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Preface 
 

Classical physics breaks down to the level of atoms and molecules. This was made 
possible by the invention of a new apparatus that enabled the introduction of 
measurements in microscopic area of physics. There were two revolutions in the way 
we viewed the physical world in the twentieth century: relativity and quantum 
mechanics. Quantum mechanics was born in 1924, through the work of Einstein, 
Rutherford and Bohr, Schrödinger and Heisenberg, Born, Dirac, and many others. The 
principles of quantum mechanics that were discovered then are the same as we know 
them today. They have become the framework for thinking about most of the 
phenomena that physicists study, from simple systems like atoms, molecules, and 
nuclei to more exotic ones, like neutron stars, superfluids, and elementary particles. It 
is well established today that quantum mechanics, like other theories, has two aspects: 
the mathematical and conceptual. In the first aspect, it is a consistent and elegant 
theory and has been immensely successful in explaining and predicting a large 
number of atomic and subatomic phenomena. But in the second one, it has been a 
subject of endless discussions without agreed conclusions. Actually, without quantum 
mechanics, it was impossible to understand the enormous phenomena in microscopic 
physics, which does not appear in our macroscopic world. In this endless way of 
success for quantum mechanics, mathematics, especially mathematical physics 
developed to help quantum mechanics. It is believed that in order to be successful in 
theoretical physics, physicists should be professional mathematicians. 

Although this book does not cover all areas of theoretical quantum mechanics, it can 
be a reference for graduate students and researchers in the international community. It 
contains twenty tree chapters and the brief outline of the book is as follows: 

The first six chapters cover different aspects of the foundation of quantum mechanics, 
which is very important to understand quantum mechanics well. 

Chapters seven to twenty one discuss some mathematical techniques for solving the 
Schrodinger differential equation that usually appears in all quantum mechanical 
problems. 

Next two chapters of this volume are related to computational unified field theory, 
where the Schrodinger equation is not necessarily valid in its regular form.   
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Complementarity in Quantum Mechanics and
Classical Statistical Mechanics

Luisberis Velazquez Abad and Sergio Curilef Huichalaf
Departamento de Física, Universidad Católica del Norte

Chile

1. Introduction

Roughly speaking, complementarity can be understood as the coexistence of multiple
properties in the behavior of an object that seem to be contradictory. Although it is possible to
switch among different descriptions of these properties, in principle, it is impossible to view
them, at the same time, despite their simultaneous coexistence. Therefore, the consideration of
all these contradictory properties is absolutely necessary to provide a complete characterization
of the object. In physics, complementarity represents a basic principle of quantum theory
proposed by Niels Bohr (1; 2), which is closely identified with the Copenhagen interpretation.
This notion refers to effects such as the so-called wave-particle duality. In an analogous
perspective as the finite character of the speed of light c implies the impossibility of a sharp
separation between the notions of space and time, the finite character of the quantum of action
h̄ implies the impossibility of a sharp separation between the behavior of a quantum system
and its interaction with the measuring instruments.
In the early days of quantum mechanics, Bohr understood that complementarity cannot be a
unique feature of quantum theories (3; 4). In fact, he suggested that the thermodynamical
quantities of temperature T and energy E should be complementary in the same way as
position q and momentum p in quantum mechanics. According to thermodynamics, the
energy E and the temperature T can be simultaneously defined for a thermodynamic system
in equilibrium. However, a complete and different viewpoint for the energy-temperature
relationship is provided in the framework of classical statistical mechanics (5). Inspired on
Gibbs canonical ensemble, Bohr claimed that a definite temperature T can only be attributed
to the system if it is submerged into a heat bath1, in which case fluctuations of energy E are
unavoidable. Conversely, a definite energy E can only be assigned when the system is put
into energetic isolation, thus excluding the simultaneous determination of its temperature T.
At first glance, the above reasonings are remarkably analogous to the Bohr’s arguments
that support the complementary character between the coordinates q and momentum p.
Dimensional analysis suggests the relevance of the following uncertainty relation (6):

ΔEΔ(1/T) ≥ kB, (1)

where kB is the Boltzmann’s constant, which can play in statistical mechanics the counterpart
role of the Planck’s constant h̄ in quantum mechanics. Recently (7–9), we have shown that

1 A heat bath is a huge extensive system driven by short-range forces, whose heat capacity C is so large
that it can be practically regarded infinite, e.g.: the natural environment.

1
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Bohr’s arguments about the complementary character between energy and temperature, as
well as the inequality of Eq.(1), are not strictly correct. However, the essential idea of Bohr is
relevant enough: uncertainty relations can be present in any physical theory with a statistical
formulation. In fact, the notion of complementarity is intrinsically associated with the statistical
nature of a given physical theory.
The main interest of this chapter is to present some general arguments that support the
statistical relevance of complementarity, which is illustrated in the case of classical statistical
mechanics. Our discussion does not only demonstrate the existence of complementary
relations involving thermodynamic variables (7–9), but also the existence of a remarkable
analogy between the conceptual features of quantum mechanics and classical statistical
mechanics.
This chapter is organized as follows. For comparison purposes, we shall start this
discussion presenting in section 2 a general overview about the orthodox interpretation
of complementarity of quantum mechanics. In section 3, we analyze some relevant
uncertainty-like inequalities in two approaches of classical probability theory: fluctuation theory
(5) and Fisher’s inference theory (10; 11). These results will be applied in section 4 for the analysis
of complementary relations in classical statistical mechanics. Finally, some concluding
remarks and open problems are commented in section 5.

2. Complementarity in quantum mechanics: A general overview

2.1 Complementary descriptions and complementary quantities
Quantum mechanics is a theory hallmarked by the complementarity between two descriptions
that are unified in classical physics (1; 2):

1. Space-time description: the parametrization in terms of coordinates q and time t;

2. Dynamical description: This description in based on the applicability of the dynamical
conservation laws, where enter dynamical quantities as the energy and the momentum.

The breakdown of classical notions as the concept of point particle trajectory [q(t), p(t)]
was clearly evidenced in Davisson and Germer experiment and other similar experiences
(12). To illustrate that electrons and other microparticles undergo interference and diffraction
phenomena like the ordinary waves, in Fig.1 a schematic representation of electron
interference by double-slits apparatus is shown (13). According to this experience, the
measurement results can only be described using classical notions compatible with its
corpuscular representations, that is, in terms of the space-time description, e.g.: a spot in a
photographic plate, a recoil of some movable part of the instrument, etc. Moreover, these
experimental results are generally unpredictable, that is, they show an intrinsic statistical nature
that is governed by the wave behavior dynamics. According to these experiments, there is
no a sharp separation between the undulatory-statistical behavior of microparticles and the
space-time description associated with the interaction with the measuring instruments.
Besides the existence of complementary descriptions, it is possible to talk about the notion of
complementary quantities. Position q and momentum p, as well as time t and energy E, are
relevant examples complementary quantities. Any experimental setup aimed to study the
exchange of energy E and momentum p between microparticles must involve a measure in a
finite region of the space-time for the definition of wave frequency ω and vector k entering in
de Broglie’s relations (14):

E = h̄ω and p = h̄k. (2)

2 Theoretical Concepts of Quantum Mechanics
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Fig. 1. Schematic representation of electron interference by double-slit apparatus using an
incident beam with low intensity. Sending electrons through a double-slit apparatus one at a
time results in single spot appearing on the photographic plate. However, an interference
pattern progressively emerges when the number N of electrons impacted on the plate is
increased. The emergence of an interference pattern suggested that each electron was
interfering with itself, and therefore in some sense the electron had to be going through both
slits at once. Clearly, this interpretation contradicts the classical notion of particles trajectory.

Conversely, any attempt of locating the collision between microparticles in the space-time
more accurately would exclude a precise determination in regards the balance of momentum
p and energy E. Quantitatively, such complementarity is characterized in terms of uncertainty
relations (2):

ΔqΔp ≥ h̄ and ΔtΔE ≥ h̄, (3)

which are associated with the known Heisenberg’s uncertainty principle: if one tries to describe
the dynamical state of a microparticle by methods of classical mechanics, then precision
of such description is limited. In fact, the classical state of microparticle turns out to be
badly defined. While the coordinate-momentum uncertainty forbids the classical notion of
trajectory, the energy-time uncertainty accounts for that a state, existing for a short time Δt,
cannot have a definite energy E.

2.2 Principles of quantum mechanics
2.2.1 The wave function Ψ and its physical relevance
Dynamical description of a quantum system is performed in terms of the so-called the wave
function Ψ (12). For example, such as the frequency ω and wave vector k observed in electron
diffraction experiments are related to dynamical variables as energy E and momentum p in
terms of de Broglie’s relations (2). Accordingly, the wave function Ψ(q, t) associated with a
free microparticle (as the electrons in a beam with very low intensity) behaves as follows:

Ψ(q, t) = C exp [−i(Et − p · q)/h̄] . (4)

Historically, de Broglie proposed the relations (2) as a direct generalization of quantum
hypothesis of light developed by Planck and Einstein for any kind of microparticles (14). The

3Complementarity in Quantum Mechanics and Classical Statistical Mechanics
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experimental confirmation of these wave-particle duality for any kind of matter revealed the
unity of material world. In fact, wave-particle duality is a property of matter as universal as
the fact that any kind of matter is able to produce a gravitational interaction.
While the state of a system in classical mechanics is determined by the knowledge of the
positions q and momenta p of all its constituents, the state of a system in the framework
of quantum mechanics is determined by the knowledge of its wave function Ψ(q, t) (or
its generalization Ψ(q1, q2, . . . , qn, t) for a system with many constituents, notation that is
omitted hereafter for the sake of simplicity). In fact, the knowledge of the wave function
Ψ(q, t0) in an initial instant t0 allows the prediction of its future evolution prior to the
realization of a measurement (12). The wave function Ψ(q, t) is a complex function whose
modulus |Ψ(q, t)|2 describes the probability density, in an absolute or relative sense, to detect a
microparticle at the position q as a result of a measurement at the time t (15). Such a statistical
relevance of the wave function Ψ(q, t) about its relation with the experimental results is the
most condensed expression of complementarity of quantum phenomena.
Due to its statistical relevance, the reconstruction of the wave function Ψ(q, t) from a given
experimental situation demands the notion of statistical ensemble (12). In electron diffraction
experiments, each electron in the beam manifests undulatory properties in its dynamical
behavior. However, the interaction of this microparticle with a measuring instrument (a
classical object as a photographic plate) radically affects its initial state, e.g.: electron is
forced to localize in a very narrow region (the spot). In this case, a single measuring
process is useless to reveal the wave properties of its previous quantum state. To rebuild
the wave function Ψ (up to the precision of an unimportant constant complex factor eiφ),
it is necessary to perform infinite repeated measurements of the quantum system under the
same initial conditions. Abstractly, this procedure is equivalent to consider simultaneous
measurements over a quantum statistical ensemble: such as an infinite set of identical copies
of the quantum system, which have been previously prepared under the same experimental
procedure2. Due to the important role of measurements in the knowledge state of quantum
systems, quantum mechanics is a physical theory that allows us to predict the results of certain
experimental measurements taken over a quantum statistical ensemble that it has been previously
prepared under certain experimental criteria (12).

2.2.2 The superposition principle
To explains interference phenomena observed in the double-slit experiments, the wave
function Ψ(q, t) of a quantum system should satisfy the superposition principle (12):

Ψ(q, t) = ∑
α

aαΨα(q, t). (5)

Here, Ψα(q, t) represents the normalized wave function associated with the α-th independent
state. As example, Ψα(q, t) could represent the wave function contribution associated with
each slit during electron interference experiments; while the modulus |aα|2 of the complex
amplitudes aα are proportional to incident beam intensities Iα, or equivalently, the probability
pα that a given electron crosses through the α-th slit.

2 This ensemble definition corresponds to the so-called pure quantum state, whose description is
performed in terms of the wave function Ψ. A more general extension is the mixed statistical ensemble
that corresponds to the so-called mixed quantum state, whose description is performed in terms of the
density matrix ρ̂. The consideration of the density matrix is the natural description of quantum statistical
mechanics.

4 Theoretical Concepts of Quantum Mechanics
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Superposition principle is the most important hypothesis with a positive content of quantum
theory. In particular, it evidences that dynamical equations of the wave function Ψ(q, t)
should exhibit a linear character. By itself, the superposition principle allows to assume linear
algebra as the mathematical apparatus of quantum mechanics. Thus, the wave function
Ψ(q, t) can be regarded as a complex vector in a Hilbert space H. Under this interpretation,
the superposition formula (5) can be regarded as a decomposition of a vector Ψ in a basis of
independent vectors {Ψα}. The normalization of the wave function Ψ can be interpreted as
the vectorial norm:

‖Ψ‖2 =
∫

Ψ∗(q, t)Ψ(q, t)dq = ∑
αβ

gαβa∗αaβ = 1. (6)

Here, the matrix elements gαβ denote the scalar product (complex) between different basis
elements:

gαβ =
∫

Ψ∗
α(q, t)Ψβ(q, t)dq, (7)

which accounts for the existence of interference effects during the experimental
measurements. As expected, the interference matrix, gαβ, is a hermitian matrix, gαβ = g∗βα.
The basis {Ψα(q, t)} is said to be orthonormal if their elements satisfy orthogonality condition:∫

Ψ∗
α(q, t)Ψβ(q, t)dq = δαβ, (8)

where δαβ represents Kroneker delta (for a basis with discrete elements) or a Dirac delta
functions (for the basis with continuous elements).The basis of independent states is complete
if any admissible state Ψ ∈ H can be represented with this basis. In particular, a basis with
independent orthogonal elements is complete if it satisfies the completeness condition:

∑
α

Ψ∗
α(q̃, t)Ψα(q, t) = δ (q̃ − q) . (9)

2.2.3 The correspondence principle
Other important hypothesis of quantum mechanics is the correspondence principle. We assume
the following suitable statement: the wave-function Ψ(q, t) can be approximated in the
quasi-classic limit h̄ → 0 as follows (12):

Ψ(q, t) ∼ exp [iS(q, t)/h̄] , (10)

where S(q, t) is the classical action of the system associated with the known Hamilton-Jacobi
theory of classical mechanics. Physically, this principle expresses that quantum mechanics
contains classical mechanics as an asymptotic theory. At the same time, it states that quantum
mechanics should be formulated under the correspondence with classical mechanics.
Physically speaking, it is impossible to introduce a consistent quantum mechanics formulation
without the consideration of classical notions. Precisely, this is a very consequence of
the complementarity between the dynamical description performed in terms of the wave
function Ψ and the space-time classical description associated with the results of experimental
measurements. The completeness of quantum description performed in terms of the wave
function Ψ demands both the presence of quantum statistical ensemble and classical objects
that play the role of measuring instruments.
Historically, correspondence principle was formally introduced by Bohr in 1920 (16), although
he previously made use of it as early as 1913 in developing his model of the atom

5Complementarity in Quantum Mechanics and Classical Statistical Mechanics
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(17). According to this principle, quantum description should be consistent with classical
description in the limit of large quantum numbers. In the framework of Schrödinger’s wave
mechanics, this principle appears as a suitable generalization of the so-called optics-mechanical
analogy (18). In geometric optics, the light propagation is described in the so-called rays
approximation. According to the Fermat’s principle, the ray trajectories extremize the optical
length � [q(s)]:

� [q(s)] =
∫ s2

s1

n [q(s)] ds → δ� [q(s)] = 0, (11)

which is calculated along the curve q(s) with fixed extreme points q(s1) = P and q(s2) = Q.
Here, n(q) is the refraction index of the optical medium and ds = |dq|. Equivalently, the rays
propagation can be described by Eikonal equation:

|∇ϕ(q)|2 = k2
0n2(q), (12)

where ϕ(q) is the phase of the undulatory function u(q, t) = a(q, t) exp [−iωt + iϕ(q)] in
the wave optics, k0 = ω/c and c are the modulus of the wave vector and the speed of light
in vacuum, respectively. The phase ϕ(q) allows to obtain the wave vector k(q) within the
optical medium:

k(q) = ∇ϕ(q) → k(q) = |k(q)| = k0n(q), (13)

which provides the orientation of the ray propagation:

dq(s)
ds

=
k(q)
|k(q)| . (14)

Equation (12) can be derived from the wave equation:

n2(q)
∂2

c2∂t2 u(q, t) = ∇2u(q, t) (15)

considering the approximations
∣∣∂2a(q, t)/∂t2

∣∣ 	 ω2 |a(q, t)| and
∣∣∇2a(q, t)

∣∣ 	
k2(q) |a(q, t)|. Remarkably, Eikonal equation (12) is equivalent in the mathematical sense to
the Hamilton-Jacobi equation for a conservative mechanical system:

1
2m

|∇W(q)|2 = E − V(q), (16)

where W(q) is the reduced action that appears in the classical action S(q, t) = W(q) − Et.
Analogously, Fresnel’s principle is a counterpart of Maupertuis’ principle:

δ
∫ √

2m [E − V(q)]ds = 0. (17)

In quantum mechanics, the optics-mechanics analogy suggests the way that quantum theory
asymptotically drops to classical mechanics in the limit h̄ → 0. Specifically, the total phase
ϕ(q, t) = ϕ(q)− ωt of the wave function Ψ(q, t) ∼ exp [iϕ(q, t)] should be proportional to
the classical action of Hamilton-Jacobi theory, ϕ(q, t) ∼ S(q, t)/h̄, consideration that leads to
expression (10).

6 Theoretical Concepts of Quantum Mechanics
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2.2.4 Operators of physical observables and Schrödinger equation
Physical interpretation of the wave function Ψ(q, t) implies that the expectation value of any
arbitrary function A(q) that is defined on the space coordinates q is expressed as follows:

〈A〉 =
∫

|Ψ(q, t)|2 A(q)dq. (18)

For calculating the expectation value of an arbitrary physical observable O, the previous
expression should be extended to a bilinear form in term of the wave function Ψ(q, t) (19):

〈O〉 =
∫

Ψ∗(q, t)O(q, q̃, t)Ψ(q̃, t)dqdq̃, (19)

where O(q, q̃, t) is the kernel of the physical observable O. As already commented, there exist
some physical observables, e.g.: the momentum p, whose determination demands repetitions
of measurements in a finite region of the space sufficient for the manifestation of wave
properties of the function Ψ(q, t). Precisely, this type of procedure involves a comparison or
correlation between different points of the space (q, q̃), which is accounted for by the kernel
O(q, q̃, t). Due to the expectation value of any physical observable O is a real number, the
kernel O(q, q̃, t) should obey the hermitian condition:

O∗(q̃, q, t) = O(q, q̃, t). (20)

As commented before, superposition principle (5) has naturally introduced the linear algebra
on a Hilbert space H as the mathematical apparatus of quantum mechanics. Using the
decomposition of the wave function Ψ into a certain basis {Ψα}, it is possible to obtain the
following expressions:

〈O〉 = ∑
αβ

a∗αOαβaβ, (21)

where:
Oαβ =

∫
Ψ∗

α(q, t)O(q, q̃, t)Ψβ(q̃, t)dq̃dq. (22)

Notice that hermitian condition (20) implies the hermitian character of operator matrix
elements, O∗

βα = Oαβ. The application of the kernel O(q, q̃, t) over a wave function Ψ(q, t):

Φ(q, t) =
∫

O(q, q̃, t)Ψ(q̃, t)dq̃ (23)

yields a new vector Φ(q, t) of the Hilbert space, Φ(q, t) ∈ H. Formally, this operation is
equivalent to associate each physical observable O with a linear operator Ô:

Ô

(
∑
α

aαΨα

)
= ∑

α
aαÔΨα, (24)

where:
ÔΨ(q, t) ≡

∫
O(q, q̃, t)Ψ(q̃, t)dq̃. (25)

This last notation convention allows to rephrase expression (19) for calculating the physical
expectation values into the following familiar form:

〈O〉 =
∫

Ψ∗(q, t)ÔΨ(q, t)dq. (26)

7Complementarity in Quantum Mechanics and Classical Statistical Mechanics
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The application of the physical operator Ô on any element Ψβ of the orthonormal basis, {Ψα},
can be decomposed into the same basis:

ÔΨβ = ∑
α

OαβΨα. (27)

Moreover, the kernel O(q̃, q, t) can be expressed in this orthonormal basis as follows:

O(q̃, q, t) = ∑
αβ

Ψα(q̃, t)OαβΨ∗
β(q, t). (28)

Denoting by Tmα the transformation matrix elements from the basis {Ψα} to a new basis {Ψm}:

Ψα = ∑
m

TmαΨm, (29)

the operator matrix elements Omn in this new basis can be expressed as follows:

Omn = ∑
αβ

TmαOαβT−1
βn . (30)

Using an appropriate transformation, the operator matrix elements can be expressed into a
diagonal form: Omn = Omδmn. Such a basis can be regarded as the proper representation of the
physical operator Ô, which corresponds to the eigenvalues problem:

ÔΨm(q, t) = OmΨm(q, t). (31)

The eigenvalues Om conform the spectrum of the physical operator Ô, that is, its admissible
values observed in the experiment. On the other hand, the set of eigenfunctions {Ψm} can
be used to introduce a basis in the Hilbert space H, whenever it represents a complete set
of functions. Using this basis of eigenfunctions, it is possible to obtain some remarkable
results. For example, the expectation value of physical observable O can be expressed into
the ordinary expression:

〈O〉 = ∑
m

Om pm, (32)

where pm = |am|2 is the probability of the m-th eigenstate. Using the hermitian character of
any physical operator Ô+ = Ô, it is possible to obtain the following result:

(Om − On)
∫

Ψ∗
m(q, t)Ψn(q, t)dq = 0. (33)

If Om 
= On, the corresponding eigenfunctions Ψm(q, t) and Ψn(q, t) are orthogonal.
Additionally, if two physical operators Â and B̂ possesses the same spectrum of
eigenfunctions, the commutator of these operators:

[Â, B̂] = ÂB̂ − B̂Â (34)

identically vanishes:
[Â, B̂] = 0. (35)

Such an operational identity is shown as follows. Considering a general function Ψ ∈ H and
its representation using the complete orthonormal basis {Ψm}:

Ψ = ∑
m

amΨm, (36)

8 Theoretical Concepts of Quantum Mechanics
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one obtains the following relation:

[Â, B̂]Ψ = ∑
m

am(ÂB̂ − B̂Â)Ψm = ∑
m

am(AmBm − Bm Am)Ψm = 0. (37)

Clearly, a complete orthonormal basis {Ψm} in the Hilbert space H is conformed by the
eigenfunctions of all admissible and independent physical operators that commute among
them.
According to expression (18), the operators of spatial coordinates q and their functions A(q)
are simply given by these coordinates, q̂ = q and Â(q) = A(q). The introduction of physical
operators in quantum mechanics is precisely based on the correspondence with classical
mechanics. Relevant examples are the physical operators of energy and momentum (19):

Ê = ih̄
∂

∂t
and p̂ = −ih̄∇. (38)

Clearly, the wave function of the free microparticle (4) is just the eigenfunction of these
operators. Using the quasi-classical expression of the wave function (10), these operators drop
to their classical definitions in the Hamilton-Jacobi theory (18):

p̂Ψ(q, t) ∼ p̂ exp [iS(q, t)/h̄] ⇒ p = ∇S(q, t), (39)

ÊΨ(q, t) ∼ Ê exp [iS(q, t)/h̄] ⇒ − ∂

∂t
S(q, t) = H(q, p, t), (40)

where H(q, p, t) is the Hamiltonian, which represents the energy E in the case of a
conservative mechanical system H(q, p, t) = H(q, p) = E. In the framework of
Hamilton-Jacobi theory, the system dynamics is described by the following equation:

∂

∂t
S(q, t) + H (q,∇S(q, t), t) . (41)

Its quantum mechanics counterpart is the well-known Schrödinger equation (19):

ih̄
∂

∂t
Ψ(q, t) = ĤΨ(q, t) (42)

where Ĥ = H(q, p̂, t) is the corresponding operator of the system Hamiltonian.

2.3 Derivation of complementary relations
Let us introduce the scalar z-product between two arbitrary vectors Ψ1 and Ψ2 of the Hilbert
space H:

Ψ1 ⊗
z

Ψ2 =
1
2

z 〈Ψ1|Ψ2〉+ 1
2

z∗ 〈Ψ2|Ψ1〉 , (43)

where 〈Ψ1|Ψ2〉 denotes:

〈Ψ1|Ψ2〉 ≡
∫

Ψ∗
1(q, t)Ψ2(q, t)dq. (44)

The scalar z-product is always real for any Ψ1 and Ψ2 ∈ H and obeys the following properties:

1. Linearity:
Ψ ⊗

z
(Ψ1 + Ψ2) = Ψ ⊗

z
Ψ1 + Ψ ⊗

z
Ψ2, (45)

9Complementarity in Quantum Mechanics and Classical Statistical Mechanics
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2. Homogeneity:
Ψ1 ⊗

z
(wΨ2) = Ψ1 ⊗

zw
Ψ2, (46)

3. z-Symmetry:
Ψ1 ⊗

z
Ψ2 = Ψ2 ⊗

z∗
Ψ1 (47)

4. Nonnegative definition: if �(z) > 0 then:

Ψ ⊗
z

Ψ ≥ 0 and Ψ ⊗
z

Ψ = 0 ⇒ Ψ = 0. (48)

Denoting as Ψ1 ⊗ Ψ2 the case z = 1, it is easy to obtain the following relation:

Ψ ⊗
z

Ψ = �(z)Ψ ⊗ Ψ = �(z) ‖Ψ‖2 , (49)

where ‖Ψ‖2 = 〈Ψ|Ψ〉 denotes the norm of the vector Ψ ∈ H. Considering w = |w| eiφ, the
inequality

(Ψ1 + wΨ2)⊗ (Ψ1 + wΨ2) ≥ 0 (50)

can be rewritten as follows:

Ψ1 ⊗ Ψ1 + |w|2 Ψ2 ⊗ Ψ2 + 2 |w|Ψ1 ⊗
eiφ

Ψ2 ≥ 0. (51)

The nonnegative definition of the previous expression demands the applicability of the
following inequality:

‖Ψ1‖2 ‖Ψ2‖2 ≥
(

Ψ1 ⊗
eiφ

Ψ2

)2
, (52)

which represents a special form of the Cauchy-Schwartz inequality. Considering two physical
operators Â and B̂ with vanishing expectation values 〈A〉 = 〈B〉 = 0, and considering Ψ1 =
ÂΨ and Ψ2 = B̂Ψ, it is possible to obtain the following expression:

Ψ1 ⊗
eiφ

Ψ2 =
1
2

cos φ 〈CA〉 − 1
2

sin φ 〈C〉 , (53)

where 〈CA〉 and 〈C〉 are the expectation values of physical operators ĈA and Ĉ:

ĈA =
{

Â, B̂
}
= ÂB̂ + B̂Â and iĈ =

[
Â, B̂

]
= ÂB̂ − B̂Â. (54)

Introducing the statistical uncertainty ΔO =
√〈(O − 〈O〉)2〉 of the physical observable O,

inequality (52) can be rewritten as follows:

ΔAΔB ≥ 1
2
|cos φ 〈CA〉 − sin φ 〈C〉| . (55)

Relevant particular cases of the previous result are the following inequalities:

ΔAΔB ≥ 1
2
|〈CA〉| , ΔAΔB ≥ 1

2
|〈C〉| , (56)

ΔAΔB ≥ 1
2

√
〈CA〉2 + 〈C〉2. (57)

10 Theoretical Concepts of Quantum Mechanics
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Accordingly, the product of statistical uncertainties of two physical observables A and B
are inferior bounded by the commutator Ĉ, or the anti-commutator ĈA of their respective
operators. The commutator form of Eq.(56) was firstly obtained by Robertson in 1929 (20),
who generalizes a particular result derived by Kennard (21):

ΔqiΔpi ≥ 1
2

h̄, (58)

using the commutator relations: [
q̂i, p̂j

]
= iδi

j h̄. (59)

The inequality of Eq.(57) was finally obtained by Schrödinger (22) and it is now referred
to as Robertson-Schrodinger inequality. Historically, Kennard’s result in (58) was the first
rigorous mathematical demonstration about the uncertainty relation between coordinates
and momentum, which provided evidences that Heisenberg’s uncertainty relations can be
obtained as direct consequences of statistical character of the algebraic apparatus of quantum
mechanics.

3. Relevant inequalities in classical probability theory

Hereafter, let us consider a generic classical distribution function:

dp(I|θ) = ρ(I|θ)dI (60)

where I = (I1, I2, . . . In) denotes a set of continuous stochastic variables driven by a set
θ = (θ1, θ2, . . . θm) of the control parameters. Let us denote by Mθ the compact manifold
constituted by all admissible values of the variables I that are accessible for a fixed θ ∈ P ,
where P is the compact manifold of all admissible values of control parameters θ. Moreover,
let us admit that the probability density ρ(I|θ) obeys some general mathematical conditions
as normalization, differentiability, as well as regular boundary conditions as:

lim
I→Ib

ρ(I|θ) = lim
I→Ib

∂

∂Ii ρ(I|θ) = 0, (61)

where Ib is any point located at the boundary ∂Mθ of the manifold Mθ . The parametric
family of distribution functions of Eq.(60) can be analyzed by two different perspectives:

• The study of fluctuating behavior of stochastic variables I ∈ Mθ , which is the main interest
of fluctuation theory;

• The analysis of the relationship between this fluctuating behavior and the external
influence described in terms of parameters θ ∈ P , which is the interest of inference theory.

3.1 Fluctuation theory
The probability density ρ(I|θ) can be employed to introduce the generalized differential forces
ηi(I|θ) as follows (8; 9):

ηi(I|θ) = − ∂

∂Ii log ρ(I|θ). (62)

By definition, the quantities ηi(I|θ) vanish in those stationary points Ī where the probability
density ρ(I|θ) exhibits its local maxima or its local minima. In statistical mechanics, the global
(local) maximum of the probability density is commonly regarded as a stable (metastable)

11Complementarity in Quantum Mechanics and Classical Statistical Mechanics
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equilibrium configuration. These notable points can be obtained from the maximization of
the logarithm of the probability density ρ(I|θ), which leads to the following stationary and
stability equilibrium conditions:

ηi( Ī|θ) = 0, and
∂

∂Ii ηj( Ī|θ) � 0, (63)

where the notation Aij � 0 indicates the positive definition of the matrix Aij. In general, the
differential generalized forces ηi(I|θ) characterize the deviation of a given point I ∈ Mθ from
these local equilibrium configurations. As stochastic variables, the differential generalized
forces ηi(I|θ) obey the following fluctuation theorems (8; 9):

〈ηi(I|θ)〉 = 0,
〈

∂

∂Ii ηj(I|θ)
〉

=
〈

ηi(I|θ)ηj(I|θ)
〉

,
〈

ηi(I|θ)δI j
〉
= δ

j
i , (64)

where δ
j
i is the Kronecker delta. These fluctuation theorems are directly derived from the

following identity: 〈
∂

∂Ii A(I|θ)
〉

= 〈ηi(I|θ)A(I|θ)〉 (65)

substituting the cases A(I|θ) = 1, Ii and ηi, respectively. Here, A(I) is a differentiable function

defined on the continuous variables I with definite expectation values
〈

∂A(I|θ)/∂Ii
〉

that
obeys the following boundary condition:

lim
I→Ib

A(I)ρ(I|θ) = 0. (66)

Moreover, equation (65) follows from the integral expression:

∫
Mθ

∂υj(I|θ)
∂I j ρ(I|θ)dI = −

∫
Mθ

υj(I|θ) ∂ρ(I|θ)
∂I j dI +

∮
∂Mθ

ρ(I|θ)υj(I|θ) · dΣj,

that is derived from the intrinsic exterior calculus of the manifold Mθ and the imposition of the

constraint υj(I|θ) ≡ δ
j
i A(I|θ). Since the self-correlation matrix Mij(θ) =

〈
ηi(I|θ)ηj(I|θ)

〉
is

always a positive definite matrix, the first and second identities are counterpart expressions
of the stationary and stability equilibrium conditions of Eq.(63) in the form of statistical
expectation values. The third identity shows the statistical independence among the variable
Ii and a generalized differential force component ηj(I|θ) with j 
= i, as well as the existence
of a certain statistical complementarity between Ii and its conjugated generalized differential
force ηi(I|θ). Using the Cauchy-Schwartz inequality 〈δxδy〉2 ≤ 〈

δx2〉 〈δy2〉, one obtains the
following uncertainty-like relation (8; 9):

ΔIiΔηi ≥ 1, (67)

where Δx =
√〈δx2〉 denotes the standard deviation of the quantity x. The previous result is

improved by the following inequality:〈
δIiδI j

〉
− Mij(θ) � 0, (68)
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which puts a lower bound to the self-correlation matrix Cij =
〈

δIiδI j
〉

of the stochastic
variables I. This result can be directly obtained from the positive definition of the

self-correlation matrix Qij(θ) =
〈

δqiδqj
〉

, where δqi = δIi − Mij(θ)ηj(I|θ), with Mij(θ) being

the inverse of the self-correlation matrix Mij(θ) =
〈

ηi(I|θ)ηj(I|θ)
〉

.

3.2 Inference theory
Inference theory addresses the problem of deciding how well a set of outcomes I =
(I1, I2, . . . , Is), which is obtained from s independent measurements, fits to a proposed
probability distribution dp (I|θ) = ρ (I|θ) dI. If the probability distribution is characterized by
one or more parameters θ = (θ1, θ2, . . . θm), this problem is equivalent to infer their values
from the observed outcomes I. To make inferences about the parameters θ, one constructs
estimators, i.e., functions θ̂α(I) = θ̂α (I1, I2, . . . , Is) of the outcomes of m independent
repeated measurements (10; 11). The values of these functions represent the best guess for
θ. Commonly, there exist several criteria imposed on estimators to ensure that their values
constitute good estimates for θ, such as unbiasedness,

〈
θ̂α
〉
= θα, efficiency,

〈
(θ̂α − θα)2〉 →

minimum, etc. One of the most popular estimators employed in practical applications are the
maximal likelihood estimators θ̂ml (10), which are obtained introducing the likelihood function:


 (I|θ) = ρ(I1|θ)ρ(I2|θ) . . . ρ(Im|θ) (69)

and demanding the condition 

(I|θ̂ml

) → maximum. This procedure leads to the following
stationary and stability conditions:

υα(I|θ̂ml) = 0,
∂

∂θα
υβ(I|θ̂ml) � 0. (70)

where the quantities υα(I|θ) are referred to in the literature as the score vector components:

υα(I|θ) = − ∂

∂θα
log 
 (I|θ) . (71)

As stochastic quantities, the score vector components υα(I|θ) obey the following identities:

〈υα(I|θ)〉 = 0,
〈

∂

∂θα
υβ(I|θ)

〉
=

〈
υα(I|θ)υβ(I|θ)

〉
,
〈

θ̂α(I)υβ(I|θ)
〉
= −δα

β, (72)

where θ̂α(I) represents an unbiased estimator for the α-th parameter θα. Moreover,
expectation values 〈A(I)〉 are defined as follows:

〈A(I)〉 =
∫
Ms

θ

A(I)
 (I|θ) dI , (73)

where dI = ∏i dIi and Ms
θ = Mθ ⊗Mθ . . .Mθ (s times the external product of the manifold

Mθ). The fluctuation expressions (72) are derived from the mathematical identity:

〈∂α A (I|θ)〉 − ∂α 〈A (I| θ)〉 = 〈A (I| θ) υα (I| θ)〉 , (74)

which is obtained from Eq.(73) taking the partial derivative ∂α = ∂/∂θα. The first
two identities can be regarded as the stationary and stability conditions of maximal
likelihood estimators of Eq.(70) written in term of statistical expectation values. Using the
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Inference theory Fluctuation theory

score vector components:
υα(I|θ) = − ∂

∂θα log 
 (I|θ)
generalized differential forces:

ηi(I|θ) = − ∂
∂Ii log ρ(I|θ)

conditions for likelihood estimators :
υα(I|θ̂ml) = 0, ∂

∂θα υβ(I|θ̂ml) � 0
thermodynamic equilibrium conditions:

ηi( Ī|θ) = 0, ∂
∂Ii ηj( Ī|θ) � 0

inference fluctuation theorems:
〈υα(I|θ)〉 = 0〈

∂
∂θα υβ(I|θ)

〉
=

〈
υα(I|θ)υβ(I|θ)

〉
〈

υα(I|θ)δθ̂β
〉
= −δ

β
α

equilibrium fluctuation theorems:
〈ηi(I|θ)〉 = 0〈

∂
∂Ii ηj(I|θ)

〉
=

〈
ηi(I|θ)ηj(I|θ)

〉
〈

ηi(I|θ)δI j(I|θ)
〉
= δ

j
i

Table 1. Fluctuation theory and inference theory can be regarded as dual counterpart
statistical approaches.

Cauchy-Schwartz inequality, the third relation states a strong fluctuation relation between
unbiased estimators and the score vector components:

ΔυαΔθ̂α ≥ 1, (75)

which can be generalized by the following inequality:〈
δθ̂αδθ̂β

〉
− gαβ

F (θ) � 0. (76)

Here, gαβ
F (θ) denotes the inverse matrix of the Fisher’s inference matrix (10):

gF
αβ(θ) =

〈
υα(I|θ)υβ(I|θ)

〉
. (77)

Eq.(76) is the famous Cramer-Rao theorem of inference theory (11), which puts a lower bound
to the efficiency of any unbiased estimators θ̂α.
As clearly shown in Table 1, fluctuation theory and inference theory can be regarded as dual
counterpart statistical approaches (9). In fact, there exists a direct correspondence among
their respective definitions and theorems. As naturally expected, inequalities of Eqs.(67) and
(75) could be employed to introduce uncertainty relations in a given physical theory with a
statistical mathematical apparatus.

4. Complementarity in classical statistical mechanics

Previously, many specialists proposed different attempts to support the existence of
an energy-temperature complementarity inspired on Bohr’s arguments referred to in the
introductory section. Relevant examples of these attempts were proposed by Rosenfeld
(23), Mandelbrot (24), Gilmore (25), Lindhard (26), Lavenda (27), Schölg (28), among other
authors. Remarkably, the versions of this relation which have appeared in the literature give
different interpretations of the uncertainty in temperature Δ (1/T) and often employ widely
different theoretical frameworks, ranging from statistical thermodynamics to modern theories
of statistical inference. Despite of all devoted effort, this work has not led to a consensus in the
literature, as clearly discussed in the most recent review by J. Uffink and J. van Lith (6).
An obvious objection is that the mathematical structure of quantum theories is radically
different from that of classical physical theories. In fact, classical theories are not developed
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using an operational formulation. Remarkably, the previous section evidences that any physical
theory with a classical statistical apparatus could support the existence of quantities with a
complementary character. Let us analyze the consequences of the uncertainty-like inequalities
(67) and (75) in the question about the energy-temperature complementarity in the framework
of classical statistical mechanics.

4.1 Energy-temperature complementarity in the framework of inference theory
Mandelbrot was the first to propose an inference interpretation of the Bohr’s hypotheses about
the energy-temperature complementarity (29). Starting from the canonical ensemble (CE):

dpCE(E|β) = exp (−βE/kB)Ω(E)dE/Z(β), (78)

where β = 1/T, and applying the Cramer-Rao theorem (75), this author obtains the following
uncertainty-like inequality:

Δβ̂ΔE ≥ kB, (79)

where Δβ̂ is just the uncertainty of the inverse temperature parameter β associated with its
determination via an inferential procedure from a single measurement (s = 1), while ΔE is
the statistical uncertainty of the energy. This type of inference interpretation of uncertainty
relations can be extended in the framework of Boltzmann-Gibbs distributions (BG):

dpBG(E, X|β, ξ) = exp [−(βE + ξX)/kB]Ω(E, X)dE/Z(β, ξ), (80)

to the other pairs of conjugated thermodynamic variables:

Δξ̂ΔX ≥ kB, (81)

where ξ = βY. Here, X represents a generalized displacement (volume V, magnetization M,
etc.) while Y is its conjugated generalized force (pressure p, magnetic field H, etc.). Nowadays,
this type of inference arguments have been also employed in modern interpretations of
quantum uncertainty relations (30–32).
There exist many attempts in the literature to support the energy-temperature
complementarity starting from conventional statistical ensembles as (78) or (80), which
are reviewed by Uffink and van Lith in Ref.(6). As already commented by these authors, the
inequality (79) cannot be taken as a proper uncertainty relation. In fact, it is impossible to
reduce to zero the energy uncertainty ΔE → 0 to observe an indetermination of the inverse
temperature Δβ̂ → ∞ because ΔE is fixed in the canonical ensemble (78). Consequently,
the present inference arguments are useless to support the existence of a complementarity
between thermal contact and energetic isolation, as it was originally suggested by Bohr. In our
opinion, all these attempts are condemned to fail due to a common misunderstanding of the
temperature concept.

4.2 Remarks on the temperature notion
Many investigators, including Bohr (3), Landau (5) and Kittel (33), assumed that a definite
temperature can only be attribute to a system when it is put in thermal contact with a heat
bath. Although this is the temperature notion commonly employed in thermal physics, this
viewpoint implies that the temperature of an isolated system is imperfectly defined. This
opinion is explicitly expressed in the last paragraph of section §112 of the known Landau &
Lifshitz treatise (5). By itself, this idea is counterfactual, since it could not be possible to attribute
a definite temperature for the system acting as a heat reservoir when it is put into energetic
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isolation. Conversely, the temperature notion of an isolated system admits an unambiguous
definition in terms of the famous Boltzmann’s interpretation of thermodynamic entropy:

S = kB log W → 1
T

=
∂S
∂E

, (82)

where W is the number of microstates compatible with a given macroscopic configuration,
e.g.: W = Sp [δ (E −H)] ε0, with ε0 being a small energy constant that makes W a
dimensionless quantity. One realizes after revising the Gibbs’ derivation of canonical
ensemble (78) from the microcanonical basis that the temperature T appearing as a parameter
in the canonical distribution (78) is just the microcanonical temperature (82) of the heat reservoir
when its size N is sent to the thermodynamic limit N → ∞. Although such a parameter
characterizes the internal conditions of the heat reservoir and its thermodynamic influence
on the system under consideration, the same one cannot provide a correct definition for the
internal temperature of the system. While the difference between the temperature appearing
in the canonical ensemble (78) and the one associated with the microcanonical ensemble (82)
is irrelevant in most of everyday practical situations involving extensive systems, this is not
the case of small systems. In fact, microcanonical temperature (82) appears as the only way to
explain the existence of negative heat capacities C < 0:

∂

∂E

(
1
T

)
= − 1

T2C
⇒ C = −

(
∂S
∂E

)2
/
(

∂2S
∂E2

)
(83)

through the convex character of the entropy (34), ∂2S/∂E2 > 0. Analyzing the microcanonical
notion of temperature (82), one can realize that only a macroscopic system has a definite
temperature into conditions of energetic isolation. According to this second viewpoint, the system
energy E and temperature T cannot manifest a complementary relationship. However, a
careful analysis reveals that this preliminary conclusion is false.
According to definition (82), temperature is a concept with classical and statistical relevance.
Temperature is a classical notion because of the entropy S should be a continuous function
on the system energy E. In the framework of quantum systems, this requirement demands
the validity of the continuous approximation for the system density of states Ω(E) =
Sp

[
δ
(
E − Ĥ)]

. Those quantum systems unable to satisfy this last requirement cannot support
an intrinsic value of temperature T. By itself, this is the main reason why the temperature
of thermal physics is generally assumed in the framework of quantum theories. On the
other hand, temperature manifests a statistical relevance because of its definition demands
the notion of statistical ensemble: a set of identical copies of the system compatible with
the given macroscopic states. Although it is possible to apply definition (82) to predict
temperature T(E) as a function on the system energy E, the practical determination of
energy-temperature relation is restricted by the statistical relevance of temperature. In the
framework of thermodynamics, the determination of temperature T and the energy E, as
well as other conjugated thermodynamic quantities, is based on the interaction of this system
with a measuring instruments, e.g.: a thermometer, a barometer, etc. Such experimental
measurements always involve an uncontrollable perturbation of the initial internal state of
the system, which means that thermodynamic quantities as energy E and temperature T are
only determined in an imperfect way.
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4.3 Energy-temperature complementarity in the framework of fluctuation theory
To arrive at a proper uncertainty relation among thermodynamic variables, it is necessary to
start from a general equilibrium situation where the external influence acting on the system
under analysis can be controlled, at will, by the observer. In classical fluctuation theory, as
example, the specific form of the distribution function dp(I|θ) is taken from the Einstein’s
postulate (5):

dp(I|θ) = A exp [S(I|θ)/kB] dI, (84)

which describes the fluctuating behavior of a closed system with total entropy S(I|θ). Let
us admits that the system under analysis and the measuring instrument conform a closed
system. The separability of these two systems admits the additivity of the total entropy
S(I|θ) = S(I) + Sm(I|θ), where Sm(I|θ) are S(I) are the contributions of the measuring
instrument and the system, respectively.
For convenience, it is worth introducing the generalized differential operators η̂i

η̂i = −kB
∂

∂Ii → η̂iρ(I|θ) = ηi(I|θ)ρ(I|θ), (85)

which act over the probability density ρ(I|θ) associated with the statistical ensemble (84),
providing in this way the difference ηi(I|θ) of the generalized forces ζ = (β, ξ):

ηi(I|θ) = ζm
i − ζi (86)

between the system and the measuring instrument:

ζi =
∂S(I)

∂Ii and ζm
i = − ∂Sm(I|θ)

∂Ii . (87)

Clearly, the vanishing of the expectation values 〈ηi(I|θ)〉 drop to the known thermodynamic
equilibrium conditions:

〈ζm
i 〉 = 〈ζi〉 , (88)

which are written in the form of statistical expectation values. In particular, the condition of
thermal equilibrium is expressed as follows:〈

1
T

〉
=

〈
1

Tm

〉
, (89)

where T and Tm are the temperatures of the system and the measuring instrument
(thermometer), respectively. Analogously, the condition of mechanical equilibrium:

〈 p
T

〉
=

〈
pm

Tm

〉
, (90)

where p and pm are the internal pressures of the system and its measuring instrument
(barometer). The application of inequality (67) leads to a special interpretation of the notion
of complementarity between conjugated thermodynamic quantities:

Δ(ζm
i − ζi)ΔIi ≥ kB. (91)

Particular examples of these inequalities are the energy-temperature uncertainty relation (8):

Δ(1/T − 1/Tm)ΔE ≥ kB, (92)
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and the volume-pressure uncertainty relation:

Δ(p/T − pm/Tm)ΔV ≥ kB. (93)

These inequalities express the impossibility to perform an exact experimental determination of
conjugated thermodynamic variables (e.g.: energy E and temperature T or volume V and pressure
p, etc.) using any experimental procedure based on the thermodynamic equilibrium with a measuring
instrument. Conversely to inference uncertainty relations (79) and (81), the system statistical
uncertainties ΔE and ΔV can now be modified at will changing the experimental setup, that
is, modifying the properties of the measuring instrument.

4.4 Analogies between quantum mechanics and classical statistical mechanics
A simple comparison between classical statistical mechanics and quantum mechanics involves
several analogies between these statistical theories (see in Table 2). Physical theories as
classical mechanics and thermodynamics assume a simultaneous definition of complementary
variables like the coordinate and the momentum (q, p) or the energy and the inverse
temperature (E, 1/T). A different situation is found in those applications where the relevant
constants as the quantum of action h̄ or the Boltzmann’s constant kB are not so small.
According to uncertainty relations shown in equations (3) and (92), the thermodynamic state
(E, 1/T) of a small thermodynamic system is badly defined in an analogous way that a
quantum system cannot support the classical notion of particle trajectory [q(t), p(t)].
Apparently, uncertainty relations can be associated with the coexistence of variables with different
relevance in a statistical theory. In one hand, we have the variables parameterizing the results
of experimental measurements: space-time coordinates (t, q) or the mechanical macroscopic
observables I = (Ii). On the other hand, we have their conjugated variables associated
with the dynamical description: the energy-momentum (E, p) or the generalized differential
forces η = (ηi). These variables control the respective deterministic dynamics: while the
energy E and the momentum p constrain the trajectory q(t) of a classical mechanic system,
the inverse temperature differences, η = 1/Tm − 1/T, drives the dynamics of the system
energy E(t) (i.e.: the energy interchange) and its tendency towards the equilibrium. Similarly,
the experimental determination of these dynamical variables demands the consideration of
many repeated measurements due to their explicit statistical significance in the framework of
their respective statistical theories.
According to the comparison presented in Table 2, the classical action S(q, t) and the
thermodynamic entropy S(I|θ) can be regarded as two counterpart statistical functions.
Interestingly, while the expression (10) describing the relation between the wave function
Ψ(q, t) and the classical action S(q, t) is simply an asymptotic expression applicable in the
quasi-classic limit where S(q, t) � h̄, Einstein’s postulate (84) is conventionally assumed
as an exact expression in classical fluctuation theory. The underlying analogy suggests that
Einstein’s postulate (84) should be interpreted as an asymptotic expression obtained in the
limit S(I|θ) � kB of a more general statistical mechanics theory. This requirement is always
satisfied in conventional applications of classical fluctuation theory, which deal with the small
fluctuating behavior of large thermodynamic systems. Accordingly, this important hypothesis
of classical fluctuation theory should lost its applicability in the case of small thermodynamic
systems. In the framework of such a general statistical theory, Planck’s constant kB could be
regarded as the quantum of entropy.
Classical mechanics provides a precise description for the systems with large quantum
numbers, or equivalently, in the limit h̄ → 0. Similarly, thermodynamics appears as a suitable

18 Theoretical Concepts of Quantum Mechanics



Complementarity in Quantum Mechanics and Classical Statistical Mechanics 19

Comparison
criterium Quantum mechanics Classical

statistical mechanics

parametrization
space-time

coordinates (t, q)
mechanical macroscopic

observables I =
(

Ii
)

probabilistic
description

wave function
ψ (q, t)

distribution function
dp(I|θ) = ρ (I|θ) dI

relevant physical
hypothesis

Correspondence principle:
ψ (q, t) ∼ exp [iS (q, t) /h̄],
where S (q, t) is the action

Einstein’s postulate:
ρ (I|θ) ∼ exp [S (I|θ) /kB],

where S (I|θ) is the entropy

evolution
dynamical

conservation laws
tendency towards

thermodynamic equilibrium
conjugated
variables

energy E = ∂S (q, t) /∂t
momenta p =∂S (q, t) /∂q

differential forces
ηi = ∂S (I|θ) /∂Ii

complementary
quantities (q, t) versus (p, E) Ii versus ηi

operator
representation q̂i = qi and p̂i = −ih̄ ∂

∂qi Îi = Ii and η̂i = −kB
∂

∂Ii

commutation and
uncertainty relations

[
q̂j, p̂i

]
= ih̄δ

j
i

ΔqiΔpi ≥ h̄/2

[
Î j, η̂i

]
= δ

j
i kB

ΔIiΔηi ≥ kB
deterministic theory classical mechanics thermodynamics

Table 2. Comparison between quantum mechanics and classical statistical mechanics.
Despite their different mathematical structures and physical relevance, these theories exhibit
several analogies as consequence of their statistical nature.

treatment for systems with a large number N of degrees of freedom, or equivalently the
limit kB → 0. It is always claimed that quantum mechanics occupies an unusual place
among physical theories: classical mechanics is contained as a limiting case, yet at the
same time it requires this limit for its own formulation. However, it is easy to realize that
this is not a unique feature of quantum mechanics. In fact, classical statistical mechanics
also contains thermodynamics as a limiting case. Moreover, classical statistical mechanics
requires thermodynamic notions for its own formulation, which is particularly evident in
classical fluctuation theory. The interpretation of the generalized differential forces, η(I|θ) =
−kB∂I log ρ(I|θ), as the difference between the generalized forces ζi and ζm

i of the measuring
instrument and the system shown in equation (86) is precisely based on the correspondence
of classical statistical mechanics with thermodynamics through Einstein’s postulate (84).
Analogously, both statistical theories demand the presence of a second system with a
well-defined deterministic description. Any measuring instrument to study quantum mechanics
is just a system that obeys classical mechanics with a sufficient accuracy, e.g.: a photographic
plate. Analogously, a measuring instrument in classical statistical mechanics is a system
that exhibits an accurate thermodynamical description, e.g.: a thermometer should exhibit a
well-defined temperature dependence of its thermometric variable. If the systems under study
are sufficiently small, any direct measurement involves an uncontrollable perturbation of
their initial state. In particular, any experimental setup aimed to determine temperature T
must involve an energy interchange via a thermal contact, which affects the internal energy E.
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Conversely, it is necessary energetic isolation to preserve the internal energy E, thus excluding
a direct determination of its temperature T.
While the classical statistical mechanics is probability theory that deals with quantities with a
real character, the quantum mechanics is formulated in terms of complex probability amplitudes
that obey the superposition principle. Despite this obvious difference, both statistical theories
admit the correspondence of the physical observables with certain operators. Determination
of the energy E and the momentum p demands repeated measurements in a finite region
of the space-time sufficient for observing the wave properties of the function Ψ(q, t). The
system temperature determination also demands the exploration of a finite energy region
sufficient for determining the probability density ρ(I|θ). Mathematically, these experimental
procedures can be associated with differential operators: the quantum operators Ê = ih̄∂t,
p̂ = −ih̄∇ and the statistical mechanics operator η̂ = −kB∂I . It is easy to realize that
the complementary character between the macroscopic observables Ii and the generalized
differential forces ηi can be related to the fact that their respective operators Î i = Ii and

η̂i = −kB∂Ii do not commute
[

Î i, η̂i

]
= kB:

∫
Mθ

[
Î i, η̂i

]
ρ(I|θ)dI ≡

∫
Mθ

Î i η̂iρ(I|θ)dI = kB ⇒
〈

δIiδηi

〉
= kB ⇒ ΔIiΔηi ≥ kB. (94)

There exist other differences between these statistical theories. For example, variables and
functions describing the measuring instruments explicitly appear in probability description
of classical statistical mechanics; e.g.: the entropy contribution of the measuring instrument
Sm(I|θ) and the generalized forces ζm

i . Conversely, the measuring instruments do not
appear in this explicit way in the formalism of quantum mechanics. The nature of the
measuring instruments are specified in the concrete representation of the wave function
Ψ. For example, the quantity |Ψ(q, t)|2 written in the coordinate-representation measures
the probability density to detect a microparticle at the position q using an appropriate
measuring instrument to obtain this quantity. Analogously, the quantity |Ψ(p, t)|2 expressed
in the momentum-representation describes the probability density to detect a particle with
momentum p using an appropriate instrument that measures a recoil effect.

5. Final remarks

Classical statistical mechanics and quantum theory are two formulations with different
mathematical structure and physical relevance. However, these physical theories
are hallmarked by the existence of uncertainty relations between conjugated quantities.
Relevant examples are the coordinate-momentum uncertainty ΔqΔp ≥ h̄/2 and the
energy-temperature uncertainty ΔEΔ(1/T − 1/Tm) ≥ kB. According to the arguments
discussed along this chapter, complementarity has appeared as an unavoidable consequence
of the statistical apparatus of a given physical theory. Remarkably, classical statistical
mechanics and quantum mechanics shared many analogies with regards to their conceptual
features: (1) Both statistical theories need the correspondence with a deterministic theory for
their own formulation, namely, classical mechanics and thermodynamics; (2) The measuring
instruments play a role in the existence of complementary quantities; (3) Finally, physical
observables admit the correspondence with appropriate operators, where the existence of
complementary quantities can be related to their noncommutative character.
As an open problem, it is worth remarking that the present comparison between classical
statistical mechanics and quantum mechanics is still uncomplete. Although the analysis

20 Theoretical Concepts of Quantum Mechanics



Complementarity in Quantum Mechanics and Classical Statistical Mechanics 21

of complementarity has been focused in those systems in thermodynamic equilibrium, the
operational interpretation discussed in this chapter strongly suggests the existence of a
counterpart of Schrödinger equation (42) in classical statistical mechanics. In principle, this
counterpart dynamics should describe the system evolutions towards the thermodynamic
equilibrium, a statistical theory where Einstein’s postulate (84) appears as a correspondence
principle in the thermodynamic limit kB → 0.
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1. Introduction 

1.1 Waves and particles in quantum mechanics 
 In spite of the fact that the extraordinary progress of experimental techniques make us able 
to manipulate at will systems made of any small and well defined number of atoms, 
electrons and photons - making therefore possible the actual performance of the 
gedankenexperimente that Einstein and Bohr had imagined to support their opposite views on 
the physical properties of the  wavelike/particlelike objects (quantons) of the quantum world 
- it does not seem that, after more than eighty years, a unanimous consensus has been 
reached in the physicist's community on how to understand their "strange" properties.   
Unfortunately, we cannot know whether Feynman would still insist in maintaining his 
famous sentence "It is fair to say that nobody understands quantum mechanics". We can 
only discuss if, almost thirty years after his death, some progress towards this goal has 
been made. I believe that this is the case. I will show in fact that, by following the 
suggestions of Feynman himself, some clarification of the old puzzles can be achieved. 
This chapter therefore by no means is intended to provide an impartial review of the 
present status of the question but is focused on the exposure of the results of more than 
twenty years of research of my group in Rome, which in my opinion provide a possible 
way of connecting together at the same time the random nature of the events at the atomic 
level of reality and the completeness of their probabilistic representation by the principles 
of Quantum Mechanics. 

1.2 The two slits experiment 
In order to introduce the reader to the issues at stake I will briefly recall the essence of the 
debate between Bohr and Einstein which took place after the Fifth Solvay Conference (1927) 
where for the first time the different independent formulations of the new theory were 
presented by Heisenberg, Dirac, Born and Schrödinger, together with their common 
interpretation by Bohr - the socalled “Copenhagen interpretation” of Quantum Mechanics - 
which won since then a practically unanimous acceptance by the community. 
This acceptance remained unquestioned for thirty years until when the books by Max 
Jammer (Jammer a1966, b1974) presented again to the new generation of physicists the 
ambiguities which still remained unsolved, and stimulated a renewed interest on those 
conceptual foundations of the theory which had been set aside under the impact of the the 
extraordinary experimental and theoretical boom of physics triggered at the end of World 
War 2 by the opening of the Nuclear Era. 
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The central issue of the debate, according to Jammer’s reconstruction (Jammer b1974 p.127) , 
was “whether the existing quantum mechanical description of microphysical phenomena 
should and could be carried further to provide a more detailed account, as Einstein 
suggested, or whether it already exhausted all possibilities of accounting for observable 
phenomena, as Bohr maintained. To decide on this issue, Bohr and Einstein agreed on the 
necessity of reexamining more closely those thought-experiments by which Heisenberg 
vindicated the indeterminacy relations and by which Bohr illustrated the mutual exclusion 
of simultaneous space-time and causal descriptions.” 
The thought experiment which both agreed to discuss was the diffraction of a beam of 
particles of momentum p impinging perpendicularly on a screen D with two slits S1 and S2 
at a distace d from each other. Each particle, which passes through, falls, deviating at 
random from its initial direction, on a photographic plate P located after the screen. When a 
sufficiently high number of particles has been detected, a distribution of diffraction fringes 
typical of a wave with a central maximum and adjacent minima and less pronounced 
maxima appears. Each particle is detected locally,  but seems to propagate as a wave.  
Its wavelike nature is expressed by the Bragg’s relation connecting the wavelength of the 
wave in terms of the the distance  d  between the slits and the angle  subtended by the 
central diffraction maximum ( = d). On the other side its particlelike nature is expressed 
by its momentum p which is connected to the the wavelength by the de Broglie’s relation  
(p = h/ 
Since it is not possible to detect through which slit the particle is passed, its position x on D 
is uncertain by ∆x = d. For the same reason, the momentum acquired by the particle in 
deviating from its initial direction normal to D is uncertain by  ∆p = p  
From these relations the Heisenberg uncertainty relation 

∆x  = h/∆p 

follows. Incidentally, the same phenomenon occurs with only one slit, with d now indicating 
the slit’s width. 
For Bohr eq. (1) holds for each individual particle. The particle’s position x and its 
momentum p are, in his words, “complementary” variables. They cannot have 
simultaneously well defined sharp values. In the interaction with the classical instrument 
made of the screen D and the photographic plate P, each particle of the beam acquires a 
blunt value x affected by an uncertainty ∆x and a blunt value p affected by an uncertainty 
∆p. The product of the uncertainties however, can never be less than the limit set by (1). 
Initially, before impinging on the instrument, each particle was in a state with a well defined 
sharp value of the momentum and a totally non localized position in space. At the end, after 
having been trapped in the photographic plate, each particle has acquired a well defined 
sharp value of its position in space, and has lost a well defined value of the momentum. The 
essence of the argument is that only by interacting with a suitable classical object one side of 
the quantum world acquires a real existence, at the expense of the complementary side 
becoming unseizable.  
For Einstein instead Quantum Mechanics is only a statistical theory which does not fully 
describe  reality as it is. The uncertainties, according to him,  reflect only our uncomplete 
knowledge. He postulates the existence of  “hidden variables” of still unknown nature,  and 
concentrates his efforts on proving that Quantum Mechnics is “incomplete”. In fact - he 
argues - if D is not fixed but is left free to move, one could identify the slit through which 
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the particle has passed by measuring the recoil of the screen produced by the momentum 
exchange with the particle deviated from its straight path. Both the position and the 
momentum of the particle could in this way be measured, violating the Heisenberg limit. 
This does not work, however - replicates Bohr (Bohr 1948) - because the detection of “which 
slit” changes the diffraction pattern. In fact, he argues, if, by detecting the recoil of the screen 
one determines through which slit the particle has passed, the position in space of D 
becomes delocalized by a quantity  in such a way that the resulting maxima and minima of 
the possible two-slit diffraction patterns superimpose and cancel each other. The original 
diffraction pattern with D fixed becomes the diffraction pattern of the single slit through 
which the particle is passed. ∆x is reduced to the width of the slit and the uncertainty ∆p is 
correspondingly increased. Heisenberg’s relation for the particle still holds.  
“It is not relevant - Bohr wrote many years later (Bohr 1958a) in a report of his debate with 
Einstein - that experiments involving an accurate control of the momentum or energy 
transfer from atomic particles to heavy bodies like diaphragms  and shutters would be very 
difficult to perform, if practicable at all. It is only decisive that, in contrast to the proper 
measuring instruments, these bodies, together with the particles, would, in such a case 
constitute the system to which the quantum mechanical formalism has to be applied.” 
On the other hand, Bohr insists to stress the classical nature of the instrument (Bohr 1958b): 
"The entire formalism is to be considered as a tool for deriving predictions of definite 
statistical character, as regards information obtainable under experimental conditions 
described in classical terms.[..] The argument is simply that by the word “experiment” we 
refer to a situation where we can tell others what we have learned, and that, therefore, the 
account of the experimental arrangement and the results of the observations must be 
expressed in unambiguous language with suitable application of the terminology of classical 
physics."  
It is therefore clear that for Bohr the proper measuring instruments on the one side must be 
treated as classical objects, but on the other one that the parts of the apparatus used for the 
determination of the localization in space time of particles and the energy-momentum 
transfer between particle and apparatus must be submitted to the quantum limitations. We 
will come back in a moment to this question in order to prove that this ambiguity can be 
understood in the framework of an interpretation of Quantum Mechnics in which both 
Einstein’s purpose of saving the objectivity of the properties of macroscopic objects and 
Bohr’s denial of the possibility of attributing to the objects at the atomic level independent 
properties, are recognized. 

1.3 The EPR paradox 
The second phase of the debate sees a change in Einstein’s strategy of proving that the 
description of reality given by Quantum Mechanics is incomplete. This phase is based on the 
formulation of the EPR (Einstein, Podolski, Rosen) paradox (Einstein et al 1935).. I will 
briefly sketch its main argument, even if it is not essential for the further development of the 
argument of this Chapter. 
This is how the authors formulate the basic assumption of their argument: "If, without in 
any way disturbing a system, we can predict with certainty the value of a physical quantity, 
then there exists an element of physical reality corresponding to this physical quantity." 
Consider a system of two particles in a state in which the relative distance  x1 - x2 = a   and 
their total momentum p1+p2 = p     are fixed. This is possible because these quantities are not 
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complementary. Then EPR argue as follows. By measuring the position x1 of the first particle 
it is possible, without interfering directly with the second particle, determine its position x2= 
a+x1. This means that, according the initial definition, that x2 is an element of reality. However, 
we might have chosen to measure, instead of x1 the momentum p1 of the first particle. This 
measurement would have allowed us to assess, without interfering in any way with the 
second particle, that its momentum p2 = p-p1 is an element of reality. This would have 
allowed to conclude that p2 is an element of reality. Therefore, Einstein sums up, Quantum 
Mechanics is incomplete. 
Bohr’s answer stresses once more that one cannot speak of quantities existing independently 
of the actual procedure of measuring them: "From our point of view we now see that the 
wording of the above mentioned criterion of physical reality proposed by EPR contains an 
ambiguity as regards the meaning of the expression “without in any way disturbing a 
system”. Of course there is, in a case like that just considered, no question of a mechanical 
disturbance of the system under investigation during the last critical stage of the measuring 
procedure. But even at this stage there is essentially the question of an influence on the very 
conditions which define the possible types of predictions regarding the future behaviour of 
the system. Since these conditions constitute an inherent element of the description of any 
phenomenon to which the term “physical reality” can be properly attached, we see that the 
argumentation of the mentioned authors does not justify their conclusion that quantum-
mechanical description is essentially incomplete." 
Einstein recognized that Bohr might be right, but remained attached to his own point of 
view (Bohr 1958b): “"To believe [that it should offer an exhaustive description of the 
individual phenomena] is logically possible without contradiction; - he admits - but it is so 
very contrary to my scientific instinct that I cannot forego the search for a more complete 
conception." 
The question remained open for almost 50 years but was solved by two fundamental 
contributions. In 1964 John Bell (Bell 1964) showed that Einstein’s hypothesis of the 
existence of hidden variables capable of describing reality in more detail than QM might 
lead to an experimental test. In order to sketch Bell’s argument a reformulation of the 
original EPR proposal is necessary. Instead of chosing the relative distance and the total 
momentum as variables of the two-particle system with assigned initial value one assumes 
that they are two spin ½ particles in a state (singlet) of total angular momentum zero. In this 
state the components along three orthogonal directions are all zero, in spite of the fact that 
the three components of angular momentum are incompatible variable between themselves.  
Bell’s idea is the following. Rather than discussing the legitimacy of speaking of a physical 
variable without having measured it, he proposes of measuring the component of the spin 
of particle #1 in a direction a and the component ofthe spin of particle #2 in another 
direction b. After a series of measurements on a great number N of pairs  the results are 
correlated by a function C(a,b)=∑aibi (ai and bi may have values +/- 1) which depends on 
the angle  between a et b. The point is, Bell shows, that Einstein’s hypothesis of hidden 
variables leads to an inequality  

|C(a,b) - C(a,b')| = (1/N)|∑iai (bi-bi')| ≤ (1/N)|∑( bi-bi')| =  

  = (1/N)|∑(1- bi-bi')|  = 1 + C(b,b') (1) 

which is violated by  the function C(a,b) = -cosof QM.  
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Bell’s inequality shows that the difference between Einstein’s and Bohr’s views is not only a 
matter of interpretation, but that the formalism of QM contradicts the hypothesis that 
incompatible variables may have at the same time sharp, even if unknown, values. The 
debate between Bohr and Einstein has been settled in favour of Bohr by Alain Aspect and 
coworkers (Aspect 1982) who showed in a celebrated experiment that the inequality (3) is 
violated for (ab)= 22,5° et (ab')= 67,5° by 5 standard déviations. Numerous other 
experiments have since then confirmed this result. 

2. From quantons to objects 

2.1 The existence of a classical world 
We come back now to the ambiguous nature attributed by Bohr to the measuring apparatus. 
Does it belong to the classical or to the quantum world? In order to answer to this question 
we must preliminarly discuss the issue of the classical limit of Quantum Mechanics. We 
know that in the standard formulation of QM a system’s state is represented by a wave 
function in the cohordinate’s space (or a state vector in Hilbert space) which contains all the 
statistical properties of the system’s variables. The wave function allows to calculate the 
probability of finding a given value of any variable of the system as a result of a 
measurement by means of a suitable instrument. More precisely, if the wave function is 
given by 

  = c1 1 + c22  (2) 

(where 1 (2) represents a state in which the variable G has with certainty the value g1 (g2)), 
the probability of finding g1 (g2) is | c1|2 (|c2|2). In Bohr’s interpretation this means that the 
variable G does not have one of these values before its measurement but assumes one or the 
other value with the corresponding probability during the act of measurement. Now comes  
the question: is this interpretation always valid, even when g1 and g2 are macroscopically 
different? 
The answer poses a serious problem. One can in effect prove that in the limit when Planck’s 
constant h tends to zero the probability distribution of the quantum state represented by ψ 
tends to the probability distribution in phase space of the corresponding classical statistical 
ensemble labeled by the same values of the system’s quantum variables. More precisely, in 
this limit |c1|2 and |c2|2 represent the probabilities of finding the values g1 (g2) of the 
classical variable corresponding to the quantum variable G. In this case, however, the 
interpretation of these probabilities is completely different. In classical statistical mechanics 
we assume that they express an incomplete knowlwdge of the values of G actually 
possessed by the different systems of the ensemble. We  assume in fact that, if the ensemble 
is made of N systems, there are N|c1|2 systems wuth the value g1 of G  and N|c2|2 systems 
with the value g2 of G to start with. Each system has a given value of G from the beginning, 
even if we don’t know it. 
We arrive therefore to a contradiction. The same mathematical expression represents on the 
one side (classical limit of QM) the probability that a given system of the ensemble acquires 
a given value of the variable G as a consequence of its interaction with a suitable measuring 
instrument, and on the other side (classical statistical mechanics) the probability that the 
system considered had that value of G before its measurement. Suppose, for exemple that y 
represents a quantum in a box with two communicating cpmpartments: Ψ1 is different from 
zero in the left side compartment and Ψ2 is different from zero in the right side one. The 
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corresponding probabilities of finding the quanton in one or the other one are respectively 
|c1|2  and   |c2|2. Suppose now that the two compartments are separated by a shutter and 
displaced far away from each other. One of them is then opened: It may contain the quanton 
or may be empty. At this point it is undoubtably troubling to admit that, if one sticks strictly 
to Bohr’s interpretation, the system in question instantly materializes in one or the other 
locality when the compartment is opened. Even more troubling is the fact that, if QM is the 
only true and universally valid theory of matter, the same conclusion must hold in principle 
also for macroscopic bodies.  

2.2 Quantum and classical uncertainties 
A way out of this dilemma, however, exists. We have shown, with Maurizio Serva (Cini M. 
Serva M. 1990, 1992), that, without changing the basic principlees and the predictions of 
Quantum Mechanics, one can save at the same time both Bohr’s interpretation of the 
phenomena of the quantum domain, and Einstein’s belief in the objective relity of the 
classical world in which we live. We have shown  in fact that the uncertainty product 
between x and p can be written for any state of a quanton in the form 

 (∆x ∆p)2 = (∆x ∆p)cl2 + (∆x ∆p)q2 (3) 

where (∆x ∆p)q is of the order of the minimum value h/4π of the Heisenberg uncertainty 
relation and (∆x ∆p)cl is the classical expression of the product of the indeterminations ∆x 
and ∆p predicted by the probability distribution of the classical statistical mechanics 
distribution corresponding to the quantum state when h -> 0. It is therefore reasonable to 
attribute to each of these two terms the meaning relevant to its physical domain. 
In the typical quantum domain the clssical term vanishes and the indeterminacy is 
ontological, namely the variables x and p do not have a definite value before the system’s 
interaction with a measuring instrument. When the accuracy of the act of measurement 
reduces the indeterminacy of one variable, the the indeterminacy of the other one increases. 
Their product cannot become smaller than h/4π. 
As soon as the uncertainty product calculated from the state y acquires a classical term 
(which survives in the limit h -> 0) the total indeterminacy becomes epistemic, namely it 
represents an incomplete knowledge of the value that the measured variable really had 
before being measured. In this case it is possible to measure the variables x and p in such a 
way as to reduce at the same time both ∆x et ∆p without violating any quantum principle. 
These measurements reduce simply our ignorance. There is no instantaneous localization of 
the quanton in coordinate or momentum space as a consequence of the interaction between 
system and instrument, because position and momentum (within the intrinsic quantum 
uncertainty) were already localized. 
This solution solves therefore the contradiction between the different interpretations of 
the total uncertainty product, and allows a reconciliation of the two alternative 
conceptions of physical reality proposed by Einstein and Bohr. It saves a realistic 
conception of the world as a whole by recognizing that macroscopic objects have objective 
properties independently of their being observed by any “observer”, and, at the same 
time, that at the microscopic objects have properties dependent of the macroscopic objects 
with which they interact, 
It allows also to clarify the ambiguity on the nature of the measurment apparatus mentioned 
above. One can in fact reformulate it in the following way. Assume that the microscopic 



 
The Physical Nature of Wave/Particle Duality 

 

29 

system S interacts with a part M1 which at its turn interacts with a part M2 and eventually 
other ones. We ask: at which point we pass the border between quantum domain and 
classical domain? The answer is not ambiguous. The border is where the values of the 
variable in one-to-one correspondence with the values of the quantum variable G, assume 
values which differ by each other by macroscopic quantities (e.g. charged or discharged 
counter). The part Mc when this happens is then the “pointer” of the instrument on whose 
unambiguous results all human observers agree. 
This approch solves also a problem on which thousands of pages have been written, namely 
the problem of the “wave packet reduction” or “collapse” as a consequence of the act of 
measurement (Cini M, Levy Leblond J.M. 1991)(Wheeler J, Zurek W 1986). We recall that 
with this expression we mean that, after having measured G on a system S whose state is 
represented by (eq.(1)) the wave function changes abruptly and instantaneously to 1 or 
2 accordingly to the result g1 or g2 of the measurement. This change cannot be represented 
by a Schrödinger evolution, but must be postulated as a result of an instantaneous, 
irreversible and random evolution extraneous to QM. According to our findings (Cini M. et 
al 1979, Cini M. 1983) this additional and arbitrary mechanism is not necessary.  
In fact, onsider the simplest case S+M, in which M is a counter which has two 
macroscopically different states (charged or discharged) represented by two state vectors 
and . The wave funtion of the total system may be written 

 = c1 1 1+ c22 2 (4) 

where we have assumed that the value g1 (g2) of the variable G of S is correlated with the 
charged (discharged) counter. The preceding discussion shows that, due to the macroscopic 
difference between 1 and 2, the total systen’s state is, for all practical purposes, equivalent 
to a Gibbs classical ensemble made of N|c1|2  systems in which each counter is charged and 
S has the value g1 of G and N|c2|2 systems in which each counter is discharged charged and 
S has the value g2 of G. The wave packet reduction is therefore no longer needed as an 
additional postulate, and no additional misterious agent (even less the “observer’s 
consciousness”) is required to explain it. It simply turns out to be a well known consequence 
of classical statistical mechanics. 

2.3 EPR and conservation laws 
A similar "realistic" approach can be adopted to discuss the third counterintuitive quantum 
phenomenon, the famous EPR "paradox", whose solution, after the numerous experiments 
confirming the violation of Bell's inequalities, can only be expressed by saying that Einstein 
was wrong in concluding that quantum mechanics is an incomplete theory. 
Usually people ask: how is it possible that when the first particle of a pair initially having 
zero total angular momentum acquires in interaction with its filter a sharp value of a given 
component of its angular momentum, the far away particle comes to "know" that its own 
angular momentum component should acquire the same and opposite value? I do not think 
that a realistic interpretation of this counterintuitive behaviour can be "explained" by 
minimizing the difference with its classical counterpart, because this difference has its roots, 
in my opinion, in the "ontological" (or irreducible) - not "epistemical" (or due to imperfect 
knowledge) - nature of the randomness of quantum events. If this is the case, one has in fact 
to accept that physical laws do not formulate detailed prescriptions, enforced by concrete 
physical entities, about what must happen in the world, but only provide constraints and 
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express prohibitions about what may happen. Random events just happen, provided they 
comply to these constraints and do not violate these prohibitions.  
From this point of view, the  angular momentum component of the far away particle has to 
be equal and opposite to the measured value of the first particle's component, because 
otherwise the law of conservation of angular momentum would be violated. In fact, the 
quantity "total angular momentum" is itself, by definition, a non-local quantity. Non locality 
therefore needs not to be enforced by a mysterious action-at-a-distance. The two filters are not 
two uncorrelated pieces of matter: they are two rigidly connected parts of one single piece of 
matter which "measures" this quantity. The non local constraint is therefore provided by the 
nature of the macroscopic "instrument". This entails that, once the quantum randomness has 
produced the first partial sharp result, there is no freedom left for the result of the final stage 
of the interaction: there is no source of angular momentum available to produce any other 
result except the equal and opposite sharp value needed to add up to zero for the total 
momentum. 
We arrive to the conclusion that Bohr was right, but Einstein was not wrong in insisting that 
an uncritical acceptance of the current interpretation of QM would lead to absurd 
statements about the physical nature of the world we live in. 

3. The randomness of quantum reality in phase space 

3.1 The representation of the irreducible randomness of quantum world in phase 
space 
After eighty years of Quantum Mechanics (QM) we have learned to live with wave 
functions without worrying about their physical nature. This attitude is certainly justified by 
the extraordinary success of the theory in predicting and explaining not only all the 
phenomena encountered in the domain of microphysics, but also some spectacular 
nonclassical macroscopic behaviours of matter. Nevertheless one cannot ignore that the 
wave–particle duality of quantum objects not only still raises conceptual problems among the 
members of the small community of physicists who are still interested in the foundations of 
our basic theory of matter, but also induces thousands and thousands of physics students all 
around the world to ask each year, at their first impact with Quantum Mechanics, 
embarassing questions to their teachers without receiving really convincing answers. 
We have seen that typical examples of this insatisfaction are the nonseparable  character of 
long distance correlated two-particle systems and the dubious meaning of the superposition 
of state vectors of measuring instruments, and in general of all macroscopic objects 
(Schrödinger 1935). In the former case experiments have definitely established that Einstein 
was wrong in claiming that QM has to be completed by introducing extra “hidden” 
variables, but have shed no light on the nature of the entangled two-particle state vector 
responsible for the peculiar quantum correlation between them, a correlation which exceeds 
the classical one expected from the constraints of conservation laws.  
In the latter case, generations of theoretical physicists in neoplatonist mood have insisted in 
claiming that the realistic aspect of macroscopic objects is only an illusion valid For All 
Practical Purposes (in jargon FAPP). The common core of their views is the belief that the 
only entity existing behind any object, be it small or large, is its wave function, which rules 
the random occurrence of the object’s potential physical properties. The most extravagant 
and bold version of this approach is undoubtedly the one known as the Many Worlds 
Interpretation of QM Everett E.(1973), which goes a step further by eliminating the very 
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founding stone on which QM has been built, namely the essential randomness of quantum 
events. Chance disappears: the evolution of the whole Universe is written – a curious revival 
of Laplace - in the deterministic evolution of its wave function. “The Many-Worlds 
Interpretation (MWI) – in the words of Lev Vaidman, one of its most eminent supporters 
(Vaidman 2007) - is an approach to quantum mechanics according to which, in addition to 
the world we are aware of directly, there are many other similar worlds which exist in 
parallel at the same time and in the same space. The existence of the other worlds makes it 
possible to remove randomness and action at a distance from quantum theory and thus from 
all physics.”  
I believe that it is grossly misleading to attribute the epistemological status of “consistent 
physical theory” to this sort of science fiction, which postulates the existence of myriads and 
myriads of physical objects (indeed entire worlds!) which are in principle undetectable. My 
purpose is to show that these difficulties can only be faced by pursuing a line of research 
which goes in the opposite direction, namely which takes for granted the irreducible nature 
of randomness in the quantum world. This can be done by eliminating from the beginning the 
unphysical concept of wave function. I believe that this elimination is conceptually similar 
to the elimination of the aether, together with its paradoxical properties, from classical 
electrodynamics, accomplished by relativity theory. In our case the lesson sounds: No wave 
funtions, no problems about their physical nature.  
Furthermore, the adoption of a statistical approach from the beginning for the description of 
the physical properties of quantum systems sounds methodologically better founded than 
the conventional ad hoc hybrid procedure of starting with the determination of a system’s 
wave function of unspecified nature followed by a “hand made” construction of the 
probability distributions of its .physical variables. If randomness has an irreducible origin in 
the quantum world its fundamental laws should allow for the occurrence of different events 
under equal conditions. The language of probability, suitably adapted to take into account all 
the relevant constraints, seems therefore to be the only language capable of expressing this 
fundamental role of chance. 
The proper framework in which a solution of the conceptual problems discussed above 
should be looked for is, after all, the birthplace of the quantum of action, namely phase 
space. It is of course clear that standard positive joint probabilities for both position and 
momentum having sharp given values cannot exist in phase space, because they would 
contradict the uncertainty principle. Wigner however, in order to represent Quantum 
Mechanics in phase space, introduced the functions called after his name (Wigner 1932) as 
pseudoprobabilities which may assume also negative values, and showed that by means of 
them one can compute any physically meaningful statistical property of quantum states. 
A step further along this direction was made by Feynman (Feynman 1987), who has shown 
that, by dropping the assumption that the predictions of Quantum Mechanics can only be 
formulated by means of  nonnegative probabilities, one can avoid the use of probability 
amplitudes, namely waves, in quantum mechanics. After all to the old questions about the 
physical meaning of probability amplitudes remains unanswered. Dirac said once “Nobody 
has ever seen quantum mechanical waves: only particles are detectable. Feynman  is 
reported to have stated "It is safe to say that no one understands Quantum Mechanics". It is 
undeniable in fact that probability amplitudes are source of conceptual troubles (nonlocality 
of particle states,  superposition of macroscopic objects' states). 
The difficulty of introducing directly standard positive probability amplitudes in phase 
space in quantum mechanics arises, as is well known, from the impossibility of  assigning 
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precise values to incompatible variables. No joint probability density of x and p exists in 
phase space. However, negative probabilities - argues Feynman - have a physical 
interpretation. 
"The idea of negative numbers - he writes - is an exceedingly fruitful mathematical 
invention. Today a person who balks at making a calculation in this way is considered 
backward or ignorant, or to have some kind of mental block. It is the purpose of this paper 
to point out that we have a similar strong block against negative probabilities. By discussing 
a number of examples, I hope to show that they are entirely rational of course, and that their 
use simplifies calculations and thought in a number of calculations in physics." 
"If a physical theory for calculating probabilities yields a negative probability for a given 
situation under certain assumed conditions, we need not conclude the theory is incorrect. 
Two other possibilities of interpretation exist. One is that the conditions (for example, initial 
conditions) may not be capable of being realized in the physical world. The other possibility 
is that the situation for which the probability appears to be negative is one that can not be 
verified directly. A combination of these two, limitation of verifiability and freedom in 
initial conditions, may also be a solution to the apparent difficulty." 
Admittedly, as he recognizes, a "strong mental block" against this extention of the 
probability concept is widespread. Once this has been overcome, however, the road is open 
for a new reformulation of Quantum Mechanics, in which the concept of probability 
“waves” is eliminated from the beginning. After all, particles and waves do not stand on the same 
footing as far as their practical detection is concerned. We have already remarked that the 
position of a particle assumes a sharp value as a consequence of a single interaction with a 
suitable detector, but we need a beam of particles to infer the sharp value of their common 
momentum. This means that we never detect  waves: we only infer their existence by detecting 
a large number of particles. 
A striking exemple of the usefulness of this approach is that the troubles of entangled states 
disappear. In fact the Wigner pseutoprobability of the singlet state of the EPR paradox is the 
product of the Wigner pseudoprobabilities of the two spin ½ particles. This means no more 
questions about the “superluminal transmission” of  information between them.  

3.2 Classical ensembles with “Uncertainty Principle” 
Feynman's program, however, is still based on the conventional formalism of QM: state 
vectors  in Hilbert space or wave functions in coordinates' space. In fact, Wigner's function 
W(q,p) (pseudoprobability density for sharp values q, p of incompatible variables q and p) 
is defined by the expression 

 W(q,p) = ∫dy exp(-ipy) (q+(1/2)y) *(q-(1/2)y) (5) 

which contains explicitly the wave function of the state..In Feynman’sapproach waves are 
therefore still needed to start with, because pseudoprobabilities are first expressed in terms of 
wave functions, and then forgotten. We will show, however, that it is possible to express 
Quantum Mechanics from first principles in terms of pseudoprobabilities without ever 
introducing the concept of probability amplitudes. This program has been recently carried 
on [Cini 1999] by generalizing the formalism of classical statistical mechanics in phase space 
with the introduction of two postulates (uncertainty and discreteness), which impose 
mathematical constraints on the set of quantum variables in terms of which any physical 
quantity can be expressed. QM is therefore reformulated in terms of expectation values of 
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quantum variables as a generalization of the correspondent classical varibles of classical 
statistical mechanics, with the introduction of a single quantum postulate. 
This goal will be attained in two steps. The first step is the formulation of a classical 
Uncertainty Principle. We consider all the classical ensembles of particles in phase space with 
coordinate q and momentum p in which a given variable A(q,p) has a well determined 
value  and its conjugate variable B(q,p) is completely undetermined1. Only ensembles of this 
kind in fact are the classical limit of the quantum states.  
Following Moyal (1946), we will represent all the statistical properties of our ensembles, 
usually expressed by the joint probability distribution P(q,p), in terms of the  expectation 
value Cα(k,x) (represented from now onwards by <....>)  of the "characteristic variable" 
C(k,x) = e(-i/h)(kq+xp) as follows 

P(q,p) = <(q-q) (p-p)> =

 =(2πh)-2∫∫dx dk exp((-i/h)(kq+xp))  Cα(k,x) (6) 

The requirement that all its systems have the value α of the variable A 

 <A2>   = α2 (7) 

entails that Cα(k,x) must satisfy the equation 

 ∫∫ dy dh a(h-k, y-x) Cα(h, y)  =  α Cα(k,x) (8) 

where  a(k,x) is the double Fourier transform of the function A(q,p).  
Actually, eq. (8) is only apparently an integral equation, because it is easily reduced in terns 
of thr variables A and B to a simple algebraic functional equation with solution 

 P(q,p) = (A(q, p) - )  (9) 

In fact P(q,p) must be independent of B if this variable is indetermined in the ensemble. All 
this may seem trivial but actually it is not. Eq. (8) will be in fact one of our starting equations 
for the transition to QM.  
We impose now that the result (9) should be invariant under the canonical transformations 
generated by any arbitrary function L  

 A’ = A + {A,L}PB (10) 

Therefore the Poisson Bracket of A wiyh L must satisfy 

 <{A,L}PB>α = 0 (11) 

from which it follows that the characteristic function must satisfiy, in addition to (9), also the 
equation 

 ∫∫ dy dh a(h-k, y-x) (ky-hx) Cα(h,y) = 0 (12) 

for all k,x.  
Eqs. (8) (12) are the formal expression of a “classical uncertainty principle”,  representing the 
conditions to be fulfilled by classical ensembles having the property, invariant under 

                                                 
1 In what follows the variables are written in boldface and their values are in ordinary typeset. 
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canonical trasformations, that a given variable A has the value α and  its conjugate variable 
B is undetermined. Up to now we are still in the domain of classical statistical mechanics. 

3.3 The quantum postulate 
The second, essential, step is to introduce the quantum into this scheme. This is done by 
imposing the fulfilment of a second postulate, based on the assumption that the founding 
stone of quantum theory is the experimental fact that physical quantities exist (the action of 
periodic motions, the angular momentum, the energy of bound systems..) whose possible values form 
a discrete set, invariant under canonical transformations, characteristic of each variable in question. 
This means that we should request that α belongs to a discrete spectrum independent of the 
phase space variables. 
This feature can only be ensured if eq. (8) for the classical characteristic function Cα(k,x), 
which yields a continuous spectrum α for the values of the classical variable A, is modified 
to become a true Fredholm homogeneous integral equation for the quantum characteristic 
function Ci(k,y) with a nonseparable kernel g(ky-hx), allowing for the existence of a discrete 
set of eigenvalues αi. 

 ∫∫ dx dh a(h-k, y-x) g(ky-hx) Ci(h, y)  =  αi Ci(k,y) (13) 

Similarly, eq.(12) expressing the uncertainty principle between the classical variables A and 
Β  should be changed into 

 ∫∫ dy dh a(h-k, y-x) f(ky-hx) Ci(h,y) = 0 (14) 

for the quantum characteristic function Ci(k,x) of the ensemble caracterized by one of the 
values αi of the quantum variable A and by the complete indeterminacy of its quantum 
conjugate variable B. The functions g( ) and  f( ) should be determined by imposing new self 
consistent rules for the quantum variables involved. 
The two eqs (13) (14), however, cannot be obtained from (7) and (11) as in the classical case 
by ordinary commuting  numbers. In fact the only way to obtain (13) (14) is to replace the 
classical characteristic variables C(k,x) obeying the standard rule of multiplication of 
exponentials with quantum variables C(k,x) having the property 

(1/2)[C(k,x) C(h,y) + C(h,y)C(k,x)] = 

 g(ky-hx)C(k+h,x+y) (15) 

and to replace their classical Poisson bracket with the Quantum Poisson Bracket 

 {C(k,x), C(h,y)}QPB    =   f(ky-hx) C[(k+h), (y+x)] (16) 

This means that, if we want to allow for the existence of discrete values of at least one 
variable L we are forced to represent all the variables A by means of noncommuting Dirac q-
numbers.This means that the mathematical nature of the entities needed to represent the 
quantum variables is a consequence of the physical assumption of the discreteness of 
quantum variables and not viceversa, as the conventional view of reality underlying the 
conventional axiomatic formulation of Quantum Mecchanics assumes. 
With (15) (16) the functions f( ) and g( ) turn out to have the expressions 

 g(ky-hx) = cos[(ky-hx)/2h]    ;   f(ky-hx) = (2/h) sin[(ky-hx)/2h] (17) 
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As expected, the quantum variables C(k,x) with the properties (15) (16) turn out to have the 
same exponential form of classical statistical mechanics where the classical variables q and p 
are replaced by quantum variables q and p satisfying the commutation relations 

 [q,p]=ih (18) 

of the standard variables of Quantum Mechanics 
From the solution of equations (13) (14) one immediately obtains (by simple Fourier 
transform) the pseudoprobability Wi(q,p) corresponding to the quantum caracteristic 
function Ci(q,p) of the ensemble. This pseudoprobability coincides with the Wigner function 
obtained from the standard wave QM wave function of the state. It is important to mention 
that all pseudoprobabilities satisfy the condition 

 ∫∫ dq dp Wi (q, p) Wi(q, p) = (2πh)-1 (19) 

which expresses the uncertainty principle in the reformulation of quantum theory in phase 
space. It is remarkable that this principle is given by an equality , thus eliminating the 
ambiguity of the Heisenberg inequality  due to the presence of the two physically different 
terms appearing in eq. (1) 

3.4 Field quantization in phase space and wave/particle duality 
These results however leaved some conceptual problems still open. First of all, once the 
Schrödinger waves have been eliminated from Quantum Mechanics, how does one 
generalize its principles to Quantum Field Theory? One should not forget that, historically, 
QED was invented by Dirac (Dirac 1927) by submitting "first quantized" Schrödinger 
amplitudes to the procedure of "second quantization". If no "first quantized" probability 
amplitudes exist any more how does one proceed? And, secondly, isn't one throwing away 
the baby with the dirty water by forgetting that after all a quantum field must still show 
some of the wavelike properties of its classical limit?  
A second paper [Cini 2003] has been therefore devoted to answer to these questions, leading 
to the conclusion that: (a) one should not start from nonrelativistic quantum mechanics in 
order to formulate quantum field theory, but viceversa; (b) the wavelike behaviour of the 
quanta of a quantum field is, as already Pascual Jordan had understood in 1926 [Born, 
Heisernberg, Jordan 1926], a straightforward consequence of imposing the Einstein property 
of discreteness to the intensity of a classical field - clearly a nonlocal physical entity - which 
exists objectively in ordinary three dimensional space. 
It is appropriate to recall that for Jordan, in fact, it is quantization which brings into 
existence particles, both photons and electrons. According to him, therefore, rather than 
trying to explain phenomena like diffraction and interference of single particles as 
properties of "probability waves" one should simply view them as primary properties of the 
field of which they represent the quanta. "These considerations show - we read in his paper 
“On waves and corpuscles in quantum mechanics” [Jordan 1927] - that the quantized field is 
equivalent, in all its physical properties and especially with respect to its inensity 
fluctuations, to a corpuscular system (with a symmetric eigenfunction)". 
The derivation of Wigner functions from the principles of uncertainty and discreteness 
illustrated in the previous paragraph provides the formalism for deducing the kind of 
wave/particle duality suggested by Jordan (and forgotten by the physicist's community 



 
Theoretical Concepts of Quantum Mechanics 

 

36

since then) by simply imposing Einstein's quantization to the states of a classical field 
represented by means of statistical ensembles in the phase spaces of its normal modes.  
Following the procedure sketched in the previous paragraph, we introduce a classical 
statistical ensemble for the r-th radiation oscillator of the field's normal modes defined by 
the constraint that the intensity Nr(q,p) has with certainty a given value νr. The equations (9) 
(11) remain valid, provided the variable A with its value α is replaced by the intensity N 
with its value ν and the conjugated variable B is replaced by the corresponding phase θ of 
each normal mode (we omit from now onwards the index r). Our procedure of field 
quantization will be based on the Einstein assumption of the existence of discrete field 
quanta. More precisely we assume that the spectrum of the quantum variable N of each field 
oscillator should be discrete. Eqs. (15) (16) remain unchanged and express now the result 
that, the quantum variables should be represented by means of non commuting quantities (Dirac's q-
numbers). Quantization is therefore now a consequence of the physical property of the existence of 
field quanta, and not viceversa.  
The field's states with a given number of quanta can now be represented by going from the 
quantum variables q, p to the Dirac complex variables a, a* expressed in terms of each 
wave's intensity N and phase θ  by means of their standard expressions 

 a* = N1/2 exp(-iθ/h)          a = exp(iθ/h) N1/2 (20) 

The eigenvalue equations (13) (14) can be rewritten for the characteristic functions  Cn(β, β*) 
expressed in terms of the new variables β ,β*  related to k,x and h,y by means of the same 
relations (20). These equations can be solved to give the eigenvalues νn of the quantum 
variable N and their characteristic functions Cn(β, β*) yielding 

 νn = n+(1/2) (21) 

This result is expected, but remarkable, because it has been obtained by solving our new 
integral equations without any reference to Schrödinger wavefunctions. It is also easy with 
this formalism to treat the field's coherent states, as well as the processes of emission and 
absorption of photons from a source to reproduce the results obtained by Dirac in his 
seminal paper on the foundations of quantum electrodynamics. It turns out of course that 
the absorption rate is proportional to nr and the emission rate to nr+1 (Einstein's laws) 

3.5 Conclusions 
The main result of the reversal of the order of quantization from non relativistic quantum 
mechanics to quantum field theory gives a clear physical foundation to the mathematical 
nature of all quantum variables. The basic formal rules of quantum mechanics follow in this 
way from the Einstein postulate of the existence of field's quanta. The main conceptual 
result of this approach is therefore the clarification of the basic notion of wave/particle 
duality, which follows from this postulate, and simply reflects the dual nature of the 
quantum field as a unique physical entity objectively existing in ordinary three dimensional 
space (or ordinary four dimensional relativistic space, when is the case). From Jordan's point 
of view, in fact, the wavelike behaviour of any field's state with any number of discrete 
quanta simply reflects the property of a physical nonlocal entity which exists objectively in 
ordinary three dimensional space. 
This goal has been achieved by imposing two requirements to the characteristic function 
(Moyal 1949) of the classical ensembles of thr field’s normal modes. The first one is that the 
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probability distribution of the ensembles should be invariant under canonical 
transformations. The second requirement is quantization.  
These two requirements are a reformulation of the principles introduced in the preceding 
nonrelativistic formulation of quantum mechnics where it was shown that the Wigner 
functions of the states of the one dimensional motion of a single particle can be directly 
derived without ever introducing Schrödinger wave functions. They lead to the two 
equations (18) and (21) whose solutions yield directly the quantum characteristic functions 
of the states of each mode, which turn out to be the double Fourier transforms of their 
Wigner functions. In the derivation of these equations one discovers that the field variables 
cannot be represented by ordinary numbers but should be represented by means of 
noncommuting mathematical objects.  
With the direct construction of the Wigner functions of the states of quantum fields, the 
deBroglie-Schrödinger waves are thus eliminated from the formulation of quantum field 
theory. This means that, once that their nature of mathematical auxiliary tools has been 
recognized, the endless discussions about their queer physical properties, such as the nature 
of long distance EPR correlations between two or more particles or the meaning of the 
superposition of macroscopic states, become meanigless as those about the queer properties 
of the aether after its elimination declared by the theory of relativity. 
Furthermore it supports the view that the most adequate representation of the random 
character of quantum phenomena ought to be based on Wigner-Feynman 
pseudoprobabilities in phase space, in which the constraints of the uncertainty principle are 
embodied, rather than insisting in representing them as events occurring in different spaces, 
(e.g. configuration or momentum) ruled by their correlated but separate classical probability 
laws. This view still meets a widespread resistance on the grounds that pseudoprobabilities 
are not positive definite, but is starting to acquire consensus in some domains of physics 
such as quantum optics (Leibfried et al 1988)leading even to a proposal for their 
experimental determination (Luttinger et al1997). 
Finally, the direct deduction of Wigner functions from first principles solves a puzzling 
unanswered question which has been worrying all the beginners approaching the study of 
our fundamental theory of matter, all along its 75 years of life, namely "Why should one 
take the modulus squared of a wave amplitude in order to obtain the corresponding 
probability?" We can now say that there is no longer need of an answer, because there is no 
longer need to ask the question.  
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1. Introduction

Quantum mechanics is one of the two fundamental pillar of modern physics. The success
of the theory can be found everywhere in our everyday life and essentially in every new
product that we build. We just have to remember that every semiconductor chip usually uses
a quantum behavior in an essential way, for example quantum tunneling, to work. Until now,
none of the thousand of experiments realized have succeeded to contradicted or to find a
problem with the predictions given by quantum mechanics.
However, in spite of this incredible success, many profound questions are still open. For
example, we have some problems understanding the measurement, the coherence and the
decoherence process, as well as the interpretation of what the theory tell us about the world
we live in (Schlosshauer, 2005).
Among the possible ways of investigation that we have, we think that stressing the
foundations of the theory at the level of the mathematical structure, on which the theory
stands, could be a good way to understand why and how the theory works. The
mathematical structure of quantum mechanics consists in Hilbert spaces defined over the
field of complex numbers (Birkhoff & Von Neumann, 1936). The success of the theory has led
a number of investigators, over many decades, to look for general principles or arguments
that would lead quite inescapably to the complex Hilbert space structure. It has been
argued (Stueckelberg, 1960; Stueckelberg & Guenin, 1961), for instance, that the formulation
of an uncertainty principle, heavily motivated by experiment, implies that a real Hilbert space
can in fact be endowed with a complex structure. The proof, however, involves a number
of additional hypotheses that may not be so directly connected with experiment. In fact
Reichenbach (Reichenbach, 1944) has shown that a theory is not straightforwardly deduced
from experiments, but rather arrived at by a process involving a good deal of instinctive
inferences. This was also pointed out more recently by Penrose (Penrose, 2005, p. 59);

In the development of mathematical ideas, one important initial driving force has always
been to find mathematical structures that accurately mirror the behaviour of the physical world.
But it is normally not possible to examine the physical world itself in such precise detail that
appropriately clear-cut mathematical notions can be abstracted directly from it.

Moreover, in the last decade, some of the efforts to derive the complex Hilbert space structure
have focused on information-theoretic principles (Clifton et al., 2003; Fuchs, 2002). The
general principles assumed at the outset are no doubt attractive, but yet open to questioning
(Marchildon, 2004).
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2 Will-be-set-by-IN-TECH

The upshot is that there is no compelling argument restricting the number system on which
quantum mechanics is built to the field of complex numbers. The justification of the theory lie
rather in its ability to correctly describe and explain experiments.
We think that all this justifies the investigation of a quantum mechanics standing on a different
algebra than the usual one, not necessarily in the aim of replacing the actual theory, but
in the aim of a better understanding of the actual theory by meticulously compare the two
descriptions. Moreover, it does not exclude that a quantum mechanics standing on a different
algebra can end with some new predictions.
This is with those things in mind that we would like to introduced this chapter on bicomplex
quantum mechanics and on the bicomplex Heisenberg uncertainty principle.
In section 2, we present the bicomplex numbers, that are a generalization of complex numbers
by means of entities specified by four real numbers. Bicomplex numbers are commutative but
do not form a division algebra. Division algebras do not have zero divisors, that is, nonzero
elements whose product is zero. We also present some algebraic properties of bicomplex
numbers, modules, scalar product and linear operator. In the recent years, bicomplex numbers
have founded application in quantum mechanics (Gervais Lavoie et al., 2010b; Rochon &
Tremblay, 2004; 2006), in pure mathematics (Charak et al., 2009; Gervais Lavoie et al., 2010a;
2011; Rochon, 2003; 2004; Rochon & Shapiro, 2004) as well as in the construction of three
dimensional fractals (Garant-Pelletier & Rochon, 2009; Martineau & Rochon, 2005; Rochon,
2000).
The section 3 presents some important results on infinite-dimentional bicomplex Hilbert
spaces.
In section 4, we give a sketch of some fundamentals aspect of bicomplex quantum mechanics.
We also present our solution for the problem of the bicomplex harmonic oscillator. These
results are already given in (Gervais Lavoie et al., 2010b), but we present them here with a
new approach, the differential one. We also plot some of the eigenfunctions that we found and
give some new representation of them by means of hyperbolic sinus and cosinus functions.
Section 5 is the main part of this chapter. We work out, in details, the bicomplex Heisenberg
uncertainty principle. This will give an explicit and fully detailed example of the kind of
computation that arise in bicomplex quantum mechanics.

2. Preliminaries

This section summarizes basic properties of bicomplex numbers and modules defined over
them. The notions of scalar product and linear operators are also introduced. Proofs and
additional material can be found in (Gervais Lavoie et al., 2010a;b; 2011; Price, 1991; Rochon
& Shapiro, 2004; Rochon & Tremblay, 2004; 2006).

2.1 Bicomplex numbers
The set T of bicomplex numbers can be define essentially in two equivalent way as

T :=
{
w = we + wi1 i1 + wi2 i2 + wjj | we, wi1 , wi2 , wj ∈ R

}
(1)

≡ {
w = z+ z′i2 | z, z′ ∈ C(i1)

}
, (2)

where i1, i2 and j are (complex) imaginary and hyperbolic units such that

i2
1 = −1 = i2

2 and j2 = 1. (3)
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The product of units is commutative and defined as

i1i2 = j, i1j = −i2 and i2j = −i1. (4)

It is obvious that definition (1) and (2) imply that z = we + wi1 i1 and z′ = wi2 + wji1 are both
in C(i1).
Three important subsets of T can be specified as

C(ik) := {x+ yik | x, y ∈ R}, k = 1, 2; (5)

D := {x+ yj | x, y ∈ R}. (6)

Each of the sets C(ik) is isomorphic to the field of complex numbers, while D is the set of
so-called hyperbolic numbers.
With the addition and multiplication of two bicomplex numbers defined in the obvious way,
the set T makes up a commutative ring.

2.1.1 Complexification
In addition to the formal definition, it is instructive to see how the set of bicomplex numbers

can be construct. Let us define the action k−→ that add up an imaginary part (with respect to
k) to all the real variables. For x, y ∈ R, we thus have

x i−→ x+ yi ∈ C, (7)

x i1−→ x+ yi1 ∈ C(i1) � C, (8)

x i2−→ x+ yi2 ∈ C(i2) � C. (9)

The action k−→ will be call a complexification. Let us now applied a complexification on x+ yi1.
There are essentially two possibilities, the first one is (s, t ∈ R)

x+ yi1
i1−→ (x+ si1) + (y+ ti1)i1 = (x− t) + (s+ y)i1 ∈ C(i1). (10)

This complexification is trivial in the sense that it maps C(i1) to C(i1). The second one is more
interesting

x+ yi1
i2−→ (x+ si2) + (y+ ti2)i1 = x+ yi1 + si2 + ti2i1. (11)

Here, because i1 and i2 are two independent imaginary units, we cannot write i2i1 = −1.
However, one can remark that

(i2i1)
2 = i2i1i2i1 = i2

2i2
1 = (−1)(−1) = 1. (12)

This means that i2i1 have the same behavior as an hyperbolic unit and then, we can write
j := i2i1 = i1i2. We finally ends with

x+ yi1
i2−→ x+ yi1 + si2 + tj, (13)

which is the set of bicomplex numbers.
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The complexification process can be applied again to generate the tricomplex numbers, and so
on. For n successive complexification, we talk of a multicomplex number of order n, and we
noted it by MCn (Garant-Pelletier & Rochon, 2009; Price, 1991; Vaijac & Vaijac, to appear).
Then, it is not hard to see that

MC0 ≡ R, MC1 ≡ C and MC2 ≡ T. (14)

For an arbitrary multicomplex number s ∈ MCn>0, s is 2n-dimensionnal (in the sense that we
need 2n real numbers to specify it), posses 2n−1 independent imaginary units, and 2n−1 − 1
independent hyperbolic units.
The set T of bicomplex numbers can also be construct by applying the complexification
process on the set of hyperbolic numbers, or by applying an hyperbolisation process (the process
that add up an hyperbolic term instead of a imaginary one) on the set of complex numbers.
In Fig. 1, we give a sketch of some generalization of the real numbers. The set P stand for the
set of parabolic or dual numbers defined by

P :=
{
p = x+ yε | x, y ∈ R, ε2 = 0

}
. (15)

Reals (R)

Hyperbolics (D) Duals (P) Complex (C)

?

Bicomplex (T)

Tricomplex (MC3)

...

Multicomplex (MCn)
...

Quaternions (H)Biperbolics ?

... Octonions (O)

Sedenions (S)
...

Clifford Algebras (CLp,q(·)), Grassman Algebras (Grn(·)), . . .

Fig. 1. Generalization of real numbers
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2.1.2 Algebraic properties of bicomplex numbers
Bicomplex algebra is considerably simplified by the introduction of two bicomplex numbers
e1 and e2 defined as

e1 :=
1 + j

2
and e2 :=

1 − j
2

. (16)

One easily checks that

e2
1 = e1, e2

2 = e2, e1 + e2 = 1 and e1e2 = 0. (17)

Any bicomplex number w can be written uniquely as

w = z1̂e1 + z2̂e2, (18)

where z1̂ and z2̂ both belong to C(i1). Specifically,

z1̂ = (we + wj) + (wi1 − wi2 )i1 and z2̂ = (we − wj) + (wi1 + wi2 )i1. (19)

The numbers e1 and e2 make up the so-called idempotent basis of the bicomplex numbers (Price,
1991). Note that the last of (17) illustrates the fact that T has zero divisors which are nonzero
elements whose product is zero. The caret notation (1̂ and 2̂) will be used systematically
in connection with idempotent decompositions, with the purpose of easily distinguishing
different types of indices.
As a consequence of (17) and (18), one can check that if n

√z1̂ is an nth root of z1̂ and n
√z2̂ is an

nth root of z2̂, then n
√z1̂ e1 + n

√z2̂ e2 is an nth root of w.
The uniqueness of the idempotent decomposition allows the introduction of two projection
operators as

P1 : w ∈ T �→ z1̂ ∈ C(i1), (20)

P2 : w ∈ T �→ z2̂ ∈ C(i1). (21)

The Pk (k = 1, 2) satisfy

[Pk]
2 = Pk, P1e1 + P2e2 = Id, (22)

and, for s, t ∈ T,

Pk(s+ t) = Pk(s) + Pk(t) and Pk(s · t) = Pk(s) · Pk(t). (23)

The product of two bicomplex numbers w and w′ can be written in the idempotent basis as

w · w′ = (z1̂e1 + z2̂e2) · (z′1̂e1 + z′2̂e2) = z1̂z
′
1̂
e1 + z2̂z

′
2̂e2. (24)

Since 1 is uniquely decomposed as e1 + e2, we can see that w ·w′ = 1 if and only if z1̂z
′
1̂
= 1 =

z2̂z
′
2̂
. Thus w has an inverse if and only if z1̂ 	= 0 	= z2̂, and the inverse w−1 is then equal to

z−1
1̂

e1 + z−1
2̂

e2. A nonzero w that does not have an inverse has the property that either z1̂ = 0
or z2̂ = 0, and such a w is a divisor of zero. Zero divisors make up the so-called null cone
(NC). That terminology comes from the fact that when w is written as z+ z′i2, zero divisors
are such that z2 + (z′)2 = 0.
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2.1.3 Bicomplex numbers are not quaternions
We would like to point out that even if bicomplex numbers and quaternions are both given
by four real elements, they form two completely different algebras. First, bicomplex numbers
are commutative while quaternions are not. Secondly, quaternion numbers form a division
algebra, but not the bicomplex numbers. A division algebra is characterized by the fact that
every nonzero element have a multiplicative inverse. Let us give the multiplication table of
the two algebra to clearly see the difference. Let x1 . . . x4 ∈ R,

Bicomplex T Quaternions H

x1 + x2i1 + x3i2 + x4j, x1 + x2i + x3j + x4k,

∃ a, b ∈ T | a · b = 0, a 	= 0 	= b, ∀a, b ∈ H | a · b = 0 ⇔ a = 0 or b = 0,

· 1 i1 i2 j

1 1 i1 i2 j
i1 i1 −1 j −i2
i2 i2 j −1 −i1
j j −i2 −i1 1

· 1 i j k

1 1 i j k
i i −1 k −j
j j −k −1 i
k k j −i −1

(25)

For a complete treatment of quantum mechanics define over the field of quaternions, the
reader can consult (Adler, 1995).

2.1.4 Conjugation of bicomplex numbers
Three different conjugation can be defines on bicomplex numbers, consistent with the fact that
we have two independent imaginary unit (we can conjugate one unit, the other or the two at
the same time). However, in the present work, we will consider only one of them.
We define the conjugate w† of the bicomplex number w = z1̂e1 + z2̂e2 as

w† := z1̂e1 + z2̂e2, (26)

where the bar denotes the usual complex conjugation on C(i1). Operation w† was denoted
by w†3 in (Gervais Lavoie et al., 2010a; 2011; Rochon & Tremblay, 2004; 2006), consistent with
the fact that at least two other types of conjugation can be defined with bicomplex numbers.
Making use of (24), we immediately see that

w · w† = z1̂z1̂e1 + z2̂z2̂e2. (27)

Furthermore, for any s, t ∈ T,

(s+ t)† = s† + t†, (s†)† = s and (s · t)† = s† · t†. (28)

It can be noted that with our choice of conjugation, we have j† = (i2)(i1) = (−i2)(−i1) = j
(another choice of conjugation would have lead us to a different expression here). This also
imply that e†

k = ek, k = 1, 2.

