stationary fields); surfaces of equal
magnetic potential (in magnetostatic fields); surfaces of equal potential of velocity (in
fluids, in non-turbulent flow); surfaces of equal gravitational potential (in gravitational
fields). The equipotential surfaces are also called level surfaces.

1.2.4. Flux

The concept of flux is generally used to characterize the transmission rate of a
conservative quantity (for instance a liquid) through a surface. The flux through (or on) a
surface is equal to the conservative quantity (e.g., quantity of fluid) that passes through
the surface per unit of time.
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Consequently, the flux is expressed by the surface-integral of a quantity also called
flux density, and characterizes the transmission rate of the quantity through the surface
under consideration. This quantity can be a conservative one. It may be a scalar or a
vector one. Let us give examples of scalar and vector conservative quantities. Examples
of scalar quantities: Mass, volume of incompressible fluids, energy. Examples of vector
quantities: Momentum (also called quantity of motion), electric field strength, electric
displacement (electric induction), magnetic induction. The flux of an incompressible
volume of liquid is termed flow rate.

Let us calculate the flux @ of any conservative scalar quantity W characterized by
the flux density vectors P, through a surface X:

©=[P.dS=[P-nds, (1.6 a)
> z

where the surface £ may be an open or a closed one, according to the considered case,
and n is the unit vector of the normal at any point of the surface.

Further on, the closed surfaces will be denoted by capital Greek letters, e.g., X,
whereas the open surfaces by capital Latin letters and sometimes with an index that
denotes the curve bounding the open surface, e.g., S, where I denotes the curve that

bounds the surface S.

If no mention is made, by a closed curve I" we shall understand a simple closed curve.
If a point or a point-like body moving along a curve (also expressed around a curve,
especially if the curve is a closed one) always in the same direction, after having started
from any point of that curve, will arrive at the starting point passing only once through
each point of the curve, this curve will be considered as a simple closed curve.

Also, if no mention is made, by an open surface bounded by a closed curve we shall
understand a simply connected open surface (i.e., without holes).

Generally, in a field of vectors G(r), the flux is called the surface-integral of the

component of the vector G along the direction of the normal to the surface X :

©=[G,dS=[nGdS=[G-dS=[(n,G, +n, G, +n,G.)dS, (1.6 b)
z z P P

where the unit vector of the oriented normal also referred to as the unit vector of the
positive normal, namely n at any point of the surface is adopted as explained below. For
a closed surface, the positive normal is oriented outwards the surface. For an open surface
bounded by a simple closed curve, the positive direction of the normal is associated,
according to the right-handed screw rule, with the positive direction of travelling along
the curve, the latter being adopted arbitrarily. Although the adoption of the travelling
direction along the curve is arbitrary, however imprecision cannot appear, because in the
concerned equations, both directions simultaneously occur (direction of travelling along
the curve and direction of the normal to the surface bounded by the curve).

In Fig. 1.2, there are represented the directions that occur in the calculation of the flux
for three cases: Closed surface, open surface, manifold open surface (i.e., formed by
several sheets). Fig. 1.2 ¢ concerns the calculation of the flux of a vector through an open
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a b C

Fig. 1.2. The reference directions to the calculation of fluxes for:
a — closed surface; b — open surface; ¢ — manifold open surface.

surface bounded by a curve forming several near loops (the case of a helix). The surface
is a helical one.

We shall recall the generation of a helical surface. Consider a straight-line segment
having one end at any point on one axis with which the segment forms a constant angle.
Let the segment rotate about the axis, and simultaneously the point representing the end
above to move along the axis with segments proportional to the arc of rotation of the
segment. The curve described by each point of the segment will be a helix. The surface
described by the segment will be a helical surface.

In the case of the helical surface, it follows that this flux is, in fact, equal to the sum of
fluxes through every loop.

The flux corresponding to all loops is referred to as linked flux or flux-linkage. The
flux through a single sheet is referred to as flux-turn.

Each tube of field lines containing a flux equal to the unit may be associated with a
central line of field. This line may be referred to as unit field line or unit flux line. Then,
the flux through any surface will be equal to the number representing the algebraic sum
(i,e., taking into account the sense of the lines) of the unit field lines that pass through the
surface.

1.3. PHYSICAL QUANTITIES. LAWS AND THEOREMS.

The characterization of physical states and phenomena is achieved by means of
physical quantities. A detailed analysis referring to physical quantities has been made in
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several works [1], [8], [11], [21], [22]. Further on, some principal aspects will be
explained.

A kind of a physical quantity (in French, espéce de grandeurs physiques) is a class of
physical properties susceptible of quantitative determination. For defining the kind of a
physical quantity, it is necessary to know the measuring procedure and the unit of
measure. The choice of the unit of measure is arbitrary. As examples, the following three
kinds of quantities utilized in electromagnetism will be given: Electric charge, electric
field strength, magnetic field strength.

A kind of physical quantity characterizes a common property of the elements (objects)
of a set of physical objects. To identify a common property of a set of physical objects, it
is necessary that a relation of order should exist between these objects.

A measure procedure is a repeatable experimental operation, by which, to each
physical quantity it is possible to associate a mathematical quantity called value or
magnitude in respect to a physical quantity termed unit.

According to the manner of introducing, the kinds of physical quantities can be
divided into the following ones: Kinds of primitive quantities and kinds of secondary
(derived) quantities (in French, espéces de grandeurs primitives et espéces de grandeurs
secondaires ou dérivées), also termed primitive and secondary (derived) quantities,
respectively (in French, grandeurs primitives et, respectivement, grandeurs secondaires
ou dérivées). The kinds of secondary (derived) quantities can be defined by means of
other ones supposed as being known, hence introduced previously. The kinds of primitive
quantities have to be introduced directly, by experimental way, and described by the
measurement procedure, because they can no more be defined by means of quantities
introduced previously.

In electromagnetism, apart from the primitive quantities of mechanics (length, time,
mass, force), a series of new primitive quantities is necessary for characterizing from an
electromagnetic point of view the state of bodies and of the electromagnetic field.

A system of units contains fundamental and derived units (in French, unités
fondamentales ou de base et unités dérivées). The fundamental units have to be
determined directly, experimentally (e.g., the metre). The derived units are derived by
using the fundamental units (e.g., the square metre). The fundamental units must not be
those of the primitive quantities, but those of the quantities that frequently appear in
practice.

The laws express relations that are essentially necessary and repeatable between
phenomena. In physics, laws are called the relations that express the most general
knowledge on the phenomena of a research domain. They reflect the objective properties
(of phenomena) that cannot be deduced by logical analysis (in the framework of the
respective research field) from more general relations. The laws are established by the
generalization of a great number of experimental results. In the theory of the
electromagnetic field, there are general laws and material laws also called constitutive
laws. The material laws differ from the general ones by the fact that they contain in their
expression quantities specific to various materials, called material quantities.

The relations that can be deduced by logical analysis from other more general ones,
and finally from laws, are called theorems.

It is useful to mention that there are relations that, at the time at which they were
established, had law character but subsequently, after the progress of science, more
general relations were discovered and the first ones could be derived or have represented
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particular cases. Therefore, many relations that have a theorem character are called, by
historical reason, laws. Further, for more clarity, when necessary, each denomination will
be mentioned.

The examination of various quantities may be made in two ways, as the structure of
bodies is taken into consideration. Consequently, two manners of studying quantities and
phenomena naturally appear: The microscopic manner of the study and the macroscopic
one. Correspondingly, there are a microscopic theory of the electromagnetic field and a
macroscopic theory of the electromagnetic field.

1.4. MANNERS OF STUDYING THE THEORY OF
THE ELECTROMAGNETIC FIELD

1.4.1. The Macroscopic Study of the Electromagnetic Field

The character of the macroscopic study (from the Ancient Greek; paxpdg (makros)
means long and cxomém (skopeo) means look at or examine) results from the fact that, in
the framework of the study, the atomic structure of bodies is not taken into consideration;
it is assumed that the substance is continuously distributed throughout the whole space. In
the case of macroscopic study, all relations are obtained by an analysis of the mode in
which the phenomena manifest themselves at the scale of the human senses.

1.4.2. The Microscopic Study of the Electromagnetic Field

The character of the microscopic study (from the Ancient Greek; pukpdg (mikros)
means small and ckoném (skopeo) means examine) results from the fact that, in the
framework of the study, the atomic discontinuous structure is taken into account.

1.4.3. Generalities Concerning the Microscopic Study of
the Electromagnetic Field

The microscopic study of the electromagnetic fields takes into account the atomic
discontinuous structure of bodies.

It is recalled that all bodies are constituted of atoms, and an atom of each body is
composed of relatively light bodies called electrons that have negative charge, and of a
relatively heavy nucleus. The nucleus is essentially constituted of protons, particles that
have a positive electric charge, and neutrons, particles that have no electric charge.

The electron is the smallest material particle with an indivisible negative charge. The

electric charge of an electron is —e=-1.602x 107°C, and its mass is
m, =0.9108x107° kg.
The proton is a particle with a positive electric charge equal in absolute value to that

of electron, and its mass is m, =1.672x107%’ kg, hence approximately 1836 times

P
greater than the mass of electron. The neutron is a particle with zero electric charge, but
with the mass approximately equal to that of the proton.
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The substance is constituted of molecules that are formed of atoms. According to the
Rutherford-Bohr-Sommerfeld atomic model, the substance presents itself in the form of
planetary systems, each atom consisting of a nucleus with positive electric charge and of
one or more electrons that turn about nucleus around closed orbits.

Concerning the form of a nucleus and of an electron, the simplest proposal is to
consider them as being of spherical form. However, this supposition is not satisfactory
and it is necessary to use the Quantum Mechanics. Also, there are possibilities of using
models that permit to obtain results close to the various ones obtained experimentally [20,
p- 64].

The dimensions of nucleus and electrons, in the framework of the simple physical
model above, are so small, that in many phenomena, the atomic nuclei and the electrons
can be considered of negligible dimensions. Hence, they can be considered as material
points or point-like bodies with electric charge and mass. The study of the nucleus
structure does not enter into the frame of the present work, and belongs to the domain of
Nuclear Physics.

It is useful to be mentioned that, generally, one of the aims of Physics is the
determination of the number, repartition and character of the particles charged with
electricity which characterize the nature of bodies. Let us give the following example:
The derivation of the laws of chemical and physical phenomena, by the aid of interaction
laws of particles with electric charge.

The single important exception is represented by the phenomena in which an
important function is represented by forces of mechanical nature (gravitation forces,
elastic forces, capillary forces, friction forces, etc.) and nuclear forces, because only these
forces cannot be reduced to the action of electric charges.

The characterization of the local state of the electromagnetic field in the macroscopic
theory may be done by the help of local state quantities of the field: The electric field
strength, the electric displacement (electric induction), the magnetic field strength, and
the magnetic induction that will be further studied.

1.4.4. Macroscopic Average (Mean) Values

The macroscopic properties have to be described by means of macroscopic quantities.
Macroscopic quantities are the quantities obtained by determining the average (mean)
values of microscopic quantities for space domains and time intervals that are physically
infinitesimal quantities (physically infinitesimal is in French, infiniment petit au sens
physique [3, p. 408]). These mean values are called macroscopic average (mean) values.

By a physical infinitesimal domain of space (also called of volume) we understand a
domain small enough, from a macroscopic point of view for, within it, the macroscopic
quantities show a negligible variation with distance, and at the same time, great enough,
from a microscopic point of view. The last condition means that the domain must contain
a very great number of particles, i.e., molecules, atoms and elementary particles.

By a physical infinitesimal interval of time we understand a time interval small
enough, from a macroscopic point of view for, within it, the macroscopic time-dependent
quantities show a negligible variation with time, and at the same time great enough, from
a microscopic point of view. The last condition means that the time interval must have the
duration much greater than the duration of processes occurring at microscopic scale, i.e.,
molecular or atomic scale.



40 General Theory of the Electromagnetic Field

The value of a physically infinitesimal volume depends on the nature of the substance
and can be considered of about (10_5 cm)3 . It can also be mentioned that the processes

occurring at microscopic scale (e.g., the variation of the electric field strength) are
depending on the period of the orbital motion of electrons [18, p. 50]. This period is of

about 107'® 5. In fact, infinitesimal means infinitely small.

1.4.5. Manner of Studying Adopted in the Present Work

In the engineering practice, the study of phenomena at macroscopic scale is of a
particular interest, however, in many cases, it is necessary to know the phenomena at the
microscopic scale, as is the case of devices with semiconductor elements, elements of
integrated circuits, devices with discharge in air, etc. Taking into account the physical
model, often relatively simple in the microscopic study, the following procedure will be
used: Firstly, the various quantities and phenomena at microscopic scale will be studied,
then, by calculating the average (mean) values, the phenomena at macroscopic scale will
be considered.

As starting point, the expression of the Coulomb force acting between two material
points with electric charge will be taken into account.

Considering material points with electric charge, in motion with respect to various
systems of reference (i.e., reference frames), and taking into account the transformation
relations of the components of a force from the Special Theory of Relativity, the general
relations of the Theory of the electromagnetic field can be obtained.

It is often stated that the observation of relativistic effects requires great velocities of
moving bodies and measurements of high precision. However, in Electromagnetism,
relativistic effects are encountered even in the case of small velocities compared to the
velocity of light. The component of the force referred to as being of magnetic nature and
which acts upon a moving material point with electric charge, is a relativistic component.
It represents a supplementary confirmation of the importance presented by the theory of
relativity.

The study of phenomena encountered in electromagnetism at microscopic scale
requires the Quantum Mechanics. It is to be noted that by certain improvements of the
models of various particles, the same results can be obtained for certain cases without
utilizing the Quantum Mechanics [20].

1.4.6. Laws of the Theory of Electric and Magnetic Phenomena

From the explanation concerning the laws, it results that they can be grouped
(classified) as follows. The macroscopic theory of electric and magnetic phenomena is
considered to have twelve important laws, nine of them being general laws and three of
them material laws.

The general laws are the following:

1. The law of electromagnetic induction.

2. The law of magnetic circuit (the magnetic circuital law).

3. The law of electric flux (the Gauss law).

4. The law of magnetic flux (the law of flux conservation).
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5. The law of the relationship between electric displacement (electric induction),
electric field strength and electric polarization.

6. The law of the relationship between magnetic induction, magnetic field strength,
and magnetization.

7. The law of conservation of free (true) electric charge.

8. The law of the energy transformation in a body carrying conduction electric
current.

9. Law of electrolysis.

The most important material laws are the following:

1. The law of temporary electric polarization.

2. The law of temporary magnetization.

3. The law of electric conduction.

To the general laws, the law of ponderomotive action upon a charged particle at rest
can be added, and is referred to as law of ponderomotive action. However, it is included
in the definition of the electric field strength.

The law of electrolysis will not be examined in this work. An explanation of this law
can be found in works containing sections devoted to Electrochemistry [23], [48], [49].

The material laws exist only in the macroscopic theory. The material laws can be
deduced from microscopic general laws under certain assumptions.

Four types of fundamental quantities macroscopically characterize the electromagnetic
state of bodies: Electric charge ¢, electric moment p, density of the conduction electric

current J , magnetic moment m .

The state of the electromagnetic field is macroscopically characterized by the
following types of quantities: Electric field strength E , electric displacement (electric
induction) D, magnetic field strength H , magnetic induction (magnetic flux density)
B . These kinds of state quantities are introduced by the help of two kinds of fundamental
quantities: Electric field strength in vacuo E and magnetic induction in vacuo B . The
electromagnetic state of bodies and of the electromagnetic field is microscopically
characterized by three kinds of fundamental quantities: Electric charge ¢, electric field

strength E , magnetic induction B .

The microscopic theory of electric and magnetic phenomena has five general laws:
The law of electromagnetic induction.

The law of magnetic circuit or magnetic circuital law.

The electric flux law (Gauss law).

The magnetic flux law (the magnetic flux conservation law).

The law of ponderomotive action upon a moving electrically charged particle.

Nk WD =
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1.5. GENERAL CONSIDERATIONS ON THE STRUCTURE OF
CONDUCTORS AND DIELECTRICS

1.5.1. Electrically Conductive Materials

The electrically conductive (conducting) materials are substances that, in normal
conditions of use, have good electricity conducting properties (therefore they permit the
rapid moving of particles charged with electricity within their interior).

The objects, pieces built of electrically conductive materials are called electric
conductors or simply conductors.

There are two kinds of conductors:

a. Conductors of the first kind, in which, no chemical reaction occurs when they are
carrying an electric current. This is the case of metals, metal alloys, carbon,
semiconductors.

b. Conductors of the second kind, in which, chemical reactions occur when they are
carrying an electric current. This is the case of electrolytes.

In metals, a part of the electrons that belong to the structure of an atom leaves the
atom (hence they are delocalized), for this reason, these electrons are referred to as free
electrons. These free electrons can move to large distances inside the conductor, ensuring
the displacement of electric charges.

The conductors of the second kind contain in their structure ions. Every ion has an
exceeding electric charge with respect to the neutral state. The ions can move to relatively
large distances inside the conductor, ensuring the displacement of electric charges.

The earth also shows conducting properties. Therefore, in conductors there are
particles that can displace themselves, carrying electric charges. They can be called fiee
charged particles or free electric charges.

The most utilized materials in construction of installation and electrical equipment are
copper and aluminium because of their great conductivity. Also, alloys of copper with
other elements are used. The conductors are produced in form of wire or strip. The cross-
section of a wire may be circular or rectangular.

The conductors are insulated for achieving various circuits and for avoiding defections
or accidents. When an electric current flows through a conductor, this conductor heats
and it is necessary to take into account that the utilization temperature is limited. For a
non-insulated conductor, the limitation is determined by the mechanical strength of the
equipment at high temperature. That is why, temperature of 200 — 300 °C may not be
surpassed.

For insulated conductors, the limitation is determined by the utilisation of the
temperature of the insulation.

For achieving contacts, the following materials are utilized: Copper, silver, tungsten
(wolfram), in pure form or alloys with other elements or in the form of sintered powders.

1.5.2. Dielectrics

Dielectrics are substances that in normal conditions in which they are utilized, are bad
electricity conductors (i.e., they permit with difficulty the moving of electric charges),
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because in general they do not contain free microscopic particles charged with electricity,
which could displace themselves to relatively large distances.

Insulating materials are adopted from dielectrics. Any piece called insulator is
achieved of an insulating material.

Dielectrics are solid, liquid or gaseous substances formed of systems of electric
charges, namely neutral small domains (hence, the sum of electric charges of the interior
of each domain is zero).

Dielectrics may be divided, from the point of view of the distribution of electric
charges, into two fundamental groups: Polar and non-polar.

Dielectrics with polar and non-polar molecules have both positive and negative
electric charges, equal in absolute value. The centre of mass of the particles with positive
charge and with negative charge, respectively, may coincide (first case) or not (second
case) in space, depending on the type of molecule, i.e., of the substance. In the first case
the molecule has an electric moment only in the presence of an external electric field. In
this case, it is a non-polar dielectric. In the second case, the molecule has an electric
moment even in the absence of an external electric field. In this case, it is a polar
dielectric.

Examples of non-polar dielectrics: Mono-atomic inert gases (He, Ne, Ar, Kr, Xe),
diatomic gases (H,, N,, Cl,), hydrocarbons and hydrocarbon composition (petroleum
oils, polyethylene, polystyrene), carbon dioxide (CO,), methane, benzene (C6H6),
NaCl (ionic crystals).

Examples of polar dielectrics: Hydrocarbon when some atoms or groups of atoms
substitute hydrogen atoms like nitrobenzene (C4Hs — NO, ), methyl chloride (CH,CI),

water (a typical polar substance) having the electric moment of a molecule
p=6.1><10_30 C-m. In the above cases, p=q, h; q, ~107°C; h=10""m.

In the case of dielectrics, the particles charged with electricity cannot leave the system
of particles, namely atoms, molecules, ions, to which they belong. Always, the sum of
electric charge is zero for the system to which they belong, that is why these particles are
called bound particles, and the corresponding electric charges — bound electric charges.
Dielectrics can be charged by free electric charges, brought from outside.

Dielectrics may be divided from the point of view of the distribution of electric
charges and types of molecules into the three following groups:

a. Dielectrics constituted by particles grouped in neutral molecules. This is the case

for all dielectrics in gaseous or liquid form and for a part of those in solid form.

b. Dielectrics that besides the particles grouped in neutral molecules also contain
ions, the last being fixed in certain equilibrium positions, for instance at the nodes
of the crystalline lattice of the body. The ionic crystalline lattices are composed of
elementary domains, and each domain is charged with positive and negative
charges equal in absolute value, so that the domains globally appear as neutral.
This is the case especially for crystalline dielectrics like quartz, mica, anhydrous
oxide of aluminium, rutile (TiO, ).

c. Dielectrics that besides neutral molecules also contain molecules charged with
positive and negative charges equal in absolute value, called dipolar molecules.
This is the case of organic materials (cellulose, heat-convertible materials), glass,
glass materials, certain crystalline dielectrics (ice).
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Electrically insulating materials are used for the insulation of the parts of the
installations that are at an electric potential difference (voltage), carry an electric current
or are used in various electrical devices. The insulation of conductors is necessary, as
shown, in the achievement of installations, and for avoiding damages and accidents.

The electrically insulating materials can be classified according to the allowable
operation temperatures. These values have been established, taking into account the
operating conditions, for obtaining satisfactory service duration.

The electrically insulating materials are in gaseous liquid or solid form:

1. Gaseous form: Gaseous dielectrics.

2. Liquid form: Petroleum oils, synthetic liquids like silicon liquids.

3. Solid form: Polymers composing thermoplastic materials, cellulose, silk,

thermosetting materials (thermohardening materials), varnishes, compounds, plastic

compounds of binder (organic polymer capable of deformation) and powder like filler,
fibrous or sheets of cotton, mica, paper, fibrous materials, glasses, ceramic materials.

1.6. ELECTRIC CHARGE. ELECTRIC FIELD STRENGTH IN VACUO

1.6.1. Electrification State. Electric Field.

First, the state of electrification of bodies will be considered. We shall consider a set
composed of a piece of polished glass and a piece of resin, with no mechanical actions
between them. Let the piece of glass and the piece of resin to be rubbed together, and then
separated from each other. The two pieces will attract each other. We shall consider a
second set also composed of a piece of polished glass and a piece of resin. The pieces of
the second set will be subjected to the same operation as the pieces of the first set. We can
observe that between the pieces above, ponderomotive actions are exerted as follows:

1. Each piece of glass attracts each piece of resin.

Each piece of resin attracts each piece of glass.

Each piece of glass repels each other piece of glass.

Each piece of resin repels each other piece of resin.

Each piece of glass as well as each piece of resin does not exert a force on a set
composed of a piece of glass and a piece of resin that have not been separated.

Therefore, ponderomotive actions that did not exist previously appear. In this
situation, the system formed by certain or by all bodies above is considered to be
electrified, and each of these bodies is considered to be an electrified body.

This type of electrification is called electrification by friction. Electrified state of
bodies is called any state in which these bodies exert ponderomotive actions of electrical
nature upon other bodies, i.e., actions of the same nature with the one exerted by the
bodies electrified by friction.

If a body has the same behaviour as the piece of glass above, the body is considered as
vitreously electrified. If a body has the same behaviour as the pieces of resin above, the
body is considered to be resinously electrified. Conventionally, the vitreously
electrification was called positive electrification and the resinously electrification was
called negative electrification.

bl el
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The positive electrification of a piece of glass can also be obtained by friction with a
piece of cloth or texture. It is worth noting that the non-polished glass will not be
electrified. Details are given in the work [12, tome IIL, p. 362].

The electrification by friction appears on the contact surfaces of two bodies, at least
one of them being a dielectric (insulating material), as a result of friction when the two
bodies are in relative motion. In the case of non-metallic bodies, electric charges, i.c.,
electrons, are delivered on a superficial film (pellicle) as a result of friction abrasion.

From a microscopic point of view, the electrification state of a body means that it is in
the situation of having an excess or lack of electrons.

It was experimentally established that there is a great number of possibilities for
electrifying a system of bodies: By contact (temporary or permanent) with electrified
bodies, by deformation, by thermal action, by irradiation.

The electrification can be communicated from an electrified body to a non-electrified
one, by contact or by influence. It is useful to mention that the electrification by influence
means in fact a modification of the repartition of the electric charge, i.e., of the electrons
in a conducting body under the influence of the charge of another body.

According to the transmission duration of the electrification state, the materials can be
divided into three categories:

a. FElectric conductors or simpler conductors that transmit the electrification state in

a very short time, of the order of 1072 s, thus nearly instantaneously. The bodies
made of such material are also called conductors.

b. Electric insulators or simpler insulators that transmit the electrification state in a

very long time of the order of hours or days.

c. Semiconductors that transmit the electrification state in an intermediary time, of

the order of second fractions.

The ponderomotive actions that are exerted on the bodies situated in the
neighbourhood of electrified bodies make evident the existence of the electrified system,
in the space surrounding the electrified field.

In accordance with the general definition of Section 1.1, electric field is called the
physical system that exists in the space regions in which ponderomotive actions (forces
and torques) of electric nature can act on bodies.

The interactions between electrified bodies are produced by means of electric field
produced by the electrified bodies. This fact was established by Faraday and Maxwell.
The preceding statement represents, in fact, a general rule accepted in Physics and called
principle of continuity: Two bodies can interact only by means of an intermediary
medium (i.e., throughout the intermediary medium between the bodies). Hence all laws
have to be expressed in a differential form concerning points infinitely close to each
other.

1.6.2. True Electric Charge (Free Electric Charge)

The mechanical and thermal quantities do not suffice for the study of the
electrification state and of the electric field. Therefore, it is necessary to introduce
experimentally new physical quantities that will be primitive (fundamental) quantities in
the framework of the theory of the electromagnetic field.
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From Sub-section 1.6.1, it follows that there are two kinds of electrification state:
positive and negative. The electrification state of an electrified body, namely the
electrified piece of resin of Sub-section 1.6.1, will be considered as reference state. This
electrification state is, as shown, negative.

To introduce the physical quantity called #rue (free) electric charge; the following
measuring procedure can be used. All bodies under consideration in this procedure are
considered to be very small, i.e., their dimensions are negligible compared with the
distances between them.

Several small bodies in identical electrification state will be considered. All these
bodies will be termed reference bodies.

As shown in Sub-section 1.6.1, no ponderomotive force acts on the system composed
of a piece of glass and a piece of resin if the system is under the action of an electrified
body, hence, if it is in an electric field. This system is called neutral system. The
operation of bringing together two or several electrified bodies, so that the resulting
system will not be subjected to a ponderomotive force, in an electric field, is called
neutralization. Therefore, the true electric charge of any body is proportional to the
number of reference bodies necessary for the neutralization of the given body.

The unit (of measure) of the true (free) electric charge may be adopted by convention
that of one reference body, [8, Vol. I], [23, Vol. I, p. 46].

The proportionality constant is the negative unity. In this case, the true (free) electric
charge of the given body is equal to the number of reference bodies and with opposite
sign with respect to the last ones.

Hence, the electric charge has been introduced in a non-correlative way, i.e.,
regardless of the electric field strength. At the same time, it follows that the electric
charge introduced in this way is independent of the reference frame (reference system) or
of the velocity. The previous terms true and free can be considered synonyms, however
certain authors are using the term true in the macroscopic approach and free in the
microscopic approach.

It is to be noted that the electric charge of a moving body does not vary like the mass
of the body with the velocity. This fact has been established experimentally observing
that, in the case in which the number of protons of one atom nucleus is equal to the
number of electrons turning about the nucleus, the neutral state of atoms is maintained,
although the velocity of electrons and nuclei, respectively, are different. For this reason,
hydrogen atoms or molecules are not deflected by an electric field. This fact is referred to
as constant charge principle [18, p. 17].

It follows that the true electric charge is a property of bodies, characterized by a scalar
quantity proportional to the number of electrons that are not neutralized by the positive
charge of the nuclei of the constitution of bodies. The electric charge of a body is
negative if it is an excess of electrons and positive if it is a lack of electrons. From the
microscopic point of view, the electric charge is distributed among the microscopic
particles of the respective body. Each microscopic particle of a certain type has always
the same electric charge. From a microscopic point of view, the electric charge is
distributed discontinuously in space.

From a macroscopic point of view, it is assumed that the true (free) electric charge,
like the substance, is distributed continuously within the whole domain occupied by the
considered body. Therefore, the macroscopic representation is an idealized one but
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permits, in many applications, to simplify the calculations and ensures a very good
accuracy.

The true electric charge and electric field strength in vacuo are primitive
(fundamental) quantities in the framework of the microscopic theory, as well as in the
framework of the macroscopic theory of the electromagnetic field. The particles with
electric charge, like electrons and ions, which can move carrying electric charge, are
called electric charge carriers.

In many cases, it is necessary to consider small bodies with electric charge. Since the
electric charge, as mentioned above, is a property of bodies, the more exact wording is
one of the following: A small body charged with the electric charge g; a point-like charge
q; a point charge q.

The electric charge of a body is also denoted by ¢ and can be termed electric charge
or quantity of electricity.

The unit (of measure) of electric charge in the SI system of units is the coulomb
(symbol C); its definition will be examined in Section 1.15.

1.6.3. Density of Electric Charge

The local state of electrification is characterized by the volume distribution of the
electric charge. The volume density of the electric charge at any point of the body is
defined as the ratio of the following quantities: The electric charge, denoted g¢s,

contained within the domain bounded by a small closed surface ¥ including that point,
and the volume Av bounded by the above surface, which is a physically infinitesimal
volume. As a macroscopic quantity, the electric charge may be considered continuously
distributed in the space occupied by any body. In this case, the macroscopic volume
density of the electric charge may be introduced in the form:

Agy _dgy
= m —=—--,.
Py Av—0 Ay dv

(1.7)

The electric charges may sometimes be distributed in a very thin layer over certain
surfaces. Then, the idealized macroscopic case will be considered. In this case, the
electric charge is distributed on these surfaces, considered as discontinuity surfaces.
Therefore, the macroscopic surface density of the electric charge may be introduced in
the form:

A d
p. = lim ds d4g

= = . 1.8
AS—0 AS ds (1.8)

The electric charges may sometimes be distributed very non-uniformly and may be
concentrated about certain lines. Also, the idealized macroscopic case will be considered.
In this case, the electric charge is distributed along these lines, considered as discontinuity
lines. The macroscopic line density of the electric charge may be introduced in the form:

_ i A4 _dap

_ . 1.9
Pr= B ar T (9
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The domains Av, AS, Al above utilized, in the denominators of relations (1.7), (1.8),
(1.9), were firstly considered physically infinitesimal space quantities, but when assuming
a continuous distribution of the electric charge they are assumed as tending to zero.

In many cases, it is necessary to calculate the average value with respect to space and
time that may be denoted by the suffixes v and ¢ respectively.

The quantity obtained by calculating the average value of the microscopic values may
be designated by writing that microscopic quantity within the following angle brackets

( >Sufﬁx and the subscript of the second sign (here written suffix) indicates the quantity

with respect to which the average value has to be calculated. If the average value has to
be calculated with respect to two or more variables, then, the microscopic quantity will be
written between two or more pairs of signs, as above, with the corresponding subscripts.
If only a pair of signs is used and no suffix is written, it is considered that the average
concerns both, space and time. More details and examples will be given in Sub-section
1.6.6.

The macroscopic electric charge densities above defined are the average values (mean
values) and can be expressed in terms of the microscopic electric charge density:

Py :<<pv microfree>v>t 5 Py :<<ps microfree>s>t; P =<<p1 microfree>l>t . (1.10 a, b, ¢)

The electric charges are also referred to as quantities of electricity, in the cases of
volume, surface or line distribution, respectively, and are given by the following
relations:

g,= [pydvi gs=[p,dS; ¢ = [p,dl. (1.11a, b, c)

Yq Sq Cq

1.6.4. Conservation of the Free (True) Electric Charges

The total electric charge of an isolated system of bodies, i.e., situated in vacuo and
surrounded by insulators, is constant. Certain explanation will be added.

At a given moment, it is possible that a certain electric charge appears in one region
(zone) of the domain, where before no electric charge existed. However, at the same time,
a certain electric charge disappears in another region of the domain. In such cases, the
total electric charge is conserved, namely when in one region of the domain a charge + ¢

appears, a charge —¢q simultaneously appears in another region, because the number of
charge carriers of the system of bodies remains the same.

1.6.5. The Electric Field Strength in Vacuo

Any reference frame will be considered. Let F be the force exerted in vacuo (i.e.,
empty space) on a small body with a small free electric charge ¢ at rest in the reference

frame in which the force is measured. The charge has been assumed to be small enough,
in order of not disturbing the distribution of the other electric charges.
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It can be experimentally established that the ratio between the two quantities does not
depend on the electrification state of the above body, but depends only on the local
electric state of the electric field. Therefore, the following relation can be written:

=L

. (1.12)

where the quantity E is independent of the true electric charge ¢ . The quantity E is

called the electric field strength in vacuo. Hence, the electric field strength at a point is
defined in a certain reference frame, as the ratio of the force acting upon a point-like
electric charge at rest at the considered point (with respect to the adopted reference
frame), to the value of the electric charge.

In order to explore an electric field and thus find its strength at any point, a small
body, satisfying the conditions below can be used. The conditions to be fulfilled by the
body are the following:

a. Small enough dimensions, for permitting the measurement of the forces in very

small regions of the field.

b. Small enough electric charge in order of not disturbing the electric state of the

domain.

c. Build of conducting material, electrically very well insulated for permitting an

easy transfer of electric charge.

The small body fulfilling the conditions above is referred to as proof body or test body
(in French, corps d’épreuve). The test body will permit to determine the value of the
macroscopic field strength of the electric field at a point in empty space or in a gaseous
medium, according to the relation:

. F
E =lim—, (1.13)
90 g

where F is the force acting upon the test body and ¢ is the electric charge of the body as
mentioned below. In the case in which a continuous distribution of the electric charge is
assumed, the value of ¢ is supposed as tending to zero, actually, to a value small enough,
different from zero.

Consequently, the following relation can be used in the case of point-like charges:

Formula (1.14) expresses a general relationship referred to as expression or law of the
ponderomotive action upon one point-like electric charge at rest in the reference frame in
which the force is expressed. It can also be considered as a relation used for defining the
quantity E .

In accordance with relation (1.14), and with the definition of the lines of field of Sub-
section 1.2.1, it follows that a line of field that passes through any point is just the
trajectory of a particle with a very small electric charge (for not disturbing the state of the
field) and with a very small velocity (otherwise the relation is no more valid), which
passes through the considered point. The direction of the line of field is the direction
along which a particle, positively charged, is moving.



50 General Theory of the Electromagnetic Field

1.6.6. The Macroscopic Electric Field Strength

The macroscopic electric field strength at a point is obtained by calculating the
average value of the microscopic electric field strength. According to the definition, the
macroscopic electric field strength E at a certain point N(r), at the moment 7, in any
reference frame will be calculated.

For this purpose, a physically infinitesimal volume Av having at its centre the
considered point, will be chosen, and a physically infinitesimal time interval Az, will be

chosen so that the moment ¢ will be at its middle. We shall denote by E ., (r, t) the

microscopic electric field strength at a point within the volume element Av at a moment

At At
te[t—To,t-kToj. The macroscopic electric field strength will be obtained by

calculating the average value of the microscopic field strength by the relation:

Ay
Eacro = E(r,1)= ((Eyino) ) = 1 [ Enicro(r,t+19)dv dtg. (115 )
macro > micro / v t() AV Ato Ato o miCro > .
2

In solids, a physically infinitesimal volume must be much greater than the volume
attributed to an atom assumed to be bounded by a sphere having a radius of about

1078 cm, but small enough at macroscopic scale. This small volume may be assumed to
be a cube, or a sphere having a radius of about 107" =107 cm . In the mentioned small

volume, the number of atoms is of approximately 10°. Another example, a cubic

centimetre of copper contains approximately 102 atoms and 8.5x10% free electrons.

The physically infinitesimal time interval must be much greater than the period of
time variation of atomic phenomena, namely the period of the orbital motion of electrons

is of about 107'® s, but small enough at macroscopic scale, therefore it may be assumed
of 1072 —107" 5.

If a three-orthogonal rectilinear system of co-ordinates is used, the volume Av will be
that of a right parallelepiped having the sides Ax,, Ay, Az, and it follows:

an

2
Er,1)= ! [ty
Axy Ay Az At Ay

2

1.15b
Avg Ay Az ( )

0 Ayg  Azg

2
X f J. f Emicro(x+x0,y+yo,z+zo,t+to)dx0dyodzo .
Ax
2

2 2
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From the last relation, it results that [2], [3], [21]:

0 0
aE(rﬂt):<<a_xEmicro(r’t)>v>t’ (1.15¢)

0 0
EE(r’t)_<<EEmicro(rat)>v >t» (1.154d)

where the indices v and t refer to the averages with respect to volume (space) and time
respectively.

The last two relations are useful in certain linear relations containing derivatives that
have been obtained for microscopic quantities; the same relations will be valid for
macroscopic quantities.

Within a physically infinitesimal volume and a physically infinitesimal time interval,
the distribution of charges may be assumed as uniform. The average value of the sum of
the forces acting upon the particles charged with electricity and belonging to the
considered small volume will contain the following two terms. The first term will be the
product of the average value of the electric charge ¢ of the volume and the average value
of the electric field strength. The second term will represent the average value of the
product:

and

(pv micro — Pv macro )Emicro = Py micro (Emicro - Emacro );

Pv =Py macro > (1.16)
E=E

macro
that are not taken into consideration in the macroscopic studies.

It is interesting to remark that the microscopic field strength can vary very much from
one point to another. This aspect will be highlighted by examining the electric field of
electrons. A simple model of an electron is a sphere charged with electricity. The electron
charge may be assumed as distributed over the surface or within the volume of the sphere.
The radius of the sphere attributed to the volume occupied by the electron is of about

2.8x1073 cm . The density of the electric charge of this model is very great. The electric

field strength in the electron vicinity is very great and changes its sign at the extremities
of each diameter of the sphere attributed to the electron, thus it shows considerable

variations at distances of the order of 107% cm.
The average value of other physical quantities can be calculated in the same manner as
above.

Further on, if no special mention is made concerning a quantity, that quantity will be
considered as a macroscopic one.
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1.7. ELECTRIC FIELD STRENGTH IN THE LARGE SENSE

If at a point of any medium, there is a particle with the electric charge ¢, very small so
that it has a negligible effect on the resultant electric field, and at rest in the reference
frame, the electric field strength at that point is given by the following relation (Fig. 1.3):

e F
Ty’ (1.17)
F:Fel+Fn0n-el’

where F is the force acting on that particle, in the same reference frame. The component

F, is of electric nature and the component F,, ., is of non-electric nature. The force F

denotes the total force regardless of the nature of its components.

The particle with the electric charge g is assumed as belonging to the considered
medium; it is no more a test body.

The macroscopic field strength at any point of a solid, a liquid or a gaseous medium,
in the framework of the macroscopic theory of the electromagnetic field, is a primitive
(fundamental) quantity. For this reason, it has to be introduced experimentally, hence
directly. This introduction can be done using cavities of certain forms and taking into
account the relations between the field quantities before and after having achieved these
cavities.

The subject has been widely analysed in literature [1], [5], [8], [12], [21].

According to its nature, a field of vectors can have components of two types:

a — Potential component G, , the curl of which is zero at any point of the space, but

the divergence of which may be different from zero.
b — Solenoidal component G,., the curl of which is different from zero at least within
certain regions of the space, but the divergence of which is zero.

Fig. 1.3. Explanation concerning the
electric field strength in the large sense.

\
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This separation of components can also be used in the case of electric field. According
to the nature of the components of the force F , the electric field strength in the large
sense, E;, may have components of three types:

1° The Coulombian electric field strength, E ., which is produced by electric charges
according to the Coulomb law. This is a potential component, hence E, =-gradV ,

where the function V' is the potential function.
2° The induced electric field strength (also termed rotational, curl, or solenoidal field
strength), E,, which is produced by the electromagnetic induction phenomenon.

3° The impressed electric field strength also termed extraneous electric field strength
[7, English edition, p. 12] (in French, champ électrique imprimé ou champ électromoteur
[3, p. 135], in German, eingeprégte elektrische Feldstirke [22, p. 109]), E;, which is not

produced by electromagnetic causes, but by non-electromagnetic causes. Among these
causes, the following ones can be mentioned:

a. Mechanical cause, for instance the acceleration of a metallic body that determines
forces which produce a displacement of electrons with respect to the positive ions of the
crystalline lattice of the metal.

b. Thermal or chemical phenomena determining forces which produce a displacement
of electric charge carriers. To every force described above an electric field strength
corresponds according to relation (1.17), and it is called impressed electric field strength.

Therefore, the expression of the electric field strength in the large sense is:

E =E_+E,+E, (1.18)
or
E =E_+E,, (1.18 a)
E=E_+E,, (1.18 b)
E, =E+E,;, (1.18 ¢)
where
E,=E, +E, (1.19)

is referred to as the strength of the electromotive field or the strength of the non-
Coulombian electric field, and

E=E +E, (1.20)

represents the strength of the electric field in the restricted sense or simpler the strength
of the electric field.

It can be added that the electric field strength is also referred to as electric field
intensity.

The lines of the vector field E , i.e., lines of electric field strength, also called simply
electric field lines, are the lines at each point of which the vector E is tangent.
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1.8. LINE-INTEGRAL (CIRCULATION) OF THE ELECTRIC FIELD
STRENGTH ALONG AN ARC OF CURVE. ELECTRIC
POTENTIAL DIFFERENCE. ELECTRIC TENSION, VOLTAGE.
ELECTROMOTIVE FORCE.

Generally, in a field of vectors, the line-integral of a field vector round a curve or an
arc of curve, like in the case of a work, is also called circulation along the respective way.
In the case of an electric field, this circulation is referred to as electric tension also termed
voltage, in order to avoid any confusion with a mechanical meaning. This quantity is a
derived one and will also be utilized in the study of the electric field.

A point-like electric charge that is moving with a very small velocity along any open
curve C 45 in an electric field will be considered (Fig. 1.4). It is supposed that the charge
q is small enough so that it will not sensibly modify the state of the electric field.

The resultant force F , acting upon the considered particle, having one component of
electric nature F and another of non-electric nature F,, . does the work:

W, = [F-dl. (1.21)
Cap
Utilizing expressions (1.18) and (1.21), it follows:
Wy= [qE,-dl= [q(E.+E, +E)dlL. (121 2)
Cap Cup
The ratio
W,
—= IEz‘dl (1.22)
7

is independent of the electric charge of the particle that is moving along the curve C  p
and characterizes the work done when the point-like charge is moving along the curve.
The velocity of the point-like charge is assumed small enough so that the force acting on
it will be given by relation (1.17).

Fig. 1.4. Explanation to the calculation of
the line-integral of the electric field
strength.
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The line-integral of the electric field strength in the large sense, along the considered
curve, is called electric tension in the large sense along the considered curve and is given
by the relation:

(e, )1 ZCAIBEI dl. (1.23 a)

If instead of the electric field strength in the large sense E;, the electric field strength

in the restricted sense E is introduced in relation (1.23 a), the line-integral along the
considered curve is also called electric tension and is given by the relation:

uc,, = [E-dl. (123 b)
Cup
In accordance with relations (1.22) and (1.23 b), it follows:

If instead of the electric field strength in the large sense E;, the non-Coulombian
electric field strength E, is introduced in relation (1.23 a), the line-integral along the

considered curve is also called electromotive tension or electromotive force and is given
by the relation:

Uocy = [En-dl. (1.24)
Cup
If the integrals (1.23 a) and (1.23 b) are considered around a closed curve I, the
obtained expressions is called electromotive force (e.m.f.) or electromotive tension in the
large sense and in the restricted sense, respectively; or each of them is simply called
electromotive force (abbreviation e.m.f.). Therefore, the following relations:

e=uy = §E; -dl, (1.24 )
r

e=u = E-dl, (1.24b)
r

are obtained, respectively.

The electromotive force obtained by the line-integral of the electric field strength in
the large sense around a closed curve coincides with the integral of the non-Coulombian
component of the electric field strength along that closed curve. The reason is that the
integral of the Coulombian component of the electric field strength is zero.

If instead of the electric field strength in the large sense E;, the Coulombian electric

field strength E, is introduced in relation (1.23 a), the line-integral along the considered

curve C ,p yields:
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[E.-di= [ —gradV -di=- iV Y k) idx+ jdy+kdz)=
ox oy 0z
Cus Cus C s

B
oV oV ov
=— | —dx+—dy+—dz=— |dV == |dV=V,-Vz=
J&x X oy y P z j I A B ~U4p

z
C A
Cup AB

(1.24 ¢)

and is called electric tension, simply tension or voltage between the points 4 and B or
potential difference (p.d.) between the points 4 and B. This potential difference between
two points does not depend on the form of the curve C ,; but only on the position of the

two points. If the curve C 5 is closed, the integral (1.24 c) is zero.

All the definitions given for electric tensions and electromotive forces refer to any
medium, regardless of its nature.

The unit of electric tensions, potential difference and electromotive forces in the SI
system of units (which is a rationalized system) is the volt (symbol V) and is explained in
Sub-section 1.15.3.

1.9. POLARIZATION OF DIELECTRICS

1.9.1. The Polarization of Dielectrics Phenomenon. Polarization State of
Dielectrics. Polarization Electric Charge (Bound Electric Charge).
Electric Moment of a Neutral System of Electric Charges.

As shown in Sub-section 1.5.2, dielectrics consist of neutral systems (atoms, neutral
molecules, neutral domains) of electric charges. The electrically charged particles of each
system cannot move to relatively great distances, with respect to certain equilibrium
positions. For this reason, these charges are called bound electric charges.

Although they have this denomination, they are of the same nature as the free electric
charges. For each neutral system, the sum of all bound electric charges is zero. Therefore:

n
ZQibound =0. (125)
i=1

Under the action of an external electric field, the bound electrically charged particles
are not dislodged from their places (if the electric field strength is not too great), but they
are dislodged from their equilibrium into other neighbouring positions. Consequently, the
electric positive charges move in the direction of the electric field, and the negative
electric charges move in the opposite direction.
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Therefore, the space distribution of the electric charges of the dielectric is modified.
The new state of the dielectric is called electric polarization state. The respective
phenomenon is termed electric polarization.

The metallic conductors are practically not polarizable.

A neutral system of electric charges can be characterized by a vector quantity called
electric moment of the system. In any reference frame, let a neutral system be composed
of n electrically charged particles that can be considered as point-like charges
q;» (=1, ..., n), with the position vectors r;, (i =1, ..., n) having their origin at the same
point of the reference frame (Fig. 1.5). If one point-like electric charge is moving within
the system around a closed orbit (as the case of electrons can be), when considering the

average value with time, the end (extremity) of the vector r; is considered as the action
centre of the respective charge (i.e., the centre of the orbit).

The electric moment of a neutral system of point-like electric charges is:

n n
Ps :zqibound K zzpia (1.26)
i=l1 i=l
with
n
D ibound =0- (1.26 a)
i=1

The relation (1.26) can serve to the characterization of a neutral system of electric
charges, because the electric moment p, previously defined is independent of the choice
of the reference frame. Indeed, if the origin of the reference frame is displaced from the
point O to the point O’ (Fig. 1.5 a) by any vector a, then the electric moment of the
neutral system in the new reference frame becomes:

n n n n
P; = Zqibound ri' = Zqibound (rz - a) ZZ Givound F; — @ Z 9ibound - (1.26 b)
i=1 i=1 i=1 i=1
But
n
@ divound =0- (126 ¢)
i=l
It follows:
n
Pe =D divound ; =Ps - (1.26 d)

i=l

Remark. It is useful to mention that the above definition of the electric moment has
not an arbitrary character. It implicitly occurs in the expression of the electric potential
produced by a neutral system of point-like charges at a relatively distant point and it
remains only to denote it, as done above.
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9 1 bound

9 1 bound

a b

Fig. 1.5. Explanation concerning the electric moment of a neutral system of electric
charges: a — system with » charges; b — system with two charges (dipole).

The simplest neutral system of point-like electric charges is formed by two point-like
electric charges equal in absolute value but of opposite signs +¢ and —g¢, like in Fig.
1.5. This neutral system is called electric dipole or electric doublet, or shortly dipole or
doublet. A neutral system formed of several electric charges is called electric multipole or
multipole.

The electric moment of an electric dipole is (Fig. 1.5 b):

2
Pa = divomnd i =0ai—qat =q4(r —1)=q,hy, (1.27)
i=1
where the vector h; is always oriented as in Fig. 1.5. b, from the charge considered as
negative to the charge considered as positive.

1.9.2. The Macroscopic Electric Moment of a Polarized Body

The macroscopic electric moment of a polarized body can be obtained by performing
the sum of the electric moments p, of all the neutral systems forming the body and
calculating the average value over a physically infinitesimal time interval.

The calculation of the average value with respect to time is necessary because the
charges move round their trajectories and also because of their thermal agitation.

It results that the electric moment of a polarized dielectric body of volume V', is:

p={(D.p,
Vb

= Zqibound o (1.28)
VD

t t
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where the suffix ¢ indicates that the calculation of the average value refers to time. The
sum is extended over all bound electric charges, electrons and atomic nuclei that are
contained in the volume V), of the dielectric body. In the case of a dielectric dipole,

relation (1.28) yields:

p= Zpd =<qd hd>t=%’h- (1.28 a)
VD

t

From a macroscopic point of view, because it is not possible to consider the structure
of substance (electrons and nuclei); the electric moment of a body cannot be deduced as
above and for this reason it is not a secondary (derived) quantity. It follows that, in the
macroscopic study, the electric moment of a body has to be introduced experimentally as
a primitive (fundamental) quantity. This procedure can be achieved by considering the
ponderomotive actions exerted upon a small-polarized body, in an external electric field.

1.9.3. The Polarization Electric Charge. Density of the Polarization
Electric Charge.

As shown, dielectrics are constituted of neutral systems. Hence the total electric
charge due to the neutral systems inside the surface bounding the body is zero.

We shall consider (imagine) any macroscopic closed surface ¥ situated inside a
dielectric body. The sum of bound electric charges of the interior of the closed surface X
is called polarization electric charge or electric polarization charge of the interior of that
surface and is denoted by g¢,s. Therefore, the polarization electric charge is a

macroscopic charge. The manner of introducing this charge is analogous to that utilized
for the free electric charge.

A dielectric is composed of numerous neutral systems. Hence, the neutral systems that
are entirely in the interior of the surface yield a total charge equal to zero. Since the
closed surface X intersects several neutral systems of the dielectric, some electric charges
belonging to the neutral systems the centres of which are inside the surface X remain
outside this surface. It results that the total electric charge that remains inside the surface
may be different from zero. Therefore, the total electric charge of the interior of the
closed surface is equal to the sum of the electric charges of the interior of the closed
surface that belong to the neutral systems intersected by the closed surface.

As a macroscopic quantity, the polarization electric charge may be considered
continuously distributed in the space occupied by the dielectric. In this case, a volume
density of the polarization electric charge may be introduced:

A d
Ppy = lim —qu =—qPZ.

1.29
Av—>0  Av dv ( )

The neutral systems are not uniformly distributed, but they are more agglomerated in
certain regions; hence, the volume density of the charge in these regions can have values
different from zero. Hence, the volume density of the polarization electric charge
represents the local excess of a charge of a certain sign, with respect to that of opposite
sign.
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The neutral systems may sometimes have a very non-uniform distribution and may be
concentrated in a very thin sheet on certain surfaces. Then, the macroscopically idealized
case may be considered. In this case, the polarization charges are distributed over these
surfaces, considered as discontinuity surfaces. Therefore, the surface density of the
polarization electric charge is:

Aq pS _ d q S

= lim = . 1.30
Prs =550 AS  dS (130

The neutral systems may sometimes have a very non-uniform distribution and may be
concentrated about certain lines. Then, also the macroscopically idealized case may be
considered. In this case, the polarization charges are distributed along these lines.
Therefore, the line density of the polarization electric charge is:

Ag, dq,
=1 L 1.31
Pri = 0% Al dl (13D

The domains Av, AS, Al above utilized, in the denominators of relations (1.29),
(1.30), (1.31), are, like in relations (1.7), (1.8), (1.9), geometrically infinitesimal spaces.

The macroscopic densities of the polarization charges, previously defined, are the
average values of the microscopic densities of the bound electric charges:

Ppv :<<pvbound>v>t > Pps :<<psbound>s>t > Ppi =<<plbound>l>t . (1‘32 a, b, C)

The polarization electric charges, in the case of a volume, surface or line distribution
respectively, over a volume V', a surface S, oraline Cp, respectively, are:

G = jppvdv; qps = jppst; Ap = ,fpp/dl- (1.33a,b,¢)
Vp Sp Cp o

1.9.4. Electric Polarization

The local polarization state at a point of a body can be characterized by a vector
quantity called electric polarization vector or simpler electric polarization. 1f the electric
polarization state of the body is uniform, then the electric polarization is equal to the
vector sum of the electric moments of all multipoles of the unit of volume having at its
centre the considered point.

Let the unit of volume contain n, multipoles, uniformly distributed, each of them

having the electric moment p . Then the electric polarization is:
P=n,p. (1.34)

In general, the concentration of multipoles and their electric moments may differ from
a point to another. Then, instead of summing up the electric moments of multipoles over



Generalities on the Theory of the Electromagnetic Field and on the Structure of Substance 61

the unit of volume, the sum over a physically infinitesimal volume Av containing at its
centre the considered point has to be calculated.

Let p; be the electric moment of a multipole with the ordinal number 7, and Ap the
vectorial sum of the electric moments of the considered volume. In this case, the electric

polarization is:
z Di
Av

p- - (1.35a)
and relations (1.26), and (1.35) yield:
1 &
e X ILE (135b)

the sum being extended to all electric charges of the neutral systems of the volume
element Av.

In any reference frame, with respect to which the substance is at rest, the macroscopic
value of the electric polarization vector is given by the average relation:

1 n
P=A_<qul.r,.> , (1.36 a)
Y \i=1 ¢

where the sum refers to all the charges that form a neutral system in the physically
infinitesimal volume.

The electric polarization defined by relation (1.36 a) represents the average value, over
a physically infinitesimal time interval, of the average of the vector sum of the electric
moments over a physically infinitesimal volume. The electric polarization represents the
volume density of the electric dipoles or multipoles.

As a macroscopic quantity, the electric moments of multipoles denoted p; = p(r,t)

may be considered continuously distributed in the space occupied by the dielectric. Then,
the sizes and electric moments of multipoles are supposed infinitely small. In this case,
the electric polarization vector may be introduced in the form:

ZP;‘

P fim & _dp (1.36 b)
Av—>0 Ay dv

The state of the substance in this case is referred to, as mentioned, polarization state.
From the microscopic point of view, the electric moment is a derived quantity. From the
macroscopic point of view, the electric moment has to be introduced experimentally as a
primitive (fundamental) quantity. The manner of introducing this quantity is based on the
ponderomotive forces acting on an electrified small body situated in a hollow cavity
within the substance.

The electric moment of a volume element Av of a polarized dielectric material is:

Ap=PAv. (1.37)
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The electric moment of a volume element ¥, of a body of polarized dielectric
material is:

p=[Pdv. (1.38)
Vp

The electric polarization can be decomposed into two components. The first one exists
even in the absence of certain external causes and is determined by the nature of the
substance. This component is termed permanent electric polarization and is denoted by
P, . The second one appears only under the action of certain external causes (electric

field) and is determined by these causes and by the nature of the substance. This
component is termed temporary electric polarization and is denoted by P, . It results that:

P=P,+P,. (1.39)

In certain conditions each of this components may be zero.

1.9.5. Polarization Electric Charge of the Interior of a Closed
Surface in a Dielectric

We shall consider a dielectric body (D) and in its interior, like in Fig. 1.6 a, we shall
adopt (imagine) any closed surface X .

For the sake of simplicity, the multipoles will be replaced by identical equivalent
dipoles with the corresponding electric moment according to relation (1.28 a).

As recalled in Sub-section 1.9.3, at the beginning, and as it can be seen in Fig. 1.6 a,
the dipoles which are entirely inside the surface X give a total charge equal to zero.

Only the dipoles that are intersected by the surface X contribute to the total
polarization electric charge (i.e., due to the bound charges) contained by the closed
surface £. The centre of each dipole is represented in the figure by a dot. We shall
calculate the electric charge belonging to the dipoles intersected by the surface element
AS of the Fig. 1.6. In this region, we assume, for simplicity, that the electric moment
vector of every dipole is parallel to the positive normal to the surface (outwards oriented)
and of the same direction.

The total electric charge different from zero belongs to the intersected dipoles the
centres of which are contained in the right parallelepiped of height /4, the trace of which
is represented by dashed line in the figure.

The volume of the parallelepiped is h-(n AS)zh'AS. As previously, the volume

concentration (number of dipoles per unit of volume) of dipoles will be denoted by 7, .

The electric charge of the interior of the parallelepiped is:
Ag=-n, q, h-(AS), (1.40 a)
but, according to relation (1.28 a), g; h=p, and

Ag=-n, p-(AS). (1.40 b)
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Fig. 1.6. Explanation to the calculation of the polarization
electric charge of the interior of a closed surface: a. Closed surface X inside a
dielectric body; b. Portion of the surface X intersected by dipoles situated
perpendicular to it; ¢. The same portion of surface intersected by dipoles forming any
angle with the normal to the surface. The centre of each dipole is marked by a dot.

According to relation (1.34), n,, p=P, and

Aq, =—P-(AS). (1.41)

In the case in which the positive normal to the surface is not parallel to the electric
moment vectors p (Fig. 1.6 c), the electric charge of the interior of the parallelepiped
constructed on the surface element AS is given, as previously, by relation (1.41). Indeed,
the volume of the parallelepiped is given by the same expression and consequently the
expression of the electric charge does not change.

It follows that the polarization electric charge of the interior of the surface X is:

qu=—jP-dS- (1.42)
z

The polarization electric charge g,y can be expressed in terms of the volume density

of the electric polarization charge according to relation (1.33 a):

o
4

—>
n

S
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9ps = fppv dv. (1.43)
Vs

Comparing relations (1.42) and (1.43), it follows that:

V.i.ppvdV=—i|.P-dS. (1.44)

By transforming the last surface integral into a volume integral, and taking into account
that the relation holds for any closed surface, it follows:

ppy =—divP. (1.45)

Now, we shall examine the case of Fig. 1.7 where, on any discontinuity surface of the
electric polarization vector P, the distribution of multipoles is highly non-uniform.
According to formula (1.45), on this surface, the density of the polarization electric
charge becomes infinite. For obtaining in this case the relation between the electric
polarization and the density of the polarization electric charge, we consider (Fig. 1.7) a
right parallelepiped of height A% that contains the surface element AS . The height A/ is
taken very small as compared to the sizes of the surface element AS that is why the flux
of a vector through the lateral surface of the parallelepiped can be neglected.

Fig. 1.7. Explanation to the calculation of the surface density of the
polarization electric charge.
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By applying relation (1.44), we obtain:

(va Ah)"lz (13 AS)=—~(= P -njy + Py -mp )AS (1.46)
or
Py (AR)=mpy (P = Py). (1.47)
The surface density of the electric charge is:
P ps =P (AR), (1.48 a)
and it results that:
Pps =mip - (P = Py). (1.48 b)
Therefore
pps =—div, P=npy (P~ P,) (1.49)

that represents the expression of the surface density of the polarization electric charge on
a surface of discontinuity of the electric polarization, and div, P is referred to as the

surface divergence of the vector P .

1.9.6. Ponderomotive Actions Exerted upon a Polarized Body in an
Electric Field

We consider a small electrically polarized body of electric moment p submitted to an
external electric field of intensity E . The equivalent electric dipole in the electric field

will be examined (Fig. 1.8).
The force acting upon the dipole is given by the sum of forces acting upon the two
point-like charges of the equivalent dipole:

1 1
FE:—quO(r—Eh)+qu0£r+5hj, (150)
where
h=iAx+ jAy+k Az, (1.50 a)
E r+lh =E x+le +1A z+lAz (1.51)
on" "2 o TR YTy AT AR '

By expanding in a series and neglecting the small quantities of higher order, it
follows:
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EOx(r + %h) =Eq, (x, y,2)+

+aEOx(x’yaz)‘le_FaEOx(xvyaz)‘lAy_'_aEOx(xvyvz)_l

0x 2 oy 2 oz
:EOx(xa ) Z)+
+1M8E0x(x’y’ Z)_'_lAyaEOx(x’ y’Z)+lAZaE0x(x’yﬂ Z)
2 Ox 2 oy 2 oz

Analogous relations can be obtained for the Oy and Oz axes. It follows:

aEO(r) lAy 8E0(r) +1Az 6E0(r)

E, r+lh =E0(r)+le—+
2 2 Ox 2 oy 2 Oz

i Eotr+%h]=E0(r)+(%h-Von(r).

Similarly, we get:

Eo(r—%h}on(r)—aEa—oh(r)-%hzEo(r)—[%IrV)Eo(r).

From relations (1.50) and (1.54), we obtain:
Fr = (‘]d h- V)Eo(")
or, because p=gq, h, we have:

Fp=(p-V)Eo(r).

(1.52)

(1.53)

(1.54 a)

(1.54b)

(1.55)

(1.56)

From expression (1.56), it can be seen that the force, which acts upon the polarized body,

is zero if the electric field is uniform (homogeneous).

The torque acting upon the dipole is given by the sum of the moments of the forces
acting upon the two point-like electric charges, relatively to the axis that passes through
the centre of the dipole and is perpendicular to the plane determined by the vectors /& and
E, (Fig. 1.9). The forces acting upon the two point-like electric charges differs of a very
small quantity, so that it can be considered that upon the dipole only one couple of forces
is acting. By using the known expressions of Mechanics for the moment of a force

relatively to one axis, it results that their sum is:

1 1 1 1
T, =—hxqg, E)\r——h|+—hxqg, E,|r+—h|.
E > qq o( 5 ] 5 q4 o( > j

(1.57)
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Fig. 1.8. The force acting upon
an electrically polarized
small body situated in electric field.

Fig. 1.9. The couple of forces
acting upon an electrically
polarized small body situated in

electric field.

Expanding in a series in terms of A and neglecting the small quantities of higher
order, the last relation yields:
TE:pro(r). (1.58)

It follows that a force and a torque are acting upon a small electrically polarized body
with the electric moment p and a free electric charge ¢, in an external electric field of

intensity E(r), and the corresponding expressions are the following:
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Fp=qE(r)+(p-V)Ey(r), (1.59)
Ty = px Ey(r). (1.60)

From relation (1.60), we can obtain the definition of the unit of the electric moment
coulomb metre (symbol C-m). The coulomb metre is the electric moment of a small
electrically polarized small body upon that acts a maximum torque of 1N-m in an

external uniform electric field having the strength (intensity) of 1 V/m.

1.10. THE ELECTRIC CURRENT

A set of electrically charged particles that are moving with respect to a reference
frame represents an electric current in that frame.

The motion of electrically charged particles called electric charge carriers can occur in
empty space or inside some bodies.

The electric current can also be represented by the motion, with respect to a reference
frame, of some electrically charged bodies.

Taking into account the definition of the electric charge, the electrification state of a
body is independent of the reference frame. However, the electric current depends, like
the motion, on the reference frame to which it is related. Further on, excepting the case in
which a special mention is made, only the electric current with respect to a reference
frame fixed to the neighbouring substance will be considered.

According to the type of the charge carriers and their velocities, there are conduction
electric current, convection electric current, polarization electric current, Amperian
electric current.

1.10.1. Electric Current Intensity. Electric Current Density.

The electric current that crosses a surface Sy, generally an open one, is characterized

by a scalar quantity i, called electric current intensity (intensity of electric current) [3, p.
113], electric current strength [1, Vol. 1I, p. 152, Art. 495] or shorter electric current
[44], and defined by the relation:

Agq dg
i= lim —or — 15

1.61
AI—0 At dt ( )

b

where the quantity Ag sp represents the free (true) electric charge that passes through the

surface St in the physically infinitesimal time interval Af, the latter, after assuming a

continuous distribution of the electric charge, tends to zero.

The charges that pass through the surface in the direction of the positive normal to the
surface are taken with their sign, and the charges that pass in opposite direction are taken
with changed sign. In Fig. 1.10, we have supposed v, and n of the same direction.

Conversely, the electric charge that passes through the surface is:
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Fig. 1.10. Explanation concerning the
electric current intensity in the case St
in which the velocity of charge o — Oo—
carriers is perpendicular to the surface. 5 .
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sy =j idt. (1.62)
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Concerning the positive normal to the surface, its direction is taken as follows. It is taken,
as known, i.e., outwards, in the case of closed surfaces. It is taken in the direction
associated according to the right-handed screw rule with the direction of travelling the
curve bounding the surface (the latter direction being arbitrarily chosen) in the case of
open surfaces. Let us consider that the unit of volume contains #,. charge carriers. Each

of them is assumed to have the same electric charge ¢ and in the adopted reference frame
(generally a frame system fixed to the surface Sy-), the same velocity v, (relatively to the

reference frame), normal to the surface Sy (Fig. 1.10).

In this case, the electric current intensity that crosses the surface Sy is:

i=n,qv,S. (1.63)

where S denotes the area of the surface Sy-.

The electric current intensity is a scalar quantity and for this reason it can have only
sign but not direction. However, the notion of direction of a current is used.

The direction of an electric current through a surface is that of the normal to that
surface for which the electric current intensity is positive. The sign of the electric current
can be associated with the moving direction of the charge carriers. From relation (1.63), it
results that the sign of the electric current through a surface with a certain positive normal
is positive if the motion direction of positive electric charge carriers is that of that normal.

The intensity of the electric current that crosses the unit of surface is numerically
equal to:

J=n.qv,, (1.64)

and is called electric current density.
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Fig. 1.11. Explanation to the calculation
of the electric current density.

q1

Consequently, the electric current intensity passing through a surface S with a certain
normal, is the quantity numerically equal to the electric charge passing through that
surface in the unit of time in the direction of the normal. The electric current density, at
any point, is the quantity numerically equal to the electric charge passing perpendicularly
through the unit of surface in the unit of time. It is a vector quantity having the direction
given by the velocity of the electric charge carriers and their sign. In the general case
(Fig. 1.11), there are m types of electric charge carriers that cross the surface S.

Each type of electric charge carriers has: a certain velocity v, with respect to a
reference frame (generally fixed to the surface Sy ), the electric charge ¢, and the
concentration #;, (number of electric charge carriers per unit of volume). The

microscopic electric current density is expressed by the relation:
m
Jmicro = znk 9k Vi - (165)
k=1

Macroscopically, the electric current density is expressed by the macroscopic average
(mean) of the microscopic quantity. The macroscopic quantity is obtained by calculating
the average value with space (volume) and time, as shown in Sub-section 1.6.6. Thus:

J = Jmacro = <Jmicr0>' (1-66)

The electric current intensity that passes through (crosses) any surface S (generally
open) is:

i= jJ-ds,
St

(1.67)

where the positive normal to the surface St is adopted as mentioned above.



Generalities on the Theory of the Electromagnetic Field and on the Structure of Substance 71

If the electric current density is normal to the surface Sy, and does not vary from one
point to another, it follows:

: (1.68)

where S is the area of the surface.
Let us consider the electric charge of the charge carriers distributed in volume, with
the density p,, in the adopted reference frame. The intensity of the electric current that

passes through the surface Sy is:
i= [pyv, dS, (1.69)
Sr

and the electric current density is:
J=p,v,. (1.70)

In the microscopic theory of the electromagnetic field, the electric current intensity
and the electric current density are derived quantities. In the macroscopic theory of the
electromagnetic field, one of the two quantities electric current intensity or current
density has to be introduced as a primitive (fundamental) quantity. For this purpose, the
electrochemical effect can be used.

In stationary regime (stationary operating conditions), the quantities voltage and
intensity of the electric current may be denoted by small letters as well as by capitals.
However, in other regimes, the notation has certain meanings.

From a microscopic point of view, as shown, the electric current is produced by
electrically charged microscopic particles in motion.

From a macroscopic point of view, it is accepted that the electric charge, as well as the
substance, is distributed in space. The electric charges and therefore the electric current
may be highly non-uniformly distributed on certain surfaces and may be concentrated on
certain surfaces, in a very thin film. Then, the macroscopic idealized case is considered in
which the electric current is distributed in the form of a current sheet on each of these
surfaces. Fig. 1.12 shows the trace of the surface §; with the current sheet on the figure

plane.

Fig. 1.12. Explanation to the calculation of the linear current density. The cross-sections
of the conductors (round wires) show that the carried currents enter the figure plane.
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Correspondingly, it is possible to define a linear current density also called linear
current sheet and denoted by J, or 4:
0i
J,=A4A=—.
s Y, (1.71)
Usually, it may be expressed as the number of ampere-turns per metre.

1.10.2. Conduction Electric Current

The electric charge carriers of the interior of a body of any substance are called free
(electric charge) carriers if they are not permanently located within a certain atom or
molecule, and are called bound (electric charge) carriers if they are permanently located
within one atom or molecule.

In certain cases, in dielectrics and semiconductors there are charge carriers (electrons
or ions) which may have limited motions in the crystalline lattice. After such a motion, a
free space remains, i.e., a space not occupied by particles of the crystalline lattice and it is
called hole. After this free place is occupied by a neighbouring charge, a new
neighbouring hole will appear.

This process can continue so that the row of holes, successively created, is equivalent
to the displacement of the hole within the substance. The displacement of holes is
analogous to the motion of a charge carrier having the sign opposite to that of the charges
of the carriers the limited motions of which have produced the holes.

Therefore, if the holes are produced by limited displacements of certain electrons, the
displacement of the hole is equivalent to the displacement of a positive charge. The free
place is sometimes called hole or lacuna (pl. lacunae), as it is produced by the
displacement of an electron or of an ion, respectively; however this distinction is not
compulsory, moreover it is rarely used.

The conduction electric current in a body is represented by the oriented motion of free
electrons with respect to a reference frame attached (fixed) to that body.

According to the nature of the electric charge carriers (electrons, ions, holes), the
conduction electric current may be referred to as electronic current, ion current, hole
current.

Correspondingly, the conduction of the body under consideration is called electronic
conduction (e.g., for certain metals and semiconductors of N-type), ionic conduction
(e.g., for electrolytes), and hole conduction (e.g., for semiconductors of P-type).

The macroscopic current density and the macroscopic current intensity can be
expressed by relations (1.66), (1.67).

1.10.3. Convection Electric Current

The convection electric current is represented by the motion of electrically charged
bodies with respect to a reference frame. Here, the electric current produced by the
motion of a great number of electrically charged particles (for instance a flux of electrons
or of protons) in empty space is included.

The macroscopic current density and the intensity of the convection electric current
can also be expressed by relations (1.66) and (1.67).
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1.10.4. Polarization Electric Current

The polarization electric current is represented by the motion of bound electric
charges with respect to the centre of mass of atoms and molecules. Further, the
macroscopic density and intensity of the polarization electric current will be calculated.

An open surface St bounded by a simple curve I', both situated within a substance
electrically polarized, will be considered. In the case of a variation of the electric field
intensity, under the action of the forces determined by the electric field, the bound electric
charge carriers will change their position. Therefore, electric charge carriers pass through
the open surface S, to very small distances. Hence, an electric current passes through
the surface, and it is called polarization electric current.

The charges that produce the polarization electric current are just the charges that
produce the electric polarization.

At a point of the surface S, we shall consider the physically infinitesimal volume
Av having the centre of mass at that point and containing a neutral system of electric
charges.

The electric polarization, in any reference frame, with respect to which the substance
is at rest, is defined by relation (1.36 a) as:

1 n
P=—(Yq,r). .
Av<,-1qp' '>t (1.72)

where the summation refers to all electric charges which form neutral systems within the
physically infinitesimal volume Av and the average value with respect to time is taken
over a physically infinitesimal time interval. The quantities r; represent the position
vector in the considered reference frame. It is necessary to be mentioned that the position
vector of the centre of mass of the substance in the volume element Av remains
unchanged even when the electric charge carriers change their position (because the
positive and negative charges move in opposite directions). Also, the mean concentration
of the bound carriers remains constant. At a modification of the electric field strength, as
mentioned above, the positions of the electric bound charge carriers (the polarization
charges) in the volume element Av change. It follows:

oP 1 | or;
o —Av<i§q,ﬂ~ at>t’ (1.73 a)
thus:
oP 1 |
—=—(D 4, v,~> : (1.73 b)
ot Av <i=1 .
The macroscopic density of the polarization electric current may be written:

1 /& oP
J = —_ -V, :—,
P Ay <;1 qu 1>t ot (174)
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and the intensity of the electric current through the surface S is:

ip= jJP-dszjaa—f-ds.
St Sp

(1.75)
It is possible to obtain relation (1.75) in another way that permits the visualization of
the phenomenon.

Therefore, we shall anew consider a substance electrically polarized and within this
substance an open surface St bounded by a closed curve I".

P=4q,h
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Fig. 1.13. Explanation of the polarization electric current produced by polarization
electric charges (bound charges) that pass through a surface, by considering two positions
a and b of bound electric dipoles. The centre of each dipole is marked by a dot.

The dimension of A/ is magnified.



Generalities on the Theory of the Electromagnetic Field and on the Structure of Substance 75

At a variation of the electric field strength, although the substance remains at rest with
respect to the reference frame, the bound electric charges modify their position, passing
through the surface S and therefore produce an electric current. We shall express the

intensity of the electric current in terms of the electric polarization.
For this purpose, we consider an element AS of the surface S;-. We also assume that

the various multipoles are replaced by equivalent dipoles, all identical to each other (Fig.
1.13). The centre of each dipole is marked in the figure by a dot. This point remains at
rest even when the bound electric charges move, since the substance is considered at rest.
We shall denote by n,, the concentration of dipoles (i.e., the number of dipoles per
unit of volume) and by ¢, the positive charge of the dipole. It follows that under the
action of the electric field supposed as increasing in the direction of the arrow (Fig. 1.13),

the electric bound charges will move by the distance EAh in the time interval A7 with

the velocity %Ah / At . Therefore, the dipoles will be elongated.
We shall consider, on the left side of the surface element AS, the parallelepiped

having one base situated at the distance %h from the surface element AS and the height

%Ah oriented towards the left side. The positive electric charges belonging to dipoles

that have their centres within the mentioned parallelepiped will pass through the surface
AS towards the right side with the velocity v, . The positive charge of each dipole which
has not its centre within the mentioned parallelepiped will not pass through the surface in
the time interval Az, and hence will not contribute in producing an electric current
through that surface. Analogously, the negative electric charges from the right side of the
surface AS will pass through the same surface towards the left side.

It results that through the surface AS =nAS, the following electric current produced

by positive bound charges will pass in the interval of time A¢:
Alpgs=n,q,v,-AS;

p
Y (1.76)

For the negative charges, a similar expression can be obtained. It has to be taken into
account that the passage of an electric current produced by a number of negative charges
from the right to the left is equivalent to the passage of an electric current of an equal
number of positive charges from the left to the right. It follows that the resultant
polarization electric current through the surface AS', denoted by one of the symbols, ip,

ip,ISZ

, oh
A1P=<np qu-AS> . (1.77)
t
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Taking into account that the concentration of dipoles does not change because the
centres of the dipoles remain at rest, it follows:

5 oP
ip <at(npqd ) >t = (1.78)

From relation (1.78), it follows that:
. oP
ip= J.JP-dS:JE-dS. (178 2)
Sr 5

The same result will be obtained if it is considered that a rotation of dipoles is
produced under the action of the external electric field.

From the explanation above, it follows that the polarization current cannot be a steady-
state direct current, since the displacement of bound charges is limited. Only polarization
current varying with time can exist.

1.10.5. Amperian Electric Current (Molecular Electric Current)

The motion of an electric charge carrier along a closed way of sub-molecular
dimensions is referred to as molecular or Amperian electric current. The concept of
molecular current was introduced by Ampere for the explanation of the magnetization of
bodies based on electric currents, that is why the molecular currents are also called
Amperian currents.

The following simple models can be considered. The Amperian (molecular) electric
currents are essentially represented by the orbital and spin motion of electrons. Indeed,
each electron describes an orbital trajectory about the nucleus of the atom. The orbital
trajectory is assumed as having the shape of a circumference, or more precisely, that of an
ellipse. Moreover, it is also assumed that each electron turns about an axis passing
through its centre. This rotation may be of any sense, for some electrons, e.g., clockwise,
of opposite sense, i.e., counter-clockwise, for the others. This electron movement is called
spin motion.

Further on, the density and the intensity of the molecular current will be calculated.
Details on the motion of electrons and more precise models can be found in works
devoted to this subject. Certain details are given in the work [26]. For the sake of
simplicity, all Amperian electric current will be supposed identical to each other having
the intensity iy, and a circular trajectory of radius r, and normal n.

Within a substance in which there are Amperian (molecular) electric currents, we
consider (imagine) an open surface S bounded by a closed curve I' (Fig. 1.14).

We shall calculate the macroscopic intensity of the Amperian electric current through
this surface. The electric current intensity is:

Iy :ZiAmper > (1.79)
St
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where the summation refers to all Amperian currents the trajectories of which intersect
the surface Sr-.

It is worth remarking that the intensity of a microscopic current occurs in the
calculation of the sum of relation (1.79) only if that current crosses once the surface S
(if it crossed twice the surface, its contribution to the total current would be zero). Hence,

only the Amperian currents that link the curve I' contribute to the sum. We shall
calculate the macroscopic Amperian current given by the sum:

iM = Z iAmper > (180)
r
where the summation refers to all Amperian currents that link the curve I".

Let us consider that along a short portion Al of the curve I', the orbits of the
Amperian currents are parallel with each other and their surfaces perpendicular to the
considered portion of the curve I'. The Amperian current concentration (i.e., the number
of Amperian currents per unit of volume) in this region will be denoted by n,. The
Amperian currents that link the arc Al of the curve are contained inside a right cylinder
having as axis the mentioned segment Al approximated by a straight-line segment, and
the diameter 27, , where 7, is the radius of the orbit of an Amperian current. Thus:

2 iAmper =ny iAmper SO Al, (1.81)
Al ‘

where S denotes both the surface of the orbit of an Amperian current and the area of the
cross-section of the cylinder above. Ifthe normal n to the surface of the orbit of the

Fig. 1.14. Orbits of the Amperian (molecular) currents and the
surface through which macroscopic electric currents are passing.
For the sake of clearness, the orbits are magnified.
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Amperian current forms a certain angle with the arc element A/, it follows:
ZiAmper =ny iAmper SO Al (181 a)
Al

The calculation performed for a single curve I' can be repeated for several closed
curves very closed to each other. These curves form a bundle that occupies the domain in
the form of a closed tube (pipe). The cross-section of this tube must be small enough, so
that together with the line element A/, it shows a physically infinitesimal volume Av .

We shall denote:

m, = iAmper 8o, (1.82)

quantity called magnetic moment of an Amperian current or Amperian magnetic moment,
and:

1
M=— m =ny,mg,
AV<AV o>t oM (1.83)

where Av represents the physically infinitesimal volume. The sum of magnetic moments
of Amperian currents of a volume of any substance may be different from zero. The state
of the substance in this case is referred to as magnetization state. From a microscopic
point of view, the magnetic moment is a secondary (derived) quantity. From a
macroscopic point of view, the magnetic moment has to be introduced experimentally as
a primitive (fundamental) quantity. The manner of introducing this quantity is based on
the ponderomotive forces acting on a magnetized small body situated in a hollow cavity
within the substance. The vector quantity M defined by relation (1.83) is called
magnetization. In the case of a uniform distribution, it represents, the average value, over
a physically infinitesimal time interval, of the vector sum of magnetic moments of a unit
of volume. Generally, it represents the ratio of the sum of magnetic moments, of a
physically infinitesimal volume, to the magnitude of this volume.

Instead of the vector quantities, Amperian magnetic moment m and magnetization
M , corresponding to expressions (1.82) and (1.83), there are also used the quantities

Coulombian magnetic moment m; and magnetic polarization M ; defined by the

following expressions that contain the constant ) :
my; =Wymg, (1.84)
M;=pyM, (1.85)

where the quantity p, represents a constant called the magnetic constant also termed
permeability of vacuum, which will be explained in Section 2.4.

The quantity M ; is denoted, according to [44], by the symbol J but we shall not use
it, in order to avoid any confusion, because in this work the electric current density
denoted by the same symbol also occurs. Another symbol for denoting the same quantity,
according to [44], is B, and it is called intrinsic magnetic induction.
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If the quantities m ; and M ; are used, then certain relations, referring to the magnetic

polarization state, show a symmetrical form with the corresponding relations referring to
the electric polarization state.

Correspondingly, we obtain the volume density of the fictive (fictitious) magnetic
charge:

Py =—divM, (1.86)
called volume density of the (fictive) magnetization charge, and
pmv:—diVMj, (1.87)

called volume density of the (fictive) magnetic polarization charge.
The relations (1.81), (1.83) yield:

> inmper = §M-d1 (1.88)
r r
and taking into account relation (1.80), it results that:
r

The macroscopic density of the macroscopic Amperian electric current, denoted by
one of the symbols J,, J,, J,,, J,,, can be obtained by using the Stokes theorem as

follows:
iy = [J4-dS=§M-di= [curlM -dS. (1.90)
Sr Tr Sl"
It results that:
Jy=J,=curllM :Lcurle. (1.91)

Ho

The magnetization M can be decomposed into the sum of two components. The first
one exists even in the absence of external causes and is determined by the nature of the
substance. This component is called permanent magnetization and it is denoted by M ,.

The second one appears only under certain external causes (e.g., a magnetic field) and is
determined by these causes and the nature of the substance. This component is called
temporary magnetization and it is denoted by M, . Therefore, for the components of the

vectors magnetization and magnetic polarization, respectively, we obtain:

M:Mp-i'Mt, (192)

In certain situations, each of the two components above may be zero.
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1.11. LAW OF FREE (TRUE) ELECTRIC CHARGE CONSERVATION

1.11.1. Integral Form of the Law

Let us consider any closed surface X passing only through insulating materials, so
that the surface is not crossed by electric currents, then the total electric free charge of the
interior of the surface ¥ remains constant:

gs =const. (1.94)

This relation, called law of electric charge conservation, is valid regardless of the
phenomena produced in the interior of the surface X .
If an electric conduction current of intensity is passes through the closed surface X,

leaving this surface, then the integral form of the law is modified as follows:

_dgs

= (1.95)

izz

This last expression of the integral form of the law of electric charge conservation also
follows from the magnetic circuital law subsequently treated; however the first integral
form of the law (1.94) does not result from the magnetic circuital law.

1.11.2. Local Form of the Law

The relation (1.95) can be modified as follows:

ZjJ-dS=—%Vjpvdv, (1.96)

z

where the quantity J represents the density of the current passing through the surface
and the quantity p,, represents the volume density of the electric free charge.

Two cases will be examined: Surface X at rest with respect to the reference frame;
surface ¥ in motion with respect to the reference frame.

1° Surface at Rest Relatively to the Reference Frame

In a reference frame at rest with respect to the surface X, the operation of
differentiation can be introduced under the integral sign and it follows:

0
ZIJ~dS=—V£EpvdV- (1.97)

By transforming the surface integral into a volume integral (Gauss-Ostrogradski
theorem), we obtain:

jdivJ-dsz—jipvdv. (1.97 2)
or :
Vs Vs
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Since the last relation is valid for any surface X, it results that:

) op
divd =———~,
- (1.98 a)
or
8
ptv +divJ =0. (1.98 b)

Relation (1.98 b) represents the local form of the law of free (true) electric charge
constancy for a medium to which the surface X is attached (fixed) and that is
simultaneously at rest with respect to the reference frame.

2° Surface in Motion with Respect to the Reference Frame

If the surface ¥ is moving with respect to the reference frame and the various points
of this surface have any velocity v, with respect to the reference frame, then when

calculating the derivative:
d

P I pydv, (1.99)
Vs

it is necessary to take into account that two terms will occur: One term is obtained
supposing that the surface is at rest, and the quantity p, varies with time; the second term

is obtained supposing that the surface is moving and the quantity p, does not vary with

time, i.e., the procedure is the same as for the calculation of the derivative of composed
functions.
The first term is:

9Py dv
5; 4 (1.100 a)
VE

The second term is given by the relation:

é [podv=[p.dv], (1.100 b)

Vs, Vs

where £, =% and X, represent the two consecutive positions of the surface X (Fig.
1.15), and Vy and Vy  are the domains (volumes) bounded by the surfaces ¥, and X,,

respectively. The surface X, denotes the first position and the surface X, denotes the
second consecutive position after the displacement of every point of the surface ¥ with
the segment v, - Af .

Considering Fig. 1.15, it follows that the variation of the integral expressed by relation
(100 b) is given by the integral:
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[ovav. (1.101)
Vs,

that has to be calculated over the domain (volume) bounded by the closed surface X ;.
The closed surface X, is determined by the two consecutive positions X; and X, of the
closed surfaces. Fig. 1.15 shows an element of the domain bounded by the surface X .
This element is a curvilinear parallelepiped. From the examination of Fig.1.15, it follows:

Av=AS-v, At. (1.102)

By replacing the volume element in expression (1.101) and integrating over all
elements d S, hence over the whole surface X ;, we obtain:

J.pvdv: Ipv(dS)-v,,At. (1.103)
Vs, T4
Therefore, the derivative of the considered integral is:

d _ [ 9py
E Jpvdv_ J ot dv+ J.pvvr'dsﬂ (1104)
Vs Vs s

and by replacing in relation (1.96), it follows:
op
IJ-dSZ—Ia—;dV—Jpvv,,-dS. (1.105)
b3 Vs b3
By transforming the surface integrals into volume integrals, the last relation becomes:

IdiVJ dv=-— J.aﬁdv— Idiv(pv v,)dv. (1.106)
ot '
Vz VZ VZ

Since the last relation should be valid for any surface X, it results that:

—div(p, v,). (1.106 a)

Fig. 1.15. The displacement of an
v, At element of the surface X in the two
consecutive positions and
determining the surfaces X; and X,.
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The last relation yields:

op,
a—thrdlv(J+pvvr)=O, (1.107)

that represents the local form, i.e., the differential form, for a medium (to which the
surface X is attached) in motion with the velocity v, with respect to the reference frame.

The quantity J represents the current density in a reference frame attached (fixed) to

. .0 . .
an element of the surface ¥ and the derivative % is expressed in the reference frame
t

with respect to which the surface X is moving. Thus J +p, v, represents the current

density with respect to the reference frame at rest, relatively to which the surface X is
moving. With this remark, relation (1.107) can be obtained directly from relation (1. 98 b)
by replacing, correspondingly, the electric current density.

1.12. THE LAW OF ELECTRIC CONDUCTION. THE LOCAL FORM.

The magnitude of the density of the conduction electric current at a point of any
medium depends on the strength of the electric field in the large sense at this point, and
on the nature of the medium.

In the case of any isotropic medium, the density vector of the electric current, at a
point, has the same direction as the vector of the electric field strength at the same point,
and is given by the relation:

J=GE,, (1.108)

where o is a positive quantity. The quantity o is called electric conductivity and is
depending on the medium nature, thus a material quantity. The quantity:

p=—, (1.109)
(e}

is called electric resistivity.

Macroscopically, relation (1.108) can be obtained only in an experimental way. In the
macroscopic theory, this relation is a material law, also termed constitutive law, and is
referred to as the electric conduction law or the general Ohm law. In metallic conductors,
the electric resistivity depends, generally, on temperature.

The expression of the electric resistivity can be expanded in a Taylor series in terms of
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For relatively small variation, by neglecting the small terms of higher order, the
dependence is a linear one:

Po =Po[l+0(0—6)], (1.110)
Qg = 1 [apJ 1.110
0= | an | > 110 a
2020, (1110 a)
where the following symbols have been used:
pe — clectric resistivity at temperature 0;
po — electric resistivity at temperature 0 ;
a, — raising coefficient of resistivity with temperature.

The values of the resistivity and of the raising coefficient of resistivity with
temperature are given, according to the experimental results, in tables.

The resistivity of a metal usually increases with temperature, even during the metal
melting. However, certain metals like bismuth, antimony, gallium show a decrease of
their density during their melting, and their resistivity diminishes during their melting. In
the microscopic theory of the electromagnetic field, relations (1.108) and (1.110) can be
deduced starting from the general law of the electromagnetic field.

In the case of anisotropic media, the direction of the vector J is not the same with
that of the vector E;. However, in these media, it is possible to determine a system of

three-orthogonal axes called principal axes, along which, the anisotropic medium behaves
like an isotropic one. In the case of these media, the electric conduction law, in the local
form, can be written in the form:

J=6E,, (1.111)

where the quantity ¢ is the tensor of the electric conductivity. Relations (1.108) and
(1.111) have a general character being valid in the cases when the quantities varies with
time.

In dielectrics (substances with bad conducting properties) and in semiconductors,
generally, the dependence between the density of the conduction electric current and the
electric field strength is not a linear one. However, in these cases, the same manner of
expressing the law is used. Then, the expression of the law is equivalent to the
expression, for each considered substance, of the dependence J = f(E;) and E, = f(J).

The law is also applicable, with a good approximation, to electrolytes.

In the framework of the microscopic theory, using a simplified model, the relation
(1.108), can be derived as follows. The electric current flowing in a body is produced by
the oriented displacement of electric charge carriers under the action of external forces.
The collision of the charge carriers with the ions and atoms of the body opposes to the
oriented displacement of the charge carriers. Hence, the substance of the body presents a
certain resistivity to the electric current. The relation (1.108) that expresses this
phenomenon can be deduced directly from the equation of motion of the electric charge
carriers moving under the action of the forces which occur [23, Vol. II, p. 30].
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1.13. THE ELECTRIC FIELD STRENGTH OF ELECTRIC
CHARGES IN VACUO. ELECTRIC CONSTANT (ELECTRIC
PERMITTIVITY OF VACUUM).

1.13.1. CouLomB Formula

Let us consider two small bodies indicated by numbers 1 and 2, with the electric
charges ¢; and g, respectively, at rest in a reference frame and situated at points 4 and
P at a relatively great distance (compared with the dimensions of each body) from each
other. Therefore, the charges ¢; and g, can be referred to as point-like charges.

The vector quantity ry, represents the distance between the two bodies, oriented from

the body 1 towards the body 2, like in Fig. 1.16.
The force exerted upon the body 2 with the electric charge ¢, due to the body with

the electric charge ¢, is given by the expression:

@ T
I (1.112)
My 2

that represents the Coulomb formula in the case of empty space (i.e., vacuum).

At the time when it was experimentally established, relation (1.112) had a very
general character and has been referred to as the Coulomb law. At present, it is also called
the Coulomb theorem. From expression (1.112) and Fig. 1.16, it results that the direction
of the force is so that the charges of the same sign repel each other, and the charges of
opposite sign attract each other. The Coulomb formula can be used for introducing the
notion of true (free) electric charge.

The quantity k is a universal constant referring to vacuum (free space, empty space),
i.e., a physical quantity independent of the nature of the bodies under consideration and of
all other physical quantities, dependent on the chosen system of units.

In the SI system of units, which is a rationalized system, instead of the constant &, the

quantity g, is used, and the relation between the two quantities is:

1
47580 '

ko (1.113)

The quantity ¢, is also a wniversal constant referring to vacuum and is called
permittivity of vacuum or electric constant, and in the SI system has the value:

A LSY) P F,,
[o,
(1) ¢ (2) 9,

Fig. 1.16. Explanation concerning the Coulomb formula.
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1

=—-F/m,
479-10° (1.114)

€
expressed in farad / metre (symbol F / m); the units of measure will be explained in Sub-
section 3.13.3.
If instead of relation (1.114), other values are adopted for the constant of relation
(1.112), other systems of units of measure of the electromagnetic quantities will be
obtained. The expression of the Coulomb formula, in vacuo, in the SI system of units is:

1 2
Fy=—— 00202 (1.115)

As mentioned in Sub-section 1.6.2, the unit of measure of electric charge is called
coulomb. According to relation (1.115), the coulomb is the value of the point-like charge
that exerts a force of 9-10° N upon another identical point-like charge placed at the
distance of 1 m from the first point-like charge and very far from any other body.

According to relation (1.17), it results that the electric field strength produced by the
charge ¢, at the point 2 (Fig. 1.16) has the expression:

E, = e (1.116)

Relation (1.116) is also termed Coulomb formula, relation or theorem, respectively.

1.13.2. Utilization of the Principle of Superposition

For obtaining the force acting on a point-like charge, in many cases it is useful to
apply the principle of superposition. Therefore, for obtaining the force acting upon a
point-like charge ¢, due to other point-like charges g; (i =1,..., n), the forces

corresponding to the pairs of charges ¢,q;; ¢,49,; . . 5 q,q, Wwill be calculated
separately and the forces F;, F,, ..., F, will be obtained. The resultant force exerted
upon the point-like charge ¢ situated at any point 4 is:

n
F=YF,. (1.117)
i=1

Correspondingly, the electric field strength at point 4 produced by the point-like
electric charges ¢; (i =1,..., n), the charge ¢ being absent, is:

E=)E,. (1.118)
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1.13.3. The Electric Potential Produced by Electric Charges at Rest

We shall calculate the electric field strength produced at any point N, called
observation point or field point, by whatever point-like charge denoted here by ¢ that is

placed at any point M called source point. We shall denote r = MN . The electric field
strength at the point N is given by relation (1.116) and can be written in the form:

ot .%.Lz_grad( 1 .EJ:—gradV, (1.119)

4ney r

where the following symbol has been used:

1
A.c,
dmeg r (1.120)

V=

where C is an arbitrary constant. The scalar quantity V' is called potential and because, in
this case, it is produced by electric charges at rest, it is termed electrostatic potential. The
minus sign in the right-hand side of relation (1.119) appears due to the following
convention accepted in the theory of the electromagnetic field. According to this
convention, the displacement direction of the particles with positive electric charge is
oriented from the regions of a higher potential towards the regions of a lower potential.
Hence, the direction of the electric field strength vector and the direction of the lines
of electric field are oriented from the regions of a higher potential towards the regions of
a lower potential. This direction is opposite to that of the vector grad}, since the vector

grad V' is oriented along the direction along which V increases most rapidly.