The real modulus |w| of a bicomplex number w can be defined as

|w| :=
√

w2
e + w2

i1
+ w2

i2
+ w2

j =
√
(z1̂z1̂ + z2̂z2̂)/2 =

√
Re(w · w†) . (29)

44 Theoretical Concepts of Quantum Mechanics
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This coincides with the Euclidean norm on R4. Clearly, | · | : T → R, |w| ≥ 0, with |w| = 0 if
and only if w = 0 and for any s, t ∈ T,

|s+ t| ≤ |s|+ |t| and |λ · t| = |λ| · |t|, (30)

for λ ∈ C(i1) or C(i2). Moreover,

|s · t| ≤
√

2|s| · |t|. (31)

As the reader can see in the last of (30), we will used the same symbol | · | to designated the
Euclidean norm on different set. For example here, |t| is the Euclidean R4-norm on T while
|λ| is the Euclidean R2-norm on C(ik).
In the idempotent basis, any hyperbolic number can be written as x1̂e1 + x2̂e2, with x1̂ and x2̂
in R. We define the set D+ of positive hyperbolic numbers as

D+ := {x1̂e1 + x2̂e2 | x1̂, x2̂ ≥ 0}. (32)

Clearly, w · w† ∈ D+ for any w in T.

2.2 T-Module, scalar product and linear operators
The set of bicomplex numbers is a commutative ring. Just like vector spaces are defined
over fields, modules are defined over rings. A module M defined over the ring of bicomplex
numbers is called a T-module (Gervais Lavoie et al., 2010a; 2011; Rochon & Tremblay, 2006).
Let {|ul〉 | l = 1 . . . n} be a T-basis (a set of elements of M that form a basis), then the
T-module M is given by the set

M =

{
n

∑
l=1

wl |ul〉
∣∣∣∣∣ wl ∈ T

}
. (33)

For k = 1, 2, we define Vk as the set of all elements of the form ek|ψ〉, with |ψ〉 ∈ M. Succinctly,
V1 := e1M and V2 := e2M. In fact, Vk, k = 1, 2 are vector spaces over C(i1) and any element
|vk〉 ∈ Vk satisfies |vk〉 = ek|vk〉.
For arbitrary T-modules, vector spaces V1 and V2 bear no structural similarities. For more
specific modules, however, they may share structure. It was shown in (Gervais Lavoie et al.,
2011) that if M is a finite-dimensional free T-module, then V1 and V2 have the same dimension.
For any |ψ〉 ∈ M, there exist a unique decomposition

|ψ〉 = e1P1 (|ψ〉) + e2P2 (|ψ〉) , (34)

where ekPk (|ψ〉) ∈ Vk, k = 1, 2. One can show that ket projectors and idempotent-basis
projectors (denoted with the same symbol) satisfy the following, for k = 1, 2:

Pk (s|ψ〉+ t|φ〉) = Pk (s) Pk (|ψ〉) + Pk (t) Pk (|φ〉) , s, t ∈ T. (35)

It will be useful to rewrite (34) as

|ψ〉 = e1|ψ1̂〉+ e2|ψ2̂〉, (36)
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where

|ψ1̂〉 := P1 (|ψ〉) and |ψ2̂〉 := P2 (|ψ〉) . (37)

The T-module M can be viewed as a vector space M′ over C(i1), and M′ = V1 ⊕ V2. From
a set-theoretical point of view, M and M′ are identical. In this sense we can say, perhaps
improperly, that the module M can be decomposed into the direct sum of two vector spaces
over C(i1), i.e. M = V1 ⊕V2.

2.2.1 Bicomplex scalar product
A bicomplex scalar product maps two arbitrary kets |ψ〉 and |φ〉 into a bicomplex number
(|ψ〉, |φ〉), so that the following always holds (s ∈ T):

1. (|ψ〉, |φ〉+ |χ〉) = (|ψ〉, |φ〉) + (|ψ〉, |χ〉);
2. (|ψ〉, s|φ〉) = s(|ψ〉, |φ〉);
3. (|ψ〉, |φ〉) = (|φ〉, |ψ〉)†;

4. (|ψ〉, |ψ〉) = 0 ⇔ |ψ〉 = 0.

Property 3 implies that (|ψ〉, |ψ〉) ∈ D, while properties 2 and 3 together imply that
(s|ψ〉, |φ〉) = s†(|ψ〉, |φ〉). However, in this work we will also require the bicomplex scalar
product (·, ·) to be hyperbolic positive, i.e.

(|ψ〉, |ψ〉) ∈ D+, ∀|ψ〉 ∈ M. (38)

This is a necessary condition if we want to recover the standard quantum mechanics from the
bicomplex one.
Noted that the following projection of a bicomplex scalar product:

(·, ·)k̂ := Pk((·, ·)) : M× M −→ C(i1) (39)

is a standard scalar product on Vk, for k = 1, 2. One easily shows (Gervais Lavoie et al., 2010a,
(3.12)) that

(|ψ〉, |φ〉) = e1P1
(
(|ψ1̂〉, |φ1̂〉)

)
+ e2P2

(
(|ψ2̂〉, |φ2̂〉)

)
= e1

(|ψ1̂〉, |φ1̂〉
)

1̂ + e2
(|ψ2̂〉, |φ2̂〉

)
2̂ . (40)

As the reader can see, the caret notation ( k̂ ) will be used systematically to distinguish
idempotent projection of ket, scalar product as well as scalar. In fact, this notation is simply a
convenient way to deal with the idempotent representation Pk(·) in a more compact form.
We point out that a bicomplex scalar product is completely characterized by the two standard
scalar products (·, ·)k̂ on Vk. In fact, if (·, ·)k̂ is an arbitrary scalar product on Vk, for k = 1, 2,
then (·, ·) defined as in (40) is a bicomplex scalar product on M.
In this work, we will used the Dirac notation

(|ψ〉, |φ〉) = 〈ψ|φ〉 = e1〈ψ1̂|φ1̂〉1̂ + e2〈ψ2̂|φ2̂〉2̂ (41)
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for the scalar product. The one-to-one correspondence between bra 〈·| and ket |·〉 can be
establish from the bicomplex Riesz theorem (Gervais Lavoie et al., 2010a, Th. 3.7) that we
will present in section 3.

2.2.2 Bicomplex linear operators
A bicomplex linear operator A is a mapping from M to M such that, for any s, t ∈ T and any
|ψ〉, |φ〉 ∈ M

A(s|ψ〉+ t|φ〉) = sA|ψ〉+ tA|φ〉. (42)

A bicomplex linear operator A can always be written as A = e1A1̂ + e2A2̂ and then,

A|ψ〉 = e1A1̂|ψ1̂〉+ e2A2̂|ψ2̂〉 (43)

where

Ak̂|ψk̂〉 := Pk (A) |ψk̂〉 = Pk (A|ψ〉) , ∀|ψ〉 ∈ M, k = 1, 2. (44)

The bicomplex adjoint operator A∗ of A is the operator defined so that for any |ψ〉, |φ〉 ∈ M

(|ψ〉, A|φ〉) = (A∗|ψ〉, |φ〉). (45)

One can show that in finite-dimensional free T-modules, the adjoint always exists, is linear
and satisfies (Rochon & Tremblay, 2006, Sec. 8.1)

(A∗)∗ = A, (sA+ tB)∗ = s†A∗ + t†B∗ and (AB)∗ = B∗A∗. (46)

The reader can noted that we will used the same symbol for the adjoint operator in M or in
Vk ;

A∗ = e1A∗
1̂
+ e2A∗

2̂ . (47)

We shall say that a ket |ψ〉 belongs to the null cone (NC) if either |ψ1̂〉 = 0 or |ψ2̂〉 = 0, and
that a linear operator A belongs to the null cone (NC) if either A1̂ = 0 or A2̂ = 0.
A bicomplex self-adjoint operator is a linear operator H such that

(|ψ〉, H|φ〉) = (H|ψ〉, |φ〉) (48)

for all |ψ〉 and |φ〉 in M.
Let A : M → M be a bicomplex linear operator. If there exists λ ∈ T and a ket |ψ〉 ∈ M such
that |ψ〉 /∈ NC and that

A|ψ〉 = λ|ψ〉 (49)

holds, then λ is called a bicomplex eigenvalue of A and |ψ〉 is called an eigenket of A
corresponding to the eigenvalue λ. It was shown in (Rochon & Tremblay, 2006, Th. 14) that the
eigenvalues of a self-adjoint operator acting in a finite-dimensional free T-module, associated
with eigenkets not in the null cone, are hyperbolic numbers.
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Moreover, the eigenket equation (49) is equivalent to the system of two eigenket equations
given by

Ak̂|ψk̂〉 = λk̂|ψk̂〉 , k = 1, 2, (50)

where λ = e1λ1̂ + e2λ2̂, λ1̂, λ2̂ ∈ C(i1) and |ψ〉 = e1|ψ1̂〉 + e2|ψ2̂〉. We say that |ψ〉 is an
eigenket of A rather then an eigenvector because element of M are modules instead of vectors.
For a complete treatment of the Module Theory, see (Bourbaki, 2006).
The reader can remark that the element |ψk̂〉 was noted by |ψ〉k̂ in (Gervais Lavoie et al., 2010a;
2011). However, the notation |ψk̂〉 is more appropriated here with scalar product in the Dirac
notation.

3. Infinite-dimensional bicomplex Hilbert spaces

The mathematical structure of standard quantum mechanics (SQM) consists in Hilbert spaces,
frequently infinite-dimensional ones, defined over the field of complex numbers (Birkhoff
& Von Neumann, 1936). In the case of bicomplex quantum mechanics (BQM), the natural
extension is to deal with infinite-dimensional bicomplex Hilbert spaces. We will sketched
some important results here but proof and additional material can be found in (Gervais Lavoie
et al., 2010a).

Result 1. Let M be a T-module and let (·, ·) be a bicomplex scalar product define on M. The space
{M, (·, ·)} is called a T-inner product space, or bicomplex pre-Hilbert space. When no confusion
arise, we will noted {M, (·, ·)} as M.

We defined a bicomplex Hilbert space as a T-inner product space (bicomplex pre-Hilbert space)
which is complete (with respect to the T-norm induced by the bicomplex scalar product (·, ·)).
Result 2. Because M = V1 ⊕ V2, and (·, ·) = (·, ·)1̂e1 + (·, ·)2̂e2, we have that {M, (·, ·)} is a

bicomplex Hilbert space if and only if
{
Vk, (·, ·)k̂

}
is complete, k = 1, 2.

As a corollary of this result, if {M, (·, ·)} is a bicomplex Hilbert space, then
{
Vk, (·, ·)k̂

}
is a

complex (in C(i1)) Hilbert space for k = 1, 2.
A direct application of this corollary leads to the bicomplex Riesz representation theorem as
follow.

Result 3 (Riesz). Let {M, (·, ·)} be a bicomplex Hilbert space and let f : M → T be a continuous
linear functional on M. Then, there exist a unique |ψ〉 ∈ M such that ∀|φ〉 ∈ M, f (|φ〉) =
(|ψ〉, |φ〉) = 〈ψ|φ〉.
The bicomplex Riesz theorem means that for an arbitrary bicomplex Hilbert space M, the
dual space M∗ of continuous linear functionals on M can be identified with M through the
bicomplex scalar product (·, ·).
Let us take a look at the orthonormalization of elements of M. Let {|sl〉} be a countable basis
of M. Then, {|sl〉} can always be orthonormalized.
It is interesting to note that the normalizability of kets requires that the scalar product belongs
to D+. To see this, let us write (|m1〉, |m1〉) = a1̂e1 + a2̂e2 with a1̂, a2̂ ∈ R, and let

|m′
1〉 = (z1̂e1 + z2̂e2)|m1〉,
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with z1̂, z2̂ ∈ C(i1) and z1̂ 	= 0 	= z2̂. We get

(|m′
1〉, |m′

1〉
)
= (|z1̂|2e1 + |z2̂|2e2) (|m1〉, |m1〉)
= (|z1̂|2e1 + |z2̂|2e2)(a1̂e1 + a2̂e2)

= c1̂a1̂e1 + c2̂a2̂e2, (51)

with ck̂ = |zk̂|2 ∈ R+. The normalization condition of |m′
1〉 becomes

c1̂a1̂e1 + c2̂a2̂e2 = 1, (52)

or c1̂a1̂ = 1 = c2̂a2̂. This is possible only if a1̂ > 0 and a2̂ > 0. Hence, in particular
(|m1〉, |m1〉) ∈ D+.
In fact, we will show here that the bicomplex normalization is a more restricting condition
than the complex one. Let us try to normalized a ket |m2〉 ∈ NC. Suppose that |m2〉 =
e1|m2〉 (which means that the part in e2 is |0〉) and let us write (|m2〉, |m2〉) = a1̂e1 + a2̂e2 as
previously. From the properties of the bicomplex scalar product 2.2.1, we can write

(|m2〉, |m2〉) = (|m2〉, e1|m2〉) = e1(|m2〉, |m2〉), (53)

which directly imply that

a1̂e1 + a2̂e2 = e1
(
a1̂e1 + a2̂e2

)
= a1̂e1. (54)

In other words, a2̂ = 0, but in this case, we cannot satisfy the condition (52) (e1 is not
invertible) and then, |m2〉 is not normalizable.
To state this another way, the requirement to be not in the NC is embedded in the
normalization requirement. In this sense, we can say that the bicomplex normalization is more
restrictive than the complex one, because it exclude an infinite number of elements of M, those
in the NC instead of only one in the complex case, the vector |0〉. However, in practice, this
is not a big glitch because we naturally avoid the NC to avoid the “trivial” situation where
M � ekVk.

4. Bicomplex quantum mechanics

Bicomplex quantum mechanics was first investigated in (Rochon & Tremblay, 2004; 2006).
In (Rochon & Tremblay, 2004), the bicomplex Schrödinger equation was introduced and the
continuity equations and symmetries was derived. The bicomplex Born probability formulas
was studied by extracting some real moduli. In (Rochon & Tremblay, 2006), the concept of
free modules over the ring of bicomplex numbers was developed, bicomplex scalar product,
Dirac notation and linear operator was also investigated.
Motivated by these results, the problem of the bicomplex quantum harmonic oscillator was
worked out in details in (Gervais Lavoie et al., 2010b), and the eigenvalues and eigenfunctions
was obtained. The section 4.1 is a summary of important results on the bicomplex harmonic
oscillator.
First of all, we will state a fundamental postulate on which the BQM stands.
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Postulate 1. There exist two operators X and P (called the bicomplex position and momentum
operators respectively) in M such that X and P are self-adjoint and their commutation relation is a
multiple of the identity.

Mathematically, this postulate means that

[X, P] = wI, w ∈ T, X, P, I ∈ M, X∗ = X and P∗ = P. (55)

Without lost of generality, we can rewrite w as i1 h̄ξ, ξ ∈ T. Let |E〉 /∈ NC be a normalizable
element of M. The properties of the bicomplex scalar product 2.2.1 allow us to write

i1 h̄ξ(|E〉, |E〉) = (|E〉, i1 h̄ξ I|E〉)
= (|E〉, XP|E〉)− (|E〉, PX|E〉)
= (X|E〉, P|E〉)− (P|E〉, X|E〉)
= (PX|E〉, |E〉)− (XP|E〉, |E〉)
= (−i1 h̄ξ I|E〉, |E〉)

= i1 h̄ξ†(|E〉, |E〉). (56)

Because |E〉 is normalizable, (|E〉, |E〉) /∈ NC and we have that ξ = ξ† which signify that
ξ ∈ D, or ξ = ξ1̂e1 + ξ2̂e2 with ξ1̂, ξ2̂ ∈ R.
As the reader can see, the assumptions made here on X, P, ξ and |E〉 are very general ones,
and are closely related to the assumptions made in SQM. The main idea beyond all this is to
build the BQM standing on as least assumptions as possible. For example, we could postulate
that in BQM, [X, P] = i1 h̄I as in the standard case, without questioning itself. However, as we
see later, if we had done that, we would have neglected an apparently nontrivial part of the
solution.

4.1 The bicomplex quantum harmonic oscillator
We start this section with a little calculation that allow us to restrict further the constant ξ.
This derivation is given in (Gervais Lavoie et al., 2010b), but we think that it is instructive to
give it again here.
First of all, to work out the quantum harmonic oscillator problem, we need an Hamiltonian.
We will consider the following

H =
1

2m
P2 +

1
2
mω2X2, (57)

as the Hamiltonian of the bicomplex harmonic oscillator, where m and ω are positive real
numbers and X and P are the bicomplex self-adjoint operators defined previously. Clearly,
this imply H : M → M and that H is self-adjoint.
Secondly, we will ask the following: Is it possible to further restrict meaningful values of ξ,
for instance by a simple rescaling of X and P? To answer this question, let us write

X = (α1̂e1 + α2̂e2)X′, P = (β1̂e1 + β2̂e2)P′, (58)
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with nonzero αk̂ and βk̂ (k = 1, 2). For X′ and P′ to be self-adjoint, αk̂ and βk̂ must be real.
Making use of (57) we find that

H =
1

2m
(β2

1̂
e1 + β2

2̂
e2)(P′)2 +

1
2
mω2(α2

1̂
e1 + α2

2̂
e2)(X′)2

=
1

2m′ (P
′)2 +

1
2
m′(ω′)2(X′)2. (59)

For m′ and ω′ to be positive real numbers, α2
1̂
e1 + α2

2̂
e2 and β2

1̂
e1 + β2

2̂
e2 must also belong to

R+. This entails that α2
1̂
= α2

2̂
and β2

1̂
= β2

2̂
, or equivalently α1̂ = ±α2̂ and β1̂ = ±β2̂. Hence

we can write

i1 h̄(ξ1̂e1 + ξ2̂e2)I = [X, P]

= [(α1̂e1 + α2̂e2)X′, (β1̂e1 + β2̂e2)P′]

= (α1̂β1̂e1 + α2̂β2̂e2)[X′, P′]. (60)

But this in turn implies that

[X′, P′] = i1 h̄

(
ξ1̂

α1̂β1̂
e1 +

ξ2̂
α2̂β2̂

e2

)
I = i1 h̄(ξ ′1̂e1 + ξ ′2̂e2)I. (61)

This equation shows that α1̂, α2̂, β1̂ and β2̂ can always be picked so that ξ ′
1̂

and ξ ′
2̂

are positive.
Furthermore, we can choose α1̂ and β1̂ so as to make ξ ′

1̂
equal to 1. But since |α1̂β1̂| = |α2̂β2̂|,

we have no control over the norm of ξ ′
2̂
. The upshot is that we can always write H as in (57),

with the commutation relation of X and P given by

[X, P] = i1 h̄ξ I = i1 h̄(ξ1̂e1 + ξ2̂e2)I with ξ1̂, ξ2̂ ∈ R+. (62)

We also have the freedom of setting either ξ1̂ = 1 or ξ2̂ = 1, but not both. In all this work, we
assumed that ξ /∈ NC (which means ξ k̂ 	= 0, k = 1, 2). Otherwise, BQM is reduced to SQM
time a constant.
In (Gervais Lavoie et al., 2010b), we work out the bicomplex harmonic oscillator problem in
the algebraic way in full details. Here, to present our results, we will give a sketch of the
differential solution and show that it’s lead to the same eigenfunctions.
First of all, we need to compute the action of the operators X and P in their functional form.
To do this, let us assume that

X|x〉 = x|x〉, X : M → M, |x〉 ∈ M and x ∈ R. (63)

This signify that |x〉 is an eigenket of X and that x is the real eigenvalue of X associate with the
ket |x〉. Because |x〉 is an eigenket of the position operator, it is reasonable to write 〈x|x′〉 =
δ(x− x′), with δ(x− x′) the real Dirac delta function. Let us now consider the following

〈x|[X, P]|x′〉 = 〈x|i1 h̄ξ I|x′〉 = i1 h̄ξδ(x− x′). (64)
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On the other hand,

〈x|[X, P]|x′〉 = 〈x|XP|x′〉 − 〈x|PX|x′〉
= 〈x′ |PX|x〉† − x′〈x|P|x′〉
= x†〈x|P|x′〉 − x′〈x|P|x′〉
= (x† − x′)〈x|P|x′〉
= (x− x′)〈x|P|x′〉. (65)

Putting the two results together, we get

(x− x′)〈x|P|x′〉 = i1 h̄ξδ(x− x′). (66)

In SQM, we know that (x− x′) d
dx δ(x− x′) = −δ(x− x′) (Marchildon, 2002, chap. 5). But we

can also use this result here because x ∈ R. This lead to

〈x|P|x′〉 = −i1 h̄ξ
d
dx

δ(x− x′). (67)

At this point, it is easy to see that the functional form of the position and momentum
bicomplex oparators are given by

X → x, P → −i1 h̄ξ
d
dx

. (68)

With these representations, we can rewrite the Hamiltonian (57) as a differential equation. Let
φn(x) be a normalisable eigenfunction of H (in the coordinate representation). Then, we have

1
2m

P2φn(x) +
1
2
mω2X2φn(x) = Hφn(x)

⇒ − h̄2ξ2

2m
d2

dx2 φn(x) +
1
2
mω2x2φn(x) = Enφn(x). (69)

A priori, this equation is a bicomplex equation of the real variable x. Taking ξ = e1ξ1̂ + e2ξ2̂,
En = e1En1̂ + e2En2̂ and φn(x) = e1φn1̂(x) + e2φn2̂(x), we get

−
h̄2ξ2

k̂
2m

d2

dx2 φnk̂(x) +
1
2
mω2x2φnk̂(x) = Enk̂φnk̂(x) with k = 1, 2. (70)

In this equation, ξ k̂ ∈ R+ because of (62), Enk̂ ∈ R because En is the eigenvalue of a self-adjoint
operator, and φnk̂(x) is a complex function of the real variable x. In fact, (70) is exactly the
differential equation of the standard quantum harmonic oscillator with h̄ replaced by h̄ξ k̂.
This also mean that we already know the solutions for φnk̂(x) and for Enk̂, they are given by
(Marchildon, 2002, chap. 5)

φnk̂(x) =

[√
mω

πh̄ξ k̂

1
2nn!

]1/2

exp

{
− mω

2h̄ξ k̂
x2

}
Hn

(√
mω

h̄ξ k̂
x

)
, (71)

Enk̂ = h̄ξ k̂ω

(
n+

1
2

)
, (72)
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with Hn(x) the Hermite polynomial of order n in the real variable x. Let us define the variable
θk̂ for convenience as

θk̂ :=

√
mω

h̄ξ k̂
x for k = 1, 2. (73)

It can be shown (Price, 1991) that for any bicomplex number w = z1̂e1 + z2̂e2,

ew = e1ez1̂ + e2ez2̂ . (74)

This holds also for any polynomial function Q(w), that is,

Q(z1̂e1 + z2̂e2) = e1Q(z1̂) + e2Q(z2̂). (75)

Moreover, if ξ = ξ1̂e1 + ξ2̂e2 with ξ1̂ and ξ2̂ positive, we have

1
ξ1/4 =

e1

ξ1/4
1̂

+
e2

ξ1/4
2̂

. (76)

From (72), we have that the energy En of the bicomplex harmonic oscillator is given by

En = En1̂e1 + En2̂e2 = e1 h̄ξ1̂ω

(
n+

1
2

)
+ e2 h̄ξ2̂ω

(
n+

1
2

)
= h̄ω

(
n+

1
2

)
ξ. (77)

For the eigenfunctions, (71) imply that φn(x) will be given by

φn(x) = φn1̂(x)e1 + φn2̂(x)e2

= e1

[√
mω

πh̄ξ1̂

1
2nn!

]1/2

e−θ2
1̂
/2Hn

(
θ1̂

)
+ e2

[√
mω

πh̄ξ2̂

1
2nn!

]1/2

e−θ2
2̂
/2Hn

(
θ2̂

)

=

⎧⎨
⎩e1

[√
mω

πh̄ξ1̂

1
2nn!

]1/2

+ e2

[√
mω

πh̄ξ2̂

1
2nn!

]1/2
⎫⎬
⎭

·
{

e1e−θ2
1̂
/2 + e2e−θ2

2̂
/2
} {

e1Hn(θ1̂) + e2Hn(θ2̂)
}

. (78)

Moreover, we the help of (74) and (76), we obtain

φn(x) =
[√

mω

πh̄ξ

1
2nn!

]1/2
e−θ2/2Hn(θ), (79)

where

Hn(θ) := e1Hn(θ1̂) + e2Hn(θ2̂) (80)

is a hyperbolic Hermite polynomial of order n.
Equation (79) expresses normalized eigenfunctions of the bicomplex harmonic oscillator
Hamiltonian purely in terms of hyperbolic constants and functions, with no reference to a
particular representation like {ek}. Indeed ξ can be viewed as a D+ constant, θ is equal to√

mω/h̄ξ x and Hn(θ) is just the Hermite polynomial in θ.
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In (Gervais Lavoie et al., 2010a), we show that the set {φn(x) | n = 0, 1, . . .} form a T-basis of
M, and that M is a bicomplex Hilbert space with the following decomposition for an arbitrary
ψ(x) ∈ M;

ψ(x) = ∑
n

wnφn(x) with wn ∈ T. (81)

Moreover, in (Gervais Lavoie et al., 2010b), we show that the most general eigenfunction of H
is given by a linear combination, in the idempotent basis, of two functions φnk̂(x) with some
coefficient, and possibly different order n, such as

φ(x) = e1wl1̂φl1̂(x) + e2wn2̂φn2̂ (82)

with wl1̂ and wn2̂ in C(i1) and l, n = 0, 1, . . . . The associated energy is then

E = h̄ω

{(
l +

1
2

)
e1ξ1̂ +

(
n+

1
2

)
e2ξ2̂

}
. (83)

The eigenfunction (82) can be written explicitly as

φ(x) =
[mω

πh̄

]1/4

⎧⎪⎪⎨
⎪⎪⎩e1

wl1̂e−θ2
1̂
/2√

2l l!
√

ξ1̂

Hl(θ1̂) + e2
wn2̂e−θ2

2̂
/2√

2nn!
√

ξ2̂

Hn(θ2̂)

⎫⎪⎪⎬
⎪⎪⎭ . (84)

The function φ is normalized, i.e. (φ, φ) = 1, if

|wl1̂|2e1 + |wn2̂|2e2 = 1. (85)

φ(x) can also be rewrite in term of 1 and j. From (16), we only have to rewrite the idempotent
basis in term of 1 and j to find (we take φ normalized for simplicity)

φ(x) =
1
2

[mω

πh̄

]1/4

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝ e−θ2

1̂
/2√

2l l!
√

ξ1̂

Hl(θ1̂) +
e−θ2

2̂
/2√

2nn!
√

ξ2̂

Hn(θ2̂)

⎞
⎟⎟⎠

+j

⎛
⎜⎜⎝ e−θ2

1̂
/2√

2l l!
√

ξ1̂

Hl(θ1̂)−
e−θ2

2̂
/2√

2nn!
√

ξ2̂

Hn(θ2̂)

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ . (86)

This last equation however is a kind of hybrid between the representation {1, j} and {e1, e2}.
Indeed, θk̂ and ξ k̂ are define in the idempotent basis. But, from (19), it is not hard to see that
we can rewrite ξ k̂ in term of new parameters α and β (that have nothing to do with those of
(58)) as

ξ1̂ = α + β, ξ2̂ = α − β such that ξ = α + βj, α, β ∈ R. (87)

From this, we have that

θ1̂ =

√
mω

h̄(α + β)
x and θ2̂ =

√
mω

h̄(α − β)
x. (88)
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Using (87) and (88) in (86), we can rewrite φ(x) purely in term of 1 and j, without any allusion
to the idempotent basis. We find

φ(x) =
1
2

[mω

πh̄

]1/4

·
⎧⎨
⎩
⎛
⎝ exp

{
−mω

2h̄(α+β)
x2

}
√

2l l!
√

α + β
Hl

(√
mω

h̄(α + β)
x
)
+

exp
{

−mω
2h̄(α−β)

x2
}

√
2nn!

√
α − β

Hn

(√
mω

h̄(α − β)
x
)⎞
⎠

+j

⎛
⎝ exp

{
−mω

2h̄(α+β)
x2

}
√

2l l!
√

α + β
Hl

(√
mω

h̄(α + β)
x
)
−

exp
{

−mω
2h̄(α−β)

x2
}

√
2nn!

√
α − β

Hn

(√
mω

h̄(α − β)
x
)⎞
⎠
⎫⎬
⎭ .

(89)

One can remark that the conditions ξ ∈ D+ and ξ /∈ NC are express as α + β > 0 and
α − β > 0 for the parameters α and β.
Another way to express our eigenfunctions in term of real and hyperbolic part is to rewrite
the hyperbolic exponential e−θ2/2 in term of real hyperbolic sinus and cosinus. Indeed, from
(Rochon & Tremblay, 2004), we can write

e−θ2/2 = e−
(θ2

1+θ2
2 )

2 e−θ1θ2j

= e−
(θ2

1+θ2
2 )

2 {cosh θ1θ2 − j sinh θ1θ2} with θ = θ1 + θ2j. (90)

Taking

ξ = α + βj, (91)

we have that

ξ−1/4 =
(α + β)−1/4 + (α − β)1/4

2
+ j

(α + β)−1/4 − (α − β)1/4

2
= α′ + β′j. (92)

For the normalized eigenfunction (79), we can then write

φn(x) =
[√

mω

πh̄
1

2nn!

]1/2

e−
(θ2

1+θ2
2 )

2

·
{[(

α′ cosh θ1θ2 − β′ sinh θ1θ2
)
Re (Hn(θ)) +

(
β′ cosh θ1θ2 − α′ sinh θ1θ2

)
Hy (Hn(θ))

]

j
[(

α′ cosh θ1θ2 − β′ sinh θ1θ2
)
Hy (Hn(θ)) +

(
β′ cosh θ1θ2 − α′ sinh θ1θ2

)
Re (Hn(θ))

]}
, (93)

where Re (Hn(θ)) and Hy (Hn(θ)) stand for the real and the hyperbolic part of Hn(θ),
respectively.
Finally, it is not so hard to see that if we take ξ1̂ = 1 = ξ2̂ (resp. α = 1 and β = 0) and l = n
(indirectly X1̂ = X2̂, P̂1 = P̂2 and so on), we recover the usual eigenfunctions and energy of
the standard quantum harmonic oscillator.
We end this section with some plots of the eigenfunction φ(x) for different value of ξ1̂, ξ2̂, l
and n. In Fig. 2 to 4, the dashed line stands for the real part, the dotted line for the hyperbolic
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part and the full line is the probability density |φ(x)|2 = |φ1̂(x)|2/2 + |φ2̂(x)|2/2. We also
take mω/h̄ = 1 on the y-axe for simplicity.

(a) l = 0 = n and ξ1̂ = 1 = ξ2̂, (b) l = 0 = n and ξ1̂ = 0.2, ξ2̂ = 1.

Fig. 2. Eigenfunction (86) with l = 0 = n. Fig. (a) show that eigenfunctions of the harmonic
oscillator of the SQM can be recover from the bicomplex eigenfunction (86).

(a) l = 0 and n = 1. (b) l = 1 and n = 0.

Fig. 3. Eigenfunction (86) with ξ1̂ = 0.2, ξ2̂ = 1.

(a) ξ1̂ = 1 and ξ2̂ = 1. (b) ξ1̂ = 1 and ξ2̂ = 0.1.

Fig. 4. Eigenfunction (86) with l = 2, n = 1.
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5. The bicomplex Heisenberg uncertainty principle

The uncertainty principle, due to Heisenberg, is a fundamental principle in quantum
mechanics, but also in post-classical physics in general. The uncertainty principle establish
a lower limit on the theoretical precision that one can, even in principle, reach about two
non-commuting observable of a physical system. This limit on the absolute precision that can
be achieve is one of the biggest cut between the classical and deterministic physics, and the
probabilistic post-classical quantum physics.
From the fundamental aspect of the uncertainty principle, it seems natural that all the
extensions of standard quantum mechanics try to establish their own. For example, in
quaternionic quantum mechanics, the uncertainty principle can be formulated as (Adler, 1995)
(ΔA)2 (ΔB)2 ≥ 1

4 |〈C〉|2, with [A, B] = IC, where A, B and C are self-adjoint (left-acting)
operators and I is a left-acting anti-self-adjoint operator. Even if A, B, C and I are quaternionic
operators, the quaternionic uncertainty principle have essentially the same form as the
Heisenberg uncertainty principle in SQM.
In this section, we find, in an algebraic way, the bicomplex uncertainty principle of two
non-commuting bicomplex self-adjoint operators. Let A′ and B′ be these two bicomplex
self-adjoint operators. With none of the eigenkets of A′ nor B′ in the null-cone, we assumed
that the eigenvalues of A′ and B′ are hyperbolic numbers.
We start with the same definition of the mean value of an operator as in SQM, that is a sum
over the eigenvalues times the probability. However, we used the bicomplex Born formula
(Rochon & Tremblay, 2004, Th. 1) P( · ) = |ψ|2, with | · |2 the Euclidean R4-norm, to define
the probability. Let A′ : M → M be such that A′ |a′i〉 = a′i |a′i〉, with {a′i} the set of hyperbolic
eigenvalues and {|a′i〉} an orthonormalized T-basis of eigenkets of A. We define

〈A′〉BQM = ∑
i
a′iP

(
A′ → a′i

)
= ∑

i
a′i
∣∣〈a′i |ψ〉∣∣2 ∈ D. (94)

The reader can remark that P (
A′ → a′i

)
=

∣∣〈a′i |ψ〉∣∣2 is a real probability because it is restricted
to [0, 1] as long as |ψ〉 is normalized, and the sum of all probability is equal to 1. We know from
(29) that | · |2 = 1

2 |P1 (·)|2 + 1
2 |P2 (·)|2. From the property of the bicomplex scalar product 2.2.1

(particularly (40)), we can write

〈A′〉BQM = ∑
i
a′i

∣∣∣〈a′
i1̂
|ψ1̂〉1̂

∣∣∣2 + ∣∣∣〈a′i2̂|ψ2̂〉2̂

∣∣∣2
2

=
1
2 ∑

i
a′i
{
〈a′

i1̂
|ψ1̂〉1̂〈a′i1̂|ψ1̂〉1̂ + 〈a′i2̂|ψ2̂〉2̂〈a′i2̂|ψ2̂〉2̂

}

=
1
2 ∑

i

(
e1a′i1̂ + e2a′i2̂

) {
〈ψ1̂|a′i1̂〉1̂〈a′i1̂|ψ1̂〉1̂ + 〈ψ2̂|a′i2̂〉2̂〈a′i2̂|ψ2̂〉2̂

}

=
1
2

{
e1 ∑

i
a′
i1̂
P1

(
〈ψ1̂|a′i1̂〉〈a′i1̂|ψ1̂〉

)
+ e2 ∑

i
a′i2̂P1

(
〈ψ1̂|a′i1̂〉〈a′i1̂|ψ1̂〉

)

+ e1 ∑
i
a′
i1̂
P2

(
〈ψ2̂|a′i2̂〉〈a′i2̂|ψ2̂〉

)
+ e2 ∑

i
a′i2̂P2

(
〈ψ2̂|a′i2̂〉〈a′i2̂|ψ2̂〉

)}
. (95)

The · stand for the standard complex conjugation because 〈·|·〉k̂ ∈ C(i1). We want to warn

the reader here that we can write
∣∣∣〈a′

ik̂
|ψk̂〉k̂

∣∣∣2 = 〈a′
ik̂
|ψk̂〉k̂〈a′ik̂|ψk̂〉k̂ only because 〈a′

ik̂
|ψk̂〉k̂ ∈
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C(i1), in other word, 〈·|·〉k̂ is a standard complex scalar product. Otherwise, we cannot write∣∣〈a′i |ψ〉∣∣2 = 〈a′i |ψ〉〈a′i |ψ〉 for |a′i〉, |ψ〉 ∈ M. Indeed, (29) imply that |w|2 = Re
(
w · w†) instead

of |w|2 = w · w† for arbitrary w ∈ T.
Using the properties of the projections operators, the fact that a′

ik̂
∈ R and the standard

spectral theorem on Vk, we can write

∑
i
a′
ik̂
Pk

(
〈ψk̂|a′ik̂〉〈a

′
ik̂
|ψk̂〉

)
= Pk

(
〈ψk̂|

[
∑
i
a′
ik̂
|a′

ik̂
〉〈a′

ik̂
|
]
|ψk̂〉

)

= Pk
(
〈ψk̂|A′

k̂
|ψk̂〉

)
= 〈ψk̂|A′

k̂
|ψk̂〉k̂. (96)

Then, we obtain
(
keeping in mind that 〈ψ|A′ |ψ〉 = e1〈ψ1̂|A′

1̂
|ψ1̂〉1̂ + e2〈ψ2̂|A′

2̂
|ψ2̂〉2̂

)

〈A′〉BQM =
1
2

{
〈ψ|A′ |ψ〉+ e1 ∑

i
a′
i1̂

∣∣∣〈a′i2̂|ψ2̂〉2̂

∣∣∣2 + e2 ∑
i
a′i2̂

∣∣∣〈a′i1̂|ψ1̂〉1̂

∣∣∣2}. (97)

Noted that the last two terms of (97) represent a bicomplex (hyperbolic in fact) interaction or
coupling between V1 and V2. Indeed, if we want to restrict BQM → SQM, we only have to
take a′

i1̂
= a′

i2̂
and |a′

i1̂
〉 = |a′

i2̂
〉, and if we do that in (97), it is not hard to see that we recover

the standard equation 〈A〉SQM = 〈ψ|A|ψ〉.
For the term 〈A′2〉BQM, the same steps will give us

〈A′2〉BQM =
1
2

{
〈ψ|A′2|ψ〉+ e1 ∑

i
a′2
i1̂

∣∣∣〈a′i2̂|ψ2̂〉2̂

∣∣∣2 + e2 ∑
i
a′2i2̂

∣∣∣〈a′i1̂|ψ1̂〉1̂

∣∣∣2}. (98)

Let us now evaluate the product 〈A′2〉〈B′2〉, with B′ the bicomplex self-adjoint operator
defined previously

({
b′i
}

and
{|b′i〉} are defined the same way as for A′). For convenience,

we will remove the BQM index

〈A′2〉〈B′2〉 = 1
4

{
〈ψ|A′2|ψ〉〈ψ|B′2|ψ〉+ e1〈ψ1̂|A′2

1̂
|ψ1̂〉1̂ ∑

i
b′2
i1̂

∣∣∣〈b′i2̂|ψ2̂〉2̂

∣∣∣2

+ e2〈ψ2̂|A′2
2̂
|ψ2̂〉2̂ ∑

i
b′2i2̂

∣∣∣〈b′i1̂|ψ1̂〉1̂

∣∣∣2

+ e1〈ψ1̂|B′2
1̂
|ψ1̂〉1̂ ∑

i
a′2
i1̂

∣∣∣〈a′i2̂|ψ2̂〉2̂

∣∣∣2

+ e2〈ψ2̂|B′2
2̂
|ψ2̂〉2̂ ∑

i
a′2i2̂

∣∣∣〈a′i1̂|ψ1̂〉1̂

∣∣∣2

+ e2 ∑
i,j

a′2i2̂
∣∣∣〈a′i1̂|ψ1̂〉1̂

∣∣∣2 b′2j2̂
∣∣∣〈b′j1̂|ψ1̂〉1̂

∣∣∣2

+ e1 ∑
i,j

a′2
i1̂

∣∣∣〈a′i2̂|ψ2̂〉2̂

∣∣∣2 b′2
j1̂

∣∣∣〈b′j2̂|ψ2̂〉2̂

∣∣∣2}. (99)

We would like to apply the bicomplex Schwartz inequality (Gervais Lavoie et al., 2010a, Th.
3.8) directly to the first term on the right hand side of (99). However, it is not so clear how we
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can do that. The reason is that in bicomplex quantum mechanics, the (real) “length” of the ket
|ψ〉 is not given by 〈ψ|ψ〉, but by |〈ψ|ψ〉|. In consequence, the bicomplex Schwartz inequality
apply to |〈ψ|ψ〉| |〈φ|φ〉| rather than 〈ψ|ψ〉〈φ|φ〉. From the properties of the Euclidean norm
on bicomplex, it doesn’t seems possible, at first look, to inject a norm in (99) to build the term∣∣〈ψ|A′2|ψ〉∣∣ ∣∣〈φ|B′2|φ〉∣∣.
One way to avoid this difficulty is to work with idempotent projection. We will noted 〈·〉k̂ the
projection Pk (〈·〉). From (99), we find

〈A′2〉1̂〈B′2〉1̂ =
1
4

{
〈ψ1̂|A′2

1̂
|ψ1̂〉1̂〈ψ1̂|B′2

1̂
|ψ1̂〉1̂

+ 〈ψ1̂|A′2
1̂
|ψ1̂〉1̂ ∑

i
b′2
i1̂

∣∣∣〈b′i2̂|ψ2̂〉2̂

∣∣∣2

+ 〈ψ1̂|B′2
1̂
|ψ1̂〉1̂ ∑

i
a′2
i1̂

∣∣∣〈a′i2̂|ψ2̂〉2̂

∣∣∣2

+ ∑
i,j

a′2
i1̂

∣∣∣〈a′i2̂|ψ2̂〉2̂

∣∣∣2 b′2
j1̂

∣∣∣〈b′j2̂|ψ2̂〉2̂

∣∣∣2}, (100)

and equivalently for 〈A′2〉2̂〈B′2〉2̂.
From the definition of the bicomplex scalar product 2.2.1, we know that 〈ψk̂|ψk̂〉k̂ is a standard
complex (in C(i1)) scalar product. This imply that 〈ψk̂|ψk̂〉k̂ is the (real) “length” of the ket
|ψk̂〉. From this, it becomes clear that we can apply the standard complex Schwartz inequality
to the first term of (100), where the two kets are A′

1̂
|ψ1̂〉, B′

1̂
|ψ1̂〉 respectively. This leads to

〈A′2〉1̂〈B′2〉1̂ ≥ 1
4

{ ∣∣∣〈ψ1̂|A′
1̂
B′

1̂
|ψ1̂〉1̂

∣∣∣2 + 〈ψ1̂|A′2
1̂
|ψ1̂〉1̂ ∑

i
b′2
i1̂

∣∣∣〈b′i2̂|ψ2̂〉2̂

∣∣∣2

+ 〈ψ1̂|B′2
1̂
|ψ1̂〉1̂ ∑

i
a′2
i1̂

∣∣∣〈a′i2̂|ψ2̂〉2̂

∣∣∣2

+ ∑
i,j

a′2
i1̂

∣∣∣〈a′i2̂|ψ2̂〉2̂

∣∣∣2 b′2
j1̂

∣∣∣〈b′j2̂|ψ2̂〉2̂

∣∣∣2}. (101)

It is important to remark that the ≥ sign is well used here because (101) is an equation over
reals numbers. Indeed, on the left hand side, as long as A′ and B′ are bicomplex self-adjoint
operators, theirs eigenvalues are hyperbolic numbers, and then, according to (94), the mean
valued of the operators A′ and B′ (equivalently for A′2 and B′2) are hyperbolic numbers. This
also means that the projections 〈·〉k̂ are real numbers.
On the right hand side of (101), | · |2 is the Euclidean R2-norm and is undoubtedly real. As we
said previously, 〈·|·〉k̂ is a standard complex scalar product. Then 〈ψ1̂|A′2

1̂|ψ1̂〉1̂ is real. Finally,
the idempotent projection of hyperbolic numbers, the eigenvalues of A′ and B′, are also real
numbers.
Let us introduce four new operators

M′
k̂

:=
1
2

[
A′

k̂
, B′

k̂

]
, N′

k̂
:=

1
2

(
A′

k̂
B′
k̂
+ B′

k̂
A′

k̂

)
for k = 1, 2. (102)
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It is easy to see that M′∗
k̂
= −M′

k̂
and N′∗

k̂
= N′

k̂
. Let us write (k = 1, 2)

∣∣∣〈ψk̂|A′
k̂
B′
k̂
|ψk̂〉k̂

∣∣∣2 =
∣∣∣Pk (〈ψk̂|M′

k̂
+ N′

k̂
|ψk̂〉

)∣∣∣2
=

∣∣∣〈ψk̂|M′
k̂
|ψk̂〉k̂ + 〈ψk̂|N′

k̂
|ψk̂〉k̂

∣∣∣2
=

∣∣∣〈ψk̂|M′
k̂
|ψk̂〉k̂

∣∣∣2 + 〈ψk̂|M′
k̂
|ψk̂〉k̂〈ψk̂|N′

k̂
|ψk̂〉k̂

+
∣∣∣〈ψk̂|N′

k̂
|ψk̂〉k̂

∣∣∣2 + 〈ψk̂|M′
k̂
|ψk̂〉k̂〈ψk̂|N′

k̂
|ψk̂〉k̂

=
∣∣∣〈ψk̂|M′

k̂
|ψk̂〉k̂

∣∣∣2 + 〈ψk̂|M′
k̂
|ψk̂〉k̂〈ψk̂|N′

k̂
|ψk̂〉k̂

+
∣∣∣〈ψk̂|N′

k̂
|ψk̂〉k̂

∣∣∣2 − 〈ψk̂|M′
k̂
|ψk̂〉k̂〈ψk̂|N′

k̂
|ψk̂〉k̂

=
∣∣∣〈ψk̂|M′

k̂
|ψk̂〉k̂

∣∣∣2 + ∣∣∣〈ψk̂|N′
k̂
|ψk̂〉k̂

∣∣∣2 . (103)

Here again, in the third line, we can use the property |x|2 = x · x only because 〈ψk̂|M′
k̂
|ψk̂〉k̂

and 〈ψk̂|N′
k̂
|ψk̂〉k̂ are element of C(i1). The argument is the same as for (95).

Now, using (103) in (101), we have

〈A′2〉1̂〈B′2〉1̂ ≥ 1
4

{ ∣∣∣〈ψ1̂|M′
1̂
|ψ1̂〉1̂

∣∣∣2 + ∣∣∣〈ψ1̂|N′
1̂
|ψ1̂〉1̂

∣∣∣2
+ 〈ψ1̂|A′2

1̂
|ψ1̂〉1̂ ∑

i
b′2
i1̂

∣∣∣〈b′i2̂|ψ2̂〉2̂

∣∣∣2

+ 〈ψ1̂|B′2
1̂
|ψ1̂〉1̂ ∑

i
a′2
i1̂

∣∣∣〈a′i2̂|ψ2̂〉2̂

∣∣∣2

+ ∑
i,j

a′2
i1̂

∣∣∣〈a′i2̂|ψ2̂〉2̂

∣∣∣2 b′2
j1̂

∣∣∣〈b′j2̂|ψ2̂〉2̂

∣∣∣2}. (104)

Because (104) is an inequality, we can remove strictly positives terms form the right-hand side,
exactly as we do in SQM (Marchildon, 2002, chap. 6). It is not hard to see that in fact, all the
right-hand side term’s are strictly positive. Then, by choice, we can write

〈A′2〉1̂〈B′2〉1̂ ≥ 1
4

∣∣∣〈ψ1̂|M′
1̂
|ψ1̂〉1̂

∣∣∣2 . (105)

Let us now redefined the self-adjoint operator A′. We take A′
k̂

:= Ak̂ − 〈A〉k̂ I, with Ak̂
self-adjoint and I the identity on Vk or M depending on context. Explicitly, for A′

1̂
, we have

A′
1̂
= A1̂ −

1
2

{
〈ψ1̂|A1̂|ψ1̂〉1̂ + ∑

i
ai1̂

∣∣〈ai2̂|ψ2̂〉2̂

∣∣2} I. (106)

As we said previously, and from the definition of the means value of an operator (94), we
know that 〈A〉k̂ ∈ R and 〈A2〉k̂ ∈ R. Because we modify the operator A′ by only a constant
operator (〈A〉k̂ I), it seems clear that the eigenkets of A′ will be the same as the eigenkets of
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A (this simply correspond to a rescaling of the operator), and we write |a′i〉 = |ai〉. Moreover
(k = 1, 2),

A′
k̂
|aik̂〉 =

(
Ak̂ − 〈A〉k̂ I

)
|aik̂〉 =

(
aik̂ − 〈A〉k̂

)
|aik̂〉 = a′

ik̂
|aik̂〉. (107)

Then, the eigenvalues of A′
k̂

will be transform as a′
ik̂
= aik̂ − 〈A〉k̂ ∈ R. For A′, we have

A′ = e1
(
A1̂ − 〈A〉1̂ I

)
+ e2

(
A2̂ − 〈A〉2̂ I

)
= A− 〈A〉I. (108)

Let us rewrite (98) in term of A and 〈A〉;

〈A′2〉 = 1
2

{
〈ψ| (A− 〈A〉I)2 |ψ〉+ e1 ∑

i

(
ai1̂ − 〈A〉1̂

)2 ∣∣〈ai2̂|ψ2̂〉2̂

∣∣2
+ e2 ∑

i

(
ai2̂ − 〈A〉2̂

)2 ∣∣〈ai1̂|ψ1̂〉1̂

∣∣2}. (109)

Using the normalization of the kets {|ψ〉} and
{|aik̂〉} (in fact, the orthonormalization can be

assumed from (Gervais Lavoie et al., 2011, Sec. 4.3) and (Gervais Lavoie et al., 2010a, Sec. 3.2))
and the fact that ∑i |〈aik̂|ψk̂〉k̂|2 = 1, we can write

〈A′2〉 = 1
2

{
〈ψ|A2|ψ〉+ 〈A〉2 − 2〈A〉〈ψ|A|ψ〉

+ e1 ∑
i
a2
i1̂

∣∣〈ai2̂|ψ2̂〉2̂

∣∣2 + e1〈A〉2
1̂
− 2e1〈A〉1̂ ∑

i
ai1̂

∣∣〈ai2̂|ψ2̂〉2̂

∣∣2
+ e2 ∑

i
a2
i2̂

∣∣〈ai1̂|ψ1̂〉1̂

∣∣2 + e2〈A〉2
2̂
− 2e2〈A〉2̂ ∑

i
ai2̂

∣∣〈ai1̂|ψ1̂〉1̂

∣∣2}. (110)

With the help of (97) and (98), we find

〈A′2〉 = 〈A2〉 − 〈A〉2 = (ΔA)2 , (111)

and clearly, 〈A′2〉k̂ = (ΔA)2
k̂ .

By doing the same with the operator B′, that is B′
k̂

:= Bk̂ − 〈B〉k̂ I, we find the same equation
as for A. Moreover, it is not hard to verify that those definitions leads to M′

k̂
= Mk̂. From this,

(105) becomes

(ΔA)2
1̂ (ΔB)2

1̂ ≥ 1
4

∣∣〈ψ1̂|M1̂|ψ1̂〉1̂

∣∣2 . (112)

Because (99) is symmetrical in ek, the term (ΔA)2
2̂ (ΔB)2

2̂ will be identical at (ΔA)2
1̂ (ΔB)2

1̂ but
with all the index 1 replaced by 2.
It is tempting to simply build the term (ΔA) (ΔB) from (112) and say that this is the bicomplex
uncertainty principle. However, we must recall that an inequality can only stand on real
number and the term (ΔA) (ΔB) is hyperbolic. The simplest way, maybe not the only,
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to express our result in term of a simple bicomplex equation is to consider the norm of
(ΔA) (ΔB). Then, from (29), we have

|(ΔA) (ΔB)| = 1√
2

√∣∣(ΔA)1̂ (ΔB)1̂

∣∣2 + ∣∣(ΔA)2̂ (ΔB)2̂

∣∣2

≥ 1√
2

√∣∣∣∣1
2

∣∣〈ψ1̂|M1̂|ψ1̂〉1̂

∣∣∣∣∣∣
2
+

∣∣∣∣1
2

∣∣〈ψ2̂|M2̂|ψ2̂〉2̂

∣∣∣∣∣∣
2

=
1√
2

√
1
4

∣∣〈ψ1̂|M1̂|ψ1̂〉1̂

∣∣2 + 1
4

∣∣〈ψ2̂|M2̂|ψ2̂〉2̂

∣∣2
=

1
2
|〈ψ|M|ψ〉| , (113)

or, finally

|(ΔA) (ΔB)| ≥ 1
4
|〈ψ|[A, B]|ψ〉| . (114)

This equation is the general bicomplex uncertainty principle of two non-commuting linear
self-adjoint operator.
It can be remarked that (114) has the same form as the standard uncertainty principle,
except that the 1/2 factor replaced by 1/4 here, and that it apply on |(ΔA) (ΔB)| instead
of (ΔA) (ΔB). We would like to warn the reader that, according to (97), the right hand side of
(114) cannot be written in the usual shorter form 1

4 |〈[A, B]〉|.

5.1 Application: Position-momentum operators
We would now apply eq. (114) to the case of the position and momentum self-adjoint
bicomplex linear operator X and P.
In section 4, we have seen that the commutator of X and P is given by

[X, P] = i1 h̄(ξ1̂e1 + ξ2̂e2)I, (115)

with ξ1̂, ξ2̂ ∈ R+. From this, we find that

|(ΔX) (ΔP)| ≥
∣∣〈ψ|i1 h̄(ξ1̂e1 + ξ2̂e2)I|ψ〉

∣∣
4

=
h̄
∣∣e1ξ1̂ + e2ξ2̂

∣∣
4

=
h̄
√

ξ2
1̂
+ ξ2

2̂

4
√

2
=

h̄|ξ|
4

. (116)

As the eigenfunctions of the harmonic oscillator, the bicomplex uncertainty principle is
completely determined by the two parameters ξ1̂ and ξ2̂ of our model. As we do in section
4.1, we can decompose ξ in the basis {1, j} instead of {e1, e2} by taking ξ = α + βj and then
ξ1̂ = α + β and ξ2̂ = α − β. This leads to

|(ΔX) (ΔP)| ≥ h̄
√
(α + β)2 + (α − β)2

4
√

2
=

h̄
√

α2 + β2

4
. (117)

It is interesting to note that if we restrict BQM to SQM by setting ξ1̂ = 1 = ξ2̂ or α = 1, β = 0(
and indirectly X1̂ = X2̂, P̂1 = P̂2 and |ψ1̂〉 = |ψ2̂〉

)
, we find

|(ΔX) (ΔP)|BQM �→SQM ≥ h̄
4

, (118)
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that is 1/2 times the standard result. Then, from bicomplex quantum mechanics, we generated
a lower bound for the Heisenberg uncertainty principle that is in accord with the standard
quantum mechanics. In fact, the 1/2 factor comes from the three last terms of (104) that we
neglected. Indeed, the terms that we neglected in (104) would have contributed for h̄/4 to the
uncertainty principle but only when we do the restriction BMQ→SQM.
In other words, we can say that computing the standard uncertainty principle from BQM
(in the SQM approximation) give a 1/2 time poorer bound, compare with the complex
(standard) way of computation. This, however, doesn’t imply in any way that (114) is a poor
approximation in the BQM.

6. Conclusion

With the results presented here, quantum mechanics was successfully extended to bicomplex
numbers in two concrete problems, the harmonic oscillator and the Heisenberg uncertainty
principle. We strongly believe that bicomplex quantum mechanics can be extended to other
significant problems of standard quantum mechanics and such investigations are actually in
progress. However, we think it is too early to try to give a physical interpretation to our
results. We hope that this work will motivate the reader to consider generalizations of complex
numbers in other significant problem of physics. We also believe that if those generalized
theory do not end with some new predictions, they will at least give some crucial insight
about the apparent requirement of complex numbers in physics.
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Tunnelling, and Collapse of Probability Densities
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Mexico

1. Introduction

Classical and QuantumMechanics make use of different objects and they also were written on
different background spaces. As a consequence, they have followed different paths regarding
the mathematical objects that they use. Classical Mechanics makes use of points and functions
on a real cotangent space T∗Q of a mechanical system, and makes use of differential geometry
as the basic language with which the theory is developed. This is due to the existence of
trajectories of single points.
On the other side, Quantum Mechanics makes use of state vectors in a complex Hilbert space,
with operators, commutators, and eigenvectors, and makes use of some postulates that look
weird from a classical point of view. This is a point of view that was induced by the lack of
trajectories and by the use of probabilistic interpretations of state vectors.
There have been efforts to define similar classical and quantum functions that can be
compared with each other. Quantum densities were written as functions on phase–space
by means of integral transformations. Two of these transformations are the Wigner (Wigner,
1932, Muga & Snider, 1992, Sala, R, Brouard, S, &Muga, JG, 1993, Sala &Muga, 1994, Bracken,
2003) and the Husimi (Husimi, 1940, Torres & Frederick, 1990, 1991) transforms. They provide
with a phase–space function that can be used as a classical picture of the quantum probability
density. However, these functions are difficult to interpret.
An approach to classical–quantum correspondence uses quantum concepts in Classical
Mechanics focusing on the eigenfunctions of the classical Liouville operator. Complex
functions are introduced, together with a quantum–like inner product between phase–space
functions, into the classical theory, but this leads to some inconveniences like having quantities
with no physical interpretation (Koopman, 1931, Jaffé & Brumer, 1984, 1985„ Jaffé, 1988
Woodhouse, 1991). Here, we do not make use of complex quantities at all.
In this chapter, we stay with plain Classical Mechanics and we want to identify some of
the classical objects that are the analogue of quantum quantities. These analogues allows
us to take a point of view of classical systems similar to the one used in quantum systems.
These analogues show that these theories are not that far from each other. In fact, we
show that we can handle classical systems in a very similar way as it is done for quantum
systems. We define eigenfunctions of classical dynamical variables and use them to define
alternative representations of classical quantities and in the calculation of averages and of
other quantities.
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The way of handling time in classical and quantum physics, as well as in other theories in
physics, has been a subject of the interest of many researchers for a long time now (Aharonov
et al, 1961, Allcock, 1969, Muga et al, 1998, Muga & Leavens, 2000, Muga, JG, Sala–Mayato,
R and Egusquiza, IL (ed), 2002, 2008, Galapon, 2002, Galapon et al, 2004, Isidro, 2005, Torres,
2007, 2009, Delgado et al, 1997, Giannitrapani, 1997, Halliwell, 1999, Hegerfeldt et al, 2004,
Kijowski, 1974, Kobe et al, 1993, 1994, Kochański et al, 1999, Leavens, 2002, León, 1997, Rovelli,
1990, 1991). We make use of those developments and further develop and apply those ideas
in this chapter.
Looking for classical analogues of quantum objects is of help in clarifying the physical
meaning of the latter, and it shows us that we can also make use of the quantum language in
the classical realm, taking a path in parallel to the direction that Quantum Mechanics theory
has taken.
Earlier treatments of time in Classical Mechanics make use of canonical transformations.
However, this type of treatment needs to introduce a "tempus" variable which is not related
with physical time and has no physical interpretation. One can see applications of this theory
in the treatment of tunnelling through a potential barrier (Razavy, 1967, 1971, Kobe, 2001).
Here we do not need to introduce additional variables.
In quantum Mechanics, the description of the evolution of wave packets can be carried out
in terms of the eigenfunctions of the Hamiltonian operator. This is the operator that appears
in the evolution equation for wave functions. Then, a way of approaching the evolution of
probability densities in classical phase–space makes use of the eigenfunctions of the Liouville
operator (Jaffé, 1988, Jaffé & Brumer, 1984, 1985). That seems to be a reasonable approach
because the classical evolution equation of probability densities is determined by the Liouville
operator, precisely. However, some of these eigenfunctions are complex with no physical
interpretation. Here, we focus on the eigen surfaces and eigen functions of the dynamical
quantities instead.
Conserved quantities have been used to construct directional derivatives (Jaffé, 1988, Jaffé
& Brumer, 1985), but nothing has been said about the use of the use of pairs of conjugate
variables. Here we propose to also use conjugate dynamical variables as generators of
translations in phase–space. With the use of conserved quantities, the motion of phase–space
points is kept on the energy shell surface, but with a conjugate function, points can leave that
shell.
On the other hand, we are interested on recognising that many of the concepts that are used
in the theory of Quantum Mechanics can also be used in the study of classical systems, a
point of view which is closer to Quantum Mechanics than other approaches like Geometric
Mechanics or Geometric Quantisation. Our approach makes use of eigen objects, operators,
and commutators, in a similar way as is done in QuantumMechanics. This approach will lead
to a plausible classical interpretation of the collapse of a quantum wave function; the goal of
this paper. A benefit of our approach is that it is of help in the understanding of quantum
phenomena.
We will be working with conservative Hamiltonian systems, systems for which Hamilton’s
equations of motion apply, without an additional "tempus variable" involved.
Throughout the text, we will be considering as a model system the nonlinear oscillator with
dimensionless Hamiltonian given by (José and Saletan, 1998)

H(z) =
p2

2
+

k
2

(√
a2 + q2 − l

)2
. (1)
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This Hamiltonian describes the motion of a bead that slides on a horizontal bar and is acted
on by a spring attached to a fixed point a distance a from the bar. The force constant of the
spring is k, and l is its natural length, so that

√
a2 + q2 − l is its stretch. The fixed points for

this system are located at

q0 = 0,±
√

l2 − a2 , p0 = 0 . (2)

There is only a minimum of the potential function when a > l, and there are two minima and
one maximum when a < l.
Wewill also consider an application of our results to the tunnelling through a potential barrier.

2. Conjugate variables and representations

Let us consider a Poisson manifold (T∗Q, {•, •}) associated to a classical system, with {•, •}
the usual Poisson bracket, which for two functions F(z) and G(z) is defined as

{F,G}(z) = ∂F(z)
∂qi

∂G(z)
∂pi

− ∂G(z)
∂qi

∂F(z)
∂pi

, (3)

where z = (q, p), q = (q1, . . . , qn), p = (p1, . . . , pn) is a point on T∗Q.
We will be mainly concerned with pairs of conjugate variables and some of the consequences
of that relationship between them. Conjugate variables are the variables that are related
by a constant Poisson bracket, {F,G}(z) = 1, in Classical Mechanics and by a constant
commutator, [F̂, Ĝ] = ih̄, in Quantum Mechanics, between the corresponding quantum
operators F̂, Ĝ.
The dynamics of classical systems usually is described in terms of the pairs of conjugate
variables qi and pi. These pairs of variables are related by a constant Poisson bracket,

{qi, pj} = δij . (4)

The domain in which this relationship is valid is D = Rn × Rn. They are the coordinates
for describing the evolution of a classical system, and each variable, usually, take continuous
values from−∞ to ∞ or on some subset of it. Time is a parameter in terms of which the motion
of point particles can be described.
The quantum position Q̂ and momentum P̂ operators are related by a constant commutator

[Q̂i, P̂j] = ih̄δij , (5)

and their eigenfunctions cannot be normalised in the conjugate space, meaning that they
are not part of a Hilbert space. However, these eigenfunctions are used as coordinates (as
a representation).
In Quantum Mechanics, the commutator between the time operator T̂ and the Hamiltonian
operator Ĥ is assumed to be

[T̂, Ĥ] = ih̄, (6)
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Fig. 1. Values of the Poisson bracket {t,H}(z) for the nonlinear oscillator with a = 1, l = 2,
and k = 9.8. The turquoise points indicate that the Poisson bracket evaluates to one there,
whereas in the red points the value is zero. (a) X = 0, and (b) X the location of the right
minima of the potential. Dimensionless units.

so that they are a pair of conjugate operators. We find a similar relationship in the classical
regime, the Poisson bracket between time and energy is equal to one

{t,H}(z) = ∂t
∂qi

∂H
∂pi

− ∂H
∂qi

∂t
∂pi

=
∂t
∂qi

∂qi

∂t
+

∂pi
∂t

∂t
∂pi

=
dt
dt

= 1 , (7)

where we have made use of Hamilton’s equations of motion

dqi

dt
=

∂H
∂pi

,
dpi
dt

= − ∂H
∂qi

, (8)

and of the chain rule. We argue that these variables, energy and time, can also be used as an
alternative coordinate system. In these coordinates, motion of conservative systems becomes
quite simple, one of the variables is kept constant and the other just increases. What we have
here is the set of canonical variables of group theory.
An object that is inherent to a Poisson bracket equal to one is the domain inwhich that equality
holds. For the nonlinear oscillator, the values that the Poisson bracket take have been plotted
in figure 1, for two choices of reference zero time surface. The way in which those values were
obtained is explained below. The domain of the energy, D(H), is the whole of phase–space,
but the domain of time, D(t), is not. The domain of the Poisson bracket is the intersection
of these domains, D(H) ∩ D(t), which, in this case, coincides with the domain of time. In
Quantum Mechanics, we have to consider the intersection of the domains of ĤT̂ and of T̂Ĥ,
D(ĤT̂) ∩D(T̂Ĥ).
The new coordinates, (t, E), are a bit different from (p, q) because to a value of the energy
correspond two values of pi (usually pi appears as p2i in the Hamiltonian) so that E is bounded
from below. It is then necessary to make the distinction between the cases of positive or
negative momentum.
In general, the explicit expression in terms of z of one of the variables related by a constant
Poisson bracket is known but not the other, as is the case of energy (known) and time (not
known). Below, we will show how to generate the unknown one (time) using the equations
of motion. We can generate the unknown variable because they are related by the Poisson
bracket precisely.
In Quantum Mechanics we have a similar situation. Usually, quantum dynamics is analysed
in coordinate or momentum representations, but we can also change to energy or time
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Fig. 2. Time surfaces for the nonlinear oscillator with a = 1, l = 2, and k = 9.8. (a) Negative
times and (b) positive times. The initial curve is q = 0. Dimensionless units.

representations. The energy representation is well known (the energy eigenstates) but the
time representation is not. However, because time is conjugate to energy, we can define time
eigenstates and then use them as an alternative representation of quantum states, in the same
way as it is done in classical systems (see below).

3. Generating the time coordinate system

Let us consider a cotangent space T∗Q with coordinates z = (q, p). Given the Hamiltonian
H(z) of a classical system, Hamilton’s equations of motion

dz
dt

= XH , XH =

(
∂H
∂p

,− ∂H
∂q

)
, (9)

use the conjugate variable to the Hamiltonian, time, as a parameter for describing the motion
of a particle on the energy shell. The origin of time on the integral lines of equation (9) is
chosen arbitrarily and, usually, it is different for each integral line.
We can generate a time coordinate system in T∗Q so that we can have the time variable in
terms of (p, q). A point in cotangent space T∗Q can be propagated according to the dynamical
system defined by equations (9). These points will move along the surfaces of constant H so
that the value of H does not changes but the value of t does. In order to get a coordinate
system for time in T∗Q, we define constant t surfaces in T∗Q. A hypersurface Σ0(z) that
crosses the constant H surfaces is chosen as the reference, the origin of t, and by propagating
it we will obtain surfaces Σt(z) corresponding to other values of time, so obtaining the desired
coordinate system for t in T∗Q.
We will use the surface q1 = X as the initial time surface, and we will make a distinction on
the sign of the momentum of these points giving rise to two time eigensurfaces:

Σ±
t=0(z) = {z|q1 = X, ±p1 > 0} . (10)

In figures 2 and 3 there are examples of the surfaces that comprise the time coordinate system
in the case of the nonlinear oscillator. The initial surfaces are q1 = X, with X = 0, 1.5. Under
this convention, the time values for each point in phase–space are shown in Fig. 4. They
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Fig. 3. Time surfaces for the nonlinear oscillator with a = 1, l = 2, and k = 9.8. (a) Negative
times and (b) positive times. The initial curve is q = 1.5. Dimensionless units.

are the shortest times that it would take to a particle with z as final position to arrive at or
depart from q1 = X. These values are the classical analogue of the quantum time operator
T̂. Note that not all points in T∗Q will arrive or depart from q1 = X. For this reason, some
regions of T∗Q are not part of the domain of the Poisson bracket equal to one (see Fig. 1).
Points on the separatrix move quite slow as seen on the plot. Time reversal symmetry, i.e. the
transformation (t, p) → (−t,−p) is evident in these figures.
The quantum procedure that can be used to generate time eigenstates is very similar to
the classical one. The quantum initial state, in momentum space (in one dimension, for
simplicity),

〈p|t = 0〉 = 1√
2πh̄

e−ipX , (11)

is the equivalent to the line q = X in phase–space. The squared modulus of this state in
momentum space is constant for all values of p, but it is a delta function centred at q = X in
coordinate space. This is the reference state for time. The propagation of it, i.e. the state

〈p|t〉 = 1√
2πh̄

e−itĤ/h̄e−ipX , (12)

is the time coordinate system that can be used for a time representation. These states cannot
be normalised.
Quantum time eigenstates have been in use for a long time now without realizing it. Let
us rewrite the expression for a wave packet in the coordinate representation in terms of the
momentum wave packet as (unless otherwise stated the integrals are taken from−∞ to ∞)

ψ(x; t) =
1√
2πh̄

∫
dp eipxψ(p; t) =

1√
2πh̄

∫
dp eipxe−itĤ/h̄ψ(p)

=
1√
2πh̄

∫
dp ψ(p)eitĤ/h̄eipx =

1√
2πh̄

∫
dp ψ(p)(e−itĤ/h̄e−ipx)∗

= 〈t|ψ〉 , (13)

which is the inner product between the time eigenstate |t〉 and a ket |ψ〉.
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Fig. 4. Time values t(z) for the nonlinear oscillator with a = 1, l = 2, and k = 9.8. (a) X = 0
and (b) X = 1.5. The points coloured in cyan indicate the zero time points. Dimensionless
units.

4. Time and energy eigenfunctions

Quantum energy eigenstates |ε〉 are the states characterised by just being multiplied by the
corresponding eigenvalue ε after the application of the Hamiltonian operator, i.e. Ĥ|ε〉 = ε|ε〉.
We can take as the classical analogue of the quantum energy eigenstate to a unit density with
the constant energy shells as support,

ν±ε (z) = δ(z− Σ±
ε (z)) (14)

where

Σ±
ε (z) = {z|H(z) = ε, ±p1 > 0} . (15)

If we evaluate the Hamiltonian function on the support Σ±
ε (z) of this function, we will obtain

the value ε. The density ν±ε (z) is the classical analogue of the quantum density |〈q|ε±〉|2.
Now, a unit density with the time eigen surfaces Σ±

t (z) as support,

ν±t (z) = δ(z− Σ±
t (z)) ,

is the analogue of the squared magnitude of the quantum time eigenfunction |〈q|t〉|2. In
the realm of functions on T∗Q, the classical time eigen density is generated by starting with
ν±t=0(z) and propagating it with the classical propagator as

ν±t (z) = e−tL(z)ν±t=0(z) , L(z) = XH · ∇ , (16)

where the vector field is XH = (∂H/∂p,−∂H/∂q). If we evaluate time on the support Σ±
t (z)

of the eigen density ν±t (z) we will get the value t.
The unboundedness of the eigensurfaces of a dynamical variable usually implies a problem
with the normalisation of functions with them as a support so that they cannot become
probability densities. However, we need to include that type of variables to have a
representation of quantities in T∗Q. These eigen densities, νε(z) and νt(z) are the classical
analogues of the quantum representation vectors 〈ε|, and 〈t|, respectively. But recall that
some of these quantum vectors are not part of the Hilbert space.
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Fig. 5. Classical energy densities corresponding to the quantum eigenvalues for the nonlinear
oscillator. (a) Energy curves in phase–space, (b) classical eigendensity for one energy value,
and (c) the overlap between the energy eigendensity and a Gaussian density. Dimensionless
units.

5. Uncertainty of conjugate eigenfunctions

In Quantum Mechanics, the average of an operator F̂ when the system is in one of its
eigenfunctions | f 〉 is the corresponding eigenvalue f , i.e. 〈 f |F̂| f 〉 = f , and the width vanishes,

i.e. ΔF̂ =
√
〈 f |F̂2| f 〉 − 〈 f |F̂| f 〉2 = 0. However, for the conjugate operator Ĝ, the average

〈 f |Ĝ| f 〉 and width ΔĜ =
√
〈 f |Ĝ2| f 〉 − 〈 f |Ĝ| f 〉2, in the states | f 〉, are not defined. A property

in agreement with Heisenberg’s uncertainty principle, (ΔF̂)2(ΔĜ)2 ≥ h̄2〈[F̂, Ĝ]/ih̄〉2/4,
because when one of the observables, in this case F̂. is well defined, the conjugate observable
Ĝ becomes undefined.
Note that we also observe this characteristic on the eigensurfaces of dynamical variables of
classical systems. In the classical case, with the nonlinear oscillator as an example (see figure
5), on the energy eigen surfaces Σ±

ε (z), the energy is well defined with no dispersion, i.e. there
is a zero width in energy. However, they span values of time ranging from minus infinity to
infinity. And vice-versa, the time eigen density has zero width in time but they include an
unbounded set of energy values (see figures 2 and 3). Then, we can say that the classical
eigendensities ν±ε (z) and ν±t (z) correspond to the squared magnitude of the quantum energy,
|ε±〉, and time, |t±〉, eigenstates, respectively,

ν±ε (z) ↔ |ε±〉〈ε±| , ν±t (z) ↔ |t±〉〈t±| . (17)

In Fig. 5, we show few classical energy curves, for the nonlinear oscillator, with energy values
equal to the quantum eigenvalues. Note that the separatrix is excluded from these values.
There is also, a schematic representation of a classical unit density with one of the energy
curves as support.
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Fig. 6. Classical energy representation ρ(ε±) of a Gaussian probability density
e−(q−q0)2/2σ2−2σ2(p−p0)2/

√
2πσ centred at (q, p) = (0,−1) for the nonlinear oscillator with

a = 1, l = 2, k = 9.8, and σ = .8. The peaks are located at the energy of the separatrix. This is
the classical analogue of the squared magnitude of the energy representation of a quantum
state |〈ε±|ψ〉|2. Dimensionless units.

6. Energy and time representations

With the help of the classical energy eigendensities (14), the energy representation of a
probability density ρ(z) is defined as

ρ(ε±) =
∫

dz ν±ε (z)ρ(z) . (18)

Note that we have reduced the representation from one with 2n variables, namely pi and qi,
to one with only one variable, ε±. Then, it is not possible to recover the original density ρ(z)
from the reduced one ρ(ε±). An example of these reduced densities is found in Fig. 6 for the
nonlinear oscillator.
Recall that the quantum energy representation is obtained as the inner product between
the energy eigenstate, |ε〉, and the wave function, |ψ〉, separated into negative and positive
momentum parts, as

ψ(ε±) =
∫ ∞

0
dp〈ε| ± p〉〈±p|ψ〉 . (19)

Thus, the squared magnitude of this quantity is the analogue to the classical energy
representation of a probability density of equation (18). Since the quantum spectrum is
discrete for the nonlinear oscillator, only few points will be found in the energy representation,
as can be seen in Fig. 7.
For a classical time representation of a probability density, we calculate the overlap between
the time eigendensity Eq. (16) with a probability density ρ(z)

ρ±(t) =
∫

dz ν±t (z)ρ(z) . (20)

This is also a reduced representation of the density ρ(z) because it only depends on one
variable. For the nonlinear oscillator, an example of this representation is shown in Fig. 8. The
time representation depends on the zero–time reference surface Σt=0(z). Different regions
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σ
√
2π centred at (q, p) = (0,−1), with σ = 0.2, and for the

nonlinear oscillator. Dimensionless units.

of phase–space are available depending upon the choice of X, the location of the zero–time
reference surface.
A quantum time representation is obtained in a similar way: the wave packet |ψ〉 is projected
onto the time eigenstates |t±〉 of equation (12),

ψ(t±) =
∫ ∞

0
〈t| ± p〉〈±p|ψ〉 . (21)

The squared magnitude of this projection is the desired quantum time probability density.
For the nonlinear oscillator, the quantum time probability density looks like the ones shown
in Fig. 9.
The time width of a given probability density that can be calculated with our procedure is
a static property. It is a consequence of a probability density having a non zero width on
phase–space in a particular set of coordinates. Other possibility is the time dependence and
time width due to the actual motion of the system.
The following is not possible for quantum systems, but a joint representation is obtained with
the joint eigen surfaces and densities of energy and time,

Σ±
ετ(z) = {z|H(z) = ε, t(z) = τ, ±p1 > 0 when τ = 0} , (22)

ν±ετ(z) = δ(z− Σ±
ετ(z)) . (23)

The energy-time representation of a classical probability density is then given by

ρ±(ε, τ) =
∫

dz ν±ετ(z)ρ(z) . (24)

This representation has no quantum counterpart because energy and time cannot be
determined simultaneously in quantum systems. An example of this representation is found
in Fig. 10 for the nonlinear oscillator.
We can say that functions like the classical energy or time eigenstates have been in use for a
long time now in an unnoticed way. We can rewrite a time dependent probability density in
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Fig. 8. Time eigendensity and representation for the nonlinear oscillator with a = 1, l = 2,
and k = 9.8. (a) Schematic representation of the overlap between a time eigenfunction and a
Gaussian probability density centred at (q, p) = (0,−1), and the time representation ρ±(T)
for (b) X = 0, (c) X the positive fixed point, and (d) for X = 2.2. Dimensionless units.

phase–space in terms of the phase–space and time eigenfunctions. The following shows this

ρ(z; t) =
∫

dz′δ(z′ − z)ρ(z′; t) =
∫

dz′δ(z′ − z)etL(z′)ρ(z′)

=
∫

dz′ρ(z′)e−tL(z′)δ(z′ − z) + b.t.

=
∫

dz′ρ(z′)νzt(z′) + b.t. , (25)

where

νzt(z′) = e−tL(z′)δ(z′ − z) , (26)

and b.t. stands for the boundary terms arising from the integration by parts (throughout the
text partial integration is used with the assumption that contributions from the boundaries
always vanish). These terms usually evaluate to zero because probability densities vanish at
the boundaries. What we have here is the motion of single points of phase–space weighted
by the density at the initial place of the points. This is a way of moving functions on
phase–space according to the motion of phase–space eigendensities, an integral operator form
of the classical propagator etL(z).
The classical time representation ρ(τ) can be written in terms of the initial time eigendensities
and the probability density at time τ, or in terms of the eigendensities at time τ and the initial
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Fig. 9. Quantum time representation of the Gaussian state e−(q−q0)2/4σ2−ip0(q−q0/2)/
√

σ
√
2π

centred at (q, p) = (0,−1), with σ = 0.2, and for the nonlinear oscillator. The zero–time
reference state is located at (a) X = 0, (b) X the location of the right fixed point, and (b)
X = 2. Dimensionless units.

probability density,

ρ(τ) =
∫

dz ντ(z)ρ(z) =
∫

dz ρ(z)e−τLH δ(z− Στ=0(z))

=
∫

dz δ(z− Στ=0(z))e
τLH ρ(z) + b.t. =

∫
dz δ(z− Στ=0(z))ρ(z; t) + b.t.

=
∫

dz ντ=0(z)ρ(z; t) + b.t. . (27)

Then, we do not need to propagate the time eigendensity and the probability density, only the
evolution of one of them is enough.

7. Collapse of probability densities

In the process known as the quantum collapse of wave functions, a quantum system
represented by the wave function |ψ〉 ends up in the eigenstate |g〉 of the operator Ĝ, with
probability |〈g|ψ〉|2, after a measurement of the quantity represented with the operator Ĝ.
This is a postulate of Quantum Mechanics introduced to ensure a continuity of measurements
when the same property of a quantum system is measured several times. This postulate seems
a bit awkward at first sight, but it can be understood in classical terms, as we will see in this
section.
A classical image of the quantum collapse process is one in which an apparatus selects from
the particles of an ensemble ρ(z) only the ones with a z that gives the observed value g of
G(z), reducing the domain of ρ(z) from T∗Q to Σg(z), i.e. ρ(z) → ρ(Σg). The probability of
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Fig. 10. Classical energy–time representation of a Gaussian density, centred at
(q, p) = (0,−1), for the nonlinear oscillator with a = 1, l = 2, k = 9.8, X = 0, and σ = .8.
Dimensionless units.

measuring the value g is ρ(g) =
∫
dzνg(z)ρ(z). Since the support of ρ is reduced to Σg, an

afterwards measurement of G(z) will return the expected value of g.
An example of this is the following. Let us assume that a beam of particles is travelling to
the right and that when this beam crosses the origin of coordinates, a disc with a hole in it is
rotating letting the crossing of only a part of the beam. The selected particles can be labelled
as having t = 0. We can assert that the selected particles will have a time t afterwards, and a
wide range of values of energy.

8. An application to the tunnelling through a potential barrier

A straightforward application of the results found in previous sections is the determination
of tunnelling times through a potential barrier. There are several ways of calculating
tunnelling transmission coefficients (Muga, 1991, Wigner, 1972, del Barco, 2007, Kobe, 2001)
and tunnelling times. We consider the calculation of tunnelling times that makes use of time
averages (Wigner, 1972, del Barco, 2007). Other approaches introduce a "tempus" variable, a
variable which is not related to physical time (Kobe, 2001).
Time eigenfunctions provide a sound basis for the use of a constant coordinate in the
calculations of time averages that Wigner and other authors use (Wigner, 1972, del Barco,
2007). Our results also show that it is not necessary to consider "initial conditions giving the
state of the system for all times but only for a single value of one of the spatial coordinates"
as Wigner required, because it is the time eigenstate the quantity that has that property, and it
can be determined.
In Quantum Mechanics, it is common the use of the average time, when the system is in the
state |ψ〉, in the determination of tunnelling times. According to equation (13), the average
time, at fixed position q1 = X, can be written in terms of the time eigenstates as follows

〈t(X)〉 ≡
∫
dt |ψ(X; t)|2t∫
dt |ψ(X; t)|2 =

∫
dt |〈t|ψ〉|2t∫
dt |〈t|ψ〉|2 =

∫
dt 〈ψ|t〉t〈t|ψ〉∫
dt 〈ψ|t〉〈t|ψ〉 ,

with X fixed. We note that the time eigenkets can be used to form projection P̂X and time
T̂X operators with them. These operators project onto the subspace that is available to wave
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functions that can depart or arrive at q1 = X. They are defined as

P̂X ≡
∫

dt |t〉〈t| , T̂X ≡
∫

dt |t〉t〈t| . (28)

With these operators, the time average, at fixed position, is written as the ratio

〈t(X)〉 = 〈T̂X〉
〈P̂X〉

. (29)

For the classical case, and according to equation (20), the average of time, for fixed q1 = X, is
defined as

t̄(X) =

∫
dt tρ(t)∫
dt ρ(t)

=

∫
dt t

∫
dz νt(z)ρ(z)∫

dt
∫

dz νt(z)ρ(z)
. (30)

We note that we need of two functions. One that collects the points that can arrive or depart
from q1 = X,

PX(z) ≡
∫

dt νt(z) , (31)

and another,

tX(z) ≡
∫

dt t νt(z) , (32)

which can be considered as a classical time probe function for the subspace determined by the
initial time surface Στ=0(z). With these definitions, the time average can be written as follows

t̄(X) =
〈tX〉
〈PX〉 , (33)

a result which is similar to the quantum average, equation(29).
The interpretation of the time distributions is that the time eigenstates are used as probe
functions that identify the amount of probability that has a particular value of time and sums
those contributions.
Thus, Wigner’s annotation concerns the time eigendensities. But this is no problem at all
because we know them for all time and single value of one of the spatial coordinates, initially.

9. Remarks

We can say that conjugate variables can be used to generate pairs of coordinate systems in
the phase–space of classical systems. The eigensurfaces of these variables might cover an
unbounded region of T∗Q and then can be used to write other dynamical quantities in terms
of them. A unit density with these eigensurfaces as support cannot be normalised and then
cannot be used as probability densities in T∗Q.
A similar thing occurs in quantum systems. The eigenstates of pairs of conjugate operators can
be used as vectors with which quantum states and operators can be represented. In general
the coordinate, momentum, or time eigenstates cannot be normalised. They are not part of
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the Hilbert space, so that they cannot be a wave function. However, they are needed so that
we can have a representation of other dynamical quantities.
There are many other aspects of Quantum Mechanics that can be analysed in the classical
realm. The classical analysis in the terms done in this chapter is useful because it shows that
many of the objects found in Quantum theory are also present in the Classical theory, and that
they are of help in the understanding of quantum phenomena.
In future work we will study other properties of quantum systems, like the meaning of
the Pauli theorem (Pauli, 1926), a theorem that prevents the existence of an hermitian time
operator.
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1. Introduction

The subject of this chapter is quantum chaos (QC), in particular, the QC that occurs in the
Anisotropic Kepler Problem (AKP). In QC, one studies a quantum system whose classical
counter part is chaotic, and one investigates how the chaotic property in the classical
theory shows up its imprints in the quantum theory. To elucidate this quantum-classical
correspondence is the first mission of the quantum chaos study.
With the advent of nanophysics techniques, QC has become very important concern also at
the experimental side; for pioneering works, we refer to conductance fluctuations in quantum
dot (Marcus et. al., 1992), magnetoresistance on a superlattice of antidots (Weiss et al., 1991),
a cold-atom realization of the kicked top (Chaudhury et al., 2009).
Also for an interesting experimental observation of quantum scars of classical orbits (Heller,
1984; 1989), we refer to (Stein & Stöckmann, 1992).
Furthermore, quantum chaos study has been developed under far-reachingmutual influences
with related areas. In order to explain where our study in AKP stands, let us briefly review a
few aspects of quantum chaos study.
Let us first consider the randommatrix theory (RMT) (Mehta, 2004). It is proposed by (Wigner,
1951) to predict the universal spectral property of complex nucleus, and the mathematical
basement is set by (Dyson, 1962), (Dyson & Mehta, 1963) and (Mehta & Dyson, 1963). In
RMT, the hamiltonian of the physical system is described by a random matrix in the three
basic ensembles. This implies that the intrinsic quantum property of the physical system is
determined by the time reversal symmetry and internal symmetry only, and does not depend
on the details of the system hamiltonian. If the time-reversal by the operator T is broken
in a system, the relevant ensemble is gaussian random ensemble of hermite matrices for the
hamiltonian, admitting the invariance of the hamiltonian under the unitary transformation
(GUE), with Dyson parameter β = 2. If the T invariance holds with T2 = 1, it is gaussian
orthogonal ensemble (GOE) of real symmetric matrices with β = 1 , while with T2 = −1,
it is gaussian symplectic ensemble (GSE) of quarternion selfdual matrices with β = 4. It is
conjectured by (Bohigas et al., 1984) that, irrespective to the details of the system hamiltonian,
the stochastic spectral property of energy levels of an physical system (including AKP) is
uniquely described by the relevant RMT ensemble chosen by the above symmetry property
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only, provided that the quantum system is in the ergodic regime (BGS conjecture). 1 This
conjecture2 most remarkably asserts universality classes in the whole lots of quantum chaos
systems, and has been successful in great many physical systems 3. Now, let us mention
a famous, though ever charming episode; a mathematician Montgomery was introduced to
Dyson at a tea time and explained his result on the spacing distribution of the non-trivial
zeros of Riemann zeta function. Then, Dyson immediately told that it is just what he knows,
the P(s) of GUE! Of course, one should also mention that the Gutzwiller trace formula that
enumerates the semi-classically quantum Green function of a classically chaotic system from
unstable periodic orbits has so close intriguing correspondence with the trace formula of the
Riemann zeta function (Bohigas, 2005). A deep correspondence between the Riemann zeta
function and the randommatrix theory is shown by the agreement between the Conrey-Ghosh
conjecture on the 2k-th continuous moment of ζ(1/2+ it) and Keating-Snaith random matrix
calculation. One of the most flourishing areas in physics is Anderson localization (Evers &
Mirlin, 2008) which is only understandable as a quantum phenomena from the interfering
amplitudes at the metal and insulator transition point. The critical statistics is a target of
critical random matrix theories. So much for general review and let us turn to AKP.
In this chapter, we calculate the energy level statistics of AKP, and find that it is described
well (over a finite range of mass anisotropy) by the critical random matrix model devised by
(García-García & Verbaarschot, 2003) that is also related to the critical level statistics in the
Anderson localization. We also investigate the systematic change of the AKP wave functions
with the mass anisotropy. In the Anderson localization, the theory predicts that at the mobility
edge, the wave function is multi-fractal, and the level statistics indicator Σ2(L) should show
a linear rise for large L that is also observed by our data. In this way, our study may give a
support to the recent notionAnderson localization in quantum chaos proposed by (García-García,
2007; García-García & Wang, 2008).
The AKP is a system of an electron bound to a proton, just like a hydrogen atom, but the
electron has an anisotropic mass. This system is experimentally realized by an electron in a
doped semiconductor. Gutzwiller, who made the periodic orbit theory by his semi-classical
trace formula, chose often AKP for a nice testing ground of QC (Gutzwiller, 1971; 1977;
1980; 1981; 1982; 1990). In fact, when mass anisotropy is not present, the system is the
hydrogen atom (the Kepler problem) that is one of the most well-studied integrable quantum
system. By varying the mass anisotropy parameter, the classical system changes the strength
of randomness. It is known that the AKP is not KAM system (García-García & Verbaarschot,
2003; Wintgen & Marxer, 1988) that means that the classical phase space, when the mass
anisotropy is present, is not a mixture of integrable regions (tori) and ergodic regions. Instead,
with the increase of the anisotropy, the system changes its classical phase space structure
due to the gradual collapse of tori, via the structure filled by cantori (Zaslavsky et al., 1991)
(stochastic web of chaos), finally to that filled by isolated unstable periodic orbits. Thus, AKP
is really a nice testing ground that gives us the opportunity to investigate how systematically,

1 The ergodic regime is defined by as the region with Ec >> Δ where Ec is the Thouless energy Ec =
h̄D/L2 (D is the diffusion constant and L is the system size) and Δ is the mean level spacing.

2 Recently, a generating function described by a set of periodic orbits is shown, in the semi-classical
limit, equivalent to the Feynman diagrams for the kernel in the random matrix theory (Heusler et al.,
2007). This clarifies the way the random matrix theory describes the quantum chaos system in the
semi-classical limit.

3 More detailed universality classification is given by (Zirnbauer, 1996).
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along with increasing anisotropy, the quantum feature changes reflecting the change in the
classical phase space structure. Any periodic orbits in AKP in the chaotic regime can be
uniquely coded by its own Bernoulli sequences and furthermoreGutzwiller found an amazing
approximate formula that gives the action of a periodic orbit from its Bernoulli sequences.
In this chapter we aim to view various faces of QC from AKP taking the above mentioned
advantages of AKP.
In section 2, we first calculate the energy levels of AKP at various anisotropy following the
method developed and first applied to AKP by (Wintgen et al., 1987). In this method, there is a
particular parameter ε (see (6)) and how to choose it at given anisotropy is crucial to guarantee
the accuracy of the levels. We use the Sturmian basis just as in (Wintgen et al., 1987) and we
present a couple of simple rules to choose the parameter at a given anisotropy. Also, we set
up another formulation based on the harmonic oscillator basis. This provides us with a useful
check of our results and, in addition, serves as an efficient method for calculating Husimi
function that is an important measure to explore the quantum and classical correspondence.
In section 3, we investigate the level statistics in AKP. There is a concrete result by (Wintgen
& Marxer, 1988) for the anisotropy parameter γ = 0.8 (only), but, in order to investigate
the quantum statistics change according to the the variation of γ, we definitely need reliable
eigenvalue set at various anisotropy too. This is why we have performed the eigenvalue
analysis from scratch as described in section 2. We now show for the first time how the number
variance and the spectral rigidity change their feature with the variation of mass anisotropy in
AKP. The AKP is a system that preserves the time reversal invariance with T2 = 1 and hence
its level statistics is expected to be described by GOE in the ergodic region (γ � 1), while in
the vicinity of Kepler limit (γ = 1), it should be Poissonian. We are interested in the physics in
the intermediate range. (García-García &Verbaarschot, 2003) showed that the level statistics of
AKP at one particular anisotropy is successfully explained by a critical random matrix theory
that has one parameter h (temperature in an equivalent model), using the eigenvalue set at
γ = 0.8 given by Wintgen only available at that time, provided that h is suitably chosen. We
show that the AKP level statistics can be well described by their critical randommatrix theory
in a finite range of γ in the intermediate region and show that there is a smooth relation
between the parameter h and the anisotropy γ (h ∝ e7.2γ).
In section 4, we now turn our attention to various interesting features of wave functions
of AKP. We discuss firstly the nodal line systematics. Then we investigate the probability
densities and find salient scars of periodic orbits. This observation is strengthened by
the subsequent study of Husimi functions of AKP calculated by the method developed in
subsection 4.3.
In section 5, we conclude after a briefly discussion on the future outlook of our work,
especially, on the possibility to consider quantum chaos in AKP in the context of Anderson
transition

2. Non-perturbative matrix method for the evaluation of quantum energy levels

2.1 WMB method
First we recapitulate the WMB method in the context of AKP (Wintgen et al., 1987; Wintgen
& Marxer, 1988) with the electron mass tensor diag(m1,m1,m2) when diagonalized and mass
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anisotropy parameter is γ = m1/m2 < 1. 4

Introducing appropriate dimensionless coordinates (x, y, z) and momenta (px , py, pz), the
AKP hamiltonian is

Ĥ = −
(

∂2

∂x2
+

∂2

∂y2
+ γ

∂2

∂z2

)
− 2

r
(1)

= −Δ(3) − 2
r
+ (1− γ)

∂2

∂z2
(2)

in the units h̄2K/m1e2, m1e4/2h̄
2K2, 2h̄3K2/m1e4 for length, energy, time, respectively(K is the

dielectric constant). One uses Sturmian basis {|n�m〉}

〈�r|n�m〉 = 1
r

√
n!

(2�+n+1)!e
− λr

2 (λr)�+1L2�+1
n (λr)Y�m(θ, ϕ). (3)

Here n, �, m are radial, azimuthal, magnetic quantum numbers respectively and they are
related to the principle quantum number np by np = n+ �+ 1. The parameter λ is introduced
for the scaling of r. (In the left hand side the dependence on λ is suppressed for simplicity).
Note for the eigen function with np in the Kepler problem (γ = 1), λ = 2/np. In the Sturmian
basis the Schrödinger equation of the AKP becomes a matrix equation:[

−λ
←→
Δ(3) + (1− γ)λ

←−−→
∂2/∂z2 − 2(

←→
1/r)

]
Ψ = (E/λ)

←→
Id Ψ (4)

where the eigenvector Ψ is Col.(〈n�m|Ψ〉), and the matrix elements are respectively

〈n′�′m′|←→Id |n�m〉 = δ�′�δm′m[2(n+ �+ 1)δn′n −
√
(n+ 1)(2�+ n+ 2)δn′n+1],

〈n′�′m′|
←→
Δ(3)|n�m〉 = (−1)n+n′+1 1

4
〈n′�′m′ |←→Id |n�m〉,

〈n′�′m′|
←→
1
r
|n�m〉 = δn′nδ�′�δm′m.

(The ∂2 term is somewhat complicated and we refer the reader to (Wintgen et al., 1987)).
Noting that the Coulombic interaction term is diagonal, while

←→
Id is not, one exchanges

them between right and left to obtain the standard eigenvalue problem. Dividing the whole
equation by λ one obtains

←→
M Ψ ≡

[
−
←→
Δ(3) + (1− γ)

←−−→
∂2/∂z2 − ε

←→
Id

]
Ψ = (2/λ)Ψ. (5)

Note that E/λ in the right-hand side of (4) is now (after divided by λ) changed into a
parameter ε in the left-hand side of (5), namely

E/λ2 ⇒ ε. (6)

This ε should be fixed at some constant value in the diagonalization of (5). This fixing is an
extremely clever way in WMB. We will explain this point shortly below.

4 For ordinary Kepler problem γ is unity; for silicon γ = 0.2079 and for germanium γ = 0.05134.
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The ’hamiltonian’ matrix
←→
M is symmetric and block diagonal; nonvanishing elements are

those with �′ = �+ 2 or �, and due to the rotational symmetry about z-axis m′ = m. Therefore
one can organize

←→
M as a banded and sparse matrix. By solving (5) for the eigenvalues Λi ≡

2/λi the energy levels are in turn determined by Ei = ελ2
i . This is the WMB method. In this

scheme (5), the eigen function 〈�r|Ψi〉 of the i-th level Ei is calculated from the eigen vector Ψi

using the Sturmian basis with parameter λi = (Ei/ε)1/2. To be explicit one calculates

〈�r|Ψi〉 = ∑
n,�,m

〈�r|n�m;λi〉〈n�m;λi|Ψi〉. (7)

This is in a sharp contrast to (4) where eigenstates of all energy levels must be calculated with
a uniquely chosen λ. With the flexibility of optimizing λi for each Ψi, WMB method (5) is by
far superior to (4). For instance, if γ ≈ 1, ε ≈ −1/4 is a good choice since at ε = −1/4
the Sturmian basis is already the proper basis for the first order perturbation theory for AKP
in 1− γ. 5 In fact we can accommodate various γ by adjusting ε properly. Supposing that
we choose another value for the parameter ε of the matrix

←→
M , the eigenvalues Λis will be

accordingly changed, but the physical energies Ei should be kept unchanged. However in
practice we cannot help using a truncated basis. We discuss how to accommodate this subtle
problem by adjusting ε shortly below.
Hereafter we focus our attention to the m = 0 sector that is related to the 2−dimensional
classical AKP. Also for definiteness we consider the case of even � case. With these constraints
the matrix

←→
M to diagonalize is N × N with N = (Np + 1)2/4 where Np is the maximal

principal quantum number of the Sturmian basis {|n�m〉} , i.e. np = n + � + 1 ≤ Np, (� ≤
np − 1).
We present in Fig. 1 the energy levels of m = 0 sector obtained by diagonalizing the
’hamiltonian’

←→
M in (5) with N = 7921 (Np = 177). The levels are plotted as functions of

the scaling parameter ε (see (5)) for typical values of anisotropy parameter γ, after proper
stretch (Bohigas, 2005) using Thomas-Fermi approximation N(E) for the stair case function of
AKP (Wintgen & Marxer, 1988)

N(E) ≡
∫ E

−∞
dE′ρ(E′) ≈ − 1

4
√

γE
(8)

where ρ(E) ≡ ∑i δ(E− Ei) is the level density. Given N(E), the stretched energy levels fi are
given by inversion (unfolding map (Bohigas & Giannoni, 1984));

fi = N(Ei), i = 1, · · · ,N (9)

and the average energy spacing 〈 fi+1 − fi〉 = 1. The levels must be independent from the
scaling parameter ε (level curves must be horizontal) in so far as the matrix formalism works
properly. (Recall that the WMB method is not a perturbation theory; it should yield exact
results if the matrix size N is infinity at any choice of ε.) However, at a glance, one finds that
the curves are under all over systematic distortion induced by truncating the matrix size. In
order to accommodate this, one should select the part of calculated energy levels that satisfy

5 At ε = −1/4 and γ = 1, λi = (Ei/ε)1/2 = 2/np so that L2�+1
n (λir) = L2�+1

n ((2/np)r) is the main radial
part of the eigenfunction of the Kepler problem.
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γ = 0.4 γ = 0.2 γ = 0.05

γ = 0.9 γ = 0.8 γ = 0.6

Fig. 1. Stretched level curves fi at every 200 level along with the good domain on the fi − ε
plane. Np =177, N = 7921, �=even, m=0. Sky- and dark-blue mountain-like curves account
for necessary conditions 1 and 2 respectively and the bulk under the curves satisfies
sampling test (e.g. Fig. 2). In order to make curves, diagonalization is performed for each γ
and for thirty values of scaling parameter ε ranging from −0.3 to −0.01 with inclement 0.01.
The green dashed curve connects the minimum point of fi and hits naturally the peak of the
mountain. The level group with level-repulsion property is marked by red; these groups
together remarkably overlap the domain for any γ (except the one γ = 0.9 > 8/9). For
discussion on this, see subsection 3.1.

the following condition:
Condition 1: The level curves must be all horizontal. This is a necessary condition. In each diagram
for respective γ the region under the (sky-blue) mountain-shaped curve is the good ε-scaling
region.
One must consider one more condition. Recall that the spectrum (Ei) is stretched by
Thomas-Fermi formula. If this procedure is valid the resultant spectrum ( fi) must satisfy
δ fi ≈ 1 apart from local fluctuations. Let us put this into a quantitative form;
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Condition 2: The |〈δ fi〉n − 1| � 0.05 .6 Here n labels one of the 40 groups that the whole levels
are divided into by ascending order. The region under the (dark-blue)mountain-shaped curve
is the successfully stretched region. One observes a good overall agreement between two-types
of regions, which gives a strong support for the celebrated WMBmethod. The bulk under the
mountain-shaped curves in the fi − ε plane in Fig. 1 is a candidate region for the study of level
statistics satisfying both of necessary conditions. Let us call it the good domain.
Nowwe have to proceed a step forward; the energy levels are under subtle fluctuation and we
must examine the level statistics (for each anisotropy γ) in order to understand the quantum
AKP theory. Does the good domain maintain a unique level statistics?

(a)

(b)

(c)

Δ
3(

L
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GOE
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0 5 10 15 20
L
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Σ
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L
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(c)

0.8

0.4

0

0.8

0.4

0

0.8

0.4

0

(a)

(b)

(c)

GOE

P
(s

)

s

Poisson

Fig. 2. Comparison of the level statistics P(s), Σ2(L), Δ3(L) sampled at regions (a), (b), (c).
Note that graphs for the latter two statistics are properly shifted to avoid their overlap. The
vertical axis is for (c).

Fig. 2 exhibits a sample of test. Here we have selected three regions (a, b, c), each consists of
a thousand levels (5 groups) at a given ε. The comparison of the level statistics (Dyson, 1962;
Dyson & Mehta, 1963; Mehta, 2004) in this figure succinctly shows that there is no sizable
difference of the statistics with respect to any one of the three statistical characteristics; the
spacing distribution P(s), the number variance Σ2(L) and the spectral rigidity Δ3(L). (For
details of these quantities, see later discussion.) Repeating this test all over the good domain,
we have checked that any region in the goodmain is equally satisfactory for the level statistics.
Now we are in the position to propose a prescription to determine the proper ε for the
eigenvalue analysis on the WMB method;

6 We checked that the accepted region does not vary more than one group in height (200 levels) even if
the bound is replaced by 0.1. On the other hand if the bound is decreased the region becomes sparse
because of the tail of the P(s) distribution. The averaging over the group acts to suppress this.
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Prescription for ε: Choose the ε value that gives the maximum height of the good domain; then one can
determine the largest number of levels at the given γ and at the given matrix size N. This ε is the best.
We denote it ε∗.

2.2 Regularities regarding the best choice for ε

We have found the following empirical regularities regarding ε∗.
(i) Fig. 3 shows the relationship between γ and ε∗. Data points clearly follow a linear line

described very well by
ε∗ � (−1/4)γ. (10)

0 0.2 0.4 0.6 0.8 1

0

−0.05

−0.1

−0.15

−0.2

−0.25

γ

ε*

Fig. 3. The ε∗ vs. γ.

(ii) Consider the ratio Re f f of the number of eigenvalues that satisfy conditions (1) and (2)
to the number of whole levels N at ε∗. This is an indicator that tells us how much levels
among all are really usable for the investigation of quantum level statistics. Fig. 4 shows
plotted Re f f as a function of γ. We find it is described very well by

Re f f � c
√

γ. (11)

Here c = 1 with an error of only one per cent.

We have checked that these observations do not depend on the matrix size N. For instance, the
small set N = 1444(Np = 75) shows the same features with the large set N = 7921(Np = 177).
This independence assures the following planning of the AKP diagonalization using theWMB
method. Using (10) as a rule of thumb, we can first easily estimate the appropriate ε∗ that is
appropriate for a given anisotropy γ. Then using (11), we can estimate the necessary matrix
size N for obtaining desired number of energy levels. For instance, if one wants to examine the
germanium (silicon) levels with γ ≈ 0.05 (0.2), then Re f f = 0.23 (0.46) at ε∗ = −0.01(−0.05).
Then, to obtain first say 2000 reliable levels in the � =even and m = 0 sector, one has to choose
N ≈ 8800(4400). On the other hand, for γ = 0.8, the appropriate ε∗ now becomes −0.2 and
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Fig. 4. Ratio of reliable levels vs. γ.

Re f f = 0.9. 7 Regularities (10) and (11) are remarkably simple. It is obvious that the ε∗ curve in
Fig. 3 starts from ε = −1/4 at the Kepler limit (γ = 1) because, as we discussed below (7), the
Sturmian basis is already the proper basis for the first order perturbation theory for AKP. This
curve presumably represents the effect of truncating the basis in the WMB diagonalization.
(10) and (11) are tantalizing.

2.3 Application of harmonic oscillator function basis to AKP
Harmonic oscillator function basis is quite useful for quantum chaos study through Husimi
function (Husimi, 1940) and we discuss here the application of it to AKP. The formulation is
almost parallel to that in subsection 2.1; main difference stems in the interaction terms. Let us
introduce the semi-parabolic coordinates μ, ν, φ by

μν = ρ =
√

x2 + y2,
1
2
(μ2 − ν2) = z, φ = tan−1

( y
x

)
. (12)

The AKP Schrödinger equation in terms of semi-parabolic coordinates is

[
− 1
2(μ2 + ν2)

(
Δ(2)

μ + Δ(2)
ν

)
+

1− γ

2
∂2

∂z2
− 2

μ2 + ν2

]
|Ψ〉 = E|Ψ〉. (13)

7 The level statistics of AKP at γ = 0.8 were studied in the seminal paper (Wintgen & Marxer, 1988)
but the choice of ε was not written there regrettably. Also no other data were published for other γ.
In an earlier article (Wintgen et al., 1987) (the paper of WMB method), the low lying levels of silicon
(γ = 0.2079) and germanium (γ = 0.05134) had been presentedwith the explicit statement of ε = −0.01
for both cases. This led us to some confusion at the early stage of this work, because, for γ = 0.8, the
proper choice is ε ≈ −0.2 much smaller than ε = −0.01. Our level statistics results for γ = 0.8 agree
with those in (Wintgen &Marxer, 1988) within errors; therefore we believe that ε was adjusted properly
in (Wintgen &Marxer, 1988). We add that the best choice for Silicon is ε = −0.05 rather than ε = −0.01;
this enhances Re f f approximately by factor 3. At these circumstances we revisited the whole level
calculation and construct Fig. 1 (plus a dozen diagrams for other anisotropy).
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Multiplying by μ2 + ν2 and exchanging the Coulombic interaction term and the E term
between the right and left hand sides, one obtains

[
− 1
2

(
Δ(2)

μ + Δ(2)
ν

)
+ |E|(μ2 + ν2) +

1− γ

2
(μ2 + ν2)

∂2

∂z2

]
|Ψ〉 = 2|Ψ〉. (14)

Thanks to the semi-parabolic coordinates, the Coulombic singularity has removed
(Kustaanheimo & Stiefel, 1965) (for γ = 1).
One has now two of two-dimensional harmonic oscillators coupled by an interaction term
(μ2 + ν2)∂2/∂z2 introduced by the mass anisotropy in the original problem. Let us call
the oscillators as μ− and ν− oscillators respectively. The proper basis for each oscillator is
the harmonic oscillator basis and for two of them one uses tensor product of these bases.
The μ− harmonic basis {|j,m〉} is defined as eigenstates of the Schrödinger equation for the
two-dimensional harmonic oscillator(

− 1
2

Δ(2)
μ +

1
2

μ2
)
|j,m〉 = (2j+ 1+ |m|) |j,m〉 (15)

and the polar-coordinate representation of normalized |j,m〉 is given by

〈μ,φμ|j,m〉 ≡ ψjm(μ, φμ) =
1√
π

√
j!

(j+ |m|)! e
imφμL|m|

j (μ2)e−
μ2

2 μ|m|,

∫ ∞

0
μdμ

∫ 2π

0
dφμ〈j′,m′|μ,φμ〉〈μ,φμ|j,m〉 = δjj′δmm′ . (16)

For the m = 0 sector of AKP, one should set mμ = mν = 0 and one uses tensor basis

|i, j〉 ≡ |i,mμ = 0〉 ⊗ |j,mν = 0〉,
|μ, ν〉 ≡ |μ,φμ = 0〉 ⊗ |ν, φν = 0〉,

〈μ, ν|i, j〉 ≡ ψi0(μ)ψj0(ν) =
1
π
Li(μ

2)Lj(ν
2)e−

μ2+ν2

2 . (17)

In order to use WMBmethod let us modify basis {|i, j〉} by introducing a scaling parameter κ.
One replaces μ2/2 and |j,m〉 by κ2μ2/2 and |j,m, κ〉. This leads to a modified basis {|i, j, κ〉}
with

〈μ, ν|i, j; κ〉 = κ

π
Li(κμ2)Lj(κν2)e−κ

μ2+ν2

2 . (18)

With this basis (14) is written as the matrix equation

∑
i′′,j′′

〈i′, j′; κ|
{
− 1
2

(
Δ(2)

μ(rad) + Δ(2)
ν(rad)

)
+ |E|(μ2 + ν2) +

1− γ

2
(μ2 + ν2)

∂2

∂z2

}

|i′′, j′′; κ〉〈i′′, j′′; κ|Ψ〉 = 2〈i′, j′; κ|Ψ〉. (19)

One finds

〈i′, j′; κ|μ2|i, j; κ〉 = 1
κ3

〈i′, j′; 1|μ2|i, j; 1〉 (20)
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and corresponding scaling property of other terms are κ−2, κ−1, κ−1 for 1, Δ(2)
μ(rad), (μ

2 +

ν2)∂2/∂z2 respectively. Using this scaling, (19) is transformed into

∑
i′′,j′′

〈i′, j′; 1|
{
− 1
2

(
Δ(2)

μ(rad) + Δ(2)
ν(rad)

)
+

|E|
κ2

(
μ2 + ν2

)
+

1− γ

2
(μ2 + ν2)

∂2

∂z2

}
|i′′, j′′; 1〉

×〈i′′, j′′; κ|Ψ〉 = 2
κ
〈i′, j′; κ|Ψ〉. (21)

The matrix elements for the first two terms are

〈i′, j′; 1|
(

μ2 + ν2
)
|i, j; 1〉 =

[
(2i + 1)δi′ iδj′ j − (i+ 1)δi′ i+1δj′ j − iδi′ i−1δj′ j

]
+

[
i ↔ j

]
,

〈i′, j′; 1|
(

Δ(2)
μ(rad) + Δ(2)

ν(rad)

)
|i, j; 1〉 = (−1)i

′+j′+i+j+1〈i′, j′; 1|
(

μ2 + ν2
)
|i, j; 1〉. (22)

Matrix elements of the third term 8 needs tedious but straightforward calculation 9.