According to the principle of superposition, the electric field strength produced at any
point N, by n point-like electric charges ¢; (i=1,...,n), each of them placed at the

point M, , is:

E‘Zn: gt Z_grad( ! &], (1.121)

where r; = M;N , and the potential is:

sznlyizzn: L 4, (1.122)
i=1 i 4ney 1
where:
Vi=— 1 Ay, (1.122 a)
dney 1

If besides the point-like electric charges it is a distributed electric charge, then, by
decomposing the electric charge distribution in elementary electric charges, the
distribution of electric charges may be replaced by sets of point-like charges and relations
of the form (1.121) and (1.122) can be applied.
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In the general case, in which in the whole infinite empty space (i.e., in vacuo) there are
n point-like electric charges and volume, surface and line electric charge distributions, the
expression of the potential can be written:

}:% J*”dv+fdeS+thﬂ +C, (1.123)
i= 1

r r
Sq

47'[80
q

and the electric field strength is:

1 q r; Py Ty J J r
R Tas+ —dl|.
4re, 2 7 2 r 2y o

1
Vg

E =—gradV =

i=

(1.124)

The electrostatic potential is a scalar function introduced in order to simplify the study
of the electrostatic field and generally has not a physical interpretation, excepting the
difference of the potentials at two points that can be related to a work, as it will be further
explained.

Therefore, in the applications in which the distribution of electric charges in vacuo is
given, and the calculation of the electrostatic field is required, the following procedure is
possible: To calculate successively the potential by relation (1.123) and then the gradient.
This way represents, in many cases, a much simpler solution than the direct calculation
by relation (1.124).

The electrostatic potential is useful for the calculation of the line-integral of the
electrostatic field strength between two points, referred to as: a) potential difference
between the two points, b) voltage between the two points or c¢) electric (electrostatic, in
the present case) fension between the two points.

The expression of the line integral is:

N
U (c)= |E-dl, (1.125)
M

but, in the case of the electrostatic field, we may write:

ov 6V ov
E=-gradV =—|i—+ +k—
g ( ox ay azj (1.125 a)

and
dl=idx+jdy+kdz. (1.125b)
Thus:

ov. ov. . o
E-dl=———dx———dy-——dz (1.125¢)

oy oz
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It follows:

N N

ov . oV, oV

UMN(C):—I(—dx+—dy+—dz)=—J.dV, (1.126)
Iy ox oy Oz Iy

and taking into account that the expression under the integral sign is a total differential, it
results that:

Uumv(c)=Vmu =V - (1.127)

It results that, in the case of the electrostatic field, the potential difference (voltage)
between two points is independent of the curve along which it is calculated and is equal
to the difference of the electrostatic potentials at the two points.

1.14. THE ELECTRIC FLUX LAW IN VACUO

Let us consider a closed surface X situated in vacuo, and in its interior a point-like
charge ¢ (that may be referred to as source charge). The electric field strength at a point
of the surface ¥ can be obtained by relation (1.119), using the same symbols, and it is
given by the following expression:

R (1.128)

Fig. 1.17. Explanation concerning the electric flux law in vacuo.
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We have:

TEsz-dS=I4 =-dS. (1.129)

We surround the point at which is the point-like charge, by a sphere of surface X,
having its centre at that point and any radius 7, (assumed generally small but this

assumption is not necessary). Then, we shall consider the surface obtained by the union
of surfaces ¥ and X,,. We obtain:

We shall calculate the flux of the vector E through the surface X,,. Having in view

the positive direction of the positive normal to the last surface, as shown in Fig. 1.17, we
obtain:

¥y, = [E-dS=[E-dS+ [E-ds. (L13D)
2o z Zg
For the exterior surface X, we have:
W= [E-ds. (1131 )
z
For the interior surface X,, hence that of the sphere, we have n:—r—o, and
"o
consequently:
Wpy, = [E-dS= jE-ndSz—J‘;~%-r—0-r—0dS=
0 47580 l"o ro VO
Z %
) | (1.131b)
=- 4 dez— -l4nr02:—i.
dng, 12 dng, 12 €
0y, 0 7 0
At the same time:
\IIEZV() = jEdS: J.dIVEdV. (1132)

2\10 VZ‘,O

But in the considered domain Vs 0> which does not contain the singular point » =0, we

have:

. . r
d1vE=4;780 div—=0. (1.133)

Introducing into relation (1.131), the expressions (1.131 a) and (1.131 b), and taking
into account relations (1.132) and (1.133), we obtain:
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JE-dS=i- (1.134)
2 €o
Formula (1.134) expresses the integral form of the electric flux law in vacuo, in the
case of a single point-like charge.
Formula (1.134) can also be directly established starting from relation (1.129), taking
into account that the quantity:

r
dQ:_3.dS (1.135)

r
represents the solid angle subtended at the point O (i.e., at » =0) by the surface element

d S . Therefore, the solid angle AQ is obtained as follows. Let O and AS be the given
point and surface, respectively. Let X, be a spherical surface having its centre at the
point O and any radius 7,. Let us consider the conical surface obtained when a half-
straight-line having its starting point at O is moving along the closed curve that bounds
the surface AS . Let AS, be the surface determined by the intersection of the conical
surface with the spherical surface. Then, the solid angle subtended at the point O by the
surface AS is defined as:
_AS,

AQ=— (1.136)
)

Immediately, it follows that if AS is a closed surface containing the point O, then AS,
will be the whole surface of the sphere X, and the solid angle will be 4. It is the solid
angle subtended at the point O by the surface of the sphere. If AS, were smaller than the

whole surface of the sphere, the solid angle subtended at the point O would be less than
4m.

The concept of solid angle is an extension of the notion of plane angle, from the Plane
Geometry, to the notion of solid angle, in the Solid Geometry. As shown, the definitions
are analogous.

Also, as shown, if the point O is contained by the closed surface X, then the surface
AS is to be replaced by that whole surface and the solid angle subtended at the point O
by the closed surface willbe Q=4rm.

If the point O is just on the closed surface X, then the surface AS' is to be replaced by
that whole surface and we shall consider the point O as tending from a neighbouring
position to the final one, on the surface X. It results that, in this case, the solid angle
subtended at the point O by the closed surface will be Q=27.

If the point O is outside the closed surface X, anew the surface AS' is to be replaced
by that whole surface. In this case, the conical surface above will be tangent to the closed
surface and consequently divides the whole closed surface into two parts. The value
(area) of the surface on the sphere X, corresponding to those two parts will have the

same absolute value but opposite signs. The different signs are determined by the
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opposite directions of the positive normal to each of the two surface parts. Therefore, in
this case, the solid angle subtended at the point O willbe Q=0.
It results that the flux of the vectors E through the surface element AS' is:

g Q

E-ds=2.2°
f — (1.137)
AS

If inside the surface X, there are several point-like electric charges, then, in
accordance with the principle of superposition and relation (1.118), expression (1.137)
remains valid provided that, in the right-hand side, the sum of all point-like electric
charges is introduced.

If inside the surface, there are distributed electric charges, then, by decomposing the
electric charge distributions into elementary electric charges, the electric charge
distributions can be replaced by sets of point-like electric charges and relation (1.137)
remains valid.

It follows that, generally, for a closed surface X, the following expression can be
written:

q
[E-as=1, (1.138)
€
z
or
JgOE-dS:ID-dS:qZ, (1.139)
z >
D=¢,E, (1.139 a)

where the quantity gy represents the total free (true) electric charge of the interior of the

surface £ and D is called the electric flux density in vacuo.

The expressions (1.138) and (1.139) represent the integral form of the electric flux law
in vacuo.

The electric charge of the inside of the surface X can be expressed in terms of the
electric charge volume density:

1= = Jpvdv’ (1.140)
Vs
and relation (1.139) becomes:
%0 IE'dS: fpvdv' (1.141)
b3 Vs

By the aid of the transformation relation of a volume integral into a surface integral
(Gauss-Ostrogradski theorem), we obtain:

£ JdiVE-dv = [p,dv.
Vs Vs

(1.141 a)
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Since the last relation can be written for any volume domain Vs , it results that:
ggdivE =p,, (1.142)

which is the local form of the electric flux law in vacuo.
By replacing relation (1.124) in (1.142), in the case in which only a volume electric
charge distribution exists, it follows:

Py

divgradV =— (1.143 a)

or
VI =—t (1.143 b)

In the framework of the macroscopic theory, the electric flux law is a general law. In
the framework of the microscopic theory, it can be derived as above, as a theorem. For
this reason, the above law is also called the electric flux theorem as well as the Gauss
theorem.

The integral form of the electric flux law can be expressed as follows: The flux of the
electric field strength through a closed surface, situated in vacuo, is proportional to the
sum of all electric charges belonging to the volume delimited by this surface.

In the case in which there is a single point-like electric charge, but situated on the
surface X, then, in relation (1.138) or (1.139), the right-hand side will be multiplied by
the factor 1/2. The reason has been shown above (considering the solid angles) and it

consists in the fact that instead of a sphere surrounding the point-like charge (Fig. 1.17), it
is a half-sphere (hemisphere) that occurs.

The charges from the outside of the closed surface X do not occur in the expression of
the electric flux law.

1.15. THE SI UNITS OF: ELECTRIC CHARGE, ELECTRIC
MOMENT, ELECTRIC TENSION, ELECTRIC FIELD
STRENGTH, ELECTRIC CURRENT.

In the publications concerning the SI system of units, a set of definitions of the units
of measure is given. For the same units, various definitions can be used as required. In the
present work, each occurring unit is defined employing only relations and units
previously introduced.

1.15.1. The Unit of Electric Charge

The SI unit of electric charge may be established in accordance with the Coulomb
formula and is called coulomb (symbol C). The electric charge of a conducting small

body that exerts a force of 9-10° N upon another identical body having an identical
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electric charge, in vacuo, at the distance of 1 m from the first body, and very far from any
other bodies, is called coulomb. The definition of this unit has been examined in the Sub-
section 1.13.1.

The units of volume, surface and line density corresponding to relations (1.7), (1.8)

and (1.9), respectively, are the following: coulomb per cubic metre (symbol C/ m’ ),

coulomb per square metre (symbol C/ m?) and coulomb per metre (symbol C/m).

1.15.2. The Unit of Electric Moment

The SI unit of electric moment results from relation (1.26) and is called coulomb-
metre (symbol C-m). Coulomb-metre is the electric moment of an electrically polarized
small body upon which a maximum torque of 1 N - m is exerted in an electric field having

the strength of 1V/m. The definition of this unit has been examined in Sub-section

1.9.6.
The unit of electric induction and electric polarization is called coulomb per square

metre (symbol C/m? ) and will be explained in Sub-section 3.13.1.

1.15.3. The Unit of Electric Tension

The SI unit of the quantities: electric potential difference, electric tension,
electromotive force, and in general the integral of the electric field strength along a curve
is the volt (symbol V).

The definition of this unit can be given according to relation (1.22). The line-integral
of the electric field strength, along a curve, in any reference system, between two points,
has the value of 1 volt, in the following case. Let a small body with the electric charge of
1 C move along that curve in an electric field, with a very small velocity. Also, during
this motion, let the forces due to the electric field and exerted upon the body above do a
work of 1 J. In this case, the integral above will be equal to 1 V.

The small velocity is required for the definition of the electric field to be valid in the
considered reference frame.

After the unit of the electric potential difference has been adopted, according to
relation (1.23 a), the unit of the electric field strength can be deduced and is called vol¢
per metre (symbol V/m). The strength of a uniform (homogeneous) electric field is of
1 V/m if the electric potential difference between two points situated at a distance of
I m along a direction parallel with the direction of the electric field strength is of 1 V.

1.15.4. The Unit of Electric Field Strength

At the same time, another definition of the electric field strength can also be given
after having adopted the unit of electric charge. In accordance with relation (1.17), the
electric field strength in vacuo, at any point, has the value of 1 V/m if at that point, the

electric field exerts a force of 1N upon a conducting small body having the electric
charge of 1C.
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1.15.5. The Unit of Electric Current Intensity

The SI unit of the intensity (strength) of the electric current is called ampere (symbol
A). The electric current constant with time that passes through any surface has the value
of 1 A (ampere) if through that surface an electric charge of 1 coulomb passes in a time of
1 second:

1C

1A=—.
1s

(1.144)

Another form for expressing the unit in the SI system of a certain quantity will be
shown for the case of the unit of electric current, as follows:

_lgl_1C_

1[1]81_1[1] s

(1.145)

The unit of the electric current density is called ampere per square metre (symbol
A/m?). Since this unit is small, in numerous practical applications, a multiple of this
unit is used, namely ampere per square millimetre (symbol A/ mm? ). When the electric

current density is introduced in computation expressions in A/ mm?, it is necessary to
make the involved transformations.
The unit of the linear current density is the ampere per metre (symbol A/m).
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2. INTRODUCTION OF THE STATE QUANTITIES OF
THE ELECTROMAGNETIC FIELD IN VACUO

The state quantities of the electromagnetic field can be introduced (i.e., defined) either
by experimental way or by using the expression of transformation of forces when passing
from one reference frame to another that is moving with respect to the first one. Firstly,
the second way will be used, and further the first way will be presented. Each manner
requires certain derivations. The manner of presentation used for the first way is based on
several works [23], [11], [13], [25], [40], [41].

2.1. THE LAW OF PONDEROMOTIVE ACTION UPON A
POINT-LIKE ELECTRIC CHARGE AT REST IN AN INERTIAL
REFERENCE FRAME

The electric charge of any body, according to the non-correlative definition of Sub-
section 1.6.2, will be considered as independent of the velocity of the body. This
assumption is supported by experimental facts mentioned in the above Sub-section.

We shall consider a point-like electric charge in vacuo in a reference frame
K, (xo, Voo zo), considered as the original frame, and another reference frame

K, (xl, Vs zl) that is moving, at a constant velocity, relatively to the first reference

frame. The original reference frame is indicated by the suffix “0”, in order to avoid any
confusion with the suffix “0” of ¢, and p,.

Any reference frame may be considered, but further on, only inertial reference frames
will be examined.

We shall recall the meaning of inertial reference frame, and we shall make some
remarks.

Inertial reference frame is called any reference frame, with respect to which, three
material points, very distant from each other and from other bodies, and moving in
different, non- parallel planes, describe straight-line trajectories.

All inertial systems are equivalent to each other, from the point of view of mechanical
phenomena. Indeed, all the laws of Classical Mechanics (e.g., inertial law, action and
reaction law, fundamental law of Dynamics) have the same expression in any inertial
reference frame. The inertial reference frames are in a uniform translation motion.

The expression of the law of ponderomotive action, in any reference frame K, exerted
upon a point-like charge ¢, at rest, in this reference frame is:

F=qE. (2.1
The expression of the law of ponderomotive action is:

F,=qE,, (2.2 a)



98 General Theory of the Electromagnetic Field

in the reference frame K if the point-like charge is at rest in this reference frame and:

in the reference frame K if the point-like charge is at rest in this reference frame.
The vector quantities E, and E; represent the electric field strengths in the reference
frames K, and K, respectively.

If the point-like charge (or the body represented by this charge) is moving relatively to
the reference frame, then the law of ponderomotive action is different from that presented
above. In this case, the law can be established either by the generalization of experimental
results or by using certain expressions from Mechanics established in the Special Theory
of Relativity.

2.2. DERIVATION OF THE EXPRESSION OF THE LAW OF
PONDEROMOTIVE ACTION UPON A POINT-LIKE ELECTRIC
CHARGE THAT IS MOVING RELATIVELY TO AN INERTIAL
REFERENCE FRAME

The expression of the law of ponderomotive action upon a point-like charge that is
moving with respect to an inertial reference frame can be established by using certain
assumptions (hypotheses) from Mechanics established in the Special Theory of
Relativity.

The used hypotheses are the following:

1. In an inertial reference frame, the expression of the force acting upon a point-like
electric charge that is in motion relatively to this reference frame, and produced by the
interaction with another point-like electric charge, at rest with respect to the same
reference frame, is given by the Coulomb law from Electrostatics.

2. For obtaining the expression of the force acting upon a point-like electric charge
the principle of superposition will be used. So, in order to find the force acting upon a
point-like electric charge g at rest or in motion, under the action of several point-like
charges ¢; (i =1..., n), we shall proceed as follows. We consider separately the pairs of

charges ¢,9;; 4,95 - - -; 4,9, and we obtain the forces F,, F,, ..., F, . The resultant
force exerted upon the point-like electric charge g is:

F=)F,. (2.3)

The subscript of point-like electric charges indicates only the ordinal number and has
no relation with the subscript of the reference frame symbol. On the other hand, the
definition of the electric charge does not depend on the reference frame.

3. For expressing the forces in another inertial reference frame, the transformation
relation of forces, from Mechanics, established in the Special Theory of Relativity, will
be used.
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4. Firstly, only point-like charges will be considered. By this procedure, instead of
elementary particles with electric and magnetic moments, only point-like electric charges
without electric and magnetic moments will be considered.

2.3. THE TRANSFORMATION EXPRESSION (WHEN PASSING
FROM AN INERTIAL SYSTEM TO ANOTHER) OF THE FORCE
IN THE SPECIAL THEORY OF RELATIVITY

The following postulates lie at the base of the Special Theory of Relativity:

1. Relativity principle: There are an infinity of reference frames in uniform rectilinear
relative motion, called inertial reference frames, in which all the laws of nature take the
same form namely the simplest form, established for the case in which the reference
frame would be at rest.

2. The principle of constant velocity of light in empty space: In all inertial reference
frames, the velocity of light emitted by any source of light in empty space, measured with
physically identical gauges and clocks, has the same value.

3. The mechanical momentum along any direction perpendicular to the direction of
motion is conserved when passing from an inertial reference frame to another. The
general expression of the momentum of a material point in motion [11, p. 666].

The first two postulates have been supported by several experiments. Einstein
enounced these postulates. The last postulate is also included in the Special Theory of
Relativity. The mentioned first two postulates lead to certain relations between lengths
and times in two inertial reference frames in motion relatively to one another. These
relations differ from those of Classical Mechanics.

Certain difficulties involved by these postulates have been mentioned in Introduction
and are analysed in literature.

2.3.1. The Transformation Expressions of Co-ordinates and Time

We shall recall the notions of duration and time. The duration is a scalar quantity,
expressing the relation between two events. This quantity is attached to the events as
follows. Each event is related to the position of a moving point. We determine two
positions occupied successively by a point corresponding to the two events. The duration
between the two events is proportional to the length of the path (way) described by the
point between the two positions.

For defining the duration and time in a reference frame, it is possible to do as follows.
We consider a point that is in a uniform rectilinear motion in this frame, hence the point
describes a straight-line trajectory. When a certain event occurs, we shall mark the
position of the moving point at that moment. The duration between two events is thus a
scalar quantity, proportional to the distance between the points marking the two events.
The unit of measure of the duration is determined by adopting certain proportionality
constant between distance and duration, for a given motion of the point above.

The duration measured with respect to an origin, and having the sign plus or minus as
the second event is posterior or anterior to the origin-event, is called time, and may be
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referred to as a temporal co-ordinate. The device for measuring the time is a clock of any
type.

The standard unit of time is deduced from the duration of rotation of the Earth about
its axis. The duration of a sidereal day is defined as the duration of the rotation of the
Earth determined with a high precision by astronomical measurements relatively to stars.
The duration of a solar day is defined as the duration of the rotation of the Earth
determined with a high precision by astronomical measurements. The duration of the
mean solar day is obtained from the duration of solar days taking into consideration the
duration of the year. The unit of time adopted in Physics is the second deduced with
respect of the mean solar day.

A more precise definition of the unit of time can be based on the consideration of the
periodic duration of oscillation (vibration) of a certain kind of light the wave-length of
which is used for defining the unit of time. The second is the duration of 9192631770

periods of the radiation corresponding to the transition between the two hyperfine levels
of the fundamental state of the atom of caesium 133. The clocks with caesium ensure a
satisfactory precision for most applications.

The standard unit of length is the metre adopted firstly in France by the decree of the
Ist August 1793 of the Convention as ten-millionth part of the quarter of an Earth
meridian circle (according to the proposition of Borda, Condorcet, Laplace, Lagrange,
Monge). Standard metres were manufactured.
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Fig. 2.1. The reference frames K, and K.
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In 1887, Michelson proposed the utilization of optical interferometers for the measure
of lengths and determined the length of the metre from the wave-length of cadmium. In
1960, the Conférence Générale des Poids et Mesures (CGPM) adopted the length of the
metre from the wave-length of the radiation corresponding to the transition between two
specified energy levels of the atom of krypton 96 in vacuo. In 1983, the CGPM adopted
for the metre the following definition: the metre is the length covered by light in vacuo in
1/299792458 second [46]. We shall consider the reference frames K| (xo s Vos Zo ), and
K (xl, Vi, zl) of Fig. 2.1. Three-orthogonal rectilinear (Cartesian) right-handed systems
of co-ordinates are used.

The co-ordinates of any point P seen by an observer in the frame K, are denoted by
Xy, Vo» Zo» and the co-ordinates of the same point seen by an observer in the frame K,
are denoted by x;, y;, z; .

As shown in Appendix 3, the unit vectors of the two systems of co-ordinates can be
denoted by the sets i, j,,k,, and i, j,, k;, respectively. In the case in which the axes

of co-ordinates of the two systems are parallel with each other, since the unit vectors are
dimensionless, both sets of unit vectors may be denoted by the same set of symbols,
namely i, j, k.

Hence, the unit vectors of the three axes in the frame K as well as in the frame K,
are denoted by i, j, k and they are not affected by the transformation expressions of the
co-ordinates, because they are dimensionless quantities that indicate only the directions.

The components of any vector, in the reference frame K, for instance F,, along the
three axes of co-ordinates can be denoted by F,, , F, , Fi . If no confusion can appear,
for the sake of brevity, the last suffix may be omitted, and then the components become
Foy, Fyy . Fy. . The components of any vector, in the reference frame Ky, for instance Fj,
along the three axes of co-ordinates can be denoted by Fi, , Fy,, , Fy, or F, Fj,, F.,
according to the case, as explained above.

The components of the velocity of the reference frame K; with respect to the
reference frame K, denoted for instance v,,, along the three axes of co-ordinates can be

denoted by Vvio, s Vigy, > Viez, OF Vioxs Vigy» Viez » according to the case, as explained above.

The reference frame K; is in a uniform rectilinear motion at velocity
Vi, =iV, =1V, Withrespect to the reference frame K that is supposed at rest.

The choice of the reference frames is arbitrary so that the adoption of the Ox;- axis
having the direction of the velocity vector v, =iv,, =iv,,, simplifies the mathematical

expressions, without reducing the generality of the analysis.
In the reference frame K, the time determined by a certain procedure (e.g., a clock),

is denoted by 7., and in the reference frame K, determined by the same procedure is
denoted by #,. The two determination procedures (usage of clocks) are assumed identical

and synchronized. The term synchronization means, in this case, that at the moment when
the origins of the two reference frames coincide, the time is chosen equal to zero. The
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velocity of propagation of light, assumed to be in vacuo the same, in any reference frame,
is denoted by c. In certain cases that here will not occur the symbol ¢, is also used.

On the base of the postulates of the Special Theory of Relativity, the transformation
expressions that give the quantities in the frame K, in terms of the quantities in the

reference frame K are as follows:

X1 =0, (xo “Vix lo )5 (24 a)

1 =DVos (24Db)

zZ) =24, 240
v

f=ay, (to - xoj, 2.4 d)
c

o = 1 . _ Vox

A e

The relations (2.4 a, b, c, d, e, f) are called Lorentz transformation relations. The same
relations have been established previously by Lorentz, on the base of other considerations
than those previously presented (i.e., the postulates of the Special Theory of Relativity).

The transformation relations that give the quantities in the reference frame K, in
terms of those in the reference frame K; can be obtained analogously by solving the

system of equations (2.4 a, b, ¢, d, e, f) and are:

Xo =0l (xl + Viox tl)v (2.52)

Yo =M1 (2.5b)

Zy =21, 2.5¢)
v

to =0 (tl + xlj, (2.5 d)
C

Ao =Qpp = : Hlox =

g P e @seD

For every moment, the lengths can be calculated in each reference frame by the
expression known from Geometry. For instance, we shall consider two points 4 and B
belonging to a body at rest with respect to the reference frame K, and we shall express
the distances between the two points in the two reference frames K and K.

We obtain:

loup = \/(xoB —Xo4 )2 + (yOB —Yod )2 + (ZOB ~Zog )2 ) (2.6a)
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T :\/(xlB — X4 )2 + (le V14 )2 + (ZIB —Ziyg )2 . (2.6 b)

The observer in the reference frame K, will locate the points 4 and B at the same

moment 7, and then we obtain from relation (2.4 a):

(15 = x14) =01 (Xop — Xoy)- 2.7

Thus /4 < [;4p and this modification of the length due to the motion, for an
observer in the reference frame K, is called contraction of lengths along the direction

parallel with the motion.
If the distance between the two points is very small, the following relations can be
written:

dx; =0, dx,, (2.8 a)
dy, =dy,, (2.8 b)
le :dzO’ (28 C)
or
dry=io,dx, +jdy, +kdz,. (2.8d)

Analogously, for the surface elements:

dSlx :dyl le =dS

ox 2
dS), =dzdx; =0,,dS,y, 2.9a,b, c)

dS, =dx dy =a,,dS,,
and for the volume elements:
dvl =(xlodvo. (210)

The relations by which the various geometrical quantities of the frame K, are
expressed in terms of those of the frame K, can be analogously written taking into
consideration the corresponding transformation relations of co-ordinates. For instance:

dSoyZOLO]dSly. (211)

From relation (2.5 d), it results that between the duration Af; between two events
considered by an observer in the frame K; and the duration Az, between the same
events, considered by an observer in the frame K, the following relation can be written:

Aty =ay At . (2.12)
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Thus Az, > At; and this modification of the duration between the two events is called
dilatation of time [13] or dilation of time [18].

From the analysis above, it follows: It is accepted that at every point in the reference
frame K, there is a clock that defines a local time 7, and that at every point of the
reference frame K there is a clock that defines another local time ¢, . It is not the case of

general shift between the two reference frames, but it is a time difference that depends on
the considered point. Then, the phenomena that simultaneously occur in the reference
frame K, are not generally simultaneous in the reference frame XK, and inversely.

This aspect concerning the time is connected to another aspect concerning the space.
Indeed, let us consider two points 4 and B, at rest in the reference frame K, and therefore

moving relatively to the reference frame K. If in the reference frame K, the distance

between them is measured by a ruler at rest, their position will be located at the same
moment ¢, 4 =tz . But in the reference frame XK, the time ¢, differs from the time 7,5 .

2.3.2. The Transformation Expressions of Forces

We shall consider the reference frames K, and K,. The reference frame K, is
considered at rest, and the reference frame K, is considered in a uniform rectilinear
motion, at the velocity v,, =iv,,, , relatively to the reference frame X, .

We consider a material point that is moving at any velocity v,, (not necessary
constant) relatively to the reference frame K, and at the velocity v,;, relatively to the
reference frame K, .

The expression of the force acting upon a material point of mass m and velocity #, in
any reference frame K is given by the derivative of the momentum (quantity of motion):

d
F=—\mu). 2.13
o mu) (2.13)
We shall denote by F the force acting upon the material point in the reference frame
K, and by F; the force acting upon the same point in the reference frame K.

In the framework of the Special Theory of Relativity, using the transformation
expressions of co-ordinates and time, the transformation expression of the force can be
obtained in the form given by relation (A.3.13) in Appendix 3:

L1

Fou = By +i -L—zsz x (V1 x 0ty F )} (2.14 )
L1

Foy =ay, Iy +J '{—2"20 x (v x 0y F )} (2.14b)
C
1

Fo, =0y, Fi, +k '{—2"20 x (v, x 0y Fy )} (2.14¢)
Cc

. L] 1
Fo =il +joy, Fyy + ko, B, +— vy, x (v x 0y F). (2.14.4d)
C
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2.3.3. The Manner of Adopting the Transformation Relations of Forces
and Geometrical Quantities

We admit that there is a reference frame K, having the following property: The force
F, acting in that reference frame upon an electrically charged particle moving with any

velocity v, (not necessary constant) is independent of the velocity v,,. The last

pn pn
velocity must not be too great for avoiding the electromagnetic radiation of the charge
and the corresponding braking. Such a case occurs when all charged particles are at rest

in the reference frame K, the particle above, of velocity v pno excepted.

In any other reference frame, the forces can be expressed by relations of the type
(2.14) in terms of the force F, from the reference frame K,. Therefore, F, is
considered as the proper value of the force in the reference frame K, .

All geometrical elements (lines, surfaces, volumes) have their proper dimensions
taken in the reference frame K, . The sizes in the reference frame K, can be expressed
in terms of the sizes of any other reference frame. As a consequence, relations of the type
(2.8) will be used. Hence the area AS; can be expressed in terms of the area AS,.
Consequently, relations (2.9 a, b, ¢) will be used.

With the usual denominations, the sizes are contravariant quantities (tensor), and the
force components are covariant quantities. When writing various relations, it is necessary
to keep in mind the kind of the involved quantities.

2.4. THE EXPRESSIONS OF THE FORCE AND ELECTRIC FIELD
STRENGTH IN VARIOUS REFERENCE FRAMES. ELECTRIC
DISPLACEMENT IN VACUO AND MAGNETIC INDUCTION IN
VACUO. MAGNETIC CONSTANT (MAGNETIC PERMEABILITY
OF VACUUM).

Let us consider that at a fixed point A(xl 4> Vids> 21 A) of the reference frame K, there
is a point-like electric charge ¢,. The subscript of point-like electric charges has no
relation with the subscript of the reference frame symbol, as explained in Section 2.2,
assumption 2. The medium is considered to be vacuum.

We shall also consider that there is another point-like electric charge ¢. This charge is
moving at the velocity v,, (that is not necessary to be constant) relatively to the
reference frame K, and v,; relatively to the reference frame K.

On the base of hypothesis 1 of Section 2.2, the force acting upon the point-like electric
charge ¢ at the point P(xl » Vs zl) in the reference frame K, is given by the Coulomb
formula:

419 r
F=—" .4 —gE,, (2.15)
4reg H4p
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where the quantity E, represents, in accordance with relation (2.2 b), the electric field
strength in the reference frame K.
The components of this force along the three axes of co-ordinates are:

q,: 49 X —X

Ry =——- A2 =g, (2.16 a)
4ng roip
@q Y-y

Fy = =gE,, (2.16 b)
4reg ap
q1 9 Zy —Z

F, == A =g E,,, 2.16 ¢)
4me, Hap

where:
1

Nap =N = {(xl —x )+ 0=y + (3 —Z1A)2}5' @17)

Let us suppose the point P fixed to the reference frame K, . By using the
transformation expressions of co-ordinates and time (2.4), referring to Fig. 2.1, it follows:

q1 9 . O, (xo ~ Viox to)_xlA

F. = =qkF, _,
1x 47'C80 ]"13AP q Ly (2183)
919 VoY
Fy=— .2 —gF,, (2.18 b)
4me H4p
q q Z,—Z
Fe=g =5t =qE, .18 ¢)
ey Fyp
where:
1
215 (2.19)

"gp = {[0‘10 (xo ~Vix ’o)—xlA]2 +(yo — 14 )2 +(Zo _ZIA) }

By using the transformation expressions of the force (2.14 a, . . ., d), we obtain the
force in the reference frame K| :

1
Fox zq{Elx +l'|:c_2v20x(vlo X Qg El)i|}’ (2.20 a)
!
Foy=q 04, Ey +j- c_2v2o><(vloxalo El) ) (2.20b)

1
Foz :q{alo Elz+k'|:_2v20x(vloxalo El):|} (2'20 C)
C
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In vector form, the expression of the force in the reference frame K is:

Fy=iFy +jFy +kF, =qiE +jo, E, +kay Ep, )+

1 (2.20 d)
+ Q[c—zvzo X (Vlo xay, E; )}

Relation (2.20 d) represents the expression of the force in the reference frame at rest
K, , in terms of the force in the moving reference frame K;. We denote:

EO ZiE1x+j(X,]0 E1y+k(x,lo EIZ’ (221)

The relation (2.21) represents the expression of the electric field strength in the
reference frame at rest X, in terms of the electric field strength in the moving reference

frame K.
Since ixv;, =0, the direction of the Ox - axis coinciding with the direction of
motion, we obtain:

1
Foquo+q|:v20x( zvloXon:|' (2.22)
C

1 .
We denote —-=g g, where the constants &, and p, have already been introduced.
c

The constant €, denotes, as previously, the (electric) permittivity of vacuum, also called
electric constant. The constant n, denotes the (magnetic) permeability of vacuum, also

called magnetic constant. In the SI system of units (i.e., a rationalized system), the values
of the two constants are:

€ :;QE (farad / metre), (2.23)
4719-10° m
7 H
Lo =4n10"" — (henry/ metre). (2.24)
m

The definition of the units farad and henry will be given further in Sub-section 3.13.3.
The following symbols are adopted:

g0 E, =D, , (2.25)
1

TvloXEozuO(vloXDo):BO' (2-26)
C

We may remark in relations (2.25) and (2.26), that the original reference frame is

indicated by the suffix “o0”, in order to avoid any confusion with the suffix “0” of ¢, and
Lo, as previously mentioned.

At the same time, the following quantity is also used:
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H,=v,,xD,; B,=pyH,. (2.27 a, b)

The vector quantity D, introduced by relation (2.25) is referred to by one of the
following expressions: Electric displacement, electric flux density, and electric induction,
in vacuo, in the reference frame K .

The vector quantity B, introduced above is referred to by one of the following
expressions: Magnetic induction, and magnetic flux density, in vacuo, in the reference
frame K .

The vector quantity H  is called magnetic field strength or magnetic field intensity, in

vacuo, in the reference frame K .

In the SI system of units, the unit of electric displacement is, as mentioned,

coulomb/square metre (symbol C/ m? ), and the unit of magnetic induction is volt second
per square metre, called tesla (symbol T). The definition of the unit of measure of the
magnetic induction will be presented in Sub-section 3.13.4.

If instead of expression (2.23), other values are adopted for the constants included in
the expression of ¢ in relation (2.22), other units of measure are obtained for the units of
measure of the electromagnetic quantities. With the adopted symbols, we obtain:

F,=q(E, +v,, xB,). (2.28)

This is the expression of the force in the reference frame K that acts upon a point-like
electric charge, thus the expression of the ponderomotive action upon a point-like electric
charge in motion with respect to an inertial reference frame. It is also referred to as the
Lorentz expression of the force. It is necessary to add that in the last expression the
quantities E, and B, are assumed to be not influenced by the electric charge ¢. For this
assumption to be satisfied it is necessary that the velocity v,, be not too great. Indeed,
otherwise the charge in motion produces an electromagnetic field that modifies the value
of the quantities £, and B, in the preceding formula.

Hitherto, we have supposed that the E_, and B, are produced by the point-like
electric charge ¢, fixed in the reference frame K. If instead of a single point-like
electric charge ¢, there are »n point-like electric charges g; (i =12,..., n), at rest in the
reference frames K, K,, ..., K,,, which are moving with the velocities v, (i =12,..., n)

relatively to the reference frame K, each charge produces a force. According to the

0°
hypothesis 2 of Section 2.2, the principle of superposition and formula (2.28) remain
valid in this case.

In the case in which the electric charge is distributed with the volume density p,; in
the reference frame K, then the expression of the electric field strength at a point

P(xl Py V1ps Z1p ), corresponding to relation (2.15), is replaced by:

47580 VZ]

T
P (’1M )%d"l ’ (2.29)
nmp
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r=ixy +jyviv tkzng, (2.29 a)
5 2.29b

2 2 2 .
rlMPZ[(le_le) +(J’1P‘J’1M) +(ZIP_ZIM) ]2, ( )
dVl =dx1dy1dzl, (229 C)

where the vector r,, has its origin at the origin O, (0, 0, 0) and its end at any point
M (xl M ViMm s 21 M); the wvector r,, has its origin at any source point
M(le, ViMs le) and its end at the observation point P(xlp, Yip zlp). The integral is
extended over the whole space, in the reference frame K, and the index P refers to the
observation point the co-ordinates of which are expressed in the same reference frame.

If there is a single point-like electric charge, then instead of any source point
M(le, ViMs ZIM), there is a single point A(xlA, ylA,zlA). In the approach above, the
magnetic induction in vacuo B appears as a derived quantity. If the Special Theory of

Relativity were not used, then the magnetic induction would be introduced as a primitive
(fundamental) quantity, what can be done, as it will be shown in the next Section.

2.5. GENERAL EXPRESSIONS OF THE FORCE ACTING UPON A
POINT-LIKE ELECTRIC CHARGE IN MOTION RELATIVELY
TO AN INERTIAL REFERENCE FRAME. INTRODUCTION
(DEFINITION) OF THE QUANTITIES: ELECTRIC FIELD
STRENGTH E AND MAGNETIC INDUCTION B.

The general expression of the force acting upon a point-like electric charge in motion
with respect to an inertial reference system, deduced in the preceding Section can also be
established by the generalisation of certain experimental results.

We consider a point-like electric charge ¢ that is moving with any velocity v (that is
not necessary to be constant) with respect to any inertial reference frame K . The force
acting upon a point-like electric charge (the Lorentz force) is:

F=q(E, +vxB), (2.30)

where in the right-hand side, besides the velocity, other vector quantities occur, namely:
E and B . For the sake of simplicity, we shall assume that E; = E .

The vector quantity E , called electric field strength, can be introduced (in accordance
with the explanation of Sub-section 1.6.5) as follows. The electric field strength at a point
in any reference frame is the ratio between the force exerted at that point upon a point-
like electric charge g, when it would be at rest in this reference frame, and the electric
charge q.

It is to be noted that, in this case, the electric charge ¢ should be small enough to not
perturb the state of the field, hence, to not modify the distribution of the electric charge.
This remark is significant only when introducing the vector E . In the general case, the
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electric charge g of the point-like charge may be of any magnitude, hence ¢ can modify
the state of the electric field. However, in this case, the electric field strength at that point
will be determined by the actual distribution of all electric charges. The relation (2.30)
remains valid.

The vector quantity B, called magnetic induction, included in relation (2.30), can be
introduced as follows: The magnetic induction at a point of an inertial reference frame is
the vector quantity which multiplied by the velocity vector v and introduced into relation
(2.30), where the quantity E is known, gives the force vector exerted upon a point-like
electric charge ¢ that is moving with any velocity v relatively to the inertial reference
frame. Here, the remark concerning the necessity that the electric charge ¢ be small
enough to not modify the electric charge distribution remains still valid.

In the presented manner, the vector quantity B appears as a primitive (fundamental)
quantity (if it is introduced in the previously way and if this way is considered to be the
only possible for determining the vector quantity B ).

If the vector quantity B is introduced via a certain deduction (for instance by certain
relations of Mechanics, established in the Special Theory of Relativity) the vector
quantity E remains a primitive (fundamental) quantity, and the vector quantity B
becomes a secondary (derived) quantity. In this case, the previous introduction of the
quantity B is called measurement or verification. The macroscopic magnetic induction is
expressed by the macroscopic average value of the microscopic magnetic induction. The
average value is obtained by using a multiple integral expressed by relation (1.15). The
vector quantity B is a function of point or, in other words, B is a field vector (producing
a field of vectors also called vector field).

The lines of the vector field B, shortly called lines of magnetic induction or lines of
magnetic field, are lines to which the vector B is tangent at any point.

It is interesting to mention that the lines of magnetic field, like the lines of electric
field, are only auxiliary notions that serve to describe the fields and are not material
entities, the elements of which could be materialized or related to certain sources of the
field.

The impossibility of such interpretation results, for instance, in the case of
superposition of the fields of two coaxial cylindrical magnets, one fixed and the other in a
rotating motion about its axis.

Magnetic flux tube is called the surface in a magnetic field bounded by the totality of
lines of magnetic induction that passes through the points of a closed simple curve.

It is to be remarked that the component acting upon an electric charge in motion,
which does not exist if the charge is at rest, is:

Fpoe =q(vxB). (2.30 a)

If the charge ¢ is assumed to be continuously distributed in an infinitesimal volume
dv, then we can write in the reference frame K the relation g =p,dv.

In the case of a thread-like (in French, filiforme) distribution of electric charge with
the cross-section s, in the reference frame K, the volume element dv becomes s, -d/

(where the vectors d/ and s, are parallel). Then, taking into account that the quantity
J, -s. represents an electric current i relatively to the reference frame K, the last
formula can be written:
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dFpy, =idIxB. (2.30b)

The last formula represents the force acting on a current element id/ in a magnetic

field of magnetic induction B, and is referred to as the Laplace formula.

It is to be remarked that in relation (2.30), the force acting upon a point-like electric
charge has two components: the first independent of the velocity and the second
depending on the velocity of the electric charge carrier. For this reason, the two kinds of
vector quantities £ and B have different specific properties.

The vector E of relations (2.30 a, b) is not generally a quantity deriving from a
potential. This fact can be established using relations (2.20) — (2.22). For this purpose, we
shall calculate the curl of the vectors E of the various inertial reference frames.

The differential operators at a point of a reference frame will be indicated by the index
corresponding to that reference frame in which the respective operator is calculated. Thus
curl, E means that the differential operator curl is calculated in the reference frame K .

The relations between the components of the vector quantities E, and E; are given

by relation (2.20 a, . . ., d). By replacing in the expanded expression of the curl the
components of the vector E|, it results that:

cur E; =0, (2.31)

0E,, 0,

f - 1 E =
J(Cur1 1) oz, 0%,

=0. (2.31 a)

Taking into account the relation (2.21), it results that:
curl, E, #0. (2.32)

Indeed, from the expression of the curl, it follows:

j-(curl, E, ):aaEsz - ZET‘;Z. (2.32 a)

But, according to relations (2.21) and (2.20 d), we have:
Ey =Ey, (2.33 a)
E, =0, Ey; . (2.33 b)

We take into account that £, is a function of x,, y;, z; . Relations (2.32 a), (2.4 ¢),
(2.33a),(2.4a),(2.33b), (2.31 a) yield:

0Ey 0E. 0E,  0E. ox _0E. o 0E.

#0.
0z, 0x, 0z " ox, 0x, 0z ° ox 2.34)

The above component of the curl, being different from zero, relation (2.32) is
established.
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The electric field strength contains besides the Coulombian component, that is a
potential one, a curl (rotational) component, also called solenoidal component or induced
component.

E=E.+E,. (2.35)

Therefore, in the case of the reference frames K, and K, considered previously, the
strength of the resulting electric field in the reference frame K, is E, and can be
written:

E,=E, +E,, (2.36)

where the quantity E . represents the Coulombian component, and the quantity E,,

represents the curl component (rotational, solenoidal or induced component) of the
electric field strength.

The solenoidal component of the electric field strength and the magnetic induction at a
point are produced by the electric charge in motion with respect to the considered
reference frame.

2.6. THE MAGNETIC FIELD

Firstly, we shall recall some generalities about magnetism and magnets. Various
bodies, among which the loadstone (iron ore), have certain properties, explained below,
and for this reason they are called magnets. A body, which after having been subjected to
certain treatments gets such properties, becomes a magnet and the treatment represents
the process of magnetization. The material of which the body is made represents a
magnetic material. The properties mentioned above consist in actions or forces of
magnetic origin. For instance, a body suspended near any part of the earth surface, so as
to turn freely about a vertical axis, could tend to set itself in a certain position. If it is
disturbed from this position, it could tend to come back in the previous position, after
several oscillations. In the case in which the body satisfies the mentioned tendencies, then
it is a magnetized body, and in the contrary case, it is an unmagnetized one. In the first
case the body is a magnet. The study referring to actions of magnetic origin is called
magnetism.

Between certain bodies, like those of magnetite (Fe,O3), ponderomotive actions

(forces and torques) are exerted. These actions are not of thermal, mechanical or electrical
nature, but of magnetic nature.

Also, between conductors carrying macroscopic electric currents, ponderomotive
actions are exerted. These actions are not of thermal, mechanical or electrical nature, but
of magnetic nature. Therefore, upon bodies carrying electric currents, ponderomotive
actions that are not of thermal, mechanical or electrical nature but of magnetic nature, can
be exerted.

The ponderomotive actions of magnetic nature between magnetized bodies, or
carrying electric currents, and other magnetized bodies, or carrying electric currents, are
not directly exerted but by means of the magnetic field.
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The magnetic field is the physical system that exists in the space regions in which
ponderomotive actions (forces or torques) of magnetic nature can be exerted upon
magnetized bodies or on bodies carrying macroscopic electric currents.

The magnetic field exists around magnetized bodies as well as in their interior and
represents, in any reference frame, as a component of the electromagnetic field, namely
the magnetic field. The magnetic field can be produced by various causes: Electric
charges in motion, electric currents, variation with time of the electric field strength,
variation with time of the electric polarization, and electrified bodies in motion relatively
to the considered reference frame.

The electromagnetic field is a physical system that exists in the space regions, in
which ponderomotive actions of electric nature as well as of magnetic nature are exerted
upon bodies that are electrified, magnetized or crossed by electric currents.

2.7. TRANSFORMATION RELATION OF THE VOLUME DENSITY
OF THE FREE (TRUE) ELECTRIC CHARGE

Let K, and K, be two inertial reference frames. In any reference frame, the volume
density of the true electric charge will be expressed in terms of the volume density of the
true electric charge in the reference frame in which the electric charges are at rest.

We suppose that the electric charge is at rest in the reference frame K. At the same
time, we take in view that in accordance with the non-correlative definition of the electric
charge (of the Sub-section 1.6.2), the magnitude of the true electric charge is invariant
relatively to the change of the inertial reference frame by another one. Then, the
conservation law of the true electric charge of a volume element, in the two reference,
frames K, and K, can be expressed as follows:

Prvodvo =pyidvy, (2.37)
and according to relation (2.10), it results that:

Pyvo =Co Py1 > (238)

which is the transformation relation of the volume density of the true (free) electric
charge.

The transformation relation of the volume density of the polarization electric charge
has the same form.
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2.8. THE EXPRESSIONS OF THE MAGNETIC FIELD STRENGTH
PRODUCED AT A POINT BY A MOVING ELECTRIC CHARGE
OR AN ELECTRIC CURRENT IN VACUO.

THE BIOT-SAVART-LAPLACE FORMULA.

We shall consider the case in which the electric and magnetic field are produced by
the charge ¢, , in vacuo, mentioned at the beginning of Section 2.4. In this case, at any

observation point P(x1 Py V1P> 21 P), in the reference frame K, formula (2.15) yields:

q I
Ep=—1_."4F (2.39)

and according to relation (2.21), we have in the reference frame K_, at the same

0>

observation point P(x,p, vop, Zop ), considered fixed in the reference frame K, :

Xip—X . — Zip —Z
E,p q1 {1 11’3 1A+Ja10 Yip )’1A+ka10 1P IAJ' (2.40)

- 3 3
dmeg ap 4P 4P

According to relation (2.26), we have at the same observation point P(xl P VP> 2] P) :

1
B,p =gy 1 ("10 XEOP):HO_ql Vio X

47
(2.41)
Xip— X . - Zip—2
x(: 1P3 1A+1a10y1P3y1A+ka10 1P3 IAJ’
nyp nap nyp
1 . X1p — X1y , Yip — )14 Z1p —Z14
Hp :4_q1 Vi X 13—+1a103—+ka103— . (2.42)
T "ap "ap "ap

v
For values of the ratio —= small enough so that o, tends to unity, the last formula
c

becomes:

1 q1vio xngp

H ., =
oP 4

3 (2.43)
nap

If the charge is assumed to be continuously distributed around the point
A(xl 4> V14 21 A), in an infinitesimal volume dv;, then we can write, in the reference

frame K, the relation ¢, =p,; dv, and it follows:

1 Py Vio XTiap
dH, p = — P Nap 4,

pp (2.44)

nyp

or, taking into account relation (1.70), we have:
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1 J, xr
dH,p =_‘03—1APdV1~ (2.45)
4n ryp

In the case of a thread-like distribution of electric charge with the cross-section s, in
the reference frame K, the volume element dv, becomes s, -d/ (where the vectors d/
and s, are parallel) and d/ is a length element. The quantity id/ can be referred to as

current element. Taking into account that the quantity J,-s. represents an electric

c

current i in respect to the reference frame K, , the last formula can be written:

. (2.46)

3
"ap
If we renounce the indices referring to the reference frames, the last relation yields:

1 idlxryp

dHp,=— —— 4P
P (2.47)

The formula (2.47) is referred to as the Biot-Savart-Laplace formula. This formula
was firstly established starting from certain experimental results.