1
4
D ∂2

∂z2
〈μ, ν|i, j〉=

{
−
(

1
D2+

1
D
)(

(i− j)(μ2−ν2)+2μ2ν2
)
+

μ2ν2−2ij
D +

1
4
(μ2+ν2)

}
〈μ, ν|i, j〉

+

[
i
(

μ2 − ν2

D2 +
2j− ν2

D
)
〈μ, ν|i− 1, j〉

]
+

[
μ ↔ ν, i ↔ j

]

− 2ij
D 〈μ, ν|i− 1, j− 1〉, D ≡ μ2 + ν2 = 2r

and the necessary integration formula is

∫ ∞

0
μdμ

∫ ∞

0
νdν

μ2bν2c

(μ2 + ν2)a
Ln′ (μ2)Ln(μ

2)Lm′(ν2)Lm(ν
2)e−(μ2+ν2),

(a ∈ {0, 1, 2}, b ∈ {0, 1}, c ∈ {0, 1}).
(23)

The case a = 0 is straightforward; for a = 1, 2, one uses the integral of the type

Ln(βx) =
n

∑
k=0

(
n
k

)
βk(1− β)n−kLk(x).

Now that we have obtained the matrix elements, our procedure goes parallel to that in
subsection 2.1. Corresponding to (6) we introduce the parameter

ε̃ = 2
|E|
κ2

. (24)

8 For diamagnetic hydrogen case, the corresponding term is B2(μ4ν2 + μ2ν4) (Müller & Wintgen, 1994)
and easier to calculate.

9 It can be useful to formulate with the creation and annihilation operators. Details will be discussed in
our forthcoming paper.
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Then one can solve (21) as the standard eigenvalue problem and can obtain eigenvalues Λn =
2/κn . Energy levels are determined by

En = − κ2n
2

ε̃ = − 2
Λ2

n
ε̃. (25)

It is found numerically that the best value of ε̃ satisfies

ε̃∗ = γ (26)

which is similar to (10). Finally we should add that we have found precise agreement between
our calculations by the Sturmian basis and by the harmonic oscillator basis. 10

3. Quantum level statistics in anisotropic kepler problem

3.1 Level repulsion
Let us first look at the nearest neighbor level spacing distribution P(s) that is the probability
for the nearest neighbor level appears at the distance sΔ. Here Δ is the mean level spacing
and after the stretch (9), Δ = 1 in this subsection. First we recollect the RMT predictions.
For γ near 1 the overlap of wave functions are negligible and P(s) is expected to be Poisson.
The mean squared deviation (MSD) of level spacings is then unity. On the other hand, for
large anisotropy, the wave function overlap is sizable and quantum levels repel each other.
Especially at the ergodic limit, the statistics is expected to be Wigner-Dyson(WD) statistics.
Since AKP respects time reversal invariance, one expects the limiting level statistics is WD
with β = 1 (GOE). (BGS conjecture). At this limit, the RMT prediction for the MSD of level
spacing is as low as 4/π − 1 = 0.273 · · · .
With this theoretical expectation in mind, let us first try a coarse analysis to obtain rough idea
on where the level statistics is like WD distribution using data on P(s). As the limiting MSD
is 0.273, we set a condition MSD � 0.28. We indicate in Fig. 1 by vertical lines the regions
where this condition is met. Here we observe that, except for γ = 0.9 (the first panel), whole of
the region of reliable data (the region under the mountain) remarkably satisfy the condition,
while other region does not. This indicates some consistency in our analysis. But, of course,
looking only at the second moment is insufficient to tell the real shape of the distribution is
like-WD.
Therefore, in order to step forward, we have calculated the P(s) from our data extensively.
In Fig. 5, we show real P(s) distribution at γ = 0.9, 0.8, 0.7 as samples and compare with
the prediction at limits (Poisson and GOE). We find that for γ � 0.7 the P(s) is WD, and
around γ ∼ 0.8 a small deviation fromWD starts. (But still satisfies above like-WD criterion).
Now the P(s) at γ = 0.9 is sizeably deviated from WD distribution. This explains why the
like-WD criterion is not met at γ = 0.9. Furthermore, the deviation occurs mainly around
s = 1 and remarkably the level repulsion still persists (P(s) ∝ s). From this, it seems that
AKP is not a system to have the Berry-Robnik distribution (Berry & Robnik, 1984) in which
the P(0) takes finite value depending on the partition of regular and chaotic orbits and rather
a system that follows the stochastic approach (Hasegawa et al., 1988; Yukawa & Ishikawa,

10 For instance, E1800 = −0.00018114433 and E1800 = −0.00018114418 for Sturmian and harmonic basis
calculation respectively.
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1989). The persisting repulsion at the transitive region reminiscent to the fact that, in the
Anderson transition, not only in the metallic phase but also at the mobility edge the level
repulsion occurs (Fyodorov & Mirlin, 1997). Noting that AKP is not a KAM system, it would
be interesting to look at the change of the behavior of P(s) near γ = 1 though it is difficult to
apply proper stretch there.
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Fig. 5. Nearest neighbor level spacing distribution of AKP for γ = 0.9, 0.8, 0.7.

3.2 Level statistics as seen by Σ2(L) and Δ3(L)
As further statistical quantities one can consider the number variance Σ2(L) and the spectral
rigidity Δ3(L). These are both related to the level density-density correlation functions and
suitable to the test for the RMT predictions. The number variance is defined as

Σ2(L) =
〈
(n̂(L, E)− L)2

〉
(27)

and the spectral rigidity 11 by

Δ3(L) =
〈
1
L
min
{A,B}

∫ L/2

−L/2

(
N̂(E+ x)− Ax− B

)2 dx〉 . (28)

Here n̂(L, E) is the number of (unfolded) levels within the band with L around E, N̂(E) is
the stair case function, and 〈· · ·〉 implies the spectral average. Because both Σ2(L) and Δ3(L)
are derived from the two-point correlation functions, they are related by the Pandey relation
(Pandey, 1979)

Δ3(L) =
2
L4

∫ L

0
(L3 − 2rL2 + r3)Σ2(r)dr. (29)

This gives, for the Poisson statistics (independent levels), Δ3(L) = L/15 from Σ2(L) = L. As
a map from Σ2(L) to Δ3(L), this gives enhanced weight for the low L side of Σ2(L).
In Fig. 6, we present for the first time the Σ2(L) and Δ3(L) for various anisotropy (γ =
0.85, 0.8, 0.7). Prediction by RMT (GOE) is also shown;

Σ2(L) =
2

π2

[
log(2πL) + γE + 1− π2

8

]
, (30)

Δ3(L) =
1

π2

[
log(2πL) + γE − 5

4
− π2

8

]
, (31)

11 Δ3(L) was first introduced in (Dyson & Mehta, 1963) and studied in terms of the periodic orbit theory
(Berry, 1985). The useful formulation for the numerical computation is found in (Bohigas & Giannoni,
1984).
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for large L and in the small L region we give numerical estimate.
For γ = 0.6 and lower, the statistics become indistinguishable from the GOE.
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Fig. 6. Number variance Σ2(L) and spectral rigidity Δ3(L)) of AKP at γ = 0.85, 0.8, 0.7
calculated from 2501 to 12500 levels with � = even, m = 0, N = 19321(Np = 277). The solid
curves exhibits the prediction by the generalized GOE model (García-García & Verbaarschot,
2003) at h = 0.160, 0.114, 0.034 for Σ2(L) and h = 0.178, 0.128, 0.032 for Δ3(L) respectively.

3.3 Critical random matrix theories
There is an important model by García-García & Verbaarschot (2003) (we call it GV model)
of the critical level statistic for the T invariant system. It is an extension of the generalized
GUE (Moshe et al., 1994) to generalized GOE. This extension is successfully performed by
two threads of ideas; a map to the Calogero-Sutherland (CS) model (Calogero, 1969a;b; 1971;
Sutherland, 1971a;b), which avoids the difficult integration over matrices in the GOE case, and
the use of Kravtsov-Tsvelik (KT) conjecture for the density-density correlation function of the
CS model in the low temperature limit (Kravtsov & Tsvelik, 2000).
The model is defined by the joint probability distribution

P(S, b) =
∫

dMe−
1
2 TrSS

T
e−

b
2 Tr[M,S][M,S]T, (32)

where the matrices S and M are both N× N and real symmetric and orthogonal respectively.
This is a one-parameter model; the parameter b interpolating two statistics. At b → 0, the
model becomes GOE (P(S) ∼ e− 1

2 TrSS
T
). At b → ∞, such S dominate that commute with

arbitrary diagonal orthogonal matrices, i.e. the Poisson ensemble. The critical statistics is
obtained if b is scaled as b = h2N2 for the large N limit.
The joint distribution of the eigenvalues x ≡ (x1, x2, · · · , xN) of S is given by

ρ(x) = Δ(x)
∫

dMe−
2b+1
2 TrS2+bTrSMSMT

(33)
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where Δ(x) = ∏i<j(xi − xj). Now, by considering the propagator of the matrix S in the
imaginary time τ (Zirnbauer & Haldane, 1995), one obtains

〈x|e−τĤCS;λ=1|x〉 = C
∫

dMe−
ω

2 sinhωτ [TrS
2 coshωτ−TrSMSMT] (34)

where ĤCS;λ=1 in the left-hand side is the CS hamiltonian 12 with λ = 1. Therefore, by
comparing (33) and (34), one finds that the joint eigenvalue distribution of GV model is given
by the diagonal matrix elements of the N-particle density matrix of CS model at an inverse
temperature τ given by the identification ω/sinhωτ = 2b, ω coshωτ/sinhωτ = 2b+ 1.
The KT conjecture gives the low temperature limit of connected density-density correlation
function of CS model at λ = 1 as

RT
2,c(x, 0) = −(KT(x, 0))2 −

(
d
dx

KT(x, 0)
) ∫ ∞

x
KT(t, 0)dt (36)

where KT(x, 0) = Tsin(πx)/sinh(πxT) is the kernel of CS model for λ = 2 and T = πh/2.
(García-García & Verbaarschot, 2003) suggests to replace it by its finite temperature analog
(Moshe et al., 1994) and then the unfolded spectral kernel is given by 13

KT
(x, 0) =

√
h
∫ ∞

0

cos(πx
√
ht)

2
√

t

1
1+ z−1et

dt. (37)

From the density-density correlation function (36) with (37) one can calculate Σ2(L) by

Σ2(L) = L+ 2
∫ L/ρ(0)

0
ds(L− s)RT=πh/2

2,c (s, 0) (38)

and the spectral rigidity Δ3(L) through the Pandey relation (29). The above summarizes the
work by García-García & Verbaarschot (2003).
Now we are in a position to compare their predictions with the AKP data with respect to
the variation of γ. We have verified, first of all, the AKP data of Σ2(L) and Δ3(L) satisfy
the Pandey relation in order to guarantee that AKP levels are normal statistical set (Pandey,
1979). Now in order to test that the GV model can explain Σ2(L) and Δ3(L) coherently, we
have performed a one parameter fit, at each γ, for the best h that explains Σ2(L) data and
Δ3(L) data independently. Since the Σ2(L) soon shows large fluctuation for large L, we have
limited to L � 5 for the Σ2(L) fit, and used L � 20 for the Δ3(L) fit. The level set we used is the
largest one that is obtained by the diagonalization of 19321 × 19321 (Np = 277) hamiltonian
matrix (at each γ) and we used the reliable 104 levels starting from 2501-th.
The result exhibited in Fig. 7 succinctly shows that the GVmodel well describes the AKP data
in the range of γ from 0.75 up to 0.9. The discrepancy between the Σ2(L) fit and Δ3(L) fit is

12 The CS hamiltonian is

ĤCS = −∑
j

∂2

∂x2j
+

λ

2

(
λ

2
− 1

)
∑
i �=j

1
(xi − xj)2

+
ω2

4 ∑
j
x2j . (35)

13 A typographical error in equation (30) of García-García & Verbaarschot (2003) is corrected in their
arXiv:cond-mat/0204151(version 2) and we have corrected for it in (37).
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Fig. 7. The parameter h in the critical random matrix model (García-García & Verbaarschot,
2003) as determined by number variance (box with solid error bar) and by spectral rigidity
(triangle with dashed error bar).

negligible. The parameter h is related to the temperature T of the CS model as T = πh/2.
We note that the correspondence between h and anisotropy γ is well described by a simple
approximation

h ∝ e7.2γ. (39)

In the physics of Anderson transition, a finite size scaling analysis turns out vital to scrutinize
the phase transition point (García-García & Wang, 2008; Shklovskii et al., 1993). In order to
compare with it, we are now trying a similar analysis using our results at various sizes. So
much for the eigenvalues. Now let us turn to the wave functions.

4. Wave function features in anisotropic kepler problem

Here we describe three important features of AKP wave functions. Firstly, we show the
systematic increase of the complexity of wave function nodal lines ({r|Ψi(r) = 0}) with the
increase of the anisotropy 1− γ. Secondly, the probability density |Ψi(r)|2 is investigated and
it is shown that salient scars of periodic orbits are observed. Thirdly, we describe the method
to evaluate Husimi functions using the basis given in subsection 2.3 and compare the Husimi
distributions with the Poincaré section of the above scarring periodic orbits.

4.1 Nodal lines of AKP wave functions
The systematics of nodal lines of the eigenfunction of the laplacian operator has long history.
For instance, we can find an amazing example in (Courant&Hilbert, 1953) of a self-avoiding
long nodal line of an eigenfunction of a laplacian, that propagates in the whole rectangle only
by itself (Fig. 8).
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Fig. 8. The nodal line of an eigenfunction u(x, y) = sin(2rx) sin y+ μ sin x sin(2ry) of an
eigenvalue problem Δu+ λu = 0 in the square region S ≡ [0,π]2 with Dirichlet boundary
condition u|∂S = 0 with eigenvalue λ = 1+ 4r2. Left: μ = 1 and right: μ = 0.96. r = 6 is
chosen to reproduce the figures in (Courant&Hilbert, 1953).

In general, the nodal line for the wave function in the non integrable case is self-avoiding. At
the would be crossing, the function must be zero, and also it must be a saddle point. Both
conditions can be met only coincidentally. We refer to (Gutzwiller, 1990) for nodal lines.
Also we refer to a recent interesting example, the nodal line of the Maass wave form on
modular surface PSL(2,Z) \ H calculated by (Hejhal & Rackner, 1992) and the increase of
the complexity at higher eigenvalues.
In Fig. 9 we exhibit the nodal line of AKP wave function Ψ438(r) at γ = 1, 0.95, 0.8, 0.2. 14 One
observes that even a small anisotropy, the crossings of nodal lines at the integrable limit (γ =
1) are resolved. With increasing anisotropy, nodal loops are created, and nodal lines increase
their complexity. In the ergodic region (γ = 0.2), nodal lines become very complex. It seems
that nodal lines in the large anisotropy region show some fractal structure. (Compare the
right magnified diagram with the left one at γ = 0.2.) We are pursuing this issue introducing
manifold with smoothened Coulomb singularity. The relation between the multi-fractality of
wave functions (see section 5) is also under survey.

4.2 Large value of wave functions and periodic orbits
Let us try a straight forward comparison between the probability distribution of the AKP
electron predicted by the wave function and periodic orbits. We have constructed and scanned
|Ψi(r)|2 for all of the wave functions up to some 5000-th level for anisotropy γ from 0.05 to
0.98. For intermediate γ (0.85 − 0.5), the pattern varies level by level almost randomly, but
we observe that there are recognizably characteristic patterns (around ten or so) that appear
repeatedly. If we pick one level at random, and calculate its |Ψ(r)|2, the pattern is similar to
one of the characteristic patterns or a combination of a few of them. On the other hand, for
higher anisotropy γ < 0.5, the probability pattern becomes so complex that we cannot identify
characteristic pattern.
In Fig. 10, we exhibit two of characteristic patterns at γ = 0.6, |Ψ438|2 and |Ψ579|2 on the μ-ν
plane. We have already stored periodic orbits by increasing order of the Bernoulli coding up
to 8 binary digits. (For this task we benefited from a paper (Gutzwiller, 1981) which gives
classification of AKP periodic orbits considering time-reversal and symmetries around axes.)
In the figure selected periodic orbits that run on the μ-ν plane along the large value region

14 The choice of the energy is just to guarantee the visibility of the nodal line. One could choose equally
Ψ12500(r) and the calculation of nodal lines is equally possible.

97Anisotropic Kepler Problem and Critical Level Statistics



18 Will-be-set-by-IN-TECH

(b) γ=0.95(a) γ=1 (c) γ=0.8
z

x

(e) γ=0.2(d) γ=0.2

z

x

z

x
z

x

z

x

Fig. 9. Nodal lines of the AKP wave function Ψi(r) with i = 438 in the sector � = even, m = 0
in the x− z plane. (z axis, vertical, is the heavy axis). γ = 1, 0.95, 0.8, 0.2 for (a), (b),(c), [(d),
(e)] respectively. The energies are approximately equal for all, and for the integrable case (a)
Ψnp=41,�=20,m=0(r) is chosen among the degenerate levels. Two diagram are shown for
γ = 0.2. The right is a magnified plot of r ≤ 0.2 part of the left one.

of the probability distribution are also exhibited. These are the scarring orbits in the sense of
(Heller, 1984; 1989). It seems that the association of one periodic orbit(PO) to one probability
distribution is not ad hoc, since with the change of γ, both PO and large value region change
keeping the association. This observation takes the advantage of one-parameter characteristic
of AKP and we are consolidating this.

4.3 Husimi function and Poincaré surface of section
Husimi function for |Ψn〉 is

WHus
Ψn

(q0,p0) = |〈CHS|Ψn〉|2 =
∣∣∣∣∣∣∑i,j 〈CHS|i, j; κn〉〈i, j; κn |Ψn〉

∣∣∣∣∣∣
2

. (40)

Here |CHS〉 denotes the coherent state, a Gaussian packet centered at (q0,p0) and width b

〈q|CHS〉 = 1√
πb

eip0·q− (q0−q)2

2b2 . (41)
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Fig. 10. AKP probability distributions in the μ − ν plane. γ = 0.6, m = 0, � =even. Left:
|Ψ438(r)|2. Right: |Ψ579(r)|2. Scarring short periodic orbits are also exhibited. Left: the
primary periodic orbit (+−). Right: (+ +−−) and (+ +−+−−) exhibited by red and
green respectively. Surrounding yellow circle shows the boundary of the classical motion.

Following (Müller & Wintgen, 1994) we obtain

|CHS〉 = |Iμ, ημ〉b ⊗ |Iν, ην〉b

=
1√

I0(Iμ)I0(Iν)
∞

∑
j,k=0

(−1)j+k
(

Iμ
2

)j ( Iν
2

)k e2i(jημ+kην)

j!k!
|j, k; 1/b2〉 (42)

where |j, k; 1/b2〉 is given by (18) with κ = 1/b2. In Fig. 11 we exhibit the Husimi function
of Ψ438 and Ψ579 on the μ-pμ plane. (The same wave functions with Fig. 10). We observe
that the Poincaré section of periodic orbits that are associated with the large probability
distributions in Fig. 10 (the scarring orbits) is now clearly sitting in the midst of the large
value region of Husimi function (creating scars). It is interesting to note that the fundamental
periodic orbit which creates a strong scar in Ψ438 seems to be creating an anti-scar in Ψ579
and the same contrast holds for other two PO’s too. We finally mention that the patterns in
Fig. 11 are remarkably reminiscent of the classical phase space structure presented in Fig.
1 of the seminal paper (Wintgen & Marxer, 1988). We are now extensively studying the
correspondence between the quantum and classical phase space structures.

5. Future outlook

We discuss here two of currently pursuing problems.

5.1 Physics of quantum chaos and Anderson localization
For one thing, we contemplate to investigate the relation of quantum chaos to the Anderson
localization — a very extensively studied branch of quantum physics (see for instance, Evers
&Mirlin (2008)). Themulti-fractality of AKPwave function was conjectured by (García-García
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Fig. 11. Husimi function at Poincaré surface of section defined by ν = 0 for Left:Ψ438(r) and
Right:Ψ579(r). γ = 0.6, m = 0, � =even. White regions indicate large value. The Poincaré
shots of scarring short periodic orbits in Fig. 10 are superposed. Surrounding yellow circle
shows the boundary of the classical motion.

& Verbaarschot, 2003) and AKP was considered as a candidate system to test an interesting
scheme Anderson transition in quantum chaos by (García-García, 2007).
The general picture of Anderson localization is as follows (Fyodorov & Mirlin, 1997). At the
metallic phase, a typical wave function is extended, the overlap of wave functions of nearby
energy levels leads to the repulsion, and the statistics is WD. Approaching the Anderson
transition point Ec, the wave functions show up multi-fractal structure. The level statistics
deviates from WD, but remarkably the repulsion still persists, which is an intrinsic feature of
quantum dynamics of Anderson localization. The statistics at the transition point (the mobility
edge), the critical level statistics, is just between WD and Poisson. Passing the transition point
into the insulator side, the wave functions become well localized, the overlap is negligible,
and the level statistics is Poisson.
Now we have seen, in the quantum chaos study of AKP, a very similar phenomenon (see
Table 1).

Anderson localization level statistics quantum chaos (AKP) classical AKP

insulator Poisson γ � 1 (decaying tori?)
Mobility Edge critical statistics 0.75 � γ � 0.85 Cantori (Web of chaos)

metal Wigner-Dyson γ � 0.6 isolated unstable P. O.s

Table 1. Anderson localization and quantum chaos (AKP).

In order to consolidate this correspondence, a crucial test would be the verification of the
multi-fractality of wave function in AKP in the region of critical level statistics.
The multi-fractal nature of the wave function at the mobility edge is reflected in the
compressibility of the energy levels as seen as the one-dimensional gas

Σ2(L) = χL (L � 1) (43)
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where χ is a constant less than one. (For Poisson statistics, Σ2(L) = L and χ = 1, while for
WD statistics, Σ2(L) = c log(L) and χ = 0, see (30) ). The value of χ is exactly expressed by a
formula derived by Chalker et al. (1996a)

χ =
d− D2

2d
(44)

where d is the system dimension and the multi-fractal dimension D2 necessary for the R2(s)
statistics quantity Σ2(L) is defined by〈∫

ddr|ψn(r)|2p
〉

∝ L−Dp(p−1) (45)

with p = 2. As this is a key formula relating the level statistics and the wave function
structure, let us briefly follow (Chalker et al., 1996a;b) for its derivation. The compressibility χ

can be calculated from the spectral form factor K(t) (the Fourier transform of the two level
correlation function R(s), K(t) =

∫ ∞
−∞ dse−ist/tHR(s) with the Heisenberg time tH 15 ) by

taking a limit (Aronov et al., 1994; Kravtsov et al., 1994)

χ =
∫ ∞

−∞
R(s)ds ≡ lim

t→0
K(t). (46)

Then there is a deep formula

K(t) =
1
2

|t|p(t)
πh̄ρ +

∫ |t|
0+ p(t′)dt′

(47)

that gives the spectral form factor K(t) by the return probability p(t). It is introduced as a
probability for the wave packet originally created in a small volume V0 = �d to remain within
this volume at time t

p(t) =
∫

ddr

〈
∑

k<N0

|ψn(r)|2|ψn+k(r)|2 e−i
(En−En+k)t

h̄

〉
(48)

with N0 ∼ Ld/V0. At this point the physics of energy levels meet the physics of
eigenfunctions. The return probability should behave as

p(t) ∼ VD2/d−1
0

(
h̄ρ

t

)D2/d
(49)

at the mobility edge (Chalker & Daniell, 1988; Chalker, 1990; Huckestein & Schweitzer, 1994).
Now, inserting (49) into (47) and noting that the first term in the denominator is negligible
compared with the second term

πh̄ρ

/∫ |t|
0+

p(t′)dt′ ∝
1
Ld

(
tH
t

)
t

D2
d → 0 (50)

15 The Heisenberg time tH is defined by tH = h̄/Δ and Δ is the mean level spacing Δ = 1/(〈ρ〉 Ld) with
the system size L.
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for t � tH and at L → ∞, one ultimately obtains (44).
Coming back to AKP, we have seen already that the Σ2(L) for large L is linearly rising in
the critical statistics region. Based on this observation (and with further support of kicked
particle) García-García and Verbaarschot (García-García & Verbaarschot, 2003) conjectured the
multi-fractal structure of AKP wave functions in this region. We are currently working to
verify quantitatively this conjecture based on (49) by our AKP data. Once the comparison of
Table 1 is established, it would also give a supporting contribution to the extremely ambitious
theme Anderson localization in quantum chaos by García-García &Wang (2008).

5.2 A non-trivial test of periodic orbit theory in AKP
Our another concern is to understand the spectral rigidity Δ3(L) of AKP from the periodic
orbit theory following the seminal paper by (Berry, 1985). In terms of periodic orbits, the
behavior of Δ3(L) for L � Lmax is predicted universally by the contribution of very long
classical orbits under the sum rule by (Hannay & Ozorio de Almeida, 1984). 16 On the other
hand, using a semi-classical sum rule, it is shown that the behavior of Δ3(L) for L � Lmax
is non-universally determined by the short periodic orbits. More precisely, it is of order
h̄−(N−1) for integrable models, and log(h̄−1) for chaotic systems; the discrepancy comes from
the manner of quantum interference. As we have described in the introduction, the isolated
unstable orbits in AKP is symbolically coded by binary digits (Bernoulli sequences) and there
is an amazing formula found by (Gutzwiller, 1980; 1981) that gives a good estimate of the
action for each periodic orbits concisely and enables one to evaluate the contribution of whole
periodic orbits. We have already checked, using our Δ3(L) data, that the above Lmax seems to
give a right value for the change of Δ3(L) from logarithmic rise to the asymptotic plateau. We
are now trying to explain the plateau values of Δ3(L) data for various γ from the contribution
of short periodic orbits of AKP.

6. Conclusion

AKP is an old working ground which produced fruitful results on quantum chaos, especially
via the pioneering works by Gutzwiller (Gutzwiller, 1971; 1977; 1980; 1981; 1982; 1990), and
via the work by Wintgen (Wintgen & Marxer, 1988). It seems however that the focus of
quantum chaos study has been shifted to elsewhere though for us it seems many things are
still waiting for clarification in AKP. In this article we have extensively revisited AKP and
have shed lights on its quantum features from the critical random matrix theories and from
the insights from Anderson transition theories. We have in particular devoted ourselves to
the quantitative investigation how the anisotropy in AKP affects systematically the quantum
features of AKP. To this end, we have calculated quantum levels and wave functions from
scratch. In section 2, we have recapitulated the vital WMB method (Wintgen et al., 1987) for
the quantum levels. This method includes a key parameter ε and the effect in the eigenvalue
calculation is exhibited in Fig. 1. Based on it, we have presented a prescription how to select
the best ε for a given γ, and we have given simple rules (Fig. 3, 4). Besides the original WMB
in AKP using the Sturmian basis, we have also formulated WMB calculation of AKP in terms
of tensored harmonic basis. This in one hand provides us with a precise check of eigenvalues,
and on the other hand, with necessary data for the Husimi function calculation. In section 3,

16 Lmax ∼ h̄−(N−1) for a system of N freedoms.
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we have investigated the energy level statistics and have shown that GVmodel (García-García
& Verbaarschot, 2003) successfully describes the statistics in a range 0.75 � γ � 0.9. The finite
scaling property is under survey. We have furthermore obtained a simple rule h ∝ e7.2γ that
relates the effective temperature in the CS model (equivalent to GV random matrix model)
to the AKP anisotropy. In section 4 we have investigated the wave functions and Husimi
functions. In both, salient quantum scar of classical unstable periodic orbits are observed. We
have found that the nodal line of the wave function (at given energy) increases its complexity
and seems to extend a fractal structure. In section 5 we have discussed our current projects,
one on the multi-fractality of wave functions that may be deeply related to the Anderson
localization, and the other on the non-trivial test of the periodic orbit theory in terms of the
finite non-universal asymptote in Δ3(L).
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Based on Newtonian Mechanics 
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Russia 

1. Introduction 

The basis of modern conception of the world consists of two phenomenological theories 
(theory of quantum mechanics and theory of relativity), both largely inconsistent, but, in a 
number of cases, suitable for evaluation of experimental data. Both of these theories have 
one thing in common: their authors are convicted in limitations of laws and equations of 
classical mechanics, in absolute validity of Maxwell equations and in essential distinction of 
laws and mechanisms of the device of macrocosm and microcosm. Nevertheless, such 
assurance, being dominant in physics in the last hundred years, hasn’t resulted in creation 
of unifying fundamental physical theory, nor in essential understanding of principal 
physical conceptions, such as: electric, magnetic and gravitational fields, matter and 
antimatter, velocity of light, electron, photon and other elementary particles, internal 
energy, mass, charge, spin, quantum properties, Planck constant, fine structure constant and 
many others. All laws and the equations of modern physics are attempts to approximate 
description of the results of natural experiments, rather than strict theoretical (mathematical) 
findings from the general and uniform laws and mechanisms of the device of the world 
surrounding us. Moreover, some conclusions from modern physics equations contradict 
experimental data such as infinite energy or mass of point charge.  
In papers (Magnitskii, 2010a, 2011a) bases of the unifying fundamental physical theory 
which a single postulate is the postulate on existence of physical vacuum  (ether) are briefly 
stated. It is shown, that all basic equations of classical electrodynamics, quantum mechanics 
and gravitation theory can be derived from two nonlinear equations, which define dynamics 
of physical vacuum in three-dimensional Euclidean space and, in turn, are derived from 
equations of Newtonian mechanics. Furthermore, clear and sane definitions are given to all 
principal physical conceptions from above through the parameters of physical vacuum, 
namely its density and propagation velocity of various density’s perturbations. Thereby, it is 
shown that a set of generally unrelated geometric, algebraic and stochastic linear theories of 
modern physics, which are fudged to agree with experimental data and operating with 
concepts of multidimensional spaces and space-time continuums, can be replaced with one 
nonlinear theory of physical vacuum in ordinary three-dimensional Euclidean space, based 
exclusively on laws of classical mechanics.  
In the present paper research of system of equations of physical vacuum is continued with 
the purpose of studying and the description of processes of a birth of elementary particles 
and their properties. A system of equations of electrodynamics of the physical vacuum, 
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generalizing classical system of Maxwell's equations and invariant under Galilean 
transformations is deduced. Definition of the photon is given and process of its curling  and 
a birth from the curled photon of a pair of  elementary particles possessing charge, mass and 
spin are described. The model of an elementary particle is constructed, definitions of its 
electric and gravitational fields are given and absence of a magnetic field is proved. 
Coulomb's law and  Schrodinger’s and Dirac’s equations for  electric field and also the law 
of universal gravitation for  gravitational field are deduced. Definitions of electron, positron, 
proton, antiproton and neutron are given, and absence of graviton is proved. The 
elementary model of atom of hydrogen is constructed.  
Postulate. All fields and material objects in the Universe are various perturbations of 
physical vacuum, which is dense compressible inviscid medium in three-dimensional 
Euclidean space with coordinates ( , , ) ,Tr x y z

  having in every time station t density 
( , )r t  and perturbation propagation velocity vector 1 2 3( , ) ( ( , ), ( , ), ( , ))Tu r t u r t u r t u r t

     . 
With such problem definition, it’s natural to consider that no external forces apply any 
tension on elements of physical vacuum. Therefore, in compliance with Newtonian 
mechanics equations of physical vacuum dynamics in the neighborhood of homogeneous 
stationary state of its density 0  should be as follows: 

 ( )( ) 0, ( )( ) 0,u
div u u u

t t
   
    

 


    (1) 

where first equation is an equation of continuity, and second is the momentum equation. 
Let's notice, that the physical vacuum has no mass and in this connection dimension of its 
density does not coincide with dimension of substance (matter).  

2. Electrodynamics of physical vacuum 

Let’s consider a case in which perturbation propagation velocity u
  has a certain direction in 

physical vacuum set by unit vector n
 . Solutions of the system of equations (1) we shall 

search in the form of 

 ( , ) ( , ) ( , ) , ( ), ( ) 0, ( , ).u t v t n w t m r n m n t            
        (2) 

Note that the vector of perturbation propagation velocity  in physical vacuum can have both 
transverse and longitudinal components in relation to the direction of propagation of 
perturbations. Substituting expression for the vector u

  in equations (1) and taking into 
account, that 

( ) ( )( )( ( , )) 0, ( )( ( , )) , ( ) 0, ( ) ,u v
wm u t vn u t v div wm div vn

      
 

 
     

 


       

one can obtain a  system of the equations for functions ( , ), ( , ), ( , )t v t w t    :  

 ( ) ( ) ( ) ( )( ) 0, 0, 0,v v w wv
n v n m v m

t t t
    

  
    

     
     

     (3) 

which we call the  system of the equations of electrodynamics of physical vacuum 
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2.1 Plane electromagnetic waves. Photon structure 
In the particular case of transverse fluctuations of physical vacuum of constant density 

0( ( , ) )t сonst      and distribution of these fluctuations in a longitudinal direction with 
constant velocity ( , )v t c    the system of equations (3) can be  reduced to one equation in 
one complex variable ( , ) :w t  

 ( ) ( ) 0.w w
m с m

t
 


 

 
 

   (4) 

Let's introduce into consideration vectors of electric E


  and magnetic H


  fields intensities 
by the formulas: 

 ( ), ( )( ).H с rot u E c n u   
     (5) 

In the general case of propagation of perturbations in compressible physical vacuum of 
variable density the vector of electric field intensity has both transverse and longitudinal 
components, and its divergence is not zero and can be interpreted as linear density of a 
charge (see item. 2.3). In the considered case of propagation of perturbations in physical 
vacuum of constant density with constant velocity only transverse component of a vector of 
electric field intensity is not zero, and its divergence is equal to zero. It is also clear   that so 
defined vector of magnetic field intensity has only a transverse component, divergence of 
which also is equal to zero, and the vector с u A 

  is the vector of potential in classical 
electrodynamics.  
Applying to the equation (4) consistently the operators с rot  and ( )c n 

  and taking into 
account, that in the considered case  

2
2

2
( )( ( )) ( ) ,w

rot H rot c rot wm c wm c m
 



     



    ( )( )( ) ,w
E с n wm с m







  


     

we shall obtain  the classical system of Maxwell's equations describing the propagation of 
electromagnetic waves in the so-called empty space (vacuum):  

 
0, 0,

0, 0.

H с rot E div H
t
E

c rot H divE
t


  




  



 


 

 (6) 

The system of equations (6) has a solution in the form  

 ( ) ( )
0 0, , .i t k i t kE E e H H e kс       

   
 (7) 

It is considered to be, that the real parts of complex expressions (7) have physical sense. 
They determine an in-phase plane transverse electromagnetic wave, propagating with a 
speed of light c  in any direction set by an unit vector n

 . The unique characteristic of a 
classical plane electromagnetic wave is its frequency   (or its wavelength 2 /c   ). 
Note, that in-phase vectors of electric and magnetic fields intensities  periodically vanish 
simultaneously  that contradicts the law of conservation of energy and raises doubts about 
validity of classical interpretation of an electromagnetic wave in which a change of the 



 
Theoretical Concepts of Quantum Mechanics 

 

110 

electric field causes a change in the magnetic field and vice versa. In turn, the equation (4) 
has as its solution a spiral wave of constant amplitude 0w  

 ( )*
0( , ) ( ) , ,i t kw t m w w e m kс    

   (8) 

propagating with velocity c  in physical vacuum in a direction of a vector n
  with 

conservation of  energy carried by the wave and having arbitrary constant shift *w   in a 
direction of a vector m

 . In such formulation the speed of light c  in empty space  has a clear 
physical sense - it is the propagation velocity of perturbations  of physical vacuum of 
constant density in the  absence of  matter ( the birth process of elementary particles of 
matter and antimatter as a result of perturbations of physical vacuum is described in Sec. 3).  
And since in this case the vectors E


  and H


  of a classical plane  electromagnetic wave are a 

directional derivative  and a rotor of a vector 0 ( , )с w t m   , it is possible to conclude, that the 
classical electromagnetic wave (7) is an artificial form and is completely determined by the 
spiral wave (8) of perturbations propagation  in physical vacuum, and 

 0 0 0 0 0 0, [ ].E ikс w m H ikc w m n     
     (9) 

Suppose, for example, the transverse wave is propagated in physical vacuum in the 
direction of the axis y , so 0 0 0( ,0, )T

x zw m w w
 . Then y  and 

0 0 0 0 0 0( ,0, ) sin( ) ( ,0, ) sin( ) sin( ),T T
x z x zE сk w w t ky E E t ky E t ky        

 
 

0 0 0 0 0 0( ,0, ) sin( ) ( ,0, ) sin( ) sin( ).T T
z x z xH сk w w t ky E E t ky H t ky          

 
 

That is, in full accordance with classical electrodynamics, vectors 0E


 and 0H


 are 
perpendicular to the axis y  and perpendicular to each other, and their moduli are equal 
(Fig. 1a). In Fig. 1b for comparison the propagation of the spiral wave (8) in the physical 
vacuum of constant density is represented. 
 

 
Fig. 1. Propagation of  a classical plane  electromagnetic wave (a) and a spiral wave of 
physical vacuum (b). 
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Now we can compare the spiral wave in the physical vacuum, obtained as the solution of 
the equation (4), and the classical electromagnetic wave, obtained as the solution of system 
of Maxwell's equations (6). Both waves have an arbitrary frequencies and corresponding 
wavelengths, so the two solutions describe all plane transverse electromagnetic waves 
existing in nature. However, it is easy to see from the above analysis, that the vectors of 
classical electric and magnetic fields are artificial vectors, namely, the derivatives of the 
same true vector of the velocity perturbations propagation in the physical vacuum. 
Furthermore, a classical electromagnetic wave (Fig. 1a) does not allow to correctly define the 
concept of a quantum of electromagnetic waves (photon), because it except for wavelength 
  needs also knowledge of the oscillation amplitude. The kind of a spiral wave of 
perturbations propagation in physical vacuum allows the unique determination of the 
photon - it's a part of the cylindrical volume of the physical vacuum under a spiral of a 
wavelength   and radius 0 / / 2r c     . Wave motion on a spiral inside the given 
volume occurs with a constant angular velocity  , and linear velocity reaches its maximum 
value (the speed of light c ) on the lateral surface of the cylinder. Exactly such photon 
colliding with an obstacle and being compressed is capable to generate elementary particles 
and antiparticles in the form of balls of radius 0r  (for more details about the birth of 
elementary particles, see Sec. 3). In addition, among the solutions of  Maxwell's equations (6) 
in the form of classical electromagnetic waves, in principle, there are no solutions 
corresponding to  the constant shift *w   of transverse wave of  physical vacuum (8). This, as 
it will be shown below, is the main reason that Maxwell's equations are not invariant under 
Galilean transformations, and, moreover, they cannot be modified so that they would satisfy 
these transformations.  

2.2 Galileo transformations of electrodynamics equations 
Consider an inertial rest reference frame ( , , )О x y z   and moving relative to it uniformly and 
rectilinearly with constant velocity v

 reference frame ( , , )О x y z    . Without loss of generality, 
we assume that the respective axes are parallel to each other. Galilean transformations 
corresponding to common sense and centuries of experience are called transformations of 
coordinates and time in the transition from one inertial reference frame to another:  

, , .r r vt t t u u v      
      

Galilean transformation implies the same time in all frames of reference (absolute time). It is 
known also that all equations of classical mechanics are written the same in any inertial 
reference system, i.e. they are invariant under Galilean transformations. Let's show that any 
law, mathematical notation of which represents the full time derivative of any function 

( , )f r t
  of coordinates and time is invariant under the Galilean transformations. Indeed, 

taking into account, that t t   and     we shall obtain  

( , ) ( , ) ( , ) ( , )( )( ( , )) (( ) )( ( , ))

( , ) ( , )(( ) )( ( , )) ( )( ( , ))

(( ) )( ( ,

df r t f r t f r t f r t t
u f r t u v f r t

dt t t t t
f r t f r tr

u v f r t v f r t
r t t

u v f r t

                   
   

                    
   

    

   
    

 
    



   ( , ) ( , ))) ( )( ( , )) .f r t df r t
u f r t

t dt

             
 

 
 
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From this assertion follows immediately that the physical vacuum equations (1) are 
invariant under the Galilean transformations, since    

( ) ( )( )( ) , ( ) ( ).u d u d
u u div u u

t dt t dt
      

       
 

 
     

Also the system of equations of electrodynamics of physical vacuum (3) is invariant under 
the Galilean transformation that follows from the system of equations (1). 
Now consider in reference frames ( , , )О x y z  a spiral wave of perturbations of physical 
vacuum of the form  

 ( )
0( , ) ( , ) , , ( ), ( ) 0.i t ku t сn w t m сn w e m kc r n m n            

          (10) 

As it shown above, to this solution of system of equations (1) with the function ( , )w t  
satisfying the equation (4) there corresponds a classical electromagnetic wave, electric and 
magnetic fields intensities vectors of  which are the directional  derivative and the rotor of 
the vector 0 ( , )с w t m   . In accordance with the Galilean transformations the considered 
solution has the form in the frame of reference ( , , )О x y z     

( )
0( , ) , ( ) ( ) ,

( ) ( ( )) .

i t ku t сn v w e m r n v n t
k v n k c v n kc

   
 

           
       

       

     

Expanding now the vector v
 in the basis *( , ) : ( )n m v v n n w m  

       , we obtain 

 ( )*
0( , ) ( ) , .i t ku t с n w m c n w w e m kc              

      (11) 

Solution (11) is the solution of equations (1) and (3) in the reference frame ( , , )О x y z    . 
However, to obtain such solution from system of Maxwell's equations (6) is fundamentally 
impossible, even in case of failure of the postulate of the constancy of the speed of light with 
a replacement in (6) c  on c . The reason is that the differentiation of the solution (11) 
eliminates a constant shift *w  of transverse component of velocity of perturbations 
propagation. Note also that the transition from the solution (10) to the solution (11) is 
accompanied by the Doppler effect, that is changing of the oscillation frequency 

( )k v n    
  . When a radiation source located in a reference frame ( , , )О x y z   moves in 

the direction of an observer which is in the reference frame ( , , )О x y z    , the oscillation 
frequency increases (( ) 0)v n 

  , and at movement in an opposite direction - decreases 
(( ) 0)v n 
  . 

From the above it follows that, in contrast to the equations of a spiral wave (3) which are 
invariant under Galilean transformations, Maxwell's equations (6) describe the propagation 
of plane electromagnetic waves in moving inertial reference frames only approximately for 
small *w c . It is well known that the main cause of occurrence of the special theory of 
relativity in the early twentieth century were contradictions between electrodynamics, 
described by Maxwell's equations and classical mechanics, governed by the equations and 
Newton's laws. During the crisis of world science it was necessary to make a choice between 
two possibilities: a) either to admit that Maxwell's equations are not absolutely correct and 
are need to be changed so that they should satisfy the Galilean transformations; b) or to 
recognize that equations of classical mechanics are not quite correct and should be 
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considered only as an approximation to the true equations, satisfying the Lorentz 
transformations. Unfortunately, world science has chosen the second option, despite the 
reasoned objections of many outstanding scientists of the last century, among which the first 
is the name of Nikola Tesla (Tesla, 2003). The way chosen by world science has led to an 
absolutization of speed of light and Maxwell's equations and has led to full termination of 
researches in the field of search more general equations of electrodynamics satisfying the 
principle of Galilean relativity. The present research  proves that the correct way to exit from 
the crisis of science in early twentieth century was  not in updating the equations of classical 
mechanics with the use of relativistic additives but, on the contrary, in finding the equations 
generalizing Maxwell's equations and satisfying the Galilean transformations.  

2.3 Longitudinal electromagnetic waves. Currents 
Consider the general case of propagation of spiral waves (2) in physical vacuum of variable 
density. As shown in Sec. 2.1, these waves are solutions of the equations of electrodynamics 
of physical vacuum (3). Applying to the sum of the second and the third equations of system 
(3) consistently the operators с rot  and ( )c n 

  we obtain for the electric and magnetic fields 
intensities vectors defined by formulas (5), the system of equations  

 2 2

2 2

0, 0,

( ) ( )0, .

H v
vrot E H div H

t

v vE v
vrot H E cv n div E c

t



 
  

 
   

 

  
    

   


  


  

 (12) 

Note that in this case the electric field intensity vector E


 has a nonzero longitudinal 
component even at v c const  . This component is determined by small periodic 
compression-tension of density of physical vacuum in a longitudinal direction of 
propagation of electromagnetic wave.  
Let's introduce into consideration the linear charge density ch  and current density j


 by 

the formulas  

2
2

2
( ) ( )4 ( ) ( ), .ch ch

v v
divE div c n c c v j vn

 
  

 
 

     
 

    

Then from (12) we shall obtain the system of equations 

 
0, 0,

4 0, 4 .ch

H v
vrot E H div H

t

E v
vrot H E j div E

t



 


 
   

 

 
    

 


  


  

 (13) 

The system of equations (13) at v c const   is a classical system of Maxwell's equations in 
the presence of charges and currents. It follows from here that charges and currents can exist 
in physical vacuum even at the absence of substance (matter) in it. Thus, a current in the 
sense of classical system of Maxwell's equations (13) at v c const   is not the motion of 
charges, but it is  the second derivative (Laplacian) from propagating  with the speed of 
light longitudinal wave of periodic compression - stretching of  density of physical vacuum. 
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Note that the substance (matter) is formed by elementary particles with the space charge 
and being waves  of  compression  - stretching of density of physical vacuum, propagating 
along the parallels of spheres of radius 0r r  (see Sec. 3). Therefore, in substance the 
propagation of longitudinal waves (currents) also is possible.  
As it is already mentioned above, the classical system of Maxwell's equations describing 
propagation of electromagnetic waves in presence of charges and currents can be obtained 
from (13)  at v c . However, in general, the velocity of propagation of longitudinal waves 
in physical vacuum is not constant, but undergoes small periodic oscillations around the 
constant c . Therefore, the generalized system of equations of electrodynamics (13) has a 
much wider spectrum of solutions in comparison with the classical system of Maxwell's 
equations. In addition, the first two equations of system (13) at v c const    representing 
the Faraday's law of induction 

0, 0,H с rot E div H
t


  




 

 

can be obtained by applying the operator с rot   directly to the linearized second equation of 
the physical vacuum equations (1). Therefore, these equations can be considered 
approximately always satisfied, but it is impossible to say about the second pair of equations 
of system (13), which are not always executed. Moreover, as follows from the analysis of 
item 2.2, the system of equations (13) and, consequently, the system of Maxwell's equations 
are not absolutely correct for the reason that they do not satisfy the Galilean transformations 
and describe the propagation of electromagnetic waves in moving inertial reference frames 
only approximately for small velocities of movement of such systems relatively to the speed 
of light. In all cases of the description of processes of propagation of both transverse and 
longitudinal waves in physical vacuum the system of equations (3) is correct. For the 
description of other more complex perturbations of  physical vacuum connected, for 
example, with a birth of elementary particles and their electric and gravitational fields, it is 
necessary to use directly the equations of physical vacuum (1) (see  Sec. 3).  

3. Elementary particles of a matter 

We show in this section that  processes of a birth of elementary particles of matter and 
antimatter from the physical vacuum (ether), as well as all basic quantum-mechanical 
properties of elementary particles can be obtained from the system of equations (1) written 
in spherical system of coordinates:  

 

2

2
( ) ( sin ) ( )1 1 1 0,

rsin rsin r
( ) ( ) ( ) ( ) 0, ( )

r rsin 
( ) ( ) ( ) ( ) 0, ( )

r rsin 
( ) ( ) ( ) ( ) 0, ( )

r rsin 

r V W
t r

V V V VW
V r

t r

W
V

t r
W W W WW

V
t r

   
   

   
  

    
  

    
  

  
   

   
   

   
   

   
   

   
   

   
   







 (14) 
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where ( , , ) ,T
ru V V V 

  , , ,rV V V V W     and unit coordinate vectors ( ), ( ), ( )r  
  , 

which define vector directions of corresponding equation lines, are in brackets after equations.  

3.1 Birth of elementary particles from physical vacuum 
Let’s consider a spiral wave of photon (8) 

* *( )
0 * *( , ) , , ( ),i t kw t m w e m k с n r      

     

propagating with the velocity c  in physical vacuum in the direction of a vector n
  and 

having a wavelength *2 / k   and radius of the outer spiral 0 * */ 1 /r c k  . Colliding 
with an obstacle (a field of an atomic nucleus or other photon), the wave is compressed in 
the direction of the vector n

   and bifurcated  into a solution of the system of equations (14), 
in which the linear speed of rotation of the wave by the angle  is equal to 

0( / ) sinW c r r   (the direction of the axis z  in (14) coincides with the direction of the 
vector n

 ) . Such a solution of the system (14), describing the compressed or curled photon, 
as well as all other solutions, describing  various elementary particles, we shall search 
among the solutions with zero coordinate of velocity vector by the angle  .  
So, we shall put in (14) 0   and result in equation system of elementary particles: 

 

2

2
( ) ( )1 1 0,

rsin r
( ) ( ) ( ) 0, ( )

rsin 
( ) ( ) ( ) 0, ( )

r sin 

r V W
t r

V V VW
V r

t r
W W WW

V
t r

 
 

  
 

  


 

 
  

  
  

  
  

  
  

  





 (15) 

The solution for the curled photon we shall find from the system (15), putting in it 
0( / ) sin , 0.W c r r V   Then we shall obtain 0 0 *(1 ( )exp( ( )))q r i t      . That is, at 

curling the photon is transformed into a longitudinal wave of small compression - stretching 
of the density of physical vacuum, propagating on parallels inside a sphere of radius 0r  
with constant angular velocity * 0/c r   . Curled photon has no mass and charge, so it 
can hypothetically apply for the role of neutrino though this hypothesis requires additional 
check and experimental confirmation.  
Let’s show now that equation system (15) has solutions, which possess all known properties 
of elementary particles when 0r r  is small enough. These solutions will be sought as waves 
propagating with constant angular velocity by the angle   under the influence of small-
amplitude oscillations of physical vacuum density 

 0
0

sin , ( , , ) ( , , )c
W r r t q r t

r
        (16) 

and small-amplitude  oscillations of  function ( , , ) 0V r t    when 0r r  is small enough. 
That is every elementary particle is some bifurcation from curled photon. Under such 
problem formulation, each elementary particle is a sphere of radius 0r , inside of which 
waves, created by small-amplitude oscillations of physical vacuum density, propagating 
along to any parallel (circle with radius 0sin ,r r r  ) with constant angular velocity 
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(frequency) 0/с r , making full roundabout way by angle 0 2   over equal time 
02 sin / 2 /T r W r c    . In addition, linear velocity of these waves increases linearly 

with the radius, reaching its maximum value (velocity of light c ) on sphere’s equator when 
0 , sin 1r r    (Fig.2).  

 

 
Fig. 2. Scheme of any elementary particle.  

Substitution of assumed form of solution of (16) into equation system (15), with a drop of 
second infinitesimal order terms and multiplications of small terms, will result in the 
following system of equations 

 

0
0

0

0
0

2( ) 0,
r

0, ( )
r

0, ( )
r

q V qV c
t r r

VV c
r

t
q qV c
t r






 


  
   

  


 
 
 

  
 





 (17) 

It is necessary to notice that at such approximation nonlinear term of second infinitesimal 
order ( ) /V V r r 

  has been entirely neglected. The role of this term becomes significant 
only with relatively large r   and, probably, with relatively small 0r  . As it will be 
shown below, this term exactly generate gravitational field of a particle with relatively large 
r . It is rather probable, that the same term describes nuclear interactions at 0.r   
It’s not difficult to get the solutions of equation system (17) in the following form 

 0 0( ) ( )0 0 0
0 2( , , ) , , ( , , ) (1 ).i t kr i t krV V r

V r t e ck r t e
r cr

              (18) 

However, not every solution in form (16), (18) is an elementary particle. Such solution has to 
possess properties of charge conservation and universality, as well as quantum properties of 
mass, momentum and energy. Moreover, over the time of full roundabout way of the wave 
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along the sphere equator, electric field intensity must conserve its sign. Such classical and 
quantum mechanical terms as electric and magnetic field of elementary particle, its charge, 
mass, energy, momentum, spin also need correct definitions through the characteristics of 
physical vacuum. 
First, let’s give the definition of electric field and electric charge of elementary particle 
similarly to the case of plane electromagnetic waves propagation, examined above. 
Definition. Electric field intensity distribution E


and charge density distribution сh of elementary 

particle will be defined as: 

 ( ) 1 ( ); ( ).
sin 4сh
W V W

E Er r div V
r r

  
  
 

  
 

     (19) 

It follows from (16) and (18) that inside a particle at 0r r  

 0 0( ) ( )0 0 0 0 0
2

0 0

( ) ; .
4

i t kr i t kr
сh

ikr c V ikc Vc V
E Er r e r e

r r r r
     

 
 

     


     (20) 

Let’s determine an instant value of the charge chq  of elementary particle. Let 
0 *2 ,t l kr    where 0 *0 2 .kr     Integrating the density distribution of charge over 

sphere’s volume with radius 0r  we shall obtain 
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
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






  

  
      


  
 (21) 

What follows from formula (21) is that solution (16), (18) of the equation system (15) can be 
interpreted as an elementary particle only in such case, when wave number 0kr  is an integer 
or a half-integer value. For integer value of 0kr  the charge is zero, for any half-integer value 
of 0kr  charge equals common by modulus universal value 0 0 /q с V  .  
Integrating the density distribution of charge over sphere’s volume with radius 0r  for 

* *2       we shall obtain positive value of particle charge .q  Thus  there are actually 
two particles bifurcating from curled photon (particle and antiparticle), which have the 
same frequencies */ 2n    and charges, which modules are equal to q  , but have 
opposite signs. In that case the wavelengths of created periodic solutions by the angle   are 
less than 2  in half-integer value of times. That is time of the wave’s full roundabout way 
by angle 0 2   along any parallel of the sphere with radius 0r  equals integer number 

02kr  of half-periods / /pT kc     of physical vacuum density and electric field 
intensity oscillations, which conserves its sign on the last uneven half-period, being equal to 
the charge’s sign. 
It’s important to point out that electric field of elementary particle directed along radius is 
created by particle’s electric charge, but at the same time the charge is divergence of a 
completely different inner field of the particle, which is represented by second term in the 
third equation of equation system (15) and directed by the angle  . Also notice that electric 
field intensity distribution of elementary particle inside the particle (that is within the 
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sphere of radius 0r ) defined by the third term in the second equation of equation system 
(15), decreases as 1 /r , so it  removes the problem of infinite energy and mass of elementary 
particles.  

3.2 Other basic properties of elementary particles 
Let’s now determine other properties of an elementary particle: internal energy ε, mass m, 
momentum p and spin σ. Expressions of Planck constant  , as well as fine structure 
constant, which can be rightfully called the most mysterious constant of microcosm physics, 
will also be derived. First, let’s determine internal energy formula with a use of expression 
of work A, executed by field forces of the particle 

 .
В

dA
F WdB

dt
 


 (22) 

Here B is the volume of elementary particle sphere of radius 0r , F


 is the field, which 
influences on charges distributed inside a sphere with distribution density   and has a 
nonzero projection on velocity vector ,W


 that is on direction of vector  . This field can not 

be electric field, which is directed along radius r
 . This field can only be the summary field 

directed by angle   from the third equation of system (15) 

0( )0 0( ) sin( ) ,
sin

i t krW c VW W
F V ik e

r r r
      

 
 

   
 

     

and it has to execute the work over not only electric charge with distribution density сh , 
but also over all other charges determined by divergence of this field. After determination of 
full charge distribution density  

0( )0 0
2 ( )i t krikс V

divF e
r

  



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


 

let’s insert it as well as derived expression of internal field F


 into the formula (22) to get the 
following expression  
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Integrating the last equation and taking into account  that kc   one can obtain finally  

2 2 2 2 2
2 2 2 20 0

0 0
4 4; .

3 3
i t kс V

A ie A kс V        

Now, to derive the well-known main formulas and correlations of quantum mechanics, it’s 
suffice to denote the mass of elementary particle and Planck constant as 
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2 2 2
2 2 2 2 2 2
0 0 0 0 0 0

4 4 4/ ; .
3 3 3

m k V V c c V
        

From this it follows immediately: 
- Einstein’s formula for internal energy of a particle and formulas of impulse and energy 

for de Broglie’s waves 

2 , , ;mc p mc k        

- formula  for spin of a particle 

2
2 2

0 0 0 0 0
4 , 0,1,2...

3 2
n

mcr kr c V kr n
        

- fine structure constant formula 

2 2 2 2
0 0

2 2 2 2 2 4
0 0

3 1 .
1304 / 3 4

q c V
c c V
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   

   
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These formulas, derived exclusively by the methods of classical mechanics, are completely 
identical to the well-known expressions of quantum mechanics as well as clearly reflect the 
physical essence of charge, mass, energy and spin of elementary particles, allowing to 
understand the nature of quantum processes in microcosm. It can be seen that the internal 
energy of the particle is indeed proportional to the square of velocity of light, and 
proportionality coefficient (mass of the particle) linearly grows with the increase of wave 
number k, as well as frequency ω of the parental photon. The Plank constant is indeed a 
constant value depending only on characteristics of physical vacuum and not on the type of 
the elementary particle. The spin of the particle indeed has a value of either integer or half-
integer number of  , which allows to separate all elementary particles in two general 
categories: bosons and fermions. Still, the most surprising and encouraging fact is the almost 
precise match of the fine structure constant   with its experimental value of 1/137.  
Note also that the simplest  particles with the spin of   ½   when  n = 1 are double period 
cycles in relation to the initial cycle defined by the motion of curled photon. That brings 
another proof of the theory introduced in this research – the interpretation of the Pauli 
principle, the corollary fact of which is that electron returns to the initial state only after the 
turn of 720, not 360 degrees. According to R. P. Feynman (Feynman & Weinberg, 1987), 
particle with topology of Moebius band meets the Pauli principle. But in the Feigenbaum-
Sharkovskii-Magnitskii universal theory of dynamical chaos (FSM theory) (Magnitskii, 
2008a, 2008b, 2009, 2010b, 2011b; Magnitskii & Sidorov, 2006; Evstigneev & Magnitskii, 
2010), results of which valid for every nonlinear differential equation system of macrocosm, 
the solution’s difficulty increase starts from double period bifurcation of the original 
singular cycle. Interesting enough, the newborn cycle of doubled period belongs to the 
Moebius band around the original cycle! In another words, according to the FSM theory 
electron and proton are initial and simplest double period bifurcations from the infinite 
bifurcation cascade. Therefore, FSM theory works not only in macrocosm, but also in 
microcosm, and elementary particles defined by formulas (16), (18), are not a full infinite set 
of all elementary particles, which can be born as a result of bifurcations in nonlinear 
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equation system (15). Furthermore, more complex nonperiodic solutions of systems (14) and 
(15) can be foreseen, which are singular attractors in terms of FSM theory. Thus, any 
attempts of an experimental detection of the simplest (most elementary), as well as the most 
complex of elementary particles are essentially futile. 

3.3 Some main classical equations and laws 
Another proof of validity of the theory presented in this paper is the possibility of a rigorous 
mathematical conclusion from its unique postulate on existence of physical vacuum of some 
important phenomenological equations and  laws of the modern physics which are widely 
used by classical electrodynamics and quantum mechanics and not contradicting to 
common sense interpretation of variables included in them. We consider here the Coulomb's 
law and  Schrodinger’s and Dirac’s equations. 

3.3.1 Coulomb's law 
We assume that outside of a particle of radius 0r  change of density of physical vacuum 
practically does not occur. Then, neglecting the third equation of (17), we shall obtain, that 
at 0r r   

0( )0 0
02( , , ) , , .i t krV r

V r t e ck r r
r

      

The vector of electric field intensity distribution of a particle will become 

 0( )0 0 0
2 .i t krikr c V

E Er e r
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    
    (23) 

Then a vector of electric field intensity of an elementary particle ( )E r


we shall find, 
averaging instant value of a vector of intensity distribution by the angle  . Let 

0 *2 ,t l kr    where  0 *0 2 .kr     Then for the particles having a negative charge q , 
we shall obtain 
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For the particles having a positive charge q , averaging of instant value of a vector of 
electric field  intensity distribution by  the angle   in the interval * *2       will give 

2( / ) .E q r r 
   Obtained expressions coincide with expressions for intensity of an electric 

field of a charge in the Coulomb's law, and for a particle having a negative charge, the 
vector of electric field intensity is directed on radius to the center of a particle, and for a 
particle having a positive charge, the vector of electric field  intensity of a particle is directed 
on radius from its center.  

3.3.2 Schrodinger's equation 
Let's show, that for a free particle of mass m  the solution of the Schrodinger’s equation  
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t m
 
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


  (24) 
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is a scalar function *( , , )E r t , which  is a complex conjugate function to an electric field 
intensity distribution function of an elementary particle from expression (20). As  

* 2 * * 2 *
* 2 2 * 2 2 *

02 2 2 2 2 2
0 0

, , sin ,E E E i E i
i E k r E r E

t t k r k r
   

 
   

     
  

 

then averaging the right part of last expression by the angle  , we shall obtain in a 
neighborhood  of a sphere of an elementary particle of radius 0r   
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Multiplying the last expression on i  we shall obtain 

* 2 2 2
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  

that coincides with the equation (24). Thus, it becomes clear a physical sense of   - function 
in the Schrodinger’s equation for a free particle - it is the electric field intensity distribution 
of an elementary particle near the surface of its sphere.  

3.3.3 Dirac’s equation 
It was already shown in (Magnitskii, 2010a, 2011a) that electric field intensity and charge of 
elementary particle defined above agree with electromagnetic form of Dirac’s equation for 
electron in bispinor form. Here we shall consider this question in more detail. Dirac’s 
equation in bispinor form has a kind 
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


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that is a  consequence of operator equation 

 2 2 2 2 4 , , ,ec p m c i p i
t

     
     



  
   (26) 

where em  is mass of electron or other fermion,  and p
  are operators of energy and 

momentum and j   Dirac’s matrixes. In the theory of electrodynamics of curvilinear 
waves (EDCW) of A.Kyriakos (Kyriakos, 2006) the electromagnetic form of Dirac’s equation 
is deduced. It is shown, that if the electromagnetic wave of a photon is propagating in a 
direction z , then at its hypothetical curling and a birth from it a pair of elementary particles 
the 4-vector ( , , , )x y x yE E H H  of electromagnetic wave of each of particles satisfies the Dirac’s 
equations in bispinor form. So, to show, that the vector function of electric field intensity 
distribution of an elementary particle in a vicinity of its equator satisfies the equations (25) 
and (26) we should write down system of the equations of elementary particles (15) in 
cylindrical system of coordinates which axis z coincides with the axis of rotation of an 
elementary particle: 
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 (27) 

Solution of the system (27), consistent with a solution of the system (19) in the vicinity of the 
equatorial areas of the elementary particle, has the following kind: 
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Then, as it is easy to verify by the direct substitution, the vector E


is an approximate 
solution of the second order equation  
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2 0.p
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in the vicinity of  0r r , where 2  is Laplace operator in cylindrical coordinate system and 
the frequency  0/p с r    is an angular velocity, which can be interpreted as an oscillation 
frequency of the curled photon electromagnetic wave with a wavelength 02 r  . 
Multiplying the obtained equation by 2( )i and using the relation 2mc  , we obtain for 
vector E


an equation  

 2 2 2 2 4 .pE c p E m c E  
    (28) 

Equation (28) differs from the equation (26) those, that in it instead of the electron mass em  
there is  the mass of the curled photon 2p em m  until the moment of its division into two 
particles: an electron and a positron. Hence, the vector of electric field intensity distribution 
of each separate elementary particle after their division is the solution of equations (25) and 
(26) written in cylindrical system of coordinates.  
Therefore, the true physical meaning of wave function ψ from Dirac equation for electron in 
bispinor form (25) becomes clear – it’s a 4-vector ( , , , )x y x yE E H H  of particle’s 
electromagnetic wave, but  in such elementary particles model, as opposed to the case of 
plain electromagnetic waves propagation, magnetic field intensity vector  is a virtual one, 
since it is directed on an axis z , while velocity vector component zV  equals to zero. 
Therefore, there is no real magnetic field of an elementary particle in a considered model.  

3.4 Electron, positron, proton, antiproton, neutron and atom of hydrogen 
It’s obvious, that more complex, multi-curled elementary particles correspond to high-
frequency perturbation waves with bigger mass and energy. So, it’s natural to imply that the 
simplest half-curled particles with the spin of ½ when  n = 1 are pairs “electron-positron” 
and “proton-antiproton”. Both pairs of particles have the same mechanism of a birth. The 
difference is in the values of frequencies of parental photons and, accordingly, in   radiuses 
of their curling 0r  and in masses of the born particles. Experimental data testify that the 
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mass of proton is in three orders   greater than the mass of electron. Consequently, the wave 
frequency of  proton is in three orders greater than the wave frequency of  electron and, that 
is important, the radius of proton is in three orders smaller than the radius of  electron. That 
is, the electron is not a small particle that rotates around the nucleus of an atom, and it is a 
huge ball which size is comparable to the size of the crystal lattice of substance. This implies 
that the current in the conductors can not be a movement of free electrons. 
It is obvious that the charges of proton and electron should have different signs. Thus, their 
combinations can form atoms of substance only in the case when the electric field intensity 
of a particle of smaller radius (proton) is directed to its center, and, accordingly, the electric 
field intensity of a particle of the greater radius (electron) is directed from its center. That is, 
proton should have a negative charge in the sense of expression (20), and electron should 
have a positive charge. Then for instant density of physical vacuum of  proton p   inside a 
sphere with  radius of its curling pr  we shall obtain the expression  
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Similar expression we shall receive for instant density of physical vacuum of electron e  
inside a sphere with radius of its curling er :  
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Consequently, proton is compressed, and electron is rarefied areas of physical vacuum with 
respect to its stationary density 0.  Elementary antiparticles positron and antiproton are, 
obviously, in pairs to electron and proton, and have charges of opposite signs, that is their 
waves are formed by additional half-periods of the waves of double period with respect to 
the waves of the original photons. 
Consider now the possibility of the formation from a pair of proton-electron of the simplest 
electrically neutral structures, such as neutron and atom of hydrogen. Since the electron has 
a much larger radius than the radius of a proton, then in the most part of elements of 
physical vacuum laying inside of the electron, the electric field of the electron directed from 
its center, less than an electric field of the proton directed to its center. Therefore, an electron 
having got in area of its capture by an electric field of a proton, should move  in its direction  
until some stable structure in the form of a sphere with a radius of an electron, in which 
center there is a nucleus as a sphere with a radius of a proton is formed. The electric field 
intensity outside of an external sphere is equal to zero, as at er r  

2 2 0, .e p e
q q

E Er E E r r r r
r r

      
      

We can assume that the simplest atom of hydrogen, as well as arbitrary neutron are 
arranged in this manner. The neutron can differ from the atom of hydrogen in radius and, 
accordingly, in frequencies of oscillations of waves of its electron and proton. In Fig. 3 a 
diagram of a hydrogen atom  and also a picture of a real hydrogen atom made in Japan 
(Podrobnosti, 04.11.2010) are presented. 



 
Theoretical Concepts of Quantum Mechanics 

 

124 

 
Fig. 3. The scheme  (at the left) and the photo of a real hydrogen atom.  

In this model, the impossibility of formation of atoms of antimatter can be easily explained 
by the fact that the electric field of the antiproton, which has much smaller radius than the 
positron, is directed from its center, which prevents the formation of stable structures of 
antimatter. 

4. Gravitation and gravitational waves 

Let’s demonstrate that the creation of any elementary particle is accompanied by 
appearance of the gravitation, notably the pressure force in physical vacuum, generated by 
small periodic perturbations of its density, which in its own turn generate gravitational 
wave, propagating to the center of newborn particle. It’s natural to propose that gravitation 
works over any distance from the particle, and that when the distance is large, perturbations 
of physical vacuum density created by the newborn particle depend only on distance r and 
are independent of angles θ and φ. Based on such assumption, let’s seek solutions of system 
(15) when r is large in the following form: 

0 ( , ), ( , ), 0.q r t V V r t W      

Equation system (15) will take a form  
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( ) ( ) ( )1 0, 0,r V V V

V
t r t rr
      
   

   
 (29) 

meaning that of all four fields in the initial system (15) only gravitational field 
( ) /G V V r    will remain significant when r is large enough. 

Furthermore, gravitational field differs from three other previously examined fields since 
it’s severely nonlinear. It can’t be linearized basing on the form of velocity W component in 
analogue with electric and two internal fields of the particle. When r is small and, 
consequentially, V  is small as well, gravitational field can be neglected during the 
formulation of elementary particles theory. On the contrary, when r is relatively large, all 
other fields with the exception of gravitational are can be neglected, and that agrees with 
experimental data. But when 0r   V  again starts to grow and so we can propose that 
gravitational term describes also nuclear interactions.  
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Let’s seek the solution of equation system (29) in the form of 2/V c r , that is in the form of 
a gravitational (radial) wave, which propagates to the center of elementary particle ( 0)r   
with velocity dependant on radius. With the use of function V  in equation system (29) and 
in case of r   next expression for small oscillation of physical vacuum density will be 
derived 

3( /3)
0 0 0( , ) (1 ( , )) (1 ), 0.i t krr t q r t q e kc           

In this case the pressure force of gravitational wave (gravitational field intensity) expresses as 
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 
 

and it agrees with the law of universal gravitation. However, the physical essence of 
gravitation comes in somewhat different light than before. The bodies do not attract each 
other – each material body creates its own gravitational wave, which propagates from 
infinity to its center of mass and puts an external pressure on other body with the force, 
proportional to the mass of the body and inversely proportional to the square of distance 
between the bodies. 
Let’s note another significant difference between gravitational and electromagnetic waves. 
Electromagnetic wave moving with constant velocity has a wavelength, thus, resulting in 
the existence of electromagnetic wave quant or photon. Gravitational wave moves with 
velocity dependant on radius, thus, there can be no gravitational wave quant. Traditional 
parallel between the gravitational wave and its hypothetical carrier, graviton, is apparently 
the main obstacle for the real discovery of gravitational waves in nature. 

5. Conclusion 

The theoretical  research carried out in the work  and its results allow to draw several 
fundamental conclusions and  statements which looks more than plausibly: 
- all fields and material objects in the Universe are various perturbations of physical 

vacuum, microcosm and macrocosm are organized by the same laws – laws of classical 
mechanics, described by nonlinear differential equation systems in tree-dimensional 
plane Euclidean space and bifurcations in such systems; 

- electromagnetic fields can exist without mass and gravitation, and electromagnetic 
waves can propagate in any direction with constant velocity (velocity of light) and 
arbitrary oscillation frequency, which is defined by oscillation frequency of physical 
vacuum without changes of its density; 

- there exist equations, more common than Maxwell equations, deduced  from the 
physical vacuum equations  and invariant concerning Galileo transformations, many 
experimentally established laws of classical and quantum mechanics can be successfully 
deduced from the physical vacuum equations;  

- existence of gravitation, mass and charge inseparably linked with the creation of 
elementary particles in form of curls of a single gravi-electromagnetic field, the 
attracting force is actually a pressure force in physical vacuum created by gravitational 
wave, which propagates to the center of the particle with variable velocity and has no 
wave length;  
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1. Introduction 

Physics has always had several different domains of application in on-going development, 
and physicists have always striven for unification among its different domains. Unification 
is usually achieved through development of so-called ‘covering theories’. In the nineteenth 
century, the stunning example was Maxwell’s Electrodynamics (MED), which unified 
electricity and magnetism as one domain of theory. Another major domain of theory then 
present was Newton’s Mechanics (NM), which in the eighteenth century had really 
launched modern physics as a mathematical discipline. 
At the turn of the twentieth century, NM and MED were well in place, and were fulfilling 
many technologically important requirements. But there seemed to be an incompatibility 
between them. The problem concerned their invariance with respect to choice of reference 
frame: NM exhibited invariance if the allowed reference frames were all connected through 
Galilean transformations, whereas MED exhibited invariance if the allowed reference frames 
were all connected through Lorentz transformations. It looked as though one of these two 
theories must be more nearly correct than the other, but it was not clear which one was the 
better one. 
That problem seemed resolved with the advent of Einstein’s Special Relativity Theory (SRT). 
SRT was believed to capture the true meaning of MED concerning the behavior of light 
signals, and SRT was certainly an endorsement of Lorentz transformation, so SRT was 
believed to offer the one possible revision of NM that could make mechanics fully consistent 
with MED. 
But meanwhile, new phenomena were being discovered at the micro scale of physics, and 
they often seemed inexplicable with any known theory, whether NM, SRT, or MED. These 
were phenomena suggesting quantization of light, quantized atomic states, atomic, 
molecular and crystal structures, radioactivity, etc. 
So at almost the same time as one problem seemed to be resolved, other problems were 
emerging. Since the earlier situation between NM and MED had demanded that Physics allow 
two seemingly discordant theories to co-exist until some good argument could replace one of 
them, the situation then presented by the new phenomena being discovered naturally invited 
the development of another potentially discordant theory: Quantum Mechanics (QM). 
The discovery of the photoelectric effect, and the introduction of the idea of the photon, 
initiated QM. Almost immediately, QM was developed to handle the Hydrogen atom, and 
the ground state thereof, the stability of which was thought to be impossible with MED. 
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Accepting that apparent incompatibility with MED, and even embracing it, researchers 
moved on to excited states, to other atoms, then to molecules, and reactions, and to all the 
rest of the complexity that today makes up modern Quantum Chemistry (QC). 
Also, experimenters got into sub-atomic elementary particles, especially electrons and 
positrons, their annihilation and creation, along with creation and annihilation of photons. 
All that led to Quantum Electrodynamics (QED). 
So today physics still has several different bodies of theory, aimed at several different 
domains of application. On the one hand, we have QM for atomic and other micro-system 
interactions. It has at least two identifiable parts: QC for interactions at the level of atoms 
and molecules, and QED for interactions at the level of elementary particles. And on the 
other hand, we have Einstein’s relativity theory (RT) for physics at human scale and larger. 
It too has two parts: SRT for electromagnetic interactions, and general relativity theory 
(GRT) for gravitational interactions. 
QM and RT are the major pillars of twentieth century physics. And they are not entirely 
compatible. QM features wave-like entities with seemingly instantaneous correlations 
between the states of even quite distant entities, whereas RT features point-like entities 
interacting via fields propagating at a finite speed. 
So are we defeated in the quest for unification in Physics? Apparently many people hope 
not, as they do vigorously pursue various forms of unification. The prominent one sought 
today is Quantum Gravity (QG). It would be the twenty-first century capstone for the two 
twentieth-century pillars of QM and RT. But it is not yet fully in sight. 
In the pursuit of unification, one often sees phrases like ‘Theory of Everything’. The 
objective of this Chapter is certainly modest by comparison!  It just notes some observations 
about the status of available theories, and discusses the removal of some incompatibilities 
between the available theories that arose only because of unfortunate choices. 
Because QM is relatively new, there are still lots of alternative approaches being developed 
in parallel. Putz (2009) gives us one very big and recent anthology about them, and this 
book will give another even more recent one. The QM atmosphere is clearly right for 
generating new illumination that can facilitate new observations about physics overall. 
The first observation driving the present work is just this: QED is arguably the most 
successful theory that modern Physics possesses. The fact that QED now exists, and that is 
has the name that it has, naturally begs the question: How could there have been any real 
disconnect between MED1 and early QM? 
It is this author’s belief that Nature is not so perverse. Connections between different 
domains of theory are still possible to find, even though the diligent search that was 
conducted a century ago did not find them. We have developed more tools now. Every new 
tool developed should invite us to revisit the old problems. 
Section 2 talks about the photon from the point of view of MED. It explores the implications 
of the finite energy, which characterizes a photon. It finds a plausible model for the photon 
expressed in terms of MED. 
The second observation is just this: If MED can connect better with QM, then shouldn’t SRT 
also connect better with QM? After all, how much difference can there be between a photon 
in QM and a light signal in SRT? 

                                                 
1 Note that I speak of MED, not of Classical Electrodynamics (CED) in general. CED involves, not only 
the works of Maxwell, but also those of a large number of other individuals. I am inclined to trust 
results from Maxwell, but question some of those from other authors, as reported in the present work. 
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Section 3 explores the implications of modeling the light signal in SRT in the same way as 
the photon in QM. The photon model suggests a slight alteration to Einstein’s second 
postulate, and thereby produces a slightly altered version of SRT. 
The third observation is just this: If SRT is to be altered, however slightly, in response to the 
photon concept from QM, isn’t it then possible that the revised SRT can be used to better 
explain some things about QM that presently seem mysterious? 
Section 4 talks about what the photon/signal model implies about atoms: the stability of 
atoms, the occurrence of Planck’s constant.  
The fourth observation is this: Much of science works on scaling laws. It is in that spirit that 
we should look for scaling laws about atoms, and thereby reduce the effort of looking at 
each element as a particular special-case problem for detailed calculations. 
Section 5 talks about the inferences from to the story about all isotopes of Hydrogen, all 
elements beyond Hydrogen, and the ions of any element; the possible nature of ‘excited’ 
atomic states, and the character of the light spectrum that an element produces. 
The fifth observation is this: If QM can be better connected to SRT, then where does that 
leave its relationship with NM? Early QM was basically NM, although not for particles 
possessing momentum and energy in the classical way, but rather for waves, with an 
amplitude factor and a phase factor, in the latter of which momentum and energy appeared 
as variables. Is that formulation now completely outdated on account of a rift between NM 
and MED? 
Section 6 establishes that there was no necessary disconnect even between NM and MED. It 
argues that, with an adequately extended notation to support an extended tensor calculus, 
Maxwell’s equations can be seen to be invariant in form, even under Galilean transformation. 
(It is useful here to distinguish two kinds of invariance: ‘form invariance’ for symbolic 
equations, and ‘number invariance’ for individual symbols that have numerical values.) 
The last observation is the ‘meta’ observation about the present work: Physics in general can 
become significantly more unified throughout because of some specific developments 
surrounding QM. 
Section 7 summarizes the several specific conclusions implied by the present work. Boiled 
down to one sentence, these conclusions come to this: the existence of apparent discord 
between theories that are addressed to different problem domains within Physics sometimes 
means that there exists a more productive way to pose one or more of the theories involved. 

2. Maxwell’s electrodynamics and QM’s photons 

It often seems that MED, a theory largely about spatially extended EM fields, has little in 
common with QM, a theory largely about discrete material systems and the discrete photons 
that they emit and absorb. Photons are imagined to be the opposite of spatially extended; 
i.e., localized, like the matter particles that emit and absorb them. 
So our mental picture for a photon in its interactions with matter is rather bullet-like: the 
photon is shot out of a source, travels through space, and hits a receiver that absorbs it. But 
the travel part of the story is unobservable. So we imagine that the photon in flight is 
possibly wavelike, in accord with Maxwell theory. Certainly the evidence for that is present, 
in the form of interference effects, even with small numbers of photons. So the photon is 
assigned a quality of ‘duality’. This is a rather mysterious way of describing a photon. 
What seems missing here is an adequate model for the photon throughout its life history, 
expressed in terms of EM fields. The purpose of this Section is to develop one. 
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I like to begin the development of such a history with a waveform consisting of finite energy 
distributed in a three-dimensional Gaussian peak located very close to a source that has 
emitted it. This three-dimensional Gaussian peak is limited in all three spatial directions so 
as to integrate to a finite total energy.  
To allow subsequent propagation, the energy has to be divided between two orthogonal 
fields, electric and magnetic. To allow circular polarization, the energy has to be further 
divided between real and imaginary parts, real being alive now, and imaginary becoming 
alive a quarter of an oscillation cycle later.  
Given such a start, the whole life history of a photon can then develop in the manner that 
Maxwell’s equations allow. Describing that development is the objective of the following 
Sub-Sections. 

2.1 Waveform development 
The first step in the life history of a photon is its development from a spatially localized 
energy bundle that is emitted from a source into a spatially extended waveform that travels 
through space. To help think about this problem, it is useful to recall some phenomenology 
familiar from physics at a more macroscopic scale. 
1. One phenomenon very well known for light modeled as EM waves is the spreading 

transverse to the propagation direction known as of ‘diffraction’. Diffraction is the 
result of some sort of limitation transverse to the propagation direction. Historically, the 
limitation has been due to a finite aperture through which the light propagates. The 
light spreads out from the aperture, more-so the smaller the aperture is. In the photon 
model discussed here, the limitation is softer than an aperture edge, but a limitation 
nevertheless: it is the finite spread of the Gaussian waveform in the two directions 
transverse to the propagation direction. The more narrow the Gaussian peak is, the 
more spread there will be. 
But sideways spreading is not the main requirement for a photon model; spreading in 
the longitudinal direction is what is most needed. Could longitudinal spreading be 
caused in a manner similar to diffraction, by the initial waveform limitation in the 
longitudinal direction? 

2. The closest familiar analog for longitudinal spreading is known as ‘dispersion’. This 
word refers to the ‘blurring’ effect that any frequency dependence the propagation 
speed through the medium entails. For example, a signal pulse in a medium looses its 
sharp edges because those sharp edges imply superposition of many different 
wavelengths, and hence different frequencies, which the medium may affect differently. 
In Earth’s atmosphere, or ocean, square waves can turn to blob waves because of 
dispersion. 
But we don’t have the traditional medium-induced frequency dispersion for a photon 
in free space. So ‘dispersion’ isn’t a close analog for any effect that may be induced by 
longitudinal limitation due to the finite spread of the Gaussian waveform in the 
longitudinal direction.  
For the photon model, we need to find and combine just the useful features from both 
the diffraction and dispersion ideas. Here is a workable approach. Diffraction comes 
out of optical system response in the spatial domain. Dispersion comes out of 
transmission system response in the temporal domain. Maxwell’s equations link space 
and time variation together. So we look at pulse profiles in the longitudinal direction, 
and allow Maxwell’s equations to work on them.  
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Let us begin a scenario with a single pulse in E . Let it have a Gaussian profile along the 
propagation direction, say x , with 2exp( )E x  . We can apply Maxwell’s equations, and 
watch what happens. The Gaussian is the so-called ‘generating function’ for the infinite set 
of Hermite polynomials, all of which have very regularly spaced zero crossings. What 
happens is that the single pulse in E  (an even function) generates a double pulse in B  (an 
odd function), which in turn generates a triple pulse in E  (another even function), and so 
on; that is, all the derivatives in play generate successively higher-order Hermite 
polynomials multiplying the Gaussian. Meanwhile, all the E B  Poynting vectors in play 
support general spreading of the Gaussian. With each step, the emergent functions look 
more and more like wavelets, and the individual peaks in the wavelets stay about the same 
width as more of them accrue, so the wavelength for the emergent wavelet becomes more 
and more defined. Figure 1 illustrates this behavior at the stage where E  has developed five 
peaks (four zero crossings). Series 1 is the original input Gaussian function, Series 2 is the 
Gaussian after the overall spreading has developed to this point, and Series 3 is the wavelet 
that has emerged in the process; i.e. the spread-out Gaussian times the fourth-order Hermit 
polynomial generated. 
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Fig. 1. A wavelet develops when an EM pulse is acted upon by Maxwell’s equations. 

What we have so far is only one eighth of the story needed to fully represent a photon: 
development from a pulse into a waveform. We have told the story for one pulse in E . If we 
would match that with another pulse in B , we would have overall propagation along with 
waveform development. That would bring us to one quarter of the whole story of the 
photon. If we would match that with two more pulses, E  and B  pointing at 90  in space 
from the first pair and coming ‘alive’ a quarter cycle out of phase with the first pair, we 
would have the circular polarization characteristic of photons, but we would still have just 
half the story. So let us move on, and seek the other half. 
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2.2 Waveform regression 
The remaining half of the story of the photon is about waveform regression. How does this 
complex structure of four Hermite polynomials multiplied by their generating Gaussian 
unwind, and go back to being a set of four pulses, so that it can be absorbed into a receiver? 
Again, let us refer to some similar but more familiar phenomenology: 
3. A third phenomenon possible for light modeled as EM waves is ‘focusing’. This is what 

we have optical lenses and shaped mirrors for. It works somewhat contrary to 
transverse spreading, gathering incident energy into a smaller area transverse to the 
propagation direction. Of course we don’t have any lenses or mirrors in the photon 
model, but we shall find a mechanism that produces a similar effect. 

4. A fourth phenomenon possible for light modeled as EM waves is ‘pulse restoration’. 
This is what transmission lines have ‘repeater stations’ for. A communication signal 
degraded by dispersion can be reconstituted when passed through an intelligent filter. 
Of course we don’t have any filters in a photon model, but we shall find a mechanism 
that produces a similar effect. 

The ‘similar effect’ comes from the imposition of boundary conditions in the longitudinal 
direction. The Gaussian pulse that was used to describe the waveform development part of 
the scenario was somewhat unrealistic in that its tails extended to infinity. There is no way 
that a localized source could emit an energy pulse whose tails would extend to infinity. It is 
somewhat more realistic to imagine the equivalent of a mirror at the source, and another 
mirror at the eventual receiver, to confine the waveform like a wave in a box, with zero 
amplitude at the surface of each mirror and everywhere beyond.  
With such boundary conditions imposed, the analytic functions involved in the model are 
no longer the simple Gaussian and the simple Hermite polynomials that it generates. Now 
we have not one, but three, Gaussians, the extra two being needed to cancel the first one at 
the two boundaries. Correspondingly, we always have at least three (actually six) Hermite 
polynomials alive at any given time. That is a loss of mathematical simplicity. But there is a 
gain of conceptual simplicity. It is easy to envision that the propagation scenario has some 
symmetry about its mid point. The waveform will spread until its central peak is halfway 
between the source and the receiver. After that, the mirror at the receiver will be more 
significant than the mirror at the source, causing the waveform to start ‘piling up’ near the 
receiver, and eventually end up as a pulse near the receiver, similar to the pulse originally 
launched near the source.  
This ‘regressing waveform’ is somewhat reminiscent of ‘advanced’ solutions to Maxwell’s 
equations going backwards in time. These were introduced many times in the early 20th 
century, but particularly popularized in the mid 20th century by Wheeler and Feynman 
(1945 and 1949).2 What we have here is quite different though. There are no differential 

                                                 
2 Wheeler and Feynman were looking to time symmetry as the basis for an electromagnetic 
generalization of instantaneous (Newtonian) gravitational interaction. There are important differences 
between the regressing waveforms introduced above and the Wheeler-Feynman advanced solutions: 1) 
Wheeler and Feynman were looking at interactions between essentially point sources and receivers, and 
so had to be looking at spherically expanding retarded solutions and spherically contracting advanced 
solutions, not at essentially one-dimensional expanding and contracting wavelets. 2) The Wheeler-
Feynman expansion or contraction is related to the spherical area of a wave front, not the waveform in 
the radial propagation direction. 3) A lengthy discussion of the paradox of advanced actions is 
necessitated in the Wheeler-Feynman work, whereas the ‘regressing’ solutions introduced here are not 
in fact ‘advanced’ at all; they are just regressing, in real time, in the propagation direction. 
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equations running backwards in time; there is just ‘piling up’ of a solution to differential 
equations in response to a boundary condition. 

2.3 The photon model in terms of EM fields 
Taken together, the waveform development followed by the waveform regression suggest a 
photon model in terms of EM fields that exhibits continuous evolution: it goes from a state 
of pulse-like localization near its source, to a state of wave-like extension in space during its 
travel, and then back to a state of pulse-like localization near its receiver. 
Observe that with this photon model, ‘light in flight’ develops its wavelength only during 
its flight. It doesn’t have it to start with, and it gives it up at the end. So light at emission, or 
reception, has a position, but no wavelength, whereas light in flight has a wavelength, but 
no position. Thus the model expresses a ‘wave-particle duality’ for light. 
Observe too that this photon model exhibits a form of QM ‘complementarity’, or uncertainty 
relationship. Consider that, under Fourier transformation, Gaussians map into Gaussians, 
and that the product of the spreads of such Gaussians is a constant. In the process of wave 
train development, a Gaussian in position space x  spreads out, while its corresponding 
Gaussian in wave number space k  sharpens up. 
Inasmuch as the discovery of photons was the point of departure for the development of 
QM, having this photon model expressed in terms of Maxwell fields is a first step in 
reconciling MED with QM. But there is much more to do, because the bigger problem for 
MED was not the photon itself, but rather the atom that emitted or absorbed it. It looked as 
though MED could never explain an atom being stable in its ground state, much less 
anything about its excited states. To find any reconciliation there, we must move on. 

3. EM signals as photons 

Every neutral atom contains at least two particles, and generally a lot more. Prior to QM, 
electromagnetic forces were presumed to hold such a system together, but there was clearly 
a problem with that understanding.  
The simplest atom is the Hydrogen atom, with just one electron circulating about a nucleus 
consisting of just one proton. So consider the Hydrogen atom. The electron circulates and so 
accelerates, and that must generate radiation. It was assumed that this radiation would rob 
the atomic system of energy, and thereby cause the collapse of the atom. 
So it was assumed that Maxwell’s EMT is simply incompatible with the stability of atoms. 
The solution then was to postulate the existence of a different regime of physics in which 
that wouldn’t happen. But was that really necessary? The purpose of this Section is to argue 
that it was not. 
The underlying belief in inevitability of atomic collapse reflects a belief that the 
electrodynamic forces within the atom are essentially central, and therefore cannot affect the 
energy budget of the atom. This latter belief traces to the turn of the 20th century, when A. 
Liénard (1898) and E. Wiechert (1901) developed models for the potentials and fields created 
by rapidly moving charges. Although Liénard and Wiechert worked independently, they 
made the same assumption, and they got the same results, and so confirmed each other. 
This Section looks at those results, and thereby develops a motivation to look back at their 
underlying assumption. 
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3.1 Standard formulae for scalar and vector potentials 
Expressed in Gaussian units, the Liénard-Wiechert (LW) scalar and vector potentials at 
position r  and time t  are 

  retarded
( , ) 1 /t e R r    and   

retarded
( , ) /t e R    A r


 (1) 

where  1   


n , 


 is source velocity normalized by c , and / Rn R  (a unit vector), 
and R  source( / )t R c r r  (an implicit definition for the terminology ‘retarded’). The LW 

fields obtained from those potentials are then 

2

3 2 3
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d
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dtR c R
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n n
E x n

 
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 and retarded( , ) ( , )t t B r n E r  (2) 

The LW fields have some interesting properties. The 1 / R  fields are radiation fields, and 
they make a Poynting vector (energy flow per unit area per unit time) that lies along 

retardedn : 

   2
radiative radiative radiative retarded radiative radiative retarded( )

4 4 4
c c c

E
  

     P E B E n E n  (3) 

But the 21 / R  fields are Coulomb-Ampère fields, and the Coulomb field does not lie along 

retardedn  as one might naively expect; instead, it lies along retarded( )n


. Assume that 


 
does not change much over the total field propagation time, in which case retarded( )n


 is 

virtually indistinguishable from presentn . So then the Coulomb field and the radiation are 
arriving to the observer from different directions.  
One can feel moved to check this surprising result. Fortunately, one can look up the original 
sources, obtain translations if necessary, and verify the original algebra. There is no problem 
with the algebra. There are also numerous re-derivations that use more modern techniques 
involving the Dirac delta function and the Heaviside step function. These are ‘generalized’ 
functions of some parameter that, when driven to infinity, produces an infinite pulse or a 
unit step. One can study these re-derivations too. One finds various re-orderings of the 
mathematical operators ‘differentiate’, ‘integrate’, and ‘go to parameter limit’. These re-
orderings are dodgy because the generalized functions lack the mathematical property of 
uniform convergence, so these operations don’t necessarily commute; it is possible to 
change the result by changing operation order. But even so, such findings do not change the 
fact that the original LW derivations, although pedestrian, were correct. 
If a problem exists with this LW result, then there is really only one place where it can arise: 
in the initial assumption; namely, that electromagnetic fields propagate like bullets shot at 
speed c . But this is the very same assumption that Einstein later formalized as his Second 
Postulate (1905, 1907). He just called them “signals” rather than “fields”.  
The LW idea of bullets shot at speed c  is the foundation for Special Relativity Theory (SRT). 
(Indeed, SRT offers one of the modern ways to re-derive the LW results.) But SRT is also the 
foundation for General Relativity Theory (GRT). SRT and GRT together make one of the two 
great pillars of 20th century Physics: Relativity Theory (RT). So questioning the LW 
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assumption is not just questioning the LW results; it is questioning the founding assumption 
of SRT, and so threatening this whole pillar of 20th century theory. 
Many people have just accepted that this is just ‘the way things are’ with classical field 
theory, and with SRT, and with all of relativity theory as well. But what if one wanted to 
describe the same scenarios in a thoroughly modern way, with photons instead of radiation 
fields, and virtual photons instead of Coulomb-Ampère fields? Could anyone really accept 
the idea that the real photons and the virtual photons created by the same space-time event 
would arrive at a detector from different directions? 
But one needn’t accept any such thing, given the photon model in terms of Maxwell fields 
developed in Sect. 2. In short, since we have a model for photons in terms of fields, we 
should be able to reverse engineer a model for fields in terms of photons. So what does the 
photon model developed in Sect. 2 imply? Observe that the developing wavelet can move at 
speed c  relative to the source, and the regressing wavelet can move at speed c  relative to 
the receiver. Applying this idea can help to modify the LW results appropriately. 

3.2 Updated formulae for scalar and vector potentials 
Recall that with the photon model developed in terms of Maxwell fields in Sect. 2, the life 
history of the photon has a symmetry point in the middle. Before the mid point of the 
propagation scenario, the waveform is developing, and after the mid point of the 
propagation scenario the waveform is regressing. That makes the mid point very important. 
So far as the receiver is concerned, nothing that happened before the midpoint affects the 
signal he receives. The source position and velocity information he receives is determined, 
not by the specification ‘retarded’, but rather by the specification ‘half retarded’. 
With this new specification, the scalar and vector potentials become: 

  half retarded
( , ) 1 /t e R r    and   

half retarded
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The fields become: 
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 and   half retarded( , ) ( , )t t B r n E r  

(5)

 

The Poynting vector ( , )tP r  becomes: 
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Observe that now the direction of the Coulomb field is 

half retarded present half retarded half retarded( ) ( ) n n n


  and the direction of the Poynting vector 

is half retardedn  too. So now, the Coulomb field and the Poynting vector are reconciled to the 
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same direction. That is the first big gift from the photon model in terms of EM fields given in 
Sect. 2.  
And the gifts of photon model in terms of EM fields go well beyond this rather arcane 
problem about field direction. The photon model in terms of EM fields eliminates the central 
mystery of Einstein’s SRT: having just one light speed relative to however many different 
observers there may be. This is complexity at the level of ‘multiplicity’, much more daunting 
than the complexity at the level of the mere ‘duality’ that is found in modern QM. 

4. EM fields within atoms 

An noted in Sect. 2, atoms were the really big problem for Maxwell’s EMT. Now armed with 
some new information about EMT, it is appropriate the revisit the problem about atoms. We 
turn again to Hydrogen. From Sect. 3 can infer that at least two processes go on inside the 
Hydrogen atom, and we shall discover shortly that there are actually three. Only one is 
familiar. The other two challenge familiar concepts of ‘conservation’ that originally grew out 
of Newtonian mechanics. But electromagnetism is not Newtonian mechanics. In 
electromagnetic problems, the concepts of momentum and energy ‘conservation’ have to 
include the momentum and energy of fields, as well as those of matter. Momentum and 
energy can both be exchanged between matter and fields. ‘Conservation’ applies only to the 
system overall, not to matter alone (nor to fields alone either). 

4.1 Energy loss due to far-field radiation 
The first process that occurs with the Hydrogen atom is the familiar energy loss from the 
atom due to far-field radiation. There will be a far-field power radiated (energy loss per unit 
time) of magnitude 
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where   means ‘solid angle’. Because the full 4  of solid angle captures opposing 
directions of n , contributions to the integral from the vector 


 visible in the integrand 

cancel out. Contributions to the integral that come from the dot product 


n  that is hidden 
in the 6  factor may not be zero at every moment, but they time-average to zero. So let us 
simplify the expression for far-field power radiated by setting 


 to zero. We have: 
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It evaluates to the well-known Larmor result: 
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4.2 Energy gain due to internal torquing 
The second process that occurs in the Hydrogen atom is a not previously noticed energy 
gain due to internal torquing. This process occurs because the Coulomb force within the 
atom is not central; it is along half retardedn , and not along retarded present( ) n n


.  

The power inflow to the electron is torquing e eP T  , where e  is the electron orbit 
frequency, and eT  is the magnitude of the torque on the electron, given by e e e T r F  
where er  is the electron orbit radius, and eF  is the tangential force on the electron. But that 
is not all. The proton also orbits at frequency e , and experiences its own torque, given by 

p p p T r F , where pr  is the proton orbit radius (tiny) and pF  is the tangential force on the 
proton (huge), with the result that the magnitude pT  is the same as eT . The total torque on 
the system is e p e2T T T T   . It is determined by the angle between er  and eF , which is 
given by p e e p e e/ 2 ( / ) / 2r c m m r c   . So torque T   2

e p e e e p( / )( / ) ( )m m r c e r r   and 
power received is 
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p e p
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P e m c r r
m c r r


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
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The existence of such a process is why the concept of ‘balance’ emerges: there can be a 
balance between gain of energy due to internal torquing and the inevitable loss of energy 
due to radiation. But we are not done with radiation yet. 

4.3 Extra radiation due to Thomas rotation 
The fact that the electron and the proton have such different masses, and orbit at such 
different radii, means that the EM forces within the atom are not only not central; they are 
not even balanced. This situation has another major implications: The system as a whole 
experiences a net force. That means the system center of mass (C of M) can move. This sort 
of effect does not occur in Newtonian mechanics due to the fact that Newtonian mechanics 
assumes infinite signal propagation speed.  
Looking in more detail, the unbalanced forces in the Hydrogen atom must cause the C of M 
of the whole atom to traverse its own circular orbit, on top of the orbits of the electron and 
proton individually. This is an additional source of accelerations, and hence of radiation. It 
evidently makes even worse the original problem of putative energy loss by radiation that 
prompted the development of QM. But on the other hand, the torque on the system is a 
candidate mechanism to compensate the rate of energy loss due to radiation, even if there is 
a lot more radiation than originally thought.. 
The details are worked out quantitatively as follows. First ask what the circulation can do to 
the radiation. Some 20 years after the advent of SRT, a relevant kinematic truth about 
systems traversing circular paths was uncovered by L.H. Thomas (1927), in connection with 
explaining the then anomalous magnetic moment of the electron: 1/2 its expected value. He 
showed that a coordinate frame attached to a particle driven around a circle naturally 
rotates at half the imposed circular revolution rate.  
Applied to the scenario of the electron orbiting the proton, the gradually rotating ,x y  
coordinate frame of the electron means that the electron sees the proton moving only half as 
fast as an external observer would see it. That fact explained the electron’s anomalous 
magnetic moment, and so was received with great interest in its day. But the fact of Thomas 
rotation has since slipped to the status of mere curiosity, because Dirac theory has replaced 
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it as the favored explanation for the magnetic moment problem. Now, however, there is a 
new problem in which to consider Thomas rotation: the case of the C of M of a whole 
Hydrogen atom being driven in a circle by unbalanced forces. In this scenario, the gradually 
rotating local ,x y  coordinate frame of the C of M means that the atom system doing its 

internal orbiting at frequency e  relative to the C of M will be judged by an external 

observer to be orbiting twice as fast, at frequency e2    relative to inertial space. This 
perhaps surprising result can be established in at least three ways: 1) by analogy to the old 
electron-magnetic-moment problem; 2) by construction from e  in the C of M system as the 

power series   e  1 1 1
2 4 8

(1 ...)    e 2  ; 3) by observation that in inertial space 

  must satisfy the algebraic relation 1
e 2

      , which implies e2   . 

The relation e2    means the far field radiation power, if it really ever manifested itself 
in the far field, would be even stronger than classically predicted. The classical Larmor 
formula for radiation power from a charge e  ( e  in electrostatic units) is 2 2 32 / 3P e a c , 
where a  is total acceleration. For the classical electron-proton system, most of the radiation 
would be from the electron, orbiting with 2

e e ea r  , e  given by the Coulomb force 
e
2

e em r    2 2
e e p/( )F e r r  . But with e2   , the effective total acceleration is 2

e 2a a   . 
The total radiation power is then 
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Now posit a balance between the energy gain rate due to the torque and the energy loss rate 
due to the radiation. The balance requires torquing total radiatedP P , or 

 4 3 5 6 2 3 4
p e p e e p( / ) ( ) (2 / ) 3 ( )e m c r r e m c r r   . (12) 

This equation can be solved for 

 2 2 2 9
e p p e32 3 5.5 10r r m e m c     . (13) 

Compare that value to the accepted value 9
e p 5.28 10r r    cm. The match is fairly close, 

running just about 4% high. That means the concept of torque vs. radiation does a fairly 
good job predicting the ground state of Hydrogen. 

4.4 Unification of physics via Planck’s constant 
In conventional QM, e pr r  is expressed in terms of Planck’s constant h , which is 
presumed to be a fundamental constant of Nature: 

 2 2 2
e p 4r r h e   . (14) 

Here   is the so-called ‘reduced mass’, defined by 1 1 1
e pm m    , which makes em  . 

Using that approximation and equating the two expressions (13) and (14) for e pr r  implies 

 
2

p e128 / 3
e

h m m
c


 . (15) 
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This expression comes to a value of 346.77 10  Joule-sec, about 2% high compared to the 
accepted value of 346.626176 10  Joule-sec. This reasonable degree of closeness suggests 
that Planck’s constant may reasonably be considered a possible function of other 
fundamental constants of Nature, and so not itself an independent fundamental constant of 
Nature. Or the situation may reasonably be considered the other way around: that some 
other fundamental constant of Nature is really a function of Planck’s constant. Either way, 
we would have one less independent fundamental constant of Nature, and that would mean 
one more degree of unification among the different branches of physics.  
But of course, the expression for h  developed here can fulfill such aspirations only if the 
theory being developed can do a great deal more than just match the ground state of 
Hydrogen. Worthy targets for additional work include: anticipating the story for isotopes of 
Hydrogen, anticipating from there what happens with other elements, explaining the 
excited states of Hydrogen and their resulting spectral lines, anticipating from there the 
spectral features of some other elements, and characterizing the behavior of the full database 
on ionization potentials of all elements, and much more. It all constitutes a developing 
research area that I refer to as ‘Algebraic Chemistry’. 

5. Extensions and extrapolations from hydrogen 

5.1 Larger nuclear mass 
The negative energy of the electron in the ground state of the Hydrogen is 

 2 2 2 5
e p e p( ) 3 2e r r c m m  . (16) 

This is the energy that would have to be provided to liberate the electron, or ionize the atom: 
the ‘ionization potential’.  
Eq. (16) provides the basis from which to build corresponding expressions for other entities. 
For example, the extension to Deuterium and/or Tritium requires that the proton mass pm  
be replaced with a more generic nuclear mass M , and that pr  be replaced by Mr . Then we 
have for the ionization potential of this more massive system: 

 2 2 2 5
e e( ) 3 2Me r r c m M  . (17) 

5.2 Arbitrary nuclear charge 
The extension of the model to a neutral atom with nuclear charge number Z  involves Z  
electrons as well. To develop the mathematical model, we must return to the expressions for 

torquingP  and total radiatedP , Eqs. (10) and (11). All the factors of 2e  change to 2 2Z e , and the 

factor of 2
em  changes to 2 2

eZ m . The equality torquing total radiatedP P  becomes 

4
torquingZ P  6 2

total radiated( / )Z Z P  4
total radiatedZ P . So nothing happens to the equality 

between torquingP  and total radiatedP , Eq. (12). But for the more charged system, the energy Eq. 

(17) becomes  

 2 2 2 2 2 5
e p e( ) 3 2Z e r r Z c m M  . (18) 
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This scaled-up expression represents the magnitude of the total ionization potential of the 
system involving Z  protons and Z  electrons. What is then comparable to the ionization 
potential for removing a single electron is: 

    2 2 2 5 2 2 5
e e e( ) 3 2 ( / ) 3 2MZ e r r Z c m M Z M c m     . (19) 

Thus in the math we find a /Z M  scaling law. What do we find in the actual data? 
Something much more complicated, and indeed so complicated that we would be unlikely 
ever to figure it out without the clue that /Z M  is part of the story. The involvement of M  
means the involvement of isotopes, and unwanted complexity. So the clue tells us to look at 
ionization potentials, not in raw form, but scaled by /M Z , to remove the /Z M  factor that 
the math anticipates.  
Figure 2 shows the pattern found. Seven orders of ionization are included. There is a 
fascinating, but lengthy, story about ionization orders 2 and up; see Whitney (2012). The 
part of it that will be most important for the present development is obvious from Fig. 2: the 
energy required to completely strip the atom scales with 2Z .  
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Fig. 2. Ionization potentials, scaled by /M Z  and modeled algebraically.  

With their /M Z  scaling, all of the IP ’s can be represented in terms of a baseline value 
equal to that of Hydrogen, 1,1IP , and an increment 1,ZIP . The increment arises from 
interactions just between the electrons, quite apart from the nucleus. The electron-on-
electron increments are very regular in their behavior. First of all, every period exhibits a 
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general rise, and by the same factor of 7 / 2 . Second, there is a general drop from one 
period to the next, for the first three periods, and all by the same factor of 7 /8 .  
Then within periods, there is a very regular pattern. There are sub-period rises keyed to the 
traditional ‘angular momentum’ quantum number l , and to a non-traditional parameter N  
that goes 1,2,2,3,3,4,4  for periods 1  through 7 , and gives the number of elements in a 
period as 22N . For 0l  , we have:  

 incremental rise total rise fraction    , and   2fraction (2 1) / ( ) /l N N l l     . (20) 

The following Table details the behavior fractional rises in First-order IP ’s over all sub-
periods: 

period: : : fraction: : fraction: : fraction: : fraction:
1 1 0 1
2 2 0 1 / 2 1 3 / 4
3 2 0 1 / 3 1 3 / 4
4 3 0 1 / 4 2 5 /18 1 2 / 3
5 3 0 1 / 4 2 5 /18 1 2 / 3
6 4 0 1 / 4 3 7 / 48 2 5 /16 1 9 /16
7 4 0 1 / 4 3 7 / 48 2 5 /16 1 9 /16

N l l l l
 

The scaled ionization potentials are called IP ’s. They are meant to be ‘population generic’; 
that is, the information they contain concerning one element can be applied to a calculation 
about another element in a different state of ionization, or excitation, by applying the /Z M  
appropriate for the second element and its state. 

5.3 Unequal counts for electrons and protons 
Let us first consider ionization sates. These are important for applications in Chemistry, 
since chemical reactions involve ions. With all this regularity displayed in Fig. 1, it should be 
possible to use it to help predict the energy budget for all sorts of chemical reactions. We 
just need a rational way to extrapolate from all the formulae representing the regularities for 
single electrons being removed from neutral atoms to formulae for electrons being removed 
from, or added to, ions of all sorts.  
Generally, if an atom is in an ionized state, then in place of just Z  we have an electron count 

eZ  distinct from the proton count pZ . The electron-on-electron interaction does not involve 
the nucleus, and so always scales with e /Z M . But electron-nucleus interaction previously 
represented by 1,1( / )Z M IP  now has to involve both eZ  and pZ . We have for the total 
system  

    2 2 2 5
p e e p e e( ) 3 2MZ Z e r r Z Z M c m   . (21) 

What is then generally comparable to the nuclear-orbit part of the ionization potential for 
removing a single electron? To develop an answer to this question, we must return again to 
the expressions for torquingP  and total radiatedP , Eqs. (10) and (11). Clearly, all of the factors of 
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2e  change to 2
p eZ Z e . It is as if all factors of e  changed to p eZ Z e . Removal of one electron 

is then like removal of one p eZ Z e  charge. What is comparable to the ionization potential 

for removing a single electron from the ion is then 

    2 2 2 5
p e e p e e( ) 3 2MZ Z e r r Z Z M c m   . (22) 

Thus for ions, we see in the math a p e p( )Z Z M Z  scaling law for that part of the ionization 
potential that reflects electron-nucleus interaction, 1,1IP . So for computations we use: 

 1,1 1,1 p e p/ ( )IP Z M IP Z Z M Z . (23) 

For the other part of the ionization potential, that reflecting just the electron-on-electron 
interactions, 1,ZIP , the relevant Z  is eZ . But the relevant M  is still p( )M Z , the only 
significant mass in the problem. So for computations we use: 

 
e1, 1, e p/ ( )Z ZIP Z M IP Z M Z   . (24) 

This basic information can help one to model the energy budget for any chemical reaction. 
To assist readers who want to try this out, the necessary data displayed by Fig. 1 is tabulated 
in numerical form as Appendix 1 at the end of this Chapter. 
Here is one small example. Recall the comment about Fig. 1 that, for nuclear charge 2Z   
and up, the energy required to completely strip the atom scales with 2Z . The actual formula 
plotted on Fig. 1 goes 

 2 2
, 1,12 2 14.250Z ZIP IP Z Z     . (25) 

The resulting ,Z ZIP  is population-generic. The corresponding element-specific quantity is 
,Z ZIP  multiplied by the factor p/ ( )Z M Z . Thus the element-specific energy requirement for 

total stripping is 3
p2 14.250 / ( )Z M Z  eV’s. 

We can now compare the total energy required to strip an atom one electron at a time with 
the energy required to strip it of its electrons all at once. The two elements Helium and 
Lithium are good examples because they represent the extremes of very high first-order 
ionization potential and very low first-order ionization potential. The data for them in 
numerical form comes from Appendix 1. Here is how the calculations go: 

Helium: ( p 2Z  , p 2( ) 4.003M Z M  ) 

Write Formulae: 

2 2He He :  1,1 2 1,2 22 / 2 /IP M IP M    ; +
2 2He He :  1,1 22 1IP M  . 

Insert Data: 

2 2He He :  14.250 2 / 4.003 35.625 2 / 4.003   ; +
2 2He He :  14.250 1.4142 4.003 . 

Evaluate Formulae: 

2 2He He :  7.1197 17.7992 24.9189  ; +
2 2He He :  5.0343 . 
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Evaluate Total Stripping One-at-a-Time: 

2 2He He :  24.9189 5.0343 29.9532  eV’s. 

Compare to Total Stripping All-at-Once: 

3 3 3
p 22 14.250 / ( ) 2 14.250 2 / 2 14.250 2 / 4.003 56.957Z M Z M         eV’s. 

Lithium: ( p 3Z  , p 3( ) 6.941M Z M  ) 

Write Formulae: 

+
3 3Li Li :  1,1 3 1,3 3 1,2 33 / 3 / 2 /IP M IP M IP M       ;  

+ ++
3 3Li Li :  1,1 3 1,2 33 2 2 /IP M IP M     ; ++ 3+

3 3Li Li :  1,1 33 1IP M  . 

Insert Data:  

+
3 3Li Li :  14.250 3 /6.941 ( 1.781) 3 /6.941 35.625 2 /6.941      ; 

+ ++
3 3Li Li :  14.250 2.449 6.941 35.625 2 /6.941   ; ++ 3+

3 3Li Li :  14.250 1.7321 6.941 . 

Evaluate Formulae: 

+
3 3Li Li :  6.1591 0.7698 10.2651 4.8758     ;  

+ ++
3 3Li Li :  5.0278 10.2651 15.2929  ; ++ 3+

3 3Li Li :  3.5560 . 

Evaluate Total Stripping One-at-a-Time: 

3+
3 3Li Li :  4.8758 15.2929 3.5560 13.9731    eV’s. 

Compare to Total Stripping All-at-Once: 

3 3 3
3 32 14.250 3 / ( ) 2 14.250 3 / 2 14.250 3 /6.941 110.8630M Z M         eV’s. 

In these two examples, we see that removal of all the electrons, all at once, takes much more 
energy than removing the electrons one electron at a time. It is plain to see that total stripping 
all-at-once is a vigorous, even violent, event. It is the stuff of special-purpose laboratory or 
field investigation. By contrast, total stripping one-at-a-time is a gentle process. The one-at-a-
time process is an example of the stuff of ordinary production Chemistry. 

5.4 Excited states - hydrogen 
Now let us begin to consider excitation states. These are key for understanding emission or 
absorption spectra, a fabulously rich source of data about atoms. But atomic spectra are 
complicated. The standard way to begin to understand them is mathematically, from the 
family of solutions provided by the differential equation that Schrödinger postulated for the 
abstract wave function characterizing the electron in the Hydrogen atom. 
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The standard QM view is that the Hydrogen atom has multiple ‘stable states’, each with 
negative energy, E , determined largely by a principle quantum number 1,2,3...n    
according to 2

1 /nE E n   . The idea is that the electron can reside in an upper state 
( 1n  ), but only rather precariously, and when it teeters and falls back to the ground state 
( 1n  ), a photon is emitted. 
But the Hydrogen atom has only two constituent particles, the electron and the proton, and 
thus very few classical degrees of freedom. That fact makes it difficult to imagine an infinite 
multiplicity of different ‘states’ that a Hydrogen atom could exhibit. We are left to ponder a 
mystery of mathematical QM. So it is tempting to try to develop an additional, more 
immediately physical, way of understanding the spectral complexity that we see. Consider 
the possibility that individual Hydrogen atoms may not, by themselves, actually have 
excited states. Instead, the term ‘excited state’ may be better applied to a system that 
involves several Hydrogen atoms.  
Key to this idea is that charges can form entities called ‘charge clusters’. [Concerning charge 
clusters at the macro scale of laboratory experiments and field observations: see, for 
example, Beckmann (1990), Aspden (1990), Piestrup and Puthoff (1998).]   
Evidence concerning the probable existence of charge clusters at the micro scale of atoms is 
plainly visible in the data on IP ’s (Fig. 1): some electron counts are very stable and hard to 
break apart (e.g. noble gasses), while some electron counts are very un-stable and hard to 
keep together (e.g. alkali metals). Why would electron counts matter so much if the electrons 
were not in deep relationships with each other? 
But how can electrons outwit electrostatic repulsion? Once given the clue that they evidently 
can do this, it becomes possible to imagine how they might do it. The key is that electrostatic 
repulsion dominates in a static situation. In a dynamic situation, electrons may move at 
speeds exceeding light speed (Remember, Sect. 3 cast doubt on the founding postulate of 
SRT, and SRT is all there is to forbid superluminal speeds.). If so, a repulsion signal from 
one electron may reach another electron only by the time the first electron has moved so 
much that the repulsion from its ‘then’ position has become the attraction to its ‘now’ 
position. In fact, multiple electrons can form circulating ring structures that are quite stable 
(for details, see Whitney 2012).  
So consider the possibility that an excited state of Hydrogen is actually Hn  neutral 

Hydrogen atoms, with the Hn  electrons in a negative charge cluster, and the Hn  protons in 

a positive charge cluster, making a kind of ‘super’ Hydrogen atom; i.e., Hydrogen with 
every factor of electron mass em , proton mass pm  and charge e  scaled by Hn . The 

torquing power 4 3
p e p( / ) ( )TP e m c r r   then scales by 4 3

H H H( ) ( )n n n , and the radiation 

power RP   5 6 3 2 4
e e p2 3 ( ) ( )e c m r r  scales by 6 2 4

H H H( ) ( ) ( )n n n . The solution for system 

radius 2 2 2
e p p e32 / 3( )r r m e m c   then becomes: 

 
H H

2 2 2
e p H p H H e e p32( )( ) / 3( ) ( )n n Hr r n m n e n m c n r r    . (26) 

i.e., the system radius is scales with Hn . The system orbital energy 
2

1 1 2 2 2 2
1 e p2 2

e p
3( ) 32

( )
e

E e m c m e
r r

    


 becomes 
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H

22
1 1 2 2 2 2H

H e p2 2H e p

( )
3( ) 32

( )n
en

E n e m c m en r r
      

. (27) 

i.e., the system orbital energy also scales with Hn . This result is the same as if the atoms 
were isolated, instead of being organized into a big system with two charge clusters. This 
suggests that the energy available for generating photons by de-excitation isn’t ‘orbital’ at 
all, but is instead the energy tied up in forming the charge clusters out of the multiple 
electrons and the multiple protons from the multiple Hydrogen atoms.  
What can we infer about such charge clusters? As in the modeling of IP ’s for ions, we can 
again consider Fig. 1 as a source of information about electron clusters of sizes up to 118, 
quite apart from the particular element that the information is located with. From Fig. 1, It is 
clear that most of the IP ’s are positive, meaning their electron clusters are hard to break. 
So despite being made of same-sign charges, most of them exist in negative energy states. 
The ones that are particularly hard to break are the ones associated with the noble gasses: 
Z  2, 10, 18, 36, 54, 86, (118) . These elements are at the ends of periods on the periodic table, 
and the lengths of the periods themselves are: 2, 8, 8, 18, 18, 32, (32) . (Parentheses mean we 
haven’t discovered, or created, that element yet.)  The implication is that excited states of 
Hydrogen existing in the form of ‘super Hydrogen’ would most frequently exist with 

H 2, 8, 18, 32, ...n   
Can we anticipate what would happen when any such excited state de-excites? Suppose we 
started with H 32n  . It could, for example, decompose into 18, 8, 2, 2, and 1, 1; i.e. some less 
excited states and a couple of ground-state atoms; 6 daughter systems in all. Suppose that 
for every such daughter produced, there is a photon released. Exactly how might that work? 
Observe that four daughters are in states that are even more negative than the starting state, 
so those are no problem. But two daughters are in the ground states, which is not more 
negative than the starting state. So energy from the other daughters has to be enlisted to 
create any photons there.  
For any Hn , there may be a de-excitation path, or paths, for which the energy budget is 
insufficient, in which case those paths won’t be taken. There may also be de-excitation paths 
for which the energy budget is more than sufficient, in which case there will be, not only 
spectral radiation, but also a bit of heat radiation. Very rarely, there might be a de-excitation 
path for which the energy budget is just exactly right. 
The spectral lines that occur with Hydrogen (or any element) are typically characterized in 
part by differences in inverse square integers. The integers involved are traditionally 
understood in terms of the familiar radial quantum number n . Is it possible to understand 
them also in terms of the Hn  used here? 
Recall that if one then chooses to model the behavior of Hydrogen ‘excitation’ in terms of a 
single Hydrogen atom with discrete radial states identified with the radial quantum number 
n , then the orbit-radius scaling has to be the quadratic scaling 1r  2

1nr n r  of standard 
QM, not the linear orbit-radius scaling e pr r 

H H e p( )nr n r r   of the present model. So 
why does one way of looking at the problem involve a quadratic 2n , while the other way of 
looking at it involves a linear Hn ? 
Recall that there was good reason to suggest highest probability for the values 

H 2, 8, 18, 32,...n   corresponding to the lengths of the rows in the Periodic Table. These row 
lengths can be characterized as 22N  for 1, 2,  2, 3, 3, 4, (4)N  . So Hn  actually does encode 
something that is quadratic, namely the 2N , and is therefore similar to the quadratic 2n .  
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5.5 Beyond both hydrogen and ground states: Spectroscopy 
In spectroscopy, we observe light created when an atomic system relaxes in some way. For 
elements beyond Hydrogen, the spectral lines that occur are often characterized in part by 
the so-called Rydberg factor: 

 
2 4 2

e
3

e

2
1 /

m e Z
R

m Mch


 


. (28) 

The R  is traditionally interpreted as the energy needed for total removal of one electron 
from the ground state to infinity, leaving an ion. The energy needed for an electron to get 
from a state labeled 1n  to a higher state labeled 2 1n n , and conversely the energy released 
when it goes back to 1n , is then modeled as 

 2 2
1 21 /( ) 1 /( )E R n n         .  (29) 

Observe that R  contains a factor of 2Z , just like the IP ’s for total ionization, ,Z ZIP  of Eq. 
(25) do. That means R  is referring to the absolutely largest photon energy that the system 
could ever possibly be imagined deliver: starting from a state of total ionization, i.e. a naked 
nucleus, and having the entire electron population return in one fell swoop, with the 
emission of just one photon for the whole job. That scenario could never actually happen. 
One-at-a-time electron return is the only plausible return scenario. The inverse square 
integers in the square bracket bring E  down to values appropriate for one-at-a-time 
scenarios. 
Observe that the Rydberg model for spectral lines already conflicts with an older model for 
the atom developed from the PT; i.e., electron ‘shells’ enclosing the nucleus, inner shells 
filled, and at most one outer shell unfilled; partially filled for most elements, and completely 
filled for noble gasses. The older PT-based model suggests shielding of the nucleus by the 
filled inner shells of electrons. But the occurrence of a 2Z  in R , even for large 1n  and 2n  
in E , means there is no shielding of the nucleus. So electrons must be in tight clusters, 
rather than nucleus-enclosing shells. 
Observe that R  does not contain any /Z M  factor like the IP  model contains. Instead, it 
has a factor  

 e e1 (1 / ) /( )m M M M m   , (30) 

which is essentially unity. At the time when R  was formulated, most of the known trans-

Hydrogenic elements had 2M Z , and the factor of / 1 / 2Z M   could be absorbed into 

an external constant factor, the 2 4 3
e2 m e ch  in R . That is no longer the case today. We 

know about heavy elements for which 2.5M Z , or / 2 / 5Z M . So now it would be 
better to use the function /Z M  instead of the number 1 / 2 . An extra bonus would be that 
Hydrogen, with / 1Z M  , would be included. 
Now consider that spectral lines might not to arise from de-ionizing one ion of one atom, but 
rather from de-exciting a system involving multiple neutral atoms. In this description, the 

1n  and 2n  are not identifiers of different states of one atom, but rather numbers of atoms 
organized into super atoms. Otherwise, nothing really changes. However we interpret their 
meaning, the predicted spectral lines remain the same. 
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6. Unification between Newton and Maxwell 

This last technical Section of this Chapter returns to the first physics disunity mentioned in 
the Introduction: the seemingly different coordinate-transformation properties of Newton’s 
Laws for mechanics and Maxwell’s equations for electrodynamics. Newton’s laws are form 
invariant under Galilean transformations. But Maxwell’s equations are generally thought to 
be form invariant only under Lorentz transformations. Especially, they are thought to be not 
form invariant under Galilean transformations. 
So a curious situation exists within physics today. It is generally expected that the equations 
of physics should be tensor equations. By definition of the word ‘tensor’, a tensor equation is 
form invariant under arbitrary changes of reference frame, assuming no singularities or 
other cruel and unusual circumstances in the transformation or its inverse transformation. 
That means a tensor equation should be form invariant under arbitrary, though reasonably 
well-behaved, space-time transformations.  
So, are Maxwell’s equations really tensor equations? Or not? Mathematicians have good 
reason to challenge the believed tensor status of Maxwell’s equations, while physicists have 
good reason to challenge the believed requirement for invariance under anything other than 
Lorentz transformation. But the situation is not generally acknowledged. It is the proverbial 
‘elephant in the living room’. 
Clarifying this situation can assist physics in becoming more unified from its beginning to 
its present. And mathematics has lots of applicable tools; see Kiein (2009). The present work 
offers an approach that is also mathematical, but a lot more elementary. Maybe it will 
communicate to different readers. 
The problem, I believe, is of a type with which QM has some history. QM appears to be the 
first branch of physics that well and truly needed complex numbers. They may have been 
used in physics before QM, but they were only one of the tools available for the problems 
then at hand. Sines and cosines could generally handle any problem just as well as complex 
exponentials could handle it. But with QM, complex exponentials became truly essential for 
doing physics. 
The history of mathematics has been a tale of increasing range of objects included in the 
discussion. It began with real, positive integers; it grew with the inclusion of zero and 
negative integers, and grew again with the inclusion of all rational numbers, and again with 
the inclusion of all irrational numbers. Then it grew with the inclusion of imaginary 
numbers, thus creating complex numbers. This was the first of a number of ‘doublings’ of 
the number of dimensions attributed to mathematical objects. [See Rowlands (2007).] After 
complex numbers, we got quaternions, and bi-quaternions, or octonians, and there is no 
reason to suppose that further doublings will not continue to prove useful. 
Complex numbers make possible operations that are not possible without them. Consider, 
for example, the square root of 3 . It cannot be evaluated within the real number system, 
but in the complex number system, it is just 3i .  
I believe ‘doublings’ are generally like this: they make possible operations that were not 
possible without them. There appears to be today an opportunity for a doubling in the realm 
of tensor calculus. There are presently exactly two tensor-transformation behaviors 
identified, called ‘contravariant’ and ‘covariant’. It appears that tensor calculus can be 
usefully extended through a doubling of the number of transformation behaviors that can be 
described, from two to four. It appears that such a doubling can resolve the apparent 
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conflict between Newtonian and Maxwellian physics: it can make possible a display 
showing how Maxwell’s equations can actually be form invariant under arbitrary 
coordinate transformations. 

6.1 The opportunity offered by tensor notation 
The display of four transformation behaviors requires the use of four tensor index 
positions. So in addition to the usual contravariant (index up-right) and covariant (index 
down-right) positions on the right side of a tensor symbol, we need to us the positions 
available on the left side: index up-left and index down-left. Since left-side index positions 
have not been in used in this new way before, they need new names designed for the 
purpose. To recall the move from right to left, let us use the prefix ‘trans’. So let the up-left 
index position be called ‘transcontravariant’, and let the down-left index position be 
called ‘transcovariant’). 
All the transformations are describing what happens to tensor merates when the frame of 
reference changes; i.e. when the basis unit vectors defining the frame of references are 
replaced with other basis unit vectors. The transformations discussed here are arbitrary 
within the specifications that make the connections between reference frames reasonably 
well behaved; the individual relationships are differentiable and reversible, the matrix 
representations of them are invertible and unimodular. 
I mention both tensors and matrices because they are equivalent notation schemes that 
can be used interchangeably for describing systems of linear equations. Tensor notation is 
useful for making a compact statement of a whole mathematical situation. Matrix notation 
is useful for separating a whole mathematical situation into constituent parts for 
calculations. Individual linear equations are useful for focusing on individual parts of the 
mathematical problem. Human beings do have strong personal preferences about which 
approach to use, but all of these approaches should agree on the basic facts of a given 
situation, so any of these approaches should be acceptable. In the present work, all 
approaches will be used. That way, everyone can find something to like, and everyone can 
find something to dislike!  
In the case of the matrix displays and the linear equations, the presentation does save a little 
space by ignoring two spatial dimensions and focusing on one spatial dimension (call it 1) 
and the temporal dimension (call it 0). 

6.2 Transformation of a contravariant object 
The most familiar transformation is the contravariant one. The prefix ‘contra’ means these 
tensor merates change opposite to the way the basis unit vectors of the reference frame 

change. For an arbitrary input vector X , the transformation reads /X x x X        , 

where we see the transformation as partial derivatives of coordinates, new with respect to 

old. Equivalently X T X  
 , where we see the transformation written as the tensor T 

 . 

Also equivalently, we have
0 0 0 0

0 1
1 1 1 1

0 1

               

                

X T T X

X T T X

     
     

          
, where we see everything, the input and 

output vectors and the transformation, in matrix format. Or equivalently, we have 
0 0 0 0 1

0 1X T X T X   and 1 1 0 1 1
0 1X T X T X   as two separate linear equations. 
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For the contravariant transformation matrix 
0 0
0 1
1 1
0 1

        

        

T T

T T

 
 
  

 one can define a reverse 

transformation matrix 
0 0
0 1
1 1
0 1

       

       

R R

R R

 
 
  

, wherein 0 0
0 0R T  and 1 1

1 1R T , but 0 0
1 1R T   and 

1 1
0 0R T  . Applied to X , the reverse transformation R

  takes X  back to X : 

X R X  
 . That is to say: 0 0 0 0 1

0 1X R X R X   and 1 1 0 1 1
0 1X R X R X  . Expressed in matrix 

form, the reverse transformation is the inverse transformation: 
0 0 0 0

0 1
1 1 1 1

0 1

               

               

X R R X

X R R X

     
     

          
, or 

0 0 0 0
0 1 0 1
1 1 1 1
0 1 0 1

                 1   0 
 0   1                

R R T T

R R T T

     
     

        
. The distinction between the words reverse and inverse is nil in 

the contravariant context. But it becomes important in the next context. 

6.3 Transformation of a covariant object 
The prefix ‘contra’ means reverse to the prefix ‘co’. The covariant transformation goes the 

same way the basis unit vectors change. So the covariant transformation X C X
    in 

matrix format 
0 1

0 0 0 0
0 1

1 1 1 1

               

               

X C C X

X C C X

     
     

          
 uses transformation matrix C  equal to the reverse 

contravariant transformation matrix R :
0 0

0 0 1 0
1 1

1 0 1 1

             

             

X R R X

X R R X

     
     

          
, or equivalently 

0 0
0 0 0 1 1X R X R X   and 1 1

1 0 0 1 1X R X R X  . It is generally assumed that this is the same as 

saying the covariant transformation is the inverse to the contravariant transformation. 

Notice however that the off-diagonal merates 1 0
0 1C R , and 0 1

1 0C R  have indices switched 

around. This is because C  operates on a covariant object, whereas, in its original definition, 
R  operated on a contravariant object. 
The index switching makes no difference if we limit attention to transformations that are 
space-time symmetric, i.e. Lorentz transformations. But if we wish to investigate any other 
type of transformation, we have to investigate whether the switch makes a difference. 

Consider the inner product X X
 . Under Lorentz transformation, it is preserved, equal to 

X X X X 
  . But if we do not have space-time symmetry, is it still preserved? This 

question has to be answered by testing. 
Laying out the problem in matrix format, we have to make one of the vectors, say the 
covariant one, a row vector, and then we have to test: 

  
0

0 1 0 11

   
               

   

X
X X X X

X

 
       

0 1 0 0 0
0 0 0 1
0 1 1 1 1
1 1 0 1

                   

                   

R R T T X

R R T T X

     
     
          

 
0

0 1 1

   
?        

   

X
X X

X

 
   

  
 (31) 
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Observe that the R  matrix is transposed from what it would need to be to make the RT  
matrix product collapse to the identity. So the inner product X X

  is generally not 

preserved if we do not have space-time symmetry. 

6.4 Transformations for objects of four types 
In order to recover the general availability of preserved inner products, the two additional 
transformation behaviors are defined. The transcovariant transformation is defined as the 
transposed inverse of the contravariant one. The transcontravariant transformation is 
defined as the transposed inverse of the covariant one. 
Recall that this discussion began with the contravariant transformation written in the tensor 

notation /X x x X        . The discussion soon became complicated enough to merit 

introduction of more detailed notation that can clearly distinguish the four cases. The 
following Table illustrates the expanded tensor notation: 
 

 
 
 
 

directreverse

direct reverse

 
contravariant,transcontravariant, 

//

transcovariant, covariant,

/ /

X T X x x XX T X x x X

X C X x x X X C X x x X

          


     
       

                    

                    
 

 
 
 
 
The Table is organized for user convenience, with the position of information corresponding 
to the index position: upper right for contravariant, lower right for covariant, lower left for 
transcovariant, and upper left for transcontravariant. The index position assigned to an 
object determines the transformation law that it follows. 
Now let two arbitrary numbers with magnitude less than unity be represented by the letters 
A  and B  (chosen from the word ‘arbitrary’!). Let the arbitrary numbers represent in turn 

the off-diagonal elements of transformation matrices. The following table shows the 
corresponding matrix notation: 
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0 0 0 0

1 1 1 1

0

1

contravariant,transcontravariant,

      1                1          1 1
      1       1 1 1               

transcovariant,

      1   1
1   

X A X X B X
B AAB ABX X X X

X

ABX

           
                              

 
 

  

 0 0 0

1 11

covariant,

          1         1
     1           1     1   

A X X B X
B X A XABX

         
                  

 

 
 
Observe that this Table uses negative signs on the arbitrary A  and B  in the contravariant 
and transcontravariant cases, positive signs in the covariant and transcovariant cases. This 
sign choice is used to help recall the prefixes ‘contra’ and ‘co’. Observe too that if B A , we 
have space-time symmetry, which is the case of Lorentz transformations. And observe 
finally that if 0B  , we have universal time, which is the case of Galilean transformations. 
But A  and B  are arbitrary, and so can also represent other transformations as yet 
unnamed. 

6.5 Transformations for invariant objects 
The underlying purpose of tensor calculus is to focus on mathematical objects that are 
‘coordinate free’, or ‘frame independent’, or ‘invariant’ (whether in form or in numerical 
value), – all expressions meaning that coordinate transformation does not change anything 
fundamental about an object so-described: values of scalars, or relationships expressed as 
equations involving tensors.  
The user of tensor calculus expects certain behaviors. There should be number invariant 
inner products of vectors and of higher-order tensors. The ‘unity’, or ‘Kronecker delta’ is not 
presently regarded as a real tensor, but can be accepted as one if it can be demonstrated 
number invariant. Finally, the user will certainly expect a number invariant ‘metric tensor’, 
the essential tool for manipulating index positions to develop tensor equations. Displaying 
that all these expectations can be met in the case of arbitrary transformations, not just 
Lorentz transformations, is the objective of this Sub-Section. 
The matrix notation is useful in checking out the transformation of all these entities. For 
example, the preserved inner product of a vector X  with itself looks like (note the 
transpositions for operating on row vectors): 

 
0

0 1 1

   
 

   

X
XX X X

X


  

 
 
  

 0 1

  1     1
       

     1 1

B
X X

AAB





 
  

 
0

0 1 1

  1         
       

     1     

B X
X X

A X






  
      

 
0

0 1 1

   
       

   

X
X X XX

X




 
 
  

. (32) 
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or 

00 1

1

   
       

   

X
XX X X

X


  
       

0 1   1      1
       

     1 1

B
X X

AAB





       
0

1

 1         

     1     

B X

A X






   
   
   

00 1

1

   
       

   

X
X X XX

X



       

. (33) 

The more familiar inner product X X
  is preserved with Lorentz transformations, but not 

with arbitrary transformations. So it shouldn’t be considered any kind of ‘invariant’. The 

same is true of the unfamiliar ( )( )X X
 . 

With the extended tensor notation, we can identify the index positions that definitely make 
a number invariant Kronecker delta. It looks like (note the transpositions for operating on 
row vectors): 

 
 1       1   0 1
     1   0   1 1

A
BAB


   

        

 1       1   0 
     1   0   1 

A
B


   

       
. (34) 

or 

 
 1       1   0 1
     1   0   1 1

A
BAB




   
        

 1       1   0 
     1   0   1 

A
B




   
       

. (35) 

The more familiar 
  is preserved with Lorentz transformations, but not with arbitrary 

transformations. That is why it does not qualify as a tensor. The same is true of the 

unfamiliar 
  . 

Some readers will be surprised to see the present argument using the Lorentz metric, 
 1    0 
 0    1 
 
  

, without accepting a limitation to Loentz transformations. It is widely supposed 

that the Lorentz metric requires Lorentz transformations, and/or Lorentz transformations 
require the Lorentz metric. But such a connection is not in fact mandatory.  
The generally preserved forms of the Lorentz metric tensor look like (note the transpositions 
for operating on row vectors): 

 
  1       1    0 1
     1   0    1 1

A
g

BAB
     

         

  1       1     1
     1       1 1

A A
B BAB

    
       

  1       1    0 
      1  0    1

A
g

B
    

         
. (36) 

and 

 
 1     1    0 1
     1   0    1 1

A
g

BAB 
   

         

 1       1     1
     1       1 1

A A
B BAB

    
       

  1       1    0 
      1   0    1 

A
g

B  
   

         
. (37) 

The more familiar g  and g  are preserved with Lorentz transformations, but not with 

arbitrary transformations. They shouldn’t be considered any kind of ‘invariant’. The same is 

true of the unfamiliar g  and g . 
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The number invariant g   and g   can function to raise and lower indices on objects. For 

example, ( )X g X
    and ( ) X g X  

 , or ( ) ( )X g X  
  and ( ) ( )b

a a bX g X . 

One can also write additional index assignments for g . Altogether, there are 10 possible 

assignments, as there are 4 3 / 2 6   with indices in different corners, and 4 with indices in 
the same corner. 
Two of the additional index assignments look like g  and g

 . These two entities cannot 

do anything to an index except change its name. For example, ( )X X g  
  and 

( )X X g
   , or ( ) ( )X g X

    and ( ) ( )X g X  
 . So g  and g

  are just 

equivalent to the number invariant 
   and    already noted above. 

Further additional index assignments on g  create entities that can serve to convert a regular 

index into a trans one, or a trans one into a regular one. None of these entities are number 
invariant, but in practice, that does not matter. The user does not convert just a single object; 
the user converts a whole tensor equation. The index-converting g  entities typically occur 

in pairs, and the pairs contract to number invariant objects. When they don’t occur in pairs, 
they do occur on both sides of an equation, and cannot affect the issue of equation form 
invariance. 
Another two of these of g ’s are g  and g

 . They function to do ( )X g X  
  and 

( )X g X
   , or ( )X g X

    and ( )X g X  
 . As a pair, they contract to 

( )( )g g g  
   , or to ( )( )g g g  

   , both of which are number invariant. 

The final four indexed g ’s are g , g , g , and g . They can all function to change a 

regular index into a trans one, or a trans one into a regular one, but with a twist: ‘co’ goes to 
‘contra’, or ‘contra’ goes to ‘co’. That is, ( ) X g X 

  , ( ) X g X
  , ( )g X X 

   and 

( )g X X
  . As noted above, the contractions ( )( )g g g 

   and ( )( )g g g 
   are 

number invariant. 
The bottom line is this: to be sure of invariance under arbitrary transformation, not just 
Lorentz transformation, always contract a regular index with a trans index.  

6.6 General invariance for Maxwell’s equations 
Maxwell’s equations in current tensor notation read: 

 
4

F J
c

 



     and   0D 

  . (38) 

The two-index F  and D  tensors refer to the electromagnetic field and the ‘dual’ 
thereof. The electromagnetic field tensor F  has merates that are components of the three-
dimensional electric and magnetic field vectors, E  and B . The D  is the dual to F , 
whose merates are components of B  and E . The one-index tensors J  and   refer to the 
source charge-current density vector and the differential operator vector. The indices   and 
  take the four values 0,1,2,3 . 
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The seeming limitation of Maxwell’s equations to invariance only under Lorentz 
transformation arises entirely from the differential operator being written as a covariant 
vector. In the extended tensor algebra, this operator is identified as transcovariant, and then 
Maxwell’s equations look like: 

 
4

( )F J
c

 



     and   ( ) 0D 

   . (39) 

Written this way, Maxwell’s equations are manifestly form invariant, not only under 
Lorentz transformation, but also under any arbitrary (just well-behaved) transformation, 
including Galilean transformation. 

7. Conclusions 

About Maxwell’s equations and photons: Photons have a life history that begins with 
emission as an electromagnetic pulse pulse, proceeds with development into a waveform, 
then changes into regression back to a pulse, and ends with absorption by a receiver. This 
life history of the photon can be modeled by imagining some mirrors that apply boundary 
conditions corresponding to the desired scenario, feeding a Gaussian pulse at the source to 
Maxwell’s equations, watching Hermite polynomials then emerge, and then finally pile up 
at the receiver.  
About EM signals and photons: The life history of the photon suggests that the 
assumption upon which Einstein’s SRT is founded is over-simplified. If we will make the 
founding assumption more realistic, then we will get more believable results. The more 
believable results can help us reconcile SRT with the QM of atoms. We can understand 
why Planck’s constant occurs. It represents the balance between competing phenomena: 
on the one hand, energy loss due to radiation from accelerating charges; on the other 
hand, energy gain due to internal torquing within the atomic system due to finite speed of 
signal propagation. 
About Atoms: Viewed in the right way, chemical and spectroscopic data reveal a 
tremendous amount of regularity. So we are well enabled to interpolate and extrapolate for 
situations where actual data is not available. We can analyze scenarios where electrons are 
subtracted from or added to an atom, all at once, or one at a time; whatever we need. But 
take care: in the existing literature, the distinction between ‘all-at-once’ and ‘one-at-a-time’ is 
often obscure, so be careful.  
About Maxwell and Newton: There should have been no conflict between Maxwell’s 
equations and Newton’s equations over the issue of transformation invariance. Maxwell’s 
equations are form invariant under Galilean transformations, just as they are form invariant 
under Lorentz transformations. Physics does not have conflicts. Only people have conflicts. 
And people can resolve their conflicts. The conflict perceived in the case of Newton vs. 
Maxwell is resolved with an extension of mathematical formalism.  
About Physics in General: This work has shown that SRT deserves a moment of caution, 
and the reader may reasonably worry that GRT deserves some caution too. So it may be 
premature to develop a theory of quantum gravity. Placing the QG capstone onto the RT 
and QM pillars of 20th century physics may produce something that resembles the ancient 
constructions at Stonehenge, but not the Gothic cathedrals of Europe, much less anything 
modern. 
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8. Appendix 1. Numerical data on ionization potentials for all elements 

 
 
 
 
 
 
 
 
 

Charge Mass Ionization Ionization Model Model
Element

H 1 1.008
He 2 4.003

Li 3 6.941
Be 4 9.012
B 5 10.811
C 6 12.011
N 7 14.007
O 8 15.999
F 9 18.998

Ne 10 20.180

Na 11 22.990
Mg 12 24.305
Al 13 26.982
Si 14 28.086
P 15 30.974
S 16 32.066
Cl 17 3
Ar 18

IP
Z M


Potential Potential /

13.610 13.718
24.606 49.244

5.394 12.480
9.326 21.011
8.309 17.966

11.266 22.551
14.544 29.101
13.631 27.260
17.438 36.810
21.587 43.562

5.145 10.753
7.656
5.996
8.154
10.498
10.373

5.453 12.977
39.948 15.778

M Z
14.250 0
49.875 35.625

12.469 1.781
23.327 9.077
17.055 2.805
21.570 7.320
27.281 13.031
27.281 13.031
34.504 20.25
43.641

10.910
15.506 16.565
12.444 14.923
16.357 18.874
21.677 23.871
20.790 23.871
27.063 30.192
35.017 38.186

IP IP



4
29.391

3.340
2.315
0.673
4.624
9.621
9.621

15.942
23.936



 

 
 
 
 
 
 
 

Periods 1, 2 and 3. 
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Charge Mass Ionization Ionization Model Model
Element

K 19 39.098
Ca 20 40.078
Sc 21 44.956
Ti 22 47.867
V 23 50.942
Cr 24 51.996
Mn 25 54.938
Fe 26 55.845
Co 27 58.933
Ni 28 58.693
Cu 29 63.546
Zn 30 65.390
Ga 31 69.723
Ge 32
As 33
Se 34
Br 35
Kr 36

IP
Z M


Potential Potential /

4.346 8.944
6.120 12.265
6.546 14.013
6.826 14.851
6.743 14.934
6.774 14.676
7.438 16.345
7.873 16.911
7.863 17.163
7.645 16.
7.728
9.398
6.006

72.610 7.905
74.922 9.824
78.960 9.761
79.904 11.826
83.800 14.015

M Z
9.546 4.704

13.057 1.193
13.057 1.193
13.638 0.612
14.244 0.006
14.877 0.627
15.539 1.
15.539
16.229

026 16.951
16.934 17.705
20.485 18.492
13.509 14.494
17.936 17.860
22.303 22.007
22.669 22.007
26.998 27.116
32.623 33.412

IP IP






289
1.289
1.980
2.701
3.455
4.242
0.244
3.610
7.757
7.757
12.866
19.162

 

 
 
 
 
 
 
 
 
 

Period 4. 
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Charge Mass Ionization Ionization Model Model
Element

Rb 37 85.468
Sr 38 87.620
Y 39 88.906
Zr 40 91.224
Nb 41 92.906
Mo 42 95.940
Tc 43 98.000
Ru 44 101.070
Rh 45 102.906
Pd 46 106.420
Ag 47 107.868
Cd 48 112.411
In 49 1
Sn 50
Sb 51
Te 52
I 53

Xe 54

IP
Z M


Potential Potential /

4.180 9.657
5.695 13.132
6.390 14.567
6.846 15.614
6.888 15.608
7.106 16.232
7.282 16.597
7.376 16.9
7.469
8.351
7.583
9.004

14.818 5.788
118.710 7.355
121.760 8.651
127.600 9.015
126.904 10.456
131.290 12.137

M Z
9.546 4.704

13.057 1.193
13.057 1.193
13.638 0.612
14.244 0
14.877
15.539

42 15.539
17.080 16.230
19.319 16.951
17.403 17.705
21.087 18.492
13.563 14.494
17.462 17.860
20.655 22.007
22.120 22.007
25.037 27.116
29.508 33.412

IP IP




 .006
0.627
1.289
1.289
1.980
2.701
3.455
4.242
0.244
3.610
7.757
7.757
12.866
19.162

 

 
 
 
 
 
 
 
 

Period 5. 
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Charge Mass Ionization Ionization Model Model
Element

Cs 55 132.905
Ba 56 137.327
La 57 138.906
Ce 58
Pr 59
Nd 60
Pm 61
Sm 62
Eu 63
Gd 64
Tb 65
Dy 66
Ho 67
Er 68
Tm 69
Yb 70
Lu 71
Hf 72
Ta 73
W 74
Re 75
Os 76
Ir 77
Pt 78
Au 79
Hg 80
Tl 81
Pb 82
Bi 83
Po 84
At 85
Rn 86

IP
Z M



140.116
140.908
144.240
145.000
150.360
151.964
157.250
158.925
162.500
164.930
167.260
168.934
170.040
174.967
178.490
180.948
183.840
186.207
190.230
192.217
195.076
196.967
200.530
204.383
207.200
208.980
209.000
210.000
222.

Potential Potential /
3.900 9.425
5.218 12.796
5.581 13.600
5.477 1
5.425
5.498
5.550
5.633
5.674
6.141
5.851
5.934
6.027
6.110
6.183
6.255
5.436
7.054
7.894
7.988
7.884
8.714
9.129
9.025
9.232
10.446
6.110
7.427
7.293
8.423

000 10.757

M Z
9.546

13.057
12.393

3.232 12.583
12.957 12.776
13.217 12
13.192
13.660
13.687
15.089
14.305
14.609
14.836
15.029
15.137
15.463
13.395
17.487
19.568
19.844
19.574
21.811
22.788
22.571
23.019
26.184
15.417
18.768
18.361
20.958

27.769

IP
4.704
1.192
1.857
1.667
1.474

.972 1.278
13.171
13.374
13.579
13.579
13.787
13.999
14.213
14.431
14.653
14.878
17.860
18.755
19.696
20.684
21.721
21.721
22.811
23.955
25.156
26.418
16.515
19.696
23.490
23.490
28.015
33.412

IP






1.079

0.876
0.671
0.671
0.463
0.251
0.037

0.181
0.403
0.627
3.610
4.505
5.446
6.434
7.471
7.471
8.560
9.705

10.906
12.168
2.265
5.446
9.240
9.240
13.765
19.164








 

 

Period 6. 
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Charge Mass Ionization Ionization Model Model
Element
Fr 87
Ra 88
Ac 89
Th 90
Pa 91
U 92
Np 93
Pu 94
Am 95
Cm 96
Bk 97
Cf 98
Es 99
Fm 100
Md 101
No 102
Lf 103
Rf 104
Db 105
Sg 106
Bh 107
Hs 108
Mt 109
Uun 110
Uuu 111
Uub 112
??? 113
??? 114
??? 1
???
???
???

IP
Z


Potential

223.000
226.000 5.280
227.000 6.950
232.038 6.089
231.036 5.892
238.029 6.203
237.000 6.276
244.000 6.068
243.000 5.996
247.000 6.027
247.000 6.234
251.000 6.307
252.000 6.421
257.000 6.504
258.000 6.
259.000

15
116
117
118

M Potential /
9.546

13.560 13.057
17.727 12.393
15.699 12.583
14.959 12.776
16.050 12.972
15.994 13.171
15.752 13.374
15.337 13.579
15.507 13.579
15.875 13.787
16.154 13.999
16.345 14.213
16.716 14.431

587 16.827 14.6
6.660 16.911

M Z IP
4.704
1.193
1.857
1.667
1.474
1.277
1.079
0.876
0.671
0.671
0.463
0.251
0.037
0.181

53 0.403
14.877 0.627
17.859
18.755
19.696
20.684
21.721
21.721
22.811
23.955
25.156
26.418
16.515
17.019
23.490
23.490
28.015
33.412

IP














3.610
4.505
5.446
6.434
7.471
7.471
8.561
9.705

10.906
12.168
2.265
2.769
9.240
9.240
13.765
19.162

 

 

Period 7. 
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1. Introduction 

Now it is obvious that quantum mechanics enters in the 21st century into a principally new 
and important phase of its development which will cardinally change the currently used 
technical facilities in the areas of information and telecommunication technologies, exact 
measurements, medicine etc. Indisputably, all this on the whole will change the production 
potential of human civilization and influence its morality. Despite unquestionable success of 
quantum physics in the 20th century, including creation of lasers, nuclear energy use, etc. it 
seems that possibilities of the quantum nature are not yet studied and understood deeply, a 
fortiori, are used. 
The central question which arises on the way of gaining a deeper insight into the quantum 
nature of various phenomena is the establishment of well-known accepted criteria of 
applicability of quantum mechanics. In particular, the major of them is the de-Broglie 
criterion, which characterizes any body-system by a wave the length of which is defined as

p   , where  is the wavelength of the body-system, p is its momentum and  is the 
Plank constant. An important consequence of this formula is that it assigns the quantum 
properties only to such systems which have extremely small masses. Moreover, it is well 
known that molecular systems which consist of a few heavy atoms are, as a rule, well 
described by classical mechanics. In other words, the de-Broglie criterion is an extremely 
strong limitation for occurrence of quantum effects in macroscopic systems. Till now only a 
few macroscopic quantum phenomena have been known, such as superfluidity and 
superconductivity, which are not ordinary natural phenomena but most likely extremal 
states of nature. Thus, a reasonable question arises, namely, how much correct is the de-
Broglie criterion, or more precisely, how completely this criterion reflects the quantum 
properties of a system.  
In order to answer this essentially important question for development of quantum 
physics, it is necessary to expand substantially the concepts upon which quantum 
mechanics is based. The necessity for generalization of quantum mechanics is also 
dictated by our aspiration to consider such hard-to-explain phenomena as spontaneous 
transitions between the quantum levels of a system, the Lamb Shift of energy levels, EPR 
paradox, etc. within the limits of a united scheme. In this connection it seems important to 
realize finally the concept according to which any quantum system is basically an open 
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system, especially when we take into account the vacuum's quantum fluctuations [1- 3]. 
Specifically for a quantum noise coming from vacuum fluctuations we understand a 
stationary Wiener-type source with noise intensity proportional to the vacuum power 

2 /4,P    where 2  is the variance of the field frequencies averaged over some 
appropriate distribution (we assume 0   since   and −  must be considered as 
independent fluctuations). For example, in the cosmic background case where 2T K  we 
find, correspondingly, =1.15P pW . Calculation of 2  for quantum fluctuations is not 
trivial because vacuum energy density diverges as 3 [3] with uniform probability 
distribution denying a simple averaging process unless physical cutoffs at high 
frequencies exist. 
Thus, first of all we need such a generalization of quantum mechanics which includes 
nonperturbative vacuum as fundamental environment (FE) of a quantum system (QS). As our 
recent theoretical works have shown [4-9], this can be achieved by naturally including the 
traditional scheme of nonrelativistic quantum mechanics if we define quantum mechanics in 
the limits of a nonstationary complex stochastic differential equation for a wave function 
(conditionally named a stochastic Schrödinger equation). Indeed, within the limits of the 
developed approach it is possible to solve the above-mentioned traditional difficulties of 
nonrelativistic quantum mechanics and obtain a new complementary criterion which differs 
from de-Broglie's criterion. But the main achievement of the developed approach is that in 
the case when the de-Broglie wavelength vanishes and the system, accordingly, becomes 
classical within the old conception, nevertheless, it can have quantum properties by a new 
criterion.  
Finally, these quantum properties or, more exactly, quantum-field properties can be strong 
enough and, correspondingly, important for their studying from the point of view of 
quantum foundations and also for practical applications. 
The chapter is composed of two parts. The first part includes a general scheme of 
constructing the nonrelativistic quantum mechanics of a bound system with FE. In the 
second part of the chapter we consider the problem of a quantum harmonic oscillator with 
fundamental environment. Since this model is being solved exactly, its investigation gives 
us a lot of new and extremely important information on the properties of real quantum 
systems, which in turn gives a deeper insight into the nature of quantum foundations. 

2. Formulation of the problem 

We will consider the nonrelativistic quantum system with random environment as a closed 
united system QS and FE within the limits of a stochastic differential equation (SDE) of 
Langevin-Schrödinger (L-Sch) type: 

  ˆ , ;{ } , , .t s t c s t c t ti H t t            x f  (2.1) 

In equation (2.1) the stochastic operator  ˆ , ;{ }H tx f describes the evolution of the united 
system QS + FE, where { }f  is a random vector forces generating the environment 
fluctuations. In addition, in the units 1m   the operator has the form: 

     31ˆ , ;{ } , ;{ } , ,
2

H t V t    x f x f x R  (2.2) 
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where   denotes a Laplace operator,  , ;{ }V tx f describes the interaction potential in a 
quantum system which has regular and stochastic terms.  
We will suppose that when { } 0f , the system executes regular motion which is described 
by the regular nonstationary interaction potential      0 0, , ;{ } |V t V t  fx x f . In this case the 
quantum system will be described by the equation: 

      
 0 0 0

ˆ ˆ ˆ, , , , ;{ } .ti H t H t H t


    
f

x x x f  (2.3) 

We also assume that in the limit t     the QS passes to an autonomous state which 
mathematically equals to the problem of eigenvalues and eigenfunctions:  

    2 ( ) 0, , | ,iE t
tE V t e 

             x x   (2.4) 

where in the (in) asymptotic state E  designates the energy of the quantum system and, 
correspondingly, the interaction potential is defined by the limit: 0( ) lim ( , )tV V t  x x . 
In the (out) asymptotic state when the interaction potential tends to the limit: 

0lim ( , )tV V t   x , the QS is described by the orthonormal basis { ( | )} g x and 
eigenvalues { }E g , where ( , ,...)n mg designates an array of quantum numbers. 
Further we assume that the solution of problem (2.4) leads to the discrete spectrum of 
energy and wave functions which change adiabatically during the evolution (problem (2.3)). 
The latter implies that the wave functions form a full orthogonal basis: 

 
3

3( | , ) ( | , ) ,t t d 
   g g

R

g x g x x  (2.5) 

where the symbol  means complex conjugation. 
Finally, it is important to note that an orthogonality condition similar to (2.5) can be written 
also for a stochastic wave function:

 3

3( | , ;{ }) ( '| , ;{ }) 1stc
R

t t d   g x ξ g x ξ x , where { }ξ

designates random field (definition see below ). 

2.1 The equation of environment evolution 
The solution of (2.1) can be represented, 

    , ;{ } ( ) | , .st c t U t t   g
g

x ξ g x  (2.6) 

Now substituting (2.6) into (2.1) with taking into account (2.3) and (2.5), we can find the 
following system of complex SDEs: 

   ( ) ( ) ;{ } , ( ) ( ) ,i U t i A t F t U U t dU t dt       g g g g g g g g g gf   (2.7) 

where the following designations are made: 

     

         
3

3

3

3
0

| , | , ,

;{ } | , , ;{ } , | , .

tA t t t d

F t t V t V t t d







   

     





g g
R

g g
R

g x g x x

f g x x f x g x x
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Recall that in (2.7) dummy indices denote summations; in addition, it is obvious that the 
coefficients  A tg g and  ;{ }F tg g f  are, in general, complex functions. 

For further investigations it is useful to represent the function  U tg  in the form of a sum of 

real and imaginary parts: 

 ( ) ( ) ( ).U t u t iv t g g g  (2.8) 

Now, substituting expression (2.8) into (2.7), we can find the following system of SDEs: 

 
   

   

(1) (2) (2) (1)

(2) (1) (1) (2)

( ) ;{ } ( ) ;{ } ,

( ) ;{ } ( ) ;{ } ,

u A t F t u A t F t v

v A t F t u A t F t v





       

       

           


          

g g g g g g g g g g g g g

g g g g g g g g g g g g g

f f

f f




 (2.9) 

where the following designations are made: 

   
   

(1) (1)

(2) (2)

( ) Re ( ), ;{ } Re ;{ } ,

( ) Im ( ), ;{ } Im ;{ } .

A t A t F t F t

A t A t F t F t

   

   

 

 

g g g g g g g g

g g g g g g g g

f f

f f
 

Ordering a set of random processes { ( ) , ( )}u t v tg g , the coefficients (1) (2){ ( ) , ( )}A t A t g g g g and 

random forces
 

(1) ( 2)
' '( ;{ }), ( ;{ })F t F t 

 
 g g g g

f f , one can rewrite the system of SDEs as:  

        
1

, , , .
n

i i i j j i i
j

a t b t f t t d dt  


  ξ ξ   (2.10) 

In the system of equations (2.10) the symbol ξ  describes a random vector process represented 
in the following form: (... ...,... ...), (1,... ..., ... , ),

i jg gu v i j nξ ξ where n  is the total number of 

random components which is twice as big as the total number of quantum states. In addition, 
the members ( , )ia tξ in equations (2.10) are composed of the matrix elements 

(1) (2){ ( ) , ( )}A t A t g g g g  and regular parts of matrix elements (1) (2){ ( ;{ }), ( ;{ })}F t F t g g g gf f  

while the random forces ( )jf t  are composed of random parts of the above matrix 
elements. 
Assuming that random forces satisfy the conditions of white noise: 

 ( ) 0, ( ) ( ) ( ) ,j i j i jf t f t f t t t      (2.11) 

where 0,i j  if i j  and 0.i i i    
Now, using the system of equations (2.10) and correlation properties (2.11), it is easy to 
obtain the Fokker-Planck equation for the joint probability distribution of fields { }ξ  (see in 
particular [6, 10]):  

 ( )ˆ ,n
t P L P   (2.12) 

where the operator ( )ˆ nL  is defined by the form: 
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      ( )

1 , , , 1

ˆ , , , ,
n n

n
i i k j l

i i ji i j k l

L a t b t b t
   

   
  
    

 ξ ξ ξ  (2.12’) 

The joint probability in (2.12) is defined by the expression: 

 0 0 0 0 0
1

( , | , ) ( ( ) ) , ( ),
n

i i i i
i

P t t t t    


   ξ ξ  (2.13) 

From this definition, in particular, it follows that equation (2.12) must satisfies to the initial 
condition:  

 
00 0 01

( , | , )| ( ),
n

t t i i
i

P t t   


  ξ ξ  (2.13’) 

where 0t is the moment of switching of environment influence; in addition, the coordinates 
i compose the n -dimensional non-Euclidian space n

i Ξ . 
Finally, since the function  0 0, | ,P t tξ ξ  has the meaning of probability distribution, we can 
normalize it: 

   1
0 0 0 0 0 0, | , 1, ( , | , ) ( ) ( , | , ) ,

n

nP t t d P t t N t P t t 
Ξ

ξ ξ ξ ξ ξ ξ ξ   (2.14) 

where the function ( )N t is the term which implements performing of the normalization 

condition to unit, defined by the expression: 
( )

0 0( ) ( , | , )
n

nN t P t t d


  ξ ξ ξ . 

2.2 Stochastic density matrix method 
We consider the following bilinear form (see representation (2.6)): 

  , ;{ }| , ;{ } ( ) ( ) ( | , ) ( | , ) ,st c t t U t U t t t  




         g g
g g

x ξ x ξ g x g x  (2.15) 

where the symbol " " means complex conjugation. 
After integrating (2.15) by the coordinates 3x R  and nξ Ξ  with taking into account the 
weight function (2.13), we can find: 

   2( ) , ;{ }| , ;{ '} | ( )| ,st cI t Tr Tr t t U t       ξ x g
g

x x  (2.16) 

where    2 2 2
0 0| ( )| | ( )| , | , | ( )|n

nU t Tr U t P t t U t d g ξ g gΞ
ξ ξ ξ . 

Now, using (2.16) we can construct an expression for a usual nonstationary density matrix 
[12]: 

      , | , ( ) | , | , .t t t t t         g
g

x x g x g x  (2.17) 
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where 2( ) | ( )| / ( )t U t I t g g  
has the meaning of level population of the quantum state 

under the conditions of equilibrium between the quantum system and fundamental 
environment. It is easy to check that the stochastic density matrix  , ;{ }| , ;{ }st c t t   x ξ x ξ  
satisfy to von Neumann equation while the reduced density matrix  , | ,t t  x x  does not 
satisfies the equation. Taking into account equations (2.1), (2.13) and (2.15), we can obtain 
the evolution equation for reduced density matrix: 

    , ;{ }| , ;{ } , , ;{ }| , ;{ } .t s t c st ci t t H t t          x ξ x ξ x ξ x ξ


 (2.18) 

where {...} ...Tr ξ , in addition  ... describes the quantum Poisson brackets which denote 
the commentator:  ,A B AB BA  .  
It is obvious that equation (2.18) is a nonlocal equation. Taking into account (2.12), one can 
bring equation (2.18) to the form: 

        ( )
0 0 0, , , , , , , ;{ } , | , ,

n

n n
t st ci t H t i t L P t t d         

Ξ

x x x x x x ξ ξ ξ ξ
    (2.19) 

where following designations are made; ( , , ) ( , | , )|t tt t t    x x x x
 

is a reduced density 
matrix, in addition,    , , ;{ } , ;{ }| , ;{ } | .st c st c t tt t t     x x ξ x ξ x ξ  
Thus, equation (2.19) differs from the usual von Neumann equation for the density matrix. 
The new equation (2.19), unlike the von Neumann equation, considers also the exchange 
between the quantum system and fundamental environment, which in this case plays the 
role of a thermostat. 

2.3 Entropy of the quantum subsystem 
For a quantum ensemble, entropy was defined for the first time by von Neumann [11]. In 
the considered case where instead of a quantum ensemble one united system QS + FE, the 
entropy of the quantum subsystem is defined in a similar way: 

      ; , , ln , , , { }.iS t Tr t t      xλ x x x x λ  (2.20) 

In connection with this , there arises an important question about the behavior of the 
entropy of a multilevel quantum subsystem on a large scale of times. It is obvious that the 
relaxation process can be nontrivial (for example, absence of the stationary regime in the 
limit t ) and, hence, its investigation will be a difficult-to-solve problem both by 
analytic methods and numerical simulation. 
A very interesting case is when the QS breaks up into several subsystems. In particular, when 
the QS breaks up into two fragments and when these fragments are spaced far from each 
other, we can write for a reduced density matrix of the subsystem the following expression: 

           3
1 2, , , , , , , ; , ; .      x x y y z z x x y z y zt t t R  (2.21) 

Recall that the vectors y and z describe the first and second fragments, correspondingly. 
Now, substituting the reduced density matrix ( , , )t x x  into the expression of the entropy of 
QS (2.20), we obtain: 

          1 2 2 1; ; ; ; ; ,S t J t S t J t S t λ λ λ λ λ  (2.22) 
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where the following designations are made in expression (2.22): 

   1 1; , , ,J t Tr t   yλ y y      1 ; , , ln , , ,S t Tr t t     yλ y y y y  

   2 2; , , ,J t Tr t   zλ z z      2 ; , , ln , , .S t Tr t t     zλ z z z z  

Since at the beginning of evolution the two subsystems interact with each other, it is easy to 
show that 1( ; ) 1J t λ  and 2( ; ) 1J t λ , moreover, they can be fluctuated depending on the 
time. The last circumstance proves that the subsystems of the QS are in the entangled state. 
This means that between the two subsystems there arises a new type of nonpotential 
interaction which does not depend on the distance and size of the subsystems. In the case 
when subsystems 1 and 2 have not interacted, 1 2 1J J   and, correspondingly, 1S  and 2S  
are constants denoting entropies of isolated systems. 

2.4 Conclusion 
The developed approach allows one to construct a more realistic nonrelativistic quantum 
theory which includes fundamental environment as an integral part of the quantum system. 
As a result, the problems of spontaneous transitions (including decay of the ground state) 
between the energy levels of the QS, the Lamb shift of the energy levels, ERP paradox and 
many other difficulties of the standard quantum theory are solved naturally. Equation (2.12) 
- (2.13’) describes quantum peculiarities of FE which arises under the influence of the 
quantum system. Unlike the de-Broglie wavelength, they do not disappear with an increase 
in mass of the quantum subsystem. In other words, the macroscopic system is obviously 
described by the classical laws of motion; however, space-times structures can be formed in 
FE under its influence. Also, it is obvious that these quantum-field structures ought to be 
interpreted as a natural continuation and addition to the considered quantum (classical) 
subsystem. These quantum-field structures under definite conditions can be quite 
observable and measurable. Moreover, it is proved that after disintegration of the 
macrosystem into parts its fragments are found in the entangled state, which is specified by 
nonpotential interaction (2.22), and all this takes place due to fundamental environment. 
Especially, it concerns nonstationary systems, for example, biological systems in which 
elementary atom-molecular processes proceed continuously [13]. Note that such a 
conclusion becomes even more obvious if one takes into account the well-known work [14] 
where the idea of universal description for unified dynamics of micro- and macroscopic 
systems in the form of the Fokker-Planck equation was for the first time suggested. 
Finally, it is important to add that in the limits of the developed approach the closed system 
QS + FE in equilibrium is described in the extended space 3 nR  , where n  can be 
interpreted as a compactified subspace in which FE in equilibrium state is described. 

3. The quantum one-dimensional harmonic oscillator (QHO) with FE as a 
problem of evolution of an autonomous system on the stochastic space-time 
continuum 

As has been pointed out in the first part of the chapter, there are many problems of great 
importance in the field of non-relativistic quantum mechanics, such as the description of the 
Lamb shift, spontaneous transitions in atoms, quantum Zeno effect [15] etc., which remain 
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unsolved due to the fact that the concept of physical vacuum has not been considered within 
the framework of standard quantum mechanics. There are various approaches for 
investigation of the above-mentioned problems: the quantum state diffusion method [16], 
Lindblad density matrix method [17, 18], quantum Langevin equation [19], stochastic 
Schrödinger equation method (see [12]), etc. Recall that representation [17, 18] describes a 
priori the most general situation which may appear in a non-relativistic system. One of these 
approaches is based on the consideration of the wave function as a random process, for 
which a stochastic differential equation (SDE) is derived. However, the consideration of a 
reduced density matrix on a semi-group [20] is quite an ambiguous procedure and, 
moreover, its technical realization is possible, as a rule, only by using the perturbation 
method. For investigation of the inseparably linked closed system QSE, a new mathematical 
scheme has been proposed [5-8] which allows one to construct all important parameters of 
the quantum system and environment in a closed form. The main idea of the developed 
approach is the following. We suppose that the evolution time of the combined system 
consists of an infinite set of time intervals with different duration, where at the end of each 
interval a random force generated by the environment influences the quantum subsystem. 
At the same time the motion of the quantum subsystem within each time interval can be 
described by the Schrödinger equation. Correspondingly, the equation which describes the 
combined closed system QSE on a large scale of time can be represented by the stochastic 
differential equation of Langevin–Schrödinger (L–Sch) type. 
In this section, within the framework of the 1D L–Sch equation an exact approach for the 
quantum harmonic oscillator (QHO) model with fundamental environment is constructed. 
In particular, the method of stochastic density matrix (SDM) is developed, which permits to 
construct all thermodynamic potentials of the quantum subsystem analytically, in the form 
of multiple integrals from the solution of a 2D second-order partial differential equation. 

3.1 Description of the problem 
We will consider that the 1D QHO+FE closed system is described within the framework of 
the L-Sch type SDE (see equation (2.1)), where the evolution operator has the following 
form: 

    22 21ˆ , ;{ } ;{ } , .
2 xH x t f t f x x           (3.1) 

In expression (3.1) the frequency  ;{ }t f  is a random function of time where its stochastic 
component describes the influence of environment. For the analysis of a model of an 
environment a set of harmonic oscillators [21-25] and quantized field [26, 27] are often used. 
For simplicity, we will assume that frequency has the following form: 

  2 2
0 0;{ } ( ), , lim ( ) 0,

t
t f f t const f t

 
       (3.2) 

where ( )f t  is an independent Gaussian stochastic process with a zero mean and is a 
shaped correlation function: 

 ( ) 0 , ( ) ( ) 2 ( ).f t f t f t t t     (3.3) 
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The constant of   characterizes power of stochastic force ( )f t . Equation (2.1) with operator 
(3.1) has an asymptotic solution ( | , )n x t  in the limit t : 

 (3.4)
 

where 0,1,2...n  in addition; ( | )n x  is the wave function of a stationary oscillator and 
( )nH y  is the Hermitian polynomial. The formal solution of problem (2.1), (3.1)-(3.4) may be 

written down explicitly for arbitrary ( ;{ })t f  (see [28]). It has the following form: 

   2 ( )( )1 ( ), |{ } exp , , ( ) , ( ) ,
2 ( ) ( )( )

t i t
s t c t

r ti x dr t
x t x r t e r t

r t r t dtr t
   

          
    

 (3.5) 

where the function ( , )y  describes the wave function of the Schrödinger equation:  

 2 22
0

1 ,
2 yi y          (3.6) 

for a harmonic oscillator on the stochastic space-time { , }y   continuum. In (3.6) the 
following designations are made:  

2
0/ , ( )/ , ( ) / ( ).

t
y x r t t dt r t  


      

The random solution ( )t  satisfies the classical homogeneous equation of an oscillator 
which describes the stochastic fluctuating process flowing into FE: 

  2 ;{ } 0.t f    (3.7) 

Taking into account (3.5) and the well-known solution of autonomous quantum harmonic 
oscillator (3.6) (see [28]) for stochastic complex processes which describe the 1D QHO+FE 
closed system, we can write the following expression: 

 

 

0

1/2
0 0 2

0 02 2

| , |{ }

1 1 1exp .
2 2( )2 !

st c

t
t

nn
t

n x t

dt r x
i n i x H

r r rr t rn





 

                               


 (3.8) 

The solution of (3.8) is defined in the extended space 1
{ }R R   , where 1R  is the one-

dimensional Euclidian space and { }R   
is the functional space which will be defined below 

(see section 3.3). Note that wave function (3.8) (a more specific wave functional) describes 
the quantum subsystem with taking into account the influence of the environment. It is easy 
to show that complex probabilistic processes (3.8) consist of a full orthogonal basis in the 
space of quadratically integrable functions 2L . 

       2
0 0

1/2

( 1/2) / 20
0

1| , | , | ,
2 !

i n t x
nnn x t e n x n x e H x

n
 


   

 
    

  
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Taking into account the orthogonal properties of (3.8), we can write the following 
normalization condition: 

    | , |{ } | , |{ } ,s t c st c nmn x t m x t dx  




 

    (3.9) 

where the symbol " "  means complex conjugation. 
So, the initial L-Sch equation (2.1) - (3.1) which satisfies the asymptotic condition (3.4) is 
reduced to autonomous Schrödinger equation (3.6) in the stochastic space-time using the 
etalon differential equation (3.7). Note that equation (3.7) with taking into account conditions 
(3.2) and (3.3) describes the motion of FE. 

3.2 The mean values of measurable parameters of 1D QHO 
For investigation of irreversible processes in quantum systems the non-stationary density 
matrix representation based on the quantum Liouville equation is often used. However, the 
application of this representation has restrictions [11]. It is used for the cases when the 
system before switching on the interaction was in the state of thermodynamic equilibrium 
and after switching on its evolution is adiabatic. Below, in the frames of the considered 
model the new approach is used for the investigation of the statistical properties of an 
irreversible quantum system without any restriction on the quantities and rate of interaction 
change. Taking into account definition (2.15), we can develop SDM method in the 
framework of which it is possible to calculate various measurable physical parameters of a 
quantum subsystem. 
Definition 1. The expression for a stochastic function: 

    ( ) ( )

1
, |{ }| , |{ } , |{ }| , |{ } ,m m

stc st c
m

x t x t w x t x t     




        (3.10) 

will be referred to as stochastic density matrix. Recall that the partial SDM 
 ( ) , |{ }| , |{ }m

st c x t x t      is defined by the expression: 
     ( ) , |{ }| , |{ } | , |{ } | , |{ } .m

st c st c st cx t x t m x t m x t          In addition, ( )mw  describes the 
level of population with the energy   01 /2mE n    until the moment of time 0t  when the 
random excitations of FE are turned on. Integrating (3.10) over the Euclidean space (1)R  
with taking into account (3.9), we obtain the normalization condition for weight functions: 

 ( ) ( )

1
1, 0.m m

m

w w



   (3.11) 

Below we define the mean values of various operators. Note that at averaging over the 
extended space   the order of integration is important. In the case when the integral from 
the stochastic density matrix is taken at first in the space, 1R  and then in the functional 
space, { }R   the result becomes equal to unity. This means that in the extended space   all 
conservation laws are valid, in other words, the stochastic density matrix in this space is 
unitary. In the case when we take the integration in the inverse order, we get another 
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picture. After integration over, { }R   the obtained density matrix describes quantum 
processes in the Euclidean space, 1R . Its trace is, in general, not unitary, which means that 
the conservation laws, generally speaking, can be invalid in the Euclidean space.  
Definition 2. The expected value of the operator  ˆ , |{ }A x t 

 in the quantum state m  is 
defined by the expression: 

   1 ( ) ( )ˆ( ) lim ( ) , |{ }| , |{ } , ( ) .m m
m m x stc m x st c

t
A N t Tr Tr A x t x t N t Tr Tr     


           (3.12) 

The mean value of the operator  ˆ , |{ }A x t  over all quantum states, respectively, will be:  

   1 ˆ( ) lim ( ) , |{ }| , |{ } , ( ) .x st c x st c
t

A N t Tr Tr A x t x t N t Tr Tr     


           (3.13) 

Note that the operation Tr in (3.12) and (3.13) denotes functional integration:  

       0, | | , | , |{ }| , |{ } ( ) ,Tr K x t x t K x t x t D                  (3.14) 

where ( )D  designates the measure of functional space which will be defined below. 
If we wish to derive an expression describing the irreversible behavior of the system, it is 
necessary to change the definition of entropy. Let us remind that the von Neumann non-
stationary entropy (the measure of randomness of a statistical ensemble) is defined by the 
following form: 

  , { ln } , ( ) lim ( , ) ,N x
t

t Tr N N t    


    (3.15) 

where ( , ; ) { }st cx x t Tr   is a reduced density matrix, 1/3
0 /  is an interaction 

parameter between the quantum subsystem and environment. 
Let us note that the definition of the von Neumann entropy (3.15) is correct for the quantum 
information theory and agrees well with the Shannon entropy in the classical limit. 
Definition 3. For the considered system of 1D QHO with FE the entropy is naturally defined 
by the form: 

  { }( , ) ln , ( ) lim ( , ) ,G x stc st c G G
t

t Tr Tr t    


        (3.16) 

where the following designation  , , ;{ }st c st c x x t   is made. 

Finally, it is important to note that the sequence of integrations first in the functional space,
{ }R   and then in the Euclidean space, 1R corresponds to non-unitary reduction of the 

vector’s state (or non-unitary influence on the quantum subsystem). 

3.3 Derivation of an equation for conditional probability of fields. Measure of 
functional space { }R   

Let us consider the stochastic equation (3.7). We will present the solution of the equation in 
the following form: 
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 

0

0 0 0

0 0 0

( ) exp , ,
( )

( )exp ( ) , .
t

t

t i t t t
t

t t dt t t






   


       
 
 η

 (3.17) 

After substitution of (3.17) into (3.7) we can define the following nonlinear SDE: 

 2 2
0 0 0 0 0 0 0( ) 0 , ( ) ( )/ ( ) , .tf t t i t t i        η η η η η   (3.18) 

The second equation in (3.18) expresses the condition of continuity of the function ( )t  and 
its first derivative at the moment of time 0t t . Using the fact that the function ( )tη  
describes a complex-valued random process, the SDE (3.18) may be presented in the form of 
two SDE for real-valued fields (random processes). Namely, introducing the real and 
imaginary parts of ( )tη : 

 1 2 2( ) ( ) ( ) , ( ) 0 ,t u t i u t u t  η  (3.19) 

the following system of SDEs can be finally obtained for the fields  1 2( ) ,t u uη η : 

 
22 2 1 0 0 0 0 01 1 2 0

2 1 2 2 0 0 0 0 0 0

( ) Re ( ) / ( ) 0 ,( ) 0 ,
2 , ( ) Im ( ) / ( ) .

u t t tu u u f t

u u u u t t t

 

 

           
 

       




 (3.20) 

The pair of fields 1 2( , )u u  in this model is not independent because their evolution is 
influenced by the common random force ( )f t . This means that the joint probability 
distribution of fields can be represented by the form: 

    
2

0 0 0 0 0
1

, | , ( ) , ( ) ,i i i i
i

P t t u t u u u t


  η η  (3.21) 

which is a non-factorable function. After differentiation of functional (3.21) with respect to 
time and using SDEs (3.18) and correlation properties of the random force (3.3), as well as 
making standard calculations and reasonings (see [29,30]), we obtain for a distribution of 
fields the following Fokker-Planck equation: 

  0 0
ˆ , | , ,tP L t t P  η η  (3.22) 

    
2

22 2
0 0 1 2 1 2 102

1 1 2

ˆ , | , 2 4 ,L t t u u u u u
u u u


 

     
  

η η  (3.23) 

with the initial condition: 

  
0

1 2 1 01 2 02, , ( ) ( ).
t t

P u u t u u u u 


    (3.24) 

Thus, equation (3.22)-(3.23) describes the free evolution of FE.  
Now, our purpose consists in constructing the measure of functional space, which is a 
necessary condition for further theoretical constructions. The solution of equation (3.22)-
(3.23) for small time intervals can be presented in the form: 
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    
2

2 2 2
1 1 1 2 0

1 1, | , exp ( ) , .
22

P t t u u u u t t t t t
tt 

                  
η η  (3.25) 

So, we can state that the evolution of fields 1 2( , )u u  in the functional space { }R   is 
characterized by regular displacement with the velocity 2 2 2

1 2 0( )u u   against the 
background of Gaussian fluctuations with the diffusion value  . The infinitely small 
displacement of the trajectory ( )tη  in the space { }R   is determined by expression [30]: 

 2 1/22 2
1 2 0( ) ( ) ( ) ( ) .t t t u u t f t t       η η  (3.26) 

As follows from expression (3.26), the trajectory is continuous everywhere, and, 
correspondingly, the condition 0( )| ( )tt t t  η η  is valid. However, expression (3.26) is 
undifferentiable everywhere owing to the presence of a term which is of the order 1/2t . If 
we divide the time into small intervals, each of which being equal to /t t N  , where
N  , then expression (3.25) can be interpreted as a probability of transition from 

( )k ktη η  to 1 1( )k kt η η during the time t in the process of Brownian motion. With 
consideration of the above, we can construct probability of fields' change on finite intervals 
of time or the measure of the space, { }R   (see [4]): 

 

 

0 1 1 2 1

2
12 2 2

1 1 1 1 1 2 1 0
0

1( ) ( ) lim ( ) ( )
2

exp ( ) ( ) ( ) ( ) ,
2

N

k k
N

N
k

k k k k
k

N
D D D du t du t

t

tN
u t u t u t u t

t N

  
 



 



  



           
         

   


η η

 (3.27) 

where 0 1 01 2 0 2 1 2( ) ( ) ( )D u u u u du du    η  (see condition (3.25)). 

3.4 Entropy of the ground state of 1D QHO with fundamental environment 
For simplicity we will suppose that (0) 1w   and, correspondingly, ( ) 0mw   for all quantum 
numbers 1m  (see expression (3.10) ). In this case the SDM (3.10) with consideration of 
expressions (3.8), (3.14) and (3.16) may be represented by the following form: 

      
0

(0) 2 2 2 20
1 1 2

1, , |{ } e , ( ) ( ) ( ) ,
2 2

t
A

st c
t

i
x x t A u t dt u t x x u t x x 


           (3.28) 

where the following designation (0) (0)( , , |{ }) ( , ,{ }| , ,{ })|st c st c t tx x t x t x t          is made. 

Now, we can calculate the reduced density matrix: (0)0( , , ) { ( , , |{ })}s t cx x t Tr x x t    . Using 
expressions for the continuous measure (3.27) and stochastic density matrix (3.28) we can 
construct the corresponding functional integral which can be further calculated by the 
generalized Feynman-Kac formula (see Appendix 4.1, [6]): 

     (0) 2 2 2 20
1 2 0 1 2 1 2

0

1, , ( , , )exp ( ) ( ) ,
2 2
i

x x t du du Q u u t u t x x u t x x


   



        
    (3.29) 
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In expression (3.29) the function 0 1 2( , , )Q u u t  is a solution of the equation: 

 0 1 2 1 0
ˆ ( , , ) ,tQ L u u t u Q      (3.30) 

which satisfies the following initial and boundary conditions: 

 
00 1 2 1 01 2 0 2 0 1 2 || ||( , , ) ( ) ( ), ( , , ) 0.t tQ u u t u u u u Q u u t      η  (3.31) 

Let us consider the expression for the entropy (3.17). Substituting (3.29) into (3.17) we can 
find: 

       1 2( ), ( ) , | ,(0)
{ } 1 2

1, ( ), ( ) , | , e .A u t u t t x x
xG t Tr Tr A u t u t t x x


     

 (3.32) 

After conducting integration in the space 1R  in (3.33), it is easy to find the expression: 

  (0)
0( ) ,G N t      (3.33) 

where the following designations are made: 

    
0

1/2
12( ) ( ;{ }) , ( ;{ }) ( )exp 1 ( ) .

t

t
N t Tr I t I t u t u t dt               (3.34) 

Similarly, as in the case with (3.29), using expressions (3.34) it is possible to calculate the 
functional trace in the expression ( )N t : 

 1 2 1 2
20

1( ) ( , , ) ,N t du du Q u u t
u 

 



    (3.35) 

where the function 1 2( , , )Q u u t is the solution of the equation: 

 1 2 1
ˆ ( , , ) ( 1) .tQ L u u t u Q        (3.36) 

Recall that border conditions for (3.36) are similar to (3.31). Besides, if we assume that 0   
in (3.35), we will obtain the normalization function 0( )N t . After calculation of the function 

1 2( , , )Q u u t  
we can also calculate the function 1 2 1 2( , , ) ( , , )D u u t Q u u t   . In particular, it 

is easy to obtain an equation for 1 2( , , )D u u t  by differentiation of equation (3.36) with 
respect to α: 

 1 2 1
ˆ ( , , ) ,tD L u u t u D       (3.37) 

which is solved by initial and border conditions of type (3.31). 
Introducing the designation 0 1 2 1 2 0( , , ) ( , , )D u u t D u u t  

 , it is possible to find the 
expression: 

 0;0 1 2 0 1 2
20

1( ) ( ) ( , , ).N t N t du du D u u t
u 

 



      (3.38) 
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Using (3.38) we can write the final form of the entropy of «ground state» in the limit of 
thermodynamics equilibrium: 

  (0) 1/3
0;0 0( ) , / .G N       (3.39) 

It is simple to show that in the limit     entropy aspires to zero. 
Thus, at the reduction ( , , |{ }) ( , , )s t c x x t x x t     information in a quantum subsystem is 
lost, as a result of which the entropy changes, too. Let us remind that usually the entropy of 
a quantum subsystem at environment inclusion grows, however, in the considered case the 
behavior of the entropy depending on the interaction parameter   can be generally 
nontrivial.  

3.5 Energy spectrum of a quantum subsystem 
The energy spectrum is an important characteristic of a quantum system. In the considered 
case we will calculate the first two levels of the energy spectrum in the limit of 
thermodynamic equilibrium. Taking into account expressions (3.12) and (3.28) for the 
energy of the «ground state», the following expression can be written: 

     (0) 1
0 0

ˆlim ( ) , , |{ } ,osc x st c
t

E N t Tr Tr H x x t  

  
     (3.40) 

where the operator:  

 2 2 2
0 0

1ˆ ,
2 xH x       (3.41) 

describes the Hamiltonian of 1D QHO without an environment. 
Substituting (3.41) in (3.40) and after conducting simple calculations, we can find: 

    (0)
0 0

1 1 ( ) ,
2oscE K     (3.42) 

where the following designations are made: 

2 2 2
1/31 2

0 1 2 0 1 2 1 ,2 1 ,2
0 220

1 1( ) 1 ( , , ), / .
( ) 2

u u
K du du Q u u u u

N uu


  
 

 



       
  

   (3.43) 

In expression (3.43) the stationary solution 0 1 2 0 1 2( , , ) lim ( , , )tQ u u Q u u t     is a scaling 
solution of equation (3.30) or (3.36) for the case where 0  . Similarly, it is possible to 
calculate the average value of the energy of any excited state. In particular, the calculation of 
the energy level of the first excited state leads to the following expression: 

    (1)
1 0

3 1 ( ) ,
2oscE K     (3.44) 



 
Theoretical Concepts of Quantum Mechanics 176 

where 

 
2 2 2
1 2

1 1 2 1 1 23/2
1 220

1 1( ) 1 ( , , ) ,
( ) 2

u u
K du du Q u u

N uu


 

 

 



      
  

   (3.45) 

in addition: 

 1 1 2 1 1 23/2
20

1( ) ( , , ).N du du Q u u
u

 
 



    (3.46) 

In expression (3.45) the stationary solution 1 1 2 1 1 2( , , ) lim ( , , )tQ u u Q u u t    is a scaling 
solution of equation (3.36)) for the case where 1  . 
 

 
 

Fig. 1. The first two energy levels of quantum harmonic oscillator without of FE (see 
quantum numbers 0,1,..n  ) and correspondingly with consideration of relaxation in the FE 
(see quantum numbers 0,1,..n ). 

As obviously follows from expressions (3.42)-(3.46), the relaxation effects lead to 
infringement of the principle of equidistance between the energy levels of a quantum 
harmonic oscillator Fig.1. In other words, relaxation of the quantum subsystem in 
fundamental environment leads to a shift of energy levels like the well-known Lamb shift. 

3.6 Spontaneous transitions between the energy levels of a quantum subsystem 
The question of stability of the energy levels of a quantum subsystem is very important. It is 
obvious that the answer to this question may be received after investigation of the problem 
of spontaneous transitions between the energy levels. Taking into account (3.4) and (3.8), we 
can write an expression for the probability of spontaneous transition between two different 
quantum states:  
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     2( ) | ( )| , ( ) lim | , |{ } | , ,n m nm nm x st c
t

W S S Tr Tr n x t m x t    


 
     (3.47) 

where the wave function ( | , )m x t  describes a pure state. 
It is obvious that in the considered formulation of the problem there might occur transitions 
between any energy levels, including transitions from the «ground state» to any excited 
states. Using expression (3.47), we can calculate the spontaneous decay of every quantum 
state. In particular, if (0) 1w   and ( ) 0nw   for any 1m , the probability of transition from 
the «ground state» to all other excited states may be calculated as follows: 

 0 2
0 0

1
( ) | ( )| ( ).m m

m m

S  


      (3.48) 

In (3.48) 0  characterizes the population of the «ground state» in the limit of equilibrium 
thermodynamics. The first two nonzero probabilities of spontaneous transitions are 
calculated simply (see Appendix 4.2): 

 

   

   

0 2 1 2 1 2 0 1 2
0

2

2 0 1 2 1 2 2 1 2
0

( ) , , , , ,

( ) , , , , ,

du du u u u u

du du u u u u

   

   

 




 




  

  

 

 

 (3.49) 

where 

 1 2
1 21 2

2, , 1 .u u
iu uiu u

 


     
     

 

Let us note that in expressions (3.48) and (3.49) the functions 0 1 2( , , )u u   and 2 1 2( , , )u u 
are solutions of the equation: 

   1 2 1 2 1 2
ˆ( , , ) 1 2 ( , , ).t n nu u L n u u u u           (3.50) 

Comparing expressions (3.48) and (3.49) with taking into account the fact that equation 
(3.50) for a different number n  has different solutions, n m   if n m , we can conclude 
that the detailed balance of transitions between different quantum levels is violated, i. e. 

0 2 2 0   . Also, it is obvious that transitions between the quantum levels are possible if 

their parities are identical. 

3.7 Uncertainty relations, Weyl transformation and Wigner function for the ground 
state 
According to the Heisenberg uncertainty relations, the product of the coordinate and 
corresponding momentum of the quantum system cannot have arbitrarily small dispersions. 
This principle has been verified experimentally many times. However, at the present time 
for development of quantum technologies it is very important to find possibilities for 
overcoming this fundamental restriction. 
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As is well-known, the dispersion of the operator ˆ
iA
 
is determined by the following form: 

     22ˆ ˆ ˆ( ) ( ) ( ) .i x i x iA t Tr A t Tr A t        
 (3.51) 

In the considered case the dispersion of the operator at the arbitrary time t in the «ground 
state» can be calculated by the following expression: 

     2(0) (0)1 2
0

ˆ ˆ ˆ( ) ( ) ( ) ( ) .i x st c i x st c iA t N t Tr Tr A t Tr Tr A t          
 (3.52) 

Using expression (3.52), we can calculate the dispersions of operators, the coordinate, x̂  and 
momentum, p̂ correspondingly:  

  
1/2

1 2 0 1 23/2
0 020

1 1 1ˆ( ) , , ( ),
( ) 2 ( ) xx t du du Q u u A t

N t N tu


 



     
  

   (3.53) 

  
1/2

2 2
1 2

1 2 0 1 23/2
0 020

1 1ˆ( ) , , ( ).
( ) 2 ( ) p

u u
p t du du Q u u t A t

N t N tu

 



     
  

   (3.54) 

The dispersions of operators at the moment of time 0t , when the interaction with the 
environment is not switched on, is described with the standard Heisenberg relation: 

0
ˆ ˆ( ) ( )| 1 /2.t tx t p t     The uncertainty relation for the large interval of time when the united 

system approaches thermodynamic equilibrium can be represented in the form: 

  
0

( ) ( )1ˆ ˆ ˆ ˆlim ( ) ( ) ,
2 ( )

x p
st st

t

A A
x p x t p t

N

 
 

       (3.55) 

where average values of operators ˆ( )x   and ˆ( )p   can be found from (3.53) and (3.54) in the 
limit t   . 
It is obvious that expressions for operator dispersions (3.53)-(3.54) are different from 
Heisenberg uncertainty relations and this difference can become essential at certain values 
of the interaction parameter  . The last circumstance is very important since it allows 
controlling the fundamental uncertainty relations with the help of the   parameter. 
Definition 4. We will refer to the expression:  

       
1

, , ;{ } | , , ;{ } ,m
st c st c

m

W p x t w W m p x t 



   (3.56) 

as stochastic Wigner function and, correspondingly, to ( | , , ;{ })st cW m p x t  as partial 
stochastic Wigner function. In particular, for the partial stochastic Wigner function the 
following expression may be found: 
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      1| , , ;{ } | / 2, ;{ } | /2, ;{ } .
2

i p v
st c s t c s t cW m p x t e m x v t m x v t dv  






      (3.57) 

Using the stochastic Wigner function, it is possible to calculate the mean values of the 
physical quantity, which corresponds to the operator Â : 

    1( ) lim , , ;{ } , , |{ } ,
( ) st c

t
A dp dxTr a p x t x x t

N t    
   

 
   

      
  

   (3.58) 

where the stochastic function ( , , ;{ })a p x t   is defined with the help of a Weyl transformation 

of the operator Â : 

    ˆ( , , ;{ }) | / 2, ;{ } | /2, ;{ } .i p v
st c st ca p x t e m x v t A m x v t dv  






      (3.59) 

Now we can construct a Wigner function for the «ground state»: 

 

  (0)

2 2
1 2

1 2 0 1 2
220

1( , , ) 0| , , ;{ }
2

( ) ( )1 1 ( , , )exp .

st cW x p t Tr W x p t

p u x u x
du du Q u u t

uu

 



   

 

 

    
  

 
 (3.60) 

As one can see, function (3.61) describes distribution of the coordinate x  and momentum p
in the phase space. The Wigner stationary distribution function can be found in the limit of 
the stationary processes 

(0) (0)( , , ) lim ( , , )tW x p W x p t    . It is important to note that in thesimilar to regular case 

after integration of the stochastic function ( | , , ;{ })st cW m p x t   over the phase space; it is easy 

to get the normalization condition: 

  | , , ;{ } 1.st cdx dpW m x p t 
   

   

   (3.61) 

Recall that for the Wigner function (3.61) in the general case the normalization condition of 
type (6.12) is not carried out. 

3.8 Conclusion 
Any quantum system resulting from the fact that all beings are immersed into a physical 
vacuum is an open system [1-3]. A crucially new approach to constructing the quantum 
mechanics of a closed non-relativistic system QS+FE has been developed recently by the 
authors of [5-8], based on the principle of local equivalence of Schrodinger representation. More 
precisely, it has been assumed that the evolution of a quantum system is such that it may be 
described by the Schrödinger equation on any small time interval, while the motion as a 
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whole is described by a SDE for the wave function. However, in this case there arises a non-
simple problem of how to find a measure of the functional space, which is necessary for 
calculating the average values of various parameters of the physical system. 
We have explored the possibility of building the non-relativistic quantum mechanics of a 
closed system QS+FE within the framework of one-dimensional QHO which has a random 
frequency. Mathematically, the problem is formulated in terms of SDE for a complex-valued 
probability process (3.1) defined in the extended space 1

{ }R R ξ .The initial SDE for complex 
processes is reduced to the 1D Schrödinger equation for an autonomous oscillator on a 
random space-time continuum (3.6). For this purpose the complex SDE of Langevin type has 
been used. In the case when random fluctuations of FE are described by the white noise 
correlation function model, the Fokker-Plank equation for conditional probability of fields is 
obtained (3.22)-(3.23) using two real-valued SDE for fields (3.20). With the help of solutions 
of this equation, a measure of the functional space { }R ξ  is constructed (3.27) on infinitely 
small time intervals (3.24).In the context of the developed approach representation of the 
stochastic density matrix is introduced, which allows perform an exact computation scheme 
of physical parameters of QHO (of a quantum subsystem) and also of fundamental 
environment after relaxation under the influence of QS. The analytic formulas for energies 
of the «ground state» and for the first excited state with consideration of shift (like the Lamb 
shift) are obtained. The spontaneous transitions between various energy levels were 
calculated analytically and violation of symmetry between elementary transitions up and 
down, including spontaneous decay of the «ground state», was proved. The important 
results of the work are the calculation of expressions for uncertainty relations and Wigner 
function for a quantum subsystem strongly interacting with the environment. 
Finally, it is important to note that the developed approach is more realistic because it takes 
into account the shifts of energy levels, spontaneous transitions between the energy levels 
and many other things which are inherent to real quantum systems. The further 
development of the considered formalism in application to exactly solvable many-
dimensional models can essentially extend our understanding of the quantum world and 
lead us to new nontrivial discoveries. 

4. Appendix 

4.1 Appendix 1 
Theorem. Let us consider a set of random processes 1 2{ , ,... }n  ξ  satisfying the set of SDE: 

     
1

, , , 1,2,.... ,
n

i i j i j
j

a t b t f t i n


  ξ ξ  

where  

      0 , ( ),i i j i jf t f t f t t t      (4.1.1) 

so that the Fokker-Planck equation for the conditional transition probability density: 

    
1 1

(2)
2 2 1 1 2 1 ( ) 2 1, | , ( ) , ,tP t t t t t   ξ ξξ ξ ξ ξ  (4.1.2) 
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is given by the equation: 

      (2) (2) (2) ( ) (2)

1

ˆ .
n

n
t i l i k j

i i ki i j l k

P a P b b P L P
  

   
    

   
  ξ  (4.1.3) 

i  are assumed to be Markovian processes and satisfy the condition 0 0( ) .t ξ ξ  At the same time 
function (4.1.2) gives their exhaustive description: 

      ( ) (2) (2)
1 1 0 0 1 1 1 1 0 0, ;... , ; , , ; , ... , ; , ,n

n n n n n nP t t t P t t P t t ξ ξ ξ ξ ξ ξ ξ  (4.1.4) 

where ( )nP is the density of the probability that the trajectory ( )tξ would pass through the sequence of 

intervals    , ,.... ,n n nd d 1 1 1ξ ξ ξ ξ ξ ξ at the subsequent moments of time 2 ... nt t t 1 , respectively. 

Under these assumptions we can obtain the following representation for an averaging procedure: 

      2

0

( , )
1 2exp ( ), ( ) ( ) , , ,

t
V t

t

V t d V t d e Q t  
      
  
  ξξ ξ ξ ξ ξ ξ  (4.1.5) 

where 1 ... nd d dξ ξ ξ and the function  , ,Q tξ ξ is a solution of the following parabolic equation: 

    ( )
1

ˆ , , ,n
tQ L V t Q    ξ ξ ξ  (4.1.6) 

which satisfies the following initial and boundary conditions: 

      
0

0 || ||
, , , , , 0 ,

t t
Q t t t Q t

  
   

ξ
ξ ξ ξ ξ  (4.1.7) 

where ||...||is a norm in nR . 
Proof. The proof is performed formally under the assumption that all the manipulations are 
legal. We will expand into the Taylor series the quantity under the averaging in the left-
hand side of (4.1.5): 

  
0

1
( ) ( ), 0,1,... ,

!

n

n
n

I t t m n
n







   (4.1.8) 

where  

     
0 0

1 1 2 1
0

!( ) ( ) ( )
! !

n n
t t

n m
n

mt t

n
t V d V t V t V d

m n m
    






            
      

   

 
       

2

0 0 0

2 1 1 1 1 1 1 2
0

! ( ) ... ... .
! !

mt
n m

m m m m
m t t t

n
V t d d d V V V

m n m

 

     



 

      (4.1.9) 

The designations 1 1( ) ( ( ), ( ))V V t  ξ ξ  and 2 2( ) ( ( ))V t V t ξ  are introduced in (4.1.9) for 
brevity. Using the Fubini theorem, we can represent the averaging procedure in (4.1.9) as 
integration with the weight ( )nP  from (4.1.4): 
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     

           

12 2

0 0 0 0 0

2 1 1 1 1 1 1 2 1 1

(2) (2) (2)
1 1 2 2 1 1 1 1 12

( ) ... ... ... ...

, | , , | , ... , | , ... .

mmt
n m

m m m m m m
t t t t t

n m
m m m m m m m

V t d d d V V V d d d d d

P t P P V V V

  

       

    




 


 

        ξ ξ ξ

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ

 

Changing, where it is necessary, the order of integration, we can obtain the following 
representation for the n -th moment: 

    2
0

!( ) , , ,
( )!

n
n m

n m
m

n
t d V Q t

n m
 




  ξ ξ ξ ξ  (4.1.10) 

where the countable set of functions ( , , )mQ tξ ξ is determined from the recurrence relations: 

          
0

(2)
1 12, , , | , , , , ,

t
n m

m m
t

Q t d d V P t V Q  
     ξ ξ ζ ξ ξ ζ ζ ξ ζ ξ  (4.1.11) 

where 

 (2)
0 0 0( , , ) ( , | , ),Q t P t t ξ ξ ξ ξ  (4.1.12) 

i.e. the function 0Q is, in fact, independent of ξ . Upon substitution of (4.1.10) into (4.1.8) we 
insert the summation procedure under the integration sign and then, changing the order of 
double summation, get the expression: 

  2 ( , )( ) , , ,V tI t d e Q t   ξξ ξ ξ  (4.1.13) 

where 

      
0

, , 1 , , .n
n

n

Q t Q t




  ξ ξ ξ ξ  (4.1.14) 

The representation (4.1.5) is thus obtained. 
It remains to prove that the function Q from (4.1.13) is a solution of the problem (4.1.6) - 
(4.1.7). Using (4.1.14) and (4.1.11) we can easily show that Q satisfies the integral equation: 

          
0

(2)
1 0, , , | , , , , , , .

t

t

Q t d d P t V Q Q t       ξ ξ ζ ξ ζ ζ ξ ζ ξ ξ  (4.1.15) 

Taking into account the fact that 0Q satisfies equation (4.1.3) with the initial and border 
conditions (4.1.7) and also that it is an integrable function, it is easy to deduce from equation 
(4.1.16) that the Q  function coincides with the solution of the problem (4.1.6)-(4.1.7). Thus, 
the theorem is proved. 

4.2 Appendix 2 
Let us consider the bilinear form: 
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      , ,| , ;{ } | , |{ } | , ,s t cn m x t n x t m x t  ξ ξ  (4.2.1) 

which can be represented,taking into account expressions (3.4) and (3.8), by the following 
form: 

     
0

1/2
/20

2 1 2
1, ,| , ;{ } ( ) exp ( ) ( )
22 ! !

t
n

n m
t

n m x t u t n u t u t dt
n m

 


                    
ξ  

      2
1 2 0 2 0

1 ( ) ( ) ( ) .
2 n miu t u t x H u t x H x    


 (4.2.2) 

After conducting functional integration of the expression  , ,| , ;{ }n m x t ξ  by the 
generalized Feynman-Kac formula (see Appendix 4.1), it is possible to find: 

    
1/2

0
{ }, ,| , ;{ } , ,| , ;{ }

2 ! !n mn m x t Tr n m x t
n m




 
     

 
ξξ ξ  0 1 2

0
mH x du du

   

 

    

        /2 2
2 1 2 0 2 1 2

1exp ( ) ( ) , , ,
2

n
n nu iu t u t x H u x u u t       

 
 (4.2.3) 

where 1 2( , , )n u u t  is a solution of the complex equation: 

   1 2 1 2 1 2
ˆ( , , ) 1 2 ( , , ).t n nu u t L n u iu u u t          (4.2.4) 

The solution of equation (4.4) is useful to represent in the following form: 

 1 2 1 2 1 2( , , ) ( , , ) ( , , ).n n nu u t u u t i u u t     (4.2.5) 

By substituting (4.2.5) into equation (4.2.4), it is possible to find the following two real-value 
equations for the real and complex parts of solution: 

 
         
         

1 2 1 1 2 2 1 2

1 2 1 1 2 2 1 2

ˆ, , 1 2 , , 1 2 , , ,

ˆ, , 1 2 , , 1 2 , , .

t n n n

t n n n

u u t L n u u u t n u u u t

u u t L n u u u t n u u u t

  

  

       
       

 (4.2.6) 

The system of equations is symmetric in regard to the replacements: n n   and 
n n  . In other words, it means that for the solution 1 2( , , )n u u t  it is possible to write 

the following equation: 

       1 2 1 2 1 2
ˆ, , 1 2 , , .t n nu u t L n u u u u t         (4.2.7) 

Accordingly, for a complex solution 1 2( , , )n u u t we can write the expression: 

 1 2 1 2 1 2( , , ) (1 ) ( , , ) (1 ) ( , , ).n n nu u t i u u t i u u t       (4.2.8) 

Now it is possible to pass to the calculation of the amplitude of transition between different 
quantum states. For simplicity we will compute the first two probabilities of transitions: 
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0 2  and 2 0 . Integrating the expression  0,2,| , }x t  over x  with taking into 

account result (4.2.8), it is easy to find:  

      0 2 1 2 1 2 0 1 2
0

( ) lim 0,2,| , } , , , , ,
t

S x t dx du du u u u u    
   

  
  

       (4.2.9) 

where  0 1 2, ,u u   is the scaled solution of equation (4.2.7) in the limit ,t     in 
addition:  

   1/2 1
1 2 1 2 1 2, , ( ) 1 2 ( ) .u u iu u iu u              (4.2.10) 

In a similar way it is possible to calculate the transition matrix element 2 0( )S  : 

      2 0 1 2 1 2 2 1 2
0

( ) lim 2,0,| , } , , , , .
t

S x t dx du du u u u u    
   

  
  

       (4.2.11) 

As follows from expressions (4.2.9), (4.2.10) and (4.2.11), in the general case 0 2 2 0( ) ( ).S S   
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1. Introduction

The problem of the dissipative systems from the quantum point of view has been of increasing
interest, but it is far from having a satisfactory solution (1). There are many problems where
the dissipation has an important role such as in quantum optics, in quantum analysis of fields,
in quantum gravity (2). Dissipation can be observed in interactions between two systems, the
observed system and another one often called reservoir or the bath, into which the energy
flows via an irreversible manner (3). The system is embedded in some environment which is in
principle unknown. For an effective description of such systems, we can use time dependent
Hamiltonians which in classical physics yield the proper equation of motion. If the friction
is a linear funcion of the velocity with friction constant γ the Hamiltonian is the well known
Caldirola - Kanai Hamiltonian

Ĥ =
1

2m
e−γ t p̂2 + V(q̂)eγ t

Some special potentials have been studied in reference (4). It should be noted however, that
Ĥ is not constant of motion and does not represent the energy of the system.
A second method for the dissipative systems, is based upon the procedure of doubling
the phase space dimensions. The new degrees of freedom may assumed to represent the
environment which absorb the energy dissipated by the dissipative system. H. Bateman (5)
has shown that one can double the numbers of degrees of freedom so as to deal with an
effective isolated system (6). In this article we assume that the coordinate operators q1 and
q2 , of these two systems respectively do not commute, that is [q̂1, q̂2] = iθ where θ is a real
parameter and plays an analogous role of h̄ in standard quantum mechanics.
For a manifold parametrized by the space - time coordinates xμ, the commutation relations
can be written as

[xμ, xν] = iθμν, μ, ν = 0, ..., d

where θμν is a real antisymmetric tensor. This relation gives rise to the following space - time
uncertainty relations

(Δxμ) (Δxν) ≥ 1
2
|θμν|

The space - time non commutativity however violates causality, although could be consistent
in string theory (9). Field theories with only space non commutativity, that is θ0i = 0 have a
unitary S matrix, on the other hand theories with space - time non commutativity θ0i �= 0 are
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not unitary. The non - commutativity of space, in the quantum field theory, appears through
the modification of the product of the fields which appear in the action, by the so - called
Moyal or star product (7),(8).
The idea of non commutative space - time was presented by Snyder (10) in 1947, with respect
to the need to regularize the divergence of the quantum field theory. The idea was suggested
by Heisenberg in 1930. It was Jon von Neumann , who began studying this "pointless
geometry". The physical theories of today they hold only in empty space which in reality
does not exist. The seed of the original idea goes back to ancient Greek Stoik Philosophers,
especially to Zeno the Kitieus, who contrary to the followers of Democritus, said that there is
not empty space (11).
In the past few years there has been an increasing interest in the non commutative geometry,
extensively developed by Connes (12), for the study of many physical problems. It has become
clear that there is a strong connection of these ideas with string theories (13), finding many
applications in solid state and particles physics. The non commutative geometry arises very
naturally from the Matrix theory (14).
There is another immediate motivation of noncommutative theories in quantum gravity.
Classical general relativity breaks down at Planck scale lp, where quantum effects become
important.

lp =

√
hG
c3 � 10−33cm tp =

lp

c
� 10−44sec

Einstein’s theory implies that gravity is equivalent to spacetime geometry. Hence
quantum gravity should quantize spacetime and spacetime quantization requires to promote
coordinates to hermitian operators which do not commute. The wave function actually
becomes an operator. The point is replaced by some "cell" and thus the spacetime becomes
fuzzy at very short distances. It is apparent that this conflicts with Lorentz invariance. Physics
near Planck dimensions is not yet fully understood. At these dimensions the cone of light acts
as if it were fuzzy and we cannot distinguish between the past and the future. A review of
recent efforts to add a gravitational field to non commutative models can be found in (15) and
references therein.
Non commutativity is the central mathematical concept expressing the uncertainty. The phase
space of ordinary quantum mechanics is a well known example of non commuting space. The
momenta of a system in the presence of a magnetic field act as non commuting operators
as well. The canonical commutation relations of quantum mechanics introduce a cellular
structure in phase space. Noncommuting coordinates will introduce a cellular structure in
ordinary space as well, similar to a lattice structure, which a priory lead to a nonlocal theory.
This nonlocality however may be desirable since there are reasons to believe that any theory
of quantum gravity will not be local in the conventional sense. Anyway it is a long - held
belief that in quantum theories, space - time must change its nature at distances compared to
the Planck scales.
The experimental signature of noncommuting spatial coordinates which is currently available
seems to be the approximate noncommutativity appearing in the Landau problem, the lowest
energy levels, for the case of very strong magnetic field. The study of exactly solvable models,
as is for instance the present note, should lead to a better understanding of some issues in
noncommutative theories.
In recent years there has been increasing interest in quantizing the harmonic oscillator with
a variable mass in a time varying crossed electromagnetic field (16). In this article we will
study the problem of a two dimensional time dependent harmonic oscillator within non
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commutative quantum mechanics (17) (18), the parameters of which are also time dependent.
All the time dependent factors are exponentials of the form eγt. These factors have been
chosen so that the resulting final formulas, fluctuate with some external frequencies which do
not depend on time.
We postulate first the two dimensional phase space. The momenta commutator shows
that we have a time dependent magnetic field. With a time dependent, Bopp shift, linear
transformation we reduce the phase space to a new phase space with two independent
dimensions. The coordinates and the momentum of the second dimension of this new
phase space satisfy a deformed time independent commutation relation. Next we give the
Hamiltonian of the system which is a two dimensional damped harmonic oscillator. It is
actually a linear combination of two Caldirola - Kanai damped harmonic oscillators with
friction terms. Following that, we find the exact propagator of the system and the time
evolution of the basic operators. In the next section we find the propagator in the case where
the deformed parameter μ vanishes and the system becomes one dimensional. Finally in
the last section we find the statistical partition function for two distinct particular cases which
differ in the number of the dimensions but the final results depend on one common frequency.

2. The two dimensional phase space

We postulate the following time dependent commutation relations.

[ p̂1, p̂2] = iλe−γ1 t, [q̂1, q̂2] = iθeγ1 t, [q̂j, p̂k] = ih̄δjk (1)

Recently non commutative theories with non constant parameters have been found in some
references such as (19). The commutators of the pairs q1, p2 and q2, p1 are zero and
the system can be described initially by one of the following wave functions ψ(q1, p2, 0) or
ψ(q2, p1, 0).
The first relation among momenta operators means that the system is in a time dependent
magnetic field, (λ ∼ B), perpendicular to the plane of q1 and q2. The magnetic field is defined
in terms of the symmetric time dependent potential �A = e−γ1 t(−Bq2/2, Bq1/2, 0), which
indicates that there is also an electric field present.

�B = �∇× �A = e−γ1 tB�k �E = −�∇φ − ∂�A
∂ t

= γ1 �A

The second commutation relation between the coordinates, expresses the non commutativity
of space. The parameter θ has a dimension of (length)2. In lowest Landau levels the
coordinates of the plane are also canonical conjugate operators and so satisfies the same
relation with θ ∼ (1/B) (20). This commutation relation implies the following uncertainty.

Δq1Δq2 ∼ (θ/2)eγ1 t (2)

So the position of the system cannot be localized in space, except for minus infinite times. The
coordinates space becomes now fuzzy and fluid. The parameter θ represents the fuzziness
and the parameter γ1 the fluidity of the space.
The above relation is the known relation of ordinary non commutative geometry except that
the parameter θ ∼ θ(t) expands exponentially with the evolution of time. This is the main
motivation of this paper. The effect of a changing magnetic field is given by Faraday’s law
which states that the magnetic flux running through a closed loop may change because the
field itself changes or because the loop is moving in space. So if we focus on point one, that is
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Δq1 → ε > 0 then the second point becomes fuzzier as time passes, that is Δq2 → ∞ . We can
say that the background space is a dynamical two - dimensional fuzzy space (21).
We will transform the problem of the non commuting two dimensional space, to a problem
of two coupled harmonic oscillators in a more familiar two dimensional quantum mechanical
space. The two dimensions of the new phase space are now independent of each other, but
the second phase space satisfies a deformed commutation relation.
For this purpose we make the following linear transformations

P̂1 = p̂1 Q̂1 = q̂1

P̂2 = p̂2 + e−γ1 t λ

h̄
q̂1 Q̂2 = q̂2 − eγ1 t θ

h̄ p̂1 (3)

The commutators for the basic operators within the capital letters are

[Q̂1, Q̂2] = 0 [P̂1, P̂2] = 0

[Q̂1, P̂1] = ih̄ [Q̂2, P̂2] = i
(

h̄ − λθ
h̄

)
= ih̄

(
1 − λθ

h̄2

)
= ih̄μ (4)

The basic operators of the second dimension P̂2, Q̂2 satisfy a deformed commutation relation
which it is time independent. We denote the deformed parameter by μ. We emphasize that
the time dependence of the commutation relation in equations (1), are chosen so that this
new parameter μ = 1 − (λθ/h̄2) becomes time independent. If this parameter becomes zero,
μ = 0 that is λθ = h̄2, the four - dimensional phase space degenerates to a two - dimensional
one and consequently as we will see later, the final solutions depend only on one frequency
Ω . The canonical limit (θ → 0, λ → 0) does not exist in this case. It is clear that we have to
keep both parameters non zero, λ �= 0 and θ �= 0.
Instead of an algebra of commutators, some theoretical physicists (22),(23) consider its
classical analogon involving Poisson brackets of functions on real variables. But the standard
limit from quantum to classical mechanics that is h̄ → 0 has as a result to vanish the
third of the commutators (4), while the last one tends to infinity. So the noncommutative
quantum mechanics seems to has no classical analogous or we have to treat the second phase
spaces with some deferent manner as an extra dimension. It seems reasonable to make the
substitutions θ → θh̄ and λ → λh̄ so that the limit h̄ → 0 vanish all the commutators
collectively.
We see that the time dependence on the magnetic field makes the time dependence of the
coordinates commutator unavoidable, rendering the resulting commutator of the capital
operators P̂2 and Q̂2 time independent. The system is now described initially on the
coordinates space or on the momentum space by one of the following wave functions

Ψ0(Q1, Q2) = Ψ0(q1, q2 − θ

h̄
eγ1 t p1),

Ψ0(P1, P2) = Ψ0(p1, p2 +
λ

h̄
e−γ1 tq1) (5)

The time dependence of the initial wave functions is due to the moving phase space of the
second point (Q2, P2), resulting from the time dependent magnetic field.
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3. The damped Hamiltonian of the system

We will use the following Hamiltonian

Ĥ(�̂p,�̂q, t) = e2(γ1+γ2) t p̂2
1

2m1
+ e−2(γ1+γ2) t 1

2
m1ω2

1 q̂2
1 −

κ

(
e−2γ2 t p̂2

2
2m2

+ e2γ2 t 1
2

m2ω2
2 q̂2

2

)
(6)

which is usually referred to as the Caldirola - Kanai model (24). The coupling constant κ
will take one of the values ±1. For κ = −1 the Hamiltonian is an ordinary two dimensional
Hamiltonian. For κ = 1 we can say that the second Hamiltonian is an harmonic oscillator
with negative mass m2 < 0 (25).
The damped harmonic oscillator in a crossed magnetic field in ordinary space has been
studied by many authors (26). We will study this problem in non commutative quantum
mechanics. Such problems with magnetic fields in noncommutative quantum mechanics has
also been studied by some authors see for instance (27), (28), and references there in.
We can assume that this is a Hamiltonian of two particles, one on the phase point (q1, p1) and
the other on the point (q2, p2). It has been shown, by Bateman, that we can apply the usual
canonical quantization method if we double the numbers of degrees of freedom so as to deal
with an effective isolated system. The new degrees of freedom may be assumed to represent
the environment which absorbs the energy dissipated by the dissipative system and the time
dependent magnetic fields. The canonical quantization of these dual Beteman’s type systems
have many problems which have been pointed out in the relevant literature (29). We think
that the non vanishing commutator of the coordinate operators q1 and q2 , corrects many of
these problems. Notice that as it was pointed out earlier, the Caldirola - Kanai Hamiltonian is
not really the energy of the system but rather an operator which generates the motion of the
system.
For the case where γ1 = 0 the Hamiltonian becomes symmetric or antisymmetric with the
reversal of time. This case has been studied in ref (31). The presence of the γ1 parameter
obviously breaks down this very important symmetry and indicates the presence of an electric
field.
The Hamiltonian (6) describes a system of two particles with varying masses of m1 →
m1e−2(γ1+γ2) t and m2 → m2e2γ2 respectivelly. The product of these two masses is obviously
time dependent

m1m2 → m1m2 e−2γ1 t (7)

This is the consequence of the time varying magnetic field B(t) → Be−γ1 t. The time factors
of this Hamiltonian have been chosen so that the finally oscillators of the system become time
independent.
With the linear transformation (3) the Hamiltonian becomes

Ĥ(�̂P, �̂Q, t) =
1
2

e2(γ1+γ2) t P̂2
1 (1 − κω2

2θ2) +
1
2

e−2(γ1+γ2) tQ̂2
1(ω

2
1 − κλ2)−

1
2

e−2γ2tκP̂2
2 − 1

2
e2γ2tκω2

2Q̂2
2 − e(γ1+2γ2) tκω2

2θP̂1Q̂2 + e−(γ1+2γ2) tκλP̂2Q̂1 (8)

where we have set h̄ = 1 and m1 = m2 = 1.
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This is a Hamiltonian of two coupled harmonic oscillators in the deformed quantum
mechanical space. The last two factors of the above Hamiltonian are the coupling terms.
Notice that if γ1 + 2γ2 = 0 these terms become time independent.
In order to simplify the relations we shall use the following symbolism

P̂1 → T̂1 Q̂1 → T̂2 P̂2 → T̂3 Q̂2 → T̂4 (9)

The commutation relations become

[T̂2, T̂1] = c21 [T̂4, T̂3] = c43, c21 = ih̄ c43 = c21μ (10)

while all the others commutators vanish. The last commutation relation goes to infinity as
h̄ → 0 so the problem has no classical analogy (Figure 1).

�

iC21

iC43

iC43

Λ��2�Θ

2

0

Λ���2�Θ

Fig. 1. The commutators i c21 and i c43 of the phase space as functions of h̄.

The Hamiltonian is written

Ĥ(�̂T) = k11T̂2
1 + k22T̂2

2 + k33T̂2
3 + k44T̂2

4 + k41T̂4T̂1 + k32T̂3T̂2 (11)

Where we have set

k11 =
1
2

e2(γ1+γ2) t(1 − κω2
2θ2), k22 = 1

2 e−2(γ1+γ2) t(ω2
1 − κλ2)

k33 = −1
2

e−2γ2t, k44 = − 1
2 e2γ2tκω2

2

k32 = e−(γ1+2γ2) tκλ, k41 = −e(γ1+2γ2) tκω2
2θ (12)

The coupling terms k32 and k41 become zero in the case of commutative quantum mechanics,
where λ → 0 and θ → 0.