In the case of a closed curve I', by integrating both sides of relation (2.47), it follows
(Fig. 2.2):

L idlxr
T 4n P (2.48)

Fig. 2.2. Explanation to the calculation of the magnetic field strength
produced by a circuit carrying an electric current.
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It is interesting to make the following remark. Let us consider a two-dimensional
orthogonal rectilinear system of co-ordinates xOy and two current elements, one of them

placed along the Oy - axis and having its centre at the point O, and the second placed

along the Ox - axis and having its centre at any point P on the same Ox - axis.

Let us calculate the magnetic field strength produced at the point P, by the current
element having its centre at point O by formula (2.47). We shall obtain a vector B
perpendicular at the point P, on the xOy- plane. Then, we calculate the force acting

upon the current element with the centre at the point P, by formula (2.30 b). We obtain
for this force a certain value different from zero. Hence, the force, calculated in this way,
is different from zero.

If we calculate, in the same way, the force acting upon the current element having its
centre at the point O, we obtain that this force is zero. Under these conditions the
principle of action and reaction from the classical Mechanics is not satisfied.

For the remark above, in Classical Electromagnetism, it is considered that the formula
(2.47) is valid only if it is applied for a closed contour, hence a closed electric current.

A special circumstance should be highlighted. The formulae used in calculation in
Classical Electromagnetism concern electric conduction currents carried by conductors
(wires). In a conductor, the electricity of charge carriers (electrons) is to a great extent
compensated by the electricity of the lattice ions of the conductor (positive charge). For
this reason, only the force of magnetic nature is calculated. That is not the case for the
current elements previously examined, where only the moving charge carriers are
considered. Therefore, both forces of magnetic and electric nature have to be calculated.

In fact, the remark above, relatively to the principle of action and reaction does not
mean that the formulae concerning the current elements are not valid. Indeed, the
formulae that have to be applied are the relations obtained from the Special Theory of
Relativity, without the approximation assumed above. Therefore, the complete formulae
(2.21), (2.22) or (2.28) must be used.

Let us consider that the current element along the Oy - axis contains the electric

charge ¢, moving with the velocity v, in the positive direction of this axis, and also
contains the immobile electric charge —g;. The current element along the Ox - axis
contains the electric charge g, moving with the velocity v, in the positive direction of
this axis, and also contains the immobile electric charge —¢, .

The calculation carried out in [18, p. 263] has shown that concerning the principle of
action and reaction of forces in the classical Mechanics, no deviation occurs along the
Ox - axis, but a small deviation occurs along the Oy - axis, of the order of magnitude

1 V2
>
C

Certain applications of formula (2.48) can be found in Section 3.15 and in papers [57],
[58].

proportional to



3. THE LAWS OF THE ELECTROMAGNETIC FIELD

3.1. THE LAW OF ELECTRIC FLUX

The expression of the law of electric flux can be established as a generalization of
experimental results (i.e., the law being considered as correct, no experimental result has
been found to contradict it) or deduced by utilizing certain relations established in the
Special Theory of Relativity. We shall use both manners beginning with the second one.

3.1.1. The Expression of the Law of Electric Flux in Vacuo

Let K, and K, be inertial reference frames. The reference frame K, is moving with
the constant velocity v,, relatively to the reference frame K .
Let X, be a closed surface in the reference frame K. The same surface, considered at

the same position in space, but in the reference frame K, will be denoted by X, like in

Fig. 3.1 a.
This surface contains in its interior a point-like electric charge ¢, situated in vacuo at

the point 4. We shall calculate the flux of the vectors g, E, through the closed surface
Y, . Therefore:

&0 [E,-dS,,
z

3.1)

where:
ds,=ndSs,. (3.1a)

By replacing the quantity E_ given by relation (2.21) and taking into account the
relation (2.8 a, b, ¢), (2.9 a, b, ¢) and (2.21), we obtain:

Ey-dS, =[i By + jou, Eyy + ko By, | - [idy,dzo +jdz,dx, +kdx,dy,]-
=E, ,dy,dz, +0,, Ey, dz,dx, +oy, E,dx,dy, = (3.2 2)

=E1xdy1d21 +E1yd21dx1 +Elzdx1dy1

It results that:

EO'dSOZEl'dSI‘ (32b)
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Fig. 3.1. Explanation concerning the integral form of the electric flux law in
vacuo referring to: a — deduction of expression; b — general expression.
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But, in accordance with the law of electric flux in vacuo of Section 1.14, we can write:

€ IEI -dS; =q;.
Z

(3.3)

It results that

SOZIEO'dSO:ql. (34)

o

In the case of several point-like electric charges, according to the hypothesis 2 of
Section 2.2, we can apply the principle of superposition and expression (3.4) keeps the
same form but instead of the charge ¢, the total charge qs, of the closed surface will be

introduced.

The macroscopic quantities at a point, at any moment, are obtained by the
computation of the average values (mean values) of the microscopic quantities over a
physically infinitesimal volume, around the considered point and over a physically
infinitesimal time interval containing the considered moment.

After the calculation of the average values, the form of relation 3.3 is not modified.

If instead of the point-like electric charge ¢, a distributed electric charge with the

density p,, in the volume Vs, is given, then, by utilizing the transformation of the

surface-integral into a volume-integral (Gauss-Ostrogradski theorem), it follows:

g0 [Eo-dSy = [podv, = [divyeg E,-dv,.
b

' s e (3.5a)
Since the preceding relation is valid for any surface X, it results that:
divoeg E, =py - (3.5b)

If we renounce the index o, and consider the total charge, relations (3.4) and (3.5 a)
yield:

J.SOE'dSZqZ, (3.6)
z

where ¢ is the total charge contained by the volume bounded by the surface X, and
diveg E =p,. (3.7)

The expression established above remains valid for any inertial reference frame, since
the differential operator divergence is invariant with respect to the transformation from
one inertial referential frame to another, at rest relatively to the first one.

Relations (3.6) and (3.7) represent the integral form and the local form respectively, of
the electric flux law for empty space (i.e., in vacuo) in any inertial reference frame.
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3.1.2. The Expression of the Law of Electric Flux for Any Medium in the
Case of Free (True) and Polarization Electric Charges

The expression of the law of electric flux for any medium, as previously mentioned,
can be established either by the generalization of experimental results or using the results
of the Special Theory of Relativity.

In the case of any medium, it is necessary to establish the relations between the
macroscopic state quantities of the electromagnetic field. The macroscopic quantities at a
point and at a certain moment can be obtained by calculating the mean values (average)
of the microscopic quantities over a physically infinitesimal volume around the
considered point and over a physically infinitesimal time interval that contains the
considered moment.

In the case of any medium, both free (true) electric charges and bound electric charges
can exist. If it is considered that only free electric charges exist, then, after the calculation
of the mean value, the form of the relations between the various macroscopic quantities
remains the same as for the microscopic quantities. If it is considered that both free (true)
electric charges and bound electric charges exist, then, after the calculation of the mean
value, the form of the relations between various macroscopic quantities is modified, as it
will be shown further on. The symbols and the meaning of the quantities are the ones
used in Chapter 1.

It will be considered that in the inertial system of reference frame K, in which the

vector quantity E, is expressed, there are both true (free) electric charges with the
volume density p,, and polarization electric charges with the volume density p ,,,. In

this case, after the calculation of the mean values, relation (3.4) yields:

ZISO Eo'ds:VJ(pvo+ppvo)dVO’ (3.8 a)
thus:
JooEo 8o = Jopdvo= [pudv,. (.8b)
o Vs, s

The volume density of the polarization electric charges p ,,, in terms of the vector

quantity P,, electric polarization, in the reference frame K
inertial reference frame, according to relation (1.45), is:

o> and also in any other

P o = —div P, (3.9)

It results that:

[e0E,-dS,+ [divhdv,= [p,,dv,

1
. ,; ; (3.10 a)

o

0 0

or, by transforming the first volume-integral into a surface-integral (Gauss-Ostrogradski
theorem):
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jgoEo-dso+ jPo-dsoz jpvodvo. (3.100)
z

Z0 o VZO

Let us denote:
D, =¢yE,+P,. (3.11)

The vector quantity D, is referred to by one of the terms: Electric displacement, electric

flux density or electric induction, and is introduced in the reference frame in which the
quantities E, and P, are expressed.

Therefore, in any inertial reference frame K, the following relations are satisfied:

[ D, -ds,=gs,. (3.12)

Zo

qEO = J.pvo dVo H (3 12 a)
Vs, ’

where gs, represents the free (true) electric charge of the interior of the surface X .

Taking into account that the two last relations are valid for any surface X, and by

utilizing the transformation theorem of a surface-integral into a volume-integral (Gauss
and Ostrogradski theorem), relation (3.12), written in an integral form, yields the
following relation, in differential (local) form:

divy D, =p,, - (3.13)

Relations (3.12) and (3.13) represent the expressions of the integral and local form,
respectively, of the law of electric flux for any medium. Relation (3.12) is also called the
Gauss law (theorem).

3.1.3. The General Expression of the Law of Electric Flux

The general expression of the law of electric flux, previously deduced, can be
established as a generalization of experimental results, in the sense mentioned at the
beginning of Section 3.1.

In an inertial reference frame, in any medium, the flux of the vector electric
displacement D through a closed surface X is equal to the sum of electric true (free)
charges of the inside of that surface (Fig. 3.1 b):

[p-ds=as. (3.14)
z

Let us consider that the electric charge is macroscopically distributed with the volume
density p,,.

By using the Gauss-Ostrogradski theorem and expression (1.11 a), relation (3.14),
becomes:
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[divDdv=[p, dv.
Vs

Vs b3

(3.15)

Having in view that relation (3.15) is valid for any surface X, the following
differential relation is obtained:

divD=p,, (3.16)

where the vector quantity D is the electric displacement at the considered point, and p,

is the volume density of the true (free) electric charge at the same point.
Relations (3.14) and (3.16) represent the integral and local form, respectively, of the
electric flux law.

3.1.4. The Electric Flux through Various Surfaces

The electric flux ¥, through an open surface is the surface-integral of the vectors
electric induction D =gy E + P . It follows:

¥y = [D-ds,

g (3.17)

where St is any open surface bounded by the closed curve I'. The positive direction of
the normal to the surface Sy is associated to the right-handed screw rule with the

travelling direction around the curve I".

For the calculation of the electric flux through a closed surface, that is the case of the
law of electric flux, it is necessary to have in view that when calculating the surface-
integral over a closed surface, the positive direction of the normal to the surface is
outward.

3.2. THE RELATION BETWEEN THE ELECTRIC DISPLACEMENT,
ELECTRIC FIELD STRENGTH AND ELECTRIC
POLARIZATION

We shall examine, for the case of a medium containing any substance, the relation
between the following state quantities of the electric field: Electric displacement, electric
field strength and electric polarization.

The macroscopic state quantities of the electromagnetic field at a point and at a certain
moment are obtained by calculating the mean values of the microscopic quantities over
physically infinitesimal entities of space and time containing the considered point and
moment, respectively.

In the case of any medium, there can be both true (free) electric charges and
polarization (bound) electric charges.
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If we consider that only free electric charge exists, then, after calculating the mean
values, the form of relations between the values of the macroscopic quantities remain the
same as for the microscopic quantities.

But if there are free electric charges as well as polarization charges, then, after
calculating the mean values, the form of the relations between the values of the
macroscopic quantities will be modified.

In the framework of the macroscopic theory of the electromagnetic field, the vector
quantity referred to by one of the terms: Electric displacement, electric flux density or
electric induction will be introduced by the following relation:

D=¢yE+P, (3.18)

that occurred in calculations of Sub-section 3.1.2, relation (3.11).

In the framework of the macroscopic theory, the vectors D and E are directly
introduced as primitive (fundamental) quantities.

Relation (3.18) represents, in the framework of the macroscopic theory, the expression
of the law of relationship between the vectors: Electric displacement, electric field
strength and electric polarization.

3.3. THE LAW OF TEMPORARY ELECTRIC POLARIZATION

In the case of any isotropic medium (i.e., containing any isotropic substance), but
without permanent electric polarization, the vector of temporary electric polarization is
generally parallel with the electric field strength, and of the same direction. Hence:

PtZSOXeE' (319)

The quantity x, is termed electric susceptibility and depends on the nature of the

medium, being a material quantity.

Relation (3.19) can be macroscopically established only by experimental way. This
relation, in the macroscopic theory of the electromagnetic field, is a material law referred
to as the law of temporary electric polarization.

Practically, for variations small enough of the quantity E , the quantity y, is constant

with respect to the vector quantity E for a part of the isotropic media that are called
linear and isotropic media.

In the case of an anisotropic medium, the orientation of the vector P is not, generally,
the same with that of the vector E . However, in these media it is possible to determine
generally, three-orthogonal axes, called principal axes or eigenaxes along which the
anisotropic medium behaves like an isotropic one. For these media, the law of the
temporary polarization is written in the form:

P=g%E, (3.20)

where the fensor quantity y,, represents the electric susceptibility.
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For isotropic media without permanent electric polarization, the relation between the
quantities electric induction, electric field strength and electric polarization (3.18)
becomes:

D=g,E+P =¢,(1+y,)E. (3.21)

The following symbols are adopted:
e, =14+%,, (3.22)
E=¢€)€,. (3.23)

The quantity €, is called relative electric permittivity or dielectric constant of the

medium and the quantity € is called electric permittivity of the medium. With these
symbols, relation (3.21) becomes:

D=cE. (3.24)

Taking into account the established relations that contain the quantities £ and D,
certain general considerations concerning the electric field lines and electric induction
lines will be made.

D, C/m? D,

\/

E. E, V/m

Fig. 3.2. Electric hysteresis loop, the direction of travelling along the curve
(upward when the electric field strength increases, downward when the
electric field strength decreases); at the middle, the branch starting
from £=0 and D=0.
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The line to which the vector E is tangent at any point is a line of electric field. The
line to which the vector D is tangent at any point is a /ine of electric displacement.

In accordance with the explanations of Sub-section 1.2.1, the lines of electric field can
be open lines that begin and end at points at which the divergence of the vector E is
different from zero, or can be closed lines.

As it follows from relations (3.16) and (3.24), the quantity divE may be different
from zero at points at which the density of the true electric charge is different from zero
or at points at which the permittivity varies, thus at the points at which the quantity
grade is different from zero (for example on the contact surface of two different
dielectrics, because there div, E #0).

In accordance with relation (3.16), the electric induction lines may be open lines that
begin and finish at points at which the divergence of the vector D is different from zero
or may be closed lines.

As it follows from relation (3.16), the quantity divD is different from zero only at
points at which the density of electric charge is different from zero.

Similar considerations, concerning the lines of the electric field and the lines of
electric displacement, may be extended also for the case in which permanent electric
polarization exists. In this case, from relations (3.18), (3.24), (1.39), it follows:

D:sE+Pp. (3.25)

The dependence between the quantities D and E may be linear or non-linear.

Also, sometimes, the curve of D as a function of E may represent a closed curve
(Fig. 3.2) called by one of the terms: electric hysteresis loop, electric hysteresis cycle or
electric hysteresis curve. Certain characteristic points are marked on the figure.

3.4. THE LAW OF MAGNETIC FLUX

The expression of the magnetic flux can be established as a generalization of the
experimental results (i.e., in the sense mentioned at the beginning of Section 3.1) or can
be derived by using the relation established in the Special Theory of Relativity.

Further on, firstly, a derivation by using certain relations established in the Special
Theory of Relativity will be presented.

3.4.1.The Expression of the Law of Magnetic Flux for Empty Space

Let us consider the inertial reference frames K, and K. The reference frame K, is
moving with a constant velocity v, relatively to the reference frame K . For the sake of
simplicity, we assume v;, =iV, .

Let us also consider one point-like electric charge ¢ situated in empty space (i.e., in
vacuo) at a point A(xl 4> Vids 214 ) We shall calculate div, B, at any point P. We have:

. . 1 1
le0 B, = d1V0|:_2v10 X E0:| = _Z[Eo ’ Curl0 Vio V1o Curl0 Eo]' (3.26)
C C
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From (2.20 d) and (2.21), it follows:

Eoy =0, Ely’ (326 a)
E, =0y, E., (3.26 b)
. 0E,. OE 0E, OE
i-(curl, EO)=—a = o =a10(—a lz ——”J:o. (3.26 ¢)
Yo Zo N aZl

According to the last relation, the vector curl, E is perpendicular to the Ox - axis.
But curl, v,, =0 because the velocity is constant, and v, -curl, E, =0, since the
quantities v;, and curl, E are perpendicular to each other. Therefore, it follows:

div, B, =0. (3.27)

The left-hand side of relation (3.27) will be integrated over any closed surface X of
the reference frame K . Utilizing the transformation of the volume-integral into a surface

integral (Gauss-Ostrogradski theorem), it follows:

[ div, B, dv, = [ B,-dS, =0. (3.28)
z

VZO o

Thus, the flux of the vector B, through any closed surface is zero.

In the case of several point-like electric charges, according to the assumption 2 of
Section 2.2, the principle of superposition can be applied, and for each of these charges a
relation of the type (3.27) will be obtained. By summing up, side by side, these relations,
it follows that the expression (3.27) remains valid. Moreover, the relation holds for any
inertial reference frame (with any orientation of the three-orthogonal rectilinear system of
co-ordinates), since the differential operator div is invariant relatively to the
transformation of the co-ordinates when passing from one inertial frame to another, at
rest, relatively to the first one.

Relations (3.27) and (3.28) represent the expressions of the local and integral form
respectively, of the law of magnetic flux in empty space (i.e., in vacuo).

3.4.2. The Expression of the Law of Magnetic Flux for Any Medium

Expression (3.28), as mentioned, can be established as a generalization of
experimental results (in the sense mentioned at the beginning of Section 3.1).

In the case of any medium (i.e., containing any type of substance), the aim is to
establish the relations between the macroscopic state quantities of the electromagnetic
field.

The macroscopic quantities at a point and at a certain moment are obtained by the
calculation of the mean values of microscopic quantities over a physically infinitesimal
volume, around the considered point and over a physically infinitesimal time interval
containing the considered moment.
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B
ny
n
St
Sr2
r
2
Fig. 3.3. Explanation referring to Fig. 3.4. Two open surfaces that are
the law of magnetic flux. bounded by the same closed curve I".

In the case in which electric charges do not directly occur in relations, then, after the
calculation of average values, the form of relations between the macroscopic quantities
remains the same as for the microscopic quantities. For this reason, relations (3.27) and
(3.28) remain also valid for any medium.

3.4.3. The General Expression of the Law of Magnetic Flux
(for Any Medium)

The general expression of the law of magnetic flux derived previously, as mentioned,
can be established as a generalization of experimental results (in the sense mentioned at
the beginning of Section 3.1).

In an inertial reference frame, in any medium, the flux of the vector magnetic induction
B through a closed surface ¥ is zero (Fig. 3.3):

[B-as=o0. (3.29)
>

Utilizing the Gauss-Ostrogradski theorem, relation (3.29) becomes:

j&dev:o
Vs

(3.30)

Taking into account that relation (3.30) remains valid for any closed surface X, the
following relation in differential form will be obtained:

divB=0. (3.31)



128 General Theory of the Electromagnetic Field

Expressions (3.29) and (3.31) represent the integral form and local form, respectively,
of the law of magnetic flux for any medium. The vector quantity B is introduced as
shown in Section 2.5.

By comparing the local form of the law of electric flux with the local form of the law
of magnetic flux, it results that the field of vectors B has no sources (because divB =0).
Therefore, the following statement is equivalent: The existence of magnetic forces,
having the direction and the orientation of the vector B is not possible.

Certain investigators, for instance Dirac, in the year 1948 [18, p. 43] supposed that
true magnetic charges referred to as magnetic monopoles, could exist or could be
produced in accelerators of high energies.

If magnetic monopoles existed, then the lines of magnetic field would diverge from
the magnetic monopoles like the lines of electric field diverge from the electric charges.
For a system of magnetic monopoles, the divergence of the magnetic induction would not
be zero, but equal to the volume density of the magnetic charge.

Up to now, the existence of magnetic monopoles, despite many investigations made
during the recent years, has not been proved. Even if the existence of magnetic
monopoles were established, the equations of the electromagnetic field would have to be
modified only in quite special cases, in order to take into account the presence of
magnetic monopoles.

It follows that it is justified to assume that true magnetic charges have not to be taken
into consideration, and the divergence of the vector magnetic induction is zero.

In a vector field which has the divergence zero, the lines of field are always closed.
Thus the lines of magnetic induction are always closed lines because in the magnetic field
there are no sources (magnetic charges).

3.4.4. The Magnetic Flux through Various Surfaces

The magnetic flux ¥ through an open surface is the surface integral of the vector
magnetic induction:

\P:jB-ds,
N

(3.32)

where S is a simply connected open surface bounded by the closed curve I'. The
positive direction of the normal to the surface S is associated according to the right-

handed screw rule with the travelling sense along the curve I".
The magnetic flux through two open simply connected surfaces bounded by the same
closed curve I is the same. Indeed, if we consider two surfaces S, and Sr, , bounded

by the same curve, their union forms a closed surface. In this case, by virtue of the law of
magnetic flux, it follows (Fig. 3.4):

s, — ¥, =0, (3.32 a)
and hence (according to the explanation below), it follows:

Vs, = s, - (3.33)
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When applying the law of magnetic flux, it is necessary to take into account that at the
calculation of a surface-integral over a closed surface, the positive direction of the normal
to the surface is outward. Consequently, in the case of the preceding example, the positive
direction of the normal to one of the open surfaces, in accordance with the chosen sense
of travelling the bounding curve, will be opposite with respect to the positive direction of
the normal to the closed surface, resulted from the union of the two open surfaces.

3.4.5. The Magnetic Flux-Turn. The Magnetic Flux-Linkage.
Magnetic Vector Potential.

In the case in which the curve I' that bounds the surface S through which the

magnetic flux has to be calculated is taken along the conductor (wire) of a coil having w
turns (Fig. 3.5), the notions of magnetic flux-turn and magnetic flux-linkage have to be
introduced (defined). It is to be noted that the number of turns of a coil or generally of
any winding can be denoted by w as well as by N, the last being utilized in several
standards. However, we shall prefer the former symbol, because the latter has also other
meanings in certain applications widely utilized.

Fig. 3.5 shows the coil conductor, two lines of magnetic induction, a helical surface
(hatched) bounded by the coil contour and also the electric tension between the two
points M and N of the coil.

The magnetic flux-turn is the magnetic flux that crosses the portion of the helical
surface bounded by a single turn of the coil, according to relation:

O = jB-ds.

St

(3.34)

The magnetic flux through the whole surface is calculated taking into account that a
line of magnetic field intersects several times the surface.

The magnetic flux-linkage, also called total magnetic flux, is the magnetic flux that
crosses the helical surface bounded by all the turns of the coil, according to relation:

Y= jB-ds.

: (3.35)

The last two relations yield:
Y=wd, (3.36)

because the same line of magnetic field intersects w times the helical surface that is
bounded by all the turns of the coil. If the magnetic flux-turn has not the same value for
all the turns, then a mean value of the magnetic flux turn, also called average magnetic
flux-turn, will be used.

According to relation (3.31), the divergence of the vector B is always zero.
Consequently, it is possible to express the vector B as follows:

B=curlA, (3.37)

where A denotes the quantity called magnetic vector potential. Since the divergence of a
curl is always zero, several vectors A can give the same vector magnetic induction B .
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Fig. 3.5. Explanation to the
calculation of magnetic fluxes:
flux-turn and flux-linkage.

For example, the vectors A4=—i(yB) and A= j(xB) give the same vector B=kB.

This circumstance is of no interest, for only the value of B is important in this case.
By employing the last relation, the magnetic flux through an open surface, as
previously, can be expressed in the form:

Y= jB.dsz jcurlA.ds,

(3.38)
S Sr
that, by using the Stokes theorem, becomes:
W= [B-ds=§ 4-dlL. (3.39)

Sp r

Therefore, the magnetic flux through a simply connected open surface bounded by a
closed curve can be calculated by a line-integral along that curve. By using this
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expression, the conclusions obtained above concerning the flux through surfaces related
to some curves result directly.

3.5. THE LAW OF ELECTROMAGNETIC INDUCTION FOR
MEDIA AT REST

The expression of the law of electromagnetic induction may be established by a
generalization of experimental results (i.e., in the sense mentioned at the beginning of
Section 3.1) or deduced by utilizing certain relations established in the Special Theory of
Relativity. We shall use both manners beginning with the second one.

3.5.1. The Expression of the Law of Electromagnetic Induction for
Empty Medium at Rest

Let K, and K, be the two inertial reference frames. The reference frame K, is
moving at a constant velocity v;, relatively to the reference frame K| .

We shall consider a point-like charge ¢, situated in empty space (i.e., in vacuo) at
any point A(xl As VIAs 2] A) fixed to the reference frame K;, and we shall calculate
curl, E, at the point P(x,, y,, z, ). It follows:

i J k
0 0 0
curly E, = (3.40)
ox, 0y, 0Oz,
on Eoy oz
The component along the O, x,, - axis is:
anz any
8y, 0z, (3.40 a)
and by using relations (2.21), (2.18 b, ¢) and (2.17), we obtain:
0Ey, _ ¢ -
5= %o (Yo =314z = 214)n7 (3), (3.41 a)
Yo 4meg
OF
0 q _
= (g =20~ (3) (3.41b)
z, 4mgg
By replacing relations (3.41 a, b) into expression (3.40 a), it follows:
0E._ OE,
—z -2 (. (3.42 a)

0y, 0z,
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Analogously, it follows that the components along the axes O, y, and O,z are:

ox

OF _aEOZ q1

0z, Ox :4n&Jamﬁb_Wmtd_xMKAf_ﬁABaiBﬁﬁ4> (3.42 b)
(6] (&)

O0E,, OE -
0 . = - [0'10 (xo ~ Viox to)_xlA](yo A )(_ 3)0(120 Blzo n > ’ (3'42 C)
x, Oy, 4mngg

because
1
oy =
1-Bio (3.42 d)
Blo =22 (3.42¢)
¢
1
1_OL120:1_ ) :_alzo 3120' (3.42f)
1- Blo
Now, we calculate the vector quantity:
0B 0B 0B
o8, _; oy g (3.43)

ot ot

o (0]

. . L 1
According to relation (2.26) and taking into account that g, = the vector
c

quantity B, is:

i j ok
1 11 1

BO: —2\)10x 0 0 =—J- c_2v10x (OATN Elz +k- C_2v1°x QAo Ely . (344)
C
E, Eoy E,

After the calculation of derivatives, we obtain the components:

0B,
=0, 4
o (3.45 a)
0B 1 q _
P > :_3_2V120 Oleo —l[alo (xo ~Viox to)_xlA](Zo _ZIA)rl : > (3-45 b)
tO c 47580
0B 1 q _
% =3 P Vlzo Oleo 1 [alo (xo ~ Viox to)_xlA](yo _ylA)rl > : (3-45 C)

51‘0 C 47580

It follows that:
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oz _ - _ ox =0, )
oy, o0z, o, (3462)
anx anz _ aBO}’
9z, ox, = a1, ) (3.46 b)
aEOY anx _ aBoz 3.46
ox, 0y, ot, (346.c)
Thus:
OB
curl, E, =— Py £ (3.47)

We shall integrate both sides of the last equation (3.47) over any simply connected
open surface S bounded by the closed curve I';, both at rest relatively to the reference

frame K. By expressing this operation, it follows:

0B
[ eurl, Eo-dsoz—j °.4s
s ot

(4]

0 (3.48)

o
N Ty

and by transforming the surface-integral into a line-integral (Stokes theorem), it follows:

OB,
§E0-dlo_—jat ds, . (3.49)

In the case in which there are several point-like electric charges, according to the
assumption 2 of Section 2.2, the principle of superposition may be applied and expression
(3.49) remains valid also in this case. Expression (3.49) remains valid for each inertial
system, since the differential operator curl is invariant with respect to the transformation
from one reference frame to another one if the latter is at rest relatively to the former one.

Relations (3.47) and (3.49) represent the local and integral forms, respectively, of the
law of electromagnetic induction for empty space, and reference frame at rest.

3.5.2. The Expression of the Law of Electromagnetic Induction
for Any Medium at Rest

In the case of any medium (i.e., containing any substance, whatever it would be), it is
necessary to establish the relations between the macroscopic state quantities of the
electromagnetic field.

The macroscopic quantities at a point, at a certain instant, are obtained by the average
of the microscopic quantities over a physically infinitesimal volume around the
considered point, and over a physically infinitesimal time interval that contains the
considered instant (time). As in Sub-section 3.4.2, the law keeps its previous form.
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3.5.3. The General Expression of the Law of Electromagnetic Induction
for Media at Rest

The general expression of the law of electromagnetic induction, previously derived,
can be established by the generalization of experimental results (in the sense mentioned at
the beginning of Section 3.4).

In an inertial reference frame, in any medium, the following relation exists between
the vector quantities £ and B :

0B
§E'd’:‘J§'d55 (3.50)
T
Sr

where S is a simply connected open surface bounded by the closed curve I', both at rest
relatively to the considered inertial reference frame. The curve I' may represent any
contour in particular it can even be the contour of an electric circuit. The last situation is
of great interest in applications.

The positive direction of the normal to the surface Sy is associated according to the
right-handed screw rule with the travelling sense of the curve I" (Fig. 3.6).

Relation (3.50) can also be written in the form:

§E-dl= iy (3.51)
I

where the quantity i_ .. is called, according to the work [3, p. 259], intensity of magnetic

mag
current.
By using the Stokes theorem, relation (3.50) becomes:

jcurlE-dSz—ja—B-dS.
ot
Sr

(3.52)
Sr

Taking into account that the last relation holds for any surface Sy, the following
relation in differential (local) form is obtained:

oB
curl E = ———.
o7 (3.53)

Relation (3.53) may also be written in the form [3, p. 367]:
curl E=—J 00 (3.54)

where the quantity J,,, is called [3, p. 260] magnetic current density.

Relations (3.50) and (3.53) represent the expressions of the integral form and local
form, respectively, of the law of electromagnetic induction for any medium at rest.
The vector quantities £ and B can be introduced as shown in Section 2.5.
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Fig. 3.6. Explanation to the
law of electromagnetic
induction.

3.5.4. The Concise Integral Form of the Expression of the Law of
Electromagnetic Induction for Media at Rest. Faraday Law.

The left-hand side of relation (3.50) represents the induced electromotive force (by the
solenoidal component of the electric field) along the curve I":

Uer = §E'd1- (3.55)
r
It is to be remarked that, in this case, the electric field strength E contains only the
Coulombian and induced component, but not the impressed component, hence:
E=E,-E;. (3.55a)

The integral of the Coulombian component along the closed curve is zero, since it
derives from a potential.
Also, it can be seen that the right hand side of relation (3.50) may be written in the

following form (since the surface S is at rest):
J_ d§=— ‘PSr) (3.56)

where

— _[B-dS,
Sr

(3.56 a)

represents the magnetic flux through any open surface Sy-.

It follows:
d ‘I’Sr
u = —_ N 3.57
el dt ( )
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that represents another manner of writing the integral form of the law of electromagnetic
induction for media at rest. This law is also called the Faraday law.

The phenomenon of producing an electromotive force along a closed curve I' by the
variation with time of the magnetic flux which links that curve is called electromagnetic
induction. The electromotive force produced in this way is called induced electromotive
force, and the magnetic flux that produces the electromotive force is termed inductive
magnetic flux.

The variation with time of the magnetic flux through any surface bounded by the
curve I' can have two causes:

a. Variation with time of the local magnetic induction (for instance due to the
variation with time of the electric current carried by the circuits which produce the
magnetic field);

b. Motion of the contour I".

The electromagnetic induction is referred to in the first case as induction by
transformation and, in the second case, induction by motion; in particular it can be
induction by rotation (i.e., rotation without translation) and induction by deformation.

The inductive magnetic flux can be produced by a permanent magnet or by electric
currents. The inductive magnetic flux can be produced even by the electric current (if it
exists) flowing along the circuit for the contour of which the electromotive force has to be
calculated, and also by the currents flowing along other circuits. Correspondingly, the
electromagnetic induction is referred to as self-induction and mutual induction,
respectively.

3.6. THE LAW OF MAGNETIC CIRCUIT (MAGNETIC CIRCUITAL
LAW) FOR MEDIA AT REST

The law of magnetic circuit also called magnetic circuital law can be established by
the generalization of certain experimental results (in the sense mentioned at the beginning
of Section 3.1) or derived by employing certain relations established in the Special
Theory of Relativity. We shall use both manners beginning with the second one.

3.6.1. The Expression of the Law of Magnetic Circuit for Empty Medium
at Rest
Let K, and K, be two inertial reference frames. The reference frame K; is moving
with the constant velocity v;, with respect to the reference frame K. Let ¢g; be a point-
like electric charge fixed in empty space at any point A(xl 4> V145 214 )
We shall calculate the vector quantity curl, B, at a point P(x0 s Vos Zo ) Taking into
account relation (2.26), we can write:

curl, B, = curl, (po Vi, X€g E, ) =g W curl, (v10 xE, ) (3.58)
By using an expression of the Vector Calculus, namely:

curl(axb)=adivb—(a-V)b+(b-V)a—bdiva, (3.58 a)
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it follows:
Curlo B, =¢q vy, diVo E,-gono E, diVo Vio €0 Mo (vlo ’ vo)Eo +
T€Ho (Eo 'Vo)vlo :

But div,v,, =0 and (E, -V, )v;, =0 because the velocity v, is constant. Hence, it

(3.59)

follows:
CuI'10 B, =g 1o div0 E, —¢goug (vlo 'VO)EO : (3.60)
From the known relation of Vector Calculus, it follows:
oOE
v, VJJE, =v,, —2,
( lo 0) 0 lox O x (3.61)

o

where we have taken into account that v;; =iv;,, .
Now, we calculate the following vector quantity:

an _-anx .any kanz

=i + + . 3.62
ox, ox, / ox, ox, (3:62)

Since we have supposed that there is a single point-like electric charge g, , it results that:

q1 . O, (xo ~ Viox Io)_xlA

E, =E, = rpv g , (3.63 a)
q Yo = V14
Ey =0y, Eyy =y, 4;80 .20 . 4 (3.63 b)
1
q Zy—Z
E, =0y, By, =0, S L (3.63¢)

47580 ]/'13

Taking into account all these relations (3. 63 a, b, ¢) in the general case of any system
of electric charges, it results that:

OFE OFE
Vo - V)E, = vy, —& = ———2
( lo ) o lox axO ato (3-64)
It follows:
curlo Bo =€oHo V10 diVo Eo &9 lo aafo : (365)

o

In the case in which there are several point-like charges, according to the assumptions
of Section 2.2, the principle of superposition can be applied, and the last relation keeps its
form.

The macroscopic quantities at a point, at a certain moment, are obtained by the
average of the microscopic quantities over a physically infinitesimal volume, around the
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considered point, and over a physically infinitesimal time interval including the
considered moment (time). After the calculation of the average (mean) values, the form of
relation (3.65) remains unchanged.

Let us consider the free (true) electric charge continuously distributed in empty space,
with the volume density p,,, in the interior of the surface X . In accordance with the law

of electric flux, it can be written:
godivy E  =p,,. (3.65 a)

Consequently, it follows:

oegy E
curlo Bo =HoPyo Vio t Mo 0o (3.65b)

ot,

or
curl B, _ v 08 E 3.66
0 1o Pvo Y10 alo ( . )
If we denote:

Jeo =ProVios (3.67)

the density of the current constituted by the electric charges in motion, the last relation
yields:

B ogg E
curly —==J,, 9 o
Ko ot

(3.68)

(0]

We shall integrate both sides of relation (3.68) over any open surface St, bounded by

the closed curve I'y, both in the reference frame K| . It follows:

qurl IJeO . J% ds,. (3.69)

STy STy

By using the transformation of the surface-integral into a line-integral (Stokes
theorem), it follows:

Zo .d1, J'Jeo. JM@SO_

ot (3.70)

0
lﬂo SFO

Expression (3.70) remains valid for any inertial reference frame, for the differential
operator curl is invariant with respect to the transformation from one inertial reference
frame to another, at rest relatively to the previous one.

Relations (3.68) and (3.70) represent the expressions of the local form and integral
form, respectively, of the law of magnetic circuit for empty space (i.e., in vacuo), and
reference frame at rest.
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3.6.2. The General Expression of the Law of Magnetic Circuit
for Empty Space

The general expression (3.70), previously derived, can also be established as a
generalization of experimental results (in the sense mentioned at the beginning of Section
3.1).

In an inertial reference frame, between the vector quantities: Magnetic induction B,
density of the resultant electric current (produced by the electric charges in motion) J,
and product of the permittivity of vacuum by the electric field strength €, E , the

following relation exists in empty space:

i.dlz J'Je 'dS+JM-dS,
HO Sr at
T Sp

(3.71)

where Sy is a simply connected open surface, bounded by the closed curve I', both at
rest with respect to the considered inertial reference frame. The positive direction of the
normal to the surface ST is associated, according to the right-handed screw rule, with the
travelling sense along the curve I'. The quantity i, is a universal constant referring to

vacuum, and termed magnetic constant or permeability of vacuum. In the SI system of
units, it has, as mentioned in Section 2.4, the value:

o =4n10"" H/m. (3.72)

By using the Stokes theorem, relation (3.71) becomes:

jcurlﬁ-dS= [7. -dS+JM-dS.
o1

0y : (3.73)

Sr Sr

Taking into account that the last relation holds for any surface S, the following
relation, in local (differential) form, is obtained:
Ogy E

curl —=J  + .
" e o1 (3.74)

Relations (3.71) and (3.74) represent the expressions of the integral form and local
form, respectively, of the law of magnetic circuit for empty space, and frame at rest.
The vector quantities B and E can be introduced as shown in Section 2.5.

3.6.3. The Expressions of the Law of Magnetic Circuit and Magnetic
Field Strength, for Any Medium at Rest, in the Case of all Types of
Electric Charges and Currents

The expression of the law of magnetic circuit for any medium (i.e., containing
whatever substance) at rest can be obtained by the generalization of certain experimental
results (in the sense mentioned at the beginning of Section 3.1).
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In the case of any medium, it is necessary to establish relations between the
macroscopic state quantities of the electromagnetic field.

The macroscopic quantities at a point, at a certain moment, are obtained by calculating
the average of the microscopic quantities over a physically infinitesimal volume, around
the considered point, and over a physically infinitesimal time interval including the
considered moment (time). In the case of a medium, in which only free charges can exist,
after the calculation of the average (mean) values, the form of the relations between the
various macroscopic quantities will not be modified (they will remain as in the case of
microscopic values). If there are free electric charges, polarization electric charges, and
Amperian electric currents, then, after the calculation of the average (mean) values, the
form of the relations between the various macroscopic quantities will be modified.

The symbols and their meaning are the same as in Section 1.10.

The electric current density J, (of relation (3.67), but without index o) in the case of

macroscopic quantities can be expressed as the sum of three components: the density of
electric conduction currents J , the density of Amperian electric currents J,, and the
density of polarization electric currents Jp. Consequently, the following relation is
obtained:

J,=J+J,+Jp. (3.75)
By replacing the quantities of relation (3.75) into relation (3.74), it results that:
oleg E
curl£=J+Ja+JP+M. (3.76)
Ko ot

If we integrate both sides of relation (3.76) over any open surface bounded by a closed
curve ', and we utilize the transformation theorem of a surface-integral into a line-
integral (Stokes theorem), the following relation between the macroscopic quantities is
obtained:

B d(eq E)
—.dl=|J-dS+ |J,-dS+ |Jp-dS+ | —2—2.d8.
r Ho s{ S{ S'E ’ J ot G771

Sr

In the right-hand side, the second term represents the intensity of the Amperian
electric current given by relation (1.90), and the third term represents the intensity of the
polarization electric current given by relation (1.75). By performing the corresponding
substitutions and grouping the terms, it follows:

1 0
3€E(3_M0 M)-dl—SiJ-dSJrJE(SOE+P)-dS. (3.78)

r Sr

Taking into account relation (3.18), relation (3.78) can be written:

oD
H-dl= [J-dS+ | ==-ds,
j SI Jm (3.79)

Sr
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where we have denoted:

H=LB_Mm (3.80 a)
Mo
or
H="p-Lwm, (3.80b)
Ho Ho

The vector quantity H , defined by each of relation (3.80 a, b), is called magnetic field
strength or magnetic field intensity and is a function of point or, in other words, it
represents a vector field. The lines of the vector field H , called lines of magnetic field
strength, are the lines to which the vector H is tangent at each point. Analogously, the
lines of the vector field B, called lines of magnetic induction or lines of magnetic field,
are the lines to which the vector B is tangent at each point.

A tube of magnetic flux is termed each surface in the magnetic field formed by the
totality of lines of magnetic induction passing through the points of a simple closed curve.

In the SI system of units, the unit of measure of the electric field strength is the
ampere per metre, symbol A/m . A definition of this unit will be given in Section 3.15.

Relation (3.79) can also be written in the form:

d
jH-dl:S_l‘J-dS+ES.£D-dS, (3.81)

because the position of the differential operator is indifferent in the case in which the
derivative does not concern the variable with respect to which the integral is to be
calculated, and the surface Sy is considered at rest.

By using the Stokes theorem, relation (3.79) becomes:

jcurlH-dS: JJ-dS+Ja—?-dS.
St

3.82
: : (3.82)

St

Having in view that the previous relation is valid for any surface Sy, the following
relation in local (differential) form can be obtained:

D
curlH=J+66—t. (3.83)

Relations (3.81) and (3.83) represent the expressions of the integral form and local
form, respectively, of the law of magnetic circuit for any medium at rest, in the case in
which, there are firee electric charges, polarization electric charges and Amperian
electric currents.

A detailed analysis of the introduction of the physical quantities E, D, H, B can be
found in papers [55], [56].
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3.6.4. The General Expression of the Law of Magnetic Circuit for Any
Medium at Rest

The general expression of the law of magnetic circuit for media at rest, derived
previously, can be established by the generalization of certain experimental results.

In an inertial reference frame, and in any medium, the following relation exists
between the vector quantities H, J , D :

§H.d1= J.J-dS+J -ds,
r Sr 5

oD
ot (3.84)
where S is any simply connected open surface bounded by the closed curve I', both at

rest relatively to the reference frame. The positive direction of the normal to the surface
St is associated with the travelling sense along the curve I' by the right-handed screw

rule.
If, in the considered space, there are bodies charged with electricity with the volume
density p,,, » in motion at any velocity v, relatively to the reference system, then, in the

right-hand side of relation (3.84), another term occurs. Indeed, the motion of bodies
charged with electricity represents a supplementary electric current called convection
electric current. In this general case, expression (3.84) becomes:

oD
§H-di= [J-ds+ IJconv'dS+J§'dSa (3.842)
r Sr St

Ny

where the quantity J v, is the density of the convection electric current.

conv — Pconv
Relation (3.84 a) may also be written in the form:

fH-di=i. (3.85)
I

where the quantity i; represents the intensity of the electric current in the large sense.
Having in view that relations (3.84) and (3.84 a) hold for any surface S, and using
the Stokes theorem, the following two relations, in differential (local) form, are obtained:

oD
curl H =J +—, (Jeony =0), (3.86)
oD
curlH =J +J ., +E' (3.86 a)

Relations (3.86) and (3.86 a) can also be written in the form:
curl H =J,, (3.87)

oD
Jl :J+Jconv +E’ (3.87a)
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where the quantity J; represents the density of the electric current in the large sense.

Relations (3.84), (3.84 a) and (3.86), (3.86 a) represent the expressions of the integral
Jform and local form, respectively, of the law of magnetic circuit, for any media at rest.

The vector quantities H and D are defined by relations (3.80 b) and (3.18),
respectively.

In the right-hand side of relation (3.84 a) the three terms have the following meaning,
respectively: intensity of the conduction electric current, intensity of the convection
electric current, and intensity of the displacement electric current. The intensity of the
displacement electric current is the sum of the intensity of the displacement electric
current in vacuo and the intensity of the polarization electric current. The sum of the
terms of the right-hand side of relation (3.84 a) is referred to as infensity of the electric
current in the large sense.

3.6.5. Conditions (Regimes) of the Electromagnetic Field.
Law of Magnetic Circuit in Quasi-stationary Condition.
Ampeére Law (Theorem).

The electromagnetic field can be in one of the following conditions also called
regimes: Static condition, Stationary condition, Non-stationary condition, Quasi-
stationary condition.

Static condition is the regime in which no macroscopic quantity varies with time and
no electric current exists.

Stationary condition is the regime in which no macroscopic state quantity varies with
time and electric current exists but does not vary with time.

Non-stationary condition is the regime in which the macroscopic state quantities vary
with time.

Quasi-stationary condition is the regime in which the macroscopic quantities vary
with time but their variation is relatively slow, implying the following consequences. The

. 0D . . .
value of the quantity Y may be neglected with respect to the quantity J , at any point
t

of a conducting medium or a medium in which a convection electric current exists; but
the derivatives with respect to time of the other state quantities of the electromagnetic
field cannot be neglected. One of the practical results of these remarks results in the fact
that in an electric circuit in quasi-stationary condition, the intensity of the electric current
is assumed to have the same value at any cross-section of the circuit wire. The higher the
speed of variation of the state quantities (e.g., magnetic induction), the farther from the
previous assumption the circuit will be.

In quasi-stationary condition, the expressions of the integral form and local form,
respectively, of the law of magnetic circuit (without including the convection current)
become:

jH-dlz IJ~dS, (3.88)

NY

curl H=J, (3.89)
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and are referred to as the integral form and the local form, respectively, of the Ampere
theorem or of the Ampere circuital law.

Expression (3.88) may be obtained by employing the Biot-Savart-Laplace formula
(2.47), and (2.48), if it is previously known. For this purpose, formula (2.48) will be
applied for a closed curve I', and the expression of the solid angle, and certain vector
transformations are to be used [23, p. 120].

3.6.6. The Components of the Magnetic Field Strength. Magnetic
Tension. Magnetomotive Force.

The magnetic field strength has generally two components: a potential (non-curl,
irrotational) component H , and a curl (rotational, solenoidal) component H . . Hence:

H=H,+H,. (3.90)

Generally, in a field of vectors, the line-integral of the field vector along a curve can
be referred to as tension; this tension is also introduced in the case of magnetic field. The
definitions, in the case of the magnetic field, are analogous to those introduced for the
electric field in Section 1.8.

The line-integral of the magnetic field strength along a curve is called magnetic
tension and is given by the relation:

- jH-dl.

CuB

umCAB

(3.91)

If in relation (3.91), instead of the magnetic field strength H , only the curl component
H, of the magnetic field strength is introduced, the magnetomotive tension calculated by

employing a line-integral (along an open curve) is termed magnetomotive force
(abbreviation m.m.f.) along that curve, and is obtained by the relation:

u = J.H,-dl.