192 Theoretical Concepts of Quantum Mechanics



Non Commutative Quantum Mechanics
in Time - Dependent Backgrounds 7

4. The exact propagator of the system

We will expand the time evolution operator in an appropriate ordered form so that the
propagator will be calculated easily with a straight manner.
The Shrödinger equation of motion of the time evolution operator is:

ih̄
∂

∂ t
Û(t) = Ĥ(t)Û(t) Û(0) = 1

We look for the following, normal ordered expansion of the evolution operator:

Û(t) = Û4Û3Û2Û1

where

Û4 = e f44 T̂2
4 e

1
2 f43(T̂4 T̂3+T̂3 T̂4)e f42 T̂4 T̂2 e f41 T̂4 T̂1 Û3 = e f33 T̂2

3 e f32 T̂3 T̂2 e f31 T̂3 T̂1

Û2 = e f22 T̂2
2 e

1
2 f21(T̂2 T̂1+T̂1 T̂2) Û1 = e f11 T̂2

1 (13)

The functions f jk(t) are time dependent and because of the condition Û(0) = 1 , they satisfy
the initial conditions f jk(0) = 0.
The above solution is always possible if the Hamiltonian takes the following form Ĥ =
∑m

i=1 a(t)Ĥi where the operators Ĥi, i = 1, ..., m forms a closed Lie algebra (30). We have
proved in reference (32) using standard algebraic technics that all the unknown functions f jk
can be written with the help of the functions xjk(t). The functions xjk(t) satisfy the following
classical differential system

x′1j = −2k11x2j + μ k41x3j

x′2j = 2k22x1j − μ k32x4j

x′3j = k32x1j − 2μ k33x4j

x′4j = −k41x2j + 2μ k44x3j (14)

with the following initial conditions
xjk(0) = δjk (15)

The functions xnj give the time evolution of the basic operators T̂j. We have

T̂n(t) = e−
i
h̄ tĤ T̂j(0)e

i
h̄ tĤ = xnj(t)T̂j(0) (16)

The solution of the above system is as follows

x11 = e(γ1+γ2) t
[

a2 − (γ1 + γ2)b2 − κ2ω2
2μ (a1 − (γ1μ + γ2)b1)

]
x22 = e−(γ1+γ2) t

[
a2 + (γ1 + γ2)b2 − κ2ω2

2μ (a1 + (γ1μ + γ2)b1)
]

x21 = e(γ1+γ2) t
[
κ2ω2

2μ2b1 − b2 + κω2
2θ2b2

]
x12 = e−(γ1+γ2) t

[
−ω2

1(κ
2ω2

2μ2b1 − b2)− κλ2b2

]
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x13 = e−γ2t
[
ω2

2

(
κ2λμ2b1 − κθμ(γ1(a1 + γ2b1) + b2)

)]
x14 = eγ2t

[
−κμλ(a1 − γ2b1) + κ2ω2

2θμ (a1 − (γ1μ + γ2)b1)
]

x23 = e−γ2t
[
ω2

2

(
κω2

1θμ(a1 + γ2b1)− κ2λμ(a1 + (γ1μ + γ2)b1)
)]

x24 = eγ2t
[
κ2ω2

1ω2
2θμ2b1 + κλμ (γ1(a1 − γ2b1)− b2)

]

x31 = e(γ1+γ2) t
[
−κ2ω2

1ω2
2θμb1 + κλ (γ1(a1 + γ2b1) + b2)

]
x32 = e−(γ1+γ2) t

[
κλ(a1 + γ2b1)− κ2ω2

2θ (a1 + (γ1μ + γ2)b1)
]

x41 = e(γ1+γ2) t
[
−ω2

2

(
κω2

1θ(a1 − γ2b1)− κ2λ(a1 − (γ1μ + γ2)b1)
)]

x42 = e−(γ1+γ2) t
[
−ω2

2

(
κ2λμb1 + κθ(γ1(a1 − γ2b1)− b2)

)]

x33 = e−γ2t
[

a2 + γ2b2 +
(

γ2
1 + 2γ1γ2 − ω2

1 + κω2
1ω2

2θ2 + κλ2
)
(a1 + γ2b1)−

κ2ω2
2(1 − μ) (a1 + (γ1μ + γ2)b1) ]

x44 = eγ2t
[

a2 − γ2b2 +
(

γ2
1 + 2γ1γ2 − ω2

1 + κω2
1ω2

2θ2 + κλ2
)
(a1 − γ2b1)−

κ2ω2
2(1 − μ) (a1 − (γ1μ + γ2)b1) ]

x43 = e−γ2t
[
−ω2

2

(
κ2λ2μb1 + κμ((γ2

1 + 2γ1γ2 − ω2
1)b1 + b2)

)]
x34 = eγ2t

[
κ2ω2

1ω2
2θ2μb1 + κμ((γ2

1 + 2γ1γ2 − ω2
1)b1 + b2)

]
Where

a1 =
1

w3
(cos (Ω1t)− cos (Ω2t)) b1 =

1
w3

(
sin (Ω1t)

Ω1
− sin (Ω2t)

Ω2

)

a2 =
1

w3

((
γ2

2 + Ω2
1

)
cos (Ω1t)−

(
γ2

2 + Ω2
2

)
cos (Ω2t)

)

b2 =
1

w3

((
γ2

2 + Ω2
1

) sin (Ω1t)
Ω1

−
(

γ2
2 + Ω2

2

) sin (Ω2t)
Ω2

)
(17)

The frequencies Ω1 and Ω2 are the solution of the following algebraic system

w1 =
(

γ2
2 + Ω2

1

) (
γ2

2 + Ω2
2

)
= κ2ω2

2μ
(

ω2
1μ − γ1(γ1μ + 2γ2)

)
(18)

w2 = (γ2
2 + Ω2

1) + (γ2
2 + Ω2

2) = ω2
1 + κ2ω2

2 − κ(ω2
1ω2

2θ2 + λ2)− γ1(γ1 + 2γ2) (19)

We have also set
w3 = Ω2

1 − Ω2
2 =

√
w2

2 − 4w1 (20)

We finally find the following solutions which are time independent.

Ω1 = ±
√
(w2 + w3)/2 − γ2

2 Ω2 = ±
√
(w2 − w3)/2 − γ2

2 (21)

194 Theoretical Concepts of Quantum Mechanics



Non Commutative Quantum Mechanics
in Time - Dependent Backgrounds 9

The above results are valid for any particular value of the parameters with the exception of
the parameters λ and θ which must be real. The solutions (eqs. 17) have well defined limits
when Ω1 → 0 and Ω2 → 0, or for the more interesting limit Ω1 → 0 and Ω2 → ± iγ2.
The results found in this paper, coincide with that of paper (31) when γ1 = 0, where we
have a constant magnetic field. For this zero value of parameter γ1 , equation (18) becomes
symmetric, which means that it has two solutions with respect to μ , of opposite signs. This
symmetry is present again if γ2 = 0. This symmetry of the μ parameter is crucial, since
it is the deformed parameter of the second phase space (equation 4) and the transformation
μ → −μ means that [Q̂2, P̂2] → −[Q̂2, P̂2].
We can reconstruct the same symmetry also if we set

γ1μ + 2γ2 = 0 =⇒
(

γ2
2 + Ω2

1

) (
γ2

2 + Ω2
1

)
= κ2ω2

1ω2
2μ2 (22)

In this case we find

γ1 + γ2 =
2 − μ

μ
γ2 =

h̄ + λθ
h̄

h̄ − λθ
h̄

γ2 (23)

This term which is on the exponential of the first Hamiltonian in eq. (6), changes sign in the
duality h̄ → λθ/h̄. For all the above symmetric cases equation (18) has two solutions with
respect to μ with opposite signs.
In general equation (18) is a parabola with respect to μ and becomes zero for the following
two values of the deformed parameter μ.

μ = 0 ⇒ λ =
1
θ

and μ =
2γ1γ2

ω2
1 − γ2

1
⇒ λ =

1
θ

(
1 − 2γ1γ2

ω2
1 − γ2

1

)
(24)

In both cases the frequencies are identical if ω2
1 = γ2

1 + γ1γ2.
We will solve the case where μ = 0 in the next paragraph because it leads to the relation
[Q̂2, P̂2] = 0 which means that the problem is one dimensional since the commutator of the
second phase space vanishes.
When ω1 = ± γ1 equation (18) has only one solution, with respect to μ , We find

μ = −
(
γ2

2 + Ω2
1
) (

γ2
2 + Ω2

1
)

2κ2γ1γ2 ω2
2

(25)

while the second solution tends to minus infinity.
Next we will calculate the exact propagator of the system.
As is well known the action of the time evolution operator on the delta function, produces the
propagator of the system.

G(τ1, τ′
1, τ2, τ′

2, t) = Û(t)δ(τ1 − τ′
1)δ(τ2 − τ′

2) (26)

Because of the commutation relations (10) only two quantities can be simultaneously
measured. We choose the following observables

T̂2 = Q̂1 = q1 → τ1 T̂4 = Q̂2 = q2 − θ

h̄
eγ1 t p1 → τ2 (27)

For the calculations we consider the following representation

T̂1 = −c21∂τ1 T̂2 = τ1 T̂3 = −c43∂τ2 T̂4 = τ2 (28)
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We can of course choose another couple of commuting observable. The various propagators
are appropriate Fourier transforms of each other.
By the help of the above representation, and after a simple calculation (32) we find the
propagator:

G(τ1, τ′
1, τ2, τ′

2, t) = (29)

1√
s0

exp
{
− 1

2s0

[
c43(2τ1τ′

1x34 + τ′2
1(x14x31 − x11x34) + τ2

1 (x24x32 − x22x34))+

c21(2τ2τ′
2x12 + τ′2

2(x13x32 − x12x33) + τ2
2 (x14x42 − x12x44))−

2c21τ′
1(τ2x14 − τ′

2(x14x33 − x13x34))− 2c43τ1(τ
′
2x32 + τ2(x34x42 − x32x44))

]}
where

s0 = c21c43 (x12x34 − x14x32) (30)

If we find the propagator we can calculate the time evolution of a quantum system which
must have initially the following form.

ψ(τ1, τ2, t)|t=0 = ψ0(q1, q2 − θ

h̄
eγ1 t p1, 0) (31)

We can not get rib of the time factor in the initial state except if γ1 = 0 or θ = 0, where
we have a time independent non commutative space or an ordinary commutative space
respectively. This is a consequence of the time dependance of the Bopp shift transformations
(4), as the whole phase space of the second point is moving with respect to the first one.
The wave function of the system is given by the relation

ψ(τ1, τ2, t) =
∫∫

G(τ1, τ′
1, τ2, τ′

2, t)ψ(τ′
1, τ′

2, 0)dτ′
1τ′

2 (32)

The Hamiltonian (6) has the same form as the Hamiltonian in ordinary quantum mechanics.
As a consequence the spectrum of Ĥ is a linear combination of the following energies

Ej = h̄Ωj

(
nj +

1
2

)
, nj ∈ N (33)

The frequencies Ω1 and Ω2 are given by equations (21).

5. One dimensional case

In this section we will examine the case where we have one external frequency.

c43 = 0 =⇒ μ = 0 =⇒ λ

h̄
=

h̄
θ

(34)

The system is now one dimensional while the second Hamiltonian is like a potential energy.
The functions f jk satisfy a differential system which can be found in ref (32). The solution is
as follows:
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f11 = − i
2

1 − κω2
2θ2

cos (Ω t)− (γ1 + γ2)
sin (Ω t)

Ω

sin (Ω t)
Ω

f21 = −i(γ1 + γ2) t − i log
{

cos (Ω t)− (γ1 + γ2)
sin (Ω t)

Ω

}

f22 = − i
2

e−2(γ1+γ2) t ω2
1 − κλ2

cos (Ω t)− (γ1 + γ2)
sin (Ω t)

Ω

sin (Ω t)
Ω

f31 = ie(γ1+γ2) tκλ
1 − κω2

2θ2

γ2
2 + Ω2

{
e−γ2t − cos (Ω t) + γ2

sin (Ω t)
Ω

}

f32 = −ie−(γ1+γ2) tκλ

{
sin (Ω t)

Ω
+

γ1

γ2
2 + Ω2

(
e−γ2t − cos (Ω t) + γ2

sin (Ω t)
Ω

)}

f33 = − i
2

e−γ2 t k
γ2

2 + Ω2

{
(1 − κω2

2θ2)

(
kλ2 sin (Ω t)

Ω
− ω2

1
sinh (γ2 t)

γ2

)
+

γ1(γ1 + 2γ2)
sinh (γ2 t)

γ2

}
− i

2
f31 f32

f41 = ie(γ1+γ2) tκω2
2θ

{
sin (Ω t)

Ω
− γ1

γ2
2 + Ω2

(
eγ2t − cos (Ω t) + γ2

sin (Ω t)
Ω

)}

f42 = ie−(γ1+γ2) t κω2
2θ(ω2

1 − κλ2)

γ2
2 + Ω2

(
eγ2t − cos (Ω t) + γ2

sin (Ω t)
Ω

)

f43 = −i
κ2ω2

2
γ2

2 + Ω2

{
γ1 t − e−γ2 tγ1

sin (Ω t)
Ω

−

e−γ2t

(
1 +

2γ1γ2

γ2
2 + Ω2

)(
eγ2t − cos (Ω t) + γ2

sin (Ω t)
Ω

)}

f44 =
i
2

eγ2t κω2
2

γ2
2 + Ω2

{
(ω2

1 − κλ2)

(
sinh (γ2 t)

γ2
− κω2

2θ2 sin (Ω t)
Ω

)
−

γ1(γ1 + 2γ2)
sinh (γ2 t)

γ2

}
− i

2
f41 f42

Where the frequency is

Ω =
√

ω2
1 + κ2ω2

2 − κ(ω2
1ω2

2θ2 + λ2)− (γ1 + γ2)2 (35)

So all the formulas involved depend on one common frequency Ω.
The same frequencies can be found also for the two dimensional case of the previous
paragraph if

ω2
1 = γ1(γ1 + γ2) or γ2 = −γ1 +

ω2
1

γ1
(36)

For this value of the friction parameter γ2 and from equations (18) and (19) we find

μ = 2 or λ = −1
θ

⇒ Ω1 = Ω Ω2 = iγ2 (37)
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It seems that for both cases, namely

μ = 1 − λθ

h̄2 = 0 and 2 − μ = 1 +
λθ

h̄2 = 0 (38)

the final propagators depend on only one frequency. In these cases, which we will study in
the next section, the commutator of the second phase space is [Q̂2, P̂2] = 0 and [Q̂2, P̂2] = 2ih̄
respectively.
In the space of the T̂j operators, we have now three commutative operators. We choose the
following:

q1 → τ1 p2 +
λ

h̄
e−γ1 tq1 → π2 q2 − θ

h̄
eγ1 t p1 → τ2 (39)

To calculate the propagator we assume the representation

T̂1 = −c21∂τ1 T̂2 = τ1 T̂3 = π2 T̂4 = τ2 (40)

To find the propagator we calculate first the propagator in the first dimension. After some
algebra, we find the distribution.

G1(τ1, τ′
1, t) = Û2Û1δ(τ1 − τ′

1) =
e− 1

2 (γ1+γ2) t√
2i(1 − κω2

2θ2)

√
Ω

sin (Ω t)

exp

{
i
2

e−(γ1+γ2) t

1 − κω2
2θ2

Ω
sin (Ω t)

[
e−(γ1+γ2) t

(
cos (Ω t) + (γ1 + γ2)

sin (Ω t)
Ω

)
τ2

1+

e(γ1+γ2) t
(

cos (Ω t)− (γ1 + γ2)
sin (Ω t)

Ω

)
τ′

1
2 − 2τ1τ′

1

]}
(41)

The final propagator can be found by the action of the operator Û4Û3δ(τ2 − τ′
2) on this

distribution G1(τ1, τ′
1, t). Because c43 = 0, the operator Û4Û3δ(τ2 − τ′

2) does not contain any
operators with respect to the second dimension. Consequently a delta function remains in the
final result.
After a simple calculation we find

G(τ1, τ′
1, τ2, τ′

2, π2, t) = Û4Û3δ(τ2 − τ′
2 )G1(τ1, τ′

1, t) = (42)

e f44τ2
2 + f33π2

2+( f43−i f32 f41)π2τ2+τ1( f32π2+ f42τ2)G1
(
τ1− i f31π2 − i f41τ2, τ′

1, t
)

δ(τ2−τ′
2)

If we find the propagator we can calculate the time evolution of a quantum system which
must initially have the following form.

ψ(τ1, τ2, π2, t)|t=0 = ψ0(q1, q2 − θ

h̄
eγ1 t p1, p2 +

λ

h̄
e−γ1 tq1, 0) (43)

The initial wave function depends on time unless γ1 = 0 or even γ1 �= 0 but θ = 0 and
λ = 0.
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The wave function of the system is given by the following single integral.

ψ(τ1, τ2, π2, t) =
∫∫

G(τ1, τ′
1, τ2, τ′

2, π2, t)ψ(τ′
1, τ′

2, π2, 0)dτ′
1dτ′

2 = e f44τ2
2 + f33π2

2 (44)

e( f43−i f32 f41)π2τ2+τ1( f32π2+ f42τ2)
∫

G1
(
τ1− i f31π2− i f41τ2, τ′

1, t
)

ψ(τ′
1, τ2, π2, 0)dτ′

1

The spectrum of the Hamiltonian Ĥ is the following

E = h̄Ω
(

n +
1
2

)
, n ∈ N (45)

which now depend on one frequency Ω of equation (35).

6. Canonical density matrix

As is well known we can find the statistical distribution function from the propagator. The
relation is

ρ(τ1, τ′
1, τ2, τ′

2, b) = G(τ1, τ′
1, τ2, τ′

2,−ih̄b) (46)

where b = 1/kT , k is the Boltzman constant and T is the temperature. To find the partition
function, we set τ1 = τ′

1 and τ2 = τ′
2 and then we integrate the distribution ρ(τ1, τ2, b) with

respect to τ1 and τ2. The partition function is as follows

z(b) =
∫ ∫

�2
G(τ1, τ1, τ2, τ2,−ih̄b)dτ1dτ2 (47)

The problem is two dimensional. The coordinates q1 and q2 are operators which do not
commute and its commutator must be time dependent too (∼ θeγ1 t). With a particular value
of the parameter μ = 0, the problem becomes one dimensional and so the resulting formulas
depend on one frequency. We can also find one frequency for the two dimensional case. From
equation (18), it is obvious that being μ = 0 requires that one of the frequencies Ω1 and Ω2
must be equal to iγ2. We choose Ω2 = iγ2.
We will find the statistical partition function for two district cases which both depend on only
one common frequency. One of these cases is the one dimensional case where μ = 0 and the
other is the two dimensional case where Ω2 = iγ2. To simplify the results we will study the
particular case where ω1 = 0 and γ1 = −γ2. For these two cases we have

θ = +1/λ or μ = 0 one − dimensional (48)

θ = −1/λ or μ = 2 two − dimensional (49)

where of course θ �= 0 and λ �= 0.
The Hamiltonian takes now the most simple form and it is the following:

Ĥ( p̂1, q̂1, p̂2, q̂2) =
1
2

p̂2
1 − κ

(
e−2γ2 t 1

2
p̂2

2 + e2γ2 t 1
2

ω2
2 q̂2

2

)
(50)

The basic operators satisfy the commutators

[q̂1, q̂2] = ± i(1/λ) eγ2t, [ p̂1, p̂2] = iλ e−γ2t, [q̂j, p̂k] = ih̄δjk (51)

The common frequency of the final results for both cases, is

Ω =
√

ω2
2 − κλ2 (52)
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which is independent of the parameter γ2.
For the case of one dimension (μ = 0) the partition function is that of an ordinary oscillator
that is

z1(b) =
Ω

sinh (Ω b
2 )

∫
R

{
lim

τ′
2→τ2

G(τ2, π2, b) δ(τ2 − τ′
2)

}
dτ2 (53)

where G(τ2, π2, b) is a Gaussian type classical distribution function which we do not write as
can be found easily from equation (42).
For the case of two dimensions (μ = 2) we find the following partition function.

z2(b) =
Ω2 + γ2

2

16 κω2 sin ( γ2 b
2 )

√
Ωγ2

γ2 cos ( γ2 b
2 ) sinh (Ω b

2 )− Ω cosh (Ω b
2 ) sin ( γ2 b

2 )

1√
Ω(γ2

2 − κλ2) cos ( γ2 b
2 ) sinh (Ω b

2 )− γ2 κ2ω2
2 cosh (Ω b

2 ) sin ( γ2 b
2 )

(54)

For high temperatures, that is for a large value of the temperature parameters, (b → 0),
the partition function has singularities on the points b = 2nπ/γ2, where n is an integer
n = ±1,±2,±3, · · · .
For low temperatures, that is b → ∞, the hyperbolic functions cosh (bΩ/2) and sinh (bΩ/2)
are both equal to ebΩ/2/2 . The partition function is multiplied with the factor e−(1/2)b Ω and
so tends to zero. The final partition function has singularities for the following values of b:

b =
2

γ2

(
nπ + arctan (

γ2
Ω

)
)

b =
2

γ2

(
nπ + arctan (

Ω
γ2

γ2
2 − κλ2

κ2ω2
2

)

)
(55)

In the sequel we will study the case where the parameter Ω becomes zero.
If κ = −1 the common frequency Ω can not be zero unless ω2 → ±iλ. For κ = 1 and
λ = ±ω2 we find Ω = 0. The energy of the system now comes exclusively from the varying
electromagnetic field while the energy eigenvalues of the Hamiltonian vanish.
The first partition function becomes:

z1(b) =
c√

b ω2

∫
R

{
lim

τ′
1→τ1

δ(τ1 − τ′
1)

}
dτ1 (56)

The limit in the above equation, as well as the limit in the equation (53) means that the system
can not be localized in space.
The second partition function has a well defined limit for Ω → 0. We find

lim
Ω→0

z2(b) =
γ2

2

16 κ2 ω2
2 sin ( bγ2

2 )

1√
sin ( bγ2

2 )

1√
sin ( bγ2

2 )− bγ2
2 cos ( bγ2

2 )
(57)

This last partition function has again singularities for b = 2nπ/γ2, where n ∈ A and in
addition for some new values of the temperature b = 1/kT which are the solutions of the
equation tan (b γ2/2) = b γ2/2.
With the help of the partition function z(b), we can find all the thermodynamic properties of
the system. The thermodynamic energy is given by the following formula:

< E >= − ∂

∂b
log (z(b)) (58)
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Fig. 2. The thermodynamic energy possesses many zeros and singularities.

After a simple calculation, and under certain conditions, we find the following
thermodynamic energy

< E >=
γ2
2

bγ2 + 2bγ2 cos (bγ2)− 3 sin (bγ2)

−2 + 2 cos (bγ2) + bγ2 sin (bγ2)
(59)

which possesses many zeros and singularities. These particular points disappear if the
parameter γ2 vanishes. (Figure 2). We find

lim
γ2→0

< E >= 3/b (60)

Noncommutativity is basically an internal geometric structure of the configuration space,
which can not be observed per se. The last simple dynamical systems considered, have
different configuration spaces and the same frequency which of course gives the same energy
eigenvalues of the Hamiltonian. The thermodynamic singularities appears basically only for
the two dimensional case and manifest the noncommutative phenomena. These singularities
results from the varying magnetic field through the γ2 parameter, and disappear for γ2 = 0,
that is for a constant magnetic field.

7. Conclusion

In this paper we have found the exact propagator of a two dimensional harmonic oscillator
in non commutative quantum mechanics, where the ordinary non commutative parameters
are time dependent. We have not investigated the problems which arise from this peculiar
damping of the space, which stems from a time varying magnetic field. In this paper we
are satisfied by the fact that the final results oscillate with two frequencies that are constant
in time. The calculations have been made in such a way so that we can arrive at the final
results, taking into consideration every special value of the parameters involved. We have
first expand the time evolution operator in some kind of normal ordered form so that the
propagator results easily by the action of this operator on some delta functions.
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We have three damping mechanisms. The time dependent magnetic field (∼ λ eγ1 t), the main
harmonic oscillator with varying mass (∼ e−2(γ1+γ2) t) and the secondary harmonic oscillator
with varying mass ∼ (e2γ2 t). The energy emitted from one of these is absorbed by the others
so that the final results depend on two frequencies Ω1 and Ω2 which are time independent.
The momenta of the system satisfy a time dependent commutator (∼ λ e−γ1 t) which means
that we have a time dependent magnetic field and consequently an electric field present. The
coordinates of the system satisfy a commutator which is also time dependent (∼ θ eγ1 t). The
coordinates space is fuzzy and fluid with parameters θ and γ1 respectively and the momenta
is also fuzzy and fluid (λ and −γ1).
With a linear time dependent transformation, the problem reduces to that of a two
dimensional harmonic oscillator on a phase space with two independent phase spaces.
The new commutator relations of this new phase space become time independent. The
commutator between the coordinate and the momentum of the second phase space satisfies
a deformed commutator relation equal to i(h̄ − λθ/h̄). This factor has no defined limit for
h̄ → 0, so the problem seems to have no classical analogy.
The Hamiltonian of the system is a linear combination of two Caldirola - Kanai Hamiltonians
with friction parameters which differ by the parameter γ1. H. Bateman uses a similar
Hamiltonian and the energy emitted from one Hamiltonian was absorbed by the other one.
In this paper the energy emitted from the first Hamiltonian on the point one and the time
dependent magnetic field is absorbed by the other Hamiltonian on the point two. The time
dependence of this second mirror Hamiltonian is the appropriate one, so that the resulting
final formulas depend on two time independent frequencies.
The propagator provides the time evolution of the system. The initial wave functions depend
on the two commuting variables (q1, p2) or (q2, p1). The first point particle has a well defined
position and the second well defined momentum. The system can be considered as a massive
object located at two separate massive points on a fuzzy and fluid two dimensional dynamical
space.
This paper is a generalization of paper (31) in the case where the magnetic field is increasing
(or decreasing) exponentially at a rate equal to γ1. For γ1 = 0 we found the same results
while for γ1 �= 0 we derived some new interesting conclusions.
The parameter γ1 destroys the time symmetry of the Hamiltonian and the product m1m2
(∼ e−2γ1 t ) is time increasing (or decreasing) exponentially. This is the main motivation of
this paper. The propagator, as is well known, can also be used to find the statistical partition
function and thus all the thermodynamical properties of the system. We have investigated
two situations where the final results depend on only one common frequency Ω.
The first one is of course the case where the problem reduces to that of a one dimensional
phase space, where [Q̂2, P̂2] = 0. The second is the two dimensional case where one of the
frequencies becomes imaginary and equals to ±iγ2. We have investigated the case where
[Q̂2, P̂2] = 2ih̄. Because the oscillations give the energy of a harmonic oscillator the two cases
have similar energies eigenvalues while they have different dimensionality. We have also
found the statistical partition functions of these two systems. We have concluded that, in the
two - dimensional case the partition function has many interesting zero’s and singularities
which are not present in the one - dimensional case. These particular points depend on the
parameter γ2, which is responsible for the time damping of the magnetic field.
Finally we have found the partition function in the resonance where this last frequency
Ω becomes zero. The thermodynamic energy of the system, possesses similar zeros and
singularities that disappear when γ2 vanish.
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Quantum Mechanics and Statistical Description
of Results of Measurement

Lubomír Skála and Vojtěch Kapsa
Charles University, Faculty of Mathematics and Physics

Czech Republic

1. Introduction

Quantum mechanics and its meaning have been discussed in a large number of publications
from many different points of view (see e.g. books (Auletta, 2001; Wheeler & Zurek, 1981)). It
shows that quantum mechanics is, despite its successful applications, difficult to understand.
In this chapter, we discuss quantum mechanics from the point of view of mathematical
statistics and show that the most important parts of the mathematical formalism of quantum
mechanics can be derived from the statistical description of results of measurement. Various
aspects of this approach can be found for example in (Frieden, 1998; 2004; Frieden & Soffer,
1995; Kapsa & Skála, 2009; 2011; Kapsa et al., 2010; Reginatto, 1998; 1999; Skála & Kapsa,
2005a;b; 2007a;b; 2011; Skála, Čížek & Kapsa, 2011).
One of the main differences between classical and quantum mechanics is consistent statistical
description of results of measurement in quantum mechanics. In contrast to classical
mechanics according to which physical measurement can be made in principle arbitrarily
exact, quantummechanics takes into consideration physical reality confirmed by experiments
and describes physical measurement statistically. The most important points of the statistical
description of measurement of the space coordinate x are summarized in Section 2. An
important quantity appearing in this approach is the probability density ρ(x, t) of obtaining
the value x in measurement made at time t. For the sake of simplicity, only one spatial
coordinate x is taken here.
Due to the normalization condition for the probability density corresponding to the fact that
the measured system must be somewhere in space the probability density ρ must obey the
continuity equation analogous to that known from classical continuummechanics. Therefore,
except for ρ, we have to take into account also the corresponding probability density current
j(x, t) appearing in the continuity equation. We note that the density current j is also
necessary for describing the motion in space. To describe the statistical state of the system,
both quantities ρ and j are necessary. It is shown in Section 3 that instead of two real
quantities ρ and j, we can use also two real functions s1(x, t) and s2(x, t) given by equations
ρ = exp(−2s2/h̄) and j = ρ v = ρp/m = ρ(∂s1/∂x)/m, where s1 corresponds to the Hamilton
action S in the expression p = ∂S/∂x known from the Hamilton–Jacobi theory of classical
mechanics. More compact way of describing the statistical state of the system is to use the
complex wave function ψ = exp[(is1 − s2)/h̄] as it is done in quantum mechanics. We note
that the expression for the probability density current j = ρ(∂s1/∂x)/m is equivalent to the
expression for the probability density current known from quantum mechanics.
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By analogy with the expression for the momentum p = ∂S/∂x one can make an attempt to
represent the momentum by the function p = ∂s1/∂x. It is shown in Sections 4 and 5 that in
case of themeanmomentum 〈p〉 and themean value 〈xp〉 this definition gives the same results
as the quantum–mechanical representation of the momentum p̂ = −ih̄(∂/∂x). However, it is
not true in more complicated cases when the operator representation of the momentum has
to be used.
One of important quantities appearing in mathematical statistics is the Fisher information. It
is shown in Section 6 that the Fisher information Ix = (4/h̄2)

∫ ∞
−∞(∂s2/∂x)2ρdx fulfills the

inequality 〈(x − a)2〉Ix ≥ 1, where a is a real constant. This inequality is analogous to the
uncertainty relations known from quantum mechanics and is general property of statistical
theories similar to that used in quantum mechanics.
It is shown in Section 7 that the kinetic energy in quantum mechanics can be written as a
sum of two terms. The first term is statistical generalization of the kinetic energy known
from classical mechanics. The second part of the kinetic energy is proportional to the Fisher
information Ix and does not have its counterpart in classical mechanics. Therefore, in contrast
to classical mechanics, the Fisher information is an important part of the kinetic energy in
quantum mechanics.
Similarly to the kinetic energy, the mean value 〈(Δp)2〉 appearing in the Heisenberg
uncertainty relation 〈(Δx)2〉〈(Δp)2〉 ≥ h̄2/4 can be written as a sum of two terms 〈(Δp)2〉 =
〈(Δp1)2〉 + 〈(Δp2)2〉 (Section 8). Again, the first term can be understood as statistical
generalization of the expression known from classical mechanics. The second term is
proportional to the Fisher information Ix. If the first term equals zero, the Heisenberg
uncertainty relation is equivalent to the inequality for the Fisher information mentioned
above. It shows that the inequality for the Fisher information is in quantum mechanics
correctly respected.
It is shown in Section 9 that the Heisenberg uncertainty relation can be replaced by
two stronger uncertainty relations for 〈(Δp1)2〉 and 〈(Δp2)2〉. The sum of these two
uncertainty relations is equivalent to the Robertson–Schrödinger uncertainty relation (Section
10). By neglecting one term at the right–hand side of the Robertson–Schrödinger uncertainty
relation the Heisenberg uncertainty relation is obtained. Therefore, two uncertainty
relations discussed in Section 9 are stronger than the corresponding Heisenberg and
Robertson–Schrödinger uncertainty relations. It is worth noting that the second uncertainty
relation equivalent to the inequality for the Fisher information depends only on the function
s2 or the envelop of the wave function |ψ|. Since it does not depend on s1, inequality in
this relation can be achieved for much larger class of the wave functions than in case of the
Heisenberg and Robertson–Schrödinger uncertainty relations. It may be important in some
applications as for example in the theory of the most efficient information transfer.
Two examples illustrating results of Sections 8–10, namely the gaussian wave packet for a free
particle and the linear harmonic oscillator are discussed in Sections 11 and 12.
By using the normalization condition for ρ = |ψ|2 it is possible to derive the equation
indicating validity of the commutation relation [x, p̂] = ih̄ (Section 13). This commutation
relation shows that it is possible to replace the momentum operator p̂ by the operator p̂ − f ,
where f (x, t) is a real function. This function can describe external conditions in which the
system moves and corresponds to the x-component of the vector potential.
In standard quantum mechanics, systems with the infinite lifetime are usually considered. In
such a case, the normalization condition for the probability density

∫ ∞
−∞ ρdx = 1 is valid at

all times and it does make sense to introduce the probability density in time analogous to
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the probability density in space. For this reason, time is taken as a parameter in standard
quantum mechanics. In Section 14, systems with a finite lifetime are considered and a
decaying probability to find the system anywhere in space ν(t) =

∫ ∞
−∞ ρdx is introduced.

It makes possible to define the mean lifetime and other quantities by analogy with those for
the coordinate x.
Similarly to Section 13, it is then possible to get the commutation relation for the operator
ih̄(∂/∂t) and time t and to find mathematical arguments for the existence of the scalar
potentials (Section 15).
For systems with exponentially decaying wave functions, it possible to derive also the
time–energy uncertainty relations (Section 16).
Equations of motion are discussed in Section 17. To derive the equation of motion, the
Fisher information Ix defined for the space coordinate x is first generalized to two Fisher
informations Jx and Jt in space–time in which the derivatives of the functions s1 and s2 with
respect to x and t are taken into account. Then, the combined space–time Fisher information
Jt/c2 ± Jx is discussed. Further, we require that our theory is independent of the choice of
the coordinate system in space–time and the concrete initial conditions. It yields the equation
Jt/c2 − Jx = const, where the signs of the space and time parts are different similarly to
the signs in the metric in special relativity and const ≥ 0. Formulating this condition in
the variational form, it leads to the equation of motion mathematically equivalent to the
Klein–Gordon equation. The Schrödinger equation can be viewed as the non–relativistic
approximation to the Klein–Gordon equation. The Dirac equation can be obtained in a similar
way. It is shown also that the equations of motion in quantum mechanics should be linear.

2. Statistical description of results of measurement

In this section, we discuss probably the most important difference between classical and
quantum mechanics — statistical description of results of measurement.
We note that the measuring apparatus is not described in quantum mechanics on the
microscopic level and the measured system interacts with the measuring apparatus. For
this reason, results of measurement have to be described statistically. In agreement with
experimental experience, we assume that results of repeated measurement of the coordinate
x can be characterized by the mean values

〈x〉 =
∫ ∞

−∞
xρ(x, t)dx, (1)

〈x2〉 =
∫ ∞

−∞
x2ρ(x, t)dx (2)

and the corresponding mean square displacement

〈(Δx)2〉 = 〈x2〉 − 〈x〉2. (3)

Here,
Δx = x − 〈x〉 (4)

an ρ(x, t) ≥ 0 is a normalized probability density giving the probability of obtaining the value
x in measurement at time t ∫ ∞

−∞
ρdx = 1. (5)
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For the sake of simplicity, we assume that ρ(x, t) fulfills the boundary conditions

lim
x→±∞

xnρ = 0, n = 0, 1, 2. (6)

We assume also that in the limit of classical mechanics

ρ(x, t) → δ(x − xcl) (7)

the mean coordinate 〈x〉 converges to the classical coordinate xcl = xcl(t).

3. Wave function

From the point of view of our statistical description, the wave function ψ can be introduced in
the following simple way.
First, we introduce a real function s2 = s2(x, t) by the equation

ρ = e−2s2/h̄ (8)

or equivalently

s2 = − h̄
2
ln ρ, (9)

where h̄ denotes the reduced Planck constant, h̄ = h/(2π). We note that the transition
ρ(x, t) → δ(x − xcl) can be formally performed for h̄ → 0+.
Due to normalization condition (5), the probability density ρ has to obey the continuity
equation

∂ρ

∂t
+

∂j
∂x

= 0, (10)

where j = j(x, t) is the probability density current in one dimension and ∂j/∂x is the
divergence in one dimension.
Analogously to continuum mechanics, it is possible to express the probability density current
j in terms of the “velocity” v

j = ρ v. (11)

Further, by analogy with the expression v = p/m = (∂S/∂x)/m from the Hamilton–Jacobi
theory we can write

v =
∂s1/∂x

m
, (12)

where m is the mass of the system, a real function s1 = s1(x, t) corresponds to the Hamilton
action S = S(x, t) and the function ∂s1/∂x represents the momentum in our statistical
approach. In the limit of classical mechanics when the statistical description disappears, the
function s1 has to fulfill the condition s1(x, t) → S(xcl , t) and ∂s1/∂x → ∂S/∂x.
It is seen that instead of two quantities ρ and j, the statistical state of the system can be
described by two mutually independent real functions s1 and s2 or a new complex function ψ

ψ = e(is1−s2)/h̄ (13)

depending on s1 and s2 (see also (Madelung, 1926)). Using this function, the probability
density ρ and probability density current j given above can be rewritten in the form known
from quantum mechanics

ρ = |ψ|2 (14)
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and

j = ρ
∂s1/∂x

m
=

h̄
2mi

(
ψ∗ ∂ψ

∂x
− ψ

∂ψ∗
∂x

)
, (15)

where the star denotes the complex conjugate.
The function ψ called the wave function in quantum mechanics is only a different way of
representing the statistical state of the system described by two real functions ρ and j or s1
and s2.
We note that our expression for the wave function (13) is similar to that of Bohm (Bohm,
1952a;b). However, we do not assume the existence of hidden variables here.

4. Momentum operator

By analogy with Eq. (1) and our discussion in the preceding section, the mean momentum
can be defined as (see also (Skála, Čížek & Kapsa, 2011))

〈p〉 =
∫ ∞

−∞

∂s1
∂x

ρdx. (16)

It follows from conditions (6) that the integral
∫ ∞

−∞

∂s2
∂x

ρdx = − h̄
2

∫ ∞

−∞

∂ρ

∂x
dx = − h̄

2
ρ|∞x=−∞ = 0 (17)

equals zero. Using this result it is easy to verify that Eq. (16) can be also written as

〈 p̂〉 =
∫ ∞

−∞
ψ∗ p̂ ψdx, (18)

where the momentum operator equals

p̂ = −ih̄
∂

∂x
. (19)

Equations (16) and (18) yield the same result and representation of the momentum by the
function ∂s1/∂x and the operator p̂ is in this case equivalent.

5. Mean value of xp

In this section, we investigate the mean value of the product of the coordinate andmomentum
which is important in the uncertainty relations (see also (Skála, Čížek & Kapsa, 2011)).
As it is known, the mean value of the product of the coordinate andmomentum is in quantum
mechanics given by the expression

〈xp̂〉+ 〈 p̂x〉
2

=
1
2

∫ ∞

−∞
ψ∗
[

x
(
− ih̄

∂

∂x

)
+

(
− ih̄

∂

∂x

)
x
]

ψdx. (20)

Using Eq. (13) we get

〈xp̂〉+ 〈 p̂x〉
2

=
1
2

∫ ∞

−∞
e(−is1−s2)/h̄

[
2x
(
− ih̄

∂

∂x

)
− ih̄

]
e(is1−s2)/h̄dx. (21)
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Now we calculate the integral

∫ ∞

−∞
e(−is1−s2)/h̄x

(
− ih̄

∂

∂x

)
e(is1−s2)/h̄dx =

∫ ∞

−∞
x

∂s1
∂x

ρdx + i
∫ ∞

−∞
x

∂s2
∂x

ρdx. (22)

By using integration by parts in the last integral and Eqs. (5) and (6) we get
∫ ∞

−∞
x

∂s2
∂x

ρdx = x
−h̄
2

ρ|∞x=−∞ +
h̄
2

∫ ∞

−∞
ρdx =

h̄
2
. (23)

The resulting formula
〈xp̂〉+ 〈 p̂x〉

2
=
∫ ∞

−∞
x

∂s1
∂x

ρdx (24)

agrees with the expression

〈xp〉 =
∫ ∞

−∞
x

∂s1
∂x

ρdx (25)

analogous to Eqs. (1) and (16).
Summarizing results of the last two sections we see that contribution of the function ∂s2/∂x
to the mean values 〈 p̂〉 and (〈xp̂〉+ 〈 p̂x〉)/2 equals zero and the momentum operator can be
in these cases represented either by the function p = ∂s1/∂x or the operator p̂ = −ih̄(∂/∂x).
However, as it will be seen in the following sections, it it not true in more complicated cases.

6. Fisher information

The Fisher information is a very important quantity appearing in mathematical statistics (see
e.g. (Cover & Thomas, 1991; Fisher, 1925)). In our case, it can be introduced in the following
simple way (see also (Frieden, 1998; 2004; Frieden & Soffer, 1995; Kapsa & Skála, 2009; 2011;
Kapsa et al., 2010; Reginatto, 1998; 1999; Skála & Kapsa, 2005a;b; 2007a;b; 2011; Skála, Čížek
& Kapsa, 2011)). For various applications of the Fisher information in physics and chemistry
see e.g. (Chakrabarty, 2004; Hornyák &Nagy, 2007; Nagy, 2003; 2006; 2007; Nagy & Liu, 2008;
Nagy & Sen, 2006; Romera & Nagy, 2008; Szabó et al., 2008).
We start with normalization condition (5) for the probability density ρ in which we perform
integration by parts [

(x − a)ρ
]∞

x=−∞ −
∫ ∞

−∞
(x − a)

∂ρ

∂x
dx = 1, (26)

where a is an arbitrary real number. Taking into account Eq. (6) we get the starting point of
the following discussion ∫ ∞

−∞
(x − a)

∂ρ

∂x
dx = −1. (27)

Now we make use of the Schwarz inequality for the inner product (u, v) =
∫ ∞
−∞ u∗vdx of two

complex functions u and v
(u, u)(v, v) ≥ |(u, v)|2. (28)

Putting
u = (x − a)

√
ρ, (29)

v =
1√
ρ

∂ρ

∂x
(30)
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in inequality (28) and using Eq. (27) we get

∫ ∞

−∞
(x − a)2ρdx

∫ ∞

−∞

1
ρ

(
∂ρ

∂x

)2

dx ≥ 1. (31)

Here, the second integral is the well–known quantity from mathematical statistics called the
Fisher information

Ix =
∫ ∞

−∞

1
ρ

(
∂ρ

∂x

)2

dx ≥ 0. (32)

Inequality (31) is usually written in the form (Fisher, 1925)

〈(x − a)2〉 Ix ≥ 1. (33)

This result is very general and does not depend on the concrete meaning of the variable x.
Interpretation of the last inequality is similar to that of the uncertainty relations in quantum
mechanics: For given Ix the integral 〈(x − a)2〉 cannot be smaller than 1/Ix and vice versa.
The minimum of the integral 〈(x − a)2〉 is obtained for a = 〈x〉.
We note that inequality (33) in a more general form is known in mathematical statistics as the
Rao–Cramér inequality (Cover & Thomas, 1991; Cramér, 1946a;b; Rao, 1945; 1992). Hence,
any correctly formulated statistical theory has to lead to inequality (33) or an analogous one.
Using Eq. (8) for the probability density the Fisher information can be written in the
equivalent form

Ix =
4
h̄2

∫ ∞

−∞

(
∂s2
∂x

)2

ρdx =
4
h̄2

〈(
∂s2
∂x

)2〉
(34)

which will appear in the following discussion.

7. Kinetic energy

Now we discuss the kinetic energy T in quantum mechanics

T =
∫ ∞

−∞

|( p̂ − qA)ψ|2
2m

dx, (35)

where q denotes the charge, m the mass and A is the vector potential in one dimension (see
also (Skála, Čížek & Kapsa, 2011)).
Using Eq. (13) for the wave function and Eq. (19) for the momentum operator we get

( p̂ − qA)ψ =

(
∂s1
∂x

+ i
∂s2
∂x

− qA
)
e(is1−s2)/h̄ (36)

and

|( p̂ − qA)ψ|2 =
[(

∂s1
∂x

− qA
)2

+

(
∂s2
∂x

)2]
ρ. (37)

Therefore, the kinetic energy

T =
∫ ∞

−∞

(∂s1/∂x − qA)2 + (∂s2/∂x)2

2m
ρdx (38)
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can be written as a sum of two terms

T = T1 + T2, (39)

where

T1 =
∫ ∞

−∞

(∂s1/∂x − qA)2

2m
ρdx (40)

and

T2 =
∫ ∞

−∞

(∂s2/∂x)2

2m
ρ =

h̄2 Ix

8m
. (41)

The first term T1 is statistical generalization of the kinetic energy known from classical
mechanics. The second part of the kinetic energy T2 depending on ∂s2/∂x is proportional to
the Fisher information Ix and does not have its counterpart in classical mechanics. Therefore,
in contrast to classical mechanics, the Fisher information is an important part of the kinetic
energy in quantum mechanics.

8. Heisenberg uncertainty relations

For the sake of simplicity, we assume that the potential A equals zero.
The Heisenberg uncertainty relation (Heisenberg, 1927) for the coordinate x and momentum
p has the form

〈(Δx)2〉〈(Δp)2〉 ≥ h̄2

4
, (42)

where
〈(Δx)2〉 =

∫ ∞

−∞
(x − 〈x〉)2|ψ|2dx (43)

and

〈(Δp)2〉 =
∫ ∞

−∞

∣∣∣∣
(
− ih̄

∂

∂x
− 〈 p̂〉

)
ψ

∣∣∣∣
2

dx. (44)

Using Eqs. (13), (14) and (17) we get

〈(Δp)2〉 = 〈(Δp1)2〉+ 〈(Δp2)2〉, (45)

where

〈(Δp1)2〉 =
∫ ∞

−∞

(
∂s1
∂x

−
〈

∂s1
∂x

〉)2

ρdx (46)

and

〈(Δp2)2〉 =
∫ ∞

−∞

(
∂s2
∂x

)2

ρdx =
h̄2

4
Ix. (47)

We see that, analogously to the kinetic energy T, the mean square deviation of the momentum
〈(Δp)2〉 can be split into two parts (see also (Kapsa & Skála, 2011; Skála & Kapsa, 2011; Skála,
Čížek & Kapsa, 2011)).
The first part 〈(Δp1)2〉 corresponds to the representation of the momentum by the function
p = ∂s1/∂x and the first part of the kinetic energy T1.
The second part 〈(Δp2)2〉 is proportional to the Fisher information Ix and corresponds to
the second part of the kinetic energy T2. We note that for 〈(Δp1)2〉 = 0, the Heisenberg
uncertainty relation (42) has the form of inequality (33) for the Fisher information with a = 〈x〉
(see also (Chakrabarty, 2004; Kapsa & Skála, 2009; 2011; Kapsa et al., 2010; Skála & Kapsa,
2005a;b; 2007a;b; 2011; Skála, Čížek & Kapsa, 2011)). Therefore, inequality (33) is in quantum
mechanics correctly respected.
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9. Two uncertainty relations

It is shown in this section that the Heisenberg uncertainty relation can be replaced by two
uncertainty relations for 〈(Δp1)2〉 and 〈(Δp2)2〉 (see also (Kapsa & Skála, 2011; Skála & Kapsa,
2008; 2009; 2011; Skála, Čížek & Kapsa, 2011)).
According to the well–known result of mathematical statistics, the product of variances of
two quantities is greater than or equal to the square of their covariance (Cramér, 1946b). In
the following cases, it is equivalent to Schwarz inequality (28) with a suitable choice of the
functions u and v.
First, we put

u = Δx
√

ρ (48)

and

v =

(
∂s1
∂x

−
〈

∂s1
∂x

〉)√
ρ. (49)

Then, the Schwarz inequality yields the first uncertainty relation

〈(Δx)2〉〈(Δp1)2〉 ≥
[ ∫ ∞

−∞
Δx
(

∂s1
∂x

−
〈

∂s1
∂x

〉)
ρdx

]2
. (50)

As it follows from section 5, the function ∂s1/∂x in the last integral represents the momentum
and this relation has the usual abovementionedmeaning known frommathematical statistics.
Depending on the functions s1 and s2, the square of the covariance of the coordinate and
momentum at the right–hand side of this relation can have arbitrary values greater than or
equal to zero.
The second uncertainty relation can be obtained in an analogous way for

u = Δx
√

ρ (51)

and

v =

(
∂s2
∂x

−
〈

∂s2
∂x

〉)√
ρ (52)

with the result

〈(Δx)2〉〈(Δp2)2〉 ≥
[ ∫ ∞

−∞
Δx
(

∂s2
∂x

−
〈

∂s2
∂x

〉)
ρdx

]2
. (53)

It follows from Eq. (17) that the right–hand side of this relation can be simplified

〈(Δx)2〉〈(Δp2)2〉 ≥
( ∫ ∞

−∞
x

∂s2
∂x

ρdx
)2

. (54)

Then, Eq. (23) leads to the final form of the second uncertainty relation

〈(Δx)2〉〈(Δp2)2〉 ≥ h̄2

4
. (55)

This uncertainty relation follows from the Schwarz inequality in a similar way as the first
one, however, the covariance (u, v) is in this case constant and equals h̄/2 > 0 independently
of the concrete form of the functions s2 or ρ. We note also that relation (55) is for 〈x〉 = a
equivalent to inequality (33) for the Fisher information. It confirms again that inequality (33)
is in quantum mechanics correctly respected.
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Analogous uncertainty relations can be derived also in the multidimensional case (Skála &
Kapsa, 2008; 2009) and for the mixed states described by the density matrix (Skála & Kapsa,
2009).
The sum of uncertainty relations (50) and (55) gives the relation

〈(Δx)2〉〈(Δp)2〉 ≥
[ ∫ ∞

−∞
Δx
(

∂s1
∂x

−
〈

∂s1
∂x

〉)
ρdx

]2
+

h̄2

4
. (56)

Heisenberg uncertainty relation (42) can be obtained from this relation by neglecting the first
term on its right–hand side. Therefore, uncertainty relations (50) and (55) are stronger than
the corresponding Heisenberg uncertainty relation (42).

10. Robertson–Schrödinger uncertainty relation

Relationship of uncertainty relations (50) and (55) to the Robertson–Schrödinger uncertainty
relation (Peřinová et al., 1998; Robertson, 1929; 1934; Schrödinger, 1930a;b) can be clarified as
follows (see also (Kapsa & Skála, 2011; Skála & Kapsa, 2011; Skála, Čížek & Kapsa, 2011)).
For two linear hermitian operators Â and B̂, the Robertson–Schrödinger uncertainty relation
can be written in the form

〈(ΔÂ)2〉〈(ΔB̂)2〉 ≥ 1
4
(〈{ΔÂ,ΔB̂}〉2 + ∣∣〈[Â, B̂]〉∣∣2), (57)

where 〈Â〉 = 〈ψ|Âψ〉 is the mean value of the operator Â in the state described by the wave
function ψ, ΔÂ = Â − 〈Â〉, {Â, B̂} = ÂB̂ + B̂Â denotes the anticommutator and [Â, B̂] =
ÂB̂ − B̂Â the commutator of the operators Â and B̂.
For the operators x̂ = x and p̂ = −ih̄(∂/∂x) the straightforward calculation yields

1
2
〈{Δx,Δ p̂}〉 = 1

2

∫ ∞

−∞
ψ∗
[

Δx
(
− ih̄

∂

∂x
− 〈 p̂〉

)
+

(
− ih̄

∂

∂x
− 〈 p̂〉

)
Δx
]

ψdx = (58)

=
∫ ∞

−∞
Δx
(

∂s1
∂x

−
〈

∂s1
∂x

〉)
ρdx.

Further, taking into account the commutation relation [x, p̂] = ih̄, relation (57) leads to
Eq. (56). Therefore, relations (50) and (55) are stronger than both the Heisenberg and
Robertson–Schrödinger relations (42) and (56) and yield more detailed information in terms
of the mean square deviations 〈(Δx)2〉, 〈(Δp1)2〉 and 〈(Δp2)2〉.
For the momentum represented by the function p = ∂s1/∂x, the mean value 〈[Δx,Δp]〉 equals
zero and the Heisenberg and Robertson–Schrödinger uncertainty relations (42) and (56) do
not contain the term h̄2/4. It shows again that this representation of the momentum is not,
except for the cases discussed in sections 4 and 5, correct.
The equality sign in Schwarz inequality (28) is obtained if the functions u and v are collinear,
i.e. for u = const v, where const is a complex number. However, since the functions s1, s2 and
ρ are real, the corresponding functions u and v are also real. Therefore, const must be a real
number or a real function of t. It follows from the conditions u = const v for the functions s1
and s2 that these functions have to be quadratic functions of x of the form p(t)x2+ q(t)x+ r(t),
where real coefficients p(t), q(t) and r(t) can depend on time.
It is worth to notice that the condition for the equality sign in relation (55) is independent of the
form of the function s1. Therefore, the equality sign in this relation can be achieved for much
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larger class of the wave functions than in case of the Heisenberg or Robertson–Schrödinger
uncertainty relations. It is interesting not only from the theoretical point of view but also from
the point of view of some applications.

11. Free particle

In this section, we discuss uncertainty relations (42), (50), (55) and (56) in case of a free particle
(see also (Kapsa & Skála, 2011; Skála & Kapsa, 2011; Skála, Čížek & Kapsa, 2011)).
We assume that the wave function of a free particle is at time t = 0 described by the gaussian
wave packet

ψ(x, 0) =
1√

a
√

π
e−x2/(2a2)+ikx (59)

with the energy

E =
h̄2

4ma2
+

h̄2k2

2m
, (60)

where a > 0 and k are real constants. By solving the time Schrödinger equation we get

ψ(x, t) =
1√

a
√

π

√
1− ih̄t

ma2√
1+
(

h̄t
ma2

)2× (61)

× exp

⎧⎪⎪⎨
⎪⎪⎩−

(
x − h̄k

m t
)2

2a2
[
1+
(

h̄t
ma2

)2] + i

⎡
⎢⎣ kx + h̄tx2

2ma4 − h̄k2
2m t

1+
(

h̄t
ma2

)2
⎤
⎥⎦
⎫⎪⎪⎬
⎪⎪⎭ .

The corresponding functions s1 and s2 and their derivatives equal

s1(x, t) = h̄k
x + h̄tx2

2ma4k − h̄k
2m t

1+
(

h̄t
ma2

)2 − h̄ arctan
h̄t

ma2
, (62)

s2(x, t) =
h̄
2

⎧⎪⎪⎨
⎪⎪⎩

(
x − h̄k

m t
)2

a2
[
1+
(

h̄t
ma2

)2] − ln
1

a
√

π

√
1+
(

h̄t
ma2

)2
⎫⎪⎪⎬
⎪⎪⎭ (63)

and
∂s1
∂x

= h̄k
1+ h̄tx

ma4k

1+
(

h̄t
ma2

)2 , (64)

∂s2
∂x

=
h̄
(

x − h̄k
m t
)

a2
[
1+
(

h̄t
ma2

)2] . (65)

As it could be anticipated, the mean momentum and the mean coordinate equal

〈 p̂〉 =
〈

∂s1
∂x

〉
= h̄k (66)
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and
〈x〉 = h̄k

m
t. (67)

The mean square deviations of the coordinate and momentum are given by the equations

〈(Δx)2〉 = a2

2

[
1+
(

h̄t
ma2

)2
]
, (68)

〈(Δp1)2〉 = h̄4t2

2m2a6
[
1+
(

h̄t
ma2

)2] (69)

and

〈(Δp2)2〉 = h̄2

2a2
[
1+
(

h̄t
ma2

)2] . (70)

The left–hand side of relation (50) equals

〈(Δx)2〉〈(Δp1)2〉 = h̄4t2

4m2a4
. (71)

Calculating the right–hand side of this relation we get the same result

〈
Δx
(

∂s1
∂x

−
〈

∂s1
∂x

〉)〉2
=

h̄4t2

4m2a4
. (72)

Therefore, uncertainty relation (50) is fulfilled with the equality sign.
Calculating the left–hand side of uncertainty relation (55) we obtain

〈(Δx)2〉〈(Δp2)2〉 = h̄2

4
(73)

and see that uncertainty relation (55) is fulfilled with the equality sign, too.
The corresponding Robertson–Schrödinger uncertainty relation has the form

〈(Δx)2〈(Δp)2〉〉] = h̄4t2

4m2a4
+

h̄2

4
(74)

and is fulfilled with the equality sign for all t ≥ 0. The Heisenberg uncertainty relation (42) for
our wave packet can be obtained if the first term on the right–hand side of the last equation is
neglected.

12. Linear harmonic oscillator

The second example of application of uncertainty relations (50) and (55) is the linear harmonic
oscillator in the coherent state described at time t = 0 by the gaussian wave packet (Skála,
Kapsa & Lužová, 2011)

ψ(x, 0) =
(

mω

h̄π

)1/4

e−(ξ−ξ0)2/2, (75)
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where

ξ =

√
mω

h̄
x, (76)

ξ0 =

√
mω

h̄
x0 (77)

and x0 is the center of the packet. The corresponding energy E equals

E =
mω2x20

2
+

h̄ω

2
. (78)

By solving the time Schrödinger equation we get

ψ(x, t) =
(

mω

h̄π

)1/4

e−iωt/2ei(mω/h̄)[x2
0 cos(ωt)−2xx0] sin(ωt)/2e−(mω/h̄)[x−x0 cos(ωt)]2/2. (79)

The corresponding functions s1 and s2 equal

s1(x, t) = −h̄ωt/2+ (mω)[x20 cos(ωt)− 2xx0] sin(ωt)/2 (80)

and
s2(x, t) =

h̄
4
(ln h̄ + lnπ − lnm − lnω) +

mω

2
[x − x0 cos(ωt)]2. (81)

The mean momentum and the mean coordinate have the same form as in classical mechanics

〈 p̂〉 =
〈

∂s1
∂x

〉
= −mωx0 sin(ωt) (82)

and
〈x〉 = x0 cos(ωt). (83)

The mean square deviations of the coordinate and momentum from their mean values are
given by the equations

〈(Δx)2〉 = h̄
2mω

, (84)

〈(Δp1)2〉 = 0 (85)

and
〈(Δp2)2〉 = h̄mω

2
. (86)

It means that uncertainty relations (50) and (55) have the form

0 = 0 (87)

and

〈(Δx)2〉〈(Δp2)2〉 = h̄2

4
. (88)

It is seen that uncertainty relation (50) has in this case very simple form 0 = 0. It follows from
equation (88) that the left–hand side of relation (55) achieves for this example its minimum
h̄2/4.
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13. Commutation relations and vector potential

To introduce potentials, we make use of Eq. (27) with a = 0
∫ ∞

−∞
x

∂ρ

∂x
dx = −1. (89)

Using Eq. (14) we get ∫ ∞

−∞
x
(

∂ψ∗
∂x

ψ + ψ∗ ∂ψ

∂x

)
dx = −1. (90)

Performing integration by parts in the first term and taking into account conditions (6) we
have ∫ ∞

−∞

[
ψ∗x

∂ψ

∂x
− ψ∗ ∂

∂x
(xψ)

]
dx = −1. (91)

Multiplying this equation by −ih̄ we obtain the equation
∫ ∞

−∞
ψ∗[x, p̂]ψdx = ih̄ (92)

indicating validity of the commutation relation

[x, p̂] = ih̄ (93)

known from quantum mechanics.
Further, it is seen that Eq. (92) is valid also in case that the momentum operator p̂ is replaced
by p̂ − f , where f = f (x, t) is a real function. This function can describe external conditions
in which the system moves. In physics, such functions are usually denoted as the vector
potential. For example, the function f can equal qA in Eq. (35) (see also (Kapsa & Skála, 2011;
Skála & Kapsa, 2005a;b; 2007a)).

14. Time

Systems investigated in standard quantum mechanics are supposed to have infinite lifetime.
Therefore, normalization condition (5) is for such systems valid at all times t from the
preparation of the system in a state described by ψ at time t = t1 to the subsequent
measurement at later time t2. Therefore, the probability to find the measured system
anywhere in space equals one for all times t1 ≤ t ≤ t2. For this reason, it does not make sense
to introduce the probability density in time analogous to the probability density in space and
time is taken as a parameter in standard quantum mechanics.
Rather different situation is obtained if we assume that the investigated state has a finite
lifetime and the probability to find the system anywhere in space

ν(t) =
∫ ∞

−∞
ρ(x, t)dx (94)

decays in time (see also (Kapsa & Skála, 2011; Skála & Kapsa, 2005a;b; 2007a)). Normalization
of ν is given by the equation ∫ ∞

t1
νdt = 1 (95)
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expressing the fact that, after its preparation at time t = t1, the investigated state decays with
the probability equal to one. This generalization includes standard quantum mechanics with
the infinite lifetime as a limit case.
By analogy with the coordinate x, it is then possible to define the mean lifetime τ

τ = 〈t − t1〉 =
∫ ∞

t1
(t − t1)νdt, (96)

the mean value of the square of time

〈(t − t1)2〉 =
∫ ∞

t1
(t − t1)2νdt (97)

and the corresponding mean square deviation

〈[Δ(t − t1)]2〉 = 〈(t − t1)2〉 − 〈t − t1〉2. (98)

15. Scalar potential

Similarly to Eq. (26), we perform integration by parts with respect to time in Eq. (95) and get

(t − t1)ν
∣∣∞
t=t1

−
∫ ∞

t1
(t − t1)

dν

dt
dt = 1. (99)

By analogy with Eq. (6) we can assume validity of conditions

lim
t→t1

(t − t1)nν = 0, n = 0, 1, 2 (100)

and
lim
t→∞

(t − t1)nν = 0, n = 0, 1, 2. (101)

Using Eqs. (14), (94), (100) and (101) we get from Eq. (99)
∫ ∞

t1
(t − t1)

[ ∫ ∞

−∞

(
∂ψ∗
∂t

ψ + ψ∗ ∂ψ

∂t

)
dx
]
dt = −1. (102)

Performing integration by parts in the first term and taking into account Eqs. (100) and (101)
we have ∫ ∞

t1

∫ ∞

−∞

{
ψ∗(t − t1)

∂ψ

∂t
− ψ∗ ∂

∂t
[(t − t1)ψ]

}
dx dt = −1. (103)

Multiplying this equation by −ih̄ we obtain the equation
∫ ∞

t1

∫ ∞

−∞
ψ∗
[

ih̄
∂

∂t
, t − t1

]
ψdx dt = ih̄. (104)

This result indicates that for systems with a finite lifetime the operator ih̄(∂/∂t) has analogous
mathematical properties as the momentum operator p̂.
Further, it is seen that Eq. (99) remains valid even in case when the operator ih̄(∂/∂t) is
replaced by the operator ih̄(∂/∂t)− g, where g = g(x, t) is a real function. Analogously to the
function f , the function g can describe external conditions in which the system moves. For
example, the function g can equal qV, where q is the charge and V the scalar potential of the
electromagnetic field (see also (Skála & Kapsa, 2005a;b; 2007a)).
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16. Time–energy uncertainty relations

To derive the "time–energy" uncertainty relation, we start from the equation that is a bit more
general than Eq. (99) and is analogous to Eq. (27) (see also (Skála & Kapsa, 2007a))

∫ ∞

t1
(t − t1 − 〈t − t1〉)dν

dt
dt = −1. (105)

By using Schwarz inequality (28) for

u = Δ(t − t1)
√

ν, (106)

where
Δ(t − t1) = t − t1 − 〈t − t1〉, (107)

and
v =

1√
ν

dν

dt
(108)

we get the inequality ∫ ∞

t1
[Δ(t − t1)]2νdt

∫ ∞

t1

1
ν

(
∂ν

∂t

)2

dt ≥ 1 (109)

analogous to inequality (31). It is a general form of the "time–energy" uncertainty relation.
As an example, we assume now that the probability ν(t) to find the system in state ψ decays
exponentially in time

ν(t) =
1
τ
e−(t−t1)/τ , (110)

where τ denotes the lifetime. The corresponding mean values 〈t − t1〉, 〈(t − t1)2〉 and 〈[Δ(t −
t1)]2〉 equal

〈t − t1〉 =
∫ ∞

t1
(t − t1)νdt = τ, (111)

〈(t − t1)2〉 =
∫ ∞

t1
(t − t1)2νdt = 2τ2 (112)

and
〈[Δ(t − t1)]2〉 =

∫ ∞

t1
[Δ(t − t1)]2νdt = 〈(t − t1)2〉 − 〈t − t1〉2 = τ2. (113)

Further, we assume that the wave function describing the state with a finite lifetime has the
following simple form

ψ(x, t) =

√
2E2

h̄
e(E1−iE2)(t−t1)/(ih̄)ψ0(x), (114)

where E1 and E2 > 0 are the real and imaginary part of the energy, respectively, and ψ0(x) is
the space part of the wave function. Then, using Eq. (114), we calculate the second integral in
Eq. (109) and get ∫ ∞

t1

1
ν

(
∂ν

∂t

)2

dt =
4E2

2

h̄2
. (115)

The resulting time–energy uncertainty relation has the form

τ2 E2
2 ≥ h̄2

4
. (116)
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This relation shows that the lifetime and imaginary part of the energy are not independent
and obey the well–known time–energy uncertainty relation.
To determine the shape of the corresponding spectral line it is necessary to calculate the
Fourier transform of the function (110). As a result, the Lorentz form of the spectral line is
obtained.

17. Equations of motion

As mentioned above, to describe motion in space both the probability density ρ and
probability density current j or the functions s1 and s2 have to be used. To describe time
evolution, integration in the Fisher information should be obviously performed not only over
the space coordinates but also over time. For these reasons and in agreement with the last
three sections, we define a generalized space Fisher information in the form (see also (Kapsa
& Skála, 2011; Skála & Kapsa, 2005a;b; 2007a))

Jx =
4
h̄2

∫ ∞

t1

∫ ∞

−∞

[(
∂s1
∂x

)2

+

(
∂s2
∂x

)2]
ρdx dt = 4

∫ ∞

t1

∫ ∞

−∞

∣∣∣∣ ∂ψ

∂x

∣∣∣∣
2

dx dt ≥ 0. (117)

Analogously, we define a generalized time Fisher information

Jt =
4
h̄2

∫ ∞

t1

∫ ∞

−∞

[(
∂s1
∂t

)2

+

(
∂s2
∂t

)2]
ρdx dt = 4

∫ ∞

t1

∫ ∞

−∞

∣∣∣∣ ∂ψ

∂t

∣∣∣∣
2

dx dt ≥ 0, (118)

where ψ = exp[(is1 − s2)/h̄] and ρ = |ψ|2. Both generalized Fisher informations depend on
the space and time derivatives of the functions s1 and s2 in a similar way. Since there are no
potentials in the last two equations, they correspond to a free motion.
To find equations of motion, we need an additional physical principle. To describe physical
phenomena in a way independent of the choice of the concrete coordinate system and the
state of the investigated system, we require that the combined generalized space–time Fisher
information equals a real constant const

Jt

c2
± Jx = const. (119)

Here, c is the speed of light and the sign in front of the generalized spatial Fisher information
Jx can be either plus or minus.
First we notice that the space initial conditions for the wave function ψ at t = 0 can be from
the mathematical point of view chosen arbitrarily and Jx can have arbitrary values greater
than or equal to zero. In contrast to it, the wave function ψ at later times is given by the
evolution consistent with Eq. (119). It makes possible to derive the equation of motion from
this equation.
Further, to determine the sign in Eq. (119), we consider a free particle which is at rest in a
given coordinate system. It follows from Eq. (38) with A = 0 that it is obtained for very small
values of |∂s1/∂x| and |∂s2/∂x|. In such a case, the Fisher information Jx is close to zero and
Eq. (119) yields

const ≥ 0. (120)

Then, we consider a particle having a large kinetic energy T and a large Fisher information
Jx > const. In such a case, it is impossible to obey Eq. (119) with the plus sign. Therefore, we
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can conclude that the sign in Eq. (119) must be negative

Jt

c2
− Jx = const. (121)

It is seen that this combination of the Fisher informations Jt and Jx is Lorentz invariant.
The last equation can be rewritten into the form

∫ ∞

t1

∫ ∞

−∞

(
1
c2

∣∣∣∣ ∂ψ

∂t

∣∣∣∣
2

−
∣∣∣∣ ∂ψ

∂x

∣∣∣∣
2

− const
4

|ψ|2
)
dx dt = 0. (122)

This equation must be valid for arbitrary initial conditions at t = t1, i.e., it has to be
independent of ψ. Therefore, its variation must equal zero

∫ ∞

t1

∫ ∞

−∞

(
1
c2

∂δψ∗
∂t

∂ψ

∂t
− ∂δψ∗

∂x
∂ψ

∂x
− const

4
δψ∗ψ

)
dx dt + c.c. = 0, (123)

where δψ denotes the variation of ψ. Performing integration by parts with respect to t in the
first term and with respect to x in the second one and assuming that variations δψ and δψ∗
equal zero at the borders of the integration region we get

∫ ∞

t1

∫ ∞

−∞
δψ∗
(

∂2

∂x2
− 1

c2
∂2

∂t2
− const

4

)
ψdx dt + c.c. = 0. (124)

This equation has to be obeyed for arbitrary values of δψ and δψ∗. It leads to the equation of
motion (

∂2

∂x2
− 1

c2
∂2

∂t2
− const

4

)
ψ = 0. (125)

We see that except for the number of space dimensions and the constant const, this equation
has the same mathematical form as the Klein–Gordon equation known from quantum
mechanics (

Δ − 1
c2

∂2

∂t2
− m2

0c2

h̄2

)
ψ = 0, (126)

where m0 is the rest mass.
We note that another derivation of the Klein–Gordon equation is given in (Frieden, 1998; 2004;
Frieden & Soffer, 1995; Reginatto, 1998; 1999).
As it is known, the Schrödinger equation for a free particle

ih̄
∂ϕ

∂t
= − h̄2

2m0
Δϕ (127)

can be obtained from the Klein–Gordon equation in the non–relativistic approximation for the
function

ψ = em0c2t/(ih̄)ϕ, (128)

where ϕ is the wave function appearing in the Schrödinger equation.
The Dirac equation for a free particle can be also obtained in a similar way (see also (Frieden,
1998; 2004; Frieden & Soffer, 1995; Skála & Kapsa, 2005a;b; 2007a)).
Potentials can be included into the theory by the method described in sections 13 and 15.
It worth to notice that the equations of motion discussed above are linear and the
superposition principle is for them valid. This property can be traced back to the expression
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(32) for the Fisher informations Ix. By using the substitution ρ = exp(−2s2/h̄), Ix can be
written in terms of the square of the function ∂s2/∂x (see Eq. (34)). Similar approach is used
in Eqs. (117) and (118) for Jx and Jt, too. Then, using Eq. (121) and performing the variations
and integration by parts in Eq. (122), the squares of the functions ∂ψ/∂x and ∂ψ/∂t disappear
and the second partial derivatives of ψ with respect to the coordinates and time are obtained.
Therefore, the resulting equations of motion are linear.
The role of the operator ih̄(∂/∂t) is different from the role of the energy operator —
hamiltonian. In agreement with discussion in this section, the operator ih̄(∂/∂t) is important
for describing the time evolution of the wave function given by the equations of motion.
We note also that condition (121) of the constant value of the generalized space–time Fisher
information expressed in the variational form yields in the limit of classical mechanics the
Hamilton principle (Kapsa & Skála, 2009).
Finally we note that quantization known from quantum mechanics is consequence of the
statistical description of results of measurement and boundary conditions applied to the wave
function ψ. As it is known, only some solutions of equations of motion obey these conditions
and possible states of quantum systems can be quantized.

18. Conclusion

We have shown that the basic mathematical structure of quantum mechanics can be
understood as generalization of classical mechanics in which the statistical character of results
of measurement is taken into account and the most important general properties of statistical
theories known from mathematical statistics are correctly respected. It is not therefore
surprising that quantummechanics yields correct description of physical reality in agreement
with experiments.
This work was supported by the MSMT grant No. 0021620835 of the Czech Republic.
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Method in Quantum Mechanics
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1. Introduction

This book chapter is addressed to readers who want to learn how to solve the
time-independent Schrödinger equation (Schrödinger, 1926) in an alternativemethod that was
introduced by A. F. Nikiforov and V. B. Uvarov (Nikiforov & Uvarov, 1988). The requirement
for understanding the chapter is a knowledge of quantum mechanics in an introductory level
and partial differential equations. The primary of the chapter is intended for undergraduate
students in physics and chemistry however, it may be used as a reference guide for graduate
students and researchers as well.
The solution of the Schrödinger equation for a physical system in quantum mechanics is of
great importance, because the knowledge of wavefunction Ψ(r, t) and energy E contains all
possible information about the physical properties of a system. This knowledge is ranging
from the energy, momentum and coordinate of the particle to the wave characteristics of the
particle, frequency and wavelength if we describe the quantum mechanical system by the
probability amplitude |Ψ(r, t)|2 and its phase (Tang, 2005). Ψ(r, t) is supposed to describe the
"state" of a particle subject to the potential energy function V(r), where r represents the spatial
position of the particle. For a one-particle, one-dimensional system in cartesian coordinates,
we have Ψ(r, t) = Ψ(x, t) and V(r) = V(x) or for a one-particle, three-dimensional system in
spherical coordinates, we have Ψ(r, t) = Ψ(r, θ, φ, t) and V(r) = V(r, θ, φ). If wewant to know
how the state of the particle changes with time, we need to specify the future state, Ψ(r, t), of
a quantum mechanical system from the knowledge of its initial state, Ψ(r, t = 0). To do that
an equation postulated by the Austrian physicist Erwin Schrödinger (1887-1961) can help us

− h̄
i

∂Ψ(r, t)
∂t

= − h̄2

2μ
∇2Ψ(r, t) + V(r)Ψ(r, t), (1)

where the constant h̄ is defined as h̄ ≡ h/2π, μ is the mass of particle and ∇2 is an operator
that can be described in any coordinate system. Eq.(1) is known as the time-dependent
Schrödinger equation and it can be reduced to the time-independent one using an appropriate
wavefunction Ψ(r, t) = e−iEt/h̄Ψ(r) that corresponds to states of constant E. For the states of
the form Ψ(r, t) = e−iEt/h̄Ψ(r), the probability density |Ψ(r, t)|2 is given by |Ψ(r)|2 and it does

*Cüneyt Berkdemir has been working as a researcher in the Pennsylvania State University, University
Park, PA, USA, since 2009. His research interests include the modeling of the cluster-assembled materials
and the experimental techniques of the femtosecond velocity map imaging photoelectron spectroscopy
for exploring the electronic structures of gas phase clusters.
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not change with time. So, we can now call the states by the "stationary state" that would be
concerned mostly with states of constant energy (Levine, 2008). If we insert this wavefunction
into Eq.(1), we have an equation called the time-independent Schrödinger equation

− h̄2

2μ
∇2Ψ(r) + V(r)Ψ(r) = EΨ(r). (2)

For simplicity, we will refer to Eq.(2) as the Schrödinger equation (SE). The solution of
the SE not only depends on the potential energy function V(r) but also depends on the
coordinate system. Although many quantum mechanical system can be solved by writing
the one-particle, one-dimensional SE in cartesian coordinates, we will pay our attention to the
one-particle, three-dimensional SE in spherical coordinates. Therefore, in this book chapter,
we will deal with any one-particle problem with a spherically symmetric potential energy
function V(r), where we suppose that V(r) just depends on the radial variable, r, of spherical
coordinates, i.e., V(r) = V(r, θ, φ) ≡ V(r). Moreover, the stationary-state wavefunction
Ψ(r) would be of the form Ψ(r, θ, φ) = R(r)Y(θ, φ), in which R(r) is the unknown radial
wavefunction and Y(θ, φ) are referred to as the spherical harmonics.
The solution of the SE is an interesting issue in many fields of physics and chemistry. To
obtain an accurate solution of the SE is only possible for a few potentials such as harmonic
oscillator potential, Coulomb potential, Kratzer potential, etc. For these potentials, one can
try to solve the SE for the unknown radial wavefunction R(r) and hence implicitly provide
all relevant information about the behavior of a particle. The standard analytical method for
solving such an equation with a variable coefficient is to expand the solution in a power series
of the independent variable r and then find the recursion relationships for all the expansion
coefficients (Flügge, 1971). However, the power series method has more details to reach
the solution. The algebraic methods based on Lie algebra (Adams, 1994; Iachello & Levine,
1995; Iachello & Oss, 1996; Iachello & Ibrahim, 1998) are another tool to solve the SE in the
framework of quantum mechanics. To constitute a suitable Lie algebra, the quantum system
we are trying to find an exact solution has to be displayed a dynamical symmetry. If it is
so, the ladder operators of the quantum system for some potentials are constructed by the
factorization method or the supersymmetric quantum mechanics approach. The advantage
of the factorization method is that the energy spectrum and the wavefunction of a quantum
system are obtained algebraically if the SE is factorizable (Frank & Isacker, 1994; Infeld &Hull,
1951).
The solution of the SE is fundamental to understand the energy spectrum of a particle since
the early days of quantum mechanics (Flügge, 1971). It often happens in some quantum
mechanical problems that the solution of the SE with the potential V(r) is not known
accurately (for example, when considering the motion of a particle subject to the Morse
potential together with the centrifugal term �(� + 1)/r coming from the radial part of the
SE in spherical coordinate). Therefore, in such cases, there is no need for an exact solution
of the SE, and we must look for efficient approximate methods for its solution. From this
point of view, if the SE is exactly solvable for a given potential, the wavefunction will be
able to describe such a system completely, otherwise an approximated solution will be nearly
describe the system. Numerical and analytical methods are complementary to find an exact
or approximate solution of the SE with/without the centrifugal term �(�+ 1)/r for a particle
in the potential V(r), and each would be much poorer without the other. However, simple
"hand-power methods" namely analytical methods are often more revealing because we will
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see the solution stages of the problem and so it would be more meaningful than the numerical
solution.
An alternative method to solve the SE by the "hand-power" is to use the Nikiforov-Uvarov
(NU) method which can be described in terms of the hypergeometric-type second-order
differential equations. The method based on the solutions of the general second order
linear differential equation with special orthogonal functions (Szego, 1934) provides an exact
solution of the SE for certain kind of potentials. The NU method is able to apply the solution
of the SE in a more direct, easy and elegant way as well as the methods given in the standard
textbooks.
By using the main equation given by Eq.(2), the SE can be solved by separating it in spherical
coordinates for a single particle of mass μ. After separating the SE, the eigenvalue equations
are solved by using theNUmethod and the energy levels of the discrete spectrum are obtained
for a single particle. In spherical coordinates, the SE is written as follows:{

− h̄2

2μ

[
1
r2

∂

∂r

(
r2

∂

∂r

)
+

1
r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
r2sin2θ

∂2

∂φ2

]}
Ψ(r, θ, φ)

+V(r)Ψ(r, θ, φ) = EΨ(r, θ, φ). (3)

The energy E in Eq.(3) is real and it is either discrete for bound states (E < 0) or continuous
for scattering states (E > 0). Consequently, this equation is separable for several potential
such as Harmonic oscillator, Coulomb potential, Kratzer potential, Morse potential, Hulthen
potential and so on. It is expected that an interesting extension of this book chapter would be
to study the solution of the SE for a given potential.
This book chapter is organized as follows: in Section 2, we reviewed the NU method in detail
and at the end of this section we introduced a "guide" like a "cooking list" that will show
us a faster way, how to apply the NU to the solution of the SE. Section 3 is devoted to the
separable variables of the SE in spherical coordinates. Application of the NU method in
quantum mechanics is presented in Section 4 and so the solution of the SE for the selected
potentials, i.e., Harmonic oscillator potential, Coulomb potential, Kratzer potential, Morse
potential and Hulthen potential, is obtained in the same section. Finally, a few concluding
remarks are given in Section 5.

2. The Nikiforov-Uvarov method

The Nikiforov-Uvarov (NU) method is based on solving the hypergeometric-type
second-order differential equations by means of the special orthogonal functions (Szego,
1934). For a given potential, the Schrödinger or the Schrödinger-like equations in spherical
coordinates are reduced to a generalized equation of hypergeometric-typewith an appropriate
coordinate transformation r → s and then they can be solved systematically to find the exact
or particular solutions. The main equation which is closely associated with the method is
given in the following form (Nikiforov & Uvarov, 1988)

ψ′′(s) + τ̃(s)
σ(s)

ψ′(s) + σ̃(s)
σ2(s)

ψ(s) = 0, (4)

where σ(s) and σ̃(s) are polynomials at most second-degree, τ̃(s) is a first-degree polynomial
and ψ(s) is a function of the hypergeometric-type.
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By taking ψ(s) = φ(s)y(s) and choosing an appropriate function φ(s), Eq.(4) is reduced to a
comprehensible form;

y′′(s) +
(
2

φ′(s)
φ(s)

+
τ̃(s)
σ(s)

)
y′(s) +

(
φ′′(s)
φ(s)

+
φ′(s)
φ(s)

τ̃(s)
σ(s)

+
σ̃(s)
σ2(s)

)
y(s) = 0. (5)

The coefficient of y′(s) is taken in the form τ(s)/σ(s), where τ(s) is a polynomial of degree at
most one, i.e.,

2
φ′(s)
φ(s)

+
τ̃(s)
σ(s)

=
τ(s)
σ(s)

, (6)

and hence the most regular form is obtained as follows,

φ′(s)
φ(s)

=
π(s)
σ(s)

, (7)

where
π(s) =

1
2
[τ(s)− τ̃(s)]. (8)

The most useful demonstration of Eq.(8) is

τ(s) = τ̃(s) + 2π(s). (9)

The new parameter π(s) is a polynomial of degree at most one. In addition, the term
φ′′(s)/φ(s) which appears in the coefficient of y(s) in Eq.(5) is arranged as follows

φ′′(s)
φ(s)

=

(
φ′(s)
φ(s)

)′
+

(
φ′(s)
φ(s)

)2
=

(
π(s)
σ(s)

)′
+

(
π(s)
σ(s)

)2
. (10)

In this case, the coefficient of y(s) is transformed into a more suitable form by taking the
equality given in Eq.(7);

φ′′(s)
φ(s)

+
φ′(s)
φ(s)

τ̃(s)
σ(s)

+
σ̃(s)
σ2(s)

=
σ̄(s)
σ2(s)

(11)

where
σ̄(s) = σ̃(s) + π2(s) + π(s)[τ̃(s)− σ′(s)] + π′(s)σ(s). (12)

Substituting the right-hand sides of Eq.(6) and Eq.(11) into Eq.(5), an equation of
hypergeometric-type is obtained as follows

y′′(s) + τ(s)
σ(s)

y′(s) + σ̄(s)
σ2(s)

y(s) = 0. (13)

As a consequence of the algebraic transformations mentioned above, the functional form of
Eq.(4) is protected in a systematic way. If the polynomial σ̄(s) in Eq.(13) is divisible by σ(s),
i.e.,

σ̄(s) = λσ(s), (14)

where λ is a constant, Eq.(13) is reduced to an equation of hypergeometric-type

σ(s)y′′(s) + τ(s)y′(s) + λy(s) = 0, (15)
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and so its solution is given as a function of hypergeometric-type. To determine the polynomial
π(s), Eq.(12) is compared with Eq.(14) and then a quadratic equation for π(s) is obtained as
follows,

π2(s) + π(s)[τ̃(s)− σ′(s)] + σ̃(s)− kσ(s) = 0, (16)

where
k = λ − π′(s). (17)

The solution of this quadratic equation for π(s) yields the following equality

π(s) =
σ′(s)− τ̃(s)

2
±

√(
σ′(s)− τ̃(s)

2

)2
− σ̃(s) + kσ(s). (18)

In order to obtain the possible solutions according to the plus and minus signs of Eq.(18),
the parameter k within the square root sign must be known explicitly. To provide this
requirement, the expression under the square root sign has to be the square of a polynomial,
since π(s) is a polynomial of degree at most one. In this case, an equation of the quadratic
form is available for the constant k. Setting the discriminant of this quadratic equal to zero, the
constant k is determined clearly. After determining k, the polynomial π(s) is obtained from
Eq.(18), and then τ(s) and λ are also obtained by using Eq.(8) and Eq.(17), respectively.
A common trend that has been followed to generalize the solutions of Eq.(15) is to show that
all the derivatives of hypergeometric-type functions are also of the hypergeometric-type. For
this purpose, Eq.(15) is differentiated by using the representation v1(s) = y′(s)

σ(s)v′′1 (s) + τ1(s)v′1(s) + μ1v1(s) = 0, (19)

where τ1(s) = τ(s)+ σ′(s) and μ1 = λ+ τ′(s). τ1(s) is a polynomial of degree at most one and
μ1 is a parameter that is independent of the variable s. It is clear that Eq.(19) is an equation of
hypergeometric-type. By taking v2(s) = y′′(s) as a new representation, the second derivative
of Eq.(15) becomes

σ(s)v′′2 (s) + τ2(s)v′2(s) + μ2v2(s) = 0, (20)

where
τ2(s) = τ1(s) + σ′(s) = τ(s) + 2σ′(s), (21)

μ2 = μ1 + τ′
1(s) = λ + 2τ′(s) + σ′′(s). (22)

In a similar way, an equation of hypergeometric-type can be constructed as a family of
particular solutions of Eq.(15) by taking vn(s) = y(n)(s);

σ(s)v′′n(s) + τn(s)v′n(s) + μnvn(s) = 0, (23)

and here the general recurrence relations for τn(s) and μn are found as follows, respectively,

τn(s) = τ(s) + nσ′(s), (24)

μn = λ + nτ′(s) + n(n − 1)
2

σ′′(s). (25)

When μn = 0, Eq.(25) becomes as follows

λn = −nτ′(s)− n(n − 1)
2

σ′′(s), (n = 0, 1, 2, . . .) (26)
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and then Eq.(23) has a particular solution of the form y(s) = yn(s) which is a polynomial of
degree n. To obtain an eigenvalue solution through the NU method, the relationship between
λ and λn must be set up by means of Eq.(17) and Eq.(26). yn(s) is the hypergeometric-type
function whose polynomial solutions are given by the Rodrigues relation

yn(s) =
Bn

ρ(s)
dn

dsn [σn(s)ρ(s)] , (27)

where Bn is a normalization constant and the weight function ρ(s) must satisfy the condition
below

(σ(s)ρ(s))′ = τ(s)ρ(s). (28)

It could be facilitative to introduce a "guide" to figure out the solution of SE in a faster way.
To obtain the unknown radial wavefunction R(r) and the energy eigenvalue E of the SE by
means of the NU method, let us look at the following guide in the ten-steps;
1) reduce the differential equation that satisfies the SE into the differential equation given in
Eq.(4),
2) compare each equations and determine the values of polynomials τ̃(s), σ(s) and σ̃(s). In
this stage, don’t forget to make some abbreviations in the original differential equation,
3) arrange the polynomial π(s) given in Eq.(18) by inserting the polynomials τ̃(s), σ(s) and
σ̃(s)we have found in the second stage and compose an equation of quadratic form under the
square root sign of the π(s),
4) set up the discriminant of this quadratic equal to zero, using the expression�= b2− 4ac = 0
and find two roots regarding with the k, i.e., k±,
5) substitute these values of k into the π(s) and obtain the four possible forms of π(s). Now
we have two forms of the π(s) for k+ and two forms for k−. At this stage one can ask a
question which of the four forms is physically valid.
6) try to find a negative derivative of the τ(s) given in Eq.(9) using the four forms of the π(s)
and keep this form to use it in the further stages because that would be physically valid.
7) recall Eq.(17) for λ and Eq.(26) for λn, and compare them with each other, i.e., λ = λn, and
so it would be energy spectrum.
8) insert the values of σ(s) and π(s) into Eq.(7), so the result would be the functional form of
φ(s),
9) satisfy Eq.(28) with the weight function ρ(s) and obtain the hypergeometric-type function
yn(s) which can be given by the Rodrigues relation in Eq.(27),
10) combine the φ(s) and the yn(s) to form the ψ(s), and so it would be the radial wavefunction
R(r).

3. The Schrödinger equation in spherical coordinates

Many of the potentials that are used together with the SE are the central potentials and
they are just the function of a distance between a particle and some point of origin. In
spherical coordinates, a point in space is defined in terms of its distance r from the origin
of the coordinate system and in terms of two angles, zenith angle θ and azimuthal angle
φ. Therefore, we can specify a single point of three-dimensional space using these triplets
(r, θ, φ). In order to define a unique set of spherical coordinates for each point, we have to
restrict their ranges. A common choice is r ≥ 0, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. At this section,
one could ask a question about why we need to take into account the spherical coordinate
to solve the SE for a particle subject to a potential function. For the realistic potentials in
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physics, as an answer, the SE in spherical coordinates can be solved by using the separation
of the wavefunction in terms of independent wavefunctions, i.e., Ψ(r, θ, φ) = R(r)Y(θ, φ).
The motion of a rotating molecule or of an electron moving around an atomic nucleus could
be better described in spherical coordinates by using only a single coordinate. For example,
the Coulomb potential that represents the electromagnetic interaction between an electron
and a proton can be written V(x, y, z) = −e‘2/

√
x2 + y2 + z2 in cartesian coordinate, where

e‘ = e/
√
4πε0, e is the elementary electric charge and ε0 is the electric permittivity of free

space. It might not straightforward to solve the SE with the potential V(x, y, z) because
the potential has there variables which are not separable in cartesian coordinate even if the
wavefunction became separable. Transformation to spherical coordinates from cartesian one
would be easier to solve the SE because in this case the potential V(x, y, z) would be turned
to V(r) = −e‘2/r which depends only on r. For this transformation, we used the conversion
r =

√
x2 + y2 + z2. Further, the variables (x, y, z) in cartesian coordinate could be related to

the variables (r, θ, φ) in spherical coordinates as follows;

x = rsinθcosφ, y = rsinθsinφ, z = rcosθ, θ = cos−1
( z

r

)
. φ = tan−1

( y
x

)
. (29)

Now let us look at the separable variables in spherical coordinates. Keeping in mind the SE
given in Eq.(2), we will use the relation of∇2 in spherical coordinates as we develop the SE in
the same coordinate. So, the SE may be written as[
− h̄2

2μ

(
1
r2

∂

∂r

(
r2

∂

∂r

)
+

1
r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
r2sin2θ

∂2

∂φ2

)
+ V(r)

]
Ψ(r, θ, φ) = EΨ(r, θ, φ),

(30)
where the ∇2 is given in spherical coordinates

∇2 =
1
r2

∂

∂r

(
r2

∂

∂r

)
+

1
r2sinθ

∂

∂θ

(
sinθ

∂

∂θ

)
+

1
r2sin2θ

∂2

∂φ2 . (31)

The potential we are interesting is central because it only depends on the distance r from the
origin and we look for separable solution of the SE;

Ψ(r, θ, φ) = R(r)Y(θ, φ). (32)

Using the assumed form of Ψ(r, θ, φ), we may write the SE as

1
R(r)

d
dr

(
r2

dR(r)
dr

)
+
2μ

h̄2
r2(E−V(r)) =− 1

Y(θ, φ)

[
1

sinθ

∂

∂θ

(
sinθ

∂Y(θ, φ)
∂θ

)
+

1
sin2θ

∂2Y(θ, φ)
∂φ2

]
.

(33)
The two sides of this equation depend on different variables and so they can equal each other
only if they are equal to a constant L. Therefore, the following two equations have to be true
simultaneously

1
r2

d
dr

(
r2

dR(r)
dr

)
+

[
2μ

h̄2
(E − V(r))− L

r2

]
R(r) = 0, (34)

1
sinθ

∂

∂θ

(
sinθ

∂Y(θ, φ)
∂θ

)
+

1
sin2θ

∂2Y(θ, φ)
∂φ2 + LY(θ, φ) = 0. (35)

Now, we have two different equations and we can deal with each separately because only
radial variables come into Eq.(34) and only angular variables come into Eq.(35). The solution
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of the angular part given in Eq.(35) is straightforward because this part hasn‘t a potential or an
energy term and so we can again attempt the method of separation of variables by assuming
that the angular function Y(θ, φ) = Θ(θ)Φ(φ). It should be noted that Eq.(35) is separable by
inserting Y(θ, φ) = Θ(θ)Φ(φ). Θ(θ) and Φ(φ) satisfy the differential equations as follows

1
sinθ

d
dθ

(
sinθ

dΘ(θ)

dθ

)
+

(
L − m2

sin2θ

)
Θ(θ) = 0, (36)

1
Φ(φ)

d2Φ(φ)

dφ2 = −m2. (37)

We definitely know that someone can solve these equations easily. There is no need for us
to "reinvent the wheel" here. Therefore we will not give general solutions of these equations
but we will just mention about their results that are related with the L and m, and discuss
their physical significance. Based on the physically acceptable solution of the equation that
depends on the variable φ, we can say that the separable constant m must be a positive or
negative integer, i.e., m = 0,±1,±2, .... The constant m is also known the magnetic quantum
number. If we return to the more difficult equation that depends on the variable θ, we can
rewrite Eq.(36) by a change of variables ω = cosθ. The equation with the function Θ(θ)
becomes

d
dω

[
(1− ω2)

dP(ω)

dω

]
+

(
L − m2

1− ω2

)
P(ω) = 0, (38)

where P(ω) is the Legendre polynomial. Generally Eq.(38) has two independent solutions that
became infinite for ω = ±1. However, the wavefunctions that satisfy the boundary conditions
in Eq.(38) are finite and single-valued everywhere spatially because we are studying the
bound-state solutions of the SE. Nevertheless, if the constant L is of the form

L = �(�+ 1), (39)

where the � is introduced as the orbital quantum number and the values of � are equal to;

� = 0, 1, 2, 3, .... (40)

For these values of �, one of the solutions can be finite for all values of ω. In the definition of
the associate Legendre function, the magnitude of the magnetic quantum number m must be
limited to values less than or equal to � because the Legendre polynomials are polynomials of
order �;

| m |= 0, 1, 2, 3, ... ≤ �. (41)

On the other hand, there are (2� + 1) allowed values for m, i.e., −� � m � �. Substituting
L = �(�+ 1) into Eq.(34) shows that the radial wavefunction R(r) and the eigenvalue E of the
SE depend on the quantum number � and satisfy the equation;

d2R(r)
dr2

+
2
r

dR(r)
dr

+
2μ

h̄2

[
E − V(r)− h̄2�(�+ 1)

2μr2

]
R(r) = 0, (42)

This equation can be figured an ordinary differential equation with variable coefficient and
can be solved by the standard methods which have been already given in quantummechanics
text books (Flügge, 1971). However, the analytical solution of Eq.(42) would be definitely
depended on the potential function V(r).
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4. Application of the Nikiforov-Uvarov method

4.1 Harmonic oscillator potential
The harmonic motion of a physical system means that it oscillates around a mean value
at one or more characteristic frequencies. Such a system describes the motion of a bound
particle in a potential well that increases quadratically with the distance from the minimum
of the potential well. For example, pulling a particle subject to the end of a spring from its
equilibrium position results in a contrary force pushing back toward the equilibrium position.
Letting the particle go back from a position of tension results in a harmonic motion of the
particle, so the particle is now a harmonic oscillator. As such, the harmonic oscillator is
a model for many physical systems whose natural motions are described by the harmonic
oscillator equation, such as the vibrational motion of molecules, acoustic vibration of solid,
electromagnetic waves, etc.
The conventional way to deal with the harmonic oscillator problem is to obtain the energy
eigenvalues and eigenfunctions of the Hamiltonian by solving the SE given in the form of
Eq.(42). Now we will consider the solution of the SE for the three dimensional harmonic
oscillator in spherical coordinates. Thus, in three dimensions and spherical coordinates, the
SE is written as follows,

d2R(r)
dr2

+
2
r

dR(r)
dr

+
2μ

h̄2

[
E − 1

2
μω2r2 − h̄2�(�+ 1)

2μr2

]
R(r) = 0. (43)

where V(r) = 1
2μω2r2 is the harmonic oscillator potential and ω is the angular frequency

of the oscillator. The method used for solving such a differential equation with a variable
coefficient is to expend the solution in a power series of the independent variable r and then
find the recursion relationship for all the expansion coefficient. However, this method has
been already applied to the solution of Eq.(43) in the past and the solution are well known
after so many solution step. "Please don‘t panic"; because we don‘t need to barge into the
power series solution of this equation. We will follow a pretty well organized method that is
termed the NU method.
Let us apply the NU method to solve Eq.(43). To begin the solution we have to get an
equivalent equation with the equation given in Eq.(4) that is a key introduction to the NU
method (see (Büyükkilic et al., 1997), for a more detailed solution and explanations). It could
be written an unknown radial function R(r) = U(r)/r to reduce Eq.(43) into Eq.(4). The radial
equation becomes

d2U(r)
dr2

+
2μ

h̄2

[
E − 1

2
μω2r2 − h̄2�(�+ 1)

2μr2

]
U(r) = 0, (44)

where we used the derivatives

dR(r)
dr

=
1
r

dU(r)
dr

− U(r)
r2

, r2
dR(r)

dr
= r

dU(r)
dr

− U(r),
d
dr

(
r2

dR(r)
dr

)
= r

d2U(r)
dr2

. (45)

To make this more manageable mathematically, it would be convenient to introduce
dimensionless variables

r = αζ, α =

√
hbar
μω

, ε =
E

h̄ω
, (46)
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and to use the following derivatives

d
dr

=
dζ

dr
d

dζ
,

d2

dr2
=

1
α2

d2

dζ2
. (47)

Putting these into Eq.(44), we have

d2U(ζ)

dζ2
+

(
2ε − �(�+ 1)

ζ2
− ζ2

)
U(ζ) = 0. (48)

By performing transformations ζ2 = s and U(ζ) → ψ(s) in Eq.(48), we can rewrite it in terms
of s and so we can get an equation that would be comparable with Eq.(4);

d2ψ(s)
ds2

+
1
2s

dψ(s)
ds

+
(−s2 + β2s − �(�+ 1))

4s2
ψ(s) = 0, (49)

where the variable s is in the range of 0 ≤ s ≤ ∞. Furthermore we used the derivative and
definition, respectively;

d2U(ζ)

dζ2
= 4s

d2ψ(s)
ds2

+ 2
dψ(s)

ds
, (50)

β2 = 2ε. (51)

A comparison of Eq.(49) with Eq.(4) identifies the relevant polynomials as follows

τ̃ = 1, σ(s) = 2s, σ̃ = −s2 + β2s − �(�+ 1)). (52)

Inserting the polynomials given by Eq.(52) into Eq.(18) gives the polynomial π(s):

π(s) =
1
2
±

√
s2 + (2k − β2)s + �(�+ 1) + 1/4. (53)

The equation of quadratic form under the square root sign of Eq.(53) must be solved by setting
the discriminant of this quadratic equal to zero, i.e.,	 = b2− 4ac = 0. This discriminant gives
a new quadratic equation which can be solved for the constant k to obtain the two roots;

	 = (2k − β2)2 − 4
(
�(�+ 1) +

1
4

)
= 0, (54)

k2 − kβ2 +
β4

4
−

(
�(�+ 1) +

1
4

)
= 0, (55)

k± =
β2 ±√

1+ 4�(�+ 1)
2

. (56)

When the two values of k given in Eq.(56) are substituted into Eq.(53), the four possible forms
of π(s) are obtained as

π(s) =
1
2
±

⎧⎪⎪⎨
⎪⎪⎩

s +
√

1+4�(�+1)
2 , for k+ =

β2+
√

1+4�(�+1)
2

s −
√

1+4�(�+1)
2 , for k− =

β2−
√

1+4�(�+1)
2 .

(57)
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One of the four values of the polynomial π(s) is just proper to obtain the bound-state solution
because τ(s) given by Eq.(9) has a zero and a negative derivative for this value of π(s) in
the interval (0,∞) (Büyükkilic et al., 1997). Therefore, the most suitable expression of π(s) is
chosen as

π(s) =
1
2
− s +

√
1+ 4�(�+ 1)

2
, (58)

for k− =
(

β2 −√
1+ 4�(�+ 1)

)
/2. By using π(s) given in Eq.(53) and remembering τ̃ = 1,

we can obtain the expression τ(s) = τ̃ + 2π(s) that is introduced in Eq.(9),

τ(s) = 2+
√
1+ 4�(�+ 1)− 2s, (59)

and the derivative of this expression would be negative, i.e., τ‘(s) = −2 < 0, where
τ‘(s) represents the derivative of τ(s). The expressions λ = k− + π‘(s) in Eq.(17) and
λn = −nτ‘(s)− n(n − 1)σ“(s)/2 in Eq.(26) are obtained as follows

λ =
β2 −√

1+ 4�(�+ 1)
2

− 1, (60)

λn = 2n. (61)

When we compare these expressions, λ = λn, we can obtain the energy of the harmonic
oscillator,

β2 −√
1+ 4�(�+ 1)
2

− 1 = 2n, (62)

E
h̄ω

= 2n + �+
3
2
, (63)

E =

(
2n + �+

3
2

)
h̄ω, (64)

recalling β2 = 2ε = 2E/h̄ω. Here n is the number of nodes of the radial wave functions and
if we define np = 2n + � as the principal quantum number, Eq.(25) is written as

Enp =

(
np +

3
2

)
h̄ω, (65)

where np = 0, 1, 2, 3, .... We inserted the quantum number np into Eq.(26) because the
harmonic oscillator‘s energy is usually described by the single quantum number, i.e., np ≡
2n + �. n is a non-negative integer, for every even n we have � = 0, 2, ..., n − 2, n and for every
odd n we have � = 1, 3, ..., n − 2, n. So for every n and � there are 2�+ 1 different quantum
states, labeled by m that is an integer satisfying −� ≤ m ≤ �. Thus, the degeneracy at level n
is ∑�=...,n−2,n(2�+ 1) = (n+1)(n+2)

2 , where the sum starts from 0 or 1, according to whether n
is even or odd.
Let us turn to the calculation of the wavefunction ψ(s). If we remember the definition of the
ψ(s) that is given in Section 2, i.e., ψ(s) = φ(s)yn(s), we can see that we have to calculate
the polynomials φ(s) and yn(s). By inserting the values of σ(s) and π(s) given in Eq.(52) and
Eq.(53) into Eq.(7), one can find the first part of the ψ(s) as

φ‘(s)
φ(s)

=
dφ(s)
d(s)

1
φ(s)

=

(
1+

√
1+ 4�(�+ 1)

)
/2− s

2s
, (66)
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dφ(s)
d(s)

1
φ(s)

=
δ1
s
− 1

2
, (67)

∫ dφ(s)
φ(s)

=
∫ (

δ1
s
− 1

2

)
ds, (68)

logφ(s) = δ1logs − s/2, (69)

φ(s) = sδ1 e−s/2, (70)

where δ1 =
(
1+

√
1+ 4�(�+ 1)

)
/4 = (�+ 1)/2. On the other hand, to find a solution for

yn(s) we should first obtain the weight function ρ(s) which is already inserted into Eq.(28).
The weight function ρ(s) given in Eq.(28) can be written in a simple form and obtained as

dρ(s)
d(s)

1
ρ(s)

=
τ(s)− σ‘(s)

σ(s)
=

2+
√
1+ 4�(�+ 1)− 2s − 2

2s
, (71)

dρ(s)
d(s)

1
ρ(s)

=

√
1+ 4�(�+ 1)/2

s
− 1, (72)

∫ dρ(s)
ρ(s)

=
∫ (

δ2
s
− 1

)
ds, (73)

logρ(s) = δ2logs − s, (74)

ρ(s) = sδ2 e−s, (75)

where δ2 =
√
1+ 4�(�+ 1)/2 = � + 1/2. Substituting ρ(s) into Eq.(27) allows us to obtain

the polynomial yn(s) as follows

yn(s) = Bn2nessδ2 dn

dsn

(
e−ssn+δ2

)
. (76)

If we recall the Rodrigues‘ formula of the associated Laguerre polynomials

Lδ2
n (s) =

1
n!

essδ2 dn

dsn

(
e−ssn+δ2

)
, (77)

Eq.(76) and Eq.(77) will yield yn(s) ≡ Lδ2
n (s), where 1/n! = Bn2n. By using ψ(s) = φ(s)yn(s),

we have
ψ(s) = Nn�sδ1 e−s/2Lδ2

n (s). (78)

where Nn� is a normalization constant. It would be useful to keep inmind that the relationship
between the ψ(s) and the R(r) is ψ(s) ≡ rR(r) with the transformations r = αζ and ζ2 = s.

4.2 Coulomb potential
As another illustration of the application of the NU method, we will take up the Coulomb
potential which concerns an electron of charge −e moving in the Coulomb electrostatic field
of the nucleus. If nucleus is proton of positive charge e, the problem studied is that of the
hydrogen atom that is a real physical system in three dimensions. So, the hydrogen atom
consists of an electron moving in a spherical potential well due to the Coulomb attraction of
the proton. This two-particle system (electron and proton) can be converted into a one-particle
system by considering the motion of the electron relative to that of the proton in the center-
of-mass frame of the two particles according to the principles of classical mechanics. In this

236 Theoretical Concepts of Quantum Mechanics



Application of the Nikiforov-Uvarov Method in Quantum Mechanics 13

frame, we can replace the electron of mass by a particle of reduced mass μ moving relatively
to a proton. If we have a system which consist of one electron and a nucleus of charge Ze,
Z being the atomic number, we can consider a slightly more general problem, known as a
hydrogen-like atom. For Z = 1, we have hydrogen atom; for Z = 2, the He+ ion; for Z = 3,
the Li+ ion and so on. This means that the hydrogen-like atom would be an ionized atom.
The potential energy V(r) of the electron due to the Coulomb attraction of the nucleus is

V(r) = −Ze‘2

r
(79)

where e‘ = e/
√
4πε0. The corresponding SE for the Coulomb potential given in Eq.(79) satisfy

d2R(r)
dr2

+
2
r

dR(r)
dr

+
2μ

h̄2

[
E +

Ze‘2

r
− h̄2�(�+ 1)

2μr2

]
R(r) = 0. (80)

To save time in writing, we define the constants as follows

a = h̄2/μe‘2 = 4πε0h̄2/μe2 (81)

and so Eq.(80) becomes

d2R(r)
dr2

+
2
r

dR(r)
dr

+
2μ

h̄2

[
2E
ae‘2

+
2Z
ar

− �(�+ 1)
r2

]
R(r) = 0. (82)

Now let us explicitly solve for the problem of the hydrogen-like atom using the NU method.
To make our mathematics comparable with Eq.(4), we choice a function in the form of R(r) ≡
ψ(s), where the transformation r → s is valid. With this choice we obtain the convenient
simplification of the radial equation given in Eq.(82);

d2ψ(s)
ds2

+
2
s

dψ(s)
ds

+
1
s2

[
−αs2 + βs − γ

]
ψ(s) = 0. (83)

where the reduced quantities are given as

α = −2E/ae‘2, β = 2Z/a, γ = �(�+ 1). (84)

We restrict ourselves to bound states of negative energy E. This means that the parameter
α is positive. Eq.(83) is now comparable with Eq.(4) and then the following expressions are
obtained;

τ̃ = 2, σ(s) = s, σ̃ = −αs2 + βs − γ. (85)

We are able to find four possible solutions of the polynomial π(s) as follows. To do that we
insert the polynomials given by Eq.(85) into Eq.(18) and hence the polynomial π(s) is obtained
in terms of k;

π(s) = −1
2
± 1

2

√
4αs2 + (k − β)s + 1+ 4γ. (86)

The equation of quadratic form under the square root sign of Eq.(86) must be solved by setting
the discriminant of this quadratic equal to zero, i.e.,	 = b2− 4ac = 0. This discriminant gives
a new quadratic equation which can be solved for the constant k to obtain the two roots;

	 = 16(k − β)2 − 16α (1+ 4γ) = 0, (87)
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k2 − 2kβ + β2 − α (1+ 4γ) = 0, (88)

k± = β ±
√

α(1+ 4γ). (89)

When the two values of k given in Eq.(89) are substituted into Eq.(86), the four possible forms
of π(s) are obtained as

π(s) = −1
2
± 1

2

⎧⎨
⎩

(
2
√

αs +
√
1+ 4γ

)
, for k+ = β +

√
α(1+ 4γ)

(
2
√

αs −√
1+ 4γ

)
, for k− = β −√

α(1+ 4γ).
(90)

In order to make the derivative of the polynomial τ(s) to be negative, we must select the most
suitable form of the polynomial π(s). Therefore, the most suitable expression of π(s) is chosen
as

π(s) = −1
2
− 1

2

(
2
√

αs −√
1+ 4γ

)
(91)

for k− = β − √
α(1+ 4γ). By using π(s) given in Eq.(91) and remembering τ̃ = 2, we can

obtain the expression τ(s),
τ(s) = 1+

√
1+ 4γ − 2

√
αs, (92)

and the derivative of this expression would be negative, i.e., τ‘(s) = −2
√

α < 0. The
expressions λ = k− + π‘(s) in Eq.(17) and λn = −nτ‘(s) − n(n − 1)σ“(s)/2 in Eq.(26) are
obtained as follows

λ = β −
√

α(1+ 4γ)−√
α, (93)

λn = 2n
√

α, (94)

When we compare these expressions, λ = λn, we can obtain the energy of the hydrogen-like
atom,

β −
√

α(1+ 4γ)−√
α = 2n

√
α, (95)

√
α
(
1+ 2n +

√
1+ 4γ

)
= β, (96)

α =
β2(

1+ 2n +
√
1+ 4γ

)2 , (97)

− 2E
ae‘2

=
(2Z/a)2(

1+ 2n +
√
1+ 4�(�+ 1)

)2 , (98)

E = − Z2μe‘4

2h̄2(1+ n + �)2
, (99)

recalling the quantities given in Eq.(84). Here n (n = 0, 1, 2, 3, ...) and � are integers and we
now define a new integer np, called the principle quantum number, by

np ≡ n + �+ 1, np = 1, 2, 3, .... (100)

The quantum number � must satisfy � ≤ np − 1 and hence it ranges from 0 to np − 1. So
Eq.(99) becomes

Enp = −Z2μe‘4

2n2ph̄2
, (101)
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This expression represents the bound-state energy levels of the hydrogen-like atom, and the
levels are discrete.
Let us now find the corresponding eigenfunctions for the radial equation. The polynomial
solution of the hypergeometric-type function yn(s) depends on the determination of the
weight function ρ(s). Thus, using equation Eq.(7), we obtain

φ‘(s)
φ(s)

=
dφ(s)
d(s)

1
φ(s)

=
− 1

2 − 1
2 (2

√
αs −√

1+ 4γ)

s
, (102)

dφ(s)
d(s)

1
φ(s)

=
−1+

√
1+ 4γ

2s
−√

α, (103)

∫ dφ(s)
φ(s)

=
∫ (−1+

√
1+ 4γ

2s
−√

α

)
ds, (104)

logφ(s) =
−1+

√
1+ 4γ

2
logs −√

αs, (105)

φ(s) = s
−1+

√
1+4γ

2 e−
√

αs, (106)

φ(s) = s�e−
√

αs. (107)

where
√
1+ 4γ =

√
1+ 4�(�+ 1) = 2(�+ 1/2) and

√
α = Zμe‘2/h̄2np. On the other hand,

to find a solution for yn(s) we should first obtain the weight function ρ(s) which is already
inserted into Eq.(28). The weight function ρ(s) given in Eq.(28) can be written in a simple form
and obtained as

dρ(s)
d(s)

1
ρ(s)

=
τ(s)− σ‘(s)

σ(s)
=

1+
√
1+ 4γ − 2

√
αs − 1

s
, (108)

dρ(s)
d(s)

1
ρ(s)

=

√
1+ 4γ

s
− 2

√
α, (109)

∫ dρ(s)
ρ(s)

=
∫ (√

1+ 4γ

s
− 2

√
α

)
ds, (110)

logρ(s) =
√
1+ 4γlogs − 2

√
αs, (111)

ρ(s) = s
√
1+4γe−2

√
αs. (112)

Substituting ρ(s) into Eq.(27) allows us to obtain the polynomial yn(s) as follows

yn(s) = Bne2
√

αss−
√
1+4γ dn

dsn

(
e−2

√
αssn+

√
1+4γ

)
. (113)

It is shown from the Rodrigues‘ formula of the associated Laguerre polynomials

L2�+1
n (2

√
αs) =

1
n!

e2
√

αss−(2�+1) dn

dsn

(
e−2

√
αssn+2�+1

)
(114)

where 1/n! = Bn. Eq.(76) and Eq.(77) yield yn(s) ≡ L2�+1
n (2

√
αs). By using ψ(s) = φ(s)yn(s),

we have
ψ(s) = Nn�s�e−

√
αsL2�+1

n (2
√

αs). (115)

where Nn� is a normalization constant and the ψ(s) represents the radial wavefunction R(r)
through the transformation s → r.
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4.3 Kratzer potential
The Kratzer potential (Kratzer, 1920), which was named in B. Adolf Kratzer’s honor, is
one of the widely used potential models in molecular physics and chemistry. The model
potential means that we can describe molecular structures and interactions by using analytical
and computational methods. These methods which are used in the fields of computational
and materials science have been developing for studying molecular systems ranging from
small molecules (or a set of interacting molecules like clusters) to large material assemblies.
However, the advancing of studies not only depends on the super-computers in modern-day
science but also needs computational methods such as ab initio and semi-empirical methods
which present complementary advantages (Herzberg, 1950).
The simplest calculations can be performed by hand, but inevitably computers are required
to perform molecular modelling of any reasonably sized system. The common feature of
molecular modeling techniques is the atomistic level description of the molecular systems; the
lowest level of information is individual atoms (or a small group of atoms). This is in contrast
to quantum chemistry (also known as electronic structure calculations) where electrons are
considered explicitly. The benefit of molecular modeling is that it reduces the complexity of
the system, allowing many more particles (atoms) to be considered during simulations.
Supposed that we have a model potential that is known in the form of the Kratzer potential
as follows

V(r) = A − B
r
+

C
r2
, (116)

where the parameters A, B and C are constants which are related with the Kratzer potential.
If we set up the constants A and C to zero, i.e., A = 0 and C = 0, Eq.(116) can be presented
in the form of Coulomb potential V(r) = −Ze′2/r2, where B = Ze′2 and e′ = e/

√
4πε0. The

solution of the Coulomb potential in the framework of the SE is already given in the previous
subsection. So it could be said that the Coulomb potential is a special form of the so-called
Kratzer potential. If we re-arrange the potential’s parameters A = De, B = 2Dere and C =

Der2e , Eq.(116) turns to the modified Kratzer potential, i.e., V(r) = De ((r − re)/r)2 Berkdemir
et al (2006). The dissociation energy, De, is the vertical distance between the dissociation limit
and the minimum point of the potential curve, which is found at the equilibrium inter-atomic
separation r = re. If the potential curve flattens out at the large inter-atomic distance, i.e,
r → ∞, it is named the dissociation limit. At this limit the potential curve converges to zero,
i.e., V(∞) = 0. So the dissociation energy is defined V(re) − V(∞) = −De. It would be
meaningful to explain the word "modified". It is not "amazing" to include the "modified"
into the Kratzer potential because the modified Kratzer potential represents the Kratzer-Fues

potential setting up A = 0, i.e., V(r) = De

[
((r − re)/r)2 − 1

]
, which is shifted in amount of

De (Fues, 1926; Pliva, 1999).
Let us try to solve the SE with the potential given by Eq.(116). Substitution of the potential
V(r) = A − B/r + C/r2 into Eq.(42) allows us to write down the SE;

d2R(r)
dr2

+
2
r

dR(r)
dr

+
2μ

h̄2

(
E −

[
A − B

r
+

C
r2

]
− h̄2�(�+ 1)

2μr2

)
R(r) = 0. (117)

In order to make further arrangements, we can rewrite the above equation as follows;

d2R(r)
dr2

+
2
r

dR(r)
dr

+
1
r2

[
2μ(E − A)

h̄2
r2 +

2μB
h̄2

r −
(
2μC
h̄2

+ �(�+ 1)
)]

R(r) = 0. (118)
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For the sake of simplicity, it is convenient to introduce arbitrary parameters;

α = −2μ(E − A)

h̄2
,

β =
2μB
h̄2

,

γ =
2μC
h̄2

+ �(�+ 1),

(119)

with α > 0 means that we are dealing with the bound state energy solutions, assuming |E| <
A, β > 0 and γ > 0. In particular, from Eqs. (118) and (119) it follows:

d2ψ(s)
ds2

+
2
s

dψ(s)
ds

+
1
s2

(
−αs2 + βs − γ

)
ψ(s) = 0, (120)

which is expressed in terms of the functional R(r) ≡ ψ(s) and the variable r → s. In order to
apply the NUmethod, it is necessary to compare Eq.(120) with the differential equation given
in Eq.(4). A simple comparison reveals that the relevant polynomials τ̃(s), σ(s) and σ̃(s) are
the same with Eq.(85), i.e.;

τ̃ = 2,

σ(s) = s,

σ̃ = −αs2 + βs − γ.

(121)

This means that we don’t need further calculations up to Eq.(97). Let us recall Eq.(97) for the
bound state energy solution,

α =
β2(

1+ 2n +
√
1+ 4γ

)2 , (122)

and keeping the values of arbitrary parameters α, β and γ given by Eq.(119) in our mind,

− 2μ(E − A)

h̄2
=

(
2μB
h̄2

)2
(
1+ 2n +

√
1+ 4

(
2μC
h̄2

+ �(�+ 1)
))2 , (123)

E = A − h̄2

2μ

⎡
⎣(

2μB
h̄2

)2
(
1+ 2n +

√
1+ 4

(
2μC
h̄2

+ �(�+ 1)
) )−2⎤⎦ , (124)

E = A −
μB2

2h̄2(
n + 1

2 +

√
2μC
h̄2

+
(
�+ 1

2

)2)2 . (125)

This expression indicates that we have a solution of the bound state energy spectrum for a
family of the Kratzer potential. Of course, it is clear that by imposing appropriate values of
the parameters A, B and C, the bound state energy spectrum for a particle in the modified
Kratzer potential can be calculated immediately.
As an analogy, if we set up the parameters A = 0, B = Ze′2 and C = 0, it is easy to
demonstrate that Eq.(125) reduces to the bound state energy spectrum of a particle in the
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Coulomb potential, i.e., Enp = −Z2μe′4/2n2ph̄2, where np ≡ n + �+ 1. The principal quantum
number np ranges from 1 to infinite. Thus the particle that is in the Coulomb potential will
have the quantize energy levels due to the np. If we assume that the particle is an electron
that is bound to the nucleus in a hydrogen-like atom, the electron energy would be negative
relative to that of a free electron. Moreover, the electron would be confined within the
Coulomb potential well owing to the presence of the positively charged nucleus. Numerically,
the ground-state (np = 1) energy E1 of the hydrogen atom (Z = 1) is -13.6 eV below the
ionization limit E∞ = 0 for the state np = ∞. In other words, the minimum amount of energy
required to release the electron from a hydrogen atom is -13.6 eV that is the ground state
energy of electron in the Coulomb potential. The electron can remain in this stationary ground
state forever because it is stable and the electron never collapses into the nucleus. If we apply
our knowledge of classical mechanics, we can see that this information is not correct. But
quantum mechanically it is. Why these results are not compatible with each other? Readers
are strongly encouraged to discuss the reason.
Another analogy is to be on the Kratzer potential. When we take A = 0, B = 2Dere and
C = Der2e , Eq.(125) turns to the bound state energy spectrum of a vibrating-rotating diatomic
molecule subject to the Kratzer potential as follows

E = −
2μD2

e r2e
h̄2(

n + 1
2 +

√
2μDer2e

h̄2
+

(
�+ 1

2

)2)2 . (126)

Although this result came from an exact solution of the SE for the energy levels, it has not been
properly used by spectroscopists because the Kratzer potential supports an infinite number of
vibrational and rotational levels which is not related with the actual diatomic molecules. To
see this number we can get the derivative of Eq.(126) according to n that gives the maximum
vibrational quantum number nmax in the case of Kratzer potential (Berkdemir et al, 2006;
Berkdemir & Sever, 2009);

dE
dn

=

4μD2
e r2e

h̄2(
n + 1

2 +

√
2μDer2e

h̄2
+

(
�+ 1

2

)2)3 = 0, (127)

n → nmax = ∞. (128)

If we take the derivative of Eq.(126) with respect to �, we can reach the maximum rotational
quantum number, i.e., �max = ∞. As a main conclusion of these results, the Kratzer potential
(or the modified Kratzer potential with A = De) does not describe the spectrum of a
vibrating-rotating diatomicmolecule correctly. Tomake sure about this knowledge the readers
should be applied the selection rules to diatomic molecules by means of Eq.(126) (Fues, 1926).
They will probably recognize that the spectrum that is obtained from Eq.(126) would be far
away the spectroscopic results (Fernandez, 2011).
Let us now find the corresponding eigenfunctions for the Kratzer potential. According to the
NU method, the wavefunction ψ(s) is defined in terms of the separable functions φ(s) and
yn(s). For the φ(s), we have

φ(s) = s
−1+

√
1+4γ

2 e−
√

αs, (129)
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where γ =
2μC
h̄2

+ �(� + 1) and α = − 2μ(E−A)

h̄2
. The polynomial solution of the

hypergeometric-type function yn(s) depends on the determination of the weight function
ρ(s) which must satisfy the condition (σ(s)ρ(s))′ = τ(s)ρ(s). Thus, ρ(s) can be calculated
by falling back on Eq.(121) and Eq.(92);

ρ(s) = s
√
1+4γe−2

√
αs. (130)

Substituting Eq.(130) into the Rodrigues’ formula given by Eq.(27), the hypergeometric-type
function yn(s) is obtained in the following form

yn(s) = Bne2
√

αss−
√
1+4γ dn

dsn

(
e−2

√
αssn+

√
1+4γ

)
. (131)

It is shown from the Rodrigues‘ formula of the associated Laguerre polynomials

L
√
1+4γ

n (2
√

αs) =
1
n!

e2
√

αss−
√
1+4γ dn

dsn

(
e−2

√
αssn+

√
1+4γ

)
(132)

where 1/n! = Bn. Eq.(131) and Eq.(132) yield yn(s) ≡ L
√
1+4γ

n (2
√

αs). By using ψ(s) =
φ(s)yn(s), we have

ψ(s) = Nn�s
−1+

√
1+4γ

2 e−
√

αsL
√
1+4γ

n (2
√

αs). (133)
where Nn� is the normalization constant.

4.4 Morse potential
The Morse potential (Morse, 1920), named after physicist Philip M. Morse, is one of the
convenientmodels for the potential energy of a diatomicmolecule. It is a better approximation
for the vibrational structure of a molecule than the harmonic oscillator model because it
explicitly includes the effects of bond breaking, such as the existence of unbound states. For
a diatomic molecular system with reduced mass μ, the Morse potential (Morse, 1920) can be
written as

V(r) = De[e−2a(r−re) − 2e−a(r−re)] (De > 0, a > 0, re > 0), (134)
where De is the dissociation energy, re is the equilibrium internuclear distance and a is a
parameter controlling thewidth of the potential well. If anyonewants tomodify this potential,
shifting through the positive axis, it would be quite enough to insert an additional De into the
potential. So the potential would be called the "modified" Morse potential. In an obvious
manner, the word "modified" is not an "amazing" greatly. The vibrations and rotations of a
two-atomic molecule can be exactly described by this potential in the case of � = 0 (Flügge,
1971). If we want to obtain the solution for � 
= 0, the centrifugal term has to be approximated
to the Morse potential. In order to calculate the bound state energy spectrum and the
corresponding radial wavefunction, the potential function given by Eq.(134) is inserted into
the radial SE

d2R(r)
dr2

+
2
r

dR(r)
dr

+
2μ

h̄2

[
E − De[e−2a(r−re) − 2e−a(r−re)]− h̄2�(�+ 1)

2μr2

]
R(r) = 0, (135)

where n and � can be defined the vibrational and rotational quantum numbers, respectively,
and E is the appropriate energy (Berkdemir & Han, 2005; Zuniga et al., 2008). With a
transformation from R(r) to U(r)/r, Eq.(135) turns into the following one;

d2U(r)
dr2

+
2μ

h̄2

[
E − De[e−2a(r−re) − 2e−a(r−re)]− h̄2�(�+ 1)

2μr2

]
U(r) = 0. (136)
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An analytical solution of this differential equation can not be obtained without an
approximation because Eq.(136) includes both exponential and radial terms. For this
reason, we outline a procedure given by Pekeris (Flügge, 1971; Pekeris, 1934) to suggest an
approximation to the solution of SE given in Eq.(136).
The approximation is based on the expansion of the centrifugal term in a series of exponential
depending on the internuclear distance, keeping terms up to second order. In this way,
the centrifugal term can be rearranged by keeping the parameters in the Morse potential.
However, by construction, this approximation is valid only for the low vibrational energy
states. Therefore, we can take into account the rotational term in the following way, using
the Pekeris approximation. We first simplify the centrifugal part of Eq.(136) by changing the
coordinates x = (r − re)/re around x = 0. Hence, it may be expanded into a series of powers
as

Vrot(x) =
η

(1+ x)2
= η(1− 2x + 3x2 − 4x3 + ...), (137)

with

η =
h̄2

2μ

�(�+ 1)
r2e

, (138)

the first few terms should be quite sufficient. Instead, we now replace the rotational term by
the potential

Ṽrot(x) = η
(

D0 + D1e−δx + D2e−2δx
)
, (139)

where δ = are and Di is the coefficients (i = 0, 1, 2). In this point, the expression of Eq.(139)
can be expanded up to the terms x3

Ṽrot(x)=η

(
D0+D1(1−δx+

δ2x2

2!
− δ3x3

3!
+ ...)+D2(1−2δx +

4δ2x2

2!
− 8δ3x3

3!
+...)

)
, (140)

Ṽrot(x)=η

(
D0+D1 + D2−x(D1δ+2D2δ)+x2(D1

δ2

2
+2D2δ2)−x3(D1

δ3

6
+D2

4δ3

3
)+...

)
.

(141)
Combining equal powers of Eqs.(137) and (141) we obtain the relations between the
coefficients and the parameter δ as follows

D0 = 1− 3
δ
+

3
δ2

D1 =
4
δ
− 6

δ2

D2 = −1
δ
+

3
δ2
. (142)

We now can take the potential Ṽrot instead of the true rotational potential Vrot and solve the
SE for � 
= 0 in Eq.(136).
In order to apply the NU method, we rewrite Eq.(136) by using a new variable of the form
s = e−δx and U(r) → ψ(s),

d2ψ(s)
ds2

+
1
s

dψ(s)
ds

+
2μr2e

h̄2δ2s2

[
(E − ηD0) + (2De − ηD1)s − (De + ηD2)s2

]
ψ(s) = 0. (143)
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By introducing the following dimensionless parameters

α = −2μr2e (Enl − ηD0)

h̄2δ2
,

β =
2μr2e (2De − ηD1)

h̄2δ2
,

γ =
2μr2e (De + ηD2)

h̄2δ2
,

(144)

which leads to the main equation defined in Eq.(4), we can rearrange the SE:

d2ψ

ds2
+

1
s

dψ

ds
+

1
s2

[
−γs2 + βs − α

]
ψ(s) = 0. (145)

After the comparison of Eq.(4) with Eq.(145), we obtain the corresponding polynomials as

∼
τ (s) = 1,

σ(s) = s,

∼
σ (s) = −γs2 + βs − α.

(146)

Substituting these polynomials into Eq.(18), we obtain the polynomial π(s);

π(s) = ±
√

γs2 + (k − β)s + α (147)

taking σ′(s) = 1. The discriminant of the upper expression under the square root has to be
zero. Hence, the expression becomes the square of a polynomial of first degree;

(k − β)2 − 4αβ = 0. (148)

When the required arrangements are prepared with respect to the constant k, its double roots
are derived as k± = β ± 2

√
αγ. Substituting k± into Eq.(147), the following four possible

forms of the π(s) are obtained

π(s) = ±
⎧⎨
⎩

(√
γs +

√
α
)
, for k+ = β + 2

√
αγ

(√
γs −√

α
)
, for k− = β − 2

√
αγ.

(149)

We just select one of four possible forms of the π(s), i.e, π(s) = − (√
γs −√

α
)
for k− =

β − 2
√

αγ, because it would be provided a negative derivative of τ(s) given in Eq.(9). Hence,
the τ(s) satisfies the requirement below

τ(s) = 1+ 2
√

α − 2
√

γ s,

τ′(s) = −2
√

γ < 0. (150)

From Eq.(17) we obtain
λ = β − 2

√
αγ −√

γ. (151)
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and from Eq.(26) we also get
λn = 2n

√
γ. (152)

It is seen that the parameter α has the following form

α =

[
β

2
√

γ
−

(
n +

1
2

)]2
, (153)

remembering the expression λ = λn. Substituting the values of α, β and γ into Eq.(153), we
can determine the energy spectrum E as

E =
h̄2�(�+ 1)

2μr2e

(
1− 3

are
+

3
a2r2e

)
− h̄2a2

2μ

[
β

2
√

γ
−

(
n +

1
2

)]2
, (154)

where
β

2
√

γ
=

1
a2
√

γ

[
2μDe

h̄2
− �(�+ 1)

r2e

(
2

are
− 3

a2r2e

)]
. (155)

The last equation indicates the energy spectrum of the Morse potential. The derivative of
this energy expression according to n gives an idea about the maximum vibrational quantum
number so that the result is nmax = β/2

√
γ − 1/2 (Berkdemir & Sever, 2009; Zhang et al.,

2011).
Let us now find the corresponding wavefunction of the Morse potential. A simple calculation
reveals that φ(s) can be calculated by recalling Eq.(7) and submitting the σ(s) = s and the
π(s) = − (√

γs −√
α
)
;

φ(s) = s
√

αe−
√

γ s, (156)

which is one of the separable parts of the wavefunction ψ(s) = φ(s)yn(s). The polynomial
solution of the hypergeometric-type function yn(s) depends on the determination of the
weight function ρ(s) ([σ(s)ρ(s)]′ = τ(s)ρ(s)). Thus, ρ(s) is calculated as

ρ(s) = s2
√

αe−2
√

γ s. (157)

Substituting Eq.(157) into the Rodrigues’ formula given in Eq.(27), the other separable part of
the wavefunction ψ(s) is given in the following form

yn(s) = Bns−2
√

αe2
√

γ s dn

dsn

[
s(n+2

√
α)e−2

√
γ s

]
. (158)

The polynomial solution of yn(s) in Eq.(158) is expressed in terms of the associated Laguerre
Polynomials, which is one of the orthogonal polynomials, that is

yn(s) ≡ L2
√

α
n (2

√
γ s). (159)

Combining the Laguerre polynomials and φ(s) in Eq.(155), the radial wavefunction are
constructed as

ψ(s) = Nn�s
√

αe−
√

αsL2
√

α
n (2

√
γ s), (160)

where Nn� is the normalization constant.
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4.5 Hulthen potential
One of the objects of this book chapter is to investigate the solution of the SE with the Hulthen
potential (Hulthen, 1942; Rosenfeld, 1948) that is given in the form;

V(r) = −K
κ

1
e

r
κ − 1

, (161)

where K and κ are the strength and the range parameter of the potential (on the other
word, 1/κ is known the screening parameter regarding with the potential), respectively.
The Hulthen potential has an attractive Coulombic behavior for small values of r with
respect to κ, i.e., r << κ. To see this behavior let us focus the exponential term of the
Hulthen potential. If the values of the radial variable r are smaller than those of the κ, the
exponential term could be expanded into the Taylor series (Abramowitz & Stegun, 1970),
i.e., e

r
κ = 1+ r/κ + 1

2! (r/κ)2 + 1
3! (r/κ)3 + ... and the higher order terms in the series could

be neglected according to the first two terms. So the exponential term is now expressed as
e

r
κ ≈ 1+ r/κ. Inserting this term into Eq.(161), one can reach the attractive Coulomb potential,

i.e., V(r) = −K/r. Thus, the K can be identified with the atomic number (see Section 4.2 for
a comparison). On the other hand, for the large values of r, i.e., r >> κ, the exponential term
would be larger according to the number 1 which is seen in the denominator of the Hulthen
potential and hence the number 1would be neglected. Therefore, the Hulthen potential would
be reduced to V(r) = − K

κ e− r
κ .

The Hulthen potential has been used in several branches of physics such as nuclear and
particle, atomic, molecular and chemical physics (Durand & Durand, 1981; Xu et al., 2006;
Bitensky et al., 1997; Jia et al., 2000; Olson & Micha, 1978). Moreover, its discrete and
continuum states have been studied by a variety of techniques such as the supersymmetry
and shape invariance property (Varshni, 1990; Filho & Ricotta, 1995; Qian et al., 2002). The
solution of the SE for a particle in the Hulthen potential can not be obtained exactly for the
case of � 
= 0 whereas we have an exact solution for the case of � = 0, namely s-wave solution
(Flügge, 1971). To find an approximate solution of the SE with the Hulthen potential, we have
to rely on an approximation for the centrifugal term. How can we do that? Let us look at
below.
The Hulthen potential given in Eq.(161) can be written in the following form if we recompile
it,

V(r) = −K
κ

e−r/κ

1− e−r/κ
. (162)

Inserting Eq.(162) into Eq.(42), we have

d2R(r)
dr2

+
2
r

dR(r)
dr

+
2μ

h̄2

[
E +

K
κ

e−r/κ

1− e−r/κ
− h̄2�(�+ 1)

2μr2

]
R(r) = 0. (163)

We now want to obtain the solution of Eq.(163) using the NU method. If we define

R(r) =
U(r)

r
, (164)

Eq.(163) becomes

d2U(r)
dr

+

[
2μ

h̄2

(
E +

K
κ

e−r/κ

1− e−r/κ

)
− �(�+ 1)

r2

]
U(r) = 0. (165)
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This equation is similar to the s-wave SE for the Hulthen potential, except for the additional
term �(�+1)

r2 , which is commonly mentioned as a centrifugal term. To solve Eq.(165), we
can think about an approximation regarding with the centrifugal term as follows (Greene &
Aldrich, 1976; Qiang & Dong, 2007)

�(�+ 1)
r2

≈ �(�+ 1)e−r/κ

κ2(1− e−r/κ)2
. (166)

The present approximation is just valid for the short-range potentials (i.e., large κ and small �)
but not for the long-range potentials (i.e., small κ and large �). Nevertheless it provides good
results, which are in agreement with the previously reported numerical integration method
(Lucha & Schöberl, 1999). Moreover, in order to improve the accuracy of this approximation, a
different approximation scheme has been recently proposed for the centrifugal term (Ikhdair,
2009; 2011). Readers are strongly encouraged to review these studies.

After replacing the term �(�+ 1)/r2 by its approximation �(�+1)e−r/κ

κ2(1−e−r/κ)2
and the transformation

s = e−r/κ (and also U(r) → ψ(s)), Eq.(165) becomes

d2ψ(s)
ds2

+
(1− s)
s(1− s)

dψ(s)
ds

+
1

s2(1− s)2
[−(α + β)s2 + (2α + β − γ)s − α]ψ(s) = 0 (167)

where
α = −2μEκ

h̄2
,

β =
2μKκ

h̄2
,

γ = �(�+ 1).

(168)

By comparing Eq.(167) with the main equation that comes from the NU method, Eq.(4), we
can define the following polynomials

τ̃(s) = 1− s,

σ(s) = s(1− s),

σ̃(s) = −(α + β)s2 + (2α + β − γ)s − α.

(169)

Inserting these polynomials into Eq.(18), we have

π(s) = − s
2
± 1

2

√
[1+ 4(α + β − k)]s2 − 4(2α + β − γ − k)s + 4α (170)

The discriminant of the expression under the square root in the above equation has to be set
equal to zero. Therefore, it becomes

Δ = 16(2α + β − γ − k)2 − 16[1+ 4(α + β − k)]α = 0, (171)

and the two roots of k are obtained

k± = β − γ ±
√

α(1+ 4γ). (172)

248 Theoretical Concepts of Quantum Mechanics



Application of the Nikiforov-Uvarov Method in Quantum Mechanics 25

Substituting the double roots of k± into Eq.(170), the four possible forms of the π(s) for either
k+ or k− are derived as follows

π(s) = − s
2
± 1

2

⎧⎨
⎩

[(
2
√

α −√
1+ 4γ

)
s − 2

√
α
]
for k+ = β − γ +

√
α(1+ 4γ)

[(
2
√

α +
√
1+ 4γ

)
s − 2

√
α
]
for k− = β − γ −√

α(1+ 4γ).
(173)

In order to obtain a physical solution we have to ensure that the polynomial τ(s) = τ̃(s) +
2π(s)must satisfy a negative derivative. For this reason, we select the π(s);

π(s) = − s
2
− 1

2

[(
2
√

α +
√
1+ 4γ

)
s − 2

√
α
]
, (174)

for k− = β − γ −√
α(1+ 4γ). The following track in this selection is to achieve the condition

τ′(s) < 0. Therefore τ(s) is written

τ(s) = 1− 2s −
[(

2
√

α +
√
1+ 4γ

)
s − 2

√
α
]
, (175)

and then its negative derivative becomes

τ′(s) = −(2+ 2
√

α +
√
1+ 4γ) < 0. (176)

We can also write down the λ = k− + π′(s) and λn = −nτ′(s)− n(n − 1)σ′′(s)/2, keeping in
our mind that λ = λn;

λ = β − γ − 1
2
(1+ 2

√
α)

(
1+

√
1+ 4γ

)
= n

[
1+ 2

√
α + n +

√
1+ 4γ

]
, n = 0, 1, 2, ....

(177)

After bring back α, β and γ which are defined in Eq.(168) and simple manipulations, we have
the energy spectrum of the Hulthen potential (Agboola, 2011)

E = − h̄2

2μ

[
(Kμ/h̄2)
n + �+ 1

− n + �+ 1
2κ

]2
. (178)

If we take into account the limitation of κ → ∞, we have En = − μ

2h̄2
[K/(n + �+ 1)]2. This is

the energy spectrum of the Coulomb potential we have investigated in Section 4.2.
We can now apply the relationships given by Eq.(7) and Eq.(27) through Eq.(28) to obtain the
wavefunction ψ(s). Therefore, the relevant polynomials are given

φ(s) = s
√

α(1− s)�+1, (179)

ρ(s) = s2
√

α(1− s)2�+1, (180)

yn(s) = Bns−2
√

α(1− s)−(2�+1) dn

dsn

[
sn+2

√
α(1− s)n+2�+1

]
≡ P(2

√
α, 2�+1)

n (1− 2s). (181)
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So the wavefunction ψ(s) is written as

ψ(s) = Nn�s
√

α(1− s)�+1P(2
√

α, 2�+1)
n (1− 2s), (182)

where Nn� is the normalization constant and P(2
√

α, 2�+1)
n (1 − 2s) is the Jacobi polynomials

(Szego, 1934). As a reminder notice, the relationship between the ψ(s) and the R(r) is ψ(s) ≡
rR(r) with the transformation of s = e−r/κ .

5. Conclusion

An exact solution of the SE is not a practical manner, except for the simplest of potential
energy functions. In most cases of practical interest, we can just settle for an approximate
solution. To overcome various types of problems in quantum mechanics, we have to apply
several methods or approximations to solve the SE appropriately. One of this method is
introduced by A. F. Nikiforov and V. B. Uvarov. The solution range of this method is
limited by the hypergeometric-type second-order differential equations. We know that the
time-independent SE has the second-order differential equation in the Schrödinger picture as
well. Therefore, in this book chapter we confined our attention to this equation and its exact
or approximate solutions for the selected potentials such as Harmonic oscillator, Coulomb,
Kratzer, Morse and Hulthen potentials. The solution meant that we have obtained the energy
spectrum and the corresponding wavefunction of a particle subject to one of these potentials.
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Solutions for Time-Dependent Schrödinger
Equations with Applications to Quantum Dots

Ricardo J. Cordero-Soto
California Baptist University

USA

1. Introduction

In Ref.-(9), the authors study and solve the time-dependent Schrödinger equation

i
∂ψ

∂t
= H (t)ψ (1)

where

H = −a (t)
∂2

∂x2 + b (t) x2 − i
(

c (t) x
∂

∂x
+ d (t)

)
(2)

and where a (t) , b (t) , c (t) , and d (t) are real-valued functions of time t only; see Refs.-(9),
(10), (11),(29), (35), (39), (49), (50), and Ref.-(51) for a general approach and currently known
explicit solutions. The solution (see Ref.-(9) for details ) is given by

ψ (x, t) =
∫ ∞

−∞
G (x, y, t) ψ0 (y) dy (3)

where the Green’s function, or particular solution is given by

G (x, y, t) =
1√

2πiμ (t)
ei(α(t)x2+β(t)xy+γ(t)y2). (4)

The time-dependent functions are found via a substitution method that reduces eqs.- (1)-(2)
to a system of differential equations (see Ref. (9)):

dα

dt
+ b (t) + 2c (t) α + 4a (t) α2 = 0, (5)

dβ

dt
+ (c (t) + 4a (t) α (t)) β = 0, (6)

dγ

dt
+ a (t) β2 (t) = 0, (7)

where the first equation is the familiar Riccati nonlinear differential equation; see, for example,
Refs.-(21), (45), (56). This system is explicitly integrable up to the function μ (t) which satisfies
the following so-called characteristic equation

μ′′ − τ (t) μ′ + 4σ (t) μ = 0 (8)

12



2 Will-be-set-by-IN-TECH

with

τ (t) =
a′
a
− 2c + 4d, σ (t) = ab − cd + d2 +

d
2

(
a′
a
− d′

d

)
. (9)

This equation must be solved subject to the initial data

μ (0) = 0, μ′ (0) = 2a (0) �= 0 (10)

in order to satisfy the initial condition for the corresponding Green’s function. The
time-dependent coefficients are given by the following equations:

α (t) =
1

4a (t)
μ′ (t)
μ (t)

− d (t)
2a (t)

, (11)

β (t) = − 1
μ (t)

exp
(
−

∫ t

0
(c (τ)− 2d (τ)) dτ

)
, (12)

γ (t) =
a (t)

μ (t) μ′ (t) exp
(
−2

∫ t

0
(c (τ)− 2d (τ)) dτ

)
+

d (0)
2a (0)

(13)

−4
∫ t

0

a (τ) σ (τ)

(μ′ (τ))2

(
exp

(
−2

∫ τ

0
(c (λ)− 2d (λ)) dλ

))
dτ.

Time dependence in the Hamiltonian has been studied in the context of various applications
such as uniform magnetic fields Refs.-(9), (16), (28), (31), (32), (34), (36), time-periodic
potentials and quantum dots Ref.-(8) (see also Ref.-(12) for a list of references and
applications). Here, we present a general time-dependent Hamiltonian that has applications
to the study of quantum devices such as quantum dots. Often described as artificial atoms,
quantum dots are tools that allow the study of quantum behavior at the nanometer scale (see
Ref.-(23)). This size is larger than the typical atomic scale that exhibits quantum behavior.
Because of the larger size, the physics are closer to classical mechanics but still small enough
to show quantum phenomena (see Ref.-(23)). Furthermore, their use extends into biological
applications. In particular quantum dots are used as fluorescent probes in biological detection
since these devices provide bright, stable, and sharp fluorescence (see Ref.-(6)).
Using methods similar to the approach in Ref.-(12), we discuss the uniqueness of Schwartz
solutions to the Schrödinger Equation of this quantum dot Hamiltonian. In Ref.-(12) the
authors seek to find Quantum Integrals of motion of various time-dependent Hamiltonians.
Specifically, the authors seek quantum integrals of motion for the time-dependent Schrödinger
equation

i
∂ψ

∂t
= H (t)ψ (14)

with variable quadratic Hamiltonians of the form

H = a (t) p2 + b (t) x2 + d (t) (px + xp) , (15)

where p = −i∂/∂x, � = 1 and a (t) , b (t) , d (t) are some real-valued functions of time only
(see, for example, Refs.-(13), (30), (34), (36), (37), (57), (58) and references therein). A related
energy operator E is defined in a traditional way as a quadratic in p and x operator that has
constant expectation values (see Ref.-(16)):

d
dt

〈E〉 = d
dt

∫ ∞

−∞
ψ∗Eψ dx = 0. (16)
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Such quadratic invariants are not unique. In Ref.-(12), the simplest energy operators are
constructed for several integrable models of the damped and modified quantum oscillators.
Then an extension of the familiar Lewis–Riesenfeld quadratic invariant is given to the
most general case of the variable non-self-adjoint quadratic Hamiltonian (see also Refs.-(30),
(57), (58)). The authors use the Invariants to construct positive operators that help prove
uniqueness of the corresponding Cauchy initial value problem (IVP) for the models as a small
contribution to the area of evolution equations.
In the present paper, the author will follow a similar approach in first proving the uniqueness
of the IVP for a reduced Hamiltonian (see eq.-(20)). Then the author will use a gauge
transformation to extend the uniqueness to IVP of the Quantum Dot Hamiltonian, eq.-(17).
Furthermore, the gauge transformation will also simplify the general solution previously
obtained in Ref.-(9).

2. A quantum dot model

Essentially, a quantum dot is a small box with electrons. The box is coupled via tunnel barriers
to a source and drain reservoir (see Refs.-(23), (17)) with which particles can be exchanged.
When the size of this so-called box is comparable to the wavelength of the electrons that
occupy it, the energy spectrum is discrete, resembling atoms. This is why quantum dots
are artificial atoms in a sense. Vladimiro Mujica at Arizona State University has suggested
that the following model is of use to Floquet Theory as well as the theory of Semiconductor
quantum dots:

H = a (t) p2 + b (t) x2 − id (t) . (17)

This Hamiltonian is seen in photon-assisted tunneling in double-well structures and quantum
dots (see Ref.-(8) and Refs.-(25), (26), (44), (19), (55)). In particular, the authors in Ref.-(8)
consider a single-electron tunneling through double-well structures. The schrödinger
equation proposed by the authors has a Hamiltonian of the form of eq.-(17) where b (t) = 0
and

d (t) = i (ν + ζ cos ωt) .

Specifically, they use a single-electron Schrödinger equation with time-periodic potential with
oscillating barriers. The potential with oscillating barriers is given by

V (x, t) =

⎧⎨
⎩

0 (emitter and collector)
VB + V1 cos ωt (layers of barriers)

VW (layers of well)
(18)

or with the oscillating wells it is given by

V (x, t) =

⎧⎨
⎩

0 (emitter and collector)
VB (layers of barriers)

VW + V1 cos ωt (layers of well)
(19)

where VB and VW are the height and depth of the static barrier and well respectively. V1 cos ωt
is the applied field with amplitude V1 and frequency ω.

2.1 Uniqueness
We wish to obtain uniqueness of solutions of eq.-(1) for eq.-(17) in Schwartz Space. We follow
the approach of quantum integrals in Ref.-(12) to first prove the uniqueness of such solutions
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for the following Hamiltonian:

H0 = a (t) p2 + b (t) x2. (20)

In particular, we will show that for eq.-(20),

〈H0〉 = 0 when ψ (x, 0) = 0. (21)

We first recall that
〈Q〉 =

∫ ∞

−∞
ψ∗ (x, t) Q [ψ (x, t)] dx (22)

Since, we have that ψ is in Schwartz space (see the Fourier Transform on R in Ref.-(48)), it
follows that

〈H0〉 = a (t)
〈

p2
〉
+ b (t)

〈
x2
〉

< ∞. (23)

as long as both functions a (t) and b (t) are bounded. Thus, to prove eq.-(21) , we will show
that 〈

p2
〉
=

〈
x2
〉
= 0 when ψ (x, 0) = 0. (24)

Again, since ψ is in Schwartz space, we have that

d
dt

〈Q〉 =
∫ ∞

−∞

∂

∂t
(ψ∗ (x, t) Q [ψ (x, t)] ) dx =

1
i

〈
QH − H†Q

〉
(25)

for Q = p, x, px, xp, p2and x2.
Given eq.-(25) we have the following ODE system:

d
dt

〈
p2
〉
= −2b (t) 〈px + xp〉 (26)

d
dt

〈
x2
〉
= 2a (t) 〈px + xp〉

d
dt

〈px + xp〉 = 4a (t)
〈

p2
〉
− 4b (t)

〈
x2
〉

.

If ψ (x, 0) = 0, then 〈
p2
〉

0
= 0 (27)〈

x2
〉

0
= 0

〈px + xp〉0 = 0.

According to the general theory of homogeneous linear systems of ODE’s, we have that〈
p2
〉
= 0 (28)〈

x2
〉
= 0

〈px + xp〉 = 0.

Thus, we have shown that eq.-(24) holds, thereby proving eq.-(21). We then use the following
(see Ref.-(12)) lemma:
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Lemma 1. Suppose that the expectation value

〈H0〉 = 〈ψ, H0ψ〉 ≥ 0 (29)

for a positive quadratic operator

H0 = f (t) (α (t) p + β (t) x)2 + g (t) x2 ( f (t) ≥ 0, g (t) > 0) (30)

(α (t) and β (t) are real-valued functions) vanishes for all t ∈ [0, T) :

〈H0〉 = 〈H0〉 (t) = 〈H0〉 (0) = 0, (31)

when ψ (x, 0) = 0 almost everywhere. Then the corresponding Cauchy initial value problem

i
∂ψ

∂t
= Hψ, ψ (x, 0) = ϕ (x) (32)

may have only one solution in Schwartz space.

Since we have proven eq.-(21), we have that H0 satisfies this lemma, thus proving uniqueness
of Schwartz solutions for eq.-(20). By using the gauge-transformation approach in Ref.-(11)
we state the following lemma:

Lemma 2. Let ψ̃ (x, t), with ψ̃ (x, 0) in Schwartz space, solve the following time-dependent
Schrödinger equation:

i
∂ψ̃

∂t
= H̃ψ̃, (33)

where

H̃ = −a (t)
∂2

∂x2 + b (t) x2 − ic (t) x
∂

∂x
. (34)

Then

ψ (x, t) = ψ̃ (x, t) exp
(
−

∫ t

0
d (s) ds

)
(35)

solves eqs.-(1)-(2) for
ψ (x, 0) = ψ̃ (x, 0) . (36)

Proof. Let ψ (x, t) = ψ̃ (x, t) exp
(
− ∫ t

0 d (s) ds
)

and assume ψ̃ (x, t) solves (33)-(34), where

ψ̃ (x, 0) is in Schwartz space. We differentiate ψ (x, t) with respect to time:

i
∂ψ

∂t
= i

∂ψ̃

∂t
exp

(
−

∫ t

0
d (s) ds

)
− id (t) ψ̃ (x, t) exp

(
−

∫ t

0
d (s) ds

)
. (37)

For H given by (2) and H̃ given by (34), we have

H = H̃ − id (t) , (38)

and

i
∂ψ

∂t
= H̃

[
ψ̃
]

exp
(
−

∫ t

0
d (s) ds

)
− id (t)ψ. (39)

Since

H̃
[
ψ̃
]

exp
(
−

∫ t

0
d (s) ds

)
= H̃

[
ψ̃ exp

(
−

∫ t

0
d (s) ds

)]
= H̃ [ψ] , (40)
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we have that

i
∂ψ

∂t
= H̃ [ψ]− id (t)ψ = Hψ. (41)

By the method of Ref.-(9) for d = 0 we can find ψ̃ (x, t): We simply generate the Green’s
function for ψ̃ (x, t) by substituting d = 0 in eq.-(2). This leads us to a simpler form of the
solution previously obtained in Ref.-(9) for eqs.-(1)-(2). Namely,

ψ (x, t) = exp
(
−

∫ t

0
d (s) ds

) ∫ ∞

−∞
G (x, y, t) ψ0 (y) dy (42)

where
G (x, y, t) =

1√
2πiμ (t)

ei(α(t)x2+β(t)xy+γ(t)y2) (43)

with

α (t) =
1

4a (t)
μ′ (t)
μ (t)

, (44)

β (t) = − 1
μ (t)

exp
(
−

∫ t

0
c (τ) dτ

)
, (45)

γ (t) =
a (t)

μ (t) μ′ (t) exp
(
−2

∫ t

0
c (τ) dτ

)

−4
∫ t

0

a (τ) σ̃ (τ)

(μ′ (τ))2

(
exp

(
−2

∫ τ

0
c (λ) dλ

))
dτ.

and μ (t) is the solution of a reduced characteristic equation given by

μ′′ − τ̃ (t) μ′ + 4σ̃ (t) μ = 0, (46)

where

τ̃ (t) =
a′
a
− 2c, (47)

σ̃ (t) = ab (48)

and initial conditions are given by eq.-(10).
The Schwartz requirement on the initial condition is necessary to show that eq.-(3) is in fact
the solution of eqs.-(1)-(2) since we can justify the interchanging of the time-derivative and
integral operators. In particular, we note that∣∣∣∣ ∂

∂t
G (x, y, t)ψ0 (y)

∣∣∣∣ =
∣∣∣∣ ∂

∂t

[
A (t) ei(α(t)x2+β(t)xy+γ(t)y2)ψ0 (y)

]∣∣∣∣ . (49)

Here,

A (t) =
1√

2πiμ (t)
. (50)

Thus, eq.-(49) reduces to ∣∣∣∣
(

∂A
∂t

+ Ai
∂S
∂t

)
ψ0 (y)

∣∣∣∣ , (51)

where
S (x, y, t) = α (t) x2 + β (t) xy + γ (t) y2. (52)
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Since ψ0 (y) is in Schwartz space, eq.-(51) is also in Schwartz space. It follows that the
time-derivative operator can be exchanged with the integral (see Ref.-(1)).
We state the following extension Corollary:

Corollary 3. Let ψ̃ (x, t), with ψ̃ (x, 0) uniquely solve eqs.-(33)-(34). Then eq.-(35) uniquely solves
eqs.-(1)-(2) for eq.-(36).

This extends the uniqueness of Schwartz Space solutions to eq.-(1) for eq.-(17).

3. Invariants

In Ref.-(12), the authors seek the quantum integrals of motion or dynamical invariants for
different time-dependent Hamiltonians. We recall a familiar definition (see, for example,
Refs.-(16), (38)). We say that a quadratic operator

E = A (t) p2 + B (t) x2 + C (t) (px + xp) (53)

is a quadratic dynamical invariant of eq.-(2) if

d 〈E〉
dt

= 0 (54)

for eq.-(2). We recall from Ref.-(11) that the expectation value of an operator A in quantum
mechanics is given by the formula

〈E〉 =
∫ ∞

−∞
ψ∗ (x, t) E (t)ψ (x, t) dx, (55)

where the wave function satisfies the time-dependent Schrödinger equation

i
∂ψ

∂t
= Hψ. (56)

The time derivative of this expectation value can be written as

i
d
dt

〈E〉 = i
〈

∂E
∂t

〉
+

〈
EH − H†E

〉
, (57)

where H† is the Hermitian adjoint of the Hamiltonian operator H. Our formula is a simple
extension of the well-known expression Refs.-(28), (40), (47) to the case of a nonself-adjoint
Hamiltonian.
Lemma 1 provides us with a Corollary regarding the relationship between invariants of
gauge-related Hamiltonians.

Corollary 4. Let Ẽ be a dynamical invariant of eq.-(34). If d (t) is a real-valued function, then

E = Ẽ exp
(∫ t

0
2d (s) ds

)
(58)

is an invariant of eq.-(2). If d (t) = id̃ (t) where d̃ (t) is a real-valued function, then Ẽ is an invariant
of eq.-(2).

Conclusion 5. While Schrödinger equations have been widely used in quantum mechanics and
other related fields such as quantum electrodynamics, Schrödinger equations with time-dependent
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Hamiltonians continue to have applications in a wide area of related fields. It is thus appropriate to
consider IVPs that have potential applications to devices such as Quantum Dots. It is thus important
to understand the physics of these devices as we realize their great potential in the usage of imaging and
other biological applications. Furthermore, quantum dots give us a glimpse of phenomena that unifies
classical mechanics with quantum mechanics and thus deserve study in order to further the theoretical
understandings of the laws that govern the universe.
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1. Introduction

One of the unsolved problem in theoretical physics during some decades remains a
construction of the complete and closed theory in which quantum mechanics and special
relativity would be consistent without divergences and renormalization (Dirac, 1978). It may
be assumed that divergences show conservation laws violation in the conventional theories,
and a cause for it may be in turn violation of the group-theoretic principles in these theories,
in accordance with the Noether theorems. A success of renormalization allows one to believe
that the theory without divergences is possible.
This paper is devoted to consideration of possibility to develop the consistent group-theoretic
scheme of the quantum mechanics merely. It consists of Introduction, three parts, and
Conclusion.
The requirements which allow one to consider the quantum mechanics as a consistent
group-theoretic theory are formulated in Introduction.
The Noether theorems set one-to-one correspondence between conservation laws of the
variables to be measured, i.e. observables (Dirac, 1958), and groups of symmetries of the
solutions transformations of equations for complex wave functions, spinors, matrices and so
on in which the space-time properties appear (Olver, 1986). These solutions do not obey to be
an observables but the last ones may be constructed as the Hermitian forms corresponding to
these observables on their basis. The mathematical tool to express the space-time symmetry
properties is the group theory.
Two circumstances connected with the stated above attract attention in the generally accepted
schemes of the quantum mechanics.
The exact conservation laws fulfilment is inconceivable in any theoretical scheme under
absence of the complete set of the Hermitian forms, based on the main equations solutions
and its derivatives, each of them would be corresponded to the observables. Some of these
Hermitian forms have to be conserved, another have to be changed but all of them have
to satisfy to some completeness condition expressed mathematically. The last subject has
exceptional significance since if only some part of the unknown complete set of observables
really existing is included into the theory, then both physical interpretation and conservation
laws would be dependent on the Hermitian forms which are excluded from the theory. Of
course, such theory can not be recognized to be the consecutive, complete and closed theory.
One of the impressive consequence of the observables complete set and corresponding
completeness condition absence is the well known question on the hidden parameters
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(Einstein et al., 1935) being discussed up to now (Goldstein, 1998) including experimental
investigations (Greenstein & Zajonc, 2006). Moreover, absence of the completeness condition
for observables immediately relates to the physical contents of the wave function and
its probabilistic interpretation. These subjects are discussed during many years but the
uniqueness of the last one has not been proved up to now (Feynman & Hibbs, 1965).
The second question is not so obvious and discussed, the author had not seen the papers on
the subject.
The logical foundations of the physical theory having been consistent with causality, require
to act of the consequent transformation on the result of the previous one. The mathematical
description of this requirement is expressed by means of the operators product in the same
order as they act in the physical process to be described.
Transformation operators describing different physical processes map the space-time
properties, and the successive products define the binary operation over the transformations
set, it is the multiplication, its result depends on the operators order in general case. Therefore,
transformations set have to be multiplicative non-commutative groups in the fundamental
physical theories.
The elements of the multiplicative non-commutative groups are nonequivalent under the
group operation but the physical phenomena, similar to the interference, require to include the
non-commutative group elements compositions in which its elements would be equivalent.
The results of such kinds compositions have not be dependent on the order of the group
elements in it, and have to belong to the same group as two elements entered the compositions
at the same time.
In the ordinary superposition principle used in a great number of physical theories the
pairwise permutable composition is expressed as the sum of the elements, in particular the
elements of the multiplicative non-commutative groups. It means that the second binary
operation, the sum, over the group elements is introduced, besides of the multiplication.
Meanwhile, the group is the monoid, i.e. the set with only one binary operation, in accordance
with its definition (Zhelobenko & Shtern, 1983). Therefore, the theories in which two
binary operations are used over the set of transformations can not be recognized to be the
group-theoretic theory. For example, all elements of the unitary group SU(2) describing
rotations are unimodular. If one will sum two any elements of the group, the result would
not be unimodular, then it does not belong to the group. As a consequence of the Noether
theorems it may lead to violation of the conservation laws. The consistent group-theoretic
physical theory, in particular quantum mechanics, may be carried out only under fulfilment of
all the group definition requirements. So as associativity, existence of the unit and the inverse
elements, and, of course, the multiplication as the only binary operation over its elements.
In accordance with the stated above, such theory has to contain at least the pairwise
permutable composition over any elements of the non-Abelian Lie groups. Of course,
such composition has to turn into the ordinary superposition principle under correspondent
parameters area.
Oddly enough that the non-commutativity was not to be a cause of refusal to construct
quantum mechanics as the group-theoretic theory, it was only complicating factor (Feynman
& Hibbs, 1965). For example, one has only commutative propagators in the double-slit
experiment in homogeneous medium, they are multiplied along successive path segments.
Nevertheless, even if non-commutativity does not create any difficulties since all propagators
belong to the commutative subgroup of the SU(1, 1) group, an alternative propagators are
added together accordingly to the ordinary superposition principle (Feynman et al., 1963).
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Of course, using only multiplication both for successive and alternative propagators, and
considering the only Hermitian form ρ = χχ∗ as an observable, one can not obtain an
"interference" pattern since ρ = const everywhere.
Nevertheless, the experimental pattern may be obtained without addition of the second
operation, as it would be shown below.
Therefore the inclusion of two binary operations over the set of transformations in quantum
mechanics (see for example (Landau & Lifshitz, 1963)) means the groundless rejection to
construct the last one as the consistent group-theoretic physical theory.
The section 2 contains consideration of the complete set of observables for the stationary
Schroedinger equation (Lunin, 1998; 1999). It consists of four bilinear Hermitian forms,
being together they satisfy to some identity which means the completeness condition at the
same time. Therefore only three of them are independent. Its geometric interpretation in
the Euclidean space is proposed. All conservation laws are considered for the free particle
described with the Schroedinger equation, it is shown that the successive points where these
laws are fulfilled form the spiral line in general case. Transformations of such lines are
considered under some simplest potentials. The qualitative explanation of the double-slit
experiment when particles go from the source up to detector one by one, and the experimental
pattern is formed by isolated point-wise traces is proposed there.
The section 3 contains the most important part of the paper: a short presentation of the
non-Euclidean superposition principle deduction. At first there are established the metric
of the propagators logarithms space for the stationary Schroedinger equation, it is the
Lobachevsky space. Then, mapping the group elements onto the Lobachevsky plane together
with the group operation one establishes the additive representation of the SU(1, 1) group in
the curved space. Geometric consideration of the subject allows one to develop the symmetric
binary composition which is invariable with respect to permutation of two non-commutative
group elements and which belongs to the same group as these ones entered the composition
(Lunin, 1994). Geometric investigation of this composition with respect to discrete symmetries
had also lead to three other compositions, all of them form the non-Euclidean superposition
principle, which turns into the ordinary, i.e. the Euclidean, superposition principle in the
vicinity of the identity, and applicable up to the Lie groups of arbitrary dimension (Lunin,
1998; 2002). The geometric deduction of all four compositions establishes their geometric
contents at the same time.
This section contains also a comparison of these two different rules of the propagators
composition for the experiment with two slits arranged at the two different media boundary.
It is shown there that the non-Euclidean superposition principle leads to fulfilment of
conservation laws everywhere whereas the Euclidean one leads to the same only in some
areas. This conclusion is valid also in the case of the homogeneous medium.
The section 4 contains an example of application of the non-Euclidean superposition principle
to the physically significant problem of the irreversibility in quantum mechanics (Ginzburg,
1999; Kadomtzev, 2003). All transformations of the time-dependent Schroedinger equation
solutions are reversible due to its reversibility, it means that all propagators turn into the
inverse ones under time inversion. However, the non-Euclidean superposition principle
contains also two binary compositions which do not turn into the inverse ones under inversion
of both propagators entered them. This circumstance allowed one to include irreversible
processes into the scheme of quantum mechanics. The reversibility of the equation is occurred
to be only necessary condition but not quite sufficient for the reversible evolution of the closed
physical system.
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Thus, the non-Euclidean superposition principle allows coexistence of the reversible and
irreversible processes in the closed systems described with only reversible equations (Lunin
& Kogan, 2004; 2009).

2. Completeness of observables

To introduce the main and necessary notions for solution the problem mentioned above in the
simplest but sufficient way, let us consider the unidimensional Schroedinger equation with
real potential for the particle above barrier. According to (Kolkunov, 1969; 1970), and also
(Lontano & Lunin, 1991), we shall start with the equation under corresponding conditions at
the initial point z0

d2χ(z)
dz2 + k2(z)χ(z) = 0, χ(z0) = χ0, χ′(z0) = χ′

0, (1)

where k2(z) = (2m/h̄2)[E − U(z)], E and U(z) are energy and real potential respectively.
Going over to the pair of first order equations for complex functions

Φ±(z) =
k1/2
√

2
[χ± 1

ik
χ

′
] (2)

with corresponding conditions at the initial point z0, one has the following matrix equation
for Φ= column ‖Φ+, Φ−‖

Φ
′
(z) = [ik(z)σ3 +

k
′
(z)

2k(z)
σ1]Φ(z), (3)

where σs are Pauli matrices including identity one σ0, s = 0, 1, 2, 3. Let us notice that equation
(2.3) may be also obtained by means of staircase approximation (Kolkunov, 1969; 1970).
Dividing axis z into segments Δzi with ki = const and steps Δki at its common points,
requiring continuity of χi, χ′

i there, and going over to Δzi → 0, one has also the equation
(2.3). Therefore propagator Q (see below) includes continuity of χ, χ′ everywhere.
A solution of (2.3) may be written in the form Φ(z) = Q(z, z0)Φ(z0), where Q is a propagator,
i.e. matrix, transforming Φ(z0) into Φ(z),

Q(z, z0) = T exp
∫ z

z0

[ikσ3 +
k′
2k

σ1]dz. (4)

Matrix Q is named as a product integral (Gantmakher, 1988), it is a limit of product of the
infinitesimal matrix transformations, in general case they are non-commutative.
Let us consider four bilinear Hermitian forms with respect to Φ, Φ+,

js(z) = Φ+(z)σsΦ(z). (5)

They satisfy to the identity
j20 = j21 + j22 + j23 (6)

independently if they are solutions of equation (2.3) or not, therefore only three of them are
independent. Let us introduce, accordingly to the direct product definition (Lankaster, 1969),
Hermitian matrix

J = ‖Φ∗
+, Φ∗−‖

⊗∣∣∣∣∣∣ Φ+

Φ−

∣∣∣∣∣∣ = ∣∣∣∣∣∣ Φ∗
+Φ+ Φ∗−Φ+

Φ∗
+Φ− Φ∗−Φ−

∣∣∣∣∣∣ = 1
2

∣∣∣∣∣∣ j0 + j3 j1 − ij2
j1 + ij2 j0 − j3

∣∣∣∣∣∣. (7)
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Its determinant is equal to zero due to the identity (2.6), it satisfies to relation J2 = j0 J
which under normalization condition j0 = 1 coincides with definition of the idempotent
matrix, therefore the matrix J is similar to the density matrix of pure states (Feynman, 1972).
Differentiating expression (2.7) and using equation (2.3) together with its Hermitian conjugate,
one obtains

J′ = ik{Φ+
⊗

σ3Φ − Φ+σ3
⊗

Φ}+ k′
2k

{Φ+
⊗

σ1Φ + Φ+σ1
⊗

Φ}, (8)

which is equivalent to four equations for js:

j′0 =
k′
k

j1, j′1 = 2kj2 +
k′
k

j0, j′2 = −2kj1, j′3 = 0. (9)

Differentiating the identity (2.6) for js and taking equations (2.9) into account, we derive the
identity also for js and j′s.
Let us notice that two Hermitian forms, ρ = χχ∗ and j3 = i(χχ′∗ − χ∗χ′), are considered, as
a rule, as observables named the density and the current in the generally accepted schemes
of quantum mechanics. They are a compositions of only χ and χ′, along with the complex
conjugate ones, of course. But there are exist also other its real compositions based on only
these variables. We introduce here into consideration four Hermitian forms expressed by
means of only these variables

j0 = kχχ∗ + (χ′)(χ∗′ )/k, j1 = kχχ∗ − (χ′)(χ∗′ )/k,
j2 = χχ∗′ + χ∗χ′, j3 = i(χχ∗′ − χ∗χ′),

(10)

therefore all four of them satisfy to the identity (2.6) and may also be considered as
observables.Taking into account (2.2) and comparing equations (2.5), (2.10) one may see that
both quadruples, (2.5) and (2.10), are the same. Therefore both quadruples of js may be
considered as an observables in the same way as ρ and j3 mentioned above.
It means that four Hermitian forms js form the complete set of observables due to the
completeness condition (2.6), only three of them are independent. Besides, the Schroedinger
equation (2.1), its spinor representation (2.3) and relations (2.2) allow one to derive equations
(2.9), leading not only to conservation law for current j3, but also to the consistent variations
of the Hermitian forms complete set at the same time.
Let us consider the group-theoretic properties of propagators in the spinor description. The
last equation in (2.9), j′3 = 0, means that the real scalar Hermitian form j3 = Φ+σ3Φ is
a constant. Let Q is a matrix transforming Φ(z0) into Φ(z), i.e. Φ(z) = Q(z, z0)Φ(z0).
Substituting this expression into the conservation condition j3 = const under arbitrary Φ(z0),
one has the relation

Q+σ3Q = σ3, (11)

which means that matrix Q belongs to the group Q ∈ SU(1, 1) (Lontano & Lunin, 1991) with
the properties detQ = 1, Q∗

22 = Q11, Q∗
21 = Q12. Of course, this conclusion can also be drawn

from the expression for the product integral (2.4), which is a solution to equation (2.3).
The Schroedinger equation describes spatial behavior both free particle and also particle in
potential. It defines also all conservation laws for observables at the same time (Malkin &
Man’ko, 1979). Therefore it is quiet clear that the ordered sequence of the points where
all necessary conservation laws are fulfilled forms the line which may be considered as the
particle trajectory. It means that a free particle described with the Schroedinger equation
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does not obey to move along Euclidean straight line under any conditions, as it takes place
in classical mechanics. Although all variables in the Schroedinger equation depend on only z
in our case, however conservation laws fulfilment for the Hermitian forms under arbitrary
conditions at the initial point may lead to another such line spatial behavior, where all
necessary conservation laws are fulfilled, as it would be shown below.
Therefore the first our task is to define the spatial configuration of the line where all exact
conservation laws are fulfilled for the free particle under arbitrary conditions at the initial
point.
The stationary Schroedinger equation is the second order equation over a set of complex
functions. The wave function and its derivative at the initial point have to be set
independently, therefore they are defined by four real parameters. Connection of the theory
with experiment requires, in particular, to define initial conditions from measurements. It
means that these conditions would be expressed as Hermitian forms which are consistent with
observables to be measured, and vice versa. The complete set of Hermitian forms contains
four ones, and three of them are independent. Therefore two Hermitian forms, ρ and j3, which
are considered in a generally accepted schemes of quantum mechanics, can not be recognized
sufficient for construction of a complete and closed theory.
In an accepted schemes of quantum mechanics the vector j = i(χ∇χ∗ − χ∗∇χ) is associated
with particle momentum (Landau & Lifshitz, 1963), its amplitude coincides with j3 in the
unidimensional case, therefore we shall also connect j3 with momentum. It would be expected
that all other js have a similar sense due to the identity (2.6). One may suppose that an energy
is also included in the set of js on account of its completeness, but due to the circumstance
that the complete set of Hermitian forms includes more variables then it is considered in the
accepted forms of quantum mechanics, a connection between energy and momentum here
does not coincide with this one in the ordinary schemes of quantum mechanics. They coincide
only in the case of j1 = j2 = 0. It may be shown that a wave function has a form of plane
wave under these conditions, j0 and j3 are constant everywhere and they have no periodical
behavior, although the particle de Broglie wave exists.
An energy and momentum of free particle are reserved both in classical and in quantum
mechanics. It is quiet clear that, keeping succession, we have to associate an energy with
the Hermitian form j0, which is positive defined at the same time, as it seen from (2.5).
Such incomplete knowledge on js is sufficient for our aim here, explicit its identification
is more appropriate under more evident alignment of this scheme and the non-Euclidean
superposition principle with special relativity where the group-theoretic requirements are
especially important.
All exact differential conservation laws are fulfilled on the line to be defined, and the identity
(2.6) is also fulfilled there. Moreover, it is the only law containing all observables, on the
one hand, and it is fulfilled independently if these Hermitian forms are constructed on the
base of the Schroedinger equation solution or not, on the other hand. A similar significance
and structure has only the consequence of the Euclidean metric, which under parametric
representation of line X(t), Y(t), Z(t) may be written in form S′2(t) = X′2(t) +Y′2(t) + Z′2(t),
where S(t) is a curve length depending on monotonic parameter t. Requiring consistence of
the identity (2.6) with the consequence of the Euclidean metric, we shall accept a following
correspondence: j0 ∼ S′, j1 ∼ X′, j2 ∼ Y′, j3 ∼ Z′.
Let X(t), Y(t), Z(t) are coordinates of the points where all conservation laws are fulfilled. To
define the line which is formed by ordered sequence of these points, one may use the fact that
a spatial curve is uniquely defined, up to orientation in space, by its curvature and torsion.
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Nonnegative curvature is defined by the first and the second its derivative with respect to
parameter, and the torsion depends also on the third derivative (Poznyak & Shikin, 1990).
Thus, we obtain a following conclusion on the line where all conservation laws are fulfilled:
the quantum particle trajectory is defined uniquely under fulfilling of all exact conservation
laws following from the Schroedinger equation excluding its space orientation, i.e. up to
insignificant circumstance of a coordinate system choice. If some theory based on such
equation does not lead to such trajectory, then it means that the theory does not contain all
necessary observables and (or) some conservation laws are violated.
This line is defined by parameters js, j′s, j′′s . If j3 = const the curvature K1 and the torsion K2
are expressed as (Lunin, 2008)

K1 =

√
j20(j′21 + j′22 )− (j1 j′1 + j2 j′2)2

j30
, K2 =

j3(j′1 j′′2 − j′2 j′′1 )
j20(j′21 + j′22 )− (j1 j′1 + j2 j′2)2

. (12)

The group-theoretic properties of transformations under quantum particle motion most
clearly appear in the spinor representation of the Schroedinger equation (2.3). Taking a spinor
in its most general form we have

Φ =
∣∣∣∣∣∣ aeiα

beiβ

∣∣∣∣∣∣ = ei (β+α)
2

∣∣∣∣∣∣ ae−i (β−α)
2

bei (β−α)
2

∣∣∣∣∣∣ (13)

with its Hermitian forms
j0 = a2 + b2, j1 = 2ab cos(β − α),
j3 = a2 − b2, j2 = 2ab sin(β − α).

(14)

It is quite clear that they are defined by three independent real parameters a, b,(β − α) and
satisfy to the identity (2.6). Relations (2.13), (2.14) and (2.2) allow one to express χ, χ′, and
also Φ± by means of js.
If the parameter k2 in (2.1) is constant, k′(z) = 0, the term (k′/2k)σ1 in (2.4) is vanished
together with non-commutativity, and Q(z, z0) = exp[ik(z − z0)σ3]. Then the propagator Q
satisfies to Q+σ0Q = σ0 which means conservation j0 in addition to j3. As far as Q+ = Q−1,
then Q belongs to the unitary commutative subgroup of the group SU(1, 1).
It is clear from equations (2.14) that a and b are constant for the free particle, then spinor
components under arbitrary conditions at z0 may be written at any point z as

Φ+ = a0ei[k(z−z0)− β0−α0
2 ], Φ− = b0e−i[k(z−z0)− β0−α0

2 ], (15)

therefore one has free particle observables under correspondent parameters at the z0

j0 = a2
0 + b2

0, j1 = 2a0b0 cos[2kz − (β0 − α0)],
j3 = a2

0 − b2
0, j2 = 2a0b0 sin[2kz − (β0 − α0)].

(16)

The expressions for K1 and K2 are simpler in this case

K1 =

√
j′21 + j′22

j20
, K2 =

j3(j′1 j′′2 − j′2 j′′1 )
j20(j′21 + j′22 )

. (17)

269The Group Theory and Non-Euclidean Superposition Principle in Quantum Mechanics



8 Will-be-set-by-IN-TECH

Taking into account equations (2.16) and (2.17) under condition k(z) = const one may see that
K1(z) and K2(z) satisfy to the following conditions

K1(z) = 2k
√

j2
1(z)+j2

2(z)
j2
0(z)

= 2k
√

j2
1(0)+j2

2(0)
j2
0(0)

= const,

K2(z) = −2k j3(z)
j2
0(z)

= −2k j3(0)
j2
0(0)

= const.
(18)

Thus, both the curvature and the torsion of free quantum particle are constant and, being
dependent on js at the initial point, may have arbitrary values. Only the spiral lines have such
properties. If K1 = 0, i.e. j21 + j22 = 0, then trajectory is the straight line; if K2 = 0, i.e. j3 = 0,
then it is situated at the plane, and K1 = 2k/j0. The sign minus in K2 means that the spinor
components (2.15) and its observables correspond to the left-hand spiral line. The action of
the inversion operator σ1 (Lunin, 2002), i.e. permutation of the spinor components, change
the torsion sign, and the left spiral line converts into the right one.
Integrating the expressions (2.16) under corresponding constants choice, then excluding
integration variable z and go over to the particle Z-coordinate, we have the following
expressions for particle coordinates and its path length

X(Z) = −
√

j2
1(0)+j2

2(0)
2k cos[2(k/j3(0))Z + arctan(j1(0)/j2(0))],

Y(Z) =
√

j2
1(0)+j2

2(0)
2k sin[2(k/j3(0))Z + arctan(j1(0)/j2(0))],
Z = Z, S(Z) = [j0(0)/j3(0)]Z.

(19)

Let us consider the main peculiarities of free-particle trajectories. The requirement
2(k/j3(0))Zst = 2π defines the spiral line step Zst. The first two expressions in (2.19) lead
to its radius R: Z2 + Y2 = [j21(0) + j22(0)]/(4k2) ≡ R2 = const. Particle path length along
one step is Sst = π j0(0)/k. Going over to the de Broglie wavelength λ = 2π/k the trajectory
parameters may be expressed as (Lunin, 2008)

Zst = [j3(0)/2]λ, R =

√
j21(0) + j22(0)

4π
λ, Sst = [j0(0)/2]λ. (20)

It is seen from equations (2.20) that the free quantum particle described with the Schroedinger
equation contains also a transverse components of its motion depending on the de Broglie
wavelength. All components of such motion are proportional to this wavelength but they are
also dependent upon the observables js at the initial point. The last circumstance leads, for
example, to the same Sst under different combinations of js(0).
Let notice that variable k entered the Schroedinger equation and defining the de Broglie
wavelength may be expressed as k(z) = −j′2/(2j1) due to equations (2.9). Unrolling surface
of the cylinder onto a plane and applying the Pythagorean theorem to the triangle formed by
legs Zst and 2πR, and hypotenuse Sst, one obtains the equality Z2

st + (2πR)2 = S2
st, which

leads to the identity (2.6) due to the conditions (2.20). The angle between an element of
the cylinder directed along the axis Z and the tangent to the spiral line is determined by

tan θ = (2πR)/Zst =
√

j21 + j22/j3. It coincides with the ratio of the curvature of the spiral line
to its torsion.
Potential variations lead, according to equations (2.9), to variations of j0, j1, j2, they change,
in turn, the curvature and the torsion, i.e. trajectory. Let the particle beginning motion at
z = 0 under arbitrary conditions, moves in area o ≤ z ≤ a under k1 = const, then passing
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through the potential step at z = a k1 goes to k2 = const. The propagator expression calculated
according (2.4) (Kolkunov, 1969; 1970) is expressed in this case as

Q(z, 0) = exp (iMσ3) exp (Lσ1) exp (iNσ3), (21)

where N = k1a, M = k2(z − a), L = (1/2) ln(k2/k1) are real parameters. At both sides of
the step the particle trajectories are spiral lines with different parameters. Therefore, since
only transformation of motion is interesting in this case, let us put N = M = 0 in (2.21),
then Q = exp(Lσ1) and Q+ = Q. Such matrix satisfies to conditions Q+σ2Q = σ2 and
Q+σ3Q = σ3, i.e. j2 and j3 are conserved. One has the following transformations in this case

J0 = cosh(2L)j0 + sinh(2L)j1, J1 = sinh(2L)j0 + cosh(2L)j1, J2 = j2, J3 = j3, (22)

then
Zst(k2) = π J3/k2 = π j3/k2,

R(k2) =

√
J2
1+J2

2
2k2

=

√
j2
1+j2

2+sinh(4L)j0 j1+sinh2(2L)(j2
0+j2

1)

2k2
,

Sst(k2) = π J0/k2 = π[cosh(2L)j0 + sinh(2L)j1]/k2.

(23)

It is seen from expressions (2.23) that there are exist conditions dependent on the value L
leading to R = 0. It means that, as far as an arbitrary element of the group SU(1, 1) is
representable in the form (2.21), it is possible a transformation of the spiral particle trajectory
with R �= 0 into the Newtonian free particle trajectory, and vice versa.
Similar consideration of particle motion above right angle potential barrier shows that there
are exist conditions under which all js in front of the barrier go to the same behind it (Lunin,
2008). These conditions coincide with the same ones when the reflection coefficient is zero in
the ordinary forms of quantum mechanics.
Let us notice here a similarity of transformations (2.22) to those in the special relativity.

Fig. 1. Double-slit experiment with a low-intensity source of electrons under different
expositions (Tonomura et al., 1989).

Free particle spiral-like trajectories allow one to propose a qualitative explanation of the
double-slit experiment with single electrons which does not require a particle dualism and
a wave function collapse (Kadomtzev, 2003). Figure 1 shows the results of the double-slit
experiment (Tonomura et al., 1989) under individual electrons when the next particle leaves
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the source after the previous one has already been registered and disappeared. It is seen two
peculiarities there. The first and the main one is the fact that each electron produces only one
point-wise trace, and the second one is the periodic spatial distribution of the traces density
appearing only under enough long expositions.
As it is shown above the question on completeness of observables is not solved both in the
theory and in the experiment. Therefore it is necessary to make some assumptions, especially
on the free particle transverse motion, i.e. on j1 and j2 (Lunin, 2008).
Let us assume that j21 + j22 �= 0 are equal for all particles, i.e. their R are also the same. However
j1 and j2 may be different at the same time, and we assume that they have random values.
Figure 2 shows results of simulation for the experiment under this assumption.

Fig. 2. Simulation of the double-slit experiment for particles moving along helical lines.

There are shown some circles in figure 2a which are cross sections of the cylinder surfaces
where spiral trajectories are situated. The points on one of them show a random positions of
different particles, and only those of particles form a traces on the photographic plate which
go through the point-wise slit S. Therefore one circle leads to one trace, and another circle
leads to another trace and so on, but all of them will create increased traces density near the
circumscribed circle of all previous circles.
It may be said that the isolated spiral lines set one-to-one mapping the point-wise source (or
slit) to the points of the detector plane. This circumstance explain the point-wise traces on the
photographic plate.
The stretched slit is the set of point-wise ones. Figure 2b shows two slits S1, S2 and a set of
corresponding circles described above under the assumption that the distance between slits
is close to twice diameter of the spiral curve. Let us note that the particles having velocity
projections almost parallel to the slits direction go through the slits in relatively more number
then those having perpendicular projections.
Comparing the simulation with the experiment one would take into account the main
experimental factors: a particles source dimensions and angle distribution of particles
velocities. These factors lead to smoothing of the interference-like picture but they can not
lead to disappearance of point-like traces, see fig.2c.
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Combining the simulation results shown in fig. 2b and fig.2c one will get the fig.2d, then
comparing it with the experimental ones in fig.1, one may see a qualitative similarity of them.
It is necessary to emphasize once more that this result has only qualitative character.
Combining in turn fig.2a and fig.2c it may be also explained the old experiment on the
scattering of individual electrons on the hole (Biberman et al., 1949), also only qualitatively, of
course.
It may be said that the systems of small holes or slits are the particles transverse motion
analyzers, good or bad.

3. Non-Euclidean superposition principle

This subject should be considered to be the key question for the group-theoretic structure of
quantum mechanics. Keeping in mind the Feynman scheme, we shall attempt to develop
a similar construction, however taking into account the group-theoretic requirements for
non-commutative propagators, and observables js complete set which are arbitrary at the
initial point of particle motion.
Let the particle is described by the Schroedinger equation ∇2χ(r) + k2(r)χ(r) = 0. In the
case of spatial dependent potential, let us connect an initial and final points ri and r f with
arbitrary piecewise smooth line n defined by tangent unit vector un(r) with initial and final
ones ui and u f . Projecting all vector variables onto this line and keeping in mind an infinite
set of unidimensional equations along such paths, one has the following form of the product
integral along n-th path

Qn(r f , u f ; ri, ui) = T exp
∫ r f

ri

[i(kun)σ3 +
(un∇k)

2k
σ1]dl, (24)

where all variables depend on path length l. We shall call it as n-th partial propagator,
it has the same group-theoretic properties as (2.4), i.e. matrices Qn belong to the same
non-commutative group SU(1, 1) (Lunin, 2002).
To construct the complete propagator taking all paths into account, it is necessary to find
at least the composition of two such non-commutative matrices, which belongs to the same
multiplicative group and unchanging under these matrices permutation. Let us define a
metric of the propagators logarithms space (Lunin, 2002). As far as the product integrals
in (2.4) and (3.1) have the same structure and therefore they define the same groups, we shall
use for simplicity the first one. Considering integrand in (2.4) as vector in of the space to
be defined in orthogonal basis σs (Casanova, 1976), one makes up the first quadratic form
as ds2 = −k2dz2 + dk2/(4k2). This expression defines the plane (k, z) with the Gaussian
curvature CG = −4, i.e. the Lobachevsky plane. Going over to variables u = 1/(2ik), v = z,
one gets the integrand ds and the Kleinian metric form of this plane ds2 with the same
Gaussian curvature

ds =
dvσ3 − duσ1

2u
, ds2 =

du2 + dv2

4u2 . (25)

As far as equations of kind (2.1) describe a number of physical phenomena, let us investigate
the significance of this curvature value. If we multiply (2.3) by dz and go over to variables u, v,
we get the expression dΦ = [(dvσ3 − duσ1)/(2u)]Φ, where the integer 2 defines CG = −4. Let
replace this integer by an arbitrary constant R and return to variables k, z. Then one has an
equation (R/2)Φ′ = [ikσ3 + k′/(2k)σ1]Φ instead of (2.3). Taking (2.2) into account under
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conservation R and returning to equation for χ, we have

χ′′ + k2(z)χ + (
2
R
− 1)[(ik +

k′
2k

)χ′ + ik(−ik +
k′
2k

)χ] = 0.

It is quiet clear that the last equation goes over to (2.1) only under R = 2. As far as a great
number of physical phenomena obey to the equations of the spatial stationary Schroedinger
equation kind, so as the Helmholtz one, and the Gaussian curvature CG = −4 is its
consequence, this curvature value has the exceptional role compared with the role of such
kind equations.
Having determined the propagators logarithms space, or the space of the Lie algebra of the
group SU(1, 1), which is the Lobachevsky plane, it is needed to map the group into this space.
It is necessary for it to map the group elements there as the geometrical objects, and to find
the operation under these objects corresponding to the group operation.
The metric in (3.2) maps the hyperbolic plane onto the upper Euclidean half-plane u > 0 as
the conformal mapping in semi-geodesic orthogonal coordinate system (the Poincare map)
(Bukreev, 1951). Any group element from SU(1, 1) may be expressed in form (2.21), and also
as Q = exp(aσ), then one has the following equality

Q = eiMσ3 eLσ1 eiNσ3 = eaσ = cosh a + (aσ)(sinh a/a), (26)

where (aσ) = a1σ1 + a2σ2 + a3σ3, a2 = a2
1 + a2

2 + a2
3 with real a1, a2 and imaginary a3, a = naa.

It should be noted that the geodesic lines (straight lines) on the Lobachevsky plane in its
representation on the Poincare map are the semicircles with its centers on the horizontal axis
v (see figure 3 below) and euclidean straight lines parallel to axis u. Following to (Lunin, 1994;
1998; 2002), taking an arbitrary point on the Poincare map as initial one, let us map the matrix
exp (iNσ3) as the oriented segment with length N along any geodesic line outgoing from the
initial point. Note that the geodesic vector length a is defined by the matrix trace, as it follows
from (3.3). Then we map the matrix exp (Lσ1) as the next geodesic segment with the initial
point at the end of previous segment and length L along the perpendicular geodesic line. The
matrix exp (iMσ3) is mapped in the similar way.
Let us connect the initial point and the end of the last segment with the geodesic line on the
Poincare map. Then we shall obtain the plane figure named as bi-rectangle, the fourth its side
corresponds to the geodesic vector a in (3.3). Equalities for matrix elements in (3.3) allow one
to obtain all elements of the bi-rectangles or triangles (if N or M is equal to zero).
Thus, the group SU(1, 1) element is mapped as the oriented segment of the geodesic line,
or geodesic vector, on the Poincare map. It is quite clear that the successive addition of the
geodesic vectors corresponds to the group operation of successive matrices multiplication at
the same time. This circumstance explains also the sense of the term "propagator logarithms
space" used above.
To make more clear the geometric sense of the group operation, let us multiply two arbitrary
matrices:

exp(cσ) = exp(bσ) exp(aσ) = cosh b cosh a + (nbna) sinh b sinh a+
+σ{nb sinh b cosh a +na sinh a cosh b + i[nbna] sinh b sinh a}. (27)

One may see from (3.4) that the resulting geodesic vector c contains the orthogonal component
to the plane defined by vectors a and b, and its length c may be obtained from the expression
cosh c = cosh b cosh a + (nbna) sinh b sinh a. The non-commutativity of the matrices exp(aσ)
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and exp(bσ) is defined by this orthogonal component. It is also seen that the geodesic vectors
of the commutative matrices are situated on the same geodesic line due to [nbna] = 0.
These facts make clear the geometric sense of non-commutativity. Let us note here that the
group SU(1, 1) logarithms space involves the complete three-dimensional Lobachevsky space.
It may be said that the multiplicative non-commutative three-parameter group SU(1, 1) is
isomorphically represented as additive group in the Lobachevsky space with the constant
negative Gaussian curvature being similar to the map of the group SU(2) on the unit sphere.
Let us find the binary commutative composition over the non-commutative group SU(1,1).
Let the matrix QM is the result of the composition to be find of two arbitrary equivalent
non-commutative matrices QA and QB. Let us formulate the requirements for QM:

a)QM ∈ SU(1, 1);
b)QM → QA, i f QB → 1 and QM → QB, i f QA → 1;

c)QM → QM, i f QA → QB and QB → QA.

In accordance with (a) all these matrices are representable as QA = exp(aσ), QB = exp(bσ),
QM = exp(mσ). All geodesic vectors have the common initial point O on the Poincare map
due to (b), see figure 3.

Fig. 3. The Poincare map. Geodesic lines are semicircles with centers on v-axis.

The requirement in (c) would be fulfilled if the vector m goes through the hyperbolic middle
M0 of the oriented segment AB = c connecting the ends of vectors a and b there. Our
task now is to obtain the geodesic vector m, finding at first the triangle OAB median OM0
outgoing from the initial point O. Taking into account that m and c intersect in their midpoints
M0, one has the following relations for triangles OAB, OAM0, and OM0B respectively:

exp(cσ) exp(aσ) = exp(bσ),
exp(cσ/2) exp(aσ) = exp(mσ/2),
exp(cσ/2) exp(mσ/2) = exp(bσ).

These relations lead to the expression to be find

exp(mσ) = {[exp(aσ) exp(−bσ)]1/2 exp(bσ)}2 =
= {[exp(bσ) exp(−aσ)]1/2 exp(aσ)}2.

(28)
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Obviously that exp(mσ) = exp(bσ) if a = 0 and exp(mσ) = exp(aσ) if b = 0.
Since the products and their real powers do not change the group belonging, then the matrix
exp(mσ) also belongs to the same group as both exp(aσ) and exp(bσ). Therefore the
expressions (3.5) set the commutative binary composition over non-Abelian group SU(1,1).
If exp(aσ) and exp(bσ) are commutative then m ≡ a+ b. As long as the group SU(1,1) is the
topological one, then one can expand (3.5) into series under conditions of small a and b, m
is also small in this case. Taking into account the smallness second order, one has m ∼= a+ b
and, independently, m2 ∼= a2 + b2 + 2(ab). Therefore the composition rule (3.5) goes to the
ordinary superposition principle up to the smallness second order. Representing the geodesic
vectors as a = naa and so on, we have the following expressions for the vector m:

nm =
na sinh a +nb sinh b

p
, tanh(m/2) =

p
cosh a + cosh b

, (29)

where p2 = sinh2 a + 2(nanb) sinh a sinh b + sinh2 b.
The composition rule (3.5) may be extended up to the square nonsingular matrices of any
order and also up to an arbitrary Lie groups under condition of existence their matrix
representations:

M = {[AB−1]1/2B}2 = {[BA−1]1/2 A}2.

Extremely important role belongs to the discrete symmetries in physics, especially in quantum
mechanics. Beforehand we mean here the inversion and permutations. Such symmetries
become geometrically apparent and contain particularly rich capabilities in the binary
compositions of the propagators.
It is clear that a → −a leads to QA → Q−1

A . Let us consider the geometric properties of
the binary composition (3.5) on the Poincare map, figure 3. If O is the common point of
both geodesic vectors a and b, then m is the diagonal of the Lobachevsky parallelogram
OAMB. Let us prolong the corresponding geodesic lines to the left hand of the point O, then
we shall get vectors −a and −b, they define the inverse matrices Q−1

A and Q−1
B . The vector

−m corresponds to the inversed parallelogram OA′M′B′ diagonal OM′, then one has the
inversed composition M−1 = {[A−1B]1/2B−1}2. Analogically, if one replaces only one vector
b by −b, then we shall have the parallelogram OADB′ with its diagonal d. It leads to the
composition D = {[AB]1/2B−1}2, which goes also to the inverse one under inversion both A
and B. If vectors a and b are small then d ∼= a− b. Let us emphasize that all vectors a, b,m,
and d ( see fig.3) are situated on the same Lobachevsky plane, all of them do not contain an
orthogonal components to their Lobachevsky plane. It is quit clear from fig.3 that permutation
of the vectors a and b leads to d → −d. In the matrix terms it means that D → D−1 under
permutation of A and B.
We have investigated all discrete symmetries mentioned above which may be represented
in the Lobachevsky plane. However it is not the complete investigation of the geometric
properties of the SU(1, 1) group in the complete Lobachevsky space, it is necessary to
go outside of the Lobachevsky plane to obtain the complete geometric description of
non-commutativity.
For this aim it is necessary to obtain the composition which includes only the term
proportional to the [nbna] in its exponential expression, as it is clear from the expression (3.4).
Omitting cumbersome geometric tracings and also cumbersome algebraic calculations, we
shall bring the results. The composition to be defined has two forms: T = (AB−2 A)1/2 A−1B
and T′ = (AB2 A)1/2 A−1B−1 (here prime means only notation, without any other sense). Let
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us find the geometric sense of the composition T. Representing all matrices in exponential
form one obtains

T = exp(tσ) = cosh t + (ntσ) sinh t = (eaσe−2bσeaσ)1/2e−aσebσ ,

then the parameters of the vector t are expressed as (Lunin & Kogan, 2004; 2009)

nt = i
[nbna]√

1 − (nbna)2
, tanh t =

√
1 − (nbna)2 tanh b tanh a

1 − (nbna) tanh b tanh a
. (30)

It is seen from formulae (3.7) that vector nt is orthogonal to the plane of both vectors a
and b, and t is equal to zero if they are collinear, i.e. T is the identity matrix under A
and B commutativity. One has to imagine the vectors t and t′ to be perpendicular to the
Lobachevsky plane of the vectors a and b, i.e. to the Poincare map in this case, figure 3. The
geodesic vectors a and b form the triangle on the Lobachevsky plane. Taking into account
the Cagnoli formula expressing the triangle area via its two sides and the angle between them
and comparing it with (3.7), one may see that t defines oriented parallelogram OAMB area.
Of course, there are exist connections between an area value and angle defect δ: tanh t = sin δ,
the vector t is also connected with the Berry phase. If a and b are small then t ∼= i[ba] ∼= −t′,
i.e. parallelograms areas are the same.
Let us investigate the properties of compositions T and T′ with respect to the discrete
symmetries. It is seen from (3.7) that permutation of matrices A and B leads to nt → −nt, i.e.
to T → T−1. If we shall replace both vectors a → −a and b → −b, then both expressions
in (3.7) would not be changed. Geometrically these replacements lead to the transformation
of the parallelogram OAMB into one OA′M′B′, fig.3, with the same orientation and area, i.e.
T → T.
The replacement of only one vector b → −b leads to the parallelogram OADB′ with contrary
directed unit vector nt and with changed area value. Note that this replacement transforms
T → T′ at the same time, then T and T′ have the similar symmetry properties, of course.
Opposite directions of nt and nt′ for adjacent areas express the saddle character of the planes
with negative Gaussian curvature.
One may see that addition of the binary compositions T and T′ to M and D extends the
geometry contents of the binary compositions over the group SU(1, 1) up to the complete
three-dimensional Lobachevsky space.
The symmetry properties of all binary compositions obtained above in the geometric way may
be also verified by means of the ordinary algebraic calculations (Lunin, 2002; Lunin & Kogan,
2009).
All the binary compositions mentioned above may be considered as the
non-Euclidean superposition principle:

M = {[AB−1]1/2B}2 = {[BA−1]1/2 A}2,
D = {[AB]1/2B−1}2,
T = [AB−2 A]1/2 A−1B, T′ = [AB2 A]1/2 A−1B−1,

(31)

applicable to the multiplicative non-Abelian Lie groups of any order. All these compositions
belong to the same groups as both A and B, since real powers do not change the group
belonging. These compositions have the following properties with respect to the discrete
symmetries under non-commutative group elements A and B

i f A → B, B → A, then M → M, D → D−1, T → T−1, T′ → (T′)−1;
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i f A → A−1, B → B−1, then M → M−1, D → D−1, T → T, T′ → T′.
These compositions go over to the ordinary superposition principle in the vicinity of identity
with the same symmetry properties. The group elements A and B may also belong to the
commutative group, the compositions M and D conserve their symmetry properties, both
T and T′ are the identity in this case. The last circumstance allowed one to consider the
compositions T and T′ as the commutators over the multiplicative groups.
In the simple cases of some subgroups of the group SL(2, C), such as SU(2), SU(1, 1), the
non-Euclidean superposition principle has the geometric interpretation in the spaces with
nonzero Gaussian curvature. Such groups may be mapped as additive groups into such spaces
with quit clear geometric sense of the group elements, the operation over the group, and the
compositions discussed above.
It is extremely important to compare the ordinary superposition principle used in a great
number of physical phenomena up to now, and the non-Euclidean superposition principle.
We shall consider the double-slit experiment for this aim.
At first, it is needed to consider the factors which may be different or the same in the
ordinary consideration and proposed here. These factors may be separated with respect to
the experimental and also theoretical ones.
If we are interesting now only to compare two composition rules, we have to set the same
experimental conditions, and to take the common initial theoretical principles, where it is
possible.
From the experimental view point, we regard that stretched slits, as it is usually supposed,
lead to loss of subject clarity. It is clear that different pairs of points along stretched slits, one
or both, may bring any phase shifts at any detector surface fixed points, and this circumstance
has to be taken into account.The last one is not included into the ordinary calculations, it
is carried out only for individual path pairs (Feynman & Hibbs, 1965). Therefore we shall
consider only two point-wise slits here.
The double-slit experiment is supposed to involve all enigmas of quantum mechanics
(Feynman, 1965). However, the ordinary consideration of the experiment does not contain
the propagators non-commutativity, as a rule. As long as this circumstance is one of the
fundamental peculiarity of quantum mechanics, we shall include this one locating two
point-wise slits onto the two media boundary, then the non-commutativity will appear
immediately. Nevertheless, excluding the boundary in the final expressions one may compare
the composition rules under the same conditions.
Relating to the theoretical distinctions it is necessary to take into account a number of factors.
They are following: the Hermitian forms to be compared in the framework of only theory
under its incompleteness in the ordinary schemes; the observables have to be compared
with the experimental results; the scalar or matrix expressions of the propagators in both
approaches; and, of course, the composition rules itself, which have to be roughly consistent
with respect to some limiting cases.
Since it is senseless to compare some part of unknown Hermitian forms set with the complete
one, we shall accept the complete set in both cases.
It is accepted in the ordinary schemes of quantum mechanics to demonstrate only one
observable, the "probability density" ρ = χχ∗ = (j0 + j1)/(2k), with interference pattern.
We regard restriction with only one observable to be insufficient due to reasons discussed in
the second part of the paper, therefore we shall include all observables into consideration.
The scalar character of the propagators in the ordinary schemes, for example in the Feynman
one, we suppose also to be insufficient, then we are forced to use the matrix one.
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The last factor we shall discuss below.
Taking all these assumptions into account, let us consider the double-slit experiment when
two point-like slits are arranged at the two media boundary (Lunin, 1998; 2002). The
propagators along different paths may be written, in accord with the expression (2.21), as

A = exp(aσ) = exp (iMAσ3) exp (Lσ1) exp (iNAσ3),
B = exp(bσ) = exp (iMBσ3) exp (Lσ1) exp (iNBσ3),

(32)

where NA = k1sA, NB = k1sB, MA = k2rA, MB = k2rB, L = (1/2) ln(k2/k1), k1 and k2 are
reciprocals of waves before and behind slits respectively, sA and sB are path lengths from the
source up to slits under k1, rA and rB are the same from slits up to the common point of the
detector surface under k2.
Now let us consider the last factor mentioned above. It is quit clear that one needs at first
to compare the composition M from (3.8) and the sum of A and B. Let us note that the
coincidence of two point-wise slits, i.e. shift one of them to the position of another, and
shutting down one of them have to lead to the same propagator. On the one hand, if we
shall displace the slit B to the position of A we shall have the propagator MA = exp(2aσ)
in the case of the non-Euclidean superposition principle. Under the Euclidean one, using the
sum of propagators, one has 2 exp(aσ), and these matrices have different determinants. On
the other hand, if we shut down the slit B, both propagators would be the same, exp(aσ).
The geometric investigation of this subject (we have no place to prove it here, see (Lunin,
1994)) shows that the composition of propagators would be the first order hyperbolic moment
on the Lobachevsky plane, or the geometric mean, in this and similar cases. It means that
the non-Euclidean complete propagator MNE for double-slit experiment has to be taken as
[AB−1]1/2B with the same group-theoretic properties. The Euclidean one ME would be the
arithmetic mean at the same time, (A + B)/2. Now both propagators are roughly to be
consistent in the double slit experiment, besides the group-theoretic requirements, of course.
Omitting some calculation details, we shall bring the following expressions for them

MNE =
1
2
· eiMAσ3 eLσ1 eiNAσ3 + eiMBσ3 eLσ1 eiNBσ3√

cos2 (N1−N2)+(M1−M2)
2 − sinh2 L sin(N1 − N2) sin(M1 − M2)

,

ME =
eiMAσ3 eLσ1 eiNAσ3 + eiMBσ3 eLσ1 eiNBσ3

2
.

Since matrices in the numerators of both expressions are the same, and since the observables
are the bilinear Hermitian forms, all observables calculated by means of two composition rules
are distinguished only by factor depending on the problem parameters. Then we have

js(E) = [cos2 (N1 − N2) + (M1 − M2)

2
− sinh2 L sin(N1 − N2) sin(M1 − M2)]js(NE).

As far as j3(NE) is constant everywhere due to fulfilment of the group-theoretic requirements
to the composition M from (3.8), then j3(E) �= const, in particular it depends on coordinates as
it is seen from the expression above. It means that the Euclidean superposition principle leads
to violation of some conservation laws excluding the points where expression in brackets is
equal to unit.
We note here that the calculation of the interference pattern for more number of point-wise
slits requires to obtain the hyperbolic first order moment over corresponding number of
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non-collinear geodesic vectors on the Lobachevsky plane. For example, if one has three slits it
is necessary to find at least the composition of three non-commutative matrices which belongs
to its group and which does not change under permutation of any pair of them.
As far as we do not know any theoretical or experimental results devoted to the double-slit
experiment under double-media conditions, we shall restrict with the homogeneous medium
when k1 = k2, i.e. L = 0. Therefore we shall bring two connections between
js(NE, M), js(E, M) and js(NE, D), js(E, D), where the first pair corresponds to the symmetric
composition M, and the second one corresponds to the antisymmetric composition D:

js(E, M) = [cos2 (N1−N2)+(M1−M2)
2 ]js(NE, M),

js(E, D) = [cos2 (N1+N2)+(M1+M2)
2 ]js(NE, D).

(33)

We remind that j3(NE, D), j0(NE, D) are constant in homogeneous medium in just the same
way as j3(NE, M), j0(NE, M), therefore j3(E, D), j0(E, D) and j3(E, M), j0(E, M) are not
constant. It means that last observables calculated by means of the ordinary superposition
principle lead to violation of the conservation laws, excluding the points where

(N1 − N2) + (M1 − M2) = ±2πn f or M, n = 0, 1...
(N1 + N2) + (M1 + M2) = ±2πm f or D, m = 0, 1... (34)

The first expressions in (3.10) and (3.11) show that js(E, M) are equal to js(NE, M) at the points
where two paths length difference is multiply to the wave length, i.e. at the points of peaks in
interference pattern.
Two superposition rules are rather compared, now we shall briefly discuss the consequence
of the non-Euclidean superposition principle concerning with the double-slit experiment in
homogeneous medium restricting with symmetric and antisymmetric compositions M and
D. Two observables, j3 and j0, are conserved for both compositions whereas j1 and j2 at the
final point F are dependent upon them at the initial point I as

j1(F, M) = cos[(N1 + M1) + (N2 + M2)]j1(I) + sin[(N1 + M1) + (N2 + M2)]j2(I),
j2(F, M) = − sin[(N1 + M1) + (N2 + M2)]j1(I) + cos[(N1 + M1) + (N2 + M2)]j2(I) (35)

for composition M, and for composition D as

j1(F, D) = cos[(N1 + M1)− (N2 + M2)]j1(I) + sin[(N1 + M1)− (N2 + M2)]j2(I),
j2(F, D) = − sin[(N1 + M1)− (N2 + M2)]j1(I) + cos[(N1 + M1)− (N2 + M2)]j2(I). (36)

The expressions (3.12), (3.13) and (2.19), (2.20) define two spiral lines with the same radii
and step but having different torsion. It is interesting to note that the line defined by (3.12)
does not depend on paths permutation whereas another one changes the torsion at the same
time. These two spiral lines have also some other peculiarities, for example all js(F, D) are
conserved under condition (N1 + M1) = (N2 + M2)± 2πn.

4. Irreversibility in quantum mechanics

This problem is considered to be unsolved (Ginzburg, 1999; Kadomtzev, 2003) due to the
fact that equations describing a physical phenomena, in particular the Schroedinger one, in
a closed systems are reversible, they describe such phenomena highly satisfactory, but an
entropy is increasing at the same time. Therefore it seems that a problem of irreversibility is
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first of all the mathematical one, and the reversible equations have to be accepted as the initial
condition.
It is quite clear that the irreversibility may be coupled with interactions. It is also quite clear
that an interactions lead to non-commutativity of a propagators describing processes. We shall
assume that the mathematical explanation of irreversibility may be carried out on the base
of the non-commutative properties of transformations which are contained in the reversible
equations, and the reversibility of equations is only necessary condition for the closed system
reversible evolution, but perfectly insufficient for that. It would be meant that a reversible
equations contain irreversibility in general case. Further we shall follow to the (Lunin &
Kogan, 2004; 2009) where the subject is set forth in more details.
Transformations of solutions for the time-dependent Schroedinger equation in its spinor
representation belong to the SL(2, C) group. It describes a most general spinors
transformations up to unessential scalar factor - matrix determinant. The last one for the
SL(2, C)-group matrix representation is equal to the unit.
Reversibility of the equations means in particular that any transformation has the inverse one,
in just the same way as any group element has the inverse one. In other words, the equation
reversibility and the group description of the transformations are closely connected.
The process is reversible if the system goes through the same sequence of states in reverse
order under time inversion as it went in the straightforward one. It means that all conservation
laws are the same in both processes, i.e. both ones are described by the same group.
Interchange of lower and upper integration limits in the product integral leads to the
propagator inversion Q → Q−1 (Gantmakher, 1988). In other words, if Q corresponds to
the process t1 → t2, then Q−1 corresponds to the process t2 → t1.
As far as irreversibility is the experimental fact, we shall use the density matrix of
pure states J from (2.7) based on observables js, it has no the inverse one. Then the
irreversibility investigation means to investigate the consequences J(t0)...J(t1)...J(t2)...J(t) for
times t0...t1...t2...t under inversion of the last consequence.
Let us assume Φ(t1), Φ(t2) and J(t1), J(t2) are to be the spinors and the density matrices
correspondingly for arbitrary times t1, t2. Let these spinors are connected by matrix Q(t2, t1)
from the group SL(2, C) as Φ(t2) = Q(t2, t1)Φ(t1).Then one has

J(t1) =
1
2

3

∑
s=0

σs{Φ+(t1)σsΦ(t1)}, J(t2) =
1
2

3

∑
s=0

σs{Φ+(t1)Q+(t2, t1)σsQ(t2, t1)Φ(t1)}. (37)

All propagators in (3.8), excluding T, T′, go to inverse ones under time inversion, they
do not contain irreversibility. Let us consider one of two last compositions from (3.8)
under inversion of both matrices entered it, and prove that T(A−1, B−1) = T(A, B),
i.e. (A−1B2 A−1)1/2 AB−1 = (AB−2 A)1/2 A−1B. Multiplying this equality on the right
subsequently by B, A−1 and raising it to the second power one has

A−1B2 A−1 = (AB−2 A)1/2 A−1B · BA−1 · (AB−2 A)1/2 A−1B · BA−1 =

= (AB−2 A)1/2(AB−2 A)−1(AB−2 A)1/2 A−1B2 A−1 = A−1B2 A−1,

i.e. T → T under A → A−1 and B → B−1. The composition T′ has the same properties.
Thus, we have the following transformations for propagators compositions in time-depending
process t1 → t2 → t1: 1 → Q → 1, if Q is any reversible propagator, and 1 → T → T2 for
irreversible composition T (or T′).
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Considering process t1 → t2 → t1 and replacing Q in the second expression in (4.1) by T2 one
has finally the following expression for the matrix J

J(t1 → t2 → t1) =
1
2

3

∑
s=0

σs{Φ+(t1)(T2)+σsT2Φ(t1)},

which does not coincide with J(t1) there. It means that the process is irreversible in general
case. However, even this matrix may lead to a reversible process. A comparison of the last
expression with J(t1) in (4.1) shows that such process is also reversible under conditions
(T2)+σsT2 = σs, s = 0, 1, 2, 3, which lead to T2 = σ0, or T = ±σs. As far as T = σ0 under A
and B commutativity, one may see that interaction is the necessary condition for irreversibility,
but insufficient.
As an example of the system in which irreversibility may take place let us consider the
double-slit experiment where point-wise slits are arranged at the two media boundary. A
propagators for it were calculated in (3.9).
The reversibility condition, t = 0, as it is seen from (3.7), leads to the requirement√

1 − (nbna)2 tanh b tanh a = 0. It means that the process is reversible if at least one vector a
or b is equal to zero, or they are collinear.
Using expressions (3.9) the parameters of the vector a may be expressed as

cosh a = cosh L cos(NA + MA), na1 sinh a = sinh L cos(NA − MA),
na2 sinh a = sinh L sin(NA − MA), na3 sinh a = i cosh L cos(NA + MA),

and similar for the vector b.
If media are identical, i.e. k1 = k2, L = 0, interaction is absent, the propagators A and B
are commutative, then the matrix T = σ0. Therefore only reversible processes take place in
homogeneous media.
If media are inhomogeneous but the propagators satisfy to the condition cosh L cos(NA +
MA) = ±1 or cosh L cos(NB + MB) = ±1, then T = σ0, i.e. one has also reversibility.
Irreversibility takes place for the points where these conditions are violated.
Irreversibility of some process taking place in a closed system has to become apparent to an
observer. It means that some observables, i.e. some Hermitian forms, have to be influenced
by irreversible process.
Let some process in a closed system is irreversible along t1 → t2 → t1, and A and B are two
corresponding non-commutative propagators from SU(1, 1) group representable as
A = exp[(naσ)a], B = exp[(nbσ)b]. We shall also assume for definiteness that (1/2)TrA >
1, (1/2)TrB > 1, the lengths of vectors a and b are real under these conditions.
Let the system evolution is a repeating process mentioned above, and if Δt = t2 − t1 then
time duration of n-multi-periodic process is 2nΔt and the lengths of vectors a and b are also
increased by 2n times.
Thus, irreversibility has to be appeared as dependence of some observables calculated by
means of the composition T on number of cycles n.
The value (nbna) �= ±1 due to A and B non-commutativity, then the length of the vector t is
positive. The length t̃ of the vector t after n-multiple repetitions of the process will be defined
by

tanh t̃ =
√

1 − (nbna)2 tanh 2nb tanh 2na
1 − (nbna) tanh 2nb tanh 2na

. (38)
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Calculating correspondent matrices on the base of composition T we shall obtain the
expression for j̃0 after n-times repetitions of the process:

j̃0 =
{1 + (1 + 2 t2

3
t2 ) tanh2 t̃}j0 + 2 t1 j1+t2 j2

t tanh t̃ + 2t3
t1 j2−t2 j1

t2 tanh2 t̃

1 − tanh2 t̃
, (39)

where js are the observables at the beginning of process. It was taken into account here that
all ts/t do not depend on n, and, as far as a1, a2 are real and a3 is imaginary and the same for
bs , it is also accepted here t3 → it3, so that t3 in (4.3) is real.
The value j̃0 = Φ+Φ is positive defined, the value j̃0 coincides with j0 at the beginning of
process. It is seen from (4.2) that t̃ is restricted under n → ∞, then j̃0 in (4.3) is positive,
increases and also restricted under this condition. Besides, it is the only positive defined
functional.
There were carried out the geometric analysis of irreversibility, and also the functional j̃0 in
(Lunin & Kogan, 2009). It was shown there that the functional is closely connected with the
area of triangle defined by vectors a and b on the Lobachevsky plane. This area is coupled in
turn with the Berry phase. Such consideration allows also to show that the functional grows
more quickly under interaction increase.
It may be assumed that this functional may be coupled with an entropy.

5. Conclusion

Three subjects connected with quantum mechanics considered above allow one to make some
conclusions. Two of them, the observables set completeness and the superposition principle,
lie in the foundations of quantum mechanics, the third one, an irreversibility, is its essential
consequence.
The first topic of the paper is devoted to an analysis of the conventional quantum mechanics
structure from the view point of requirements of the observables set completeness and
fulfilment of the conservation laws for them. Both last subjects are closely connected among
themselves, and with the group theory, of course.
As long as different observables may be connected with each other in accordance with the
uncertainty relations in the conventional forms of quantum mechanics, then the observables
completeness obtains an exceptional sharpness. If one has no complete set of them then
it is impossible to prove that the theory includes all similar relations, even for the known
observables.
Considering a stationary Schroedinger equation it was defined the complete set of the
Hermitian forms based only on the complex wave function and its derivative. It may be said
that the complete set is a consequence of only the equation and combinatorial analysis. These
Hermitian forms contain only the same variables which are used for probability density and
its current in the ordinary forms of quantum mechanics.
The complete set includes four Hermitian forms, they satisfy to some identity in any case,
therefore it may be considered as the completeness condition, and only three of them are
independent. The set is also applicable to the time-dependent Schroedinger equation as far as
the last one contains only the first order time derivative.
Since the stationary Schroedinger equation is similar to the Helmholtz one, the complete set of
the Hermitian forms is also similar to the Stokes parameters, they satisfy to the same identity.
Obviously, that the complete set contains the parameters used in quantum mechanics now,
and also the hidden parameters discussed there. As far as the set of the Stokes parameters
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is complete and known during many decades, the complete set of the Hermitian forms
connected with the Schroedinger equation and described here is similar to them, one may
say that there are an unused parameters in quantum mechanics but not at all a hidden ones.
The complete set of observables is assumed to have a spatial interpretation. An analysis of
the free particle conservation laws fulfilment under arbitrary initial conditions based on the
complete set of observables shows that a spatial line where all necessary conservation laws
are fulfilled is the spiral line in a general case, such line may be named as the free particle
trajectory. Obviously, that even free quantum particle has a transversal motion components
in this case.
Consideration of the trajectories transformations under some simplest potentials shows that
the spiral line may turn to the straight line under some conditions, and vice versa.
The observables transformation on the step-wise potential which is similar to the Lorentz one
allows one to suspect that such transformation may play a role of a bridge between quantum
mechanics and special relativity.
Combination of the complete set of observables with its spatial interpretation allows one to say
that the quantum particle position is defined uniquely by initial conditions and conservation
laws. An ordinary probabilistic interpretation in quantum mechanics is assumed to be
connected with some unused, and unmeasured of course, parameters containing transversal
components of a particle motion.
The observables completeness or its absence influences also on the wave function
interpretation. The observables at the initial point have to define the wave function and its
derivative there. If some part of observables is unknown, i.e. is not measured or is not
considered at all, then the wave function can not be defined uniquely, even taking into account
a phase factor, therefore any interpretation of the wave function, including probabilistic one,
can not be proved. Such situation takes place now in the conventional quantum mechanics.
In the opposite case, when the complete set of observables is included into the theory, a
quantum particle position is assumed to be uniquely defined. Any interpretation of the wave
function is not necessary in this case although the last one may be expressed via observables,
as well as its derivative.
The observable complete set leads to a definite position of quantum particle. Obviously, to
prove an ordinary probabilistic interpretation in quantum mechanics it is necessary to prove
in turn that it is necessary to exclude from consideration some Hermitian forms which are
constructed on the basis of the same variables, ψ and ∇ψ, as used for construction of ρ and j
in the conventional schemes, and which define a transverse components of quantum particle
motion.
This approach has led to the uniquely defined trajectories of quantum particle on the one
hand, and to the unclassical their configuration, the spiral lines, on the other hand. These
two circumstances has led to an explanation of the point-wise traces on the one hand, and to
a qualitative one of their distribution on the other hand in the double-slit experiment with a
single-particles source without use of a wave function collapse and a particle-wave dualism.
The second topic of the paper is a consideration of the superposition principle in quantum
mechanics from the point of view of the Noether theorems. These theorems require
the rigorous group-theoretic construction of the fundamental physical theories due to the
necessary requirement of the conservation laws fulfilment. The last one is the consequence
of the space symmetries.
The approach proposed in the paper has led to the non-Euclidean superposition principle
which allows one to fulfill these requirements.
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A successive matrix transformations of solutions for the Schroedinger, the Helmholtz and
other similar wave equations are non-commutative in a general case. Such transformations
may be geometrically mapped into a curved spaces, in particular into the Lobachevsky space
with the Gaussian curvature CG = −4 as it was shown above. The problems similar to
interference ones require to use some composition rule for alternative transformations, and
a use of the ordinary superposition principle leads to the compositions on the complex
Euclidean plane, i.e. in the flat space. Therefore one has the situation when we need to
compose the same objects (transformations or solutions) either in the one, curved, space or
in the other, flat, space.
The non-Euclidean superposition principle allows one to compose all transformations,
successive and alternative, in the common space with the Gaussian curvature defined by the
equation.
To compare the ordinary superposition principle and the non-Euclidean one it was considered
the double-slit experiment when both slits are arranged at the two-media boundary. The
approach assumes to consider also a homogeneous medium.
As far as the case with a boundary independently calculated on the base of the ordinary
superposition principle is not known to author, consideration of the conservation laws
fulfilment was carried out on the base of the partial propagators calculated by means of the
product integral, and subsequent comparison of two different rules of their compositions, in
accordance with the ordinary and non-Euclidean superposition principles. Such comparison
was carried out also for the case of the homogeneous medium.
It was shown that the non-Euclidean superposition principle leads to fufilment of the
conservation laws everywhere under presence or absence of a boundary.
The ordinary superposition principle leads to its fulfilment only at the points of peaks of the
interference pattern, and to their violation in the other points.
Two compositions entered the non-Euclidean superposition principle, symmetric and
antisymmetric with respect to permutations, are considered to see a differences to which they
may lead. It may be assumed that these compositions may be connected with bosons and
fermions correspondingly, in particular under conditions of the double-slit experiment with
such kinds particles.
Taking into account expressions (3.12) and (3.13) one may see that they having different
permutation properties lead to different spatial behavior of the j1 and j2 in both cases. The
experiments with particles of different kinds mentioned above, particularly with polarized
ones, i.e. j1 
 0 or j2 
 0 , may demonstrate in principle these differences.
It may be assumed that a differences of similar kind are contained also in the ordinary forms
of quantum mechanics, for example differences for the central peak in interference pattern for
bosons and fermions.
Here it is necessary to take into account that the central peak in the interference pattern is
the same for bosons and fermions in accordance with point of view accepted now (Feynman,
1965).
Such kind experiments in combination with expression ρ = χχ∗ = (j0 + j1)/(2k), which
does not contain j2(F), and expressions (3.12), (3.13) for polarized particles may be found also
useful to compare the probability interpretation of the density ρ in the quantum mechanics
ordinary forms and complete set of observables proposed here experimentally.
Obviously that more rich opportunities appear in the case of the double-slit experiment
arranged at the two-media boundary with polarized particles.
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The last topic considered in the paper concerns with the irreversibility in quantum mechanics.
The problem consists of the circumstance that all the main equations, in particular the
Schroedinger one, are reversible, and they describe a physical phenomena satisfactorily
excluding irreversible processes. A known attempts to solve the problem contain a proposals
to introduce different modifications into existing theory which may lead to the unacceptable
changes concerning with reversible processes taking place simultaneously with irreversible
ones in the closed physical systems.
The approach proposed in this paper and based on the non-Euclidean superposition principle
comes from the reversible Schroedinger equation which includes interactions. Any partial
propagators are reversible in this case, all of them belong to some group therefore any
propagator has the inverse one. Any such propagator turns to the inverse one under time
inversion, as well as some of their compositions entered the non-Euclidean superposition
principle. It means that they do not contain irreversibility, and reversible processes described
with the reversible Schroedinger equation take place in the closed systems even under
interactions.
However, two binary compositions entered the non-Euclidean superposition principle, T and
T′, do not turn into the inverse ones under time inversion, for example T → T under such time
transformation. It means that such kind binary composition is transformed as 1 → T → T2

under t1 → t2 → t1 in general case, and such composition may contain irreversibility.
Thus, a reversibility of the Schroedinger equation is only the necessary condition for a closed
physical system reversible evolution but not the sufficient one, on the one hand. On the other
hand, it is obviously that inclusion into the Schroedinger equation of some irreversible terms
may lead only to the irreversibility for any processes their.
In an opposite way, the non-Euclidean superposition principle assumes coexistence of both
reversible and irreversible processes simultaneously in the closed physical systems described
with the only the reversible Schroedinger equation.
Let us note two circumstances connected with the opportunity to include irreversibility into
the quantum mechanics scheme.
The first one is following: none partial (single) propagators do not contain irreversibility, it is
necessary to find at least some their binary compositions. The second one necessarily implying
interactions in a system, leads to mapping all propagators and their compositions into the
Lobachevsky space, i.e. into the curved space.
It is interesting to compare these circumstances with two conclusions from
(Prigogine & Stengers, 1994) which are the following:
a) Irreversibility expressed by the time arrow is a statistical property. It can not be introduced
in terms of individual paths or wave functions. Therefore it demands a radical withdrawal
from the Newtonian mechanics or from orthodox quantum mechanics based on concepts of
the individual path or wave function;
b) The main assumption that we have to introduce here is the statement that the space with
zero Gaussian curvature, similar to the Minkowski space, does not contain entropy,
which are cited unfortunately only in the reverse translation from Russian.
It would be recognized that these expressions formulate the really necessary conditions of
irreversibility as it was shown above.
The approach stated above allows one to express the following general point of view on the
structure of the fundamental theories.
Taking the exceptional role of the group theory and the Noether theorems in such physical
theories into account the last ones may be split into two classes. The first one consists of
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the theories constructed before the Noether theorems establishment, and the second ones
constructed later.
Evidently that it is difficult to assume the consecutive group-theoretic construction of the
first class theories. In opposite case, the theories of the second class would be assumed to
be the group-theoretic ones, since the Noether theorems were known to the time of their
development.
Therefore it seems to be useful to carry out the group-theoretic analysis of the foundations of
the first class theories, whereas a similar consideration of the second class theories seems to
be unnecessary.
Besides, it would be considered in both cases if the ordinary ( Euclidean) superposition
principle, if it used there, is sufficient for the aims of the theory, or insufficient.
Author is grateful to V. I. Kogan ( Kurchatov, MEPhI) for many years collaboration, and to
V. I. Man’ko (Lebedev) for his active support.
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1. Introduction

In 1984 Berry addressed a quantum system undergoing a unitary and cyclic evolution under
the action of a time-dependent Hamiltonian (M. V. Berry, 1984). The process was supposed
to be adiabatic, meaning that the time scale of the system’s evolution was much shorter
than the time scale of the changing Hamiltonian. Until Berry’s study, it was assumed that
for a cyclic Hamiltonian the quantum state would acquire only so-called dynamical phases,
deprived of physical meaning. Such phases could be eliminated by redefining the quantum
state through a “gauge” transformation of the form |ψ〉 → eiα |ψ〉. However, Berry discovered
that besides the dynamical, there was an additional phase that could not be “gauged away”
and whose origin was geometric or topological. It depended on the path that |ψ〉 describes
in the parameter space spanned by those parameters to which the Hamiltonian owed its time
dependence. Berry’s discovery was the starting point for a great amount of investigations
that brought to light topological aspects of both quantum and classical systems. Berry’s phase
was soon recognized as a special case of more general phases that showed up when dealing
with topological aspects of different systems. For example, the Aharonov-Bohm phase could
be understood as a geometric phase. The rotation angle acquired by a parallel-transported
vector after completing a closed loop in a gravitationally curved space-time region, is also a
geometric, Berry-like phase. Another example is the precession of the plane of oscillation of a
Foucault pendulum.
Berry’s original formulation was directly applicable to the case of a spin-1/2 system evolving
under the action of a slowly varying magnetic field that undergoes cyclic changes. A
spin-1/2 system is a special case of a two-level system. Another instances are two-level
atoms and polarized light, so that also in these cases we should expect to find geometric
phases. In fact, the first experimental test of Berry’s phase was done using polarized, classical
light (A. Tomita, 1986). Pancharatnam (S. Pancharatnam, 1956) anticipated Berry’s phase
when he proposed, back in 1956, how to decide whether two polarization states are “in
phase”. Pancharatnam’s prescription is an operational one, based upon observing whether
the intensity of the interferogram formed by two polarized beams has maximal intensity. In
that case, the two polarized beams are said to be “in phase”. Such a definition is analogous to
the definition of distant parallelism in differential geometry. Polarized states can be subjected
to different transformations which could be cyclic or not, adiabatic or not, unitary or not.
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And in all cases Pancharatnam’s definition applies. Pancharatnam’s phase bore therefore
an anticipation and – at the same time – a generalization of Berry’s phase. Indeed, Berry’s
assumptions about a cyclic, adiabatic and unitary evolution, turned out to be unnecessary for
a geometric phase to appear. This was made clear through the contributions of several authors
that addressed the issue right after Berry published his seminal results (Y. Aharonov, 1987; J.
Samuel, 1988).
Pancharatnam’s approach, general as it was when viewed as pregnant of so many concepts
related to geometric phases, underlay nonetheless two important restrictions. It addressed
nonorthogonal and at the same time pure, viz totally, polarized states. Here again the assumed
restrictions turned out to be unnecessary. Indeed, it was recently proposed how to decide
whether two orthogonal states are in phase or not (H. M. Wong, 2005). Mixed states have
also been addressed (A. Uhlmann, 1986; E. Sjöqvist, 2000) in relation to geometric phases
which – under appropriate conditions – can be exhibited as well-defined objects underlying
the evolution of such states.
The present Chapter should provide an overview of the Pancharatnam-Berry phase by
introducing it first within Berry’s original approach, and then through the kinematic approach
that was advanced by Simon and Mukunda some years after Berry’s discovery (N. Mukunda,
1993). The kinematic approach brings to the fore the most essential aspects of geometric
phases, something that was not fully accomplished when Berry first addressed the issue.
It also leads to a natural introduction of geodesics in Hilbert space, and helps to connect
Pancharatnam’s approach with the so-called Bargmann invariants. We discuss these issues
in the present Chapter. Other topics that this Chapter addresses are interferometry and
polarimetry, two ways of measuring geometric phases, and some recent generalizations of
Berry’s phase to mixed states and to non-unitary evolutions. Finally, we show in which sense
the relativistic effect known as Thomas rotation can be understood as a manifestation of a
Berry-like phase, amenable to be tested with partially polarized states. All this illustrates
how – as it has often been the case in physics – a fundamental discovery that is made by
addressing a particular issue, can show afterwards to bear a rather unexpected generality and
applicability. Berry’s discovery ranks among this kind of fundamental advances.