Cup

mm C 4p

(3.92)

If the line-integrals (3.91) and (3.92) along a closed curve are considered, the obtained
expression is called magnetomotive force, also termed magnetomotive tension, along that
curve. The magnetomotive force obtained by integrating the magnetic field strength H
along a closed curve coincides with the integral of the curl component of the magnetic
field strength, because the line-integral of the potential component of the magnetic field
strength is zero along a closed curve.

All the definitions of magnetic tensions refer to any medium, regardless of its state.

3.6.7. The Concise Integral Form of the Law of Magnetic Circuit for
Media at Rest

The left-hand side of relation (3.84) represents the magnetomotive force along the
closed curve IT':
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r=§H-dl. (3.93)
I

It is to be remarked that the magnetomotive force is determined only by the curl
(rotational) component of the magnetic field strength.

The first term of the right-hand side of relation (3.84 a), i.e., the flux of the vector of
the conduction electric current density through the surface S, bounded by the closed
curve I, is called current-linkage and is determined by the conduction electric current
that crosses the surface S. The current-linkage is given by the relation:

0= jJ-ds.
St

(3.94)

Let us consider a coil with w turns carrying an electric current. We shall adopt a curve
linking the coil as it can be seen in Fig. 3.7.
In this case, a simply connected open surface S, bounded by the curve I', is crossed

at w places by the conductor carrying the current /. At the other points of the surface,
the density of the conduction electric current is zero. It follows:

O=wi. (3.95)
Analogously, for the coils of Fig. 3.8, the following result is obtained:

In the case of coils, the current linkage is also expressed by the denomination ampere-
turns.
The last term of the right-hand side of relations (3.84) and (3.84 a), i.c., the flux of the

oD .
vector a7 through the surface Sy is called displacement electric current. 1If the
t

considered condition is quasi-stationary, it will be disregarded.
It can be remarked that the expression of the displacement electric current of the right-
hand side in relations (3.84) and (3.84 a) can be written:

J— dS—— D-ds, (3.96)

because the order of the differential and integral operators is indifferent, since the
derivation does not refer to the variable of integration, and the surface S is at rest.

But, the surface St being at rest, it results that:

d d
aS.l'l).d,gza(‘}’elsr ), (3.97)
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— r
Fig. 3.7. Coil linked by a curve
of integration — curve I".
i
w
r
i __ i)
—> r 1 —>
oq\l\) | lI———°
c+) (+)
[«
\|\) |
Uy el | ™ w2 ({ Uy
d | P | ) Fig. 3.8. Two coils disposed on a
T | closed core made of ferromagnetic
4y | (\l\ material.and the. curve I' of
Y | P T~ integration.
L - 1
where
Wos. = [D-dS (3.97 a)
Sr
represents the electric flux through the open surface St.
Hence:
) d
UpmT = 0O+ leony T E(‘{Iel St ) (3.98)

that represents another way of writing the integral form of the law of magnetic circuit
(magnetic circuital law) for media at rest.

Remark. It can be added that a coil constituted by a wire, wound on a cylinder, in the
form of a helix is called solenoid (from the Ancient Greek coAnvag (solinas), tube).



The Laws of the Electromagnetic Field 147

3.6.8. Adoption of the Curves and Surfaces That Occur in the
Expressions of the Laws of Electromagnetic Induction,
and Magnetic Circuit

All differential operations [curl, div, aij are performed in the fixed reference system,
t

1.e., assumed at rest.

The curve I' and the surface S are taken in the fixed reference frame, but may also
be taken in the moving reference frame. Concerning this circumstance, it is to be noted
that, in both cases, the curve I' and the surface St occur only by the elements d/ and

dS at any moment. The motion occurs by the velocity and by the determination of the
various quantities in the two reference frames.

In most of cases, the laws are written for determining the quantities and relations in
the moving reference frame with respect to the fixed one.

3.7. THE RELATIONSHIP BETWEEN MAGNETIC INDUCTION,
MAGNETIC FIELD STRENGTH AND MAGNETIC
POLARIZATION

In the case of a medium containing any substance, it is important to know the relation
between the macroscopic state quantities of the magnetic field, i.e., magnetic induction,
magnetic field strength and magnetization or magnetic polarization.

The macroscopic state quantities of the electromagnetic field at a point, at a given
moment, are obtained by calculating the average value of the microscopic quantities over
the physically infinitesimal of volume and of time interval, respectively, containing the
point and time under consideration.

From relations (3.80 a, b), it follows that:

B=yp,(H+M)=p H+M,. (3.99)

In the framework of the macroscopic theory, this formula constitutes the expression of
the law of relationship between the vectors: Magnetic induction, magnetic field strength
and magnetization (or magnetic polarization). In the framework of the macroscopic
theory, the quantities above and their relationship have to be introduced as primitive
(fundamental) quantities and law, respectively.

3.8. THE LAW OF TEMPORARY MAGNETIZATION

In the case of any isotropic medium (hence, containing any substance), but without
permanent magnetization (or magnetic polarization), the temporary magnetization vector
(temporary magnetic polarization vector) is parallel with the magnetic field strength
vector and of the same direction, as follows:



148 General Theory of the Electromagnetic Field

M, =y, H, (3.100 a)
M, =p,y, H. (3.100 b)

The quantity y,, is called magnetic susceptibility and is depending on the nature of

the medium, hence a material quantity.

In the framework of the macroscopic theory, relation (3.100 a) can be determined only
experimentally. In the macroscopic theory of electromagnetic field, this relation is a
material law, also termed constitutive law, referred to as the law of temporary
magnetization, ot the law of temporary magnetic polarization, as the reference concerns
relation (3.100 a) or (3.100 b), respectively.

In fact, for variations slow enough of the quantity H , the quantity % ,, is constant
with respect to the vector quantity H for certain isotropic media called isotropic and
linear media.

In the case of anisotropic media, the orientation of the vector M is not, generally, the
same as that of the vector H . However, in these media, it is possible to determine,
generally, three-orthogonal axes, termed principal axes or eigenaxes, along which the
anisotropic medium behaves like an isotropic medium. For these media, the law of
temporary magnetization (or of the temporary magnetic polarization, respectively) is
written in one of the following forms:

M, =y, H, (3.101 a)
M =p,y, H. (3.101 b)

where the quantity y,, represents the tensor of the magnetic susceptibility.

For isotropic media without permanent magnetic polarization, the expression of the
relationship between the magnetic induction, the magnetic field strength and
magnetization (or magnetic polarization, respectively) (3.99) becomes:

B=p,(H+M,)=p,(1+y,)H, (3.102 a)
B=poH+M; =p,(1+,)H. (3.102 b)

The following symbols are adopted:
w=1+%,, (3.103)

M=o K, (3.104)

The quantity p, is called relative magnetic permeability of the medium, and the
quantity W is the magnetic permeability of the medium.
With the adopted symbols, relations (3.102 a, b) become:

B=uH. (3.105)
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Taking into account the established relations that contain B and H , we shall make
certain general considerations concerning the lines of magnetic induction and the lines of
magnetic field strength.

The lines to which the vector H is tangent at any point, are /ines of magnetic field
strength. The lines to which the vector B is tangent at any point are /ines of magnetic
induction.

According to relation (3.29), the lines of magnetic induction are closed lines, because
the divergence of the vector B is zero at every point.

In accordance with the explanations of Sub-section 1.2.1, the lines of magnetic field
strength can be open lines that begin and finish at the points at which the divergence of
the vector H is different from zero.

From relations (3.31) and (3.105), it follows that the quantity div H may be different
from zero at the points at which the magnetic permeability varies.

Similar considerations concerning the lines of magnetic induction and the lines of
magnetic field strength can be extended to the case in which permanent magnetization
also exists. In this case, from relations (3.99), (3.102 a, b), (1.92), (1.93) it follows:

B=yH+p,M,, (3.106 a)
B=pH+M,, . (3.106 b)

The dependence between the quantities B and H may be linear or non-linear.

\J

¢ H, A/m

-B

Fig. 3.9. Magnetic hysteresis loop, the direction of travelling along the curve (upward
when the magnetic field strength increases, downward when the magnetic field strength
decreases); at the middle, the branch starting from H =0 and B =0.



150 General Theory of the Electromagnetic Field

Also, sometimes, the curve of B as a function of H may represent a closed curve
(Fig. 3.9) referred to by one of the terms: hysteresis loop, hysteresis cycle, hysteresis
curve. Certain characteristic points are marked on the curve.

3.9. DERIVATION OF THE FUNDAMENTAL EQUATIONS OF THE
ELECTROMAGNETIC FIELD THEORY IN THE GENERAL
CASE. MAXWELL EQUATIONS.

In the preceding Sections, we have derived the fundamental laws of the theory of the
electromagnetic field in the case in which the velocities of particles that produce the
electromagnetic field are constant with respect to time in the reference frame in which the
equations are expressed. The experience has shown that these equations are also valid
when the velocities of the mentioned particles vary with time.

There are possibilities to derive the equations for the general case of fields showing
forces with a central symmetry (radial symmetry). Here we include the theory of the
electromagnetic field, starting from the field of Coulombian forces that also show a
central symmetry. Also, it is possible, under certain assumptions, to derive the equations
in the case in which the particles that produce the field are moving with velocities varying
with time [11], [18], [23], [40], [41].

The equations (3.53), (3.16), (3.18), (3.86 a), (3.31), (3.99) will be written as follows:

OB

curl E =———,
Y (3.107 a)
divD=p,, (3.107 b)
D=¢yE+P, (3.107 ¢)

oD

CurlH=J+JconV +E, (3107 d)
divB=0, (3.107 ¢)
B=p,(H+M)=p,H+M,, (3.107 f)

and represent the laws in local (differential) form of the electromagnetic field, in the
macroscopic theory for media at rest, and are referred to as the laws of the
electromagnetic field for media at rest.

For isotropic and homogeneous media and without permanent electric and magnetic
polarization, according to relations (3.24), (3.105), it follows:

D=¢E, (3.107 g)
B=pH. (3.107 h)

Relations (3.107 a, . . ., f) are also referred to as Maxwell equations.
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The relations that represent the equations of the electromagnetic field contain, apart
from the relations mentioned above, also other equations that are related to
Electrokinetics and Electrodynamics.

Maxwell established a system of equations in two forms: 32 scalar equations for the
first form and 10 vector equations plus two scalar equations for the second form,
respectively. In the latter form, the equations have been designated in his work [1, Arts.
591, 598, 603, 606-614] by capital letters from (A) to (L). These equations link scalar and
vector quantities. The quantities represent the electromagnetic field state quantities and
the bodies state quantities. In his work, these equations have been written in a form very
close to that utilized at present. For denoting the vectors, he used letters of the Gothic
alphabet.

3.10. RELATIONS BETWEEN THE STATE QUANTITIES
OF THE ELECTROMAGNETIC FIELD IN VARIOUS
INERTIAL REFERENCE FRAMES

Let K and K’ be two inertial frames, the first at rest, the latter moving at a constant
velocity v relatively to the former one.

Also, let one point-like electric charge be in motion relatively to the two inertial
reference frames.

The relations between the various state quantities of electromagnetic field can be

established in several ways. These ways are as follows: a. Comparison between the forces
acting upon a point-like electric charge in motion in the two inertial reference frames;
b. Change of variables, i.e., co-ordinates and time that leave unchanged the form of the
equations of the electromagnetic field. The equations that have the same mathematical
form in all inertial reference frames after a transformation of the variables, i.e., co-
ordinates and time, are considered to be covariant in Lorentz sense.

From the comparison of the forces components expressed in the two inertial reference
frames, in terms of the various state quantities of the electromagnetic field, we obtain
relations between the various state quantities of the electromagnetic field. For the other
quantities, the relations are obtained by putting the condition the equations of
electromagnetic field to be satisfied in each of the two reference frames. Detailed
calculations are given in Appendix 3.

The most general case can be considered in which there are several point-like electric
charges, each of them moving at any velocity relatively to both reference frames. These
charges produce the electromagnetic field. For the sake of simplicity, we shall assume
Vip =iVigy = V.

The obtained relations between the state quantities of electromagnetic field are the
following:

E.=E +i-o(vxB), (3.108 a)
E,=alE, +j-(xB), (3.108 b)

" =alE, +k-(vxB)]. (3.108 c)
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ML =M, +i-a(vxP),
M =alM, +j-(vxP)],
M. =a[M, +k-(vxP)].
Je=a(Ju+i-vp,),
J,=J,

JZ:J;V.

(3.109 a)

(3.109 b)

(3.109 ¢)

(3.110 a)

(3.110 b)

(3.110 ¢)

(3.111 a)

(3.111 b)

(3.111 ¢)

(3.112 a)

(3.112 b)

(3.112 ¢)

(3.113 a)

(3.113 b)

(3.113 ¢)
(3.114 a)
(3.114 b)

(3.114 ¢)
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Vi=a(V-v4,), (3.115)

’ v ! ’
Axv=0t(Ax——2Vj; Ay =4,; A.=4,; (3.1164a,b,c,)

C
where

o= ; (3.117 a)

(3.117 b)

If the velocities are relatively small |v| <<c, then it follows that ao=~1 and the

following relations will be obtained:

E'=E+vxB, (3.118)
, 1
B :B——zvxE, (3.119)
c
, 1
D =D+C—2v><H, (3.120)
H'=H-vxD, (3.121)
, 1
P :P—C—zva, (3.122)
M =M+vxP, (3.123)
J=J"+p,v. (3.124)

3.11. EXPRESSIONS OF THE LAWS OF THE
ELECTROMAGNETIC INDUCTION AND
MAGNETIC CIRCUIT FOR MOVING MEDIA

If the differential operator curl is applied to both sides of relation (3.118), it follows:
curl E' = curl E + curl (v x B), (3.125)
but, using relation (3.53) and (3.37):

B
curlEz—aa—t, B=curlA4, (3.126 a, b)

and it follows that:
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curlE'z—aa—l:nLcurl(va). (3.127)

If the differential operator curl is applied to both sides of relation (3.121), it follows
that:

curl H' = curl H — curl (v x D) (3.128)

but using relation (3.86), it results that:

D
curlH':J+aa—t—cur1(v><D) (3.129)

or, if J o, #0, in accordance with relation (3.86 a), it follows:

curlH'=J+pconvv+aa—?—curl(v><0). (3.129 a)

By adding up to each side of relation (3.86), the quantity curl M and multiplying by
the quantity p, it results that:

curl[po(H+M)]=p0{J+6(;—?+curlM}. (3.130)

We shall consider the case in which the moving reference frame is fixed to the moving
substance. Also, we shall suppose that the magnetic polarization in the moving substance
is zero, M'=0. In this case, from relation (3.123), it follows:

M=-vxP. (3.131)

For the case under consideration, it results that:
oD
curl B=p, {J+E—curl(vxP)} (3.132)

and
P=P'. (3.133)

We shall consider in the moving reference frame an open surface bounded by any
closed curve. At the moment of observation in the fixed reference frame, this surface will
be denoted by S-.

Integrating both sides of relations (3.125) and (3.129) over the surface St and using

the transformation of surface-integrals into line-integrals (the Stokes theorem), it follows
successively:

jcurlE’-dS =—jaa—l:'ds+ Icurl(va)'dS,

Sr 5 Sr
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§E%d1=—f‘2—f-dS+ [curl(vx B)-dss,
r 5 Sr
, 0B
§E -dl:—JE-dS+§(va).dl. (3.134)
r St T

IcurlH'-dSz J.J-dS+ Jaé—lt)-dS— fcurl(vxD)-dS,
Sr St

St St

, oD
fH-dI= J.J-dS+JE-dS—<f(v><D)-dl. (3.135)
r Sr 5 r

Relations (3.127), (3.134) and (3.129), (3.135) represent the expressions of the local
and integral forms of the laws of electromagnetic induction and of magnetic circuit,
respectively, for any moving medium.

The vector quantities £ and B are introduced as explained in Section 2.5, the vector
quantity H is introduced according to relation (3.80) and the vector quantity D is
introduced as shown in Section 3.2, relation (3.18).

Expressions (3.134) and (3.135), for moving media, may be obtained from relations
(3.56) and (3.96). For this purpose, instead of quantities £ and H , we shall introduce
the quantities E' and H' from a moving reference frame fixed to the moving medium,
and we shall calculate the derivatives with respect to time of the magnetic and electric

fluxes. Hence, we have to calculate a4 IB -dS and a4 ID -d S, and the quantities B
ds st drs s
and D are expressed in the fixed reference frame. The calculation of the derivative can
be performed taking into account the following two remarks:
1° — The vector function, which has to be integrated, varies with time even in the case
in which the surface St is at rest;

2° — The surface Sy varies in form and position relatively to the system of co-

ordinates even in the case in which the function above does not vary. The
derivation of this formula is given in Vector Calculus and is sometimes called the
derivative of the flux.

3.12. THE RELATIONS BETWEEN THE COMPONENTS OF THE
STATE QUANTITIES OF ELECTROMAGNETIC FIELD
IN THE CASE OF DISCONTINUITY SURFACES

The relations between the components, expressed in the same reference frame, of the
quantities £, D, B and H , of both sides of the discontinuity surface will be examined.
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3.12.1. The Relation between the Normal Components of Electric
Displacement Vectors

Let S, be the separation surface of two insulating media having different electric
permittivity. Let AS' be a portion of the separation surface S,;. The dimensions of AS

are assumed infinitesimals of the first order. The dimensions of AS are taken small
enough for to be assumed as plane. The portion AS of the separation surface will be
dressed by a very flat surface X having the form of a right cylinder or a parallelepiped
(Fig. 3.10) the height of which is an infinitesimal of a higher order relatively to the
dimensions of the cross-section AS .

Let the vector quantities D; and D, be the electric displacements at two points very
near situated on both sides of the separation surface.

The true (free) electric charge is supposed to be distributed in space with a finite
volume density.

The law of electric flux, in integral form, expressed by relation (3.14) will be applied
for the case of the closed surface X. The true electric charge in the interior of the
parallelepiped, represented by the right-hand side of expression (3.14) of the electric flux
law, is an infinitely small quantity of higher order, proportional to the height of the
parallelepiped and tends to zero together with that height.

Neglecting the flux through the lateral surface of the parallelepiped, because its height
is much smaller than the dimensions of its bases, the following relations will be obtained:

[p-ds=q5=0. (3.136)
b3

where the vector my, is the unit vector of the normal to the separation surface S,,
oriented from the medium 1 towards the medium 2, hence n; =-n, =—n,.
Hence:

”12‘(D2 —01):0- (3.138)

It follows that, in the case of the true (free) electric charge distributed in space, at the
passage through a separation surface of two media, the normal component of the electric
induction is conserved, thus:

D, =D, (3.139 a)
D,=D,. (3.139 b)

The last relation expresses the theorem of conservation of the normal component of
the electric displacement.

In the case in which there is true electric charge distributed with a finite surface
density p, just on the separation surface, say on the portion AS, then gy =p, AS and

instead of relation (3.138) we obtain:
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D,

Fig. 3.10. Explanation to the computation of the normal components of the vector
electric displacement at the passage from one medium to another.
The vector D, has been displaced, being brought with its end point to

its starting point for avoiding superposition in the figure.

ny-(Dy - Dy)=div, D=p,, (3.140)

thus:
D,y =D, =py. (3.141)

3.12.2. The Relation between the Tangential Components of Electric
Field Strength Vectors

Let S, be the separation surface of two insulating media having different electric

permittivity. Also, it will be assumed that the electric field strength has finite values on
the separation surface and within its vicinity. Also, let be a small rectangular plane curve
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I' having each of its long sides on one of the two sides, respectively, of the separation
surface, parallel and very near to that surface (Fig. 3.11). The length of one long side of
the rectangular curve, parallel to the separation surface will be denoted by A/ and the
height, parallel with the normal to the separation surface, will be denoted by A/%. The
length of Al is taken small enough for to be considered as a straight-line segment. The
quantity A/ is assumed as an infinitesimal of the first order, and the quantity A% as an
infinitesimal of a higher order.

Let the vector quantities E; and E, be the electric field strengths at two points very
near situated on both sides of the separation surface.

The law of electromagnetic induction in integral form, expressed by relation (3.50)
will be applied for the closed curve I' that has a rectangular form (Fig. 3.11). The
travelling direction along the curve of Fig. 3.11 results from the direction of the unit
vectors ¢, and ¢, . The magnetic flux represented by the surface-integral of the right-hand
side of expression (3.50) of the law of electromagnetic induction, is an infinitely small
quantity of higher order, proportional to the height of the rectangle, and tends to zero
together with that height.

Fig. 3.11. Explanation to the calculation of tangential components of electric field
strength vectors at the passage from one medium to another.
The vector E| has been displaced, being brought with its end point to

its starting point for avoiding superposition in the figure.
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By neglecting the line-integrals along the height, because the height A/ is much
smaller than the length A/, it follows:

E - tAl+E,-(-t)Al=0, (3.142)

where the vector quantity ¢ is the unit vector of the tangent to the separation surface
along the side of length A/ of the rectangle. Thus:

t-(E, - E,)=0. (3.143)

It results that at the passage through a separation surface between media, the tangential
component of the electric field strength is conserved:

En=Ey, (3.144 a)
E,=E,. (3.144 b)
The last relation expresses the theorem of conservation of the tangential component of
the electric field strength.
3.12.3. The Theorem of Refraction of the Lines of Electric Field in the
Case of Insulating Media

Let us consider a separation surface between two isotropic media of different electric
permittivity and we shall assume that the electric charge is distributed in space, i.e., it has
a volume distribution.

We can write:

D, =¢ E;, (3.145 a)

At the passage through the separation surface above, the vectors electric displacement
and electric field strength vary in magnitude and direction, i.e., they are refracted. From
Fig. 3.10, it follows:

tana, = 20— 1 En (3.145 ¢)
Dnl Dnl .
Dy & Ep,

tano, =——=—"—+, (3.145d)
Dn2 Dn2

tan o ) D

Lol —m (3.145 ¢)
tan (05) Dnl €y Et2
or by using the conservation theorems (3.139) and (3.144), it results that:
tana; g
- = (3.1406)

tane, ¢,
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Relation (3.146) represents the theorem of refraction of the lines of electric field in the
case in which the true (free) electric charge has a volume distribution. In this case, there
are not discontinuity surfaces of the true electric charge distribution. Therefore, on the
separation surface, there is not electric charge distributed with a finite surface density.

The refraction theorem expressed by relation (3.146) is similar, to some extent, to that
of Optics. However, it differs from the latter because relation (3.146) is not compatible
with the total reflection phenomenon, since the trigonometric tangent function occurs
instead of sine function in Optics. Hence, the refraction ratio (3.146) cannot have
negative values like in Optics.

3.12.4. The Relation between the Normal Components of Magnetic
Induction Vectors

Let S, be the separation surface of two insulating media having different magnetic
permeability. Let AS be a portion of the separation surface S;. The dimensions of AS

are assumed very small, hence infinitesimal entities of the first order. The portion AS of
the separation surface will be dressed by a surface £ having the form of a right cylinder
or parallelepiped (Fig. 3.12) the height of which is an infinitesimal of a higher order
relatively to the dimensions of the cross-section AS that may be considered as a plane
surface element. The bases of the parallelepiped that is a closed surface have the same
dimensions like the cross-section. Let the vector quantities B; and B, be the magnetic

inductions at two points very near situated on both sides of the separation surface.

The law of magnetic flux, in integral form, expressed by relation (3.29), will be
applied for the case of the closed surface X. Neglecting the flux through the lateral
surface of the parallelepiped, because its height is much smaller than the dimensions of its
bases, the following relations are obtained:

JB-ds=o0. (3.147)
z
By -(—n;)AS+ B, -m; AS =0, (3.148)
where the vector ny, is the unit vector of the normal to the separation surface S,
oriented from the medium 1 towards the medium 2, hence: n; =—n;, =—n,.
Hence:
n, -(B, - B;)=div, B=0. (3.149)

It follows that at the passage through a separation surface of two media, the normal
component of the magnetic induction is conserved, thus:

B, =B,,, (3.150 a)

B, =B,. (3.150 b)

The last relation expresses the theorem of conservation of the normal component of
the magnetic induction.



The Laws of the Electromagnetic Field 161

B,

Fig. 3.12. Explanation to the computation of the normal components of the vector
magnetic induction at the passage from one medium to another.
The vector B, has been displaced, being brought with its end point to

its starting point for avoiding superposition in the figure.

3.12.5. The Relation between the Tangential Components of the
Magnetic Field Strength Vectors

Let S, be the separation surface of two insulating media having different magnetic

permeability. Also, it will be assumed that the electric current density has finite values on
the separation surface, hence, the electric current is not discontinuously distributed in the
form of a current sheet on the separation surface. In addition, it will be assumed that the
electric displacement has finite values.

Also, let T" be a small rectangular plane curve having each of its long sides on one of
the two sides, respectively, of the separation surface, parallel and very near that surface
(Fig. 3.13). The length of one long side of the rectangular curve, parallel to the separation
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Fig. 3.13. Explanation to the calculation of tangential components of the magnetic
field strength vectors at the passage from one medium to another.
The vector H, has been displaced, being brought with its end point to

its starting point for avoiding superposition in the figure.

surface will be denoted by A/, and the height, parallel with the normal to the separation
surface, will be denoted by A4. The length of A/ is taken small enough for to be
considered as a straight-line segment. The quantity A/ is assumed as an infinitesimal of
the first order, and the quantity A% as an infinitesimal of a higher order.

Let the vector quantities H; and H, be the magnetic field strengths at two points
very close one to the other situated on both sides of the separation surface.

The law of magnetic circuit in integral form, expressed by relation (3.84) will be
applied for the closed curve I' that has a rectangular form (Fig. 3.13). The travelling
direction along the curve I' results from the direction of the unit vectors #; and #, .

The electric flux represented by the surface-integral of the right-hand side of
expression (3.81) of the law of magnetic circuit, is an infinitely small quantity of higher
order, proportional to the height of the rectangle, and tends to zero together with that
height.

By neglecting the line-integrals along the height, because the height A% is much
smaller than the length A/, it follows:
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H,-tAl+H, (-1)Al=0, (3.151)

where the vector quantity ¢ is the unit vector of the tangent to the separation surface
along the side of length A/ of the rectangle. Thus:

t-(H, -H,)=0. (3.152)

It results that at the passage through a separation surface between media, the tangential
component of the magnetic field is conserved:

Hy=H,, (3.153 a)
H,=H,. (3.153 b)

The last relation expresses the theorem of conservation of the tangential component of
the magnetic field strength.

We shall consider the case in which an electric current is distributed on the separation
surface in the form of a current sheet (Fig. 1.12), of linear density J, of direction

perpendicular to the plane of the figure at the points of the trace of the surface S, in the
Fig. 1.12. In this case, the current linkage is J, - A/ and instead of relation (3.152), we
obtain:

t-(H,-H,)=J,, (3.154)
thus:
Hy-Hpy=Js. (3.155)

3.12.6. The Theorem of Refraction of the Lines of Magnetic Field at the
Passage through the Separation Surface of Two Media

Let us consider a separation surface between two isotropic media of different magnetic
permeability and we shall assume that the electric current has a volume distribution.
We can write:

At the passage through the separation surface above, the vectors magnetic induction
and magnetic field strength vary in magnitude and direction, i.e., they are refracted. From
Fig. 3.13, it follows:

By _wHy

tano =——=—", (3.156 ¢)
Bnl Bnl
B H

tana, =2 =H2712 (3.156 d)

n2 Bn2



164 General Theory of the Electromagnetic Field

tanoy, W Hy By

3.156 ¢
tano, B, wyHp ( )
or, by using the conservation theorems (3.150) and (3.153), it follows:
tanoy — py
—tanaz 0 (3.157)

Relation (3.157) represents the theorem of refraction of the lines of magnetic field in
the case in which the electric current has a volume distribution. Hence, there are not
discontinuity surfaces carrying electric current sheets.

3.12.7. The Relation between the Normal Components of Electric
Displacement Vectors and Electric Current Densities

Let us consider the separation surface S,; between two media having different electric

properties, namely different electric permittivity and conductivity. The surface is assumed
carrying no electric current sheet. The very flat parallelepiped surface of Sub-section
3.12.1 (Fig. 3.10) will be considered. For the parallelepiped base of medium 1, bounded
by a rectangular curve, by applying relation (3.79), we can write:

~ oD, ~ oD,
rit;Hl-dl—J(J1+W]-dS—J(Jn1+ -~ st. (3.158 3)
1

Srl Srl

For the parallelepiped base of medium 2, bounded by a rectangular curve, by applying
relation (3.79), we can write:

B oD, B oD,,
F§H2-dl_J(Jz+ ~ j-dS-j(Jn2+ ! st. (.1581)
2

Sr, Sty

The curves I'| and I, that bound the two bases tend to the same curve I' of very
small dimensions placed on the separation surface. The quantities H,-d/=H, -dl and
H,-dl=H,, -dl are equal, for according to relation (3.153), H,, =H,, .

The last two relations (3.158 a) and (3.158 b) yield:

oD oD
J 1 +—n1 =Jn2 + n2 .
ot ot

n

(3.159)

and, as mentioned, the following relation
Hy=Hp,

subsists.
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3.13. THE SI UNITS OF MEASURE OF ELECTRIC AND MAGNETIC
QUANTITIES: ELECTRIC FLUX, ELECTRIC
DISPLACEMENT, ELECTRIC RESISTIVITY, MAGNETIC
FLUX, MAGNETIC INDUCTION, MAGNETIC FIELD
STRENGTH.

3.13.1. The Units of Electric Flux and Displacement

In the SI system, the unit of measure of the flux of electric displacement, also called
electric flux, results from relation (3.14) and it is the coulomb, symbol C, the same as for
the electric charge. From the same relation, it follows that the unit of measure of the

electric displacement (electric flux density) is C/ m? . From relation (3.18) it follows that
the unit of measure of the electric polarization is the same as for the electric
displacement.

3.13.2. The Unit of Electric Resistivity

In the SI system, the unit of measure of the electric resistivity results from relations
(1.108) and (1.109). This unit of measure is given by the ratio of E; and J as follows:

1[E] 1V/m 1V
_— 2 =—1mMm
IJ] 1A/m~ 1A

Ipls =

But in Electrokinetics, the ratio between one volt and one ampere is called ohm,
symbol Q, thus:

I
_V:IQ
1A

Therefore the unit of measure of the electric resistivity is Qm , as follows:

1[p]=1Qm.

3.13.3. The Unit of Magnetic Flux

A definition of the unit of measure of magnetic flux may be given by using the law of
electromagnetic induction in the integral form (3.57):

u — _d_lP
¢ de
In the SI system of units, the unit of measure of magnetic flux is the weber, symbol
Whb.

The weber is the magnetic flux that cancelling by a linear variation after a time of one
second induces in a single turn linked by it, the electromotive force of 1 V.
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Indeed, for the linear variation with time of the magnetic flux, mentioned above, and
shown in Fig. 3.14, it follows:

T dr 1 1

If the variation of the magnetic flux were not a linear one then the electromotive force
induced at any instant, in the turn, would be given by the derivative of the magnetic flux.
In this case, the value of the magnetic flux is more difficult to be determined than in the
case above.

3.13.4. The Unit of Magnetic Induction

In the SI system of units, the unit of measure of magnetic induction is the zesla,
symbol T. A definition of the unit of measure of magnetic induction can be obtained by
using the defining relation of magnetic flux (3.32):

P = j B-dsS.
Sr
In the case of a homogeneous magnetic field, the last relation becomes:
¥Y=B-§,

and if the vector quantity B is perpendicular to the considered surface, i.e., the vectors
B and § are parallel to each other, it results that:

Y=BS.
The fesla is the magnetic induction of a homogeneous magnetic field (i.e., with a

uniform distribution), the flux of which, through a surface having the area of 1m?, and
perpendicular to the lines of the magnetic field, is of 1 Wb .

g 4
N Fig. 3.14. Explanation concerning
the definition of the
Yo~~~ unit of measure of the magnetic flux.
|
|
|
|
|
0 « . t

ls
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3.13.5. The Unit of Magnetic Field Strength

The unit of measure of the magnetic field strength can be obtained by using the
expression of the magnetic field strength at the centre of a circular turn carrying a direct
current:

H=-"
2a

This expression will be established in Sub-section 3.15.2.

In the SI system, the unit of measure of the magnetic field strength is the ampere per
metre, symbol A/m.

Ampere per metre is the magnetic field strength at the centre of a circular turn with the
diameter of 1 m, carrying a direct current of 1 A.

The unit of measure of the magnetic tension and magnetomotive force, in the SI
system of units, is the ampere, symbol A, hence the same unit of measure as for the
electric current intensity.

3.13.6. The Units of Electric and Magnetic Constants

The unit of measure of the electric constant, in the SI system of units, can be easily
obtained from relation (3.6). The unit of measure of the left-hand side of this relation is

that of the product of the quantities £, S and g,, hence (V/ m)m2 ~[80], thus

V-m-[e,]. The unit of measure of the right-hand side of the same relation is that of the
electric charge, thus C. By equating the two units of measure, we obtain:

ool
V m
But in Electrostatics, the ratio C/V is defined as farad, symbol F. Therefore the unit of
the electric constant is F/m .
The unit of measure of the magnetic constant can be easily obtained from relation
(2.27 b). From these relations, it follows that in vacuo:

BZMOH’

where, for the sake of simplicity, the subscript o indicating the reference frame has been
omitted.

In the last relation, the unit of measure of the left-hand side is that of B. The unit of
measure of the right-hand side of the same relation is that of the product of the quantities
H , and p,, hence (A/m)- [Ho]- But, as shown above, namely by the last relation of

Sub-section 3.13.4, this unit of B can be expressed in the form Wb/m?. By equating
the two units of measure, we obtain:
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But in Electrodynamics, the ratio Wb/ A is defined as henry, symbol H . Therefore the
unit of the electric constant is H/m . The same results could be obtained, e.g., by using
relations (3.23), (3.24) and (3.104), (3.105), respectively.

3.13.7. Remark on the Various Systems of Units of Measure in
Electromagnetism

Before the adoption of the International System of Units of Measure, and the MKSA
which preceded it, two systems of units of measure played an important role, having a
scientific value: The Electrostatic System of Units and the Electromagnetic System of
Units [1, Arts. 625, 628].

The Electrostatic System of Units has been based on the definition of the unit of
electric charge according to the Coulomb formula for electric charges in vacuo, with the
constant of proportionality dimensionless and equal to unity. The two charges occurring
in formula are taken equal to each other. Hence the formula will contain only the
quantities: force, electric charge ¢ and a length r .

The Electromagnetic System of Units has been based on the definition of the unit of
magnetic charge (i.e., the fictitious magnetic charge) according to the Coulomb formula
for Amperian magnetic charges with the constant of proportionality dimensionless and
equal to unity. Further on, the formula of the electromagnetic force, like that exerted
between two coils carrying electric currents, including one proportionality constant, has
also been established using the same system of units. As shown in [1, Vol. II, Art. 628],
the ratio between the unit of electric charge in the Electromagnetic System of Units, and
that of the Electrostatic System of Units, denoted by indices uem and ues, has the

dimension of a velocity, and was found to be approximately equal to ¢ =3 x 10" cmys. It
is just the velocity of light in empty space (vacuum) or air. The apparatus conceived and
used by Maxwell for the experimental determination can be found in [4, 372].

The same result may be directly obtained by remaking the calculations concerning
formulae (2.22) — (2.24), taking p, =4 n and dimensionless. Using formula (1.113) there
follows:

1 1 >
— = s o ko=¢"5 CGuem =Guess  Guem]=clGues s
Lo c¢c“4mn
and then we obtain the ratio above.
A combination of the two systems of units, called the Gaussian System of Units, has

also been used [3], [7], [81, [11], [22], [23], [24].

. 1
0=">5 "
-2

3.14. THE LAWS OF ELECTROMAGNETIC FIELD IN THE CASE
OF EXISTENCE OF MAGNETIC MONOPOLES

We shall further examine the modifications occurring in the laws of the theory of the
electromagnetic field, in the case of existence of magnetic monopoles. The existence of
these monopoles has been supposed, but up to now no doubtless experiment has proved
their existence.
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3.14.1. Expression of the Interaction Force between Two
Magnetic Monopoles

The expression of the interaction force between two point-like magnetic charges, i.e.,
monopoles, is assumed to be of the same form as the expression of the interaction force
between two point-like electric charges, hence an expression of the form:

I amdu M2
Fy =—— . 2 (3.160)
4mp "2 "2
or
1 q.m 9 r
Fy Sz 2 (3.161)

- 2
dmpg "> "2

which is the Coulomb formula for magnetic charges in the case of empty space (i.c.,
vacuum). The quantities introduced by relation (3.160) are called Amperian magnetic
charges, whereas the quantities introduced by relation (3.161) are called Coulombian
magnetic charges. Between these quantities we have the following relation:

Im =Ro 9 - (3.162)

If for the constant of the right-hand side of relations (3.160), (3.161), other value were
adopted, different units of measure would be obtained for the electromagnetic quantities.

Analogously as for the electric charges, we can consider volume distributions of
magnetic monopoles with the volume density of the magnetic charge p,, or p,,,
respectively, including the suffix M or m. Also, we can consider magnetic charge with
surface distribution with the surface density p,,, or py, , and line distribution with the
line density p;, or p,, . The monopoles can be at rest or in motion.

Similarly as in the case of electric charges, the following force produced by any point-
like magnetic charge ¢,,; placed at any point, called source point, is acting on the point-

like magnetic charge ¢,, placed at another point, called field point or observation point:
F,=ayB,=9,H,. (3.163)
If we denote by 7y, the vector having its origin at the source point and its end at the
field point (observation point), it follows:

I gy mo 1 g, np
"odnpg' w3 na ATe ny Mo @3.164
BmZMOHm' (3165)

3.14.2. Electric Field Produced by Moving Magnetic Monopoles

We shall consider the same reference frames K, and K, of Sub-section 2.3.2, the
latter moving at the velocity v;, with respect to the former. At any fixed point, 4, in K|,

there is a point-like magnetic charge ¢,,; (the subscript 1 of g,,; has no relation with the
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subscript 1 of K), and another magnetic point-like magnetic charge ¢,,, at any point P,
moving at the velocity v,, relatively to K ,. We shall consider the magnetic field

strength produced by ¢,,; at the point P, in empty space.

We shall remake the calculations of Section 2.4, but instead of relations (2.18 a, b, ¢)
which are based on formula (1.112), we shall use the relations based on one of formulae
(3.160) or (3.161). In order to distinguish the field state quantities due to the magnetic
point-like charge, those quantities will have the suffix m. We obtain:

1

D, =¢,E,,; D,, :—C—zvloxHom; (3.166 a, b)
1
Fom = quom G| Voo X c_2v1° XHom . (3.167)

3.14.3. The Expressions of the Laws of the Theory of the Electromagnetic
Field in the Case of Magnetic Monopoles

We shall make derivations similar to those for expressions: (3.5 b), (3.27), (3.47),

(3.68). The calculations include: div,pgH,,,, curl, H, , %Dom, curly D, , in K.

o

The field state quantities obtained from the last relations for magnetic charges will be
added, side by side, with those previously obtained for the electric charges, as follows:

b,=bD,+D,,; E,=E,+E,,; B,=B,+B,,; H,=H,+H,,. (3. 168)

It results that the form of relations (3.5 b) and (3.27) is not modified, while relations
(3.27) and (3.68) become:

. B
le0 Bo =Ho Pyors Curlo Eo :_Jmago’ Jmago :a_to"'uo Pvort Vim> Ym =Vio» (3.169 a-d)
o

where J,,, may be called the magnetic current density.

3.15. APPLICATION OF THE BIOT-SAVART-LAPLACE FORMULA
TO THE CALCULATION OF THE MAGNETIC FIELD
STRENGTH

3.15.1. Expression of the Magnetic Field Strength Produced by a
Thread-Like Rectilinear Conductor Carrying a
Constant Electric Current

Let us consider a rectilinear thread-like conductor of length / and constant cross-
section s, carrying an electric current of intensity /i shown in Fig. 3.15, in empty space.
In this case, the magnetic field strength is given by relation (2.48). It follows:
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1 idlxr
H(P):H:_j T (3.170)

The vector H at the point P is perpendicular to the plane determined by the straight-
line segment and the point P, and oriented so that it enters into the plane of the figure.
We shall consider the modulus of the vector H . According to the symbols of Fig. 3.15,
we have:

1 i(dZ)rsin(dZ,r)

dH(P)=dH =— ,
(P) - 3 (3.171)
but
sin(dl,r)zsin[n—(%—e)]zcose (3.172)
and
a a
[=a-tan0; d/= do; r= . 1
cos’ 0 cos 0 (3.173)
It follows:
)
! 2o cos {
H=—17/ | £ de= i(sin®, +sin@, ).
47 a’ 41a ( ! 2) (3.174)
cos? 0
-0
For an infinitely long conductor, i.e., b — o, we have:
T b
0, =—; 0, =—. 3.175
155 2=5 ( )
Fig. 3.15. Explanation to the r

calculation of the magnetic field

strength produced by a rectilinear

thread-like conductor carrying an
electric current.
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It results that:
i

H= (3.176)

2na

The same result can also be obtained directly, by applying the magnetic circuital law.

The direction of the vector magnetic field strength follows from the Biot-Savart-
Laplace formula. From this expression, without performing computations, we verify that
the vector H at the point P is perpendicular on the plane determined by the rectilinear
conductor and the point P like in Fig. 3.16, and situated so that it lies in the plane of that
figure. From geometrical reasons of symmetry, the lines of magnetic field are circles with
their centre on the rectilinear thread-like conductor and perpendicular to it.

We shall apply the magnetic circuital law for a curve I' that is just the magnetic field
line passing through the point P as shown in Fig. 3.16. It follows:

§H~d1= jJ-ds.
I

(3.177)
Sr

The vectors H and d/ are parallel (as shown in the figure), J (oriented like i in the
figure) and d.S are also parallel (both have the direction of the arrow that indicates in the
figure the sense of the current i ). The modulus of the magnetic field strength is constant
along the same line of field. The current i passes only once through the surface S.
Therefore:

H2na=i, (3.178)
whence:

(3.179)

Fig. 3.16. Explanation to the calculation
of the magnetic field strength produced
by a rectilinear thread-like conductor
carrying a constant electric current, by
using the magnetic circuital law.
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3.15.2. Expression of the Magnetic Field Strength Produced at a Point on
the Axis of a Circular Turn Carrying a Constant Electric Current

Let us consider a circular turn constituted by a thread-like conductor, of constant
cross-section, carrying a constant electric current. Let a be the radius of the turn and i
the intensity of the electric current. For calculating the magnetic field strength produced
by that current, relation (2.48) will be used.

The vector quantity d H of Fig. 3.17 is perpendicular to the plane determined by the
position vector r and the vector quantity d/, according to the Biot-Savart-Laplace
formula (2.48).

By virtue of geometrical reasons, it results that the vector quantity H has the same
direction as the turn axis, because the perpendicular components to this axis cancel each
other. Also, according to Fig. 3.17, it follows:

|dH |=|dH,|sin6. (3.180)

Formula (2.48), in this case, can be written in the form:

i |dl><r| .
=379 —5—sinb (3.181)
r
|dl><r|=(dl)rsin§ . (3.182)
According to Fig. 3.17, it results that:
dl=ado, (3.183)

Fig. 3.17. Explanation to the calculation of the magnetic field strength
at a point on the axis of a circular turn carrying a constant electric current.
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a

V=

. 3.184
sin© ( )

After performing the substitutions and the calculation of the integral, it follows:

2n
i ad(p . 3 i .3
=— | —=sin"0=—-sin" 0. 3.185
41 a2 2a ( )
0

H

In particular, the magnetic field strength at the centre of the turn is:
. i
H:2—sm —=— (3.186)

The magnetic field strength produced by a circular turn carrying an electric current, at
a point that is not placed on the axis of the turn, can also be calculated by the relation
(2.48). In this case, elliptic integrals occur in calculation [15, p. 30].

3.16. APPLICATION OF BOTH FORMS OF THE LAW OF
ELECTROMAGNETIC INDUCTION FOR MEDIA
AT REST AND IN MOTION

3.16.1. Calculation of the Electromotive Force Induced in a Coil in
Rotational Motion in a Uniform Magnetic Field

A typical example of application of various forms of the law of electromagnetic
induction is the calculation of the induced electromotive forces.

We shall calculate the electromotive force induced in a coil in rotational motion in a
magnetic field having the magnetic induction uniformly distributed in space. Firstly, let
the coil be constituted by a single turn.

Let

B=B,,sin(o1+7,), (3.187)

be the expression of the magnetic induction that varies with time, in a sinusoidal form,
with the angular frequency ;. The considered configuration, composed of the inductive

pair of poles that produces the magnetic field and the turn in rotational motion, is shown
in Fig. 3.18. The turn is in rotational motion, about one of its symmetry axes, with an
angular velocity (speed) o . The sizes R and / of the turn are shown in Fig. 3.18.

The electromotive force induced in the turn can be collected by a system of rings and
brushes. We shall denote by I' a curve taken along the conductor (wire) of which the turn
is made.

The law of electromagnetic induction for media at rest will be utilized. The reference
frame will be taken fixed to the turn in rotational motion (Fig. 3.18 a). In accordance with
relation (3.118), we can assume that in the adopted moving reference frame, the magnetic
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Fig. 3.18. Explanation to the calculation of the induced
electromotive force in a coil in rotational motion.
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induction has the same value as in the reference system considered at rest. We can
arbitrarily adopt the travelling direction along the curve I', and the direction of the
positive normal to the surface S will be associated according to the right-handed screw
rule. The angle determining the initial position of the turn has been denoted by 7y, .

The magnetic flux linked by the turn is:

¢®=2R/Bcosa, (3.188)
oa=mt+7, (3.189 a)
‘I’z(pz(I)Msin(o)lt+y1)cos(03t+yo), (3.189 b)
®,, =2RIBy,. (3.189¢)

By using relation (3.50), it follows:

e=u, =§ E -dl=—d—\P= -0, Dy, cos(ml t+y1)cos(c0t + y0)+

v ds (3.190)
+o®,, sin (o, 7+, )sin (o7 +7,).

Further on, we shall use the law of electromagnetic induction for moving media. The

reference frame will be considered fixed to the inductive poles (Fig. 3.18 b).
By applying relation (3.134) to this case, it follows:

ezue=§E'-dl=—Ja—B-dS+§ (v, xB)-dl=
r 5 ot r

=— [ By cos (o 1+ )cos (ot +7o)d S + (3.191)
Sr

+ Iv, B,y sin (o, 7+ 7y, )sin (w7 +v,)d!

r
or
e=u,=—0; By, Scos(oo] t+y1)cos(c0t+y0)+
+2v, By, Isin(o, 7+, )sin (o7 +7v,), (3.192)
where
S=2RI; vV, =0R. (3.192 a, b)

If the coil of Fig. 3.18 had w turns instead of one turn, then all the induced
electromotive forces would be w times greater.

From relation (3.134), it follows that the induced electromotive force (e.m.f.) has two
components: The first is a transformation component and the second is a moving
component (in this case a rotation component). In Fig. 3.18 b, the moving component of
the electric field strength has been denoted by E, =v, x B. Also, from Fig. 3.18 b, it
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follows that, in the front parts of the coil, the vector of the moving component of the
electric field strength E, is perpendicular to the conductor, hence:

E,-dl=(v,xB)-dI=0, (3.192 ¢)
so that it does not contribute to the electromotive force.
3.16.2. Calculation of the Electromotive Force Induced by the
Rotation of a Magnet about Its Axis

Another typical example of application of the law of electromagnetic induction is the
calculation of the electromotive force induced between two points of one cylinder of a
material with magnetic and conducting properties (permanent magnet), and which turns
about its axis.