2. The adiabatic and cyclic case: Berry’s approach

Let us consider a non-conservative system, whose evolution is ruled by a time-dependent
Hamiltonian H(t). This occurs when the system is under the influence of an environment.
The configuration of the environment can generally be specified by a set of parameters
(R1,R2, . . .). For a changing environment the Ri are time-dependent, and so also the
observables of the system, e.g., the Hamiltonian: H(R(t)) ≡ H(R1(t),R2(t), . . .) = H(t).
The evolution of the quantum system is ruled by the Schrödinger equation, or more generally,
by the Liouville-von Neumann equation (in units of h̄ = 1):

i
dρ(t)
dt

= [H(R(t)), ρ(t)] . (1)

Here, the density operator ρ is assumed to describe a pure state, i.e., to be of the form ρ(t) =
|ψ(t)〉 〈ψ(t)|. An “environmental process” is given by t → R(t), the curve described by the
vector R in parameter space. To such a process it corresponds a curve described by |ψ(t)〉 in
the Hilbert space H to which it belongs, or by the corresponding curve ρ(t) = |ψ(t)〉 〈ψ(t)|
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in the “projection space” P(H) to which ρ belongs. We will assume that for all R there is an
orthonormal basis |n;R〉 such that

H(R) |n;R〉 = En(R) |n;R〉 . (2)

An environmental process R(t) is called periodic with period T, whenever R(T) = R(0),
En(R(T)) = En(R(0)), and |n;R(T)〉 〈n;R(T)| = |n;R(0)〉 〈n;R(0)|. Of course, we can
change the eigenbasis according to |n;R〉 → |n;R〉′ = eiαn(R) |n;R〉, which is called a
gauge transformation. When the adiabatic approximation was first studied, people assumed
that it would be always possible to get rid of phase factors by simply performing a gauge
transformation, if necessary (A. Bohm, 2003). Berry’s discovery made clear that this is not
always the case. The point is that we are not always totally free to choose the required
phase factors when performing gauge transformations. Let us see why it is so. To this end,
we consider first two simple cases in which phase factors appear that can be eliminated.
A first case is a conservative system (∂H/∂t = 0). The initial condition |ψ(0)〉 = |n;R〉
leads to |ψ(t)〉 = exp(−iEnt) |n;R〉. In this case the phase factor can be gauged away. A
second case is a non-conservative system whose Hamiltonian is such that [H(t),H(t′)] = 0
for all t and t′. In this case |ψ(t)〉 = exp(−i

∫ t
0 dt′En(t′)) |n;R(0)〉 and the phase factor

can again be gauged away. Now, if [H(t),H(t′)] �= 0 the evolution is given by |ψ(t)〉 =

T
[
exp(−i

∫ t
0 dt′En(t′))

]
|n;R(0)〉, where T means the time-ordering operator. In this case,

the phase-factor cannot generally be gauged away. To see why is this the case, let us first
restrict ourselves to a slowly evolving Hamiltonian and to an approximate solution of Eq.(1),
the so-called adiabatic approximation:

ρ(t) = |ψ(t)〉 〈ψ(t)| ≈ |n;R(t)〉 〈n;R(t)| . (3)

When R(t) describes a closed path (R(T) = R(0)) so also does ρ(t) under the
adiabatic approximation, because the eigenprojectors are single-valued: |ψ(T)〉 〈ψ(T)| ≈
|n;R(T)〉 〈n;R(T)| = |n;R(0)〉 〈n;R(0)|. However, the state |ψ(t)〉 may acquire a phase.
Note that |ψ(t)〉 〈ψ(t)| ≈ |n;R(t)〉 〈n;R(t)| cannot be upgraded to an equality. This follows
from observing that H(R(t)) and |n;R(t)〉 〈n;R(t)| commute, so that for |ψ(t)〉 〈ψ(t)| =
|n;R(t)〉 〈n;R(t)| to satisfy Eq.(1), it must be stationary. Let us see under which conditions
the adiabatic approximation applies. Writing |ψ(t)〉 = ∑k ck(t) |k; R(t)〉, the adiabatic
approximationmeans that |ψ(t)〉 ≈ cn(t) |n;R(t)〉, with cn(0) = 1, because |ψ(0)〉 = |n;R(0)〉.
By replacing such a |ψ(t)〉 in the Schrödinger equation one easily obtains the necessary and
sufficient conditions for the validity of the adiabatic approximation (A. Bohm, 2003):

dcn
dt

|n;R(t)〉 ≈ −cn

[
iEn(t) |n;R(t)〉+ d

dt
|n;R(t)〉

]
. (4)

Multiplying this equation by 〈k; R(t)| it follows that

〈k;R(t)| d
dt

|n;R(t)〉 ≈ 0, for all k �= n. (5)

By deriving Eq.(2) with respect to t this condition can be brought, after some calculations, to
the form

291The Pancharatnam-Berry Phase: Theoretical and Experimental Aspects



4 Will-be-set-by-IN-TECH

〈k; R(t)| dH(t)/dt |n;R(t)〉
En(R)− Ek(R)

≈ 0, for all k �= n. (6)

Hence, the energy differences En(R)− Ek(R) – or correspondingly, the transition frequencies
of the evolving system – set the time scale for which the variation of H(t) can be considered
“adiabatic”, and |ψ(t)〉 ≈ cn(t) |n;R(t)〉 a valid approximation. Next, we multiply Eq.(4) by
〈n;R(t)| and obtain

dcn
dt

= −cn

[
iEn(t) + 〈n;R(t)| d

dt
|n;R(t)〉

]
, (7)

whose solution is

cn(t) = exp
[
−i

∫ t

0
En(s)ds

]
exp

[
−

∫ t

0
〈n;R(s)| d

ds
|n;R(s)〉 ds

]
≡ exp

(
−iΦdyn(t)

)
exp (iγn(t)) .

(8)
Here,

γn(t) = i
∫ t

0
〈n;R(s)| d

ds
|n;R(s)〉 ds (9)

is the geometric phase, which is defined modulo 2π. We see that it appears as an additional
phase besides the dynamical phase Φdyn. We have thus,

|ψ(t)〉 ≈ cn(t) |n;R(t)〉 = exp
(
−iΦdyn(t)

)
exp (iγn(t)) |n;R(t)〉 . (10)

The geometric phase γn can also be written in the following way, to make clear that it does
not depend on the parameter s:

γn(t) = i
∫ R(t)

R(0)
〈n;R| ∂

∂Rk
|n;R〉 dRk ≡

∫ R(t)

R(0)
A(n) · dR. (11)

The vector potential A(n) ≡ i 〈n;R| ∇ |n;R〉 is known as theMead-Berry vector potential. Eq.(11)
makes clear that γn depends only on the path defining the environmental process, i.e., the path
joining the points R(0) and R(t) in parameter space. This highlights the geometrical nature
of γn. Now, one can straightforwardly prove that a gauge transformation |n;R〉 → |n;R〉′ =
eiαn(R) |n;R〉 causes the vector potential to change according to

A(n) → A′(n) = A(n) −∇αn(R). (12)

As a consequence, the geometric phase transforms as

γn(t) → γ′
n(t) = γn(t)− [αn(R(t))− αn(R(0))] . (13)

At first sight, gauge freedom seems to be an appropriate tool for removing the additional
phase factor exp (iγn) in Eq.(10). Indeed, we can repeat the calculations leading to Eq.(10) but
now using |n;R〉′ = eiαn(R) |n;R〉 instead of |n;R〉. We thus obtain an equation like Eq.(10) but
with primed quantities. We could then choose αn(R(t)) = −γ′

n(t) (modulo 2π) and so obtain

|ψ(t)〉 ≈ exp
(
iΦdyn(t)

)
|n;R(t)〉 . (14)
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This is what V. Fock made when addressing adiabatic quantal evolutions (A. Bohm, 2003),
thereby exploiting the apparent freedom one has for choosing αn(R) when defining the
eigenvectors |n;R〉′ = eiαn(R) |n;R〉. However, when the path C is closed, a restriction appears
that limits our possible choices of phase factors. This follows from the fact that R(T) = R(0)
implies that |n;R(T)〉 = |n;R(0)〉, because eigenvectors are single-valued (something we
can always assume when a single patch is needed for covering our whole parameter space;
otherwise, trivial phase factors are required). The eigenvectors |n;R〉′ are also single-valued,
so that |n;R(T)〉′ = eiαn(R(T)) |n;R(T)〉 = eiαn(R(0)) |n;R(0)〉 = |n;R(0)〉′ = eiαn(R(0)) |n;R(T)〉.
We have thus the restriction exp (iαn(T)) = exp (iαn(0)), which translates into αn(T) =
αn(0) + 2πm, with m integer. Hence, because of Eq.(13),

γn(T) −→ γ′
n(T) = γn(T)− 2πm, (15)

and we conclude that γn(T) is invariant, modulo 2π, under gauge transformations. Thus, it
cannot be gauged away, as initially expected. According to Eq.(11) γn is independent of the
curve parameter (t), so that we should write γn(C) instead of γn(T). We have, finally,

|ψ(T)〉 = exp
(
−iΦdyn(T)

)
exp (iγn(C)) |ψ(0)〉 , (16)

with

Φdyn(T) =
∫ T

0
En(t)dt, (17)

γn(C) =
∮
C

A(n) · dR. (18)

This is Berry’s result (M. V. Berry, 1984). The vector potential A(n) behaves very much like an
electromagnetic potential. The phase factors exp(iαn(R)) belong to the groupU(1), hence the
name “gauge transformations” given to the transformations |n;R〉 → |n;R〉′ = eiαn(R) |n;R〉.
As in electromagnetism, we can also here introduce a field tensor F(n) whose components are

F(n)ij =
∂

∂Ri
A(n)

j − ∂

∂Rj
A(n)

i . (19)

Geometrically, F(n) has the meaning of a “curvature”. In differential geometry, where the
language of differential forms is used, A(n) is represented by a one-form, and F(n) by a
two-form. When the parameter space is three-dimensional, Eq.(19) can be written as

F(n) = ∇× A(n). (20)

Eq.(18) can then be written as

γn(C) =
∫
S

F(n) · dS, (21)

with the surface element dS directed normally to the surface S, whose boundary is the curve
C.
A paradigmatic case corresponds to a spin-1/2 subjected to a variable magnetic field
B(t)=Bn(t), with n(t).n(t) = 1, see Fig.(1). The time-dependent Hamiltonian is then
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H(t) = −B(e/2mc)n(t) · −→σ , with −→σ the triple of Pauli matrices. The parameter space has
the topology of the unit sphere S2. It is not possible to assign coordinates to all point in S2

with a single patch. One needs at least two of them, which requires introducing two vector
potentials, one for each patch. They are related to one another by a gauge transformation,
i.e., their difference is a gradient. The corresponding curvature three-vector F = ∇ × A is
given by F = −er/2r2, with er the unit radial vector. We note in passing that F = −er/2r2

looks like a Coulomb field, while F = ∇ × A looks like a magnetic field. This hints at
a formal connection between Berry’s phase and Dirac’s magnetic monopoles. In this case,
γn(C) =

∫
S F · dS =

∫
S Frr2 sin θdθdϕ = − ∫

S dΩ/2, so that

B(0)

B(t)

S(t)

Fig. 1. A spin-1/2 subjected to a variable magnetic field B(t) that describes a closed
trajectory. When the field changes slowly in the time scale of the spin dynamics, then the
spin S can follow the field adiabatically. After a period, the spin state has accumulated a
geometric phase in addition to the dynamical one.

γn(C) = −Ω(C)/2, (22)

Ω(C) being the solid angle enclosed by C. This important result can be generalized to arbitrary
dimensions, as we shall see below.
We have introduced Berry’s phase by considering a unitary, cyclic and adiabatic evolution.
This was Berry’s original approach. It was generalized to the non-adiabatic case by Aharonov
and Anandan (Y. Aharonov, 1987), as already said, and by Samuel and Bhandari (J. Samuel,
1988) to the noncyclic case. A purely kinematic approach showed that it is unnecessary to
invoke unitarity of the evolution. Such an approach was developed by Mukunda and Simon
(N. Mukunda, 1993) and is the subject of the next Section.

3. The kinematic approach: total, geometric, and dynamical phases

Let us start by considering a Hilbert space H. We define H0 ⊂ H as the set of normalized,
nonzero vectors |ψ〉 ∈ H. A curve C0 inH0 is defined through vectors |ψ(s)〉 that continuously
depend on some parameter s ∈ [s1, s2]. Because |ψ(s)〉 is normalized, 〈ψ(s)|ψ̇(s)〉 +
〈ψ̇(s)|ψ(s)〉 = 0. Then, Re〈ψ(s)|ψ̇(s)〉 = 0, and
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〈ψ(s)|ψ̇(s)〉 = i Im〈ψ(s)|ψ̇(s)〉. (23)

Now, consider the initial |ψ(s1)〉 and the end point |ψ(s2)〉 of C0. Following Pancharatnam,
we define the total phase between these states as Φtot(C0) = arg〈ψ(s1)|ψ(s2)〉. Under
a gauge transformation |ψ(s)〉 → |ψ′(s)〉 = exp (iα(s)) |ψ(s)〉, we have that C0 → C′0,
Φtot(C0) → Φ′

tot(C0) = Φtot(C0) + α(s2) − α(s1) and Im〈ψ(s)|ψ̇(s)〉 → Im〈ψ′(s)|ψ̇′(s)〉 =

Im〈ψ(s)|ψ̇(s)〉 + ·
α(s). From these properties it is easy to see that we can construct the

following quantity, the “geometric phase”, which is gauge-invariant:

Φg(C0) = arg〈ψ(s1)|ψ(s2)〉 − Im
∫ s2

s1
〈ψ(s)|ψ̇(s)〉ds. (24)

Besides being re-parametrization invariant, Φg(C0) is, most importantly, also gauge invariant.
This means that despite being defined in terms of |ψ(s)〉 and C0, Φg effectively depends
on equivalence classes of |ψ(s)〉 and C0, respectively. Indeed, the set {|ψ′〉 = exp (iα) |ψ〉}
constitutes an equivalence class. The space spanned by such equivalence classes is called the
“ray space” R0. Instead of working with equivalence classes we can work with projectors:
|ψ〉 〈ψ|. The set {|ψ′〉 = exp (iα) |ψ〉} projects onto the object |ψ〉 〈ψ| by means of a projection
map π : H0 → R0. In particular, the curves C0, C′0 which are interrelated by a gauge
transformation, are also members of an equivalence class. Under π, they project onto a curve
C0 ⊂ R0. What we have seen above is that Φg is in fact a functional not of C0, but of C0,
the curve defined by |ψ(s)〉 〈ψ(s)|. This is the reason why we call Φg the “geometric phase”
associated with the curve C0 ⊂ R0. We should then better write Φg(C0), though its actual
calculation requires that we choose what is called a “lift” of C0; that is, any curve C0 such that
π(C0) = C0. Thus, Φg(C0) is defined in terms of two phases, see Eq.(24):

Φtot(C0) = arg〈ψ(s1)|ψ(s2)〉, (25)

Φdyn(C0) = Im
∫ s2

s1
〈ψ(s)|ψ̇(s)〉ds. (26)

Φtot(C0) is, as already said, the total or the Pancharatnam phase of C0. It is the argument
α of the complex number 〈ψ(s1)|ψ(s2)〉 = |〈ψ(s1)|ψ(s2)〉| eiα. Later on, we will discuss
the physical meaning of this phase in the context of polarized states, the case addressed by
Pancharatnam. Φdyn(C0) is the dynamical phase of C0. We see that even though both Φtot(C0)
and Φdyn(C0) are functionals of C0, their difference Φg is a functional of C0 = π(C0):

Φg(C0) = Φtot(C0)− Φdyn(C0). (27)

Let us stress that this definition of the geometric phase does not rest on the assumptions
originally made by Berry. Φg(C0) has been introduced in terms of a given evolution of state
vectors |ψ(s)〉. This evolution does not need to be unitary, nor adiabatic. Furthermore, the
path C0 could be open: no cyclic property is invoked. Given a C0 ⊂ R0, we may choose
different lifts to calculate Φg(C0) and exploit this freedom to express Φg(C0) according to our
needs. For example, we can always make Φtot(C0) = 0, by properly choosing the phase of,
say, |ψ(s2)〉. In that case, Φg(C0) = −Φdyn(C0). Alternatively, we can make Φdyn(C0) = 0,
so that Φg(C0) = Φtot(C0), by choosing a so-called “horizontal lift”, one which satisfies
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Im〈ψ(s)|ψ̇(s)〉 = 0. Because Re〈ψ(s)|ψ̇(s)〉 = 0, in this case 〈ψ(s)|ψ̇(s)〉 = 0. In order to obtain
a horizontal lift we can submit, if necessary, any lift |ψ(s)〉 to a gauge transformation: |ψ(s)〉 →
|ψ′(s)〉 = exp (iα(s)) |ψ(s)〉, so that Im〈ψ(s)|ψ̇(s)〉 → Im〈ψ′(s)|ψ̇′(s)〉 = Im〈ψ(s)|ψ̇(s)〉 +
·
α(s). We then require Im〈ψ′(s)|ψ̇′(s)〉 = 0, which yields

α(s) = −Im
∫ s

s1
〈ψ(s)|ψ̇(s)〉ds, (28)

assuming α(s1) = 0, i.e., fixing |ψ′(s1)〉 = |ψ(s1)〉 by proper choice of the initial phase.
As Φg(C0) depends only on ray-space quantities, it should be possible to get an expression
reflecting this fact. Such an expression can be obtained by considering the operator K(s) =
ρ̇(s) = d(|ψ(s)〉 〈ψ(s)|)/ds, whose action on |ψ(s)〉 gives

K(s)|ψ(s)〉 = |ψ̇(s)〉 − 〈ψ(s)|ψ̇(s)〉|ψ(s)〉. (29)

K(s) is obviously gauge invariant; hence, Eq.(29) holds also for gauge-transformed quantities.
By choosing a horizontal lift, 〈ψ(s)|ψ̇(s)〉 = 0, Eq.(29) reads

d
ds

|ψ(s)〉 = ρ̇(s)|ψ(s)〉. (30)

The solution of Eq.(30) can be formally given as a Dyson series: |ψ(s)〉 =

P
(
exp

∫ s
s1

ρ̇(s)ds
)
|ψ(s1)〉, with P the “parameter-ordering” operator: it rearranges a product

of parameter-labelled operators according to, e. g., P (ρ̇(s1)ρ̇(s2)ρ̇(s3)) = ρ̇(s3)ρ̇(s2)ρ̇(s1),
for s3 ≥ s2 ≥ s1. Having a horizontal lift, the geometric phase reduces to Φg(C0) =
Φtot(C0) = arg 〈ψ(s1)|ψ(s2)〉. Now, 〈ψ(s1)|ψ(s2)〉 = Tr |ψ(s2)〉 〈ψ(s1)|, so that setting

|ψ(s2)〉 = P
(
exp

∫ s2
s1

ρ̇(s)ds
)
|ψ(s1)〉 we have

Φg(C0) = argTr
{
P
(
exp

∫ s2

s1
ρ̇(s)ds

)
ρ(s1)

}
. (31)

Eq.(31) gives the desired expression of Φg(C0) in terms of ray-space quantities. C0 is any
smooth curve in ray space. If C0 is closed, ρ(s2) = ρ(s1), and |ψ(s2)〉 must be equal to |ψ(s1)〉
up to a phase factor: |ψ(s2)〉 = eiα |ψ(s1)〉, with α = arg 〈ψ(s2)|ψ(s1)〉. For the horizontal lift
we are considering, α = arg 〈ψ(s2)|ψ(s1)〉 = Φg(C0), and we can thus write

|ψ(s2)〉 = P
(
exp

∫ s2

s1
ρ̇(s)ds

)
|ψ(s1)〉 = exp

(
iΦg(C0)

) |ψ(s1)〉 , (32)

in accordance with our previous results.

3.1 Geodesics
We introduce now the concept of geodesics in both Hilbert-space and ray-space, with the help
of Eq.(29). Notice that K(s) |ψ(s)〉 is orthogonal to |ψ(s)〉, that is, 〈ψ(s)|K(s) |ψ(s)〉 = 0. In
general, 〈ψ(s)|ψ̇(s)〉 �= 0; i.e., the curve C0 = {|ψ(s)〉} has a tangent vector |ψ̇(s)〉 which is
generally not orthogonal to C0. By letting K(s) act on |ψ(s)〉 we get the component of |ψ̇(s)〉
that is orthogonal to the curve. Such a component is obtained from |ψ̇(s)〉 by subtracting
its projection on |ψ(s)〉, i.e., we construct |ψ̇(s)〉 − |ψ(s)〉〈ψ(s)|ψ̇(s)〉. Let us denote this
component by |ψ̇(s)〉⊥ = K(s)|ψ(s)〉. Under a gauge transformation, |ψ(s)〉 → |ψ′(s)〉 =
exp (iα(s)) |ψ(s)〉 and because K′(s) = K(s), it follows |ψ̇′(s)〉⊥ = exp (iα(s)) |ψ̇(s)〉⊥. The
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modulus of |ψ̇(s)〉⊥ is the quantity in terms of which we can define the “length” of a curve. To
make our definition parameter invariant, we take the square root of said modulus and define
the length of C0 as

L(C0) =
∫ s2

s1

√
⊥〈ψ̇(s)|ψ̇(s)〉⊥ds. (33)

Geodesics are defined as curves making L(C0) extremal. By applying the tools of variational
calculus one obtains (N. Mukunda, 1993)(

d
ds

− 〈ψ(s)|ψ̇(s)〉
) |ψ̇(s)〉⊥√

⊥〈ψ̇(s)|ψ̇(s)〉⊥
= f (s)|ψ(s)〉, (34)

with f (s) an arbitrary, real function. Although Eq.(34) depends on the lifted curve C0, it
must be gauge and re-parametrization invariant, because it follows from Eq.(33). We may
therefore change both the lift and the parametrization in Eq.(34). We choose a horizontal
lift: 〈ψ(s)|ψ̇(s)〉 = 0, which implies that |ψ̇(s)〉⊥ = |ψ̇(s)〉. Furthermore, because of
re-parametrization freedom we may take s such that 〈ψ̇(s)|ψ̇(s)〉 is constant along C0. This
fixes s up to linear inhomogeneous changes, i.e., up to affine transformations. Then, Eq.(34)
reads

d2

ds2
|ψ(s)〉 =

√
〈ψ̇(s)|ψ̇(s)〉 f (s)|ψ(s)〉. (35)

Now, by deriving twice the equation 〈ψ(s)|ψ(s)〉 = 1, we obtain
√〈ψ̇(s)|ψ̇(s)〉 f (s) +

〈ψ̇(s)|ψ̇(s)〉 = 0, which fixes f (s) to

f (s) = −
√
〈ψ̇(s)|ψ̇(s)〉. (36)

Thus, Eq.(35) reads finally

d2

ds2
|ψ(s)〉 = −ω2|ψ(s)〉, (37)

with ω2 ≡ 〈ψ̇(0)|ψ̇(0)〉. This equation holds for geodesics that are horizontal lifts from the
geodesic C0 in ray space, and with s rendering 〈ψ̇(s)|ψ̇(s)〉 constant. Eq.(37) is thus of second
order and its general solution depends on two vectors. It can be solved, e.g., for the initial
conditions |ψ(0)〉 = |φ1〉 and |ψ̇(0)〉 = ω|φ2〉, i.e., 〈φ1|φ1〉 = 1, 〈φ1|φ2〉 = 0, and 〈φ2|φ2〉 = 1.
The solution reads

|ψ(s)〉 = cos (ωs) |φ1〉+ sin (ωs) |φ2〉. (38)

We see that 〈ψ(0)|ψ(s)〉 = 〈φ1|ψ(s)〉 = cos (ωs). Because s has been fixed only up to an
affine transformation, we can generally choose it such that cos (ωs) ≥ 0 for s ∈ [s1, s2], so that
arg〈ψ(0)|ψ(s)〉 = 0. But because our lift is horizontal, Φg(C0) = arg〈ψ(0)|ψ(s)〉, so that

Φg(C0) = 0 for a geodesic C0. (39)

Eq.(38) shows that geodesics are arcs of circles in a space with orthonormal basis {|φ1〉 , |φ2〉}.
We are thus effectively dealing with a two-level system. The geodesic |ψ(s)〉 of Eq.(38) projects
onto a geodesic in ray-space ρ(s) = |ψ(s)〉〈ψ(s)|. Last one can be mapped onto the unit sphere
in a well-known manner. Indeed, for a two-level system, ρ(s) has the form
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ρ(s) =
1
2
(
I +−→n (s) · −→σ )

, (40)

with I the identity matrix and −→n = Tr(ρ−→σ ). Now, any two unit vectors, |ψ1〉 and |ψ2〉,
can always be connected by a geodesic. To show this, we need only note that for any two
vectors |ψ1〉 and |ψ2〉 there are two corresponding vectors −→n 1 and −→n 2 on the unit sphere.
These points can be joined by the shortest of the two arcs conforming a great circle. This
is the geodesic arc joining ρ1 and ρ2 that can be lifted to a geodesic arc joining |ψ1〉 and
|ψ2〉. If necessary, we can submit this curve to a gauge transformation, thereby generally
destroying its horizontal but not its geodesic property. Let us discuss this procedure in more
detail. Consider two nonparallel vectors |ψ1〉, |ψ′

2〉. They span a two-dimensional subspace
in which we can consider an orthonormal basis {|φ1〉, |φ2〉}. For example, |φ1〉 = |ψ1〉 and

|φ2〉 =
(|ψ′

2〉 − |φ1〉〈φ1|ψ′
2〉
)
/
√

1− ∣∣〈φ1|ψ′
2〉
∣∣2. In such a basis, we can express |ψ′

2〉 in the

form |ψ′
2〉 = eiα|ψ2〉 ≡ eiα

[
cos(θ/2)|φ1〉+ eiϕ sin(θ/2)|φ2〉

]
. We start by considering first the

case in which the initial and final vectors are |φ1〉 = |ψ1〉 and |ψ2〉, respectively. Thereafter, we
deal with the more general case: |ψ′

2〉 = eiα|ψ2〉. The corresponding projectors ρ1 = |ψ1〉〈ψ1|
and ρ2 = |ψ2〉〈ψ2| are given by expressions of the form of Eq.(40) with −→n 1 = (0, 0, 1) and−→n 2 = (cos ϕ sin θ, sin ϕ sin θ, cos θ). That is, −→n 1 is the North pole (of the “Bloch sphere”) and−→n 2 has coordinates (θ, ϕ). In order to bring −→n 1 to −→n 2 along a great circle we can submit −→n 1
to a rotation around −→n = −→n 1 ×−→n 2/ sin θ. The rotation from −→n 1 to −→n 2 takes |ψ1〉 to |ψ2〉 by
a SU(2) transformation: U(θ, ϕ) |ψ1〉 = |ψ2〉, with

U(θ, ϕ) = exp
(
−i

θ

2
−→n · −→σ

)
= cos

(
θ

2

)
I− i sin

(
θ

2

)
−→n · −→σ = cos

(
θ

2

)
I− i

−→n 1 ×−→n 2
2 cos (θ/2)

· −→σ .

(41)
Setting |ψ(s)〉 = U(θs, ϕ)|φ1〉 we have |ψ(0)〉 = |ψ1〉, |ψ(1)〉 = |ψ2〉, and the curve |ψ(s)〉,
s ∈ [0, 1], is a horizontal geodesic. Indeed, by explicitly writing U(θs, ϕ) as

U(θs, ϕ) = cos
(

θ

2
s
)

I − i sin
(

θ

2
s
)
−→n ϕ · −→σ , (42)

with −→n ϕ = (− sin ϕ, cos ϕ, 0), we can straightforwardly verify that |ψ(s)〉 fulfills the defining
properties of horizontal geodesics, namely 〈ψ(s)|ψ̇(s)〉 = 0, and

d2

ds2
|ψ(s)〉 = −〈ψ̇(s)|ψ̇(s)〉|ψ(s)〉 = − θ2

4
|ψ(s)〉. (43)

Hence, we have proved that for |ψ1〉 = |φ1〉 and |ψ2〉 = cos(θ/2)|φ1〉 + eiϕ sin(θ/2)|φ2〉,
there is a horizontal geodesic |ψ(s)〉 = U(θs, ϕ)|φ1〉 joining these vectors, with U(θs, ϕ) as in
Eq.(42). Next, we consider a general final vector |ψ′

2〉 = eiα|ψ2〉. In this case we need only
change U(θs, ϕ) by e−iαsU(θs, ϕ) and it follows that the curve |ψ′(s)〉 = e−iαsU(θs, ϕ)|φ1〉,
with |ψ′(0)〉 = |ψ1〉, |ψ′(1)〉 = |ψ′

2〉, is still a geodesic; that is, it satisfies Eq.(34) (with f (s) =
θ/2) though it is no longer horizontal: 〈ψ′(s)|ψ̇′(s)〉 = −iα. In summary, we have proved that
any two vectors, |ψ1〉 and |ψ2〉, can be connected by a geodesic C0. If this geodesic happens
to be horizontal, then its dynamical phase vanishes and so does its total phase arg〈ψ1|ψ2〉, see
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Eq.(38). Hence, Φg(C0) = 0. This last property is gauge independent. However, if C0 is not
horizontal, then Φdyn(C0) �= 0 and arg〈ψ1|ψ2〉 �= 0, but Φg(C0) = 0 anyway.
Eq.(39) leads to an alternative formulation of the geometric phase. It rests upon the concept
of Bargmann invariants, for which Eq.(39) plays a central role, together with the total phase
arg〈ψ1|ψ2〉. When arg〈ψ1|ψ2〉 = 0 we say that |ψ1〉 and |ψ2〉 are “in phase”. This generalizes
Pancharatnam’s definition for polarization states to the quantal case. As we have seen, |ψ1〉
and |ψ2〉 are “in phase” when these two vectors can be joined by a horizontal geodesic.
Consider a third vector |ψ3〉, joined to |ψ2〉 by a horizontal geodesic, so that arg〈ψ2|ψ3〉 = 0
too. Our three vectors are thus joined by a curve made of two geodesic arcs. Can we conclude
that |ψ3〉 and |ψ1〉 are “in phase”? The answer is generally on the negative. Being “in phase”
is not a transitive property. The following discussion illustrates this point.

3.2 Bargmann invariants
Consider N points in ray space: ρ1, ρ2, . . . , ρN . As we have seen, each pair can be connected
by a geodesic arc. Let us denote by C0 the curve formed by the N − 1 geodesic arcs joining
the N points. Let us assume that any two neighboring points are nonorthogonal. That is, for
any lift |ψ1〉 , |ψ2〉 , . . . , |ψN〉, it holds 〈ψi|ψi+1〉 �= 0, for i = 1, . . . ,N − 1. The geometric phase
Φg(C0) is given by

Φg(C0) = Φtot(C0)− Φdyn(C0) = arg 〈ψ1|ψN〉 −
N−1

∑
k=1

Φ(k,k+1)
dyn , (44)

where Φ(k,k+1)
dyn is the dynamical phase for the geodesic joining |ψk〉 with |ψk+1〉. Because

Φ(k,k+1)
g = 0, we can write Φ(k,k+1)

dyn = Φ(k,k+1)
tot − Φ(k,k+1)

g = arg〈ψk|ψk+1〉. Now,

∑N−1
k=1 arg〈ψk|ψk+1〉 = arg∏N−1

k=1 〈ψk|ψk+1〉, and arg〈ψ1|ψN〉 = − arg〈ψN |ψ1〉, so that

Φg(C0) = arg〈ψ1|ψN〉 − arg
N−1

∏
k=1

〈ψk|ψk+1〉 = − arg

(
N−1

∏
k=1

〈ψk|ψk+1〉
)
〈ψN |ψ1〉, (45)

and we can finally write

Φg(C0) = − arg〈ψ1|ψ2〉〈ψ2|ψ3〉 . . . 〈ψN |ψ1〉. (46)

Although Φg(C0) has been derived by joining |ψ1〉, . . . , |ψN〉 with geodesic arcs, the final
expression does not depend on these arcs, but only on the vectors they join. Quantities
like 〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉 are called “Bargmann invariants”. They generalize |〈ψ1|ψ2〉|2,
which is invariant under simultaneous U(1) transformations: |ψ1〉 → ∣∣ψ′

1
〉
= exp(iα1) |ψ1〉

and |ψ2〉 → ∣∣ψ′
2
〉
= exp(iα2) |ψ2〉. Quantities that are invariant under U(1) ⊗ U(1) ⊗ . . .

were introduced by Bargmann for studying the difference between unitary and anti-unitary
transformations.
The curve C0 in Eq.(45) was assumed to be open: ρN �= ρ1. However, we can close the
curve to C̃0, by completing the N − 1-sided polygon C0 with a geodesic arc connecting ρN
with ρ1. By repeating the steps leading to Eq.(45), though taking into account that now
Φtot(C̃0) = 0 because the final point |ψN+1〉 = |ψ1〉, we see that Φg(C̃0) = −Φdyn(C̃0) =

− arg∏N
k=1〈ψk|ψk+1〉, so that Φg(C̃0) is given again by Eq.(46). In other words, Φg(C̃0) =

Φg(C0).
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Starting from Eq.(46) it is possible to recover the results previously found for general open
curves (N. Mukunda, 1993). One proceeds by approximating a given curve by a polygonal
arc made up of N → ∞ geodesic arcs. By a limiting procedure one recovers then Φg(C0) =
Φtot(C0)− Φdyn(C0) with Φtot(C0) and Φdyn(C0) given by Eqs.(25) and (26), respectively. Also
Eq.(31) can be recovered in a similar fashion (N. Mukunda, 1993).
The quantity 〈ψ1|ψ3〉〈ψ3|ψ2〉〈ψ2|ψ1〉, the three-vertex Bargmann invariant, can be identified
as the basic building block of geometric phases. It can be seen as the result of two
successive filtering measurements, the first projecting |ψ1〉 on |ψ2〉, followed by a second
projection on |ψ3〉. The phase of the final state with respect to the first one is Φ�

g =
− arg〈ψ1|ψ2〉〈ψ2|ψ3〉〈ψ3|ψ1〉 = − argTrρ1ρ2ρ3. It can be proved (A. G. Wagh, 1999) that
Φ�

g = −Ω�
p /2. Here, Ω�

p is the solid angle subtended by the spherical triangle formed by
shorter geodesics between |ψ2〉, |ψ3〉 and the projection |ψ1〉p of |ψ1〉 on the subspace spanned
by the other two vectors. Now, given a closed curve C̃0, by triangulation with infinitesimal
geodesic triangles it is possible to express Φg(C̃0) as (A. G. Wagh, 1999)

Φg(C̃0) = − 1
2

∫
S
dΩp, (47)

thereby generalizing Eq.(22).

4. Pancharatnam-Berry phase and its measurement by polarimetry and
interferometry

4.1 Interferometric arrangement
We introduced the total phase, arg〈ψ1|ψ2〉, as a generalization of Pancharatnam’s definition
for the relative phase between two polarized states of light. According to Pancharatnam’s
definition, we can operationally decide whether two nonorthogonal states are “in phase”.
Consider two nonorthogonal polarization states, |i〉 and | f 〉 �= |i〉, and let them interfere. Due
to the optical-path difference, there is a relative phase-shift φ giving rise to an intensity pattern

I =
∣∣∣eiφ |i〉+ | f 〉

∣∣∣2 ∝ 1+ |〈i| f 〉| cos (φ − arg 〈i| f 〉) . (48)

The maxima of I occur for φ = arg 〈i| f 〉 ≡ Φtot, which is thereby operationally defined as
the total (Pancharatnam) phase between |i〉 and | f 〉. If arg 〈i| f 〉 = 0, the states are said to be
“in phase”. Polarization states are two-level systems. When they are submitted to the action
of intensity-preserving optical elements, like wave-plates, their polarization transformations
belong to the group SU(2) (modulo global phase factors). We can exhibit Φtot by submitting |i〉
to U ∈ SU(2), thereby producing a state | f 〉 = U |i〉. Eq.(48) applies to, say, a Mach-Zehnder
array. Alternatively, one could employ polarimetric methods. We will discuss both methods
in what follows. Among the different parameterizations ofU, the following one is particularly
well suited for extracting Pancharatnam’s phase:

U(β,γ, δ) = exp
(
i(

δ + γ

2
)σz

)
exp

(−iβσy
)
exp

(
i(

δ − γ

2
)σz

)
=

(
eiδ cos β − eiγ sin β

e−iγ sin β e−iδ cos β

)
.

(49)
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Indeed, taking as initial state |i〉 = |+〉z ≡ |+〉, the eigenstate of σz for the eigenvalue +1, and
setting | f 〉 = U |+〉, we obtain

〈i| f 〉 = 〈+|U(β,γ, δ) |+〉 = eiδ cos β. (50)

Thus, Φtot = arg 〈i| f 〉 = δ + arg(cos β), for β �= (2n+ 1)π/2. Because cos β takes on positive
and negative real values, arg(cos β) equals 0 or π, and Φtot is thus given by δ modulo π. In
principle, then, we could obtain ΦP (modulo π) by comparing two interferograms, one taken
as a reference and corresponding to ΦP = 0 (U = I), and the other corresponding to the
application of U. Their relative shift gives ΦP. We can implement unitary transformations
using quarter-wave plates (Q) and half-wave plates (H). These transformations are of the
form U(ξ, η, ζ) = exp

(−iξσy/2
)
exp (iησz/2) exp

(−iζσy/2
)
. They can be realized with the

following gadget (R. Simon, 1990), in which the arguments of Q and H mean the angles of
their major axes to the vertical direction:

U(ξ, η, ζ) = Q
(−3π + 2ξ

4

)
H
(

ξ − η − ζ − π

4

)
Q
(

π − 2ζ

4

)
. (51)

The corresponding interferogram has an intensity pattern given by

IV =
1
2

[
1− cos

(η

2

)
cos

(
ξ + ζ

2

)
cos (φ)− sin

( η

2

)
cos

(
ξ − ζ

2

)
sin (φ)

]
. (52)

IV refers to an initial state |+〉z that is vertically polarized. This result follows from
the parametrization of U given by U(ξ, η, ζ). By using the relationship between this
parametrization and that of Eq.(49), i.e., U(β,γ, δ), one can show that IV can be written as

IV =
1
2
[1− cos β cos (φ − δ)] . (53)

Pancharatnam’s phase ΦP = δ is thus given by the shift of the interferogram IV with
respect to a reference interferogram I = [1− cos β cos φ] /2. By recording one interferogram
after the other one could measure their relative shift. However, thermal and mechanical
disturbances make it difficult to record stable reference patterns, thereby precluding accurate
measurements of ΦP. A way out of this situation follows from observing that the intensity
pattern corresponding to an initial, horizontally polarized state |−〉z is given by

IH =
1
2
[1− cos (β) cos (φ + δ)] . (54)

Hence, the relative shift between IV and IH is twice Pancharatnam’s phase. If one manages to
divide the laser beam into a vertically and a horizontally polarized part, the two halves of the
laser beam will be subjected to equal disturbances and one can record two interferograms in
a single shot. The relative shift would be thus easily measurable, being robust to thermal and
mechanical disturbances. With such an array it is possible to measure Pancharatnam’s phase
for different unitary transformations. This approach proved to be realizable, using either a
beam expander or a polarizing beam displacer (J. C. Loredo, 2009).
A similar approach can be used to measure the geometric phase Φg = ΦP(C0) − Φdyn(C0).
One can exploit the gauge freedom and choose an appropriate phase factor exp(iα(s)), so
as to make Φdyn(C0) = 0 along a curve C0 : |ψ(s)〉 , s ∈ [s1, s2] which is traced out by
polarization states |ψ(s)〉 resulting fromU(s): |ψ(s)〉 = U(s) |ψ(0)〉. Any U(s) can be realized
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by making one or more parameters in U(ξ, η, ζ) (see Eq.(51)) functions of s. Setting the
corresponding QHQ-gadget on one arm of the interferometer, one lets the polarization state
|ψ(s)〉 follow a prescribed curve. A second QHQ-gadget can be put on the other arm, in order
to produce the factor exp(iα(s)) that is needed to make Φdyn(C0) = 0. To fix α(s), one solves

Im〈ψ(s)|ψ̇(s)〉 + ·
α(s) = 0. The corresponding interferometric setup is shown in Fig.(2). It

is of the Mach-Zehnder type; but a Sagnac and a Michelson interferometer could be used as
well. With the help of this array one can generate geometric phases associated to non-geodesic
trajectories on the Poincaré sphere (J. C. Loredo, 2011). In this way, one is not constrained to
use special trajectories, along which the dynamical phase identically vanishes (Y. Ota, 2009).
The geometric phase is nowadays seen as an important tool for implementing robust quantum
gates that can be employed in information processing (E. Sjöqvist, 2008). It appears to be noise
resilient, as recent experiments seem to confirm (S. Fillip, 2009).
Ref.(J. C. Loredo, 2011) reports measurements that were obtained with a 30 mW cw He-Ne
laser (632.8 nm) and the interferometric array shown in Fig.(2).The interferograms were

Q

Q

H

P1

P2

P

E

BS

BS

L

MM

M

Y

X

Fig. 2. Mach-Zehnder array for measuring the geometric phase. Quarter (Q) and half (H)
wave plates are used for realizing the SU(2) transformations. L: He-Ne laser, P, P1, P2:
polarizers, E: beam expander, BS: beam-splitter, M: mirror.

recorded with the help of a CCD camera and evaluated using an algorithm that performs
a column average of each half of the interferogram. The output was then submitted to a
low-pass filter to get rid of noisy features. For each pair of curves the algorithm searches
for relative minima and compares their locations. This procedure could be applied to a set
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of interferograms corresponding to different choices of U(ξ, η, ζ). Experimental results are
shown in Fig. (3), corresponding to the trajectory on the Poincaré sphere shown in Fig. (4). As
can be seen, they are in very good agreement with theoretical predictions.

1 2 3 4 5 6
s

�80

�60

�40

�20

�g
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5
,
4

5
,0� Β � 53o

Fig. 3. Geometric phase for a non-geodesic trajectory on the Poincaré sphere. The trajectory is
a circle resulting from intersecting a cone with the Poincaré sphere. It is fixed by the axis n of
the cone and its aperture angle β.

4.2 Polarimetric arrangement
Some years ago, Wagh and Rakhecha proposed a polarimetric method to measure
Pancharatnam’s phase (A. G. Wagh, 1995;b). Such a method is experimentally more
demanding than the interferometric one, but it was considered more accurate because it
requires a single beam. Both methods were tested in experiments with neutrons (A. G. Wagh,
1997; 2000), whose spins were subjected to SU(2) transformations by applying a magnetic
field. Now, it is not obvious that one can extract phase information from a single beam. As we
shall see, polarimetry can be understood as “virtual interferometry”, in which a single beam
is decomposed in two “virtual” beams.

n � �
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5
,
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5
,0� Β � 53o
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Fig. 4. The trajectory described on the Poincaré sphere. The dynamical phase is
simultaneously cancelled by means of a QHQ gadget.
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Consider an initial state |+〉 ≡ |+〉z and let it be submitted to a π/2-rotation around the
x-axis to produce the circularly polarized state (|+〉 − i |−〉) /√2, which is in turn acted
upon by exp (−φσz/2). The result is V |+〉 ≡ exp (−iφσz/2) exp (−iπσx/4) |+〉, i.e., the
state

(
|+〉 − ieiφ |−〉

)
/
√
2, up to a global phase. We have thereby generated a relative

phase-shift φ between |+〉 and |−〉, as in an interferometer. Applying U ∈ SU(2) we obtain

UV |+〉 = e−iφ/2
(
U |+〉 − ieiφU |−〉

)
/
√
2 ≡ |χ+〉 + |χ−〉. From this state we will extract

Pancharatnam’s phase. To this end, we project withV |+〉, so that the intensity of the projected
state is

I =
∣∣∣〈+|V† (|χ+〉+ |χ−〉)

∣∣∣2 . (55)

Let us write V |+〉 = e−iφ/2
(
|+〉 − ieiφ |−〉

)
/
√
2 ≡ |ϕ+〉 + |ϕ+〉 and take U as given by

Eq.(49). Calculating the amplitude 〈+|V† (|χ+〉+ |χ−〉) = (〈ϕ+|+ 〈ϕ−|)(|χ+〉+ |χ−〉) we
obtain, using 〈ϕ±|χ±〉 = exp (±iδ) cos (β) /2, and 〈ϕ∓|χ±〉 = i exp (∓i(γ + φ)) sin (β) /2,
that (〈ϕ+|+ 〈ϕ−|)(|χ+〉+ |χ−〉) = cos (β) cos (δ) + i sin (β) cos (γ + φ) and

I = cos2 (β) cos2 (δ) + sin2 (β) cos2 (γ + φ) . (56)

Eq.(56) contains Pancharatnam’s phase δ = Φtot. It can be extracted from intensity
measurements. Indeed, Eq.(56) yields the minimal and maximal intensity values of the
pattern that arises from varying φ. They are given by Imin = cos2 (β) cos2 (δ) and Imax =
cos2 (β) cos2 (δ) + sin2 (β), respectively, so that Pancharatnam’s phase follows from

cos2 (δ) =
Imin

1− Imax + Imin
. (57)

In order to measure the geometric phase, we make Φdyn = 0. As we saw before, this
can be achieved by using in place of the gauge |ψ(s)〉 = U(s) |+〉, the gauge |ψ(s)〉 =
exp [iα(s)]U(s) |+〉. In this way we get 〈ψ(s)|dψ(s)/ds〉 = 0, so that Φtot = Φg. To be specific,
let us assume that we wish to generate circular trajectories corresponding to rotations by an
angle s around −→n (θ, ϕ). The corresponding unitarity is U(θ, ϕ, s) = exp

[−is−→n (θ, ϕ) · −→σ ]
. In

order to make Φdyn(C0) = 0 in this case, we can take α(s) = 〈+| −→n (θ, ϕ) · −→σ |+〉 s.
In an optical arrangement we implement V and U with retarders. Simon and Mukunda (R.
Simon, 1989) proposed a gadget realizingU(θ, ϕ, s), so that the circular trajectory is generated
by rotating a single retarder (H) by the angle s/2, after having fixed θ and ϕ. This gadget is

U(θ, ϕ, s) = Q
(

π + ϕ

2

)
Q
(

θ + ϕ

2

)
H
(−π + θ + ϕ

2
+

s
2

)
Q
(

θ + ϕ

2

)
Q
( ϕ

2

)
. (58)

As for V = exp (−iφσz/2) exp (−iπσx/4), we have exp (−iπσx/4) = Q(π/4) and
exp (−iφσz/2) = Q(π/4)H((φ − π) /4)Q(π/4). Using Q2(π/4) = H(π/4) and
exp (+iφσz/2) = Q(−π/4)H((φ + π) /4)Q(−π/4) we get

Utot ≡ V†UV = H
(
−π

4

)
H
(

φ + π

4

)
Q
(
−π

4

)
UQ

(π

4

)
H

(
φ − π

4

)
H

(π

4

)
. (59)

Inserting for U the corresponding operator, which in the present case is exp [iα(s)]U(θ, ϕ, s),
we obtain the full arrangement. Applying relations like Q(α)H(β) = H(β)Q(2β − α),
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Q(α)H(β)H(γ) = Q(α + π/2)H(α − β + γ − π/2), etc. (R. Simon, 1990), we can reduce
the array from elf to seven retarders:

Utot(θ, ϕ, s,γ) = Q
(π

4
− γ

2

)
Q
(
−π − ϕ

2
− γ

2

)
Q
(

π − θ − ϕ

2
− γ

2

)
× (60)

×H
(−s− θ − ϕ

2
− γ

2

)
Q
(

π − θ − ϕ

2
− γ

2

)
Q
(

π − ϕ

2
− γ

2

)
Q
(
−π

4
− γ

2

)
,

with γ ≡ σ + α(s) = σ + s sin θ cos ϕ. For each fixed value of s – that is, for each
point on the chosen trajectory – one generates an intensity pattern through variation
of σ, i.e., by rotating the whole array σ radians over some interval, which should be
large enough for recording several maximal and minimal intensity values. From these
values one can obtain Φg(s). Indeed, the intensity is given by I = |〈+|Utot |+〉|2,
and it can be proved (J. C. Loredo, 2011) that in the present case I = cos2 (s) +
sin2 (s) [cos (θ) cos (σ − α(s))− sin (θ) sin (ϕ) sin (σ − α(s))]2. From this result one derives
the following expression for the geometric phase (J. C. Loredo, 2011):

Φg(s) = arccos
(√

Imin

)√
1− Imax

1− Imin
− arctan

(√
1− Imax

Imin

)
. (61)

This result has been tested for various trajectories (J. C. Loredo, 2011), confirming theoretical
predictions with the expected accuracy. Though all these experiments were performed with
a cw He-Ne laser, an alternative setting using single-photon sources should produce similar
results. This is so because all the aforementioned results have topological, rather than classical
or quantal character.

5. Geometric phase for mixed states

Up to this point, the geometric phase refers to pure states ρ = |ψ〉〈ψ|. It is natural to ask
whether geometric phases can be defined for mixed states as well. Uhlmann addressed
this question (A. Uhlmann, 1986) and introduced a phase based on the concept of parallel
transport. When a pure state |ψ(s)〉 evolves under parallel transport, it remains in phase with
|ψ(s+ ds)〉, i.e., the system does not suffer local phase changes. After completing a closed
loop, a state may acquire a nontrivial phase, stemming from the curvature of the underlying
parameter space. This notion can be extended to mixed states. To this end, Uhlmann
considered so-called “purifications” of mixed states. That is, one considers a mixed state as
being part of a larger system, which is in a pure state. There are infinitely many possible
purifications of a given mixed state. Hence, to a given cyclic evolution there correspond
infinitely many evolutions of the purifications. However, one of these evolutions can be
singled out as the one which is “maximally parallel” (A. Uhlmann, 1986), and this leads to
a definition of geometric phases for mixed states.
An alternative approach was addressed more recently by Sjöqvist et al. (E. Sjöqvist, 2000).
The starting point is Pancharatnam’s approach; i.e., the interference between two states: |i〉,
to which a phase-shift φ is applied, and | f 〉 = U|i〉, with U unitary. The interference pattern
is given by
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I =
∣∣∣eiφ |i〉+U |i〉

∣∣∣2 = 2+ 2 |〈i|U|i〉| cos (φ − arg〈i|U|i〉) = 2+ 2v cos (φ − Φtot) , (62)

with v = |〈i|U|i〉| being the visibility and Φtot = arg〈i|U|i〉 the total phase between |i〉 and
U|i〉.
Consider now a mixed state ρ = ∑i wi|i〉〈i|, with ∑i wi = 1. The intensity profile will now be
given by the contributions of all the individual pure states:

I = ∑
i
wi

∣∣∣eiφ |i〉+U |i〉
∣∣∣2 = 2+ 2∑

i
wi |〈i|U|i〉| cos (φ − arg〈i|U|i〉) . (63)

We can write I in a basis-independent form as (E. Sjöqvist, 2000)

I = 2+ 2 |Tr (Uρ)| cos [φ − arg Tr (Uρ)] . (64)

It is then clear that v = |Tr (Uρ)| and that the total phase can be operationally defined as
Φtot = argTr (Uρ), which is the value of the shift φ at which maximal intensity is attained. As
expected, such a definition reduces to Pancharatnam’s for pure states ρ = |i〉〈i|.
Let us now address the extension of the geometric phase for mixed states. For pure states |ψ(s)〉
the geometric phase equals Pancharatnam’s phase whenever |ψ(s)〉 evolves under parallel
transport: 〈ψ(s)|ψ̇(s)〉 = 0. We can try to extend the notion of parallel transport for mixed
states by requiring ρ(s) to be in phase with ρ(s+ ds) = U(s+ ds) ρ0U†(s+ ds) = U(s+ ds)
U†(s)ρ(s)U(s)U†(s+ ds). According to our previous definition, the phase difference between
ρ(s) and ρ(s+ ds) is given by arg Tr

(
U(s+ ds)U†(s)ρ(s)

)
in this case. We say that ρ(s) and

ρ(s+ ds) are in phase when argTr
(
U(s+ ds)U†(s)ρ(s)

)
= 0, i.e., Tr

(
U(s+ ds)U†(s)ρ(s)

)
is

a positive real number. Now, because Tr (ρ(s)) = 1 and ρ(s)† = ρ(s), the number Tr
(
U̇U†ρ

)
is purely imaginary. Hence, a necessary condition for parallel transport is

Tr
(
U̇(s)U†(s)ρ(s)

)
= 0. (65)

However, such a condition is not sufficient to fix U(s) for a given ρ(s). Indeed, considering
any N × N matrix representation of the given ρ, Eq.(65) determines U only up to N phase
factors. In order to fix these factors we must impose a more stringent condition:

〈k(s)|U̇(s)U†(s)|k(s)〉 = 0, k = 1, . . . ,N, (66)

where ρ(s) = ∑k wk|k(s)〉〈k(s)|. This gives the desired generalization of parallel transport to
the case of mixed states. We can now define a geometric phase for a state that evolves along
the curve C : s → ρ(s) = U(s)ρ0U†(s), with s ∈ [s1, s2] and U(s) satisfying Eqs.(65) and (66).
The dynamical phase Φdyn ≡ −i

∫ s2
s1

dsTr
(
U†(s)U̇(s)ρ(0)

)
= 0 and we define the geometric

phase Φg for mixed states as

Φg = argTr (U(s)ρ(0)) . (67)

Φg is gauge and parametrization invariant and has been defined for general paths, open or
closed. In special cases, Φg can be expressed in terms of a solid angle, as it is the case with
Berry’s phase. For example, a two-level system can be described by
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ρ =
1
2
(
I +−→r · −→σ )

=
1
2
(
I + r−→n · −→σ )

, (68)

with −→n · −→n = 1 and r constant for unitary evolutions. For pure states r = 1, while for mixed
states r < 1. The unitary evolution of ρ(s) makes −→n (s) to trace out a curve C on the Bloch
sphere. If necessary, we close C to C̃ by joining initial and final points with a geodesic arc,
so that C̃ subtends a solid angle Ω. Then, the two eigenstates |±;−→n · −→σ 〉 of −→n · −→σ acquire
geometric phases ∓Ω/2. Both states have the same visibility v0 =

∣∣〈±;−→n · −→σ |U|±;−→n · −→σ 〉∣∣.
The eigenvalues of ρ are w± = (1± r)/2. The geometric phase thus reads

Φg = arg
(
1+ r
2

e−iΩ/2 +
1− r
2

e+iΩ/2
)
= − arctan

(
r tan

(
Ω
2

))
. (69)

and the visibility

v = v0

∣∣∣∣1+ r
2

e−iΩ/2 +
1− r
2

e+iΩ/2
∣∣∣∣ = v0

√
cos2

(
Ω
2

)
+ r2 sin2

(
Ω
2

)
. (70)

Eqs.(69) and (70) reduce for r = 1 to Φg = −Ω/2 and v = v0, respectively, the known
expressions for pure states. For maximally mixed states, r = 0, we obtain Φg = arg cos (Ω/2),
v = |cos (Ω/2)|, and Eq.(64) yields

I = 2+ 2 |cos (Ω/2)| cos (φ − arg cos (Ω/2)) = 2+ 2 cos (Ω/2) cos φ. (71)

We see that for Ω = 2π there is a sign change in the intensity pattern. This was experimentally
observed in early experiments testing the 4π symmetry of spin-1/2 particles (H. Rauch, 1975).
Much later, theoretical results like those expressed in Eqs.(69,70) have been successfully put
to experimental test (M. Ericsson, 2005).
The above extensions of Pancharatnam’s and geometric phases assume a unitary evolution
|i〉 → | f 〉 = U|i〉. A non-unitary evolution – reflecting the influence of an environment –
can be handled with the help of an ancilla; that is, by replacing the true environment by an
environment simulator, a fictitious system being in a pure state |0e〉〈0e|, which is appended
to the given system. The system plus the environment simulator are then described by ρ̃ =
ρ ⊗ |0e〉〈0e| and evolve unitarily, ρ̃ → ρ̃′ = Uρ̃U†, in such a way that by tracing over the
environment we recover the change of ρ → ρ′ = Treρ̃′. Introducing an orthonormal basis
{|ke〉}k=0,...,M for the environment, we can write Treρ̃′ = ∑k KkρK†

k , with Kk ≡ 〈ke|U|0e〉 being
so-called Kraus operators (S. Haroche, 2007). Using these tools it is possible to extend total
and geometric phases to non-unitary evolutions (J. G. Peixoto, 2002).

6. Thomas rotation in relativity and in polarization optics

In this closing Section we address a well-known effect of special relativity, Thomas rotation,
and show its links to geometric phases. We recall that Thomas rotation is a rather
surprising effect of Lorentz transformations. These transformations connect to one another
the coordinates of two inertial systems, O and O′, by xμ → x′μ = Λμ

ν xν, with Λμ
ν ημτΛτ

σ =
ηνσ. Here, ημν denotes the Minkowsky metric tensor. Lorentz transformations form a
six-parameter Lie group, whose elements can be written as (J. D. Jackson, 1975) Λ = exp L,
with L = −−→ω · −→S − −→

ζ · −→K . The matrices
−→
S and

−→
K are the group generators, while
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−→ω = (ω1,ω2, ω3) and
−→
ζ = (ζ1, ζ2, ζ3) are six parameters, those required to fix any group

element. The generators form an algebra, the Lie algebra of the group, which in the present
case is defined through the following commutators:

[
Si, Sj

]
= εijkSk, (72)[

Si,Kj

]
= εijkKk, (73)[

Ki,Kj

]
= −εijkSk (74)

In Eq.(72) we recognize the generators of the rotation group. On the other hand, the Ki are
generators of “boosts” connecting two systems that move with uniform relative velocity and
parallel axes. Intuitively, if O and O′ are related by a boost, and so also O′ and O′′, then
we expect that the same holds true for the transformation relating O and O′′. The surprising
discovery of Thomas was that this is not the case. Having parallel axes is not a transitive
property within the framework of Lorentz transformations. The product of two boosts is not
a boost, but it is instead a product of a boost by a rotation, the Thomas rotation. As almost
all relativistic effects, in order to exhibit Thomas rotation we should consider systems whose
relative velocity is near the velocity of light. Otherwise, the effect is too small to be observed.
However, there is an equivalent effect that appears in the context of geometric phases, whose
observation might be realizable with standard equipment. The root of Thomas rotation is
the non-transitive property of boosts. As we have seen, Pancharatnam’s connection relates
also in a non-transitive way two polarization states. Intensity-preserving transformations of
these states form a representation of the rotation group SU(2). But these are only particular
transformations among others, more general ones, which include intensity non-preserving
transformations. The latter can be realized with the help of, e.g., polarizers, that is, dichroich
optical elements. These elements provide us with the necessary tools for studying Thomas
rotations.
Before we discuss the optical framework, we need some more algebra to build the bridge
connecting Lorentz and polarization transformations. To this end, we recall the Dirac equation
(J. D. Bjorken, 1964):

(iγμ∂μ −m)ψ(x) = 0, (75)

with ψ(x) denoting a bi-spinor and the γμ being the Dirac matrices: γμγν + γνγμ = 2ημν.
Bi-spinor space can be used as a representation-space for the Lorentz group. The Lorentz
transformation Λ = exp L, which acts in space-time, has a corresponding representation in
bi-spinor space that is given by (J. D. Bjorken, 1964)

S(Ωμν) = exp
(
− 1

4
Ωμνγμγν

)
, (76)

with Ωμν(Λ) = −Ωνμ(Λ) constituting six independent parameters. The commutation
properties of the γμ allow us to write S(Ωμν) in terms of Pauli matrices −→σ . This is so because
S(Ωμν) contains only even products of the γμ matrices. Such products conform a subalgebra
of the γμ, which is isomorphic to the Pauli-algebra. We can thenmap each 4× 4matrix S(Ωμν)
into a 2× 2 matrix
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T(−→α ,
−→
β ) = exp

[(−→α + i
−→
β
)
· −→σ

]
. (77)

We see that T(−→α ,
−→
β ) is like an element of SU(2), exp

(
i
−→
δ · −→σ

)
, but with

−→
δ being replaced

by a complex three vector −→α + i
−→
β that entails the six real parameters of the Lorentz group.

The representation of this group as in Eq.(77) is what we need to establish a connection with
polarization optics.
A monochromatic, polarized, plane wave can be represented by Jones vectors with complex

components: |π〉 =
(
cosχ, eiφ sinχ

)T
. Alternatively, polarization states can be represented

by four-component Stokes vectors (s0,
−→s ), corresponding to a representation of pure states

by density operators:

ρ = |π〉 〈π| = 1
2
(
I +−→s · −→σ )

. (78)

In general, the Stokes four-vector (s0,
−→s ) = (Trρ, Tr(ρσ1), Tr(ρσ2), Tr(ρσ3)). The Stokes

three-vector −→s that corresponds to the Jones vector |π〉 =
(
cosχ, eiφ sinχ

)T
is given by

−→s = (cos(φ) sin(2χ), sin(φ) sin(2χ), cos(2χ)). Vectors −→s span the Poincaré-Bloch sphere.
Intensity preserving transformations, like those realized by wave plates, are represented by
2× 2 matrices belonging to the SU(2) group. The effect of such a matrix on −→s is to rotate this
vector without changing its length. By applyingU = exp

(
iΦ−→n · −→σ /2

)
to an input vector |πi〉

we obtain an output vector |πo〉 = U |πi〉. The corresponding Stokes vectors, −→s i and
−→s o, are

related to one another by the well-known Rodrigues formula (H. Goldstein, 1980) that gives a
rotated vector in terms of the rotation angle Φ and axis −→n :

−→s o = cos(Φ)−→s i + [1− cos(Φ)]
(−→n · −→s i

)−→n + sin(Φ)−→s i ×−→n . (79)

Consider now dichroic optical elements, e.g., a non-ideal polarizer. To encompass optical
conventions we use in what follows the Pauli matrices: ρ1 = σ3, ρ2 = σ1, ρ3 = σ2. In such

a representation |π〉 =
(
cosχ, eiφ sinχ

)T
is x-polarized when χ = 0 and y-polarized when

χ = π/2. The matrix representing a non-ideal polarizer whose lines of maximal and minimal
transmission are along the x- and y-polarization axes, respectively, is given by

Jdiag =
(

px 0
0 py

)
. (80)

The eigenvectors of Jdiag, (1, 0)
T and (0, 1)T, are thus polarization vectors along the x and −x

directions, respectively, on the Poincaré sphere. The correspondingmatrix whose eigenvectors

are |π1〉 =
(
cosχ, eiφ sinχ

)T
and its orthogonal |π2〉 =

(
−e−iφ sin χ, cosχ

)T
, is given by

J =
(

px + py
2

)
I +

(
px − py

2

)
[(cos 2χ) ρ1 + (sin 2χ cos φ) ρ2 + (sin 2χ sinφ) ρ3] . (81)

Taking x as transmission axis (px > py), writing px = e−αm , py = e−αM and setting
−→
Γ =

(cos 2χ, sin 2χ cos φ, sin 2χ sinφ), we obtain, with αs = αm + αM and αd = αM − αm,
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J = exp
(
− αs

2

) {
cosh

(αd
2

)
I + sinh

( αd
2

)−→
Γ · −→ρ

}
. (82)

We can show that Eq.(77) is just of this form. To this end, we write T(−→α ,
−→
β ) = exp(−−→

f · −→ρ ),
with

−→
f = −→α + i

−→
β , and observe that

−→
f · −→ρ has eigenvalues

λ± = ±
√−→α 2 −−→

β 2 + 2i−→α · −→β ≡ ±z. (83)

Denoting by |f±〉 the eigenvectors of
−→
f · −→ρ ; that is,

−→
f · −→ρ |f±〉 = λ± |f±〉, we have I =

|f+〉 〈f+|+ |f−〉 〈f−| and−→
f · −→ρ = λ+ |f+〉 〈f+|+λ− |f−〉 〈f−|. Solving for |f±〉 〈f±|we obtain

|f±〉 〈f±| = zI ±−→
f · −→ρ

2z
. (84)

Using exp A = ∑n exp an |an〉 〈an| with A = −−→
f · −→ρ and observing that exp

(
−−→

f · −→ρ
)
has

eigenvectors |f±〉 and eigenvalues exp (∓z), we get

exp(−−→
f · −→ρ ) = e−z |f+〉 〈f+|+ ez |f−〉 〈f−| = e−z

2z
(
zI + f · −→ρ )

+
ez

2z

(
zI −−→

f · −→ρ
)

=

(
ez + e−z

2

)
I −

(
ez − e−z

2z

)−→
f · −→ρ

= (cosh z)I − sinh z

(−→
f
z

)
· −→ρ (85)

It is easy to show from Eq.(85) that a Lorentz transformation exp(−−→
f · −→ρ ) can generally

be written as a product of a boost by a rotation. It is clear from Eq.(77) that a rotation
is obtained when −→α =

−→
0 and a boost when

−→
β =

−→
0 . A general rotation U(ξ, η, ζ) ∈

SU(2) can be implemented with the help of three wave-plates, see Eq.(51). A general
boost can be implemented with dichroic elements realizing Eq.(82). The global factor there,
exp (−αs/2), corresponds to an overall intensity attenuation. We can thus in principle realize
any transformation of the form exp(−−→

f · −→ρ ) by using optical elements like wave-plates and
dichroic elements. In particular, by letting a polarization state pass through two consecutive
dichroic elements – each corresponding to a boost – we could make appear a phase between
initial and final states. This is a geometric phase rooted on Thomas rotation, which can thus
be exhibited by using the tools of polarization optics. Thus, we have here another example
showing the topological root shared by two quite distinct physical phenomena.

7. Conclusion

Berry’s phase was initially seen as a surprising result, which contradicted the common
wisdom that only dynamical phases would showupwhen dealingwith adiabatically evolving
states. But soon after its discovery it brought to light a plethora of physical effects sharing
a common topological or geometrical root. Once the initial concept was relatively well
understood, people could recognize its manifestation in previously studied cases, like the
Aharonov-Bohm effect and the Pancharatnam’s prescription for establishing whether two
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polarization states of light are in phase. Thanks to the contributions of a great number of
researchers, Berry’s phase has evolved into a rich subject of study that embraces manifold
aspects. There are still several open questions and partially understood phenomena, as well
as promising approaches to implement practical applications of geometrical phases, notably
those related to quantum information processing. The present Chapter can give but a pale
portrait and a limited view of what is a wide and rich subject. However, it is perhaps precisely
out of these limitations that it could serve the purpose of awaking the reader’s interest for
studying in depth such a fascinating subject-matter.
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1. Introduction 

All material objects perceivable by our sensations move in real 3D-space. In order to 
describe such movement  in strict mathematical forms we need to realize, first, what does 
the space represent as a mathematical abstraction and how motion in it can be expressed? 
Isaac Newton had gave many cogitations with regard to categories of the space and time. 
Results of these cogitations  have been devoted to formulating categories of absolute and 
relative space and time (Stanford Encyclopeia, 2004): (a) material body occupies some place 
in the space; (b) absolute, true, and mathematical space remains similar and immovable 
without relation to anything external; (c) relative spaces are measures of absolute space 
defined with reference to some system of bodies or another, and thus a relative space may, 
and likely will, be in motion; (d) absolute motion is the translation of a body from one 
absolute place to another; relative motion is the translation from one relative place to 
another. 
Observe, that space coordinates of a body can be attributed to center of mass of the body, 
and its velocity is measured as a velocity of motion of this center. It means, that a classical 
body can be replaced ideally by a mathematical point situated in the center of mass of the 
body. Velocity of the point particle is determined from movement of the center of mass per 
unit of time. Both point particle coordinates and its velocity are measured exactly. Its 
behavior can be computed unambiguously from formulas of classical mechanics (Lanczos 
1970). 
Appearance of quantum mechanics in the early twentieth century brought into our 
comprehension of reality qualitative revisions (Bohm, 1951). One problem, for example, 
arises at attempt of simultaneous measurement of the particle coordinate and its velocity. 
There is no method that could propose such measurements. Quantum mechanics 
proclaims weighty, nay, unanswerable principle of uncertainty prohibiting such 
simultaneous measurements. Therefore we can measure these parameters only with some 
accuracy limited by the uncertainty principle. From here it follows, that formulas of 
classical mechanics meet with failure as soon as we reach small scales. On these scales the 
particles behave like waves. It is said, in that case, about the wave-particle duality 
(Nikolić, 2007). 
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It would be interesting to note here, that as far back as 5th century, B. C., ancient 
philosopher Democritus, (Stanford Encyclopeia, 2010), held that everything is composed 
of "atoms", which are physically indivisible smallest entities. Between atoms lies empty 
space. In such a view it means  that the atoms move in the empty space. And only 
collisions of the atoms can effect on their future motions. One more standpoint on Nature, 
other than atomistic, originates from ancient philosopher Aristotle (Stanford Encyclopeia, 
2008). Among his fifth elements (Fire, Earth, Air, Water, and Aether), composing the 
Nature, the last element, Aether, has a particular sense for explanation of wave processes. 
It provides a good basis for understanding and predicting the wave propagation through 
a medium.  
By adopting wave processes underlying the Nature one can explain of interference 
phenomena of light. Huygens  (Andresse, 2005) gave such an explanation. In contrast to 
Newtonian corpuscular explanation, Huygens proposed that every point to which a 
luminous wave reached becomes a source of a spherical wave, and the sum of these 
secondary waves determines the form of the wave at any subsequent time. His name was 
coined in the Huygens's wave principle, (Born & Wolf, 1999). 
Such a competition of the two standpoints, corpuscular and wave, can provide more insight 
penetration into problems taking place in the quantum realm. Here we adopt these 
standpoints as a program for action (Sbitnev, 2009a). The article consists of five sections. Sec. 
2 begins from a short review of the classical mechanics methods and ends by Dirac's 
proposition as the classical action can show itself in the quantum realm. Feynman's path 
integral is a summit of this understanding. The path integral technique is used in Sec. 3 for 
computing interference pattern from N-slit gratings. In Sec. 4 the path integral is analyzed in 
depth. The Schrödinger equation results from this consideration. And as a result we get the 
Bohmian decomposition of the Schrödinger equation to pair of coupled equations, modified 
the Hamilton-Jacobi equation and the continuity equation. Sec. 5 studies this coupled pair in 
depth. And concluding Sec. 6 gives remarks relating to sensing our 3D-space on the 
quantum level. 

2. From classic realm to quantum 

A path along which a classical particle moves, Fig. 1, obeys to variational principles of 
mechanics. A main principle is the principle of least action (Lanczos, 1970). The action S is a 
scalar function that is inner production of dynamical entities of the particle (its energy, 
momentum, etc.) to geometrical entities (time, length, etc.). For a particle's  swarm moving 
through the space along some direction, the action is represented as a surface  be pierced by 
their trajectories. Observe that adjoining surfaces are situated in parallel to each other and 
the trajectories pierce them perpendicularly. 
The action S is the time integral of an energy function, that is the Lagrange function, along 
the path from A (starting from the moment t0) to B (finishing at the moment t1) : 

 
1

0

( , ; )
t

t

S L q q t dt 
  . (1) 

Here ( , ; )L q q t
   is the Lagrange function representing difference of kinetic and potential 

energies of the particle. And q
  and q

  are its coordinate and velocity. Scientists proclaim that 
the action S remains constant along an optimal path of the moving particle. It is the principle  
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Fig. 1. Particle, at passing from A to B, moves along geodesic trajectory - the trajectory 
satisfying the principle of least action. All geodesic trajectories intersect equiphase surfaces, 
S=C, S = C+ε, perpendicularly (Lanczos, 1970). 

of least action. According to this principle, finding of the optimal path adds up to solution of 
the extremum problem δS = 0. The solution leads to establishing the Lagrangian mechanics 
(Lanczos, 1970). We sum up the Lagrangian mechanics by presenting its main formulas via 
The Legendre's dual transformations as collected in Table 1: 
 

Variables : 

Coordinate:  1 2( , , , )Nq q q q
   

Momentum: 1 2( , , , )Np p p p
   

Variables : 

Coordinate: 1 2( , , , )Nq q q q
   

Velocity:  1 2( , , , )Nq q q q
     

Hamiltonian function: 

1
( , ; ) ( , ; )

N

n n
n

H q p t p q L q q t


      

n
n

H
q

p





  

n
n

H
p

q


 


  

Lagrangian function: 

1
( , ; ) ( , ; )

N

n n
n

L q q t p q H q p t


       

n
n

L
p

q



 

 

n
n

L
p

q





  

Table 1. The Legendre's dual transformations 

The Hamilton-Jacobi equation (HJ-equation) 

 ( , ; )S
H q p t

t


 


  , (2) 
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describing behavior of the particle in 2N-dimesional phase space is one of main equations of 
the classical mechanics. Let us glance on Fig. 1. Gradient of the action S can be seen as 
normal to the equiphase surface S = const. Consider two nearby surfaces S = C and S = C+ε. 
Let us trace normal from an arbitrary point P of the first surface up to its intersection with 
the second surface at point P ’. Next, make another shift of the surface that is 2ε distant away 
from the first surface, thereupon on 3ε, and so forth. Until all space will be filled with such 
secants. Normals drawn from P to P ‘ thereupon from P ‘ to P ‘’, and so forth, disclose possible 
trajectory of the particle, since S = ε / δ represents a value of the gradient of S. When ε and 
δ tend to zero, this relation can be expressed in the vector form 

 p S 
 . (3) 

So far as the momentum p mv
   (m is a particle mass) has a direction tangent to the 

trajectory, then the following statement is true (Lanczos, 1970): trajectory of a moving particle  
is perpendicular to the surface  S = const. Dotted curves in Fig. 1 show  bundle of trajectories 
intersecting the surfaces  S  perpendicularly. 
The particle's swarm moving through space can be dense enough. It is appropriate to 
mention therefore the Liouville theorem, that adds to the conservation law of energy one 
more a conservation law. Meaning of the law is that a trajectory density is conserved 
independently of deformations of the surface that encloses these trajectories. 
Mathematically, this law is expressed in a form of the continuity equation 

  v
t
 
 


 . (4) 

Here ρ  is a density of moving mechanical points with the velocity /v p m
  . 

Thus we have two equations, the HJ-equation (2) and the continuity equation (4) that give 
mathematical description of moving classical particles undergoing no noise. Draw attention 
here, that the continuity equation depends on solutions of the HJ-equation via the term 

/v S m 
 . On the other hand we see, that the HJ-equation does not depend on solutions of 

the continuity equation. This is essential moment at description of moving ensemble of the 
classical objects. 
Starting from a particular role of the action, which it has in classical mechanics, Paul Dirac 
drew attention in 1933 (Dirac, 1933) that the action can play a crucial role in quantum 
mechanics also. The action can exhibit itself in expressions of type exp{ iS / ћ}. It is 
appropriate to notice the following observation: the action here plays a role of a phase shift. 
According to the principle of least action, we can guess that the phase shift should be least 
along an optimal path of the particle. In 1945 Paul Dirac emphasize once again, that the 
classical and quantum mechanics have many general points of crossing (Dirac, 1945). In 
particular, he had written in this article: "We can use the formal probability to set up a 
quantum picture rather close to the classical picture in which the coordinates q of a 
dynamical system have definite values at any time. We take a number of times t1, t2, t3, … 
following closely one after another and set up the formal probability for the q 's at each of 
these times lying within specified small ranges, this being permissible since the q ‘s at any 
time all commutate. We then get a formal probability for the trajectory of the system in 
quantum mechanics lying within certain limits. This enables us to speak of some trajectories 
being improbable and others being likely". 
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Next, Richard Feynman undertook successful search of acceptable mathematical apparatus 
(Feynman, 1948) for description of  evolution of  quantum particles traveling through an 
experimental device. The term 

    exp i / exp i /S L t   (5) 

plays a decisive role in this approach. Idea is that this term executes mapping of a wave 
function from one state to another spased on a small time interval  δt. And L is Lagrangian 
describing current state of the quantum object. 
Feynman's insight has resulted in understanding that the integral kernel (so called 
propagator) of the time-evolution operator can be expressed as a sum over all possible paths 
(not just over the classical one) connecting the outgoing and ingoing points, qa and qb, with 
the weight factor exp{ iS(qa, qb ;t)/ћ } (Grosche, 1993; MacKenzie, 2000) : 

    
all paths

, exp i ( , ; ) /a b a bK q q A S q q T   , (6) 

where A is an normalization constant. 
Observe that The Einstein-Smoluchowski equation which describes the Brownian motion of 
classical particles within some volume (Kac, 1957), served him as an example. As follows 
from idea of the path integral (6), there are many possible trajectories, that can be traced 
from a source to a detector. But only one trajectory, submitting to the principle of least 
action, may be real. The others cancel each other because of interference effects. Such an 
interpretation is extremely productive at generating intuitive imagination for more perfect 
understanding quantum mechanics. 
It is instructive further to consider some quantum tasks by using the Feynman path integral. 
Here we will compute interference patterns as a result of incidence of particles on N-slit 
gratings. 

3. Interference pattern from an N-slit gratin 

Let a beam of coherent particles spreads through a grating. The grating shown in Fig. 2 has a 
set of narrow slits sliced in parallel. Width of the slits is sufficient in order that even large 
molecules could pass they through. Here we face with the uncertainty principle, ΔrΔp ≥ ћ/2.  
 

 
Fig. 2. Interference experiment in cylindrical geometry. Slit grating with n=0,1, … ,N-1 slits 
is situated in a plane (x,y). Propagation of particles occurs along axis z. 
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It means, if diameter of the molecule is close to width of the slit then direction of its escape 
from the slit is uncertain. One can draw, as commonly, cylindrical waves that are divergent 
from each slit, as shown in this illustration on the slit 3. They illustrate equally probable 
outcomes from slits in different directions. In other words, a particle may fly out in any 
direction with equal probability. 

3.1 Passing through a slit 
Before we will analyze interference on the N-slit grating, let us consider a particle passing 
through a single slit. The problem has been considered in detail in (Feynman & Hibbs, 1965). 
We will study migration of the free particle in transversal direction, let it be axis x, at 
passing along z with a constant velocity, see Fig. 3. Lagrangian is as follows 

 
2

const
2
x

L m 


. (7) 

Here m is mass of the particle and x is its transversal velocity. By translating a particle's 
position on a small value  δx = (xb-xa) << 1, being performed for a small time δt = (tb-ta) << 1, 
we find that a weight factor, see (5), is as follows 

 
2

i / i ( )e exp
2 ( )

L t b a

b a

m x x
t t

     
  




. (8) 

Pay attention on the following situation: so far as argument of the exponent contains 
multiplication of the Lagrangian L by δt, as shown in Eq. (5), we obtain result (xb - xa) 2  
divided by (tb - ta). Next we will see, that the weight factor (8) plays an important role. By 
means of such small increments let us trace passing the particle from a source through the 
slit, Fig. 3. 
 

 
Fig. 3. A particle, being emitted from a source that is localized at a point (xs, zs) passes 
through a slit with width 2b0 . It may undergo deflection from a straight direction at passing 
through the slit (Feynman & Hibbs, 1965). 

We suppose, that at the time t = 0 the particle leaves a source localized at a point  (xs, zs). Let 
we know, that after a time T the particle enters to the vicinity x0 ± b of a point x0, see Fig. 3. 
The question is: what is the probability to disclose the particle after a time τ  at a point x1 
remote from the point x0 at a distance Δx=(x1 - x0)? Let the particle outgoing from the point 
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xs  at the time t=0 passes a slit between the points x0 - b and x0+b at the time t=T. Let us 
compute the probability of discovering the particle at some point x1 after the time τ, i.e., at 
t=T+τ. Because of existence of an opaque barrier a direct path to the point x1 can be absent. 
In order to reach the point x1 the particle should pass through the slit, maybe with some 
deflection from the direct path. In this connection, we partition the problem into two parts. 
Each part relates to movement of the free particle. In the first part we consider the particle 
which begins movement from the point xs at the initial moment t = 0 and reaches to a point x 
= x0+ξ, at the moment t = T, where |ξ| ≤ b . In the second part we consider the same particle 
that after passing the point x=x0+ξ at the time t=T moves to the point x1 and reach it at the 
time t=T+τ. A full probability amplitude is equal to integral convolution of two kernels, each 
describing movement of the free particle: 

 1 0 s 1 0 0 s( , , ) ( , ; , ) ( , ; ,0)
b

b

x x x K x T x T K x T x d    


    . (9) 

Here the kernel reads 

 
1 2 22 i ( ) i ( )( , ; , ) exp

m 2 ( )
b a b a

b b a a
b a

t t m x x
K x t x t

t t
               




. (10) 

It describes a transition amplitude from xa to xb for a time interval (tb – ta) (Feynman & 
Hibbs, 1965). Consequently, the integral (9) computes the probability amplitude of transition 
from the source xs  to the point x1 through the all possible intermediate points ξ  situated 
within the interval (x0 - b, x0 + b). 
The expression (9) is written in accordance with a rule of summing amplitudes for 
successive events in time. The first event is the moving particle from the source to the slit. 
The second event is the movement of the particle from the slit to the point x1. The slit has a 
finite width. Passage through the slit is conditioned by different alternative possibilities. For 
that reason, we need to integrate along all over the slit width in order to get a right result. 
All particles, moving through the slit, are free particles and their corresponding kernels are 
given by the expression (10). By substituting this kernel to the integral (9) we get the 
following detailed form 

1 2 1 22 2
0 s

1 0 s
2 i i ( ) 2 i i ( )( , , ) exp exp

2 2

b

b

m x T m x x
x x x d

m m T
     

 


 



                  
         


 
 

. (11) 

Integration here is fulfilled along the slit of a width a=2b, i.e., from -b to +b. 
Formally, range of the integration can be broadened from -∞ to +∞. But in this case, we need 
to introduce the step function G(ξ) equal to unit in the interval [-b,+b] and equal to zero 
outside this interval. In principle, we can approximate hard edged slits by series of the 
Gaussian functions, each with narrow halfwidth  (Sbitnev, 2010). For sake of simplicity 
however, we confine themselves by a single Gaussian form-factor 

  2 2( ) exp 2G b   . (12) 

It simulates slits with fuzzy edges. Effective width of this curve is conditioned by a 
parameter b. For such a form-factor roughly two thirds of all its area is situated between the 
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points -b and +b. If the particles would move by classical way, then we can anticipate, that 
after the time τ a distribution of the particles will be similar to the distribution existing at T, 
see Fig. 4. New center x1 of the distribution is shifted on a value Δx from the point x0. Width 
b1 of the new distribution is also broadened. The both parameters, x1 and b1, are determined 
from expressions 

 1 0 11 , 1x x b b
T T
          

   
. (13) 

 

 
Fig. 4. Trajectories of particles passing through the Gaussian slit (Feynman & Hibbs, 1965), 
form a ray with an angle α of the divergent particle beam emanating from the source xs. 

Observe that quantum particles, in contrast to the classical ones, at scattering on the slit 
behave themselves like waves. The wavelike nature  manifests itself via phase shifts of the 
moving particles in an observation point because of the de Broglie wavelength as innate 
character of quanta. According to the above stated remarks, Eq. (11) with inserted the form-
factor of the slit, G(ξ), now can be rewritten in the following form 

 
2 2

1 0 0 s
1 0 s

( ) i ( ) ( )( , , ) exp
22 i

mG m x x x x
x x x d

TT
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 





          
    

 
. (14) 

By substituting G(ξ) from Eq. (12) to this expression and integrating it we obtain 
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
 
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 
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 

. (15) 

At integrating Eq. (14) we use a standard integral 

 
2 2 4e d e     




   




 . (16) 

Before we will write out a final expression let us fulfill a series of replacements. 



 
Bohmian Trajectories and the Path Integral Paradigm – Complexified Lagrangian Mechanics 

 

321 

3.1.1 Series of replacements 

First we define an effective slit's half-width 0 2b  . And further we define a complex 
time-dependent spreading 

 0
0

i
2 (1 )m T

 
 

 


 , (17) 

which has been defined in works (Sanz & Miret-Artês, 2007, 2008}. More one step is to 
replace flight times T and τ  by flight distances (z0 - zs) and (z1 - z0), namely, T = (z0 -zs)/vz 
and  τ = (z1 -z0)/vz. Here vz is a particle velocity along the axis z. We note that mvz =pz is z-
component of the particle momentum. This component is not changed at passing through 
the grating. Next, we introduce the de Broglie wavelength  λdB = h/pz, where h=2πћ is the 
Planck constant. Rewrite  in this view the complex time-dependent spreading (17) as the 
complex distance-dependent spreading 

 
1

dB 1 0
0
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0
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s

z z

z z
z z




 





 
 
  

. (18) 

Define now a dimensionless complex distance-dependent spreading as follows 
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1 dB 1 0
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( )i
4

s
z

s

z z z z
z z




 
 


 (19) 

and a dimensionless parameter characterizing remoteness of the source 

 0 1 0
0

0 1 0

( ) ( )1
( ) ( )

s

s

x x z z
z z x x

  
 

 
, (20) 

which tends to 1 as zs → -∞. 
Now we can use the above parameters, the dimensionless complex distance-dependent 
spreading 

1z  and the remoteness of the source Ξ0, in order to write out the wave function 
behind the slit. By rewriting Eq. (15) via these parameters we obtain 

 
2 2 2

0 0 0
0

dB 0 dB 0

(  -  ) (  -  )( , , , ) exp i 1
2 i ( ) ( )

s
s

z z s

x x x xm
x x x z

T z z z z
 

    

                
. (21) 

Here we have removed the subscript 1 at the variables, x, z, and Σz, since they relate to every 
points of the  space behind the slit. In particular, at removing the source to infinity, zs  → -∞, 
the parameter Ξ0 tends to 1 and the wave function  reduces down to the paraxial 
approximation 
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0
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dB 0

(  -  ) 1( , , ) exp i 1
( ) z

x x
x x z A

z z
 

 
      

   
. (22) 

Here a normalization factor A reads 
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2 i z

m
A

T 



. (23) 

One can see it vanishes at T → ∞. It means, as the source moves away to infinity its intensity 
tends to zero. In the paraxial approximation we need to ignore this expression and consider 
the parameter A simply as a factor that normalizes the wave function. 
Further, for the sake of simplicity, we will deal with the paraxial approximation. 

3.2 Matter waves behind the grating 
Let we have a screen, on which an incident monochromatic beam of the particles is 
scattered. It has N slits (n=0,1,2, … ,N-1) located at equal distance from each other, as shown 
in Fig. 2. Origin of coordinates is placed in the center of the slit grating. In this frame of 
reference, n-th slit has a position x0 = (n - (N-1)/2)d, where d is a spacing between slits. The 
spacing is measured in units multiple to the wavelength λdB. 
We need now to compute contributions of all paths that pass from the source through all 
slits in the screen and farther to a point of observation (x,z). Per se, we should superpose in 
the observation point all wave functions (22) from all slits n=0,1,2, … ,N-1. Such a 
superposition reads 

 
1

0

1 1( , ) , ,
2

N

n

N
x z x n d z

N
 





     
  

  (24) 

and probability density in the vicinity of the observation point (x,z) is 

 ( , ) ( , ) ( , )p x z x z x z  . (25) 

3.2.1 Far-field diffraction 
Before we will take up interference effects in the near-field region, let us consider an 
asymptotic limit of the formula (25) in the far-field region, Fig. 5. With this aim in mind, we 
replace the term (n - (N-1)/2)d in Eq. (24) by kd, where k runs from -(N-1)/2 to  (N-1)/2. 
Next, at summation we will neglect contribution of coefficients at  k 2d 2  emergent at 
decomposition (x - kd) 2 = x 2 - 2xkd + k 2d 2. The point is that the terms with k 2d 2 lead to 
phases muddled up on infinity. Because of it sum of all these exponents gives zero 
contribution. Other sums containing coefficients at x 2 and 2xkd can be easily computed. 
Next, at summation we use the mathematical equality 

    
 

( 1) 2

( 1) 2

sin 2
exp i

sin 2

N

k N

Nx
kx

x



 
 . (26) 

Intensity of the particle beam in the far-field region computed according to the above 
approximation is as follows 
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0 2
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 
 

. (27) 
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Fig. 5. Diffraction in the far-field zone at simulation of scattering thermal neutrons (λdB=0.5 
nm) on N=7 slits grating. Width of slits a=2λdB, spacing d=10λdB, and the Talbot length 
zT=2d2/λdB=200λdB. Directions of principal and subsidiary maxima  are pointed out by big 
red arrows and small blue arrows, respectively. 

Here terms ζ(x,z) and I0(x,z) read 
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 (28) 

The parameter A is the normalization factor, see Eq. (23), and σz has the following form 

 dB
21

4z
z 


    
 

. (29) 

This parameter is equivalent to the instantaneous Gaussian width presented in (Sanz and 
Miret-Artês, 2007). 
Fig. 6 shows diffraction in the far-field zone from the grating having N=7 slits. Distance to 
the observation screen is z=10 7 zT =1 m, where zT =2d 2/λdB = 200λdB is the Talbot length. It 
will be explained below. It is seen, that the principal maxima are partitioned from each other 
by N-2=5 subsidiary maxima. 

3.2.2 Near-field interference 
Above we have considered a coherent flow of thermal neutrons, λdB=0.5 nm. Radius of these 
particles is 10-15 m. It is much smaller the de Broglie wavelength λdB = 5·10-10 m. For this 
reason, these particles can be considered as point particles, in contrast to enormous fullerene 
molecules shown in Fig 7. 
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Fig. 6. Diffraction of thermal neutrons (λdB=0.5 nm) in the far-field zone from grating having 
N=7 slits. Distance to observation screen is z=1 m. Blue circles relate to the probability 
density calculated by Eqs. (24)--(25). Intensity (27) is drawn by red solid curve. Dotted green 
curve draws envelope I 0(x,z) N 2. 

 

 
Fig. 7. The fullerene molecule C60 consists of 60 carbon atoms. Its radius is about 700 pm. At 
a flight velocity  from a source v =100 m/s de Broglie wavelength of the fullerene molecule, 
λdB, is about 5 pm. 

Here we consider interference phenomena in the near-field created by the fullerene 
molecules. Interest to such heavy molecules, having masses about 100 amu and more (Arndt 
et al., 2005; Brezger et al., 2002, 2005; Gerlich et al., 2011; Hackermüller et al., 2003, 2004; 
Nairz et al., 2003) is due to the fact that under ordinary circumstances they behave almost as 
classical objects. Indeed, diameter of the fullerene molecule C60, see Fig. 7, is about 700 pm 
(Yanov & Leszczynski, 2004), but de Broglie wavelength is ~5 pm (Hackermüller et al., 2003; 
Juffmann et al., 2009). There is a problem to observe quantum interference for such  large 
molecules having minuscule wavelengths. 
At small distances from the grating we need in a acceptable scale in order to partition 
interference patterns on characteristic zones. Such a scale parameter is the Talbot length 

 
2

T
dB

2 d
z


 . (30) 

This length starts from Henry Fox Talbot who discovered in 1836 a beautiful interference 
pattern (Talbot, 1836), that carries his name. Here d is the spacing between slits and λdB is the 
de Broglie wavelength of particles under consideration. Figs. 8 and 9 show emergence of 
such interference patterns in the near-field. 
Fig. 8 shows the density distribution function (25) in a transient region from near-field to 
far-field (it is shown in gray color). The Talbot length ranges from 0 to 8zT = 0.8 m. The  
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Fig. 8. Interference pattern of matter waves. The wave is presented by coherent fullerene 
molecule beam incident to a grating having N = 15 slits. De Broglie wavelength of the 
fullerene molecules is λdB = 5 pm. Spacing between slits d = 500 nm and slit width a = 2b = 10 
nm. The Talbot length zT=0.1 m. Two Bohmian trajectories divergent from central area of the 
grating are shown in blue as examples. 

 

 
Fig. 9. Talbot carpet in the near-field of the grating having N = 255 slits. The pattern has 
been captured from central part of the grating. De Broglie wavelength of the fullerene 
molecules is λdB = 5 pm. Spacing between slits d = 500 nm and slit width a = 2b = 10 nm. The 
Talbot length zT=0.1 m. Some of the Bohmian trajectories passing by zigzag through spots 
with high density distribution are shown in blue as examples. 
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interference pattern emergent has been calculated for heavy particles, fullerene molecules, 
Fig. 7, incident on the grating containing N = 15 slits. Spacing between slits is d = 500 nm 
and slit width a = 2b = 10 nm. Mass of the fullerene molecules is about mC60 ≈ 1.2·10-24 kg. 
And at average velocity about 100 m/s (Juffmann et al., 2009) the de Broglie wavelength is 5 
pm. The Talbot length is about zT = 0.1 m. One can easily evaluate that ratio of the Talbot 
length to the spacing between slits is equal to 2·10 5. So, a stripe between two slits extending 
from the grating up to the first Talbot length is extremely narrow. We can see that nearby 
the grating there exists a relatively perfect interference pattern. It decays with removing 
from the grating. And far from the grating characteristic rays divergent from it arise, as 
shown, for example, in Fig. 5 
More fascinating picture arises at observation of the Talbot carpet as a peculiar 
manifestation of interference in near-field, see Fig. 9. The Talbot carpets arise if three 
conditions, Berry's conditions (Berry, 1996, 1997; Berry & Klein, 1996; Berry et al., 2001), are 
fulfilled: (a) paraxial beam; (b) arbitrary small ratio λdB/d; (c) arbitrary large number of slits. 
In a strict sense, in the limits N → ∞ and λdB/d → 0 the Talbot carpet should transform to 
fractal interference pattern. It would look like δ-peaks everywhere densely populating the 
probability density distribution function p(x,z), as shown, for example, in Fig. 10. 
 
 

 
 

Fig. 10. Probability density distribution approaches infinite set of δ -functions as λdB/d tends 
to zero. Parameters here are as follows N = 64, λdB = 0.5 nm (thermal neutrons), d = 20 nm, zT 
= 6400 nm (Sbitnev, 2009b). 
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In order to reach the Berry's conditions, we take number of slits as many as possible. The 
ratio λdB/d  should be as small as possible, as well. Given λdB = 5 pm and d = 500 nm we 
have the ratio λdB/d = 10-5. It is in good agreement with the condition (b). As for number of 
slits, as seen in Fig. 8 the interference patterns  are washed away on first some Talbot 
lengths. It means, that number of the slits N = 15 is insufficient for observing of the Talbot 
carpet. Fig. 9 shows emergence of the Talbot carpet in the near-field in central part of the 
grating having 255 slits. As seen, N = 255 is sufficient number to get the Talbot carpet with 
perfect organization of alternation of high and low values of the density distribution. 

3.3 Bohmian trajectories 
How does particle pass through the slits? Answer to this problem is proposed in the 
Bohmian mechanics (Bohm, 1952a, 1952b; Bohm & Hiley, 1982; Hiley, 2002). In the next 
section we will consider this solution in detail. Here we show only some particular 
solutions. Two divergent Bohmian trajectories drawn in blue are shown in Fig. 8. They 
prefer to go along dark plots (high values of the density distribution) and avoid light-
colored plots (low values of the density distribution). Fig. 9 also shows in blue a family of 
the Bohmian trajectories. In contrast to the trajectories shown in previous figure, here they 
demonstrate complex zigzag movements. The Bohmian trajectories result from solution of 
the guidance equation (Wyatt & Bittner, 2003; Nikolić, 2007; Sanz & Miret-Artês, 2007, 2008; 
Struyve & Valentini, 2009) 

  1Imx
S

v x
m m

 
   

 . (31) 

According to the equation (31), position (x,z) of the particle in 2D space is given as follows 

 0 0
0

( ) , ( )
t

x zx t x v d z t z v t    . (32) 

Since we believe that longitudinal momentum, pz, is constant in contrast to the transversal 
momentum px, the component  z  here is calculated by simple multiplication of  vz  by  t. In 
turn, velocity vx, as seen from Eq. (31), is (a) proportional to gradient of the wave function;  
and (b) inversely proportional to the same wave function. It means: (a) a trajectory 
undergoes greatest variations in plots, where the wave function has slopes; and (b) the 
trajectory avoid areas, where the wave function tends to zero. 
One could think that the Bohmian trajectories are physical artifacts, since they enter into a 
rough contradiction with the Heisenberg uncertainty principle, because of prediction in each 
time moment of exact values of  coordinates and velocities of the particle (Bohm, 1952a, 
1952b; Bohm & Hiley1982). However, there is no here contradiction so far as the uncertainty 
principle refers to the measurement problem. Whereas the Bohmian trajectories are simply 
geodesic trajectories. At drawing the density distribution function we could use an 
orthogonal grid represented by geodesic trajectories and surfaces of equal phases, see, for 
example, Fig. 1. In the absence of intervention in a particle's history by  measuring its 
parameters, real particle prefer to move along a geodesic trajectory. However, as soon as we 
undertake  measurement of the particle's parameters we destroy its  history. For example, if 
we measure position of the particle, we destroy its future history. If we measure its 
momentum, then we lose its past history. 



 
Theoretical Concepts of Quantum Mechanics 

 

328 

The Bohmian trajectories in Fig. 9 are seen to fulfill intricate zigzag dances. One can see, the 
trajectories pass through areas where the density distribution has high values and avoid 
areas with low its values. The particles one can guess should perform zigzag motions. 
However, as was noted above, the ratio zT to d is about 2·10 5 and the observed pattern is 
within a very narrow strip. Consequently, these zigzags have very small curvatures. 
Vacuum fluctuations can provoke emergence of such deviations. 

4. Variational computations 

What could cause the particle to perform  such a wavy and zigzag behaviors, as shown in 
the figures above? Possible answer could be as follows: a family of ordered slits in the screen 
poses itself as a quantum object that polarizes vacuum in the near-field region. The 
polarization, in turn, induces formation of a virtual particle’s escort around of a flying real 
particle through the space. The escort corrects movement of the particle depending on the 
environment  by interference of virtual particles with each other  (Feynman & Hibbs, 1965). 

4.1 Wave-particle duality, the Schrödinger equation 
In contrast to classical mechanics where a single trajectory connecting the initial and final 
points submits to the principle of least action, in the quantum mechanics we need to 
consider  all possible trajectories connecting these points in order to obtain clear answer. 
They pass through all intermediate points belonging to a transitional set R 3. All these paths 
should be evaluated jointly. Such a description goes back to the integral Chapman-
Kolmogorov equation (Ventzel, 1975): 

 ( , ; ) ( , ; ) ( , , )
nR

p x z t p x y t p y z dy     (33) 

which gives transitional probability densities of a Markovian sequence. 
 

 
Fig. 11. Computation  of  all possible paths that pass from point  q0  to point  q1  through 
possible intermediate points qx  R 3 represents a core of the path integral method. Pink 
circles conditionally represent radiation of Huygens waves. 

Essential difference from the classical probability theory is that instead of the probabilities 
quantum mechanics deals with probability amplitudes containing imaginary terms. They 
bear information about phase shifts accumulated along paths. In that way, a transition from 
an initial state 0q

  to a final state 1q
  through all intermediate positions xq

  given on a 
conditional set R 3 (see Fig. 11)  is represented by the following path integral 
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3
1 0 1 0( , , ) ( , ; , ) ( , , )x x xq q t t K q q t t t q q t q     
     

R

D  (34) 

in the limit δt → 0 and 1 xq q
  . Here symbol D 3qx represents a differential element of 

volume in the set R 3. 
Circular waves pictured by dotted circumferences in Fig. 11 illustrate working of the 
Huygens-Fresnel principle (Landsberg, 1957; Longhurst, 1970). The principle proclaims that 
each point xq

  at an advanced wave front is, in fact, the center of a fresh disturbance and it is 
the source of a new wave radiation. The advancing wave as a whole may be regarded as the 
sum of all the secondary waves arising from points in the medium already traversed by the 
wave. All the secondary waves are coherent, since they are activated from the one source 
given in 0q

 . 
It is important to note, that all rays from such secondary sources represent virtual 
trajectories emanating from the source at 0q

  up to the point 1q
 . Along with the other virtual 

trajectories generated by the other secondary sources, all together they create in the point 1q
  

an averaged effect of contribution of these secondary sources. This averaged effect shows 
whether a real particle passes by this route and what probability of this event can be. 
We suppose that the integral  kernel 

  1
1 i( , ; , ) exp ,x x xK q q t t t L q q t
A

     
 

   


 (35) 

has a standard form of the Lagrangian (Feynman & Hibbs, 1965) 
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 
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Here ( )xU q
  is a potential energy of the particle localized at the point xq 


 R 3. And 

1( ) /xq q t
   is a velocity xq

  attached to the same point xq
  and oriented in the direction of 

the point 1q
 . 

The next step is to expand terms, ingoing into the integral (34), into Taylor series. The wave 
function written at the left is expanded up to the first term 

 1 0 1 0( , , ) ( , , )q q t t q q t t
t
   

  


    . (37) 

As for the terms under the integral, here we preliminarily make some transformations. We 
define a small increment 

 3 3
1 x xq q q     

  
D D . (38) 

The Lagrangian (36) is written as 
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Here the potential energy 1( )U q 
  is subjected to expansion into the Taylor series by the 

small parameter 


. The under integral wave function 0 1 0( , , ) ( , , )xq q t q q t   
     is 

subjected to expansion into the Taylor series up to the second terms of the expansion 



 
Theoretical Concepts of Quantum Mechanics 

 

330 
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Taking into account the expressions (37)-(40) and substituting theirs into Eq. (34) we get 
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One can see that the term 1 0( , , )q q t    is presented from both the left side and from the right 
side. These both term can remove each other, if the right part will satisfy the following 
condition 

 
3

3 22
3 2 i1 i 1exp 1

2
tm

A t A m
  


          

   





R

D  (42) 

From here it follows 
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The power 3 arises here because that the integration is fulfilled on the 3-dimensional set R 3 . 
It would be desirable also to integrate the terms ( )  


 and 2 2 2    existing in the 

integral (41). With this aim in the mind, we mention the following two integrals (Feynman & 
Hibbs, 1965) 
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and 
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In accordance with the first integral, contributions of the terms   and U  in the 
expression (41) disappear. Whereas, the terms with multiplier ξ 2/2 gains the factor 
(iћδt/m)/2. 
Taking into account the above stated expressions, let us rewrite  Eq.( 41) 

 
2
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

. (46) 

The last term contains the factor δt 2  due to which contribution of this term to this equation 
is abolished in contrast with other terms as δt → 0. By omitting this term, we come to the 
Schrödinger equation 
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1i ( )
2

U q
t m
  

   


  . (47) 

describing the function ψ , wave function, in the configuration space R 3 . The subscript 1 
here can be dropped. 

4.2 The Bohmian decomposition 
Let us examine the Schrödinger equation  (47) by substituting the wave function ψ in the 
following form: 

    ( , , ) ( , , ) exp i ( , , ) / ( , , )exp i ( , , ) /q p t q p t S q p t R q p t S q p t  
           . (48) 

Here functions ( , , )S q p t
   and ( , , )q p t    are real functions of their variables q

 , p
 , and t. The 

first function is the action which was mentioned earlier. And the second function is the 
probability density distribution defined as follows 

 2( , , )q p t    
  . (49) 

Here we will consider the decomposition in a general view, i.e., the variables 
1 2( , , , )Nq q q q

   and 1 2( , , , )Np p p p
   are those representing the quantum system in 2N-

dimensional phase space. It means, in particular, that there are several particles which can 
be considered in this space as one generalized particle. 
By substituting the wave function ( , , )q p t    into the Schrödinger equation (47) we obtain 

 

 

 

2

(a)(a) (b)
22 2

2 2

(b) (c)

1 1i ( )
2 2

i i 1 1 1
2 2 2 2 2 2

S
S U q

t t m

S S
m m m m

   


      
  

 
        
 

     
                 

     




   



 (50) 

Operators of gradient,  , and laplacian, 2 , read 

 
2 2 2

2
1 2 2 2 2

1 2 1 2
, , , ,N

N N

i i i
q q q q q q

                   
           

  . (51) 

A set { i1,i2, … , i N } represents orthonormal basis of N-dimensional state space S N. The 
orthonormality means that ik· ij=δ k,j  for all k, j ranging 1 to N. 
Collecting together real terms (a) and (c), and separately imaginary terms (b) in Eq. (50) we 
obtain two coupled equations for real functions ( , , )S q p t

   and ( , , )q p t    

  
22 2

2

(c)

1 ( )
2 2 2 2

S
S U q

t m m
 
 

                





, (52) 
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 S
t m
        

. (53) 

A term 

 
22 22 2

2 2 2 2
R

Q
m m R

 
 

          
   

   (54) 

enveloped by brace (c) in Eq. (52) is the quantum potential. It evaluates a measure of 
curvature of the N-dimensional state space induced by a prepared physical scene consisting 
of sources, detectors, and other experimental devices. Equations, (52) and (53), are seen to be 
the coupled pair of nonlinear partial differential equations. The first of the two equations, 
Eq. (52), is the Hamilton-Jacobi equation modified by the quantum potential ( , )Q q t

 . The 
second equation, Eq. (53), is the continuity equation. In the above equations we define the 
following computations 

 p mv S  
  , (55) 

and 

  2 21 1
2 2

S p
m m

  . (56) 

Here p
  is momentum of the particle, v

  is its velocity, and the last equation represents 
kinetic energy of the particle. 
Equation (52) states that total particle energy is the sum of the kinetic energy, potential 
energy, and the quantum potential  (Hiley, 2002). Equation (53), in turn, is interpreted as the 
continuity equation for probability density ( , , )q p t   . It says that all individual trajectories 
demonstrate collective behavior like a liquid flux  (Madelung, 1926; Wyatt, 2005), perhaps, 
superconductive one. We shall see further, that the quantum potential ( , , )Q q p t

   introduces 
corrections both in the kinetic energy and in the potential energy of the particle. 