>

Fig. 3.19. Explanation to the
calculation of the electromotive
force induced by the rotation of one
permanent magnet in the form of a
cylinder.




178 General Theory of the Electromagnetic Field

The corresponding configuration is shown in Fig. 3.19. As it can be seen in Fig. 3.19,
the two points C and A are situated one on the axis of the cylinder, the other on one of
its generating straight lines. The electromotive force induced between the two points can
be collected by a system of sliding contacts.

Let Q be the angular velocity of the rotational motion, and r the cylinder radius. We
shall consider a reference frame at rest relatively to which the cylinder is in rotational
motion and a moving reference frame fixed to the cylinder. At any instant, we consider a
closed curve composed of a portion CO along the cylinder axis, a radius OA and a line
that closes along a conductor placed in air between the two points 4 and C .

At any point of the reference frame at rest, the magnetic induction does not vary. In
this case, according to formula (3.134), it follows:

— 0B 3
e=u, = § E dl__JEdS+ §(vr xB)-dI= § (v, x B)-dI, (3.193)
r r r
St
where v, =Qr . If the magnetic field is assumed to be uniform, it follows:
1 >
e=u, =—Qr° B=v, g ' B- (3.194)

After the discovery of the law of electromagnetic induction (examined in Sub-section
3.5.4 and Section 3.11), many discussions took place, especially in the 19" century,
relatively to the possibility of interpreting the phenomenon of electromagnetic induction,
in the case of a right circular cylindrical permanent magnet which turns about its axis as
being determined by the fact that the lines of magnetic field turn together with the
magnet. According to the mention of Section 2.5, that the lines of field are only an
auxiliary notion and not material forms, such an interpretation is not justified.

3.17. ELECTRODYNAMIC POTENTIALS

The general equations of the electromagnetic field in local form, established above,
are:

0B
curl E =———,

- (3.195 a)
divD=p,, (3.195 b)
D=¢, E+ P, (3.195¢)

D
cur1H=J+aa—t, (3.195d)
divB =0, (3.195 ¢)

B=p,H+M;. (3.195 f)
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The equations above are called the equations of the theory of electromagnetic field for
media at rest or the Maxwell equations.

In many cases, for solving this system of equations, it is convenient to introduce
certain substitution functions namely: Electrodynamic scalar potential and vector
potential, respectively. This introduction is not arbitrary, it results from the examination
of the equations above. Concerning the fifth equation, it can be remarked that the
divergence of any vector that is a curl of a field vector is always zero. Hence:

div B = div (curl 4)=0 (3.196)
and

B =curl 4. (3.197)

The quantity A is called vector electrodynamic potential.
From the equation (3.195 a), it follows:

0B 0 0A
1E +—=curl E + —curlA=curl| E+— |=0.
cur Y cur Y cur cur [ Fp j (3.198)

In the last equation, the derivative operator with respect to ¢, and the operator curl that
contains the derivatives with respect to co-ordinates can be replaced one by the other,
because the two operators refer to different variables.

Concerning the last equation, it can be remarked that the operator curl of any vector
that is a gradient of a scalar field is always zero. Hence:

A
curl(E+%j:curl(—gradV):0. (3.199 a)
It follows:

0A
E+—=—gradV (3.199 b)

ot

and
0A

E =—gradV — Y (3.200)

The quantity V' of the last relation is called scalar electrodynamic potential.

It is worth noting that in relation (3.199 a) we have introduced the sign minus like in
the case of potential produced by point-like charges at rest. Indeed, if the state quantities
do not vary with time, the relations (3.200) and (1.119) must coincide.
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3.18. THE SCALAR AND VECTOR ELECTRODYNAMIC
POTENTIALS PRODUCED BY ONE POINT-LIKE ELECTRIC
CHARGE MOVING AT CONSTANT VELOCITY

Let K, be a reference frame assumed at rest, K; a moving reference frame with
respect to the previous one and a material point, with a point-like electric charge ¢,
fixed in the reference frame K, at its origin. The velocity of the reference frame K, and
that of the point-like electric charge g, , fixed in the same reference frame, is assumed to
be constant v;, =iv,,, =const. The medium will be considered empty space (vacuum).

The electric field strength produced by the point-like charge ¢, at any point
P(xl Py V1P 21 P) in the reference frame K is:

Ep= ps
1P 4re, ’”1313 1P (3.201)
1 q1 x
Epy :47ts ) P 3
0 —
(fo + i+ zfp)z (3.201 a)

Xip =0 (xoP ~—Vio to);

Eyp = [ G Ve
y 3
4ne el
0 x2 + yi + 25 )2
1Pt YVip T Z1p (3.201 b)
Yip =Yop 5
Epp. = [ 91 Z1p
‘ 471:80 é ’
(xlzP + Yip + Z12P)2 (3.201 ¢)
ZIP = ZoP -

The electric field strength produced by the same point-like charge g, at the same

point P(xop, Vop> zop) in the reference frame K, according to relation (2.21), is:
According to relation (2.26), the magnetic induction will be:

Box =0,
(3.203 a)
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I 1 o1 Zip Vi 1

BOy :—c—zﬂ ) ) ) é 80 s (3203 b)
(le +Vip +Z1p)2
B _ L1 @i e Vi L
oz cz 4n 3 €0 (3203 C)

2 2 2
(le TYVip Tt ZIP)2
According to expressions (3.203 a, b, c), it results that, in this case, the quantity B,

has components only along the O,y and O,z, axes. According to relation (3.203 a) and

(3.197), we can write that the vector potential 4 has a single component, namely along
the O, x - axis. We obtain successively:

B, =curl, A =curl, (i AO); (3.204 a)
04 04
B, =0; Boyzaz"; Boz=—ay°; (3.204 b)
o o
1 1 Ao gV 1
A =—__ .02 ox ° 3204 ¢
P (3.204 ¢)

At the initial moment, both reference frames are supposed to coincide. The point-like
charge ¢, is fixed at the origin of the reference frame K. The observation point denoted
by P is fixed in the reference frame K. After a time 7., the origin of the reference
frame K; will be on the O,x,- axis at the distance v, 7, from the origin of the
reference frame K. The distance between the point-like charge fixed at the origin of the
reference frame K, and the point P marked in the same reference frame will also be
modified.

Let r, be the distance between the point-like charge at the initial moment and the
point P marked in the reference frame K. Also, let 7, be equal to the time necessary

for the field wave starting from the material point with a point-like charge that initially is
at the origin, to reach the point P.
Hence, we can write:

7

22 2 2
t, =7°, Yo =Xsp+Yop +Zop - (3.205)

At the same time, we can write the relations:

Xip = G (Yop = Viar 1) (3.206 a)
1

rip =02, (cop ~viae fo * + ¥2p 42302 (3206 b)
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1
2)(..2 P
=0, _xoP _2v10x XoP to + Viox to +(1_B )(yoP +ZOP)] 2=
_ ) ) | (3.206 ¢)
2 T V1 2 WM 2 2 5
=Qi| Ho _2v10xx0P_0+ (;x Ty — (;x (y0P+ZoP):| 2=
c c c
rooove L
2 1 2
=0 % _2vloxxoP_0+ (;x XoP 2'
c c
Hence:
271
2 Vi, T v, T > Vi, - T
Fip = Oy | e =27, 20 +[ lo j 2:0%(%— lo j (3.207)
c c c
Therefore, relation (3.204 ¢) becomes:
1 1 v 1
A =— NP0
41 62 - _vlo T, g (3.208)

From the expression (3.200) of the electric field strength in terms of the scalar and
vector potential, we obtain:

0A
E, =—(grad, Vo)x—( at"j ; (3.209 a)
o Jx
0A
E,, = —(grad, Vo)y; ((%OJ =0; (3.209 b)
oy
0A
E,. =—(grad, V,)_; ( ato] =0. (3.209 ¢)
0 /z

The expression of V', can be obtained easily from relations (3. 209 b, c):

1 oqy 1 o,q1y
—(gradOVo)y=E0y=4 R = lo TP (3.210 a)
TEy 1p TEg Hp
It follows:
1 z 1 a z
~(gradyl ). = Eop == B 5p _— Ziofifor (3210 b)
TESO np 47[80 np

The relations (3.210 a, b) yield:
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ypo_ L o
A .
Are 1 3.211
me L ( )
lo
It follows:
yo-_ L 4
0 dme, Vi - T (3.212)
l"O—
c

yo_1 4@
4mg, Vi Ty (3.213)
VO—
C
gyt ave 1
4 o2 Vio Ty & (3.214)

The last two relations represent the expressions of the scalar and vector
electrodynamic potential, respectively, at any observation point, also called field point, in
empty space (vacuum).

The field wave starting from the point-like charge is propagated with the velocity c.
Let the point-like charge be at any point M at the moment of observation. The vector r,
in formula above has its end at the observation point P, but its origin is not at the point
M at which the point-like charge is at the same moment but at the point at which the
point-like charge was at a previous moment, say N . In the calculation above, this
previous point N was chosen at the origin. The distance from the point N to the point
P is equal to the distance covered by the field wave during the time necessary to the
point-like charge for moving from the point N to the point M . Therefore the
perturbation at point N manifests at any point P not at the same moment, but later, and
for this reason, the potentials obtained above are referred to as retarded potentials.

The scalar and vector potential above, produced by a moving point-like charge are
also referred to as LIENARD-WIECHERT potentials.

3.19. THE SCALAR AND VECTOR ELECTRODYNAMIC
POTENTIALS PRODUCED BY ONE POINT-LIKE ELECTRIC
CHARGE MOVING AT NON-CONSTANT VELOCITY

Let us consider a set of two material points, with the electric charges ¢ and ¢,
namely point-like electric charges, in the same inertial reference frame, say K,. We
suppose that the charge g has the velocity v,, =v, and the charge g, has the velocity
Vi, =iV, =v;. Firstly, we shall suppose that the point-like charge that produces the
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electromagnetic field is moving at a constant velocity v,. The equation of motion of a
material point of inertial mass m , with the electric charge ¢ , in the electromagnetic field,

giving the expression of the force acting upon the material point, established for the case
in which v, = const, is:

d
F=—(mv,)=q(E+v, xB) (3215 )
or
F=%(mvr)=q{(—gradV—%—fJ+vrxcurlA}, (3.215b)

where V' and A are the retarded electrodynamic scalar and vector potentials, also called
Liénard-Wiechert potentials produced by one moving point-like electric charge that we
could term source electric charge. As shown above by relations (3.213) and (3.214), the
expressions of these potentials at an observation (field) point, in the case in which the
source charge is moving with constant velocity, can be brought to the form:

V=41 e AZZ_O' e 3216, b
nE r—vl r T r—vl r (3. a,b)
C C

where r is the vector having its origin (source point) at the point N , as explained after
relation (3.214), and its end at the observation point (field point) P, at any moment 7.
Therefore, the quantities J and A of the left-hand side are given at any moment ¢ by

the point-like electric charge ¢, considered at the position it had at the moment ¢ ——.
C

The forces acting upon a moving point-like charge ¢ can be obtained from the
Lagrange equation, where the generalized co-ordinates s; are used:

4oL Ot 3217
d¢ 6Sk 5Sk . ( ) )

For a system of » material points that contains & connection conditions, there are
f =3n—k equations. Let the Lagrange function be adopted in the form:

L=T-U=T—-qV+q(v,-A), (3.218)
with
V2
T=-mgc? |I-—. (3.219)
C

In the case above, the Lagrange function of the system of material points with electric
charge (3.218) is equal to the difference of two terms. The first one is the Lagrange
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function 7 of the material point with the electric charge ¢ when the electromagnetic
field is zero. The second one is the supplementary Lagrange function U of the same
material point with the electric charge ¢ due to its interaction with other electric charges.

The quantity 7' represents, in the case of small velocities, the kinetic energy, apart
from a constant, in other words, within to a constant. This remark can be obtained as a
result of the expansion in McLaurin series of the root square. The quantity U represents
the potential energy. These two terms do not depend on acceleration.

It can be added that, instead of the previous expression of the quantity 7 , also another
expression could be used, for example:

2
T =myc> 1—1/1—2—’2 : (3.219 a)

however, the further results will not be affected.

Now, we shall consider the case in which the velocity v, of the point-like charge ¢,
that produces the electromagnetic field is not constant with time. The Lagrange function
is assumed to not depend on acceleration. As a consequence, in the case in which the
electric charge ¢, that produces the electromagnetic field has a variable velocity v,, the
expression of the term U of relation (3.218) remains the same as in the case of a constant
velocity above. Therefore, the expressions of the quantities /' and A4 (3.216 a, b) remain
valid in this case.

It is possible to show that for given values of the quantities V' and A, the force acting
upon a moving charge in electromagnetic field depends only on the derivatives of these
quantities, regardless of the form of variation of v,.

The derivation of this force can be achieved by adopting, under a certain modification,
the derivation of the work [50, Vol. I, Ch. V, Par. 60]. The modification is constituted by
the utilization of another expression of the term 7 and by the consideration that the
inertial mass of the point-like charge ¢ is depending on its velocity.

We shall consider only the system of co-ordinates of the reference frame K, .

Therefore, no index will be used for indicating the reference frame. The Lagrange
equation, in the known form is:

A[OL) O o) (k=1,2,3)
dt\0x, ) 0x, (3.220)

X=X, Xp =), X3=2Z,

where the over-script dot denotes the derivative.
We shall denote by p,,, the component of the momentum p,, corresponding to the

co-ordinate x; . The components of the momentum are given by the known relation:

mk = < > k:1,2,3;
Pk 0xy ( ) (3.221)

X1 =X, Xp =), X3=2Z.
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From relations (3.218), (3.219) and (3.221), we obtain the following partial derivative:

I .
Dok :—a. :moczx—k-iz+qu =m5ck +(]Ak; (k=1,2,3);

1
X - C
1—r
2
C

x1=x; X2=y, X3:Z;

V=iV + v, kv, =ix+jx; +kxy=ix+jy+kz.

(3.222)
The derivative of the momentum is:
dp, _d . d 4,
D, = =— +g——=
T PG by
:i(mx]c)-’_q aAk_'_@Ak‘dxl+8Ak'dx2+6/1k‘dx3 , (3223)
ds ot 0x, dt 0x, dt 0Oxy dt
(k=1,23);  x=x; x,=y; x=z.
In the case in which k=1 then, x; =x, 4; = 4, and we obtain:
dp d . dA
D =—" = (mx)+ L =
Tode dt( Jra dt
(3.224)
d : 04, .0A, .0A, .0A,
=—(mx)+q T i SR R AN .
d¢ ot ox oy Oz
From the Lagrange equations (3.220) and (3.221), we obtain:
dp k oL
— T =—— (k=1,2,3).
it "o ( ) (3.225)

We shall assume that the term 7 does not depend on the quantities of the form x; but

only on X, . In the case in which k£ =1 then, as above, x; =x, 4, =4, and we get:

dp oL oV .04, .04, .04
D =—"=——=—g—+¢g| x—>+ + z . 3.226
At ox  Tox q( ox ox | ox (3.226)
By equating the right-hand sides of relations (3.224) and (3.226), we obtain:
d . 0A, .04, .04, .0A,
—(mx)+q + X +y +z =

d¢ ot 0x oy 0z

(3.227)

ov 04, .04, 04,
gl x +y +z .
ox o0x ox
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The force is:

i(mx)z oV o4 (04, 04| .(04, 04, 3908
d N 5x ot 7Y ax oy oz ox )| (3.228)

By adding up, side by side, the relations for the three axes, it follows:

%(mv,)zq(— gradV—%—fJ+q[v, xcurlA]. (3.229)

Therefore, in accordance with relations (3.200) and (3.197), we have the expressions:

A
E=—gradV—%—t; B =curl 4; (3.230 a, b)

where V' and A are the expressions of retarded electrodynamic potentials, given by
relations (3.213) and (3.214) which have been considered to be valid for any variation
with time of the velocity v,. The expressions of the quantities £ and B given by the
last two expressions (3.230 a, b) and (3.228) yield relation (2.30) which represents the

expression of the force acting upon a point-like electric charge in electromagnetic field.
Therefore, there are reasons to assume that the laws established for a constant velocity v,

may also be considered valid for a varying velocity.
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4. THE ENERGY OF THE ELECTROMAGNETIC FIELD

We recall that, the energy of a physical system in any state, with respect to one
reference state, arbitrarily chosen, is the sum of the equivalent work of all actions exerted
upon the other systems, when the examined physical system passes, in any manner, from
the state under consideration to the reference state.

Also we are recalling that the equivalent work of any action is the work necessary to
produce the respective action, or the work that would be obtained by suppressing the
respective action.

The energy satisfies a conservation law as follows. The same value of the energy of a
physical system in the actual state (present state), with respect to the reference state, will
be obtained, regardless of the sequence of transformations undergone by the physical
system when passing from the reference state to the actual state (final state). Therefore,
the energy of a physical system can be expressed only in terms of the state quantities that
determine the actual state (final state) and the reference state.

4.1. THE EXPRESSION OF THE ENERGY OF THE
ELECTROMAGNETIC FIELD. POYNTING VECTOR.

We shall establish the expressions of the energy of the electromagnetic field in terms
of macroscopic quantities.
From a macroscopic point of view, let us consider the electric charge having a volume

distribution with the volume density p, . The set of particles of the volume element dv is
charged with the quantity of electricity dg =p, dv. We consider that the centre of mass
of the set of particles electrically charged of the volume element is moving at the velocity
v, in the electromagnetic field of a domain X of Fig. 4.1. The macroscopic state
quantities of the field will be denoted by E and B . The force acting upon the volume
element containing the electric charge dg is given by relation (2.30):

dF =(dq)(E, +v, xB), (4.1)
where
E,=E+E;, (4.1 a)
dg=p,dv, (4.1b)
and

dF =(E; +v, xB)(p, dv). (4.2)
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dF =(dg) (E;+v,%B)

Fig. 4.1. Explanation concerning the
derivation of the expression
of the energy of electromagnetic field.

The solenoidal component of the electric field strength at a point and the magnetic
induction, are produced by the electrically charged particles in motion relatively to the
respective reference frame.

The work done by the field forces, in the case of the displacement of the system of
particles with the charge d ¢, along the line element d/, in the time interval dz, is:

d*W=dF-dl=dF v, dr. (4.3)
From relations (4.3) and (4.2), if follows:
d*w=p,v,-(E, +v, xB)dvd? (4.4)
or, after performing the calculations:
d*W=p,v,-E,dvdr, (4.5)

because the product of vectors v, x B and v, is zero, the vectors being perpendicular to

each other, thus producing no work.
Taking into account relation (4.5), (1.18 c¢) and (1.70), it follows:

d*W=J-E,dvdt=J-(E + E;)dvdt. (4.6)

The work done for the whole volume is:

AW = [(J-E;)dedv= [(J-E)dedv+ [(J-E,)dedv. 47
VZ VZ VE
Relation (3.86) yields:
oD
J=curl H - ==,
cur Py (4.8)

From relations (4.7) and (4.8), it results that:
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oD
dw = E-curlH-FE-—+J-E; |dtdv.
J( ) o1 J ' (4.9)

Vs
Taking into account the vector relation:
E-curlH=—div(ExH)+H -curl E,

it follows:

dw =- jdiv(ExH)dtdv+J (H-curlE—E-%—?+J-Einzdv.

2 (4.10)

Vs
Taking into account relation (3.53):

B
curlEz—a—,

ot

we have:

AW =- jdiv(ExH)dzdv—J (E-a—D+H-6—Bjdtdv+ [(-E;)drdv,
Vs Vz

ot ot (4.11)

Vs

or, performing the transformation of a volume integral into a surface integral (Gauss-
Ostrogradski theorem), the preceding relation yields:

aw oD 0B
E:—zj(ExH)-dS—J (E-E+H-EjdV+V£(J'Ei)dV- (4.12)

Vs
In the case of an isotropic and linear medium, we have the relations (3.24), (3.105):
D=¢tE; B=pH,
and relation (4.12) gets the simpler form:

aw
dt

:—ZI(EXH)'dS—%j (%E-D+%H-B)dv+VJ.(J-E,-)dv. @.13)
z

Vs
In relations (4.11), (4.12) and (4.13), the following symbols will be used:
II=ExH, (4.14)

1
We:JEE'DdV (4.15 a)

153

or



192 General Theory of the Electromagnetic Field

D
W,=| [E-dDdv, (4.15b)
Vs Dy

W,,,:J%H-de

(4.16 )
Vs
or
B
Wo=| [H-dBdv, (4.16b)
Vs Bo
Wem =Wo +W,,, (4.17)
b
Using the symbols above, relation (4.13) becomes:
daw ow, ow,
—=—|-d5-————"+ |(J-E;)dv.
dt i'. ot ot VJ.( (v (4.19)
z
. . daw . .
By equating the expressions of a1 from relations (4.7) and (4.19), it follows:
ow, ow,
J-(J'E)d\/:—J.H-ds— o1 —7 (4'20)
Vs Vs
or
ow, oW,
[ E)dv——-- n_ W p. (4.21)
s ot ot ds

In the relations above, only macroscopic quantities occur.

In the case of bodies moving with any velocity v, relative to the reference frame, the
quantities J and E of relation (4.20) can be replaced by using relation (3.124) and
(3.118). Hence, it is possible to highlight terms of the form (J x B)-v, dv that represent

the work done in the unit of time, by the force produced by the magnetic field and which
acts upon the volume element dv. This work is different from zero if vectors J and v,

are not in the same direction.

In the case in which microscopic quantities are considered, relations of the same type
will be obtained, with the mention that the macroscopic quantities have to be replaced by
the microscopic ones. If no special mention is made, it will be assumed that the
macroscopic energy is considered.

If the domain contains the whole space, and the electric charges, at rest or in motion,
that produce the electromagnetic field are at finite distance, then the state quantities on
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the surface X at infinity are zero and the term given by relation (4.18), in relation (4.19),
vanishes. The simple case in which the strength of the impressed electric field is zero,
hence E; =0, will be considered. In this case, relation (4.19) represents the law of

energy conservation for the physical system of domain X, which can be expressed as
follows. The work of the forces produced by the electromagnetic field, done in the unit of
time, is equal to the decrease of the energy of the electromagnetic field, given by relation
(4.19), in the unit of time.

In the case in which the strength of the impressed electric field is different from zero,
the relationship of the sentence above has to be correspondingly completed.

The energy of the electromagnetic field W,, contains a term W, that contains only

state quantities of the electric field, given by relation (4.15), and a term W,, that contains
only state quantities of the magnetic field, given by relation (4.16). For this reason, the
first term W, of relation (4.17) is called energy of the electric field, and the second term

w,, of relation (4.17) is called energy of the magnetic field.

It is interesting to be added that if the energy of electromagnetic field of any domain is
expressed in two inertial reference frames, the obtained values are not equal each other
[11, p.412].

As previously mentioned, the expressions of the macroscopic energy of the
electromagnetic field and of the microscopic energy have the same form. As shown in
Sub-section 1.6.6, by calculating the average values of the microscopic state quantities of
the electromagnetic field, the macroscopic state quantities of electromagnetic field will be
obtained. In the expression of the microscopic energy of electromagnetic field, the
product of two microscopic quantities occurs. Hence, it is no more possible to state that,
in general, by calculating the average value of this product, the above expression of the
energy in terms of the macroscopic state quantities will result. For this reason, in general,
the macroscopic energy will not be obtained by calculating the average value of the
microscopic energy.

The relation (4.19), for E; =0, expresses, generally, the law of energy conservation

of the physical system of the domain X, which can be enounced as follows. The decrease
of the energy of the electromagnetic field in the unit of time is equal to the work done by
the forces produced by the electromagnetic field in the unit of time, plus a supplementary
term that depends only on the state quantities on the domain boundary surface, and which
represents the radiated energy through the surface in the unit of time.

The vector IT = E x H is termed flux density vector of the electromagnetic energy or
Poynting vector.

According to relations (4.15 a), (4.16 a) and (4.17), the volume density of the
electromagnetic energy (for linear media) is:

W =%(E-D+H-B). (4.22)

The quantities

P = [J-Edv,
Vs

(4.23)
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and
drdv

p; J-E (4.24)
represent the power and the volume density of the same power transferred to the bodies of
the domain, due to the action of the forces of electromagnetic nature of the field.

The relation (4.21) represents the theorem of electromagnetic energy, for linear media.
This theorem can be expressed as follows.

The decrease speed of the electromagnetic field energy of a domain bounded by a
closed surface, plus the power delivered by the sources of the impressed electric field is
equal to the sum of the power transferred to the bodies contained inside the domain (due
to the work of the forces of electromagnetic nature) and the flux of electromagnetic
power through the domain boundary surface.

It is no possible to give an exact and general expression of the macroscopic
electromagnetic energy in the case of substances with irreversible electric or magnetic
polarization because, in this case, the polarization process is accompanied by local non-
electromagnetic transformations.

The case of media containing substances with reversible polarization will be
considered. Also, it will be assumed that E; = 0. In this case, relation (4.11) yields:

dW =~(d1) [(ExH)-dS— [E-dDdv— [H-dBdv.
p) Vs Vs

(4.25)

The last two terms of the right-hand side of relation (4.25) represent the increase of the
internal energy if the transformations take place at constant entropy, but it is more
convenient to consider transformations at constant temperature; then the respective terms
represent the increase of the free energy (12, tome 3, p. 222).

From relations (4.25) and (4.7), the following two relations can be obtained:

Lo L) L) (o)
Vs
J'J.Ed\,:_jﬂ.dS—(;i IE-dD+ _[H-dB dv, (4.27)
e 5 L) Lso) (50) '
Vs

where the corresponding integrals are calculated starting from the values that characterize
the reference state denoted by S, .

The reference state for the electromagnetic energy is generally characterized, by the
values zero of the state quantities of the electromagnetic field.

In order to bring a physical system from this reference state to another state (present
state or actual state, i.e., final state) that differs from the reference state only by the
quantities of the local state of the electromagnetic field, it is necessary to do, from the
exterior of the system, actions, the equivalent work of which must be equal to the
electromagnetic energy in present (final) state.
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In accordance with the concept of field, the electromagnetic energy is distributed
throughout the space with a certain volume density that depends on the values of the local
state quantities of the electromagnetic field.

The reference state for calculating the macroscopic electromagnetic energy is chosen
according to the properties of the medium.

In media in which the couple of vector quantities E, D and H, B, respectively,
cancel simultaneously (i.e., in media with temporary reversible polarization or in vacuo),
the reference state is characterized by the following values of the state quantities £ =0,
D=0, H=0, B=0.

In media with permanent polarization, the reference state is characterized by the
following values of the field state quantities: E=0, H=0, D=0, B#0. In the right-
hand side of expression (4.27), the first term represents the expression of the radiated
power; the first term within square brackets represents the energy of the electric field, and
the second term, within the same brackets, the energy of the magnetic field.

4.2. THE THEOREM OF IRREVERSIBLE TRANSFORMATION OF
ELECTROMAGNETIC ENERGY IN THE CASE OF
HYSTERESIS PHENOMENON

The case of bodies submitted to an electric or magnetic irreversible polarization, like
in Fig. 3.2 and Fig. 3.9 will be considered. In this case, a part of the energy is transformed
irreversibly in internal energy of the body. The volume density of the energy w, that is

transformed into internal energy of a body submitted to an electric or magnetic
polarization cycle, also termed loop, is proportional to the area of the loop, i.c., the area
of the hysteresis loop, as follows:

Wy = Wae + W = §E-dD+ §H-d3,

g~ Vae (4.28)
CycleE CycleM

where the symbols Cycle E and Cycle M mean the cycle (also called loop) of electric and
magnetic polarization, respectively. In relation (4.28), each integral is proportional to the
area of the corresponding hysteresis loop.

The relation (4.28) expresses the theorem of irreversible transformation of
electromagnetic energy due to polarization loops. This theorem is also called Warburg
theorem [22, p. 464].

4.3. THE THEOREM OF IRREVERSIBLE TRANSFORMATION
OF ELECTROMAGNETIC ENERGY INTO HEAT

From the microscopic point of view, using a simplified model, when an electric
current flows in a metallic body, for instance along a conducting wire, the forces acting
upon the moving charge carriers of the current, i.e., the electrons, do an internal work.
The electrons cede energy by collision to the crystalline lattice of the body, and therefore
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the thermal agitation of ions and atoms of the crystalline lattice will increase and a
thermal effect occurs.

The expression of the electromagnetic power converted into heat can be obtained
using formulae (4.6), (1.108), (1.109). We shall consider the case in which no other
phenomenon exists, the electric current flowing in a conducting metallic body excepted.
The formulae (1.108) and (1.109) can be written in the form:

E =pJ. (4.29)
Formulae (4.6) and (4.29) yield:
d*W=J E, dvdr=pJ* dvdr. (4.30)

We introduce the symbol P; in relation (4.30) for the energy converted in the body,
per unit of time, i.e., the power, into heat and we get:

d>w

pydv=dP; = =J-E, dv=pJ?dv. (4.30 a)

It results that the electromagnetic energy converted into heat per unit of time, i.e., the
power converted when an electric conductive body of volume Vs carries electric

currents, is given by the expression:

_ 2
py= [pa*dv, 431)
Vs
and the volume density of this power is given by the relation:
py=pJ>. (4.32)

The two last formulae express the integral form and the local form of the law of the
electro-heating effect or electro-calorific effect. This law is referred to as the Joule law
and is also known as the Joule-Lenz law.

The examined transformation is an irreversible one.

The law above can be derived in the framework of the microscopic theory by
calculating directly the collision forces and the corresponding work [23, Vol. II, p. 46].

4.4. THE THEOREM OF ELECTROMAGNETIC MOMENTUM

Let us consider a system of » bodies or particles each of mass m, and velocity
vi, (k=1,2,...,n), electrically charged and which are moving in empty space, in any
electromagnetic field. Let us denote by X any closed surface that contains the system of
bodies or particles. We shall calculate the resultant force acting upon the system of
particles. In order to simplify the relations we suppose that the impressed field does not
exist, i.e., E; =0. If impressed fields existed, the final relation could be correspondingly

completed.
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If the considered system contains conducting bodies, the macroscopic quantities have
to be introduced. However, the form of relations will be the same.

We shall denote by v, the velocity of the substance from the volume element, in
which the volume density of the electric charge is p,,.

By relation (4.2), for E; =0, we obtain:

F = f(va+pvvpr)dV, (4.33)
Vs
but according to relation (1.70), J =p, v,.. Hence, relation (4.33) can be written:
Vs
By replacing the force by the derivative of momentum, it follows:
d n
=Y mvi= [(p, E+JxB)dv, (4.35)
dt i ..
b
or
d n
_ka Vi = de,
dt i V;;[ (4.36)
f=p, E+JxB.
By replacing the vector quantity J with its expression from relation (3.86), it follows:
D
f=p, E +[cur1H —a—)xB
ot
or
oD
fzva—BxcurlH—ExB. 4.37)

The case of empty space, i.e., vacuum, will be considered; according to relations
(3.24), (3.105), we have D=¢4 E and B=py H .

Relation (4.37) becomes:

0 oH
fzpvE—pochurlH—aouoa(ExH)ﬁLsOuoE>< EP (4.38)

By using relation (3.53), it results that:

0
f:va—churlB—soExcurlE—sOa—(ExB) (4.39)
t
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or, by using relation (3.16), we obtain:

f=Ediv(eg E)—¢y Excurl E —LBxcurlB - %(E x B). (4.40)
Ho

Taking into account relation (3.31) applied to the present case in which B=py H , we
can write:

. . 0
f=¢gg (EleE —Ex curlE)+ Lo (HleH —H x curlH)— €0 U 8_(E X H). (4.41)
t
By replacing expression (4.41) into relation (4.36), we obtain:
d n
Ezmk Vi = Ifl dv+ Ifz dv+ If3d"’ (4.42)
k=1 Vs Vs Vs

fi=¢y(EdivE - Excurl E),

= HdivH — H xcurl H ),
f2=to ) (443 a, b, ¢)

0
=— —(E x H).
/3 gouoat( x H)

We shall examine the first integral of the right-hand side of relation (4.42):

Fi=[fidv. (4.44)
Vs

z

This integral can be transformed into a surface integral. For this purpose, we multiply
both sides of relation (4.44) by any constant vector C , and we obtain:

C-F=[C fidv.

(4.45)
Vs
The quantity under the last integral can be written:
C-fi=¢,[C-EdivE - C-(E xcurl E)]. (4.46)

We shall take into consideration the vector relation (A.1.70) for this case:
div[(C-a)a]=(C-a)diva +a - grad(C -a).
But, taking into account that the vector C is constant, relation (A.1.74) yields:
grad(C-a)=(C-V)a + C xcurla.
Hence:

div[(C-a)a]=(C-a)diva+a-[(C-V)a]+a-(Cxcurla).
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But
a-[(C-V)a]z%C-gradaz .
Therefore:
div[(C-a)a]=(C -a)diva +%C-grada2 ~C-(axcurla)
or
(C-a)diva—C-(axcurla)=div[(C-a)a]- C~grad(%a2j.

But, according to relation (A.1.70), taking into account that C = const, we have:
1 5 . 1 »
C.grad| —a” |=div||C—a” ||.
2 2

(C-a)diva—C-(axcurla)=div[(C-a)a]- div(C%azj. (4.47)

It follows:

By using the vector relation (4.47), relation (4.45) becomes:

[c-£ dvzjao div{(C-E)E—C%Ez}dv
Vs

Vs
or

[c- fidv=s, H(C-E)E—C%Ez]dsi:goH(C-E)E-n—%)&‘2 C-n}dS.

Vs S

It results that:

1
C- Iﬁdv:C-Jl:SO(E'n)E—ESOEzn:ldS- (448)
Vs S
It follows:
1
J.fldv:J{SO(E-n)E—ESOEZn}dS. (4.49)
Vs S

The second integral of the right-hand side of relation (4.42) can be analogously
modified:
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1
ijzdvzj[uo(H-n)H—Euo H? n}dS. (4.50)

2

The third integral of the right-hand side of relation (4.42) cannot be transformed into a
surface-integral.
By replacing relations (4.49) and (4.50) into relation (4.42), we obtain:

n

cii m, v, =J[80(E~n)E+u0(H~n)H—(lso E* +lp0 Han}dS—
1 2 2

2

—i Souo(EXH)dV
d¢
Vs

(4.51)
Also, it follows:

—%{kavk +G} J—|:80E nE+u0(H n)H—(%soEer%uonjn}dS,
b

k=1
(4.52)
and
d n
__{ka vy +G}: j— (¢)ds, (4.53)
dt| = J
where
G= [gdv= [egu (ExH)dv, (4.54 a)
g=eouo(ExH), (4.54 b)
t:ao(E-n)EerO(H-n)H—GsoE2 +%u0H2)n. (4.54 ¢)

The quantity G is termed electromagnetic momentum or electromagnetic quantity of
motion, and the quantity g is called volume density of the electromagnetic momentum.

The quantity ¢ is called density of the surface tension (also called the Maxwell stress
tensor) with two components, an electric one (which contains only electric state
quantities) and another magnetic one (which contains only magnetic state quantities).

The quantity given by relation (4.54 a) can be physically interpreted taking into
account the following considerations. Let us consider the system of bodies or particles
together with the corresponding electromagnetic field as representing an isolated physical
system. In this case, the surface-integral of the right-hand side of relation (4.53) vanishes.
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It follows that for the isolated system constituted by bodies or particles, the conserved
quantity is not the mechanical momentum, like in Classical Mechanics, but the sum of the
mechanical momentum and the quantity G, which can be interpreted as a momentum
associated with the electromagnetic field, called total momentum.

Relation (4.52) or (4.53) represents the theorem of electromagnetic momentum. It
follows that, for a system of bodies or particles together with the field, the sum of the
tensions on the surface £ which contains this system is equal to the velocity of the

n
decrease of the total momentum (mechanical plus electromagnetic), i.e., Zm PR
k=1
located within the volume Vs .
A detailed and general analysis of the theorem of energy and electromagnetic

momentum (also called quantity of motion) for electrically and magnetically polarized
media can be found in works [59], [60].
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APPENDIX 1

VECTOR CALCULUS

In this Appendix, we shall recall some definitions and certain more used relations. At
the same time, certain more important parts of the proofs will be given.

A.1.1. VECTOR ALGEBRA

A quantity that can be characterized by a single number, in any system of units, is
called scalar quantity.

The most typical scalar is an abstract number. Other examples: temperature, mass,
density, energy.

A vector is a quantity characterized by a number, termed its magnitude, expressed in
certain units of measure, and a certain direction in space that includes a certain orientation
(sense). There are also other definitions of vector quantities [54].

The simplest example of a vector is constituted by a straight-line segment denoted AB

having its magnitude equal to its length (i.e., the length of Zé) and a direction oriented
from the point 4 towards the point B as shown in Fig. A.1.1.
Other examples of vector quantities: the force, the velocity (speed), the acceleration. A

vector may be denoted by one of the following symbols: AB , a,a or a.We shall use
the second one. The magnitude of a vector is called the modulus of the vector and is
denoted:

la|=a. (A.1.1)

According to their application point, the vectors can be grouped into three categories:
free vectors, sliding vectors and bound vectors.

The free vectors have a given magnitude and direction, but their application point is
arbitrary, for instance: the moment of a couple of forces.

The sliding vectors have a given magnitude and direction, but their application point
can be arbitrarily chosen along a given straight line called support straight line the
direction of which coincides with that of the vector, for instance a force.

Fig. A.1.1. Representation of a vector.
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The bound vectors have a given magnitude, direction, and application point. For
instance, a vector field, (field of vectors) is a field of bound vectors.

For the analytical definition of a vector in space, it is necessary to know the following
data. For a free vector: 3 quantities, namely its projections along the axes of co-ordinates.
For the sliding vectors: 5 quantities, the projections along the axes of co-ordinates and the
parameters of the direction of the support straight line. For the bound vectors: 6
quantities, the projections along the axes of co-ordinates and the co-ordinates of the
application point.

The vector having its magnitude equal to unity is called unit vector. The unit vector of
any vector has its magnitude equal to unity, the same direction as the considered vector,

. . . . a
and has no physical dimension. The unit vector of a vector @ can be expressed as — .
a

Two vectors a and b are equal to each other if their magnitudes are equal and their
unit vectors have the same direction.

A vector can be expressed in a three-orthogonal rectilinear system of co-ordinates
(Cartesian system of co-ordinates) in the form:

a=ia,+ja,+ka,, (A.1.2)

where the quantities i, j, k are the unit vectors of the axes of co-ordinates Ox, Oy,
Oz, and the quantities a, a,, a, are the components of the vector a along the axes of
co-ordinates Ox, Oy, Oz.

a. The scalar product a-b of vectors a and b:

a=ia,+ja,+ka,, (A.1.3)
b=ib, +jb, +kb, (A.1.4)

is:
a-bzb-a:abcos(a,b):axbx+ayby+aZ b,. (A.1.5)

b. The vector product a x b of vectors a and b is the vector perpendicular to vectors
a and b and having its modulus equal to the area of the parallelogram constructed on
these vectors, hence:

|axb|=absin(a,b); (A.1.6)
i j k
axb=|a, a, a, =i(aybz—az by)+j(az bx—axbz)-l-k(axby—aybx); (A.1.7)
b, b, b,
axb=-bxa. (A.1.8)

The orientation (sense) of the vector a x b is determined from the condition that the
vectors @ , b and a x b to constitute a right-handed system, like in Fig. A.1.2.
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Fig. A.1.2. The vector product c=axb.

\/

The three-orthogonal rectilinear systems of co-ordinates utilized in the present work
are right-handed co-ordinates systems.

The direction of the vector ¢ =a x b can be obtained by means of the right-handed
screw rule as follows: The right-handed screw will be placed perpendicular to the plane
formed by vectors a and b their points of application being brought to the same point.
The screw fixed to the vector a will be turned so that the vector @ will turn towards the
vector b along the shortest way. The direction in which the right-handed screw moves is
just the direction of the vector c=axb.

c. The triple scalar product (the scalar product of three vectors), called also mixed
product (of three vectors) of vectors a , b, c¢ is a scalar, numerically equal to the volume
of the parallelepiped constructed on these vectors:

a, a, a,
a-(b><c)zb-(c><a)zc~(a><b): b, b, b.|, (A.1.9)
e ¢, ¢
and it also follows:
a-(bxc)=-b-(axc)=—c-(bxa)=—a-(cxb). (A.19a)

As it can be seen, the expressions (A.1.9) and (A.1.9 a) can be deduced one from the
other by circular permutations of letters a, b and c disposed, for instance round a circle,
in the sequence of the trigonometric sense.

d. The triple vector product (of three vectors), also called double vector product (of
three vectors) of vectors a , b, ¢ is:

ax(bxc)zb(a-c)—c(a-b). (A.1.10)
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e. Calculation of the derivative of a vector with respect to a parameter. If the vectors
are functions of a scalar variable, by applying the usual rules of differentiation, it follows:

d(+b) da db

d _da db (A.1.11 a)
dr dr  dt
d da deg
L (pa)=9p 2+ 5%, A.l11b
L (0a)=0—+—"a ( )
d(a-8)_ 4e 4.9 (A.1.11¢c)
dt dr = dt
9 (axp) =39 praxdl (A.1.11d)
dt dt dt

A.1.2. VECTOR ANALYSIS

A.1.2.1. Scalar and Vector Fields

By a scalar or a vector field, is meant a domain of space where a scalar or a vector
quantity is associated with every point. Each point of space is determined by the position
vector. Therefore, the characterization of a scalar or vector field is equivalent with the
adoption of a scalar function ¢(r) or a vector function a(r) that are depending on the

position vector r. A scalar field and a vector field can also be referred to as a field of
scalars and a field of vectors, respectively. For scalar and vector, the plural form has been
used since, at every point of the considered domain, there is a certain scalar and vector,
respectively. The functions ¢(r) and a(r) can depend apart from the position vector r,

also on other scalar arguments, for example on time. The functions (p(r) and a(r) are

considered continuous and differentiable with respect to all arguments. We shall consider
the scalar function (p(r)z (p(x, v, z). Examples of such fields: the temperature field of a

body non-uniformly heated, the density field of a non-homogeneous body, the field of an
electrostatic potential, the field of a magnetic potential.

A domain is called connected domain, if any two points belonging to the domain can
be joined by a continuous curve that belongs in totality to this domain.

A domain is called simply connected domain, if any closed curve that belongs in
totality to this domain can be reduced to a single point by continuous deformations
without overstepping the domain. The domains that have not this property are called
multiply connected domains (doubly connected, triply connected, etc.).

Examples of simply connected domains: the interior of a sphere, the interior of a
cylinder of finite length, the exterior of a cylinder of finite length.

Examples of multiply connected domains: the exterior of a cylinder of infinite length,
the interior of a torus.
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A.1.2.2. The Derivative of a Scalar Function in Regard to a Given
Direction

We shall consider a spectrum composed by the lines of field, represented by
continuous lines, and traces of potential surfaces, represented by dashed lines, like in
Fig. 1.3, where the direction (sense) in which we have chosen to travel the lines of field
has been represented by an arrow.

Let us consider that the scalar function ¢ has the value ¢, at any point M and after

one displacement As= M, M along the direction of a vector s, the point goes from the
point M, to the point M, where the scalar has the value ¢, like in Fig. A.1.4.
The increment of the quantity ¢, after this displacement, is:

A(p =0s —Pp-
The limit of the ratio of this increment to the magnitude of the displacement As is

denoted by Z—(p and is called the derivative of the scalar ¢ at the point M|, in regard to
s

the direction s :
a_(P: lim Py =Py ]

0s As—0  As (A-1.12)

The value of this derivative depends on the direction of the vector s .
For this reason, the derivative of a scalar function along a given direction must not be
confused with a usual partial derivative with respect to any variable s .

Fig. A.1.3. Plane section perpendicular
to a configuration with plane parallel
symmetry, spectrum: lines of field —

continuous lines; traces of equipotential

surfaces — dashed lines.
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Fig. A.1.4. Explanation to the
calculation of the derivative of a
scalar function with respect to
a certain direction.

... 0 o
In order to study the dependence of the value of the derivative 9% on the direction of
s
differentiation s , we shall consider the points of the field at which the function ¢ has the
same value for instance @, . In the general case, the set of these points forms a surface

that is termed level surface or equipotential surface. This surface has the equation:
o6, ,2)=0,. (A.1.13)

Fig. A.1.3 shows one section made by a plane through a set of equipotential surfaces
corresponding to certain values of the function ¢ equal to ¢y, @y AP, ¢y +2A0.

A.1.2.3. The Gradient

We shall denote by n the unit vector of the normal to the level surface p=¢,, at a
point M, of Fig. A.1.4, oriented in the direction assumed as corresponding to the
ascending values of the function ¢ . We shall show that in the case, in which the value of
the derivative a—(P with respect to the direction of this normal is known, it is possible to

s
calculate the value of the derivative of the scalar function ¢ with respect to any direction

s . We consider the equipotential surface having the ordinal number 1 that passes through
the point M situated on the direction s, like in Fig. A.1.4.

Let us consider two neighbouring points M, (x, y, z) and M| (x +Ax, y+ Ay, z + Az),

both on the equipotential surface (p(x, V, z) =@, =const . Then, we have:
(p(x+Ax,y+Ay,z+Az)—(p(x,y,z)zO, (A.1.14)

both functions of the left-hand side having the same value, since they are taken for two
points belonging to the same equipotential surface.
Therefore, the expression of the total (exact) differential of the function ¢ =g,

calculated at any point M, (x, v, z), as the three quantities Ax, Ay, Az tend to zero, is:
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o0 o0 oQ
“—Fdx+—Fdy+—-—dz=0.
7. o y+5-4z (A.1.15)

The last expression can be considered as the scalar product of two vectors:

a(p+ja_(p+k6_q)

a=i— ,
ox "0y Oz

(A.1.16 a)

b=idx+jdy+kdz. (A.1.16 b)

Since the scalar product of the two vectors is zero, it follows that the two vectors are
perpendicular to each other. The second one is a very small vector contained by the
surface @(x, y, z)= @, = const. Therefore, the first vector is perpendicular to the second
one. The second vector, with the origin at the point M, (x, ¥, z), can have any direction,
provided it remains contained by the surface (p(x, ¥, z)= @g =const. According to
relation (A.1.15), it follows that the first vector is perpendicular on the surface
(p(x, v, z)= @, =const at the point M, (x, ¥, z); hence it has the direction of the positive
normal to the surface at the same point. The positive direction is considered that along
which the value of the function (p(x, V, z) is assumed to increase. This vector, denoted
above by a , is called the gradient of the function ¢ . The usual symbol is:

gradq):ia—(p+j6—q)+ %
0x

oy o (A.1.17)

Let us calculate the derivative of the function (p(x, ¥, z) at the same point M|, (x, v, z)
like above along any direction s . The expression of this derivative is:

90 _ i o(M,)- (M)

5y Am e ; (A.1.18 a)
where:
As=sihs, (A.1.18b)
o(M)=0(r)=0(x,y,2)=0,, ALIS o)
o(M,)=0(r,)=0(r +As)=@(x+ Ax, y + Ay, 2+ Az) =0, . (A.1.18 d)
Therefore:
As 5 As ’ ASZ - s Vo

99 _ im Ot by, y 4 ),z 4 s (p(xyz), (A.1.18 ¢)

0s As—0 As

where the vector s is the unit vector of As.

By expanding in a series and retaining only the small quantities of the first order, we
get:
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09 _0¢ ds, 09 dsy 0d¢ ds,

= — . A.1.19
0s Ox ds 0y ds 0z ds ( 2)
Therefore:
o9 _00, 09 . o9
—=—i-s)+—Vj -s)+—Ik-s).
S o) ay(/ )+ (k-s) (A.1.19b)
Hence:
oo 0o .00 o) ¢, .
—=|li—+j—+k— |- \is, +js,+ks, |=(gradop)-s.
> (Ox AL (is,+js, +ks.)=(grado) (A.1.19 ¢)

From the last relation, it follows that the greatest value of the left hand-side, at a point,
of this relation is obtained in the case in which the vector s has the direction of the
gradient vector, hence the one of the normal at the same point of the surface, thus s =n.
Therefore:

0@ o
_— = rad ‘N, I‘ad =—RN.
on (grado) gradg=— (A.1.20 a, b)
Therefore:
o9 0¢
—=—n-s.
", (A.1.21)

It follows that the greatest value of the derivative of a function of point is obtained if
the derivative of that function is calculated along the direction of the positive normal to
the equipotential surface that passes through the considered point. Otherwise, the value
would be smaller, because the scalar product z- s is a cosine.

0 . . . .
The vector a—(pn oriented along the normal to the equipotential surface in the
n
direction of the increasing values of the function ¢, as said above, is called the gradient
of the scalar function ¢ and is expressed by the relation above.

Therefore, the derivative of the function ¢ with respect to the direction s is equal to

the projection of the vector grad ¢ along the direction s .

In a three-orthogonal rectilinear system of co-ordinates, according to relations
(A.1.20) and (A.1.21), it follows:

0 0 0
(grad(p)x :8_1); (grad(p)y =£; (grad(p)z =a—(Zp, (A.1.22a,b,¢)

2 2 2
|gradg|= 90| [2e] ,[oe] (A.122d)
ox oy Oz

hence:
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From expressions (A.1.20 a) and (A.1.20 b), it follows that the vector grad does not
depend on the choice of the system of co-ordinates; hence it is one invariant with respect
to the system of co-ordinates.

The gradient of a scalar function may be also expressed in other types of systems of
co-ordinates. From relation (A.1.21) it follows that the direction along which the scalar
function ¢ has the most rapid increase is the direction of the normal » to the level
surface passing through the point under consideration.

If the scalar field ¢ is known, then at every point of this field, the vector grad¢ can
be determined and it is perpendicular to the level surfaces of this field. Let us consider a
set of lines perpendicular to the level surfaces, i.c., a set of orthogonal trajectories of the
level surfaces; at every point of the field, the direction of the gradient will coincide with
the direction of one orthogonal trajectory. For this reason, the orthogonal trajectories of
the level surfaces are termed gradient lines or lines of field.

If the level surfaces are represented like in Fig. A.1.3 so that the value of the scalar
function ¢ on the respective consecutive surfaces should be ¢, ¢y T AP, ¢y +2A0, it

is possible to write for Ap small enough:
o0
A(p:EAn:|grad(p|An, (A.1.23)
and in the case in which A¢ is constant:

t
|gradg|= CZ‘:’ . (A.1.24)

Therefore, if we represent a level surface, with a constant variation of the scalar
function between two neighbouring surfaces, the density of the level surfaces gives an
approximate indication about the numerical value of the gradient. Therefore, in a region
of space in which the level surfaces are denser, the value of the gradient is greater.

At the same time, it is important to be noted, that the calculation of the derivative of a
scalar ¢ that is a function of another scalar y , with respect to any variable, gives:

op O0¢ Oy 00
d == e = d .
(grade), 355y B aW(gra ), (A.1.25)

Hence, in the case of the gradient, the usual rule of the calculation of a derivative of a
function of function is maintained.

A.1.2.3.1. The Gradient of the Magnitude of the Position Vector

The magnitude of the position vector r is a scalar function that is depending on the
position of two points: The origin and the extremity (end) of the position vector. The
former of these points is called source point and the latter observation point or field point.

Two cases will be considered: 1. The calculation of the gradient with respect to the
field point, say N, denoted grad, r. 2. The calculation of the gradient with respect to

the source point, say O, denoted grad,, .
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We shall take into account that the function under consideration is:

1
(P:(p(xN’yN’ZN):r:[(xN —xo ) +(y —yo ) +(zy _20)2]2 . (A120)
Likewise, let us denote:
r=ilxy —x0)+jlyy —vo)+k(zy —z0) (A.1.27)

In the first case, we have to calculate the derivative with respect to the co-ordinates of
the point N . We obtain:

grady r=—. (A.1.28)
r

In the second case, we have to calculate the derivative with respect to the co-ordinates
of the point O . We obtain:

grad, r=——. (A.1.29)
r

A proof of the relations above, based on geometrical considerations for the calculation
of the gradient is also possible [23, Vol. I, p. 461].

A.1.2.4. The Flux of a Vector through a Surface

Let us consider the surface-integral of a field vector a(r) through any open or closed
surface.

The flux d® of any vector a of a field of vectors a(r), through the surface element
d S, is the quantity given by the expression:

dd=a,dS=acos(a,n)dS=a-ndS=a-ds, (A.1.30)

where the quantity @ is the value of the vector at a point of the surface element d S (e.g.,
at its middle), the quantity a, is the component of the vector @ along the direction n,
and the normal # to the surface element d.S has the positive direction. In the case of any
closed surface X, the direction of the normal is considered as positive if it is oriented
outwards the surface, like in Fig. A.1.5 a. In the case of a simply connected open surface
St, for a travelling sense of the closed curve I' by which the surface is bounded, the
normal is considered as positive if it is associated with the sense of travelling, according
to the right-handed screw rule, like in Fig. A.1.5 b. The flux of a vector a through a
surface S, closed as well as open, like in Fig. A.1.5 ¢, is the sum of the fluxes through
the surface elements and it is given by the relation:

©=[a,dS=[a-nds=[a-ds;
s s s (A.1.31)
dS=nds.
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C

Fig. A.1.5. The flux of a vector through a surface: a — the positive normal in
the case of a closed surface; b — the positive normal in the case of an open surface;
¢ — explanation to the calculation of the flux through a surface.

A.1.2.5. The Gauss-Ostrogradski Theorem. The Divergence of a Vector.

Let us consider the surface-integral of the vector a through a closed surface situated
in a field of vectors a(r):

Zja-dszzjan-ds. (A.1.32)

The surface-integral of relation (A.1.32), where X is a closed surface, can be transformed
into a volume integral.
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Fig. A.1.6. The flux of a vector field through a parallelepiped surface.

The transformation relation represents the GAUSS-OSTROGRADSKI theorem (formula).
Let us consider this transformation for a right infinitely small parallelepiped of surface
2 A, - A field of vectors a = a(r) is considered. We shall calculate the surface-integral of
the normal component of vector @ over the surface X,,. The surface-integral will be

calculated for the six faces of the parallelepiped with reference to Fig. A.1.6.

We shall denote by x,, y,, zo the co-ordinates of the centre of the parallelepiped.
Firstly, we consider the pair of faces perpendicular to the Ox - axis indicated by the
ordinal numbers 1 and 2. The quantity a(x,, y,,z,) represents the vector a at the centre
of the parallelepiped. The flux of the vector a through the surface 2 is:

1
ACD2=a2x AS: ax(xO +5Ax,y0,ZOJ AyAZ, (A133 a)

where the quantity a,, is the mean value (average) of the component along the Ox - axis
of the vector a, on the face with the ordinal number 2, or the value at its middle.
The flux of the vector a through the face 1 is:

1
Acpl:_aleS:_ax(xo—EAx,yo,zo) Ay Az, (A.1.33b)

where the quantity a;, is the mean (average) value of the component along the Ox - axis
of the vector a, on the face with the ordinal number 1, or the value at its middle.
The total flux through the faces 1 and 2 is:
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1 1
|:ax (x() +5Axﬂy0520j_ax (XO _EM,yo,Zoj}AyAZ, (A133 C)

and this sum, established with a precision up to small quantities of the third order, is
equal to:

Oa,
A®1+A®2:[a j Ax Ay Az, (A.1.33 d)
*Jo

where the index O shows that the derivative is calculated at the centre of the
parallelepiped.
For the pairs of faces perpendicular to the Oy and Oz axes, and indicated by the

ordinal numbers 3, 4, and 5, 6, respectively, the following sums of fluxes are obtained:

Oa,

oy

A®3+A®4:[ J Ax Ay Az (A.133¢)
0

and

Oa,

z

szmﬂz (A.1.33 1)
0

Summing up, side by side, the preceding expressions, the total flux is obtained:

AD= fa,dS=

Ay

da, ©Oa, oda
x4 +—Z | Ax Ay Az.
[6x 2 sz % (A.1.34)

The sum within parentheses is called the divergence of the vector a or the divergence
of a and is denoted:

da, 0a, OQa,

diva = . A.1.35
ox 0Oy 0z ( )
The volume element will be denoted by:
dv=dxdydz. (A.1.36)

With this symbol, the expression of the flux through the surface of an infinitely small
rectangular parallelepiped can be written:

d®=divadv. (A.1.37)

We shall consider a domain of volume Vs bounded by any closed surface X. This

domain can be decomposed by three sets of parallel planes, perpendicular to each other,
in a set of rectangular infinitely small parallelepipeds. The marginal volume elements
neighbouring the surface X are not in general of parallelepiped form. However, by a very
fine decomposition, it is possible to make the marginal elements to coincide with the
required precision with the surface X. Calculating the flux of the vector a through the
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surface of each parallelepiped inside the surface X and adding up, side by side, the
obtained expressions, it follows:

>do=Y divadv= [divadv,

A.1.38
Vs Vs VZ ( )

the summation is extended over all volume elements, and namely over their surfaces.

In the sum de), the flux of vectors through each internal surface occurs twice,

Vs

namely the first time in the calculation of the flux through the surface of the
parallelepiped situated on one side of this face, and the second time, in the calculation of
the flux through the surface of the parallelepiped situated on the other side of this face.
Since the positive normal of the considered face belonging to the first parallelepiped is of
opposite direction with regard to the positive normal of the same face belonging to the
second parallelepiped, the fluxes through this surface are of opposite sign. Therefore, all
the terms of the sum above, which refer to the internal faces, cancel each other and the
sum reduces to the sum of fluxes of vectors @ only through the marginal surfaces of the
parallelepipeds that coincide with the elements of the surface X.

Hence:

® = ja~ds: jdivadv.
T Vs

(A.1.39)

For the relation (A.1.39) to be valid, the vector function must be continuous and
differentiable at all the points of the domain Vs .

The relation (A.1.39) expresses the Gauss-Ostrogradski theorem and can be enounced
as follows: The flux of a vector a through any closed surface X is equal to the volume
integral of the divergence of the same vector over the volume bounded by this closed
surface.

If the surface X is so small that at all points of its inside the quantity diva may be
assumed as constant, then, in relation (A.1.39) the quantity diva can be placed before the
integral sign.

Hence:

AD =divaAv, (A.1.40)

where the quantity Av represents the volume of the domain Vs . It results that:

[a-ds
A.1.41
diva = lim ZA”—, ( )
Av—0 Av

and this expression can be considered as the definition of the divergence of a vector.
From expression (A.1.41), it results that diva does not depend on the choice of the

system of co-ordinates.
The divergence of a vector can be expressed also in other systems of co-ordinates [12,

tome I, p. 44].
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A.1.2.6. The Line-integral of a Vector along a Curve. Circulation.

Let us consider the line-integral around an open curve C or a closed curve I' situated
in a field of vectors a(r). The curve I' will be decomposed into very small line elements

Al the direction of which coincide with the travelling sense considered as positive of the
curve. We shall express the scalar product of each element d/ and the vector a at the
corresponding point:

a-dl=a,dl. (A.1.42)

The limit of the sum of the products of relation (A.1.42) along the curve is called the
line-integral of the vector a along the curve C :

é[a-dlzé[aldl, (A.1.43)

where a; is the component of the vector a along the direction of d/.

The line-integral of the vector a along the curve C is referred to as the circulation of
vector a along that curve. That curve may be an open curve or a closed one [52, p. 138],
[54, p. 123].

A.1.2.7. The Stokes Theorem. The Curl of a Vector.

Let us consider the line-integral of the vector @ around a closed curve situated in a
field of vectors a(r):

fa-di=[adl. (A.1.44)
I r

The line-integral of relation (A.1.44), where I' is a closed curve, can be transformed
into a surface-integral. The transformation relation represents the STOKES theorem.

Let us consider this transformation for an infinitely small rectangle. A field of vectors
a =a(r) is considered. We shall calculate the line-integral of the vector a along the
contour of a rectangle, perpendicular to the Oz - axis, hence in the plane xOy, like in Fig.
A.1.7. We have to calculate the line-integral decomposed for the four sides of the
rectangle with reference to Fig. A.1.7.

The travelling sense along the curve I' has been chosen associated, according to the
right-handed screw rule, with the positive direction of the Oz - axis, hence, in the figure,
the counter-clockwise sense.

We shall denote by x,, y,, zo the co-ordinates of the centre of the rectangle.

The quantity a(x,, o,z ) represents the vector @ at the centre of the rectangle. The
line-integral of the vector a along the side 1 is:

. 1
ACl=la1x-Al=ax(xO,y0—EAy,ZO)Ax, (A.1.45 a)
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Fig. A.1.7. Circulation of a vector around a curve I" of a rectangle.

where the quantity a,;, is the mean value of the component along the Ox - axis of the

vector a on the side having the ordinal number 1, or the value at its middle.
The line-integral along the side 3 is:

1
ACy =ias, -Al = ax[xo,yo +5Ay,zo)Ax, (A.1.45b)

where the quantity a3, is the mean value of the component along the Ox - axis of the

vector @ on the side having the ordinal number 3, or the the value at its middle.
The line-integral along the sides 1 and 3 is:

1 1
AC| +AC; = [ax (xo,yo fEAy, ZOJ —a, [xo,yo +5Ay, 20) } Ax, (A.1.45¢)

and after expanding in a series, it results that the sum including the small quantities of the
second order, is equal to:

Oa,
dy

AC1+AC3:[ ) Ax Ay, (A.1.45 d)
0

where the index zero denotes that the derivative is calculated at the centre of the
rectangle.
The line-integral along the sides 2 and 4 is:
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da
AC2+AC4=[ xy] Ay Ax. (A.1.45¢)
0

By summing up, side by side, the relations established above, the following expression
of the integral is obtained:

da Oa
AC=|—L -2 | AxAy.
(ax o JO V% (A.1.45 )

It can be added that the quantity d C is not a total differential of C . We consider the
face having the normal n parallel with the Oz - axis. Denoting the area of the rectangle
by dS, = AxAy, i.e., after passing to limit, it follows:

G
(n]| 0z) ac= Ia.dlz( aa; —%stz. (A.1.46 a)
r

Analogously, for rectangles perpendicular to the other two axes, the following
relations are obtained:

0
(m || Ox) AC=Ia~dl=(%—%]de, (A.1.46 b)
r
da, 0
(]| Ov) AC:ja.dlz[ aazx B aaszdsy. (A.1.46 c)
r

The combinations of the derivatives of the components of the vector @ of expressions
(A.1.46 a, b, c) are considered to be the components of a vector called curl or rotational of
the vector a or curl of a and denoted curla .

In this case, it follows:

(curla) _%_8& A.1.47 a)

"8y 0z’ (A.147a
da, Oa,

(curla), = P (A.1.47 b)
oa 0

(curla), =—2 - 2% (A.1.47 ¢)
ox 0Oy

The vector curla can be put in the form of a symbolic determinant:
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i Jj k
0 0 0
curla=|— — —|. (A.1.48)
ox 0Oy 0z
a, a, a,

By the aid of the symbol (A.1.48), the expressions (A.1.46 a, b, ¢) can be written in
the form:

dC=curla-ds§, (A.1.49)

where the unit vector n of the vector d.§ is the positive normal to the surface d§,
associated with the travelling direction along the contour of the surface, according to the
right-handed screw rule. Making successively the vector n parallel with the axes Ox,
Oy, Oz, the expressions (A.1.46 a, b, c) are obtained. Hence, for a rectangle in each of

the three positions, relation (A.1.49) is valid.

A simply connected surface bounded by a closed curve is considered. Let us take three
sets of parallel planes, each plane of a set is parallel to one plane of the three planes of the
three-orthogonal rectilinear system of co-ordinates. The planes of each set are distanced
by the steps Ax, Ay, Az, respectively. If only the planes nearest the surface are

considered, a surface constituted only by rectangles will be obtained. If the steps are very
small and tend to zero, the surface constituted by rectangles tends to the given surface.

But for each rectangle of the surface formed by rectangles, relation (A.1.49) is valid.
The relation (A.1.49) will be written for each rectangle, and these relations will be
summed up, side by side. At each margin of two neighbouring rectangles, the common
side will be travelled twice in opposite directions, like in Fig. A.1.8, so that the sum
Y a-d I will contain the two terms of the form:

B A
J.a-dl and ja-dl, (A.1.50)
A B

the sum of which is zero. Hence, the sum X a-d/ becomes equal to the sum of terms

corresponding only to the external boundary of the surface, hence to the integral of the
vector a along the contour of the surface. It follows:

C:§a.d1: jcurla-ds. (A.1.51)
T

St

For the relation (A.1.51) to be valid, the vector function @ must be continuous and
differentiable at all the points of the surface S. Relation (A.1.51) expresses the theorem
of transformation of a line-integral into a surface-integral, called Stokes theorem that can
be enounced as follows: The circulation of an arbitrary vector @ along a closed curve I
is equal to the flux of the curl of this vector through the surface S bounded by the curve
r.

From relation (A.1.51), it follows that in the case in which St is a closed surface:
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Fig. A.1.8. The travelling of a vector
along the elements of an open (

surface bounded by a curve of any form.

]
~—
J.curla-dS:O, (A.1.52)
St
because if S is a closed surface, the contour reduces to a point and:
fa-di=o. (A.1.53)

r

In the case in which Sy is a surface small enough for to be considered plane, and for

all its points the quantity curla to remain constant, the quantity curla may be brought
out of the integral sign. Hence:

AC =curla - AS', (A.1.54)

where AS represents the area of the surface St-.
In this case, relation (A.1.54) can be written:

AC =(curla), AS, (A.1.55)

where the quantity (curla)n is the component of the vector a along the positive normal
to the surface AS . Therefore:

§a-dl

(curla), = lim FS , (A.1.56)
AS—0 r

From expression (A.1.56), it results that the vector curla does not depend on the
choice of the system of co-ordinates, hence it is an invariant with respect to the system of
co-ordinates.

The curl of a vector can also be expressed in various types of systems of co-ordinates
[12, tome I, p. 44].
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A.1.2.8. Nabla Operator. Hamilton Operator.

Previously it has been established that the gradient of a scalar function ¢ is a vector
oriented along the direction of the maximal increase of the function ¢, with the

magnitude equal to the derivative of the function along this direction. Among the various
symbols of the gradient, one of the most utilized is V.

The sign V is read nabla or also del and it denotes a differential operator. With this
symbol, it is possible to write:

.09 .0 00
Vo=i—+j—+k—.
¢=i—" ]6y P (A.1.57)

From this expression, it can be seen that the operator V can be considered as a
differential operator:

N
V=i—+j_—+k_—, (A.1.58)

that, being applied to the scalar function ¢, gives the quantity grad¢. This operator can
be considered as a symbolic vector and it is also called the Hamilton operator.

A.1.2.9. The Derivative of a Vector along a Direction

Let us consider an arbitrary point M(r) in a field of vectors a(r) like in Fig. A.1.9.
Let M(r + As) be another point in the same vector field. In particular cases, the arbitrary

point M can be considered on a curve the tangent of which at the point M has the
direction of the unit vector s, but it is not a condition. The unit vector s can be written:

s=is,+js, +ks,. (A.1.59 a)

Fig. A.1.9. Explanation to the
calculation of the derivative of a vector
along a given direction.
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The limit of the ratio

a(r + As) - a(r)

A.159b
As ( )

as As — 0, is termed the derivative of the vector a along the direction of the unit vector
s at the considered point M and is denoted:

oa _ lim a(r + As)-a(r)
0s  Ass0 As ' (A.1.60)

Introducing the co-ordinates, we obtain:

a_a: lim a(x+Ax,y+Ay,z+Az)—a(x,y,z)‘

5, = lm ™ (A.1.61 a)

By expanding in a series, and retaining only the small quantities of the first order, we
obtain:

da Oa dx 6a.d_y 6a.dz

=% Tt " 1.
0s Ox ds Oy ds 0z ds (A.1.61b)

where

dx . dy . dz
—=s5,=81; —=s5,=8j; —=s5,=5"k. A.1.61
FRRRE: g5 SrTs ( c)

It follows that:
oa oa oa oa
—=si)—+s-j)—+s-k)—.
> ( )8x ( J)ay ( )az (A.1.62)
Since we have |s | =1, the last relation is the scalar product (s-V)a of the following
scalar operator:

s-Vz(s‘i)i+(s‘j)i+(s-k) 0

ox 3y s (A.1.63 a)

. . 0 o
and the vector @ , and gives just 6—“, so that the symbol (s . V)a appears as justified.
S

Now, the more general case is examined, in which in expression s-V instead of the
unit vector s, any vector v will be considered. Hence, the scalar operator obtained by
performing the scalar product of the arbitrary vector v =sv and the symbolic vector V ,

1S:
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0 0
V= A i) = )=
vV =vlsd) s ’)ay”(s Jor (A.1.63 b)
v==sv
Therefore:
0 0 0
(v~V)a=v{(s~i)—a+(s-j)—a+(s-k)—a}, (A.1.63 ¢)
ox oy oz
ve=vei=v(s-i); v,=v-j=v(s-j); v.=v k=v(s-k) (A.1.63 d)
Hence:
oa oa oa
(V-V)a=vxa—x+vya+v28—z (A.1.64)
or, in another compact form:
ca
Va=v—,
(v )a Vas (A.1.64 a)
v=sv.

In the case in which v=1, the operation above represents the derivative of the vector
a with respect to the direction of the vector v. Hence, the expression (v . V)a represents

the derivative of the vector @ with respect to the direction of the vector v multiplied by
the modulus of the last vector.

A.1.2.10. Expressing the Divergence and the Curl of a Vector
by Means of the Nabla Operator

The divergence can also been expressed, formally, as the scalar product of the
symbolic vector V by the vector a :

a=ia,+ja,+ka,. (A.1.65 a)

By performing this product according the formula of the scalar product of two vectors

b-a=b,a,+b,a,+b.a,, (A.1.65Db)
and putting
0 0 0
by=—; b,=—; b, =—, 1.
o T e (A.1.65¢)

it follows:
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_0a, 0Oa, Oda,
© ox oy 0z

V-a (A.1.66)

Analogously, the curl of a vector can be considered as the vector product of the
symbolic vector V by the vector a :

i k
0 0 0
cqurla=Vxa=|— — —|, (A.1.67 a)
ox Oy 0Oz
a, a, a,
Oa Oa
curla=Vxa=i| 2% S0 |, ;(04x _Qa:) 104y Oday| (A.1.67 b)
oy Oz 0z Ox ox 0Oy
A.1.2.11. Differential Operations by the Nabla Operator
The differential operator:
0 0 0
V=i—+j—+k—
ox oy TR (A.1.68)

is constituted by three partial derivatives relatively to the axes of co-ordinates. In the case
in which it is applied to a product, the operation is the same as in the case of the
calculation of the derivative of a product. The first term will be calculated considering the
first factor as variable and the other factors as constants. The second term will be
calculated considering the second factor as variable and the other factors as constants, etc.
In the case of the application of the operator V , always when confusions could appear,
all the vectors that will be considered momentary to be constant, will be denoted by the
index ¢ (constant). The computing method by the operator V can be explained as
follows. All vectors occurring in the expression under consideration, excepting one
considered as variable are supposed as being constant. Then, the expression will be
transformed, so that, all constant vectors may be arranged before the operator V , and the
one considered as variable, after this operator. If from the point of view of Vector
Algebra two variants are valid, the variant giving a result different from zero will be kept.

Sometimes, the derivation of the relations by using the operator V , due to its formal
character, could be considered as being rather a mnemonic rule than a rigorous proof. For
this reason, the usage of the symbolic operator requires certain precaution.
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Derivatives of Products

L. grad(ow)=V(ow)=V(o. v)+ Vloy.)=9. Vv +y,  Vo;
grad ((p\y) =@grady + vy grad p. (A.1.69)

2. div(ea)=V-(pa)=V-(o.a)+V(ea )=0.V-a+a,-Ve;

div(pa)= ¢ diva +a-grado. (A.1.70)

3. curl((pa)=V><(q)a)=Vx((pc a)+V><(q)aC)=
ZVX((pC a)_(pac xV =
=, Vxa-a,x(Vg);

curl((pa)chcurla—axgrad(p. (A.171)
4. diviexb)=V-(axb)=V-(a.xb)+V-(axb,)=
=V-(ac><b)+bc -(an)z
=—V-(bxa.)+b,-(Vxa)=—a,-(Vxb)+b, - (Vxa);
div(axb)=b-curla —a-curlb. (A.1.72)
5. grad(a-b)=V(a-b)=V(a, -b)+V(a-b,); (A.1.73 a)
but
Ax(BxC)=B(4-C)-C(4-B);
C(4-B)=(4-C)B+ Ax(CxB). (A.1.73b)
By substituting
C=V; A=a.; B=b; (A.1.73 ¢)
it follows
V(a,-b)=(a,-V)b+a,x(Vxb). (A.1.73 d)
Analogously:
V(a-b,)=(b, -V)a+b,x(Vxa). (A.1.73 ¢)
Therefore:

V(a-b):(a-V)b+(b-V)a+a><(V><b)+b><(V><a);
grad(a-b)=(a-V)b+(b-V)a+axcurlb+bxcurla. (A.1.74)
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6. curl(axb)=Vx(axb)=Vx(a.xb)+V(axb,), (A.1.75 a)
but

Ax(BxC)=B(A4-C)-C(A-B)=B(4-C)-(B- A)C. (A.1.75D)
By substituting

A=V, B=a,; C=b; (A.1.75¢)
it follows:

Vx(a,xb)=a.(V-b)—(a,-V)b. (A.1.75 d)
Analogously:

Vx(axb,)=(b.-V)a—b.(V-a) (A.1.75 ¢)
Therefore:

Vx(axb)=a(V-b)+(b-V)a—(a-V)b-b(V-a);

curl (@ x b)=adivh —bdiva+(b-V)a—(a-V)b. (A.1.76)

The utilization of the nabla operator simplifies much the calculation of the derivatives
of the first, second and higher orders of scalar and vector quantities. In this way,
important relations of higher orders can be obtained as follows.

Analogously to the relations of Vector Algebra as b- (b (p)z b? ¢, for b=V, the
following relations can be obtained:

V-(V(p):divgrad(p:VZ(p; (A.1.77 a)
but
g2L0. 2,0 8 08 -
ox 0x 0y 0y 0z 0z (A.L.77b)
Therefore:
. 82(p 62(p 82(p
dlvgrad(pzvz(pz + + .
ox? o0y? oz’ (A.1.78)

By applying relation (A.1.78) for (pzl, where » is the modulus of the position
r

vector, it follows:

r (A.1.79)
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and
vr=L. (A.1.80)
r
2. 0 0 o \(o0a, 0Oa, oda
raddiva=V(V -a)=|i—+ j— + k— SR A 2 A.1.81
5 (v-a) (ax &y azJ(ax oy | oz (A.1.81)
3. 0’a 0*a 0%a

Via=(V-V)a= (A.1.82)

+ + .

ox? oy* oz’

4. 2 2 2

(Vo) =(grad) =| 22| +[ 22| +[22] (A.1.83)
ox oy 0z

Analogously to relations of Vector Algebra:
5. bx(bo)=0, b-(bxa)=0, bx(bxa)=b(b-a)-(b-b)a

and for b=V, the following relations are obtained:

VxVoe=curlgrado=0; (A.1.84)
V-(Vxa)=diveurla=0; (A.1.85)
Vx(Vxa)=V(V-a)-(V-V)a=graddiva - V?a. (A.1.86)

All relations above can be verified by direct calculation, using the co-ordinates of a
three-orthogonal rectilinear system of reference.

A.1.2.12. Integral Transformations Using the Nabla Operator

1° Scalar integral relations. GREEN theorem. In relation (A.1.39) that expresses the
Gauss-Ostrogradski theorem:

Idivadv=ja-ds,
Vs by

the following substitution will be performed:
a=ygrado, (A.1.87 a)

where ¢ and y are two arbitrary scalars and:

b=Vo. (A.1.87b)
It follows:

diva=V-[y(Vo)|=V (v, b)+V-(yb.)=vy,divh+b, -grady. (A.1.87 ¢)
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Hence:
diva =y divgrado + (grad \V)(grad (p). (A.1.87 d)
Therefore:
Idivadv= H\VVZ(p+(V\y)(V(p)] dv= Ia-dSz Iw(gradcp)-ndS. (A.1.87 ¢)
Vs Vs z >
But:
o9
-gradp=—-.
n-grad @ on (A.1.871)
It follows:
0
Vs S

Analogously, replacing the quantities ¢ and y by each other, it follows:

oy
”(PV2\|/+(V(P)(VW)]dV=J o——ds. (A.1.89)
Vs S
By subtracting the two last relations, it follows:
0 0
2 2 - o9 ¥
VH"’V P-oV W]‘”—J(”’@n ‘PaanS (A.1.90)
z
b

The relations (A.1.88), (A.1.89) and (A.1.90) are the three forms of the Green
theorem.

2° Vector integral relations. The following volume integral will be calculated:

Icurladv. (A.1.91 a)
Vs
For this purpose, this integral will be multiplied by any constant vector ¢ :
c'J‘curladv= .[c-curladv. (A.1.91 b)

s Vs
According to formula (A.1.72), taking into account that ¢ = const, it follows:

div(axc)zc-curla. (A.191 ¢)
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The two last equations yield:

fdiv(a xc)dv= Ic-curladv.

(A.1.91 d)

VZ VZ

The last relation, taking into account relation (A.1.39), becomes:
j(axc)-dS= Ic-curladv, (A.191e)
b Vs
and hence:

J.(axc)~ndS= J.c.curladv. (A.1.91 f)

b Vs

The last relation, taking into account relation (A.1.9 a), becomes:

fc-(nxa)dS: J.c-curladv.
z Vs

Taking into account that the last relation holds whatever the constant vector ¢ would
be, it follows:

.[(nxa)dSz Icurladv.
z Vs

(A.1.92)

A.1.2.13. Substantial Derivative of a Scalar with Respect to Time

In a reference frame supposed to be at rest, let us consider any point M (r) moving at
velocity v, relatively to this frame, and the scalar function f (r, t) that is depending on

the point M and that is varying with time.
In various cases, it is necessary to calculate the derivative of the form:

d
] (A.1.93)

in another reference frame that is moving at the same velocity v, as the point M and

hence with respect to which the point is at rest. In cases of interest, the point M is fixed
to the surrounding substance that is moving together with the point M . For this reason
the considered derivative is referred to as substantial derivative.

The variation with time of the function f in the moving reference frame is

determined by two causes: a. The modification of the position of the point M in the
reference frame at rest; b. The variation with time of the function at each point of the
reference frame at rest.

The derivative is obtained from the expression:

4 f(M,1)= lim i[f(x +AX, Y+ Ay, z+ Azt + Af)— f(x, y, z,1)). (A.1.94)
d¢ At—0 At
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It follows:

d 1fdf. df . df . df

- LV, Z,t)= Iim —| — Ax+——Ay+—"—Az + —— At .

3 /oy 21) AHoAt{dx dy > T dz A (A.195)

or

d df  df  df  df
- sV 5t = rx+_ +— rz+_7 A
g wr =gy dy 7 T4z 7 (A.1.96)

where the components of the velocity at which the point M (x, v, z) is moving relatively

to the reference frame at rest have been denoted v, , v,y , v, . Therefore:
d df
—flr,t)=——+v, -grad f. A.1.97
/)=y, erad f (A.1.97)

A.1.2.14. Substantial Derivative of a Volume Integral of a Scalar
Function with Respect to Time

In various cases, it is necessary to calculate the derivative of the form:
d
P [rdv, (A.1.98)
Vs

where f = f (M , t)= f (r, t) is a scalar function with space, i.e., depends on the moving
point M . In the most general case, when both the function f and the volume Vs are
varying with time, the derivative of the given form is referred to as substantial derivative
with respect to time. The reason of the usage of the term substantial has been mentioned

above.
As in the preceding Sub-section, the derivative can be decomposed as follows:

d d d
Eijdv: anfdv + anfdv : (A.1.99)
z z Vs =const z f=const

By differentiating the first term of the right-hand side, it follows:

4 [rav _|[(2L,0/ dx o/ dy of dz)q _
dr,] ot ox dt oy dr oz dr

Vs =const Vs

= J (%+vr ~gradedv,

Vs

(A.1.100 a)
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where v, represents the velocity of both the moving point and the substance relatively to

the reference frame at rest.
The second term of the right-hand side will be differentiated considering the variation
of the volume. The final value of the volume after the time interval Az is:

Vi=Vy+ [v,-dSar, (A.1.100 b)

where v, -dS represents the volume described by the surface element d .S in the unit of
time.
Using the relation (A.1.39) for a =v,, the last relation becomes:

Jv, -dS = Jdivv, dv.

(A.1.100 ¢)
p) Vs
Relations (A.1.100 b) and (A.1.100 c) yield:
VZIZVZ+.[diVVr Atdv, (AllOOd)
b
AVs =Vs Vs (A.1.100 ¢)
It follows:
d d . Vs =Vs .
ds -ff Y fdt -f Y fAtILnO At fJ. ey (A.1.100 )
Vs f=const z z

By substituting expressions (A.1.100 a) and (A.1.100 f) in relation (A.1.99), it
follows:

d .
_z J ( +v, ~gradf+fd1erJdV' (A.1.101)

Vs

Finally, it follows:

d
cl_VI =J{_+dw( *f)}dv' (A.1.102)
Vs
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A.1.2.15. Derivative with Respect to Time of the Flux through a Moving
Open Surface

Let us calculate the derivative with respect to time of the flux of a vector G(r,?)

through a simply connected open surface bounded by any closed simple curve I', when
the surface S| is moving relatively to a reference frame considered at rest.

The velocity of any point of the surface Sp or of the curve I will be denoted by v,

and may have various values at different points. It is assumed that at any point of the
considered domain, the vector G(r,7) is differentiable with respect to time and with the

co-ordinates of the reference frame. The corresponding flux is:

cij )-ds.

A.1.103
J (A.1.103)

The variation with time of the quantity @ will be determined by two causes: a. The
variation with time of the vector G(r, t), at each point of the reference frame at rest;

b. The modification with time of the position and sizes of the surface Sp. After an
interval of time Af, the surface St occupies another position and becomes the surface
St , as can be seen in Fig. A.1.10.

The derivative with respect to time of the flux @ is given by the expression:

dq’ 4 jG )-dS = lim - jGrr+Az 48— [G(r,0)f. (A.1.104)
At—0 At S

The first integral of the last side, if only the small quantities of the first order are kept, can
be expanded in the form:

oG (r, t)'ds

[Glr,t+a0)-ds= [Glr,1)-ds+(a) | Y (A.1.105 a)

St N St

In the last integral of the right-hand side, which is a small quantity of the first order, the
influence of the variation of S will be neglected producing a small quantity of higher

order. It results that:

4 G(r, ).dS:JM.dM
dt ot
Sr
(A.1.105 b)

+11m— J.Grt dS fGrl dS.
At—0 At g
r

It follows that the derivative with respect to time of the flux of a vector through an
open surface that is moving relatively to a reference frame (supposed at rest) is given by
the sum of two terms: a — the derivative of the flux supposing the open surface at rest
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relatively to the reference frame; b — the derivative of the flux supposing that the vector
that produces the flux does not vary with time but the position and dimensions of the
surface are modified with time. The first term has been directly obtained from calculation.
The second term will be further calculated.

It can be remarked, in Fig. A.1.10, that the surfaces S and Sy together with the
lateral surface Sj,, form a closed surface £ =Sy US[ US), . The flux of the vector
G(r, t) through the closed surface X, according to relation (A.1.38), is:

jG(r,t)-dS= JdivG(raf)d% (A.1.105 ¢)
z

55
where d.§ represents the element of the closed surface X.

But the term of the left-hand side of the last relation can be decomposed, and taking
into account the positive sense of the normal adopted in Fig. A.1.10, it follows:

Fig. A.1.10. Explanation to the calculation of the
derivative of the flux through an open surface.
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jG(r,z)-ds jG(rt dS+j )-dS+ j £)d Sy, . (A.1.105 d)
z St St Slat
The element of the surface S}, , with the symbols of Fig. A.1.10, is:
AS 1 =Al xv, At. (A.1.105e)

The volume element of the domain Vs , with the symbols of Fig. A.1.10, is:
Av=(v, At)-AS. (A.1.105 f)
From relations (A.1.105 d) and (A.1.105 e), it follows:

[G(r.1)-ds==]Gr,0)-dS+ [ G(r,1)-dS -

> o S (A.1.105 g)
~ () G(r.1)- (v, xd1). -
T
From relations (A.1.105 ¢), (A.1.105 1), (A.1.105 g), it follows:
[G(r.)-ds— [ Glr,1)-ds=(ar) [ v, divG(r,2)-dS+
5 5 °r (A.1.105 h)
+ (20§ G(r,1)- (v, xd1).
Relations (A.1.105 b) and (A.1.105 h) yield:
—j )-ds= j )-dS—§[v,xG(r,t)]-dl+
r (A.1.106)

+5§v, divG(r,¢)-ds.
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APPENDIX 2

EXPRESSIONS OF THE DIFFERENTIAL OPERATORS IN
CURVILINEAR CO-ORDINATES

A.2.1. GENERAL CONSIDERATIONS

In applications, besides the three-orthogonal rectilinear system of co-ordinates, other
systems of co-ordinates are also of importance. Further on, the expressions of the
differential operators for various systems of co-ordinates will be recalled [12, tome I,
p. 44].

In the three-orthogonal system with rectilinear axes, the position of any point is
determined by the distances of that point to the planes determined by the axes of co-
ordinates.

Hence, any point M (x Mo VM Zm ) can be considered as the intersection of the planes:

X=Xy,  Y=Yym. Z=Zpy, (A.2.1a,b,c)

parallel with the planes yOz, zOx, xOy, respectively.

The intersection of planes y =const and z =const represents the line of variation of
the quantity x. The line y=0; z =0 represents the line of co-ordinate x. Analogously,
the lines of the co-ordinates y and z can be obtained. The three lines obtained in this

way are straight lines.
The quantities x, y, z represent the co-ordinates of the three-orthogonal system of co-

ordinates with rectilinear axes.
Generally, if the following three sets of surfaces are considered:

Ny z)=C,  x01z)=Cy,  x(xny.z)=C;, (A2.2a,b, )

and if various values are given to the constants C;, C,, C;, it can be considered that

each point M of the space is determined by a set of three values corresponding to the
three constants.

The intersection of the surfaces x, =C, and x; = C; represents the line of variation
of the quantity x;. The line x, =0; x3 =0 represents the line of the co-ordinate x;.
Analogously, it is possible to obtain the lines of variation of the quantities x, and x;.

In the general case, the lines of variation are not straight lines but curvilinear ones. For
this reason, in the general case, a system of curvilinear co-ordinates is obtained as in
Fig. A.2.1.

The quantities x;, x,, x3 represent the co-ordinates of a curvilinear system of co-

ordinates.
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Fig. A.2.1. Curvilinear system of
co-ordinates.

Between the co-ordinates x|, x,,x; of a curvilinear system of co-ordinates and the
co-ordinates x, y, z of a three-orthogonal rectilinear system of co-ordinates, there are the
following relations:

xlzfl(ansZ); x:(Pl(xl’xz’?%);
Xy = fo(x, v, 2); v =05 (x1, %5, x3); (A23a,... 0
x3=f3(x,y,z); Z:(p3(x1,x2,x3).

The position of a point M can be defined by the corresponding position vector r .

At any point M(x,, x,,x;) of the curvilinear system of co-ordinates, it is possible to
construct three fundamental vectors e;, e,, e;, tangent to the lines of co-ordinates
X;,X5,x3, and each of them having the length equal to unity. Hence, the three
fundamental vectors above are unit vectors. The three vectors form a trihedron that can
have a different position at each point. In addition, it should be noted that the unit vectors
e, e,, ey, tangent to the lines of co-ordinates, are oriented in the sense in which the co-
ordinates x|, x,, x; increase.

The chief difference between the curvilinear system of co-ordinates and the rectilinear
system of co-ordinates resides as mentioned in the fact that, in the case of a curvilinear
system, the directions of vectors e;, e,, e; depend on the point at which these vectors
are taken.

The expression of a vector in this system of curvilinear co-ordinates is:

a=e a +eya, +eya;. (A.2.4)

Further on, we shall consider only those systems of curvilinear co-ordinates for which
the three fundamental vectors are perpendicular to each other. These are called
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rectangular or orthogonal systems of curvilinear co-ordinates. In this work, only systems
of co-ordinates the fundamental vectors of which form a right trihedron are used. They
are termed right-angled systems of co-ordinates.

The displacement of a point M (xl X9, x3) at a variation dx;, of the co-ordinate x,,
the other two co-ordinates being constant, is d.s; .

Analogously, the following variations will be obtained: ds, at a variation dx, and
ds; at a variation dx;. The expressions for the length of the element of arc, the area of

the surface elements and the volume of an element, taking into account that the system is
orthogonal, and neglecting the small quantities of higher order, are:

ds? :ds]2 +ds§ +ds32. (A.2.5)
dS; =ds, ds;,

dS, =ds;ds;, (A.2.6a,b,c)
dS;=ds;ds,.
dV =ds;ds,ds;. (A2.7)

We shall take into account that the partial derivative of the position vector » with
respect to the co-ordinate x; (the co-ordinates x, and x; remain constant) is:

ﬂ—e h AZ 8
o, 17, (A.2.8)
where:
or
—=h.
ox | (A.2.9)
It follows:
or
e, ds;=——dx; =e hdx,
1957 ox, 1 114X (A.2.10)
hence:
dSl :hl dxl . (A211)

Analogously, it is possible to obtain the corresponding expressions of ds, and ds;.
The following expressions are obtained:

ds® =hf dxf +hi dx3 +hidx?. (A2.12)

dS1:h2h3d)C2dX3; dS2:h3hldX3dx1; dS3=h1h2dx1dx2; (A213 a, b, C)
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or
ho=|—1|; (A2.15)
0x;

2 2 2
PR B S (R Y I (A.2.16)
Ox; Ox; Ox;

The quantities of the form #4; are called LAME coefficients.

We shall express the differential operators taking into account the relations above. The
gradient of a scalar function ® (x;, x,, x3 ) has the expression:

g 1h1 5)61 21’12 5)62 3h3 8)(:3. ( o )
The divergence of a vector a(x1 , Xo, x3) has the expression:
1 0 0 0
diva=———|—\a; hy iy )+ ——\a, hy hy )+ ——az by hy ) |. A2.18
hlh2h3{8x1(123) 8x2(231) a)63(312)} ( )

The curl of a vector a(xl , X9, x3) has the expression:

1 0 0 1 |0 0
curla = e ——| ——(as ) =——(ay hp) |+ €2 —| ——la 1y )-——(as ) | +
hy hy | 0x, 0x3 hy hy | Oxy 0x

[ O () (a hl)}.

a_xl a.)C2

t+e3

hy hy

(A.2.19)

The Laplace operator applied to a scalar function, V20, has the expression:

oo L [0 (hns @) o (mm @) o (mh 20|
hl h2 h3 6x1 hl 6)61 aX2 h2 a)C2 a.X3 h3 ax:;

(A.2.20)

A.2.2. FORMULAE FOR THREE-ORTHOGONAL RECTILINEAR,
CYLINDRICAL AND SPHERICAL CO-ORDINATES

Further on, the following three-orthogonal systems of co-ordinates will be considered:
Three-orthogonal rectilinear system of co-ordinates, cylindrical system of co-ordinates,
spherical polar system of co-ordinates.



Appendix 2. Expressions of the Differential Operators in Curvilinear Co-ordinates. 243
- 4
s N

) 4

|\ ~ 7 |
e il N — T —
| | ~ ~
| | Vs < ~ /\ N
r e
| | / Y/ EAEN
| | / 0 \
| _ — — — Jd | / \
N

S __ o \ ’ 0 \.

_— — ] » k—— — — — + =

N 7
N ~ ¢ pl ”7 Y \ ~ ¢ M / Y
\ /
N\ /
X Ve
~ e
~ —

Fig. A.2.2. System of cylindrical

co-ordinates. co-ordinates.

Fig. A.2.3. System of spherical polar

Besides these, also other systems of three-orthogonal systems are used, for instance

the elliptical system of co-ordinates.
For a three-orthogonal system of co-ordinates with rectilinear axes, it follows:

Xy =X, X2 =V, X3 =2z,
ds? =(dx)* +(dy)* +(dz)*; (A221a, ..
For a cylindrical system of co-ordinates (Fig. A.2.2), it follows:
X1 =p; Xy =0; X3 =2,
X=pcosQ; y=psing; z=x3;
A222a,..
ds? =(dp)* +(pdo)’ +(dz); (

For a spherical system of co-ordinates (Fig. A.2.3), it follows:

»8)

1)
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X, =7} X, =0; X3 =Q;

x=rsinBcosp; y=rsinOsing; z=rcosb;

A223a,...,]
ds? =(dr)2 +(rd6)2 +(rsin6d(p)2; ( )
h =1; hy=r; hy =rsin0.
The relations of differential operators in cylindrical co-ordinates:
od 1 00 od
rad®) =—; rad®) =—-—; rad®) =—. 2.
(grad ), 30 (grad@), e (grad®), =— (A224a,b,c)
1 0 1 da, da
diva=—— 2 A2.25
0 oa da o da
(curla) _1.0a _ 2 (curla), = p—i, (curla)zzl-i(pa(p)—l-—p.
P p 09 0z ¢ 0z op p oOp p 00
(A.2.26)
1 0 o®) 1 @ 9’0
Vz(D:—-—(p—J — 5t (A.2.27)
p opl 9p) p° Qo 0z
The relations of differential operators in spherical co-ordinates:
oD 1 0@ 1 00
rad®) =—; rad®), =—-—; rad®) = —
(grad®), === (grad®)y=—-—=;  (grad®), =—— 5o
(A.2.28a,b,c)
. 1 0 (, 1 |0 . day
diva=— — . )+ —(agsinB)+ . A.2.29
T 8r(r a) rsme{ae(% ) a@} (4.2.29)
0
(curla)rz 1 ﬂ(aq)sme)—ﬂ ;
rsin@| 00 op
(curla), = ! -%—l-i(ra ) A230a,b
O ysin0 oo r or 7 (A2302,b,¢)
1| 0 da
curla) =—|— -—L|
( )(p r{@r(rae) 89}
2
vzq):%i(rzag} ! i(a_@me}%.;z.a_q; (A231)
r= Or or ) rsin@ 00\ 00 r” sin“ @ 0¢
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A.2.3. ELLIPSOIDAL CO-ORDINATES

We shall recall some more important results concerning the ellipsoidal co-ordinates.

The relation between ellipsoidal co-ordinates and those of a right three-orthogonal
system of co-ordinates with rectilinear axes is given by the equation of a surface of the
second order:

2 2 2
a“+u b °+u c°+u
(a>b>c). (A.2.32)

Relation (A.2.32) represents an equation of the third degree with respect to u. This
equation has for each point of co-ordinates x, y, z, three real distinct roots &, 1, C

situated respectively within the intervals:

ée[—cz,+oo), (A.2.33 a)
nel-v2,-¢}, (A2.33b)
cel-a? -5 (A2330)

The geometrical meaning of the roots &, 1, £ consists in the following. The surfaces

corresponding to equation (A.2.33), in which the quantity # is successively replaced by
one of the quantities &, m, &, represent ellipsoids, hyperboloids with a sheet,
hyperboloids with two sheets. These surfaces of the second order are confocal with the
ellipsoid given by equation (A.2.32) for u =0.

Through each point of the space, one of the surfaces belonging to the three families is
passing. The three surfaces are orthogonal to each other. The relations for passing from
the ellipsoidal co-ordinates to those of the three-orthogonal system of co-ordinates with
rectilinear axes are obtained by solving the system of three equations with three
unknowns x, y, z, which is obtained by replacing in equation (A.2.32) the quantity u

successively by €, n, . It follows:

1
e (§(+ az)(n;(az)(c +)02) ? ’ (A.2.34 2)
b2 — a2 o2 — 42 |
. (§+bz)(n+bz)(C+bz) 12 (A.2.34 b)
o (cz_bz)(az_bz) | ’
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) |
s o

To each point of co-ordinates x, y, z, of the three-orthogonal system of co-ordinates

with rectilinear axes, there corresponds a point of co-ordinates &, n, C, in the ellipsoidal
system of co-ordinates.
The length element expressed in ellipsoidal co-ordinates is:

ds® =hZ (de)’ +h} (dn)® + K2 (dC), (A.2.35)

where the following symbols have been used:

Ve-ne-9) , _J-d-g) -, VE-E-n)
2R, " 2R, ¢ 2R, TR

Ry =t a) +(u+ ) +(u+c)2]§;

(w=¢m,0). (A.2.37)

The expression of the quantity V2V in ellipsoidal co-ordinates is:

v (é—n)(@ié)(n—C){(n_g)Rg(%(Ri &)reondm s
+(g_n)RCaiC(Rg Z_Zﬂ :

(A.2.38)



APPENDIX 3

GENERAL RELATIONS DEDUCED FROM THE
SPECIAL THEORY OF RELATIVITY

In this Appendix, we shall first recall some basic relations of the Theory of Special
Relativity concerning Mechanics. Then, starting from these relations, we shall deduce
certain general relations concerning forces in various reference frames. These relations
can be used in the Theory of Electromagnetic Field as well as in the case of other fields of
forces. The derivation is based on previous papers of the author [23], [40], [41].

A.3.1. RELATIONS OF MECHANICS IN THE SPECIAL
THEORY OF RELATIVITY

Let us consider the inertial reference frames K|, (xo, yo,zo) and K, (xl, yl,zl)
having the corresponding axes of co-ordinates parallel to each other. Three-orthogonal
rectilinear (Cartesian) right-handed systems of co-ordinates are used.

The time in two reference frames will be denoted by 7, and ¢, respectively. The unit

vectors of the two systems of co-ordinates can be denoted by the sets i k,, and

0? jO >0
i, Ji, ky , respectively.

In the case in which the axes of co-ordinates of the two systems are parallel with each
other, since the unit vectors are dimensionless, both sets of unit vectors can be denoted by
the same set of symbols, namely i, j, k.

The components of any vector, in the reference frame K, for instance F,, along the

three axes of co-ordinates can be denoted by F, ,F,, ,F, . If no confusion may

appear, for the sake of brevity, the last suffix may be suppressed and then the components
become F ., F, ,F,,.

ox> % oy»
The components of any vector, in the reference frame K, for instance F;, along the
three axes of co-ordinates can be denoted by £, , F,, , Fi;, or Fy,, F,, F,, according

to the case, as explained above.
The components of the velocity v, of the reference frame K; with respect to the

reference frame K, along the three axes of co-ordinates, can be denoted by
Vioxy s Yoy » Vozy O Viox» Viay» Vioz » according to the case, as explained above.

The used symbols are given at the end of this appendix. At the initial moment =0,
the two systems of co-ordinates above are assumed to coincide.
If no mention is made, the medium is the vacuum (i.e., empty space).
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In order to facilitate the understanding of the treatment, firstly we shall recall the
relations of Mechanics in the Special Theory of Relativity, brought in a convenient form,
in accordance with the following treatment.

We consider the relation in the Special Theory of Relativity as being obtained directly,
hence without resorting to the equations of Electromagnetism.

A.3.1.1. General Relations of Mechanics in the Special Theory of
Relativity

Between the quantities of Mechanics given in the list of symbols at the end of this
appendix, the relations below have been established and will be given using three-
dimensional vectors (Fig. A.3.1). For the sake of simplicity, we denote r 4 =r, r,p =71,.

If no mention is made, we shall also assume v,, =iv;, =iv,,, . The quantities in the

reference frame K, expressed in terms of the quantities of the reference frame K, are:

v
n :ro_vlot0+(alo_1)v10'(ro_vloto)%’ (A3.1)
V1o
1 Vi
O =—7—=3;  Pro=""", (A3.1a,b)
‘\jl_Blzo ¢
v
AL = Al + (o, —1) (v - AL )v%, (A32)
lo
1
AS) =0y, AS, +(1—(110)—2(V10 'Aso)vlo > (A3.3)
V1o
AV =0y, AV, (A3.4)
Vi, .
L =0 (lo - 1(;2 ° ], (A.3.5)
2
vy, = V20 “ V1o + o, 1 P 'ﬂl; —bio Vi » (A3.6 )
0Llo(l_ﬂ2o'ﬂlo) 0('lo(l_ﬂZO'ﬂlo) ﬂ]o

+ oy, —1 B + B

Voo V21tV + 1o 'ﬂ21 Bio + Bio Vi - (A.3.6 b)

- a10(1+ﬂ21 'ﬂlo) OLlo(l"'ﬂZI 'ﬂlo) ﬂlzo

The last two relations can be brought in a form sometimes suitable in applications, for
instance the latter:

- i(vy +v10)x J 0 +vi )y k(vyr + v, )z

= + + ,
L+ B - Prio OL1o(l+ﬁ’21 'ﬁlo) 0‘10(1+ﬁ’21 'ﬂlo)

Voo (A3.6¢)
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A
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P(x4.0.20)
A
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Yo
V1o
2
vloto >
X
Y >
__C./ >
Oo Zo Xo
Vloxto Xo— vloxto
Xo

Fig. A.3.1. The systems of co-ordinates K| (xo, VorZo ) , K (xl, V1,23 ),

and a position vector.

Y20 V1o V1o
Ao (1_ ) ar +(1_a10)(v10 'a2o) B + Qe
C Vlo

a = 3
3 Y2 Vo
(O FR (1 -5 )
C

Y20 "VIo
m; =0, (1——2 m,
C

Vi, a
loc2 20 Vao
: (A3.7)
(A3.8)
(A3.9)

where the quantity m is the relativistic mass in the reference frame K, of a material

point moving at the velocity u=v,, relative to this reference frame, whereas m, is the

relativistic mass in the reference frame K, and m, is the mass of the material point at

restin K .
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F, = 1-ay, Bos - Pio F + oy, —1 .Fo'vlo v, _L.VZOX(VIOXFO)
(o] (o] s
Ao (1_ﬂ20 'ﬂlo) Q1o (1_ﬂ20 'ﬂlo) V120 C'2 1_ﬂ20 'ﬂlo
(A.3.10)
_ 1t oye By - Bio F+ o, —1 Fivy v, +L.V21X(V10><F1)
) o B
Ao (l+ﬂ21 'ﬂlo) Qo (1+ﬂ21 ‘ﬂlo) v120 1+ By By
(A3.11)
Bio =" Py ="y =22 (A3.11a,b,0)
c c c

We assume that there is a certain inertial reference frame K, that has the following
property. The force acting in this reference frame upon a particle p that is moving at any
velocity v, #const, relative to the reference frame K, is independent of the velocity

Vo -

For instance, in the given reference frame K, the force Fcan be independent of the
velocity v,;. Such an example occurs in the case in which there is a point-like electric
charge ¢, at rest in the reference frame, and F; is the force exerted upon any point-like
charge ¢, moving at the velocity v, relatively to the reference frame K. The value of
a force in the reference frame K, and for instance in the reference frame K, in the

example above is referred to as proper value of the force.

The forces in any reference frame, say K, can be expressed in terms of the forces in a
certain reference frame, say, by means of a relation of the type (A.3.10).

At the same time, we assume that all the geometrical elements (lines, surfaces) have
their proper dimensions (sizes) in the reference frame K, . The geometrical dimensions

(sizes) in the reference frame K, can be expressed in terms of the geometrical

dimensions (sizes) of any other reference frame by means of the relations above (A.3.2)
and (A.3.3).

With the usual denominations, the geometrical dimensions are contravariant
quantities, whereas the forces are covariant quantities. When writing various relations, it
is useful to take into account this remark.

It is possible to express the relation between the differential operators when passing
from one reference frame to another [23, Vol. I, p. 504]. These operators concern
gradient, divergence, curl and derivative with respect to time.

Remark. In the case in which v, is not of the form i v, ., any vector r, (xo, Yo ,ZO)
or K (xl » V1 ,Zl) can be decomposed into three components: One parallel to the direction
of v,, and the other two components perpendicular to the direction of v, , chosen so

that, together with the component parallel to the direction of v, , they form a Cartesian

right-handed reference frame. Then, the transformation relations can be applied for each
component. Therefore, the relations of Sub-section A.3.1.1 subsist.
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A.3.2. RELATIONS CONCERNING THE FORCE VECTORS IN
VARIOUS REFERENCE FRAMES

A.3.2.1. Transformation of the Force when Passing from a Reference
Frame to Another

v
By multiplying both sides of relation (A.3.6 a) by % and adding the unity to both
¢

sides, we can obtain:
1
0o (1 - ﬂZo 'ﬂlo)

Taking into account relation (A.3.12), expressions (A.3.10) and (A.3.11) can be
written in the form:

Q1o (1+ﬂ21 'ﬂlo)z (A.3.12)

Fl 'vl 1

F, =0y, F| _(ulo _1)—20v10 + — V20 ><(Vlo XFI)’ (A.3.13)
V]O C
F 'vl 1

Fy =0y, Fo_(alo_l) 2 5 2 Vio ~ Q10 —5 V21 ><(vloXFo)' (A.3.14)
VIO C

The derivation of the last two formulae, namely relations (A.3.13), (A.3.14) can be
achieved starting from relations (A.3.10), (A.3.11) as follows. We consider relation
(A.3.13) and deduce it starting from relation (A.3.11). The aim is to express the last term
of that relation in terms of the velocity v,, instead of v,,. Hence, we have as a factor the

velocity of the point-like charge subjected to that force with respect to the reference
frame in which the force is expressed.

The concerned factor of relation (A.3.11), taking into account relation (A.3.12),
becomes:

1 Va1 ) (
— =50,V =By B ) A3.15
N5 By o lo V21 20 " P1o ( )

From relation (A.3.6 a), it results that:

ﬂ20 'ﬂlo _ﬂlzo

Ve s  (A3.16a)
B J

1 1
0_20“10 Va1 (1—ﬁ'20 'ﬁlo):c_2|:v20 Vo +(°‘10 _1)

and:

1 V21 1 2
T . ., 5 % Vzl(l—ﬂz B )=
c? L+ a1 - Bio 2’ ? °

1
:C_zalo |:v20 Vit (alo - 1)

B Pro—Fio

(A.3.16 b)
I ”}
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or:

)ﬂzo B 1

1 1
2 OLlo Va1 ( ﬁ2o ﬁlo) OLlo Vyo T 0y, (alo -1 P Ao _2v10 .
C ﬂlo ¢

(A.3.17)

Taking into account relation (A.3.15), the first term of relation (A.3.11) can be
written:

L+ ay, B2 Bio oy, By Bio 0y, —

Ao (1+ﬂ21 'ﬂlo) b Ao (l+ﬂ21 ‘ﬂlo)

alOF_
1=

{H%(l‘“lo )}Fl=[1+(1—0t10)0t10(1—ﬂ20'ﬂlo)]Fl-

L+ fo1 - Bro
(A.3.18)
Similarly, the second term of relation (A.3.11) can be written:
oy, —1 F,-v F, v
L0 oy = (oo — Do (1= Bao - Bio) =510~ (A3.19)

Qo (1 + B 'ﬂlo) V120 Vlo
Having in view relations (A.3.18), (A.3.19), (A.3.16 b), relation (A.3.11) becomes:
=[1+ (=00 )otio (1= B - B0 )1 Fy +

F v
+(a10 )alo( ﬂ20 ﬂlo) Lo lo
vlo
1 1 BB~ Bi
T3 %o V2o x (v XFI)"'_ZO“IO — 1+ (ot - )M vip X (Vi X Fy).
¢ ¢ ﬂlo
(A.3.20)
The vector F, will be considered to be composed of two terms:
Fop =1+ (=0t ) oo (1= B - B0 | Fy +
F,-v
+(a10 )alo( ﬂ20 ﬂlo) 1\/10 = lo (A.3.21)

1 B Bio — Bi
+—(110 —1+((X10 )M

2
c ﬂlo

1
Fop =—5 0o v20 % (1o X Fy ). (A.3.22)
C

Vip X ("10 X Fl)v
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At this stage, the calculations can be shortened as follows. Let us assume vy, =i v, .
In this case, along the Ox - axis, from relation (A.3.21), we obtain:

Folx :[1+(1—(110)(110(1—ﬂ20 'ﬂlo)]le +

F, v
+(0“10 —1)0(10 (1_ﬂ20 'ﬂlo )%vlox +
lox

ﬂZo 'ﬂlo _ﬂlzo

1
+C_20'10 |:_1+ (alo _1) ][Vlox (vlox le)_le (vlzox) :le :

Bio
(A.3.23)
Similarly, along the Oy - axis, from relation (A.3.21), we obtain:
Fon = [1 + (1 - OLlo)(xlo(l _ﬂ20 ’ ﬂlo )]Fly +
1 Bro - Bro — Bi 2
T 0 |:_1+ (alo - 1)% [_Fly (vlox )]:
¢ ﬂlo
Bao  Bro ~ Bi
= 1"—(I_OLIO)OLIO (l_ﬂZO ‘ﬂlo)"—{_alo _(1_(110)(110% (_ﬂlzo) Fly =
ﬂlo
:|:1+alo _alzo +a120 ﬁlzo]Fly =W Fly >
(A3.24)
since:
af, (1— ﬁfo)z 1. (A3.24 a)
Similarly, we obtain
Fop = oy, F; - (A.3.25)
Finally, we have:
FOI:iFOIx+jFOIy+kFOIZ9 (A.3.26 a)
Fy=iF, +joy, Fy, +koy, Fy, (A.3.26 b)
or in compact form:
F v
Fo=oy, F - (alo - 1)%"10 . (A.3.27)

YIo
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Consequently, the sum of the expressions (A.3.27) and (A.3.22):
F,=F, +Fy (A.3.28)

will give just the expression (A.3.13).

A.3.2.2. Expressions of the Force Acting on a Material Point Moving
in Any Reference Frame

Each of the two relations (A.3.13) and (A.3.14) can be modified as shown below. For
instance, first, the former becomes:

. . 1
Fo :lFix +J % Fly +k0(10 Flz T 0 _2v20 X (vlo XFI)‘ (A329)
C
We assume that, in the reference frame K, the force acting upon a material point
moving at the velocity v,; # const, is F;. The force in the reference frame K, will be
denoted, as above, by F . The expression of the force F, in the reference frame K, can
be written in the form:

F,=F, +F,,, (A.3.30)

where:

F,-v 1
%"10 =F — (o, _1)—2"10 X(vlo XFI):

Vi Vio (A.3.31)
=iF +joy, by, tkoy, F,

For =0, Fl _(alo _1)

and
_ %10
Fov =Voo X 2 (vlo X Fl)' (A332 a)
C
Multiplying the first both sides of relation (A.3.31) by v,,, we get:

vlo X FO}’ = alo vlo X Fl . (A332 b)
Hence, according to relations (A.3.31), (A.3.32 b), (A.3.30):

1
F,=F, +vy, X(_zvlo X Forj' (A.3.33)
C
We denote:
1
Gop =5 V1o X For (A.3.34)
C

and it follows:
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FO = FO}’ + Voo X GOb . (A335)

If in a certain reference frame K|, the force vector F; acting upon a material point is
independent of the velocity v,; then, in any reference frame K, the components F,,
and G, will also be independent of the velocity v,; of the material point.

Analogously to relation (A.3.35), the expression (A.3.14) can be written in the form:

The components F), and Gy, are:

F, -v
Fy, =ay, For - (alo _1)0—210‘)10 T Qo Vio ><Gob > (A.3.37)
Vo
G b V1 1
Gy =0, Gy _(0‘10 _1)%‘)10 — Qo 5 Vo X F, . (A.3.38)
Vio C

A.3.2.3. Derivation of the Components Entering into the Transformation
Expressions of the Force Acting on a Moving Material Point
when Passing from a Reference Frame to Another

The aim of this Sub-subsection is to establish the relations (A.3.37) and (A.3.38),
between the quantities F,,.and Fj, and also between G, and G, , respectively. We

shall give a direct derivation, this way being more conclusive in comparison with other
ones.
We suppose that the vector F, in the reference frame K, is given and, as shown, it

can be expressed in the form:
F,=F, +v,, xG,. (A.3.39)

We shall replace this expression into relation (A.3.14) written in the form:
. , 1
Fi=iF, +jo, Foy +thkoy, Fo, —ay, — V2 ><(vlo XFO)' (A.3.40)
c

We obtain:
Fl zi(For + V) XGob)x +.i(x10 (For +V ><Gob)y +kOL10 (For + V) ><Gob)z -

1
— 0O c_2v21 X [vlo x (For 1V X Gob )]

(A.3.41)
We consider the case, further called case 4, in which we assume that:

F, =iF,,., (A.3.42 a)
Gy =iGyy - (A.3.42b)
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Taking into account that, in this case, the vector v,, x G, has components only along
the Oy and Oz axes, hence the two terms containing the two components of the
corresponding force when passing from the reference frames K, to K; will contain the
factor o, . The component along the Ox - axis vanishes, hence (v20 x Gy, )x =0. Since

the vector v,, x G, has components only along the Oy and Oz axes, the vector v,,

will occur only with the last two terms of relation (A.3.6 c).
In this case, denoted case 4, relation (A.3.41) yields successively:

FlA :lForx +]a10 (For +v20 XGob)y +k0£10 (For +v20XGob)z -

1

(A.3.43 a)
— Qo c_v21 x [vlo e (For TV X Gob )]=

2

. 1
FlA :lForx + 0y, (v20 x Gob)_ O1o c_2v21 % [vlo x (For TV X Gob )] (A-3-43 b)

After the substitution of expression (A.3.6 ¢) into the last relation, and taking into
account that in this case v, =iV, Vo XGyp =iVioy XiGy, =0 and

Vo X Fy, =iv,, xi F,,, =0, it follows:

+ ] + ]
Fi\ =iF,, +a, (Va1 +¥10) % Gopy — oy, szm S X|:F0r + (v21 vlo)XlGobx:| ’
Ao (1 + B 'ﬂlo) c Ao (1+ Ba 'ﬂlo)

(A.3.44)

and further:

. Va1 X i Gopy 1 Va1 X i Gopy
Fip =iF,, +o, V21XV X )

Ao (1 + B2 ’ﬂlo) ° 2 o (1 + B2 'ﬂlo)
(A.3.45)
The last relation can be written:

. vy X Gy 1 vy X Gy,
FlA:lF +(11 —OLI —v21>< vl ><|: .
o ° Ao (1+ﬁ21 'ﬂlo) ° 2 ° Ao (1+ﬂ21 'ﬂlo)

(A.3.46)
By transforming the expressions inside braces, we get:
v xGoy ] Lvm X{VZI (V1 - Gop )= Gop (V2 'vlo)}
oo (14821 - o) °¢? oo (1+ 821 Bro)

Fia :lForx+alo

(A.3.47)

Within the braces of the last term of relation (A.3.47), the term containing in
numerator v,; can be cancelled because v,; xv,; =0. Therefore, we obtain:

vy X Gy, ~ Gy vy - v),)

1
— 0Ol —Vyy X
o (1+ﬂ21 'ﬂlo) t° c? ! {0‘10 (1+ﬂ21 'ﬂlo)

FlA:lForx+alo

}. (A.3.48)



Appendix 3. General Relations Deduced from the Special Theory of Relativity. 257

By summing up the factors preceded by v,; and containing G, =i G, , we get:

Gob 1 Gob (v21 ) vlo)
a +0,, - =G, . A.3.49
to Ao (1+ﬂ21 'ﬂlo) te c? A, (1+ﬂ21 ‘ﬁlo) ° ( )
Therefore:
FlA :iForx +v21 XiGObX . (A.3.50)

We consider the case, further called case B, in which we assume that:
Fo, =jFo, (A.3.51a)
Gy =JGopy - (A.3.51b)
In this case, denoted case B, relation (A.3.41) yields:

FIB zi(v20 XjGoby)x +j0(10 Fory +j(110 (v20 ><]‘Goby)y +ka10 (v20 X.iGoby)Z -

1 . .
Qo 5 Va1 X ["10 X (]Fory + V3 X jGopy )]
¢
(A.3.52)
We shall replace v,, in the form:
Voo =iVigy + jv2oy +kvy (A3.53a)
and
Vor =iVary +JVary, HEVy =EVa + Vo, T vy (A.3.53D)
According to relation (A.3.6 c), we get:
Vorr +V v
vy, =it T ox 2 k2 (A.3.54)
1+ B2 Bio ao(l+ B Bro)  aio(l+ By - Bio)
From relations (A.3.53) and (A.3.54), we obtain:
Vo1, G Voix T V1o, )G
Yoy X jGoby - 21 oby ( 21x lox) oby (A355)

+
ayo (14 821 o) 1+ By - Bio
From relations (A.3.52) and (A.3.55), we obtain:

Vaiz Goby Vaix Goby Viox Goby

o 0‘10(1+ﬂ21‘ﬂ10) 01+ﬁ'21‘ﬁ'10 01+ﬁ21'ﬁ10

1 . 1 .
T 5V X ("10 XJFory)_Oho VX ["10 X ("20 X JGopy )],
C C

(A.3.56 a)
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and:
. V21z Goby Valx Goby Viox Goby
=i ko, ———2 ko, —e 0
0‘10(1+ﬂ21 'ﬂm) 1+ B2 - Bio 1+ Ba1 - Bio

Fig =joy, F,

1 .
O 5 V2 X ("10 X ]Fory)_
c

1 ; Vi Vatx * Viox J
°c? { ° l:( ao (B Bio) 1+ B Bro )
(A.3.56 b)

By substituting in the last relation v,, =iv,,, , we obtain:

. a1z Goby Volx Goby Viox Goby
— +koy, ——m+ko)y, ———
0‘10(1+ﬂ21 'ﬂlo) L+ B - Brio L+ 8oy - Bio

Fig=jo, F,
1 .
— o 5 V21 X(vlo X]Fory)_
c

1 . Vorx + Viox
O Vo X " JViex T Goby (-
¢

1+ o1 - Bro
(A3.57)

For obtaining the result in a compact form, we shall express the various terms as
follows.

1° The term having as coefficient the quantities i, G, , vy -

The corresponding factor is:

1 1 o B2 B + Bio _
| =
o, L+ By Bio ° L+ By Bio

(A.3.57a)
:_1+0‘120 B - Bio + ot B -
aj, (14821 - Bio) e
since
g Bl =0tgo — 1.
2° The term having as coefficient the quantities k, G, , Vo -
The corresponding factor is:
1 B - Pro —ay,. (A3.57b)

o, +a,
Ol"‘ﬂm‘ﬂlo Ol"‘ﬂzl'ﬂlo
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3° The term having as coefficient the quantities k, G, , Vioy -

The corresponding factor is:
1 .
o, +ay, ﬂ21 ﬂlo
1+ o1 Bro 1+ B - Bro

By replacing the terms corresponding to factors given by relations (A.3.57 a, b, c) into
expression (A.3.57), it follows:

=0y (A3.57¢)

oby +

. 1 . .
Fig =joy, Fopy —0y — Vo X (Vlo X]Fory)_lalo V1. G
c

(A.3.58)

+ kalo Vaix Goby + kalo VloxGoby :

By introducing the vector products, the last relation can be written in the form:

Fig =joy, Fyy + 0y, ("10 X jGoby)+ Vo X {J'Oho Gopy — O c%(vlo X jFy, )}
(A.3.59)
Therefore:
Fizg=F, +v, xGy,. (A.3.60)

Similarly, we can obtain:

Fie =kay, Fyp, + 0, (Vg Xk Gop, )+ 95y X [k 0o Gop, = Cyo Ciz(vlo xkF,. )}
(A.3.61)
Hence:
Fic =F), +vy, xGy,. (A.3.62)
By summing up, side by side, the relations (A.3.50), (A.3.59), (A.3.61), it follows:
Fi=iF, +joy, o ko, Fyp +ay, ("10 XGob)+
(A.3.63)
TV X {(’ Gopx +J 01, Gopy + R0y Gobz)_ Qo c%("lo xF,, )}
Therefore:
F, =F, +v, xG,. (A.3.64)

By comparing relations (A.3.63) with (A.3.64), it follows that the quantities F), and

G,, are expressed in terms of the quantities F,, and G, just by the relations (A.3.37)
and (A.3.38).
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A.3.3. INTEGRAL AND LOCAL FORMS OF RELATIONS
CONTAINING THE VECTORS IN VARIOUS REFERENCE
FRAMES

A.3.3.1. The Fluxes of Vectors F,, and F,, through a Surface

We may consider as known the resultant force F| in the reference frame K, acting
upon a moving material point and we assume that it is independent of the velocity v,;.
Hence, according to relation (A.3.36), the vector G, is zero.

We need to calculate the flux of the vectors F,, and Fj, through a given surface,
open or closed, in the reference frames K, and K, respectively. Firstly, we shall
calculate the flux in the reference frame X .

For obtaining the surface element AS;, we start from the quantity AS, in the
reference frame K, where the flux has to be calculated. For calculating the vector F,,
we start from the vector F; in the reference frame K; where the resultant force has been

considered. In this way, as we shall show immediately, the flux remains unchanged in the
two reference frames. The conservation of the flux through a surface is equivalent with
the geometrical interpretation that the number of lines of field, through the considered
surface, remains unchanged.

In the reference frame K, we obtain the flux:
F, -AS,. (A.3.65)

Taking into account relation (A.3.36) and G}, =0 of above, it results that F; = F},..
Hence, in the reference frame K, we obtain the flux:

1
F. -AS, =a,, Fy -AS, +(1—0°10)V—2("10 ‘Aso)"m -Fy. (A.3.66)
lo

But in the reference frame K, as shown above, by relation (A.3.31), we have:

1
For =0, Fl +(1_0L10 )_z(vlo ' Fl)vlo . (A-3-67)

V1o
Multiplying both sides of the last equation by AS, it follows:
F,,-AS,=F,, -AS,. (A.3.68)

For a closed surface, we obtain:

[ i, -ds, :Z_[For 45, (A3.69 a)

% o

in integral form, and:



Appendix 3. General Relations Deduced from the Special Theory of Relativity. 261

div,F,, =a,, div, F,, , (A.3.69 b)

in differential (local) form, respectively. The index of the operator div indicates the
reference frame in which this operator has been calculated.

A.3.3.2. The Flux of the Vector G, through a Closed Surface

We need to calculate the fluxes of vectors G, given by relation (A.3.34) through a
given surface, a closed or open one, in the reference frame K :

¢ lo

1 1 1
Gob ‘ASO :_ZASO '(vlo XFor):c_z{vlo XI:OLIO Fl _(alo _1)_2(F1 'vlo)v10:|}'AS0 =

1
:C—zalo (vlo XF])‘ASO .

(A.3.70)

Taking into account relation (A.3.3) and that (v10 x F ) v, =0, it follows:

lo

1 1 1
G, - AS, :C_z(vlo ><F‘or)'ASO :c_z{vlo Xl:alo F _(alo _1)_2(171 'vlo)vlo:|}'AS0 =

1 1
-l B 18, 1) 8, -

lo

1
:c_z(vlo XFI)'ASI'

(A3.71)
It follows:
1 1
IGOb'dS0=—2v10‘ IFIXdSIZ——ZVIO' Icurllﬂdl/l, (A372)
p) ¢ p) ¢ ;
o 1 Iy
in integral form, and
. 1

o, div, G, = —c—zvlo -curl; Fy, (A3.73)

in differential (local) form. The indices of the operators div and curl indicate the
reference frame in which these operators have been calculated.



262 General Theory of the Electromagnetic Field

A.3.3.3. The Circulation of the Vector F,. along a Closed Curve in the
Case of a Field of Vectors with Central Symmetry

We need to calculate the circulation of the vector F,, round a closed curve in the
reference frame K, . We consider the case of any field of forces with central symmetry in
the reference frame K,. We also assume the same condition as at the beginning of Sub-
section A.3.3.1, and hence Gy, =0. As previously, we adopt the axes of the system of co-
ordinates in a convenient manner, namely so that the vector velocity v, be parallel and

of the same direction with the Ox - axis. The general expression of the forces in the
considered case is:

Fy =f("1AP)"1AP= (A.3.74)

where the position vector r ,p =r,p has the origin at any point A(xl 4> Vids Z14 ), source
point, and the extremity at the point P(x,, y,., z, ), observation or field point, at which the
mentioned force has to be calculated at any moment #, in the reference frame K. The
position vector can be expressed in the form:

Fap =ila, (Yo = Viedo )= i)+ (o = yia) + k(2o = 214); (A3.74 a)
or, generally, for any direction of v, :

14
Fiup =T, — Vo to +(0,10 —l)vlo '(l‘o Vi to )%—rm . (A.3.74 b)
Vio

We shall use the expression of the force (A.3.31) in the form:
For :ile+jalo F1y+k0“loFlz' (A375)

The circulation of the vector F, round a closed curve I is:

§ F, -dl= Icurlo F, -dS,, (A.3.76)
1_‘O

ST,

o

where St is a simply connected open surface bounded by the curve I';. It is assumed
that on the surface St the function F,, (r) is differentiable at each point. Taking into

account the relations (A.3.74), (3.75), (A.3.76), after performing the calculations of
components of the curl applied to that function, we obtain:

J |. .1 1
Curl0 For = _8_ i-0 _.]c_zvlox Forz + kc_zvlox Fory : (A3.77)
0

Hence, taking into account relation (A.3.34), we get:
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o |1 0
Curlo For :__|:_v10 X For:| = __Gob : (A.3.78)

2
afo c 8t0

Since the operator curl, and the time ¢, are invariant with respect to the

transformation for passing from one three-orthogonal rectilinear system of co-ordinates to
another three-orthogonal rectilinear system co-ordinates at rest relative to the first one, it

follows that relation (A.3.78) remains valid for any direction of the velocity v,,. Since
relations (A.3.77), (A.3.75), (A.3.74) are linear relatively to vectors F,,., G, r, it
follows that relation (A.3.78) is valid also in the case in which the right-hand side of
relation (A.3.74) is a linear combination of terms of the same form. It follows:

8

§Fodly =-—— [Gy,-dS,, (A.3.79)
tO

r, S,

in integral form, and

0
CuI‘l0 For = —EGOb 5 (A380)

in differential (local) form.
It can be remarked the analogy of the two last relation with the expression of the law
of electromagnetic induction.

A.3.3.4. The Circulation of the Vector G, along a Closed Curve in the
Case of a Field of Vectors with Central Symmetry

We need to calculate the circulation of the vector G, round (along) a closed curve in
the reference frame K. We consider the case of a field of vectors of central symmetry in
the reference frame K| and under the same conditions as in Sub-section A.3.3.1.

The circulation of the vector G, along any closed curve I, is:

G, -dl, = |curl, G, -dS,,
¢ J

o N Iy

(A.3.81)

where S is the open surface bounded by the curve I;. Taking into account relation

(A.3.34), we can write:

1 1 . 1
curl, G, = curlo(—zvlo X For):—zvlo div, F,, ——2(v10 -VO)For . (A.3.82)
c c c

Taking into account relations (A.3.74), (A.3.75), after performing the calculations of
the components of each vector, we shall obtain:
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1 1 OF,,
~— e Vo o == =2 (A3.83)
c c ly
Therefore, relation (A.3.82) becomes:
1 . | G
curl, G, = — V1o div,, F, +—2'aTF0, . (A.3.84)
c Cc 0

The operator curl,, the operator div,, and the time #, are invariant with respect to

the transformation from one right-handed three-orthogonal rectilinear system of co-
ordinates to another right-handed three-orthogonal rectilinear system of co-ordinates, at
rest relative to the first one. It follows that relation (A.3.83) is valid for any direction of
the velocity v,,. For similar reasons to those of Sub-section A.3.3.3, relation (A.3.84) is
valid also in the case in which the right-hand side of relation (A.3.74) is a linear
combination of terms of the same form. It follows:

1 . 0 1

§G0b 'dlo = I c_zvlo leO For ‘dSO +§ J. c—zFor 'dSO , (A385)
I, Sr, St

in integral form, and

1 . 1 OF,
Curlo Gob = —zvlo leO FO,. +—2' P or
c c t,

: (A.3.86)

in differential (local) form.
It can be remarked the analogy of the two last relation with the expression of the law
of magnetic circuit.

A.3.3.5. The Relation between the Volume Densities of a Scalar Function
when Passing from One Reference Frame to Another

We consider the volume density of a scalar function the magnitude of which does not
change when passing from one inertial reference frame to another. This is the case of the
electric charge. In any reference frame, the volume density of the electric charges is
expressed in terms of the volume density of the electric charges of the reference frame in
which there are at rest. We consider the reference frames K, (x,, vo» 2o ), Ki(x1, v1>21),
K, (x5, 5,2, ). We shall have in view that the value of the electric charge of any body is
invariant with respect to the transformation of the axes of co-ordinates in the reference
frame and we shall suppose that the electric charges are at rest in the reference frame K .

We express the conservation of the electric charge of a volume element:

PrdVs, =p,dVy =p,,dVs,. (A.3.87)
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For an observer in the reference frame K, , taking into account expression (A.3.4), the
following relations can be written:

dI/Z2 :(lz] dVZl =(120dV20. (A388)
The two last relations yield:

1 1
Pv2="—"Pu=""Pw- (A.3.89)
®21 ®20
Having in view the expressions of the quantities of the form o; and f;, relation
(A.3.89), as shown below, yields:

1 1 1
Pv2 =

- ' Py = Pvo - (A390)
Op 0o 1_ﬂ20 'ﬂlo 1% °

Therefore, the relation between the volume densities is:

Pvi = %o (I_pZO 'ﬂlo)pm' (A391)

A.3.3.6. The Derivation of the Relation between the Volume Densities of a
Scalar Function when Passing from One Reference Frame to
Another

We have to calculate the coefficient a,; of the preceding formula (A.3.89) for the

case v, =1V, =V, Lhis quantity is:
1
: (A.3.92)
VI-B3

From relation (A.3.6 a) written in the same form as (A.3.6 ¢), it follows:

Oy =

. BZox _Blox . B20y k B2OZ
_ . A3.93
B e by G U=y Br) oy (= oo i) (399

Hence:

2 2 2 2
Ao ( 20x _Blox) _ B20}’ +BZOZ _
Oleo (1_ﬂ20 'ﬂlo)z 0L120 (l_ﬂZO 'ﬂlo)z

2 2 2 2 2 2
— Q1o (I_BZOX Blox) _alo( 20x _Blox) _BZO +B20x _

0leo (l_ﬂZO'ﬂlo)z )

1—[3§1 =1-
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2 2 2 2 2 2 2 2 n2 2 2 2
_ O — 20Llo BZox Blox + A, B20x Blox — 0O BZox — 0O Blox + 20Llo BZox Blox B BZO + B2ox

O‘10( =P ﬁlo)

(A.3.94)
But:

af, —af Br, =1. (A.3.94 a)

Consequently, we obtain successively:
1‘5%1 OLlo ( Blox)+ B2ox 0Llo ( lox — )_ B%o + B%ox (A395 a)

0‘10 ( —Boux Blox)
I_B%I zl_BZOx BZO +B20x _ 1 (A'3'95 b)
O‘10 ( —Baix Blox) 0‘20 0‘10 ( —Baix Blox)
Loy (=B Bio)
Opp = —=—2 20102 = ag g (1= B0 - Bo)- (A.3.96)
1-PB3 V1-B3,

A.3.3.7. The Relation between the Densities of the Flow Rate of a Scalar
Quantity when Passing from One Reference Frame to Another

We consider the flowing rate of a scalar quantity, namely of a quantity that does not
change when passing from one inertial reference frame to another. This is the case of the
vector electric current density. Let us consider the reference frames K, and K;. We

suppose that a set of electric charges is moving at the velocity v,; relatively to the
reference frame K. The electric current density in the reference frame K, is:

Ji=puva- (A.3.97)
Taking into account relations (A.3.6 a, ¢), (A.3.91) and (A.3.97), it follows:
B - B
1 =P V2o + Py | (1o = 1) =25 g (v (A3.98)

ﬂlo
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A.3.4. RELATIONS BETWEEN THE DIFFERENTIAL OPERATORS
WHEN PASSING FROM ONE REFERENCE FRAME TO

ANOTHER

We consider the inertial reference frames K, and K;. The general relation between

the differential operators when passing from one reference frame to another can be
obtained by assuming, for instance, that the velocity of the reference frame K, relative to

the reference frame K, is parallel and of the same direction with the axes O, x, and

O;x, . Since v\, =iv|, =iV, , we obtain:

xo:alo(x1+vlof1); Yo =15 Zy =2y,

V1o .
tO =OLlO tl +—2x1j,
C
. . . (A3.994,...,h)
xl:alo(xo_vlolo)s Y1=Yo> 21 =2y,

V1o .
tl =0, (Zo T xo)’
C

and for a differentiable function f (xo s VosZosto ) :

of _0f 0x, Of 0ty Of _0f 0x, 0f Oty
ox, ox, 0x, 0ot, ox, 0t Ox, 0t 0Ot, 0t

(A3.100a, . . ., d)

6f_5fa +afa Vo, O0f_90f +%ocl

= 1 1 5 = QoM .
ox, oOx, = 0ty ° 2 ot, ox, = ° oty °

We shall establish the relations between the differential nabla operators expressed in
the two reference frames, namely:

. L] . 7 a

Taking into account that: v,; =—v,, it follows:

1 v 0
Vi=V, +v_2(a10 _1)(v10 'Vo)vlo +alo?'§;
10 ; ° (A.3.102 a, b)
v
Vo =Vi +—2(0°10 ~ D10 - Vi o _0‘10%‘5-
c 1

lo

For example:
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1 v,, 04
V1 'szo 'A+_2(0“10 —1)(]210 'Vo)(vlo 'A)+OL10L20'6_;

V1o c to
v1 XA:VO XA+L2(0,10 _1)(v10 'vo)(vlo ><A)—i_oclovﬂxa_A

5 .
V1o ¢ 0 Lo

(A.3.103 a, b)

Also, it is useful to mention that for a scalar or vector function that depends only on
X1, Y1, 21 , for example f(xl, yl,zl) or A(xl, yl,zl), we obtain:

9/ _ oA _

0; —=0; 3.
” o (A.3.104 a, b)
and
0 0A
a—fz—v10~(V0f); ——=—(v}, "V, )A. (A3.104 ¢, d)
t, al‘o

A.3.5. APPLICATION TO THE TRANSFORMATION OF SCALAR
AND VECTOR POTENTIALS WHEN PASSING FROM
ONE REFERENCE FRAME TO ANOTHER

The aim is to establish the relation between the pairs V), A; and V,, A4

respectively. Let K, and K, be reference frames and the considered vectors:

El = lonO + ], EoyO +kOL10 EozO T 0 (vlo XBO);
Elxl = on0 TOol '(vlo x B, );

(A3.105a,...,d)
E1y1 =0, EoyO + 0y, .I'(vlo XBO );

E +0L10k-(v10 xBO);

o Foz,

Ey, =0y

and for the reference frame K, according to formula (3.200), of Chapter 3, we have:

B, =curl, 4, ;
0A4
E, =-grad, V, ——=;
ot, (A.3.106 a, b, ¢)
04 04 04 04
v, xeurly A) =—jv, 5 Fo o +kv, To o |,
Xo 0¥, 0z,  0x,

As above, we have taken v, =ivy,, =ivy,.



Appendix 3. General Relations Deduced from the Special Theory of Relativity. 269

Now, we consider the Ox - axis. From relations like (3.200), we obtain:

aVl a141)(1
E, =———-——%; A.3.107
T T o ( )
ov. O0Ay
E, =——"0% " A.3.107b
S ( )

According to equation (A.3.105 b), we need v,, x B, =v;, xcurl, A, . As previously,
we take v, =ivy,, =iv),. We get:
i-(v,xB,)=0. (A.3.107 ¢)
By replacing expressions (A.3.107 a, b, ¢) into relation (A.3.105 b), we get:

L R L (A.3.108)
axl 5t1 5)60 ato ’ e

Using relations (A.3.99 a, . . ., h) and (A.3.100 a, . . ., d) with other indices, we get:

ov, av, ox, oV, ot v, v, OV,
e e T (A.3.109)
ox, 0x; 0Ox, 0t 0x, 0x c” 04
0Ay, 0Ay, ox, 04y ot OA,, DA,
ol _ To% ON , m 0% Oh g gy vy e (A.3.110)

ot,  ox, ot, ot ot, ° o 0x,
After replacing the expressions (A.3.109), (A.3.110), into relation (A.3.108), and

performing the calculations, it results that:

0 Vl a Alxl 8 VO Vi 8 VO a on a A()xo

Oy ——+ O . o C Oy Vg ———. A3.111
axl 8t1 lo axl lo CZ 61‘1 lo 8t1 lo Y1o axl ( )

By equating the derivatives with respect to the same variables of both sides of the last
relation, we have:

Vl =0y, (Vo ~Viox ono )’

Viox
Alxl =00 (ono ) Vo

j (A3.112 a, b)
’ .

Now, we consider the Oy - axis. From relation (3.200), we get:

v _ 8A1y1 .

E =-
W ﬁyl 5t1

(A3.113 a)
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ov., 04,
E =——0°__ % A3.113b
o =5, o ( )

According to equation (A.3.105 ¢), we need v, x B, =v,, xcurl, 4,. As previously,
we take vy, =ivi,, =iv),.
We get:

04 04
k(curl, A4, )Z = (ﬂ— %o J;

0x, 0o
0 Ay, Aoy,
ox, 0y, )

(A3.113 ¢, d)

v, xceurly A, =—jv, (

By replacing expressions (A.3.113 a, b, ¢) into relation (A.3.105 c), we have:

or, 04y, v, 0 Aoy, 0 Aoy, OAo,
- - =0y — O ~ O Vio :
oy, 0t oy ot

0x, 0¥,

(A3.114)

(4] o

Using relations (A.3.99 a, . . ., h) and (A.3.100 a, . . ., d), we get:

Vo _ Vs . 0 Aoy, :aA% (A.3.115 a, b)
0y, 0y 0¥, Iy ,
aAOYo :6A0y0 .atl +8Aoyo .axl —q aAoyo — OV Mﬂ (A.3.116)
ot, ot o1, ox, o1, ° o oo oy, o
Ody, 0w, 0x 04y, 0t _ — Ohy,  wy Oy, (A3.117)
ox, ox 0x, ot ox, © dx  ° oy o

After replacing the expressions (A.3.115 a, b), (A.3.116), (A.3.117) into relation
(A.3.114), and performing the calculations, it results that:

oy, 04 ov 0A 04
—_l—ﬁz—o‘lo_o—alo o~ = Oy Vig —— [ —
oy 04 oy | ox,
(A.3.118)
aAOy Vi aAOy 6A0x
— Oy Vio | Ojg ——>— 0Ly —=- SOy Vg ———.
lo 10[ lo axl lo 62 all lo "lo

Therefore:
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oy, 04 av. 04 2
__l_i:_alo_o"' o —0t120+0t120vi +
oy 04 on ot c?
04 oA
+ o ((xlzo Vio ~ Oleo V10)+ Q1o V1o — = (A.3.119)
8x1 ay]
ov, 04, 0 Ay
= =0y = =+ Oy Vi .
5)/1 61‘1 ayl

By equating the derivatives with respect to the same variables of both sides of the last
relation, we get besides relations (A.3.112 a, b):

Vl =0y, (Vo V1o ono );

(A.3.120 a, b)
Alyl = AOyo '

A similar relation can be obtained for the Oz - axis of the reference frames.

Vl =0, (Vo Vo ono );

A = Ao (A3.121 a,b)

Hence, in compact form
Vi =0y, (Vlo Vo 'Ao);

j (A.3.122 a, b)

Y1
Al :alo(Ao - 20 Vo
C

List of Symbols Used in Appendix 3

ay; —  acceleration in the reference frame K; of a material point at rest with respect to
reference frame K, ;

A, —  vector potential in the reference frame K ;

A, —  vector potential in the reference frame Kj;

Ao, —  component of the vector A, along the O x,, - axis;

Ay, —  component of the vector A; along the O, x; - axis;

c —  velocity of light in vacuo;

dl/ —  vector length element;

F; —  force acting in the reference frame K; upon a material point j that is moving

with the velocity v ;; with respect to the reference frame K ;

Ji
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F;, —  rest component of the force F; corresponding to the case in which the material
point would be at rest with respect to the reference frame K ;

F;, — motion component of the force F; arising in the case in which the material

point is moving with the velocity v ji with respect to the reference frame K ;

K, —  symbol of an inertial reference frame, where the space co-ordinates have been
denoted x;, y;, z;, and the time 7, ;

m —  relativistic mass of the material point in motion with the velocity #, with
respect to any inertial reference frame K ;

m —  rest mass of a material point, at rest with respect to any reference frame K,
expressed in the same reference frame; if no other mention is made, then by
mass is understood the rest mass;

—  electric charge of a point-like body;

r, —  position vector of a point in the reference frame K, with its origin at the
origin of the same reference frame;

n —  position vector of a point in the reference frame K;, with its origin at the
origin of the same reference frame;

ty —  time in the reference frame K ;

4 —  time in the reference frame Kj;

u —  velocity of a material point in any reference frame K ;

v —  velocity of any reference frame relative to the reference frame K ;

Yio —  velocity of the reference frame K relatively to the reference frame K ;

V2 —  velocity of the reference frame K, or of a material point denoted by 2,
relatively to the reference frame K ;

Vi —  velocity of a point denoted by j or of any reference frame K j relatively to the
reference frame K ;

V, —  scalar potential in the reference frame K, p. 268; volume, p. 248;

4 —  scalar potential in the reference frame K, p. 268; volume, p. 248, 261;

XosVo»rZo co-ordinates in the system of co-ordinates of K ;

Xy,y1,2; —  co-ordinates in the system of co-ordinates of Kj;

1
=7
Vij

ﬁij:_;

C

ASI- -
Pyi -

1 .
1-pj

vector surface element in the reference frame K ;

volume density of the electric charge in the reference frame K .

The symbols with one index refer to a certain reference frame, for instance K.

The symbols with two indices refer to quantities concerning two systems, for instance v,

represents the velocity of the reference frame K, relatively t