4.2.1 The quantum potential as an information channel 
According to the observation 

  1 ln       (57) 

we can rewrite the quantum potential by the following way 

  
2 22 2 2

21 1 1 1 1 1, ln( ) ln( )
2 2 2 2 2 2 2

Q q t
m m m

    
  

                            
          

   . (58) 

Define a logarithmic function 

  1( , , ) ln ( , , )
2QS q p t q p t 

     (59) 
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to be called further quantum entropy. It is like to the Boltzmann entropy. However if the 
Boltzmann entropy characterizes degree of order and chaos of classical  gases, the quantum  
entropy evaluates analogous quality of the quantum liquid mentioned above. To be more 
defined, one can imagine the quantum liquid as ensemble of partially ordered virtual 
vortices (particle-antiparticle pairs) within vacuum. For example, such virtual vortices may 
be presented by spinning electron-positron pairs. 
Substituting (59) into Eq. (58) we find that the quantum potential can be expressed in terms 
of this function 

  
2 22 2

(a) (b)

( , , )
2 2Q QQ q p t S S

m m
    

  

 
. (60) 

It should be noted, that the term -SQ  (negative SQ) is named C-amplitude in (Bittner, 2003; 
Wyatt, 2005; Wyatt & Bittner, 2003). Here the term enveloped by brace (a) is viewed as the 
quantum corrector of the kinetic energy. And the term enveloped by brace (b) corrects the 
potential energy. Namely, substituting into Eq. (52) we obtain 

    
2 222 2

(a) (b)

1 ( )
2 2 2Q Q

S
S S U q S

t m m m


       


 

 
. (61) 

In this equation the terms enveloped by brace (a) relate to the kinetic energy of the particle, 
and those enveloped by brace (b) relate to its potential energy. 
Substituting also QS  in the continuity equation (53) instead of ρ we obtain the entropy 
balance equation 

   1 ( )
2

Q
Q

S
v S v

t


    


  . (62) 

Here /v S m 
 is a particle speed. The rightmost term, ( )v

 , describes a rate of the entropy 
flow produced by spatial divergence of the speed due to curvature of the N-dimensional 
state space. This term is nonzero in regions where the particle changes direction of 
movement. 

5. Beyond the Bohm's insight into QM 

Pair of the equations, the modified HJ equation (61) and the entropy balance equation (62), 
describes behavior of the quantum particle, subject to influence of the quantum entropy. Let 
us now multiply Eq. (62)  by the factor –iћ and add the result to Eq. (61). We obtain 

      
2 222 2

(a) (b)

1 1 1i ( ) i ( )
2 2 2 2Q Q QS S S S U q v S

t m m m m


            

S    

 
. (63) 

Here S is sum of the action S and the quantum entropy SQ  (complexified action) 

 i QS S S  . (64) 
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Terms enveloped by brace (a) can be rewritten as gradient of the squared complexified 
action 

        
2 22 21 1 1i

2 2 2Q QS S S S
m m m m

       S  . (65) 

As for the terms enveloped by brace (b) they could stem from expansion into the Taylor's 
series of the potential energy extended previously to a complex space, like a complex 
extension, for example, in (Poirier, 2008). In our case, the potential function is extended in 
the complex space, which has a small broadening into imaginary sector. Let us expand into 
the Taylor's series the potential function that has a complex argument 

 
2

2( i ) ( ) i( ( )) ( )
2

U q U q U q U q
       

      . (66) 

Now we will examine the last two terms. Here a small vector   has dimensionality of 
length. But it should contain also the Planck constant, ћ , in order to reproduce the second 
and third terms enveloped by brace (b) in Eq. (63). A minimal representation of this vector 
can be as follows 

 B2
s n

m
 

  . (67) 

Here n
  is unit vector pointing direction of the small increment, m is the particle mass, and 

sB  is universal constant, "reverse velocity", 

 7
B 0 24 4.57 10 [s/m]s

e
   

 . (68) 

Here 191.6 10 [C]e     is the elementary charge carried by a single electron and 
12 2 1 2

0 8.854 10 [C N m ]      is the vacuum permittivity. The reverse velocity measures 
time required for traversing unit of a distance. Such a distance can be perimeter of orbit 
(Poluyan, 2005) at oscillating electron around. Observe that rB = sBћ/m=4πε0 ћ2/me 2 is  value 
of the electron radius under its travelling on first orbit around the nucleus (Dirac, 1982). In 
our case it can be an effective radius of electron-positron pair under their virtual revolution 
about the mass center on  the first orbit. From the above it follows, that 

6
B B1 / 2.188 10v s   m/s is the Bohr velocity of electron oscillating on the first orbit about 

the mass center, and 10
B B/ 0.529 10r mv    m  is the Bohr radius of this orbit. Here mvB  

is the electron  momentum. 
In light of these remarks, we can rewrite the expansion (66) in the following form 

 

 

1 2

1 2

2 2
2B B

(b ) (b )

22
B B

(b ) (b )

( i ) ( ) i ( ) ( )
2 2 2

i 1( ) ( ) ( )
2 4

s s
U q U q n U q U q

m m m

U q nr U q r U q


                  

    

    


   



. (69) 
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A term enveloped by brace (b1) contains unit vector n
  that points out direction of the 

imaginary broadening. A force ( )F U q 
   multiplied by Bnr

  is elementary work 
performed  at displacement on a length r B  along direction n

 . The elementary work divided 
into ћ  is a rate of variation of the particle velocity per unit length, i.e., it represents 
divergence of the velocity, v

 . So, the term enveloped by brace (b1) can be rewritten in the 
following form 

  1 B
1(b ) : ( ) ( )nr U q v    
  


. (70) 

As for the term 22
B B( / 2 ) ( ) (1 / 2 ) ( )s m U q mv U q  

   which is placed over brace (b2) in Eq. (69) 
it is dimensionless. Accurate to an additive dimensionless function 2 ( )aq bq c 

   this term is 
comparable with SQ, i.e., with ln(ρ). Taking into account that sB=1/vB  we proclaim 

 2 2
2 2 2

B B

1 1(b ) : ( ) ( )
2 2 QU q F S

mv mv

 
       
 

 . (71) 

Thus, a value of the Laplacian of ( )U q
  at the point q

 can be interpreted as the density of 

sources (sinks) of the potential vector  field ( )F U q 
   at this point. Accurate to the 

denominator 2
B2mv , it is proportional to the Laplacian of the quantum entropy SQ. 

We have defined the corrections (70) and (71) by extending coordinates of the real 3D space 
into imaginary domain on the value ε. It is equal to about the Bohr radius of the first orbit of 
the electron-positron virtual pair, 11

B 5.292 10r    m. Energy of this pair is much smaller of 
the energy creating two real particles from the vacuum. Therefore such a shift, ε = rB/2, can 
be considered as a virtual small shift to the imaginary domain. 
Now we can define complexified momentum 

 i Qm S S      S
  P Q  (72) 

and complexified coordinate 

 iq  
  

Q  (73) 

as extended representations of the real vectors p
  and q

 . The complexified momentum P


 
differs from momentum  p

  by additional imaginary term QS . And the complexified 
coordinate Q


 differs from real coordinate q

  by the small imaginary vector (67). Now we 
can rewrite Eq. (63) as complexified the Hamilton-Jacobi equation: 

  21 ( ) ( i ) ;
2

U q t
t m




     

S S

 
H Q ,P . (74) 

Here ( , ; )H Q P t
 

 is a complexified Hamiltonian.  
The total derivative of the complex action reads 

 
1 1

SN N

n n

d d
dt t dt t 

  
   
   S S S n

n n
n

Q
P Q

Q
 (75) 
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where complex derivative is (see Ch.2 in (Titchmarsh, 1976)) 

 i Q

n n

SS
q q

 
  

  
S  n

n
P

Q
. (76) 

Combining Eq. (75) with (76) we come to the Legendre's dual transformation (Lanczos, 1970) 
that binds the Hamiltonian H  and the Lagrangian L , and conversely: 

 
1

; ) ; )
N

n

d
t t

dt 
   S    

n nH(Q,P P Q L(Q,Q . (77) 

We summarize this section by collecting formulas of the complexified Hamiltonian and 
Lagrangian mechanics via the Legendre's dual transformations in Table 2: 
 

Variables : 

  Coordinate:  Q 


B
i
2

q n
mv


    

 Momentum:         P 


Qp S i   

Variables : 

Coordinate:  Q


B
i i

2
q q n

mv
   

      

Velocity:   Q


B
i i

2
q q n

mv
   

         

Hamiltonian function: 

( , , )H Q P t
 

1

N

n n
n

  QP ( , , )L Q Q t
   

n
n

H
Q

P





  

n
n

H
P

Q


 


  

Lagrangian function: 

( , , )L Q Q t
 

1

N

n n
n

  QP ( , , )H Q P t
 

 

n
n

L
P

Q



 

 

n
n

L
P

Q





  

Table 2. The Legendre's dual transformations. 

The Lagrangian equations of motions and the Legendre's transformations are invariant 
under the above fulfilled imaginary extension of the real momenta, p n, and the real 
velocities, v n, n=1,2, … N . It should be noted, that the Hamiltonian function is quadratic in 
the momenta, P n, and the Lagrangian function is quadratic in the velocities, 

nQ . A 
conservation law in this case unifies conservation of energy represented by real part, 
Re ( ; )t  

 
H Q,P , and the entropy balance  (62) represented by imaginary part, Im ( ; )t  

 
H Q,P . 

One can see from definition of the complexified velocity presented in this table, that tip of 
the small vector   performs rotating movements on the sphere of the Bohr radius rB = 
ћ/2mvB. This radius is about 115.3 10  m  for the  electron-positron pair dancing on the 
first, virtual, orbit. Energy of this pair, E = ћvB/rBe = 27 V, lies much below energy of the 
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electron-positron creation, E = ћc/λCe = ћ(vB α -1)/(rB α)e = 511 kV. Here e is the electric 
charge, c is the speed of light, λC is the Compton wavelength, and 1 /137  is the fine 
structure constant. From here it is seen, that there is a wide scope of energies for correcting 
movement of real particle by virtual ones. 

6. Concluding remarks 

Classical mechanics supposes a principle possibility of simultaneous measuring both 
coordinates (x,y,z) of material objects and their relative velocities (vx ,vy, vz). In the beginning 
of 20th century scientists call in question such simultaneous measurements. Methods of the 
classical mechanics cease to give correct results on microscopic level. Instead of the classical 
equations describing behavior of a classical body, equations of quantum mechanics deal 
with wave functions that encompass behavior of any particle belonging to the same 
ensemble of coherent particles. The wave function bears information about distribution of 
particles that populate a space-time prepared by experimenter. It is said in that case, that it 
is a guidance function. It contains both the action S and a quantum entropy SQ (logarithm of 
the density distribution with negative sign) in the following manner 

    , exp i Qt S S  
 

Q,P . (78) 

In contrast to the classical mechanics here the action traces all routes weighted with the 
factor  proportional to the density distribution ρ = exp{ -SQ }. 
Wave functions within the same physical scene (the scene is represented by particle sources, 
detectors, and different physical devices placed between them) obey to superposition 
principle. Namely, sum of the wave functions is again a wave function that bears 
information about organization of the physical scene. At measurements we detect 
interference effects that are conditioned by a specific physical scene. There is no collapse of a 
wave function at the moment of detecting particle. Information relating to the physical scene 
exists until destruction of the scene happens. It can be picked up by a new particle again as 
soon as the particle will be generated by the source. The physical scene prepared by 
experimenter defines a space-time volume in which  particles emitted by sources evolve. 
The Schrödinger equation (Schrödinger, 1926) gives formulas that determine a probable 
evolution of the particles within the space-time predefined by boundary conditions of a task. 
Madelung (Madelung, 1926) and then Bohm (Bohm, 1952a, 1952a) have demonstrated that 
behind this new equation of quantum mechanics (Schrödinger, 1926), classical equations, 
Hamilton-Jacobi equations together with the continuity equation, can be discerned. In contrast 
with the classical equations here a new term emerges - the quantum potential. According to 
the Madelung's views, the wave function simulates laminar flow of a "fluid" along geodesic 
paths, named further the Bohmian trajectories. Equiphase surfaces, in turn, are represented by 
secant surfaces of the trajectory's bundles. Because of these findings we cannot nowadays 
consider the space-time with the same point of view how it  was formulated by thinkers of 
17th century. The quantum potential compels to expand  the 3D coordinate space onto the 
imaginary sector by unification the action S and the quantum entropy SQ, that is, by 
introducing a complex action S + i ћSQ. One way to envisage such a complex space is to 
imagine a hose-pipe. From a long distance it looks like a one dimensional line. But a closer 
inspection reveals that every point on the line is in fact a circle. It determines the unitary group 
U(1), which generates the term exp{ i S/ћ} - a main term in the Feynman path integral. 
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1. Introduction

In order to understand what really happens in the formation of the Universe, many people
came to the point of view that a quantum consideration of this process is necessary. After the
publication of the first paper on the quantum description of Universe formation (DeWitt, 1967;
Wheeler, 1968), a lot of other papers appeared in this topic (for example, see Refs. (Atkatz &
Pagels, 1984; Hartle & Hawking, 1983; Linde, 1984; Rubakov, 1984; Vilenkin, 1982; 1984; 1986;
Zel’dovich & Starobinsky, 1984) and some discussions in Refs. (Rubakov, 1999; Vilenkin, 1994)
with references therein).
Today, among all variety of models one can select two approaches which are the prevailing
ones: these are the Feynman formalism of path integrals in multidimensional spacetime,
developed by the Cambridge group and other researchers, called the “Hartle–Hawking method”
(for example, see Ref. (Hartle & Hawking, 1983)), and a method based on direct consideration
of tunneling in 4-dimensional Euclidian spacetime, called the “Vilenkin method” (for example,
see Refs. (Vilenkin, 1982; 1984; 1986; 1994)). Here, in the quantum approach we have the
following picture of the Universe creation: a closed Universe with a small size is formed from
“nothing” (vacuum), where by the word “nothing” one refers to a quantum state without
classical space and time. A wave function is used for a probabilistic description of the creation
of the Universe and such a process is connected with transition of a wave through an effective
barrier. Determination of penetrability of this barrier is a key point in the estimation of
duration of the formation of the Universe, and the dynamics of its expansion in the first stage.
However, in the majority of these models, with the exception of some exactly solvable models,
tunneling is mainly studied in details in the semiclassical approximation (see Refs. (Rubakov,
1999; Vilenkin, 1994)). An attractive side of such an approach is its simplicity in the
construction of decreasing and increasing partial solutions for the wave function in the
tunneling region, the outgoing wave function in the external region, and the possibility to
define and to estimate in an enough simply way the penetrability of the barrier, which can be
used to obtain the duration of the nucleation of the Universe. The tunneling boundary condition
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2 Will-be-set-by-IN-TECH

(Vilenkin, 1994) could seem to be the most natural and clear description, where the wave
function should represent an outgoing wave only in the enough large value of the scale factor
a. However, is really such a wave free in the asymptotic region? In order to draw attention
on the increase of the modulus of the potential with increasing value of the scale factor a
and increasing magnitude of the gradient of such a potential, acting on this wave “through
the barrier”, then one come to a serious contradiction: the influence of the potential on this wave
increases strongly with a! Now a new question has appeared: what should the wave represent in
general in the cosmological problem? This problem connects with another and more general
one in quantum physics — the real importance to define a “free” wave inside strong fields. To
this aim we need a mathematical stable tool to study it. It is unclear whether a connection
between exact solutions for the wave function at turning point and “free” wave defined in the
asymptotic region is correct.
Note that the semiclassical formula of the penetrability of the barrier is constructed on the
basis of wave which is defined concerning zero potential at infinity, i.e. this wave should be
free outgoing in the asymptotic region. But in the cosmological problem we have opposite
case, when the force acting on the wave increases up to infinity in the asymptotic region.
At the same time, deformations of the shape of the potential outside the barrier cannot
change the penetrability calculated in the framework of the semiclassical approach (up to
the second order). An answer to such problem can be found in non-locality of definition of
the penetrability in quantum mechanics, which is reduced to minimum in the semiclassical
approach (i. e. this is so called “error” of the cosmological semiclassical approach).
The problem of the correct definition of the wave in cosmology is reinforced else more, if
one wants to calculate the incident and reflected waves in the internal region. Even with the
known exact solution for the wave function there is uncertainty in determination of these waves! But,
namely, the standard definition of the coefficients of penetrability and reflection is based on
them. In particular, we have not found papers where the coefficient of reflection is defined
and estimated in this problem (which differs essentially from unity at the energy of radiation
close to the height of the barrier and, therefore, such a characteristics could be interesting from
a physical point of view). Note that the semiclassical approximation put serious limits to the
possibility of its definition at all (Landau & Lifshitz, 1989).
Thus, in order to estimate probability of the formation of the Universe as accurately as
possible, we need a fully quantum definition of the wave. Note that the non-semiclassical
penetrability of the barrier in the cosmological problems has not been studied in detail and,
therefore, a development of fully quantum methods for its estimation is a perspective task.
Researches in this direction exist (Acacio de Barros et al., 2007), and in these papers was
estimated the penetrability on the basis of tunneling of wave packet through the barrier.
However, a stationary boundary condition has uncertainty that could lead to different results
in calculations of the penetrability. The stationary approach could allow to clarify this issue.
It is able to give stable solutions for the wave function (and results in Ref. (Maydanyuk,
2008) have confirmed this at zero energy of radiation), using the standard definition of the
coefficients of the penetrability and reflection, is more accurate to their estimation.
Aims of this Chapter are: (1) to define the wave in the quantum cosmological problem; (2) to
construct the fully quantum (non-semiclassical) methods of determination of the coefficients
of penetrability of the barriers and reflection from them on the basis of such a definition
of the wave; (3) to estimate how much the semiclassical approach differs in the estimation
of the penetrability from the fully quantum one. In order to achieve this goal, we need to
construct tools for calculation of partial solutions of the wave function. In order to resolve
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the questions pointed out above, we shall restrict ourselves to a simple cosmological model,
where the potential has a barrier and internal above-barrier region.

2. Cosmological model in the Friedmann–Robertson–Walker metric with radiation

2.1 Dynamics of Universe in the Friedmann–Robertson–Walker metric
Let us consider a simple model of the homogeneous and isotropic Universe in
Friedmann–Robertson–Walker (FRW) metric (see Ref. (Weinberg, 1975), p. 438; also see
Refs. (Brandenberger, 1999; Linde, 2005; Rubakov, 2005; Trodden & and Carroll, 2003)):

ds2 = −dt2 + a2(t) ·
(

dr2

h(r)
+ r2(dθ2 + sin2 θ dφ2)

)
, h(r) = 1− kr2, (1)

where t and r, θ, φ are time and space spherical coordinates, the signature of the metric is
(−,+,+,+) as in Ref. (Trodden & and Carroll, 2003) (see p. 4), a(t) is an unknown function
of time and k is a constant, the value of which equals +1, 0 or −1, with appropriate choice
of units for r. Further, we shall use the following system of units: h̄ = c = 1. For k = −1, 0
the space is infinite (Universe of open type), and for k = +1 the space is finite (Universe of
closed type). For k = 1 one can describe the space as a sphere with radius a(t) embedded in
a 4-dimensional Euclidian space. The function a(t) is referred to as the “radius of the Universe”
and is called the cosmic scale factor. This function contains information of the dynamics of the
expansion of the Universe, and therefore its determination is an actual task.
One can find the function a(t) using the Einstein equations taking into account the
cosmological constant Λ in this metric (we use the signs according to the chosen signature,
as in Ref. (Trodden & and Carroll, 2003) p. 8; the Greek symbols μ and ν denote any of the
four coordinates t, r, θ and φ):

Rμν − 1
2
gμν R = 8π G Tμν + Λ, (2)

where Rμν is the Ricci tensor, R is the scalar curvature, Tμν is the energy-momentum tensor,
and G is Newton’s constant. From (1) we find the Ricci tensor Rμν and the scalar curvature R:

Rtt = −3
ä
a
, Rrr =

aä
h

+ 2
ȧ2

h
− h′

hr
=

2ȧ2 + aä+ 2k
1− kr2

,

Rφφ = Rθθ sin2 θ, Rθθ = aä r2 + 2ȧ2 r2 − h− h′r
2

+ 1 = 2ȧ2 r2 + aä2 r2 + 2kr2
(3)

R = gttRtt + grrRrr + gθθRθθ + gφφRφφ =
6ȧ2 + 6aä+ 6k

a2
. (4)

The energy-momentum tensor has the form (see (Trodden & and Carroll, 2003), p. 8): Tμν =
(ρ + p)UμUν + p gμν, where ρ and p are energy density and pressure. Here, one needs to use
the normalized vector of 4-velocity Ut = 1, Ur = Uθ = Uφ = 0. Substituting the previously
calculated components (2) of the Ricci tensor Rμν, the scalar curvature (4), the components
of the energy-momentum tensor Tμν and including the component ρrad(a), describing the
radiation in the initial stage (equation of state for radiation: p(a) = ρrad(a)/3), into the
Einstein’s equation (2) at μ = ν = 0), we obtain the Friedmann equation with the cosmological
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constant (see p. 8 in Ref. (Trodden & and Carroll, 2003); p. 3 in Ref. (Brandenberger, 1999)):

ȧ2 + k− 8π G
3

{ ρrad
a2(t)

+ ρΛ a2(t)
}
= 0, ρΛ =

Λ
8π G

, (5)

where ȧ is derivative a at time coordinate. From here, we write a general expression for the
energy density:

ρ (a) = ρΛ +
ρrad
a4(t)

. (6)

2.2 Action, lagrangian and quantization
We define the action as

S =
∫ √−g

(
R

16π G
− ρ

)
dx4. (7)

Substituting the scalar curvature (4), then integrating item at ä by parts with respect to variable
t, we obtain the lagrangian:

L (a, ȧ) =
3 a

8π G

(
−ȧ2 + k− 8π G

3
a2 ρ(a)

)
. (8)

Considering the variables a and ȧ as generalized coordinate and velocity respectively, we find
a generalized momentum conjugate to a:

pa =
∂L (a, ȧ)

∂ȧ
= − 3

4π G
a ȧ (9)

and then hamiltonian:

h (a, pa) = p ȧ−L (a, ȧ) = − 1
a

{
2π G
3

p2a + a2
3 k

8π G
− a4 ρ(a)

}
. (10)

The passage to the quantum description of the evolution of the Universe is obtained by
the standard procedure of canonical quantization in the Dirac formalism for systems with
constraints. In result, we obtain the Wheeler–De Witt (WDW) equation (see (DeWitt, 1967;
Levkov et al., 2002; Wheeler, 1968)), which can be written as{

− ∂2

∂a2
+V (a)

}
ϕ(a) = Erad ϕ(a),

V (a) =
(

3
4π G

)2

k a2 − 3 ρΛ
2π G

a4,

Erad =
3 ρrad
2π G

,

(11)

where ϕ(a) is wave function of Universe. This equation looks similar to the one-dimensional
stationary Schrödinger equation on a semiaxis (of the variable a) at energy Erad with potential
V (a). It is convenient to use system of units where 8π G ≡ M−2

p = 1, and to rewrite V (a) in
a generalized form as

V(a) = A a2 − B a4. (12)
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In particular, for the Universe of the closed type (k = 1) we obtain A = 36, B = 12 Λ (this
potential coincides with Ref. (Acacio de Barros et al., 2007)).

2.3 Potential close to the turning points: non-zero energy case
In order to find the wave function we need to know the shape of the potential close to the
turning points. Let us find the turning points atp, in and atp, out concerning the potential (12) at
energy Erad:

atp, in =

√
A
2B

·
√

1−
√

1− 4BErad
A2 , atp, out =

√
A
2B

·
√

1+

√
1− 4BErad

A2 . (13)

Let us expand the potential V(a) (13) in powers of qout = a − atp (where the point atp, in or
atp, out is used as atp. Expansion is calculated at these points), where (for small q) we restrict
ourselves to the liner term:

V(q) = V0 +V1 q, (14)

where the coefficients V0 and V1 are:

V0 = V(a = atp, in) = V(a = atp, out) = A a2tp − B a4tp = Erad,

V(out)
1 = − 2 A ·

√
A
2B

(
1− 4BErad

A2

)(
1+

√
1− 4BErad

A2

)
,

V(int)
1 = 2 A ·

√
A
2B

(
1− 4BErad

A2

)(
1−

√
1− 4BErad

A2

)
.

(15)

Now eq. (15) transforms into a new form at variable q with potential V(q):

− d2

dq2
ϕ(q) +V1 q ϕ(q) = 0. (16)

3. Tunneling boundary condition in cosmology

3.1 A problem of definition of “free” wave in cosmology and correction of the boundary
condition

Which boundary condition should be used to obtain a wave function that describes how the
wave function leaves the barrier accurately? A little variation of the boundary condition
leads to change of the fluxes concerning the barrier and, as result, it changes the coefficients
of penetrability and reflection. So, a proper choice of the boundary condition is extremely
important. However before, let us analyze how much the choice of the boundary condition is
natural in the asymptotic region.

• In description of collisions and decay in nuclear and atomic physics potentials of
interactions tend to zero asymptotically. So, in these calculations, the boundary conditions
are imposed on the wave function at infinity. In cosmology we deal with another, different
type of potential: its modulus increases with increasing of the scale factor a. The gradient
of the potential also increases. Therefore, here there is nothing common to the free propagation
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of the wave in the asymptotic region. Thus, a direct passage of the application of the boundary
condition in the asymptotic region into cosmological problems looks questionable.

• The results in Ref. (Maydanyuk, 2008), which show that when the scale factor a increases
the region containing solutions for the wave function enlarges (and its two partial
solutions), reinforce the seriousness of this problem. According to Ref. (Maydanyuk, 2008),
the scale factor a in the external region is larger, the period of oscillations of each partial
solution for the wave function is smaller. One has to decrease the time–step and as a
consequence increase the calculation time. This increases errors in computer calculations
of the wave function close the barrier (if it is previously fixed by the boundary condition in
the asymptotic region). From here a natural conclusion follows on the impossibility to use
practically the boundary condition at infinity for calculation of the wave (in supposition
if we know it maximally accurately in the asymptotic region), if we like to pass from the
semiclassical approach to the fully quantum one. Another case exists in problems of decay
in nuclear and atomic physics where calculations of the wave in the asymptotic region are
the most stable and accurate.

• One can add a fact that it has not been known yet whether the Universe expands at
extremely large value of the scale factor a. Just the contrary, it would like to clarify this
from a solution of the problem, however imposing a condition that the Universe expands
in the initial stage.

So, we shall introduce the following definition of the boundary condition (Maydanyuk,
2010):

The boundary condition should be imposed on the wave function at such value of
the scale factor a, where the potential minimally acts on the wave, determined by
this wave function.

The propagation of the wave defined in such a way is close to free one for the potential and at
used value of the scale factor a (we call such a wave conditionally “free”). However, when we
want to give a mathematical formulation of this definition we have to answer two questions:

1. What should the free wave represent in a field of a cosmological potential of arbitrary
shape? How could it be defined in a correct way close to an arbitrary selected point?

2. Where should the boundary condition be imposed?

To start with, let us consider the second question namely wherewemust impose the boundary
condition on the wave function. One can suppose that this coordinate could be (1) a turning
point (where the potential coincides with energy of radiation), or (2) a point where the
gradient from the potential becomes zero, or (3) a point where the potential becomes zero. But
the clear condition of free propagation of the wave is the minimal influence of the potential
on this wave. So, we define these coordinate and force so (Maydanyuk, 2010):

The point in which we impose the boundary condition is the coordinate where the force acting
on the wave is minimal. The force is defined as minus the gradient of the potential.

It turns out that according to such a (local) definition the force is minimal at the external
turning point atp, out. Also, the force, acting on the wave incident on the barrier in the internal
region and on the wave reflected from it, has a minimum at the internal turning point atp, in.
Thus, we have just obtain the internal and external turning points where we should impose
the boundary conditions in order to determine the waves.
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3.2 Boundary condition at a = 0: stationary approach versus non-stationary one
A choice of the proper boundary condition imposed on the wave function is directly connected
with the question: could the wave function be defined at a = 0, and which value should it
be equal to at this point in such a case? The wave function is constructed on the basis of its
two partial solutions which should be linearly independent. In particular, these two partial
solutions can be real (not complex), without any decrease of accuracy in determination of the
total wave function. For any desirable boundary condition imposed on the total wave function, such
methods should work. In order to achieve the maximal linear independence between two partial
solutions, we choose one solution to be increasing in the region of tunneling and another one
to be decreasing in this tunneling region. For the increasing partial solution we use as starting
point ax the internal turning point atp, in at Erad �= 0 or zero point ax = 0 at Erad = 0. For the
second decreasing partial solution the starting point ax is chosen as the external turning point
atp, out. Such a choice of starting points turns out to give us higher accuracy in calculations of
the total wave function than starting calculations of both partial solutions from zero or from
only one turning point.
In order to obtain the total wave function, we need to connect two partial solutions using
one boundary condition, which should be obtained from physical motivations. According to
analysis in Introduction and previous section, it is natural not to define the wave function at
zero (or at infinity), but to find outgoing wave at finite value of a in the external region, where
this wave corresponds to observed Universe at present time. But, in practical calculations, we
shall define such a wave at point where forces minimally act on it. This is an initial condition
imposed on the outgoing wave in the external region1.
Let us analyze a question: which value has the wave function at a = 0? In the paper the
following ideas are used:

• the wave function should be continuous in the whole spatial region of its definition,
• we have outgoing non-zero flux in the asymptotic region defined on the basis of the total wave

function,
• we consider the case when this flux is constant.

The non-zero outgoing flux defined at arbitrary point requires the wave function to be
complex and non-zero. The condition of continuity of this flux in the whole region of
definition of the wave function requires this wave function to be complex and non-zero in
the entire region. If we include point a = 0 into the studied region, then we should obtain
the non-zero and complex wave function also at such point. If we use the above ideas, then
we cannot obtain zero wave function at a = 0. One can use notions of nuclear physics, field
in which the study of such questions and their possible solutions have longer history then in
quantum cosmology. As example, one can consider elastic scattering of particles on nucleus
(where we have zero radial wave function at r = 0, and we have no divergences), and alpha
decay of nucleus (where we cannot obtain zero wave function at r = 0). A possible divergence
of the radial wave function at zero in quantum decay problem could be explained by existence of source
at a point which creates the outgoing flux in the asymptotic region (and is the source of this flux).
Now the picture becomes clearer: any quantum decay could be connected with source at zero.
This is why the vanishing of the total wave function at a = 0, after introduction of the wall
at this point (like in Ref. (Acacio de Barros et al., 2007)), is not obvious and is only one of the
possibilities.
If we wanted to study physics at zero a = 0, we should come to two cases:

1 For example, on the basis of such a boundary condition for α-decay problem we obtain the asymptotic
region where the wave function is spherical outgoing wave.
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• If we include the zero point into the region of consideration, we shall use to quantum
mechanics with included sources. In such a case, the condition of constant flux is
broken. But a more general integral formula of non-stationary dependence of the fluxes
on probability can include possible sources and put them into frameworks of the standard
quantum mechanics also (see eq. (19.5) in Ref. (Landau & Lifshitz, 1989), p. 80). Perhaps,
black hole could be another example of quantum mechanics with sources and sinks.

• We can consider only quantum mechanics with constant fluxes and without sources. Then
we should eliminate the zero point a = 0 from the region of our consideration. In this way,
the formalism proposed in this paper works and is able to calculate the penetrability and
reflection coefficients without any lost of accuracy.

This could be a stationary picture of interdependence between the wave function at zero and
the outgoing flux in the asymptotic region. In order to study the non-stationary case, then we
need initial conditions which should define also the evolution of the Universe. In such a case,
after defining the initial state (through set of parameters) it is possible to connect zero value of
wave packet at a = 0 (i. e. without singularity at such a point) with non-zero outgoing flux in
the asymptotic region. In such direction different proposals have beenmade in frameworks of
semiclassical models in order to describe inflation, to introduce time or to analyze dynamics
of studied quantum system (for example, see (Finelli et al., 1998; Tronconi et al., 2003)).

4. Direct fully quantum method

4.1 Wave function of Universe: calculations and analysis
The wave function is known to oscillate above the barrier and increase (or decrease) under
the barrier without any oscillations. So, in order to provide an effective linear independence
between two partial solutions for the wave function, we look for a first partial solution
increasing in the region of tunneling and a second one decreasing in this tunneling region. To
start with, we define each partial solution and its derivative at a selected starting point, and
then we calculate them in the region close enough to this point using themethod of beginning of
the solution presented in Subsection 4.4.1. Here, for the partial solution which increases in the
barrier region, as starting point we use the internal turning point atp, in at non-zero energy Erad
or equals to zero a = 0 at null energy Erad, and for the second partial solution, which decreases
in the barrier region, we choose the starting point to be equal to the external turning point
atp, out. Then we calculate both partial solutions and their derivatives in the whole required
range of a using the method of continuation of the solution presented in Subsection 4.4.2, which is
improvement of the Numerov method with constant step. So, we obtain two partial solutions
for the wave function and their derivatives in the whole studied region (Maydanyuk, 2010).
In order to clarify how the proposed approach gives convergent (stable) solutions, we compare
our results with the paper of (Acacio de Barros et al., 2007). Let us consider the behavior of
the wave function. The first partial solution for the wave function and its derivative in my
calculation are presented in Fig. 1, which increase in the tunneling region and have been
obtained at different values of the energy of radiation Erad. From these figures one can see
that the wave function satisfies the rules satisfied by the wave function inside the sub-barrier
and in above-barrier regions (Olkhovsky & Recami, 1992; Olkhovsky et al., 2004; Zakhariev
et al., 1990). Starting from very small a, the wave function has oscillations and its maxima
increase monotonously with increasing of a. This corresponds to the behavior of the wave
function in the internal region before the barrier (this becomes more obvious after essential
increasing of scale, see left panel in Fig. 2). Moreover, for larger values of a, the wave
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Fig. 1. The first partial solution for the wave function and its derivative at different values of
the energy of radiation Erad, increasing in the tunneling region. The blue plot represents the
wave function; the green one, the derivative of this wave function): (a) Erad = 10; (b)
Erad = 1000; (c) Erad = 2000

function increases monotonously without any oscillation, that points out the transition into
the tunneling region (one can see this in a logarithmic presentation of the wave function, see
central panel in Fig. 2). A boundary of such a transformation in behavior of the wave function
must be the point of penetration of the wave into the barrier, i. e. the internal turning point
atp, in. Further, with increasing of a the oscillations appeared in the wave function, which
could be possible inside the above barrier region only (in the right panel of Fig. 2 one can see
that such a transition is extremely smooth, thing that characterizes the accuracy of the method
positively). The boundary of such a transformation in the behavior of the wave function
should be the external turning point atp, out. Like Ref. (Maydanyuk, 2008), but at arbitrary
non-zero energy Erad we obtain monotonous increasing of maximums of the derivative of the
wave function and smooth decreasing of this wave function in the external region. One can
see that the derivative is larger than the wave function. At large values of a we obtain the
smooth continuous solutions up to a = 100 (in Ref. (Acacio de Barros et al., 2007) the maximal
presented limit is a = 30).

Fig. 2. The first partial solution for the wave function and its derivative at the energy of
radiation Erad = 2000. The blue line represents the wave function; the green one, the
derivative of this wave function)

In Fig. 3, it is presented the second partial solution of the wave function and its derivative at
different values of the energy of radiation Erad According to the analysis, this solution close
to the turning points, in the tunneling region, in the sub-barrier and above-barrier regions
looks like the first partial solution, but with the difference that now the maxima of the wave
function and their derivatives are larger essentially in the external region in a comparisonwith
the internal region, and amplitudes in the tunneling region decrease monotonously.
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Fig. 3. The second partial solution for the wave function and its derivative at different values
of the energy of radiation Erad, decreasing in the tunneling region (the blue line represents
the wave function; the green one represents the derivative of this wave function): (a)
Erad = 10; (b) Erad = 1000; (c) Erad = 2000

Comparing the previous pictures of the wave function with the results of Ref. (Acacio de
Barros et al., 2007), one can see that the wave function, in this approach, is essentially
more continuous, has no divergencies and its behavior is everywhere clear. From here we
conclude that the developed method for the determination of the wave function and its derivative at
arbitrary energy of radiation is essentially more quick, more stable and accurate in comparison with the
non-stationary quantum approach in Ref. (Acacio de Barros et al., 2007). Note that:

• With increasing a, the period of the oscillations, both for the wave function and its
derivative, decreases uniformly in the external region and increases uniformly in the
internal region (this result was partially obtained earlier in Ref. (Maydanyuk, 2008) at
Erad = 0).

• At larger distance from the barrier (i. e. for increasing values of a, in the external region,
and at decreasing value of a, in the internal region) it becomes more difficult to get the
convergent continuous solutions for the wave function and its derivative (this result was
partially obtained earlier in Ref. (Maydanyuk, 2008) at Erad = 0).

• A number of oscillations of the wave function in the internal region increases with increasing of the
energy of radiation Erad (this is a new result).

4.2 Definition of the wave minimally interacting with the potential
Now we shall be looking for a form of the wave function in the external region, which
describes accurately the wave, whose propagation is the closest to the “free” one in the
external region at the turning point atp, out and is directed outside. Let us return back to eq. (16)
where the variable q = a− atp, out has been introduced. Changing this variable to

ξ =
∣∣V(out)

1

∣∣1/3q, (17)

this equation is transformed into

d2

dξ2
ϕ(ξ) + ξ ϕ(ξ) = 0. (18)

From quantum mechanics we know two linearly independent exact solutions for the function
ϕ(ξ) in this equation — these are the Airy functionsAi (ξ) and Bi (ξ) (see Ref. (Abramowitz &
Stegan, 1964), p. 264–272, 291–294). Expansions of these functions into power series at small ξ,
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their asymptotic expansions at large |ξ|, their representations through Bessel functions, zeroes
and their asymptotic expansions are known. We have some integrals of these functions, and
also the form of the Airy functions in the semiclassical approximation (which can be applied
at large |ξ|). In some problems of the analysis of finite solutions ϕ(ξ) in the whole range of
ξ it is convenient to use the integral representations of the Airy functions (see eq. (10.4.32) in
Ref. (Abramowitz & Stegan, 1964), p. 265. In eq. (10.4.1) we took into account the sign and
a = 1/3):

Ai (±ξ) =
1
π

+∞∫
0

cos
(

u3

3
∓ ξu

)
du,

Bi (±ξ) =
1
π

+∞∫
0

[
exp

(
− u3

3
∓ ξu

)
+ sin

(
u3

3
∓ ξu

)]
du.

(19)

Furthermore, we shall be interested in the solution ϕ(ξ) which describes the outgoing wave
in the range of a close to the atp point. However, it is not clear what the wave represents in
general near the point atp, and which linear combination of the Ai (ξ) and Bi (ξ) functions
defines it in the most accurate way.
The clearest and most natural understanding of the outgoing wave is given by the
semiclassical consideration of the tunneling process. However, at the given potential the
semiclassical approach allows us to define the outgoing wave in the asymptotic region only
(while we can join solutions in the proximity of atp by the Airy functions). But it is not clear
whether the wave, defined in the asymptotic region, remains outgoing near the atp. During
the whole path of propagation outside the barrier the wave interacts with the potential, and
this must inevitably lead to a deformation of its shape (like to appearance of a phase shift in
the scattering of a wave by a radial potential caused by interaction in scattering theory). Does
the cosmological potentials deform the wave more than the potentials used for description of
nuclear collisions in scattering theory? Moreover, for the given potential there is a problem
in obtaining the convergence in the calculation of the partial solutions for the wave function
in the asymptotic region. According to our calculations, a small change of the range of the
definition of the wave in the asymptotic region leads to a significant increase of errors, which
requires one to increase the accuracy of the calculations. Therefore, we shall be looking for a
way of defining the outgoing wave not in the asymptotic region, but in the closest vicinity of
the point of escape, atp. In a search of solutions close to the point atp, i. e. at small enough |ξ|,
the validity of the semiclassical method breaks down as |ξ| approaches zero. Therefore, we
shall not use the semiclassical approach in this paper.
Assuming the potential V(a) to have an arbitrary form, we define the wave at the point atp in
the following way (Maydanyuk, 2010).

Definition 1 (strict definition of the wave). The wave is a linear combination of two partial
solutions of the wave function such that the change of the modulus ρ of this wave function is
approximately constant under variation of a:

d2

da2
ρ(a)

∣∣∣∣
a=atp

→ 0. (20)

According to this definition, the real and imaginary parts of the total wave function have
the closest behaviors under the same variation of a, and the difference between possible
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maximums andminimums of the modulus of the total wave function is the smallest. For some
types of potentials (in particular, for a rectangular barrier) it is more convenient to define the
wave less strongly.

Definition 2 (weak definition of wave):

The wave is a linear combination of two partial solutions of wave function such that the modulus
ρ changes minimally under variation of a:

d
da

ρ(a)
∣∣∣∣
a=atp

→ 0. (21)

According to this definition, the change of the wave function caused by variation of a is
characterized mainly by its phase (which can characterize the interaction between the wave
and the potential).
Subject to this requirement, we shall look for a solution in the following form:

ϕ (ξ) = T · Ψ(+)(ξ), (22)

where

Ψ(±)(ξ) =

umax∫
0

exp± i
(
− u3

3
+ f (ξ) u

)
du. (23)

where T is an unknown normalization factor, f (ξ) is an unknown continuous function
satisfying f (ξ) → const at ξ → 0, and umax is the unknown upper limit of integration. In
such a solution, the real part of the function f (ξ) gives a contribution to the phase of the
integrand function, while the imaginary part of f (ξ) deforms its modulus.
Let us find the first and second derivatives of the function Ψ(ξ) (a prime denotes a derivative
with respect to ξ):

d
dξ

Ψ(±)(ξ) = ±we
umax∫
0

f ′u exp±i
(
− u3

3
+ f (ξ)u

)
du,

d2

dξ2
Ψ(±)(ξ) =

umax∫
0

(
± i f ′′u− ( f ′)2u2

)
exp±i

(
− u3

3
+ f (ξ)u

)
du.

(24)

From this we obtain:

d2

dξ2
Ψ(±)(ξ) + ξ Ψ(±)(ξ) =

umax∫
0

(
± i f ′′u− ( f ′)2u2 + ξ

)
exp±i

(
− u3

3
+ f (ξ)u

)
du. (25)

Considering the solutions at small enough values of |ξ|, we represent f (ξ) in the form of a
power series:

f (ξ) =
+∞

∑
n=0

fn ξn, (26)

352 Theoretical Concepts of Quantum Mechanics



A Fully Quantum Model of Big Bang 13

where fn are constant coefficients. The first and second derivatives of f (ξ) are

f ′(ξ) = d
dξ

f (ξ) =
+∞

∑
n=1

n fn ξn−1 =
+∞

∑
n=0

(n+ 1) fn+1 ξn,

f ′′(ξ) = d2

dξ2
f (ξ) =

+∞

∑
n=0

(n+ 1) (n+ 2) fn+2 ξn.
(27)

Substituting these solutions into eq. (24), we obtain

d2

dξ2
Ψ(±)(ξ) + ξ Ψ(±)(ξ) =

umax∫
0

{(
± 2iu f2 − u2 f 21

)
+

+
(
± 6iu f3 − 4u2 f1 f2 + 1

)
ξ ++

+∞
∑

n=2

[
± iu (n+ 1)(n+ 2) fn+2−

−u2
n
∑

m=0
(n−m+ 1)(m+ 1) fn−m+1 fm+1

]
ξn

}
exp± i

(
− u3

3
+ f u

)
du.

(28)

Considering this expression at small |ξ|, we use the following approximation:

exp± i
(
− u3

3
+ f u

)
→ exp± i

(
− u3

3
+ f0u

)
. (29)

Then from eq. (18) we obtain the following condition for the unknown fn:

umax∫
0

(
± 2iu f2 − u2 f 21

)
exp±i

(
− u3

3
+ f0u

)
du +

+ ξ ·
umax∫
0

(
± 6iu f3 − 4u2 f1 f2 + 1

)
exp±i

(
− u3

3
+ f0u

)
du +

+
+∞
∑

n=2
ξn ·

umax∫
0

[
± iu (n+ 1)(n+ 2) fn+2 − u2

n

∑
m=0

(n−m+ 1)(m+ 1) fn−m+1 fm+1

]
×

× exp±i
(
− u3

3
+ f0u

)
du = 0.

(30)

Requiring that this condition is satisfied for different ξ and with different powers n, we obtain
the following system:

ξ0 :
umax∫
0

(
± 2iu f2 − u2 f 21

)
exp±i

(
− u3

3
+ f0u

)
du = 0,

ξ1 :
umax∫
0

(
± 6iu f3 − 4u2 f1 f2 + 1

)
exp±i

(
− u3

3
+ f0u

)
du = 0,

ξn :
umax∫
0

[
± iu (n+ 1)(n+ 2) fn+2 − u2

n

∑
m=0

(n−m+ 1)(m+ 1) fn−m+1 fm+1

]
×

× exp±i
(
− u3

3
+ f0u

)
du = 0.

(31)
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Assuming that the coefficients f0 and f1 are known, we find the following solutions for the
unknown f2, f3 and fn:

f (±)
2 = ± f 21

2i
· J(±)

2

J(±)
1

, f (±)
3 = ± 4 f1 f

(±)
2 J(±)

2 − J(±)
0

6i J(±)
1

, (32)

f (±)
n+2 =

n
∑

m=0
(n−m+ 1)(m+ 1) f (±)

n−m+1 f (±)
m+1

i (n+ 1)(n+ 2)
· J(±)

2

J(±)
1

, (33)

where the following notations for the integrals have been introduced:

J(±)
0 =

umax∫
0

exp±i
(
− u3

3
+ f0u

)
du, J(±)

1 =

umax∫
0

u exp±i
(
− u3

3
+ f0u

)
du, (34)

J(±)
2 =

umax∫
0

u2 e
±i

(
−u3

3
+ f0u

)
du. (35)

Thus, we see that the solution (22) taking into account eq. (23) for the function ϕ (ξ) has
arbitrariness in the choice of the unknown coefficients f0, f1 and the upper limit of integration,
umax. However, the solutions found, eqs. (32), define the function f (ξ) so as to ensure that the
equality (22) is exactly satisfied in the region of a close to the escape point atp. This proves
that the function ϕ (ξ) in the form (22), taking into account eq. (23) for an arbitrary choice of f0, f1
and umax is the exact solution of the Schrödinger equation near the escape point atp. In order to write
the solution Ψ(ξ) in terms of the well-known Airy functions, Ai (ξ) and Bi (ξ), we choose

f0 = 0, f1 = 1. (36)

For such a choice of the coefficients f0 and f1, the integrand function in the solution (23) (up to
ξ2) has a constant modulus and a varying phase. Therefore, one can expect that the solution
(22) at the turning point atp describes the wave accurately.

4.3 Total wave function
Having obtained two linearly independent partial solutions ϕ1(a) and ϕ2(a), we can write the
general solution (a prime is for the derivative with respect to a) as:

ϕ (a) = T · (C1 ϕ1(a) + C2 ϕ2(a)
)
, (37)

C1 =
Ψϕ′

2 − Ψ′ϕ2

ϕ1ϕ′
2 − ϕ′

1ϕ2

∣∣∣∣
a=atp, out

,

C2 =
Ψ′ϕ1 − Ψϕ′

1
ϕ1ϕ′

2 − ϕ′
1ϕ2

∣∣∣∣
a=atp, out

,
(38)

where T is a normalization factor, C1 and C2 are complex constants found from the boundary
condition introduced above: the ϕ (a) function should represent an outgoing wave at turning point
atp, out.
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Fig. 4 plots the total wave function calculated in this way for the potential (12) with parameters
A = 36, B = 12 Λ at Λ = 0.01 at different values of the energy of radiation Erad. One can

Fig. 4. The wave function at selected values of the energy of radiation Erad (the blue line,
represents the real part of the wave function; the green line the imaginary part of the wave
function): (a) Erad = 10; (b) Erad = 1000; (c) Erad = 2000

see that the number of oscillations of the wave function in the internal region increases with
increasing of the energy of radiation. Another interesting property are the larger maxima of
the wave function in the internal region at smaller distances to the barrier for arbitrary energy (result
found for the first time).
In Fig. 5 it has been shown how the modulus of this wave function changes at selected
values of the energy of radiation. From these figures it becomes clear why the coefficient

Fig. 5. The behavior of the modulus of the wave function at the selected energies of radiation
Erad: (a) Erad = 10; (b) Erad = 1000; (c) Erad = 2000.

of penetrability of the barrier is extremely small (up to the energy Erad = 2000). In order to
estimate, how effective is the boundary condition introduced above in building up the wave
on the basis of the total wave function close to the external turning point atp, out, it is useful
to see how the modulus of this wave function changes close to this point. In Fig. 6 we plot
the modulus of the found wave function close to the turning points at the energy of radiation
Erad = 2000 is shown. Here, one can see that the modulus at atp, out is practically constant (see
left panel in Fig. 6). It is interesting to note that the modulus of the wave function, previously
defined, does not change close to the internal turning point atp, in, and is close to maximum
(see right panel in Fig. 6).

4.4 Calculations of the wave function of Universe
4.4.1 Method of calculations of the wave function close to an arbitrary selected point ax
Here, we look for the regular partial solution of the wave function close to an arbitrary selected
point ax . Let us write the wave function in the form:
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Fig. 6. The behavior of the modulus of the total wave function at the energy of radiation
Erad = 2000, close to the turning points (for atp, in = 8.58, atp, out = 15.04, see also Table 1): (a)
the modulus decreases monotonously in the tunneling region, with increasing of a. It shows
maxima and holes connected with the oscillations of the wave function in the external region,
but the modulus is not equal to zero (thispoints out the existence of a non-zero flux); (b)
when a increases, the modulus reaches a minimum close to the external turning point atp, out
(this demonstrates the practical fulfillment of the definition for the wave at such a point); (c)
transition close to atp, in is shown, where at increasing of a the modulus with maximums and
holes is transformed rapidly into a monotonously decreasing function without maximums
and holes. This is connected with transition to the region of tunneling.

ϕ(a) = c2
+∞

∑
n=0

bn (a− ax)n = c2
+∞

∑
n=0

bn ān,

ā = a− ax

(39)

and rewrite the potential through the variable ā:

V(a) = C0 + C1 ā+ C2 ā
2 + C3 ā

3 + C4 ā
4, (40)

where
C0 = A a2x − B a4x ,
C1 = 2ax(A− B a2x)− 2B a3x = 2A ax − 4B a3x ,
C2 = A− B a2x − 4B a2x − B a2x = A− 6B a2x,
C3 = −2B ax − 2B ax = −4B ax,
C4 = −B.

(41)

Substituting the wave function (39), its second derivative and the potential (40) into
Schrödinger equation, we obtain recurrent relations for unknown bn:

b2 =
(C0 − E) b0

2
, b3 =

(C0 − E) b1 + C1 b0
6

, b4 =
(C0 − E) b2 + C1 b1 + C2 b0

12
, (42)

b5 =
(C0 − E) b3 + C1 b2 + C2 b1 + C3 b0

20
, (43)

bn+2 =
(C0 − E) bn + C1 bn−1 + C2 bn−2 + C3 bn−3 + C4 bn−4

(n+ 1) (n+ 2)
at n ≥ 4. (44)
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Given the values of b0 and b1 and using eqs. (42)–(44) one can calculate all bn needed. At limit
Erad → 0 and at ax = 0 all found solutions for bi transform into the corresponding solutions
(40), early obtained in (Maydanyuk, 2008) at Erad = 0. Using c2 = 1, from eqs. (39) we find:

b0 = ϕ (ax), b1 = ϕ′(ax). (45)

So, on the basis of the coefficients b0 and b1 one can obtain the values of the wave function and
its derivative at point ax. Imposing two different boundary conditions via b0 and b1, we obtain
two linearly independent partial solutions ϕ1(a) and ϕ2(a) for the wave function. Using the
internal turning point atp, in as the starting point, we calculate the first partial solution which
increases in the barrier region (we choose: b0 = 0.1, b1 = 1), and using the external turning
point atp, out as the starting point, we calculate the second partial solution which decreases in
the barrier region (we choose: b0 = 1, b1 = −0.1). Such a choice provides effectively a linear
independence between two partial solutions.

4.4.2 Method of continuation of the solution
Let us rewrite equation (18) in such a form2:

ϕ′′ (a) = f (a) ϕ (a). (46)

Let
{
an
}
be a set of equidistant points an = a0 + nh. Denoting the values of the wave function

ϕ (a) at points an as ϕn, we have constructed an algorithm of the ninth order to determine
ϕn+1 and ϕ′

n when ϕn and ϕn−1 are known:

ϕn+1 = ϕn−1
g11 + g01
g01 − g11

+ ϕn
g01 g10 − g00 g11

g01 − g11
+O (h9),

ϕ′
n = ϕn−1

2
g01 − g11

+ ϕn
g10 − g00
g01 − g11

+O (h9),
(47)

where

g00 = 2+ h2 fn +
2
4!

h4
(
f ′′n + f 2n

)
+

2
6!

h6
(
f (4)n + 4

(
f ′n
)2

+ 7 fn f ′′n + f 3n
)
+

+
2
8!

h8
(
f (6)n + 16 fn f (4)n + 26 f ′n f (3)n + 15

(
f ′′n
)2

+ 22 f 2n f ′′n + 28 fn
(
f ′n
)2

+ f 4n
)
,

g01 =
2
4!

h4 2 f ′n +
2
6!

h6
(
4 f (3)n + 6 fn f ′n

)
+

2
8!

h8
(
6 f (5)n + 24 fn f (3)n + 48 f ′n f ′′n + 12 f 2n f ′n

)
,

g10 =
2
3!

h3 f ′n +
2
5!

h5
(
f (3)n + 4 fn f ′n

)
+

2
7!

h7
(
f (5)n + 11 fn f (3)n + 15 f ′n f ′′n + 9 f 2n f ′n

)
,

g11 = 2 h+
2
3!

h3 fn +
2
5!

h5
(
3 f ′′n + f 2n

)
+

2
7!

h7
(
5 f (4)n + 13 fn f ′′n + 10

(
f ′n
)2

+ f 3n
)
.

(48)
A local error of these formulas at point an equals to:

δn =
1
10!

h10 f ′n ϕ
(7)
n . (49)

2 Here, we used the algorithm of (Zaichenko & Kashuba, 2001)
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4.5 The penetrability and reflection in the fully quantum approach
Let us analyze whether a known wave function in the whole region of its definition allows us
to determine uniquely the coefficients of penetrability and reflection.

4.5.1 Problem of interference between the incident and reflected waves
Rewriting the wave function ϕtotal in the internal region through a summation of incident ϕinc
wave and reflected ϕref wave:

ϕtotal = ϕinc + ϕref, (50)

we consider the total flux:

j (ϕtotal) = i
[(

ϕinc + ϕref

)
∇
(

ϕ∗
inc + ϕ∗

ref

)
− h. c.

)]
= jinc + jref + jmixed, (51)

where
jinc = i

(
ϕinc∇ϕ∗

inc − h. c.
)
,

jref = i
(

ϕref∇ϕ∗
ref − h. c.

)
,

jmixed = i
(

ϕinc∇ϕ∗
ref + ϕref∇ϕ∗

inc − h. c.
)
.

(52)

The jmixed component describes interference between the incident and reflected waves in the
internal region (let us call it mixed component of the total flux or simply flux of mixing). From
the constancy of the total flux jtotal we find the flux jtr for the wave transmitted through the
barrier, and:

jinc = jtr − jref − jmixed, jtr = jtotal = const. (53)

Now one can see that the mixed flux introduces ambiguity in the determination of the penetrability
and reflection for the same known wave function.

4.6 Determination of the penetrability, reflection and interference coefficients
In quantum mechanics the coefficients of penetrability and reflection are defined considering
the potential as a whole, including asymptotic regions. However, in the radial calculation of
quantum decay such a consideration depends on how the incident and reflected waves are
defined inside finite internal region from the left of the barrier. The question is: does the
location of such a region influence the penetrability and reflection? In order to obtain these
coefficients, we shall include into definitions coordinates where the fluxes are defined (denote
them as xleft and xright):

T(xleft, xright) =
jtr(xright)

jinc(xleft)
,

R(xleft) =
jref(xleft)
jinc(xleft)

,

M(xleft) =
jmixed(xleft)
jinc(xleft)

.

(54)

So, the T and R coefficients determine the probability of transmission (or tunneling) and
reflection of the wave relatively the region of the potential with arbitrary selected boundaries
xleft, xright. When xright tends to the asymptotic limit, the coefficient defined before should
transform into standard ones. Assuming that jtr and jref are directed in opposite directions,
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jinc and jtr — in the same directions, from eqs. (53) and (54) we obtain (Maydanyuk, 2010):

|T|+ |R| − M = 1. (55)

Now we see that the condition |T| + |R| = 1 has sense in quantum mechanics only if there is no
interference between incident and reflected waves, and for this is enough that:

jmixed = 0. (56)

A new question appears: does this condition allow to separate the total wave function into the
incident and reflected components in a unique way? It turns out that the choice of the incident
and reflected waves has essential influence on the barrier penetrability, and different forms of
the incident ϕincand reflected ϕref waves can give zero flux jmix. Going from the rectangular
internal well to the fully quantum treatment of the problemwould become more complicated.

4.7 Wave incident on the barrier and wave reflected from it in the internal region

One can define the incident wave to be proportional to the function Ψ(+) and the reflected
wave to be proportional to the function Ψ(−):

ϕtotal (a) = ϕinc (a) + ϕref (a),

ϕinc (a) = we · Ψ(+) (a),

ϕref (a) = R · Ψ(−) (a),

(57)

where I and R are new constants found from continuity condition of the total wave function
ϕtotal and its derivative at the internal turning point atp, int:

we =
ϕtotal Ψ(−),′ − ϕ′

total Ψ(−)

Ψ(+) Ψ(−),′ − Ψ(+),′ Ψ(−)

∣∣∣∣
a=atp, int

,

R =
ϕ′
total Ψ(+) − ϕtotal Ψ(+),′

Ψ(+) Ψ(−),′ − Ψ(+),′ Ψ(−)

∣∣∣∣
a=atp, int

.

(58)

On the basis of these solutions we obtain at the internal turning point atp, int the flux incident
on the barrier, the flux reflected from it and the flux of mixing. The flux transmitted through
the barrier was calculated at the external turning point atp, ext.

4.8 Penetrability and reflection: fully quantum approach versus semiclassical one
Now we shall estimate through the method described above the coefficients of penetrability
and reflection for the potential barrierwith parameters A = 36, B = 12 Λ, Λ = 0.01 at different
values of the energy of radiation Erad. We shall compare the coefficient of penetrability
obtained with the values given by the semiclassical method. In the semiclassical approach
we shall consider two definitions of this coefficient:

PWKB,(1)
penetrability =

1
θ2

, PWKB,(2)
penetrability =

4(
2θ + 1/(2θ)2

)2 , (59)
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where

θ = exp

a(ext)tp∫
a(int)tp

∣∣V(a)− E
∣∣ da. (60)

One can estimate also the duration of the formation of the Universe, using by definition (15) in
Ref. (Acacio de Barros et al., 2007):

τ = 2 atp, int
1

Ppenetrability
. (61)

The results are presented in Tabl. 1. In calculations the coefficients of penetrability, reflection

and mixing are defined by eqs. (54), the fluxes by eqs. (52) (calculated PWKB,(2)
penetrability coincide

with PWKB,(1)
penetrability up to the first 7 digits for energies in range 0 ≤ Erad ≤ 2500).

From this table one can see that inside the entire range of energy, the fully quantum
approach gives value for the coefficient of penetrability enough close to its value obtained
by the semiclassical approach. This differs essentially from results in the non-stationary
approach (Acacio de Barros et al., 2007). This difference could be explained by difference
in a choice of the boundary condition, which is used in construction of the stationary solution
of the wave function.

4.9 The penetrability in the FRW-model with the Chaplygin gas
In order to connect universe with dust and its accelerating stage, in Ref. (Kamenshchik et
al., 2001) a new scenario with the Chaplygin gas was proposed. A quantum FRW-model with
the Chaplygin gas has been constructed on the basis of equation of state instead of p (a) =
ρrad(a)/3 (where p (a) is pressure) by the following (see also Refs. (Bento et al., 2002; Bilic et
al., 2002)):

pCh = − A
ρα
Ch

, (62)

where A is positive constant and 0 < α ≤ 1. In particular, for the standard Chaplygin gas we
have α = 1. Solution of equation of state (62) gives the following dependence of density on
the scale factor:

ρCh(a) =
(
A+

B
a3 (1+α)

)1/(1+α)

, (63)

where B is a new constant of integration. Using the parameter α, this model describes
transition between the stage, when Universe is filledwith dust-likematter, and its accelerating
expanding stage (through scenario of Chaplygin gas applied to cosmology, for details, see
Refs. (Bouhmadi-Lopez & Moniz, 2005; Bouhmadi-Lopez et al., 2008; Kamenshchik et al.,
2001), also historical paper (Chaplygin, 1904)).
Let us combine expression for density which includes previous forms of matter and the
Chaplygin gas in addition. At limit α → 0 eq. (63) transforms into the ρdust component plus
the ρΛ component. From such limit we find

A = ρΛ, B = ρdust (64)
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Energy Penetrability Ppenetrability Time τ Turning points
Erad Direct method Method WKB Direct method Method WKB atp, in atp, out
1.0 8.7126× 10−521 2.0888× 10−521 3.8260× 10+519 1.5958× 10+520 0.16 17.31
2.0 2.4225× 10−520 5.5173× 10−521 1.9460× 10+519 8.5448× 10+519 0.23 17.31
3.0 6.2857× 10−520 1.3972× 10−520 9.1863× 10+518 4.1326× 10+519 0.28 17.31
4.0 1.5800× 10−519 3.4428× 10−520 4.2201× 10+518 1.9367× 10+519 0.33 17.31
5.0 3.8444× 10−519 8.2935× 10−520 1.9392× 10+518 8.9892× 10+518 0.37 17.31
6.0 9.2441× 10−519 1.9701× 10−519 8.8350× 10+517 4.1455× 10+518 0.40 17.31
7.0 2.1678× 10−518 4.5987× 10−519 4.0694× 10+517 1.9183× 10+518 0.44 17.31
8.0 5.0192× 10−518 1.0621× 10−518 1.8790× 10+517 8.8797× 10+517 0.47 17.31
9.0 1.1604× 10−517 2.4316× 10−518 8.6212× 10+516 4.1140× 10+517 0.50 17.31
10.0 2.6279× 10−517 5.5016× 10−518 4.0128× 10+516 1.9168× 10+517 0.52 17.31
100.0 1.6165× 10−490 3.1959× 10−491 2.0717× 10+490 1.0478× 10+491 1.67 17.23
200.0 8.5909× 10−465 1.6936× 10−465 5.5397× 10+464 2.8100× 10+465 2.37 17.15
300.0 6.8543× 10−441 1.3419× 10−441 8.5461× 10+440 4.3653× 10+441 2.92 17.07
400.0 3.6688× 10−418 7.1642× 10−419 1.8531× 10+418 9.4900× 10+418 3.39 16.98
500.0 2.6805× 10−396 5.2521× 10−397 2.8508× 10+396 1.4550× 10+397 3.82 16.89
600.0 4.1386× 10−375 8.0511× 10−376 2.0338× 10+375 1.0454× 10+376 4.20 16.80
700.0 1.7314× 10−354 3.3810× 10−355 5.2806× 10+354 2.7043× 10+355 4.57 16.70
800.0 2.4308× 10−334 4.7497× 10−335 4.0448× 10+334 2.0701× 10+335 4.91 16.60
900.0 1.3213× 10−314 2.5761× 10−315 7.9408× 10+314 4.0730× 10+315 5.24 16.50
1000.0 3.0920× 10−295 6.0272× 10−296 3.5999× 10+295 1.8468× 10+296 5.56 16.40
1100.0 3.4274× 10−276 6.6576× 10−277 3.4289× 10+276 1.7652× 10+277 5.87 16.29
1200.0 1.9147× 10−257 3.7259× 10−258 6.4553× 10+257 3.3174× 10+258 6.18 16.18
1300.0 5.8026× 10−239 1.1253× 10−239 2.2333× 10+239 1.1516× 10+240 6.47 16.06
1400.0 9.9042× 10−221 1.9252× 10−221 1.3683× 10+221 7.0393× 10+221 6.77 15.93
1500.0 1.0126× 10−202 1.9551× 10−203 1.3965× 10+203 7.2333× 10+203 7.07 15.81
1600.0 6.2741× 10−185 1.2155× 10−185 2.3480× 10+185 1.2119× 10+186 7.36 15.67
1700.0 2.4923× 10−167 4.8143× 10−168 6.1488× 10+167 3.1831× 10+168 7.66 15.53
1800.0 6.4255× 10−150 1.2437× 10−150 2.4783× 10+150 1.2803× 10+151 7.96 15.38
1900.0 1.1189× 10−132 2.1580× 10−133 1.4776× 10+133 7.6619× 10+133 8.26 15.22
2000.0 1.3288× 10−115 2.5653× 10−116 1.2914× 10+116 6.6895× 10+116 8.58 15.04
2100.0 1.1105× 10−98 2.1357× 10−99 1.6036× 10+99 8.3382× 10+99 8.90 14.85
2200.0 6.6054× 10−82 1.2690× 10−82 2.7988× 10+82 1.4567× 10+83 9.24 14.64
2300.0 2.8693× 10−65 5.4647× 10−66 6.6952× 10+65 3.5154× 10+66 9.60 14.41
2400.0 9.1077× 10−49 1.7297× 10−49 2.1959× 10+49 1.1562× 10+50 10.00 14.14
2500.0 2.1702× 10−32 4.0896× 10−33 9.6290× 10+32 5.1098× 10+33 10.44 13.81
2600.0 3.9788× 10−16 7.3137× 10−17 5.5322× 10+16 3.0096× 10+17 11.00 13.37
2610.0 1.6663× 10−14 3.0428× 10−15 1.3290× 10+15 7.2780× 10+15 11.07 13.31
2620.0 6.9240× 10−13 1.2606× 10−13 3.2187× 10+13 1.7678× 10+14 11.14 13.25
2630.0 2.8842× 10−11 5.2116× 10−12 7.7789× 10+11 4.3050× 10+12 11.21 13.19
2640.0 1.2002× 10−9 2.1495× 10−10 1.8825× 10+10 1.0511× 10+11 11.29 13.12
2650.0 4.9881× 10−8 8.8401× 10−9 4.5642× 10+8 2.5754× 10+9 11.38 13.05
2660.0 2.0738× 10−6 3.6263× 10−7 1.1068× 10+7 6.3303× 10+7 11.47 12.97
2670.0 8.7110× 10−5 1.4836× 10−5 2.6596× 10+5 1.5615× 10+6 11.58 12.87
2680.0 3.6953× 10−3 6.0519× 10−4 6.3369× 10+3 3.8693× 10+4 11.70 12.76
2690.0 1.5521× 10−1 2.4634× 10−2 1.5293× 10+2 9.3602× 10+2 11.86 12.61

Table 1. The penetrability Ppenetrability of the barrier and the duration τ of the formation of the
Universe defined by eq. (61) in the fully quantum and semiclassical approaches
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and obtain the following generalized density:

ρ (a) =
(

ρΛ +
ρdust

a3 (1+α)

)1/(1+α)

+
ρrad
a4(t)

. (65)

Now we have:

ȧ2 + k− 8π G
3

{
a2

(
ρΛ +

ρdust
a3 (1+α)

)1/(1+α)

+
ρrad
a2(t)

}
= 0. (66)

After quantization we obtain the Wheeler-De Witt equation{
− ∂2

∂a2
+VCh (a)

}
ϕ(a) = Erad ϕ(a), Erad =

3 ρrad
2π G

, (67)

where

VCh (a) =
(

3
4π G

)2

k a2 − 3
2π G

a4
(

ρΛ +
ρdust

a3 (1+α)

)1/(1+α)

. (68)

For the Universe of closed type (at k = 1) at 8π G ≡ M−2
p = 1 we have (see eqs. (6)–(7) in

Ref. (Bouhmadi-Lopez & Moniz, 2005)):

VCh (a) = 36 a2 − 12 a4
(

Λ +
ρdust

a3 (1+α)

)1/(1+α)
, Erad = 12 ρrad. (69)

Fig. 7. Cosmological potentials with and without Chaplygin gas: Left panel is for potential
V(a) = 36 a2 − 12 Λ a4 with parameter Λ = 0.01 (turning point atp = 17.320508 at zero
energy Erad = 0), Right panel is for potential (69) with parameters Λ = 0.01, ρdust = 30,
α = 0.5 (minimum of the hole is -93.579 and its coordinate is 1.6262, maximum of the barrier
is 177.99 and its coordinate is 5.6866).

Let us expand the potential (69) close to arbitrary selected point ā by powers of q = a− ā and
restrict ourselves to linear terms:

VCh (q) = V0 +V1q. (70)
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For coefficients V0 and V1 we find:

V0 = VCh (a = ā),

V1 =
dVCh (a)

da

∣∣∣∣
a=ā

= 72 a+ 12 a3
{
−4Λ − ρdust

a3 (1+α)

}
·
(

Λ +
ρdust

a3 (1+α)

)−α/(1+α) (71)

and eq. (67) has the form:

− d2

dq2
ϕ(q) + (V0 − Erad +V1 q) ϕ(q) = 0. (72)

After the change of variable

ζ = |V1|1/3 q, d2

dq2
=

( dζ

dq

)2 d2

dζ2
= |V1|2/3 d2

dζ2
(73)

eq. (72) becomes:
d2

dζ2
ϕ(ζ) +

{
Erad −V0

|V1|2/3
− V1

|V1| ζ

}
ϕ(ζ) = 0. (74)

After the new change

ξ =
Erad −V0

|V1|2/3
− V1

|V1| ζ (75)

we have
d2

dξ2
ϕ(ξ) + ξ ϕ(ξ) = 0. (76)

From eqs. (73) and (75) we have:

ξ =
Erad −V0

|V1|2/3
− V1

|V1|2/3
q. (77)

Using such corrections after inclusion of the density component of the Chaplygin gas, we
have calculated the wave function and on its basis the coefficients of penetrability, reflection
andmixing by the formalism presented above. Now following the method of Sec. 3.1, we have
defined the incident and reflected waves relatively to a new boundary which is located in the
minimum of the hole in the internal region. Results are presented in Tabl. 3. One can see that
penetrability changes up to 100 times, in such a coordinate, in dependence on the location
of the boundary or in the internal turning point (for the same barrier shape and energy
Erad)! This confirms that the coordinate where incident and reflected waves are defined has
essential influence on estimation of the coefficients of penetrability and reflection. This result
shows that the method proposed in the present paper has physical sense. In the next Tabl. 4,
we demonstrate the fulfillment of the property (55) inside the entire energy range, which
is calculated on the basis of the coefficients of penetrability, reflection and mixing obtained
before.

5. Multiple internal reflections fully quantum method

5.1 Passage to non-stationary WDW equation: motivations
Tunneling is a pure quantum phenomenon characterized by the fact that a particle crosses
through a classically-forbidden region of the barrier. By such a reason, the process of incidence
of the particle on the barrier and its further tunneling and reflection are connected by unite
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cause-effect relation. So, the dynamical consideration of the tunneling process through
cosmological barriers is a natural one (Aharonov, 2002; Esposito, 2003; Jakiel et al., 1999;
Olkhovsky & Recami, 1992; Olkhovsky et al., 1995; 2004; 2005; Olkhovsky & Recami, 2008;
Olkhovsky, 2011; Recami, 2004). The rejection of the dynamical consideration of tunneling
from quantum cosmology limits the possible connection between initial stage, when the wave
is incident on the barrier, and next propagation of this wave. This leads to uncertainties in
determination of penetrability and rates. According to quantum mechanics, a particle is a
quantum object having properties both particle and wave. In the classically forbidden regions
the wave properties of the studied object are evident. So, the wave description of tunneling is
natural.
So, we define a non-stationary generalization of WDW equation as(

∂2

∂a2
−Veff (a)

)
Ψ(a, τ) = −i

∂

∂τ
Ψ(a, τ), (78)

where τ is a new variable describing dynamics of evolution of the wave function being analog
of time. According to quantum mechanics, the penetrability and reflection are stationary
characteristics, and such characteristics, obtained in the following, are independent on the
parameter τ. Note that all these characteristics are solutions of stationary WDW equation,
while non-stationary consideration of multiple packets moving along barrier gives clear
understanding of the process.
In order to give a basis to readers to estimate ability of the approach developed in this
paper, let us consider results in (Monerat et al., 2007) (see eq. (19)). Here was studied the
non-stationary WDW equation(

1
12

∂2

∂a2
−Veff (a)

)
Ψ(a, τ) = −i

∂

∂τ
Ψ(a, τ) (79)

with the potential for the closed FRW model with the included generalized Chaplygin gas.

Veff(a) = 3 a2 − a4

π

√
Ā+

B̄
a6 (80)

After change of variable anew = aold
√
12 the non-stationary eq. (79) transforms into

our eq. (78) since the Veff potential is independent on the τ variable (such a choice
allows a correspondence between energy levels, convenient in comparative analysis). The
potential (79) after such a transformation is shown in figs. 8. We shall analyze the behavior of
the wave function.

5.2 Tunneling of the packet through a barrier composed from arbitrary number of
rectangular steps

Now let us come to another more difficult problem, namely that a packet penetrating through
the radial barrier of arbitrary shape in a cosmological problem. In order to apply the idea of
multiple internal refections for study the packet tunneling through the real barrier, we have
to generalize the formalism of the multiple internal reflections presented above (Maydanyuk,
2011). We shall assume that the total potential has successfully been approximated by finite
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Fig. 8. Behavior of the potential (80) after change anew = aold
√
12 at Ā = 0.001 and B̄ = 0.001

(choice of parameters see in fig. 1, tables I and II in (Monerat et al., 2007)): (a) shape of the
barrier (Vmax = 223.52 at a = 42.322); (b) there is a little internal well close to zero
(Vmin = −8.44 at a = 0.00581)

number N of rectangular steps:

V(a) =

⎧⎪⎪⎨
⎪⎪⎩

V1, at amin < a ≤ a1 (region 1),
V2, at a1 < a ≤ a2 (region 2),
. . . . . . . . .
VN , at aN−1 < a ≤ amax (region N),

(81)

where Vi are constants (i = 1 . . . N). Let us assume that the packet starts to propagate outside
inside the region with some arbitrary number M (for simplicity, we denote its left boundary
aM−1 as astart) from the left of the barrier. We are interested in solutions for energies above
that of the barrier while the solution for tunneling could be obtained after by change i ξ i → ki.
A general solution of the wave function (up to its normalization) has the following form:

ϕ (a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α1 eik1a + β1 e−ik1a,
at amin ≤ a ≤ a1 (region 1),

. . .
αM−1 eikM−1a + βM−1 e−ikM−1a,

at aM−2 ≤ a ≤ aM−1 (region M− 1),

eikMa + AR e−ikMa,
at aM−1 < a ≤ aM (region M),

αM+1 eikM+1a + βM+1 e−ikM+1a,
at aM ≤ a ≤ aM+1 (region M+ 1),

. . .
αn−1 eikN−1a + βN−1 e−ikN−1a,

at aN−2 ≤ a ≤ aN−1 (region N− 1),

AT eikNa, at aN−1 ≤ a ≤ amax (region N),

(82)

where αj and βj are unknown amplitudes, AT and AR are unknown amplitudes of
transmission and reflection, ki =

1
h̄

√
2m(E−Vi) are complex wave numbers. We have fixed
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the normalization so that the modulus of the starting wave eikMa equals to one. We look for a
solution of such a problem by the approach of the multiple internal reflections.
Let us consider the initial stage when the packet starts to propagate to the right in the region
with number M. According to the method of the multiple internal reflections, propagation
of the packet through the barrier is considered by steps of its propagation relatively to each
boundary (see (Cardone et al., 2006; Maydanyuk et al., 2002a; Maydanyuk, 2003; Maydanyuk
& Belchikov, 2011), for details). Each next step in such a consideration of propagation of
the packet will be similar to the first 2N − 1 steps. From analysis of these steps recurrent

relations are found for calculation of all unknown amplitudes A(n)
T , A(n)

R , α
(n)
j and β

(n)
j for

arbitrary step n (for regionwith number j), summation of these amplitudes are calculated. We
shall look for the unknown amplitudes, requiring the wave function and its derivative to be
continuous at each boundary. We shall consider the coefficients T±

1 , T±
2 . . . and R±

1 , R±
2 . . . as

additional factors to amplitudes e±i k a. Here, the bottom index denotes the number of the
region, upper (top) signs “+” and “−” denote directions of the wave to the right or to the left,
correspondingly. To begin with, we calculate T±

1 , T±
2 . . .T±

N−1 and R±
1 , R±

2 . . .R±
N−1:

T+
j =

2kj
kj + kj+1

ei(kj−kj+1)aj , T−
j =

2kj+1

kj + kj+1
ei(kj−kj+1)aj ,

R+
j =

kj − kj+1

kj + kj+1
e2ikjaj , R−

j =
kj+1 − kj
kj + kj+1

e−2ikj+1aj .

(83)

Analyzing all possible “paths” of the propagations of all possible packets inside the barrier
and internal well, we obtain (Maydanyuk, 2011):

+∞
∑

n=1
A(n)
inc = 1+ R̃+

M R̃−
M−1 + R̃+

M R̃−
M−1 · R̃+

M R̃−
M−1 + ... =

= 1+
+∞
∑

m=1

(
R̃+

M R̃−
M−1

)m
=

1
1− R̃+

M R̃−
M−1

,

+∞
∑

n=1
A(n)

T =
(+∞

∑
n=1

A(n)
inc

)
·
{
T̃+
N−2 T

+
N−1+

+ T̃+
N−2 · R+

N−1 R̃
−
N−2 · T+

N−1 + ...
}
=

=
(+∞

∑
n=1

A(n)
inc

)
· T̃+

N−1,

+∞
∑

n=1
A(n)

R = R̃+
M + R̃+

M · R̃−
M−1 R̃

+
M+

+ R̃+
M · R̃−

M−1 R̃
+
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where
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j−1 + T+
j−1R̃

+
j T−

j−1

(
1+

+∞
∑

m=1
(R̃+

j R−
j−1)

m
)
=

= R+
j−1 +

T+
j−1R̃

+
j T−

j−1

1− R̃+
j R−

j−1
,

R̃−
j+1 = R−

j+1 + T−
j+1R̃

−
j T+

j+1

(
1+

+∞
∑

m=1
(R+

j+1R̃
−
j )

m
)
=

= R−
j+1 +

T−
j+1R̃

−
j T+

j+1

1− R+
j+1R̃

−
j
,

T̃+
j+1 = T̃+

j T+
j+1

(
1+

+∞
∑

m=1
(R+

j+1R̃
−
j )

m
)
=

T̃+
j T+

j+1

1− R+
j+1R̃

−
j
.

(85)

Choosing as starting points, the following:

R̃+
N−1 = R+

N−1,

R̃−
M = R−

M,

T̃+
M = T+

M,

(86)

we calculate the coefficients R̃+
N−2 . . . R̃+

M, R̃−
M+1 . . . R̃

−
N−1 and T̃+

M+1 . . . T̃
+
N−1.

We shall consider propagation of all packets in the region with number M, to the left. Such
packets are formed in result of all possible reflections from the right part of potential, starting
from the boundary aM. In the previous section to describe their reflection from the left
boundary R0 to the right one, we used coefficient R−

0 . Now since we want to pass from
simple boundary aM−1 to the left part of the potential well starting from this point up to amin,
we generalize the coefficient R−

M−1 to R̃−
M−1. The middle formula in (85) is applicable when

we use eqs. (83) for definition of T±
i and R±

i . Finally, we determine coefficients αj and βj :
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the amplitudes of transmission and reflection:

AT =
+∞
∑

n=1
A(n)

T , AR =
+∞
∑

n=1
A(n)

R ,

αj =
+∞
∑

n=1
α
(n)
j =

T̃+
j

T+
j
, βj =

+∞
∑

n=1
β
(n)
j = αj · R+

j

(88)
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and coefficients T and R describing penetration of the packet from the internal region outside
and its reflection from the barrier

TMIR ≡ kN
kM

∣∣AT
∣∣2 = ∣∣Ainc

∣∣2 · Tbar, Tbar = kN
kM

∣∣T̃+
N−1

∣∣2,
RMIR ≡ ∣∣AR

∣∣2 = ∣∣Ainc
∣∣2 · Rbar, Rbar =

∣∣R̃+
M

∣∣2. (89)

Choosing amin = 0, we assume full propagation of the packet through such a boundary (with
no possible reflection) and we have R−

0 = −1 (it could be interesting to analyze results with
varying R−

0 ). We use the test:

kN
kM

|AT |2 + |AR|2 = 1 or TMIR + RMIR = 1. (90)

Now if energy of the packet is located below then height of one step with number m, then the
following change

km → i ξm (91)

should be used to describe the transition of this packet through such a barrier with its
tunneling. In the case of a barrier consisting from two rectangular steps of arbitrary heights
and widths we have already obtained coincidence between amplitudes calculated by method
ofMIR and the corresponding amplitudes found by standard approach of quantummechanics
up to first 15 digits. Even increasing the number of steps up to some thousands has the right
accuracy to fulfill the property (90).
In particular, we reconstruct completely the pictures of the probability and reflection
presented in figs. 9 (a) and (b), figs. 10 (a) and (b), figs. 11 (b), but using such a standard
technique. So, the result concerning the oscillating dependence of the penetrability on the position
of the starting point astart in such figures is independent on the fully quantum method chosen for
calculations.
This is an important test which confirms reliability of the method MIR. So, we have obtained
full coincidence between all amplitudes, calculated bymethodMIR and by standard approach
of quantum mechanics. This is why we generalize the method MIR for description of
tunneling of the packet through potential, consisting from arbitrary number of rectangular
barriers and wells of arbitrary sizes (Maydanyuk, 2011).

5.3 Results
We have applied the above method to analyze the behavior of the packet tunneling through
the barrier (80) (we used anew → √

12 aold). The first interesting result is a visible change of
the penetrability on the displacement of the starting point amin ≤ a ≤ a1, where we put the packet.
Using the possibility of decreasing the width of intervals up to an enough small value (and
choosing, for convenience, the width of each interval to be the same), we choose amin as
starting point (and denote it as astart), from where the packet begins to propagate outside. We
have analyzed how the position of such a point influences the penetrability. In fig. 9 (a) one
can see that the penetrability strongly changes in dependence of astart for arbitrary values of
energy of radiation Erad: it has oscillating behavior (Maydanyuk, 2011). Difference between
its minimums and maximums is minimal at astart in the center of the well (i. e. its change
tends to zero in the center of the well), this difference increases with increasing value of astart
and achieves the maximum close to the turning point. With this result, we may conclude that
exists a dependence of penetrability on the starting point astart of the packet. The coefficients of
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Fig. 9. Dependencies of the coefficients of the penetrability Tbar (a), reflection Rbar (b),
coefficient of oscillations Kosc (c) and coefficient of penetration TMIR (d) in terms of the
position of the starting point astart for the energy E = 220 (A = 0.001, B = 0.001, amax = 70.
The total number of intervals is 2000, for all presented cases the achieved accuracy is
|Tbar + Rbar − 1| < 10−15). These figures clearly demonstrate oscillating (i.e. not constant)
behavior of all considered coefficients on astart.

reflection, oscillations and penetration on the position of the starting point astart are presented
in next figs. 9 (b), (c), (d) and have similar behavior.
Usually, in cosmological quantummodels the penetrability is determined by the barrier shape.
In the non-stationary approach one can find papers where the role of the initial condition is
analyzed in calculations of rates, penetrability etc.3 But, the stationary limit does not give us
any choice on which to work. We conclude: (a) the penetrability should be connected with the
initial condition (not only in non-stationary consideration, but also in the stationary one). (b)
Even in the stationary consideration, the penetrability of the barrier should be determined in
dependence on the initial condition.
The first question is how much these results are reliable. In particular, how stable will such
results be if we shift the external boundary outside? The results of such calculations are
presented in fig. 10, where it is shown how the penetrability changes with amax (for clearness
sake, we have fixed the starting point astart = 10, (Maydanyuk, 2011)). One can see that

3 Such papers are very rare and questions about dynamics have not been studied deeply.
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Fig. 10. Dependencies of the coefficients of penetrability (a), reflection (b), oscillations (c) and
penetration (d) on the position of the external region, amax for the energy E = 223
(A = 0.001, B = 0.001). For all presented values we have achieved accuracy
|Tbar + Rbar − 1| < 1 · 10−15 (the maximum number of intervals is 2000).

all calculations are well convergent, that confirms efficiency of the method of the multiple
internal reflections. On the basis of such results we choose amax = 70 for further calculations.
However, one can see that inclusion of the external region can change the coefficients of
penetrability and penetration up to 2 times for the chosen energy level.
The second question is how strong this affects the calculations of the penetrability. If it was
small than, the semiclassical approaches would have enough good approximation. From
figs. 9 it follows that the penetrability is not strongly changed in dependence on shift of the
starting point. However, such small variations are connected with relatively small height
of the barrier and depth of the well, while they would be not small for another choice of
parameters (the coefficient of oscillation and penetration turn out to change at some definite
energies of radiation, see below). So, this effect is supposed to be larger at increasing height
of the barrier and depth of the well, and also for near-barrier energies (i. e. for energies
comparable with the barrier height, and above-barrier energies of radiation).
We have analyzed how these characteristics change in dependence on the energy of radiation.
We did not expect the results that we got (see figs. 11). The coefficient of penetration has
oscillations with peaks clearly shown (Maydanyuk, 2011). These peaks are separated by
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Fig. 11. Dependencies of the coefficient of the coefficient of penetration TMIR (a), the
coefficient of the penetrability Tbar (b), coefficient of oscillations Kosc (c) and difference
Eres, next − Eres, previous between two closest energy peaks (d) on the Erad energy (we have
choose: A = 0.001 and B = 0.001, astart = 10, amax = 70, number of intervals inside the scale
axis a 1000, number of intervals of energy 100000). Inside the energy region Erad = 200− 223
we observe 19 resonant peaks in the dependencies of coefficients TMIR and Kosc while the
penetrability increases monotonously with increasing the Erad energy.

similar distances and could be considered as resonances in energy scale. So, by using the
fully quantum approach we observed for the first time clear pictures of resonances which
could be connected with some early unknown quasi-stationary states. At increasing energy
of radiation the penetrability changes monotonously and determines a general tendency of
change of the coefficient of penetration, while the coefficient of oscillations introduces the
peaks. Now the reason of the presence of resonances has become clearer: oscillations of the
packet inside the internal well produce them, while the possibility of the packet to penetrate
through the barrier (described by the penetrability of the barrier) has no influence on them.
In general, we observe 134 resonant levels inside energy range Erad = 0–200, and else 19 levels
inside Erad = 200–223.
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Fig. 12. Accuracy of the obtained penetrability Tbar and reflection Rbar for the energy E = 220
used in previous figs. 9 and 10. As a test, we calculate Tbar + Rbar − 1 in dependence on the
position of the starting point astart (a) and the external boundary amax (b)
(A = 0.001, B = 0.001, total number of intervals is 2000).

In the last fig. 12 one can see that we have achieved |Tbar + Rbar − 1| < 10−15 inside whole
region of changes of astart and amax (such data were used in the previous figs. 9 and 10). This
is the accuracy of the method of the multiple internal reflections in obtaining Tbar and Rbar.

5.4 The fully quantum penetrability versus semiclassical one in cosmology: a quick
comparison

Does the penetrability, determined according to the semiclassical theory by a shape of the
barrier between two turning points, give exhaustive answers and the best estimations of rates
of evolution of universe? If we look at figs. 9 (a), we shall see that this is not the case. The
penetrability is depended on the position (coordinate) ofmaximum of the packet which begins
to propagate outside at time moment t = 0. So, the penetrability should be a function of
some parameters of the packet at beginning. For the first time, it has been demonstrated the
difference between the fully quantum approach and the semiclassical one. However, let us
perform a general analysis (Maydanyuk, 2011).
(1) If we wanted to check the semiclassical approach, we should miss some of the parameters.
One can use test of T + R = 1 (where T and R are the penetrability through the barrier
and reflection from it). But, note that the semiclassical approximation neglects the reflected
waves in quantum mechanics (see (Landau & Lifshitz, 1989), eq. (46.10), p. 205, p. 221–222).
Therefore, we cannot use the test above for checking T in the semiclassical theory.
(2) If wewould like to determine the reflection coefficient, then we should find amore accurate
semiclassical approximation (in order to take into account both decreasing and increasing
components of the wave function in the tunneling region). In such a case, we shall face another
problem, namely the presence of a non-zero interference between the incident and reflected
waves. Now the relation T + R = 1 cannot be used as test, and one needs to take the third
component M of interference into account (see (Maydanyuk, 2010)). If we improperly separate
the exactly known full wave function in the incident and reflected waves4, the interference
component should increase without limit. In such a case, the penetrability and reflection

4 However, the semiclassical approaches have no apparatus for such an analysis.
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can freely exceed unit and increase without limit. What is now the general meaning of the
penetrability?
(3) We shall give only some examples from quantum mechanics. (i) If we consider
two-dimensional penetration of the packet through the simplest rectangle barrier (with finite
size), we shall see that the penetrability is directly dependent on direction of tunneling of
the packet. So, the penetrability is not a single value but a function. (ii) If we consider
one-dimensional tunneling of the packet through the simplest rectangular barrier, we shall
obtain “interference picture” of its amplitude in the transmitted region, which is dependent
on time and space coordinates and is an exact analytical solution. Of course, the stationary
part of such a result exactly coincides with well known stationary solutions (Maydanyuk,
2003).
(4) A tunneling boundary condition (Vilenkin, 1994) seems to be natural and clear, where the
wave function should represent an outgoing wave at large scale factor a. However, is such a
wave free? In contrast to problems of quantum atomic and nuclear physics, in cosmology we
deal with potentials, whichmodules increase with increasing the scale factor a (their gradients
increase, which have sense of force acting on the wave). Therefore, in quantum cosmology we
should define the boundary condition on the basis of the waves propagating inside strong
fields (see (Maydanyuk, 2010)).
These points destroy the semiclassical basis of the cosmological models. Now the statement
concerning reliability of the semiclassical approach become a question of “ faith” (note that
this is widespread (Maydanyuk, 2010; 2011)). The semiclassical approach could be compared
with “black box”, where deeper and more detailed information about the dynamics of the
universe is hidden.

6. A brief review on the problems of the Universe origin

In the science history and in the science philosophy of XX-XXI cc. (especially in the field of the
natural sciences, beginning from physics) there has been a lot of interesting things, which had
not obtained a sufficiently complete elucidation and analysis yet. Firstly, under the influence
of scientific and technological progress a great attention has been paid to the justification of
such direction in the science philosophy as the scientific realism (i.e. the correspondence of
the science to the reality), which has successively acquired three forms: the naive realism,
the usual realism and the critical science realism. Secondly, some new important problems of
physics (especially the problem of the essentially probabilistic description of the reality of the
microscopic world, the problem of the essential influence of the observer on the reality, the
collapse of the wave function) had been revealed in the development of quantum mechanics,
the continuously complicated interpretation of the Universe origin and the expansion after the Big
Bang, and also no succeeded attempt in explaining the origin of the biological life in terms
of physics and other natural sciences, all being with a variety of interpretation versions,
connected with the world-views of the researchers.
As to “great” and “grand” problems of natural sciences: There is an extensive introduction
in the large number of open problems in many fields of physics, published by the Russian
physicist V. Ginzburg in (Ginzburg, 1999) which is rather interesting to study. Inside this large
list of open problems of modern physics (and in a certain degree of modern natural sciences),
represented by V. Ginzburg repeatedly in Russian editions, some of them are marked him
“great” or “grand” problems. Between namely these problems we would like to underline
three of them.

373A Fully Quantum Model of Big Bang



34 Will-be-set-by-IN-TECH

a) The problem of interpretation and comprehension of quantummechanics (even of the non-relativistic
quantum theory) remains still topical. The majority of critics of quantum mechanics are
unsatisfied with the probabilistic nature of its predictions. One can add here also the
questions and paradoxes of the theory of quantum measurements theory, especially like
the wave-function reduction. The appearance of quantum mechanics, and, in particular,
the discussion of N. Bohr with A. Einstein (lasting many years), had seriously undermined
the traditional forms of the naive realism in the philosophy of the scientific realism and
had strongly influenced (and are continuating to influence) not only on physics but also
on other kinds of knowledge in the sense of the dependence of the reality on the observer
and, moreover, on our understanding of the human knowledge at all. More lately the new
interpretation of quantum mechanics is appeared: in it the hypothesis of many universes,
which are the exactly same as ours, permits to avoid the wave-function reduction.
b) The relationship between physics and biology and, specifically, the problem of reductionism. The
main problem, according to V. Ginzburg, is connected with the explanation of the origin of the
biologic life and the origin of the human abstract thinking (but the second one is connected
not with biology but with the origin of the human spiritual life which is far beyond natural
sciences). V. Ginzburg assumes that for a possible explanation of the origin of the biologic life
one can naturally imagine a certain jump which is similar to some kind of phase transition (or,
may be, certain synergetic process). But there are other points of view too.
c) The cosmological problem (in other words, the problem of the Universe origin). According
to V. Ginzburg, it is also a grand problem, or strictly speaking, a great complex of cosmic
problems many of which is far from the solution.
We did also analyzed in (Olkhovsky, 2010) these three problems in the context of other
aspects, first of all regarding the increasing discussions between the supporters of two
different meta-theoretical, meta-philosophical doctrines: either the beginning of the Universe
formation from vacuum (“nothing”) is either a result of the irrational randomness after
passing from other space-time dimensions or from other universe, caused by some unknown
process, or a result of the creation of the expanding Universe (together with the laws of its
functioning) by the supreme intelligent design from nigilo.

6.1 Schematic description of the problems connected with the Universe origin and
expansion

Earlier, after Enlightenment till approximately 1920, scientists in the natural sciences did
usually consider the Universe as eternally existing and eternally moving. Now the most
convincing arguments against the model of the eternally existing Universe are:

(a) the second law of thermodynamics which does inevitably bring to heat death of Universe,

(b) the observed cosmic microwave background.

The most surprising conclusion of the revealed non-stationary state of the Universe is the
existence of the “beginning”, underwhich themajority of physicists understand the beginning
of the Universe expansion.
The cosmologic problem as the problem of the origin and evolution of the Universe has
initiated to be analyzed by A. Einstein (after 1917) and now it is connected with papers of
many other physicists. The first several authors had been G. Lemaitre (who proposed what
became known as the Big Bang theory of the origin of the Universe, although he called it his
“hypothesis of the primeval atom”), A. Friedman and G. Gamow.
And what namely had been in the “beginning”? Gamow had assumed in 1921 that the
expansion had initiated from the super-condensed hot state as a result of the Big Bang,
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to which he and others had ascribed the time moment t = 0, i.e. the beginning of the
Universe history. The initial state in this model is in fact postulated. The nature of the
initial super-condensed hot Universe state is not known. Such initial point (or super-small
region), in which the temperature, pressure, energy density etc had reached the anomalous
huge (almost infinite) values, can be considered as a particular point, where the “physical”
processes cannot be described by physical equations and in fact are excluded from the model
analysis. Under these conditions the theory of grand unification (or superunification) of all
four known interactions (strong, weak, electromagnetic and gravitational) is assumpted to act.
But no satisfactory superunification has yet been constructed. The superstring theory claims
the role of such superunification, but this goal has not yet been achieved (Ginzburg, 1999).
Strictly speaking, namely in the region of this point (from t = 0 till t0 = 10−44 sec., where
t0 is the Planck time) is arising the general problem of the world origin and also the choice
dilemma: the beginning of the Universe formation from vacuum (“nothing”) is either a result
of the irrational randomness after passing from other space-time dimensions or from other
universe, caused by some unknown process, or a result of the creation of the expanding
Universe (together with the laws of its functioning) by the supreme intelligent design from
nigilo.
The framework for the standard cosmologic model relies on Einstein’s general relativity and
on simplifying assumptions (such as homogeneity and isotropy of space). There are even
non-standard alternative models. Now there are many supporters of Big Bang models. The
number of papers and books on standard versions of the cosmologic Big Bang models is too
enormous for citing in this short paper (it is possible to indicate, only for instance, (Hartle &
Hawking, 1983; Kragh, 1996; Peacock, 1999; Vilenkin, 1994) for the initial reading in cosmology
of the Universe and in the different quasi-classical and quantum approaches in cosmology for
description of the creation and the initial expansion of the Universe). However, there is no
well-supported model describing the Universe history prior to 10−15 sec. or so. Apparently
a new unified theory of quantum gravitation is needed to break this barrier but the theory
of quantum gravitation is only schematically constructed in the quasilinear approximation.
Understanding this earliest era in the history of the Universe is currently one of the most
important unsolved problems in physics. Further, over the time interval 10−35 sec., which
is much larger than the Planck time and so can still be considered classically, the Universe
was expanding (inflating) much more rapidly than in the known Friedman models. After
the inflation, the Universe had been as though developing in accord with the Friedman’s
scenario (Ginzburg, 1999). It may be possible to deduce what happened before inflation
through observational tests yet to be discovered, and a crucial role at the inflation stage could
be played the so-called Λ-term added to the Einstein equations of the General Relativity.
A lot of observations testify that there is exists non-luminous matter in the Universe which
manifests itself owing to its gravitational interaction and is present everywhere— both in the
galaxies and in the intergalactic space. And what is the nature of dark mass? According to the
very popular hypothesis, the role of darkmatter is played by the hypothetical WIMPs (Weakly
Interacting Massive Particles) with masses higher than protons (Ginzburg, 1999). There
are also exist some other candidates for the role of dark matter (for instance, pseudoscalar
particles — axions) (Ellis, 1998). Cosmic strings can be also mentioned (Ginzburg, 1999).
The possibility of the existence of the above-mentioned Λ-term in equations of the General
Relativity is now frequently referred to as “dark energy” or quintessence. For Λ > 0 it
“works” as “antigravity” (against the normal gravitational attraction) and testifies to the
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acceleration of the Universe expansion in our epoch (Armendariz-Picon et al., 2000; Ginzburg,
1999).
Moreover, it is worth to underline that many physicists consider that the second law of
thermodynamics is universal for all closed systems, including also our Universe as a whole
(which is closed in naturalistic one-world view). Therefore the heat death is inevitable (see,
for instance, (Ginzburg, 1999) and especially (Adams & Laughlin, 1997)).
There are also versions of the non-standard versions of the cosmologic Big Bang models
(Albrecht & Magueijo, 1999; Moffat, 1993; Petit, 1988; Petit & Viton, 1989; Setterfield &
Norman, 1987; Troitskii, 1987). We shall shortly refer to these models, noting that at least
one of them (by B. Setterfield and T. Norman (Setterfield & Norman, 1987)) clearly speaks
on the young Universe: They indicate that after the Big Bang the light speed had been
gradually decreased approximately 106 − 107 times and it was deduced that the velocities
of the electromagnetic and radioactive decays had been gradually decreased near 107 times
too. In (Setterfield & Norman, 1987; Troitskii, 1987) it was deduced that after the inflation the
Universe had not been really expanding.

6.2 On the anthropic principle
From 1973 (and particularly after eighties) the term “anthropic principle”, introduced by
B. Carter, has become to acquire in the science and out of the science a certain popularity
(Barrow & Tipler, 1986; Carter, 1974). Carter and other authors had been noted that physical
constants must have values in the very narrow interval in order the existence of the biologic
life can become possible, and that the measured values of these constants are really found in
this interval. In other words, the Universe seems to be exactly such as it is necessary for the
origin of the life. If physical constants would be even slightly other, then the life could be
impossible. After meeting such testimonies, a number of scientists had formulated several
interpretations of anthropic principle each of which brings the researchers to the worldview
choice in its peculiar way. We shall consider here two of them. According to the weak anthropic
principle (WAP), the observed values of physical and cosmological constants caused by the
necessary demand that the regions, where the organic life would be developed, ought to be
possible. And in the context ofWAP there is the possibility of choice between two alternatives:

1. Either someone does irrationally believe that there are possible an infinity of universes, in
the past, in the present and in the future, and we exist and are sure in the existence of our
Universe namely because the unique combination of its parameters and properties could
permit our origin and existence.

2. Or someone does (also irrationally) believe that our unique Universe is created by
Intelligent Design of a Creator (God) and the human being is also created by Creator in
order to govern the Universe.

According to the strong anthropic principle (SAP), the Universe has to have such properties
which permit earlier or later the development of life. This form of the anthropic principle does
not only state that the universe properties are limited by the narrow set of values, compatible
with the development of the human life, but does also state that this limitation is necessary for
such purpose. So, one can interpret such tuning of the universe parameters as the testimony
of the supreme intelligent design of a certain creative basis. There is also a rather unexpected
interpretation of SAP, connected with the eastern philosophy, but it is not widely known.
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7. Conclusions and perspectives

In this Chapter the closed Friedmann–Robertson–Walker model with quantization in the
presence of a positive cosmological constant and radiation was studied. We have solved it
numerically and have determined the tunneling probability for the birth of an asymptotically
de-Sitter, inflationary Universe as a function of the radiation energy. Note the following.

1. A fully quantum definition of the wave which propagates inside strong field and which
interact minimally with them, has been formulated for the first time, and approach for its
determination has been constructed.

2. A new stationary approach for the determination of the incident, reflected and transmitted
waves relatively to the barrier has been constructed. The tunneling boundary condition
has been corrected.

3. A quantum stationary method of determination of coefficients of penetrability and
reflection relatively to the barrier with analysis of uniqueness of solution has been
developed, where for the first time non-zero interference between the incident and
reflected waves has been taken into account and for its estimation the coefficient of mixing
has been introduced.

4. In this chapter a development of the method of multiple internal reflections is presented
(see Refs. (Cardone et al., 2006; Maydanyuk et al., 2002a;b; Maydanyuk, 2003; Olkhovsky
&Maydanyuk, 2000), also Refs. (Anderson, 1989; Fermor, 1966; McVoy et al., 1967)). When
the barrier is composed from arbitrary number n of rectangular potential steps, the exact
analytical solutions for amplitudes of the wave function, the penetrability Tbar through
the barrier and the reflection Rbar from it are found. At n → ∞ these solutions can be
considered as exact limits for potential with the barrier and well of arbitrary shapes.

In such a quantum approach the penetrability of the barrier for the studied quantum
cosmological model with parameters A = 36, B = 12 Λ (Λ = 0.01) has been estimated with a
comparison with results of other known methods. Note the following.

1. The modulus of the coefficient of mixing is less 10−19. This points out that there is no
interference between the found incident and reflected waves close to the internal turning point.

2. On the basis of the calculated coefficients we reconstruct a property (55) inside the whole
studied range of energy of radiation (see Fig. 12).

3. The probability of penetration of the packet from the internal well outside with its
tunneling through the barrier of arbitrary shape is determined. We call such coefficient as
coefficient of penetration. This coefficient is separated on the penetrability and a new coefficient,
which characterizes oscillating behavior of the packet inside the internal well and is called
coefficient of oscillation. The formula found, seems to be the fully quantum analogue of the
semiclassical formula of Γ width of decay in quasistationary state proposed in Ref. (Gurvitz &
Kälbermann, 1987). Here, the coefficient of oscillations is the fully quantum analogue for
the semiclassical F factor of formation and the coefficient of penetration is analogue for the
semiclassical Γ width.

4. The penetrability of the barrier visibly changes in dependence of the position of the starting
point Rstart inside the internal well, where the packet begins to propagate (see figs. 9).
We note the following peculiarities: the penetrability has oscillating behavior, difference
between its minimums and maximums is minimal at Rstart in the center of the well,
with increasing Rstart this difference increases achieving to maximum near the turning
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point. The coefficients of reflection, oscillations and penetration have similar behavior.
We achieve coincidence (up to the first 15 digits) between the amplitudes of the wave
function obtained by such a method, and the corresponding amplitudes obtained by the
standard approach of quantum mechanics (see Appendix B in (Maydanyuk & Belchikov,
2011) where solutions for amplitudes were calculated in general quantum decay problem).
This confirms that this result does not depend on a choice of the fully quantum method
applied for calculations. Such a peculiarity is shown in the fully quantum considerations
and it is hidden after imposing the semiclassical restrictions.

5. The coefficient of penetration has oscillating dependence on the energy of radiation.
Here, peaks are clearly shown. They are localized at similar distances (see figs. 11). So,
for the first time we have obtained in the fully quantum approach a clear and stable
picture of resonances, which indicate the presence of some early unknown quasistationary
states. If the energy of radiation increases, the penetrability is monotonously changed.
It describes a general tendency of behavior of the coefficient of penetration, while the
coefficient of oscillations gives peaks. Now the reason of existence of resonances becomes
clear: oscillations of the packet inside the internal well give rise to them. In particular,
we establish 134 such resonant levels inside range Erad = 0–223 for the barrier (8) with
parameters A = 0.001 and B = 0.001.

6. A dependence of the penetrability on the starting point has maxima and minima. This
allows to predict some definite initial values of the scale factor, when the universe begins
to expand. Such initial data is direct result of quantization of the cosmological model.

7. The modulus of the wave function in the internal and external regions has minima and
maxima which were clearly established in (Maydanyuk, 2008; 2010). This indicates, in
terms of values of the scale factor, where the probable “appearance” of the universe is
maximal or minimal. So, the radius of the universe during its expansion changes not
continuously, but consequently passes through definite discrete values connected with
these maxima. It follows that space-time of universe on the first stage after quantization
seems to be rather discrete than continuous. According to results (Maydanyuk, 2008; 2010;
2011), difference between maxima and minima is slowly smoothed with increasing of the
scale factor a. In this way, we obtain the continuous structure of the space-time at latter
times. The discontinuity of space-time is direct result of quantization of cosmological
model. This new phenomenon is the most strongly shown on the first stage of expansion
and disappears after imposition of the semiclassical approximations.
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1. Introduction

Supersymmetry (SUSY) is a symmetry between bosons and fermions. It leads to degeneracies
of mass spectra between bosons and fermions. Although such degeneracies have not been
observed yet, there is a possibility for SUSY being realized in nature as a spontaneously broken
symmetry. From a theoretical viewpoint, SUSY provides a unified framework describing
physics in high energy regime beyond the standard model (Sohnius, 1985). Spontaneous
breaking of SUSY is one of the most interesting phenomena in quantum field theory. Since
in general SUSY cannot be broken by radiative corrections at the perturbative level, its
spontaneous breaking requires understanding of nonperturbative aspects of quantum field
theory (Witten, 1981). In particular, recent developments in nonperturbative aspects of string
theory heavily rely on the presence of SUSY. Thus, in order to deduce predictions to the
real world from string theory, it is indispensable and definitely important to investigate a
mechanism of spontaneous SUSY breaking in a nonperturbative framework of strings. Since
one of the most promising approaches of nonperturbative formulations of string theory is
provided by large-N matrix models (Banks et al., 1997; Dijkgraaf et al., 1997; Ishibashi et al.,
1997), it will be desirable to understand how SUSY can be spontaneously broken in the large-N
limit of simple matrix models as a first step. Analysis of SUSY breaking in simple matrix
models would help us find a mechanism which is responsible for possible spontaneous SUSY
breaking in nonperturbative string theory.
For this purpose, it is desirable to treat systems in which spontaneous SUSY breaking takes
place in the path-integral formalism, because matrix models are usually defined by the path
integrals, namely integrals over matrix variables. In particular, IIB matrix model defined
in zero dimension can be formulated only by the path-integral formalism (Ishibashi et al.,
1997). Motivated by this, we discuss in the next section the path-integral formalism for
(discretized) SUSY quantum mechanics, which includes cases that SUSY is spontaneously
broken. Analogously to the situation of ordinary spontaneous symmetry breaking, we
introduce an external field to choose one of degenerate broken vacua to detect spontaneous
SUSY breaking. The external field plays the same role as a magnetic field in the Ising model
introduced to detect the spontaneous magnetization. For the supersymmetric system, we
deform the boundary condition for fermions from the periodic boundary condition (PBC) to a
twisted boundary condition (TBC) with twist α, which can be regarded as such an external
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field. If a supersymmetric system undergoes spontaneous SUSY breaking, the partition
function with the PBC for all the fields, ZPBC, which usually corresponds to the Witten index,
is expected to vanish (Witten, 1982). Then, the expectation values of observables, which are
normalized by ZPBC, would be ill-defined or indefinite. By introducing the twist, the partition
function is regularized and the expectation values become well-defined. It is an interesting
aspect of our external field for SUSY breaking, which is not seen in spontaneous breaking of
ordinary (bosonic) symmetry.
Notice that our argument can be applied to systems in less than one-dimension, for
example discretized SUSY quantum mechanics with a finite number of discretized time steps.
Spontaneous SUSY breaking is observed even in such simple systems with lower degrees
of freedom. Also, we give some argument that an analog of the Mermin-Wagner-Coleman
theorem (Coleman, 1973; Mermin & Wagner, 1966) does not hold for SUSY. Thus, cooperative
phenomena are not essential to cause spontaneous SUSY breaking, which makes a difference
from spontaneous breaking of the ordinary (bosonic) symmetry.
In this setup, we compute an order parameter of SUSY breaking such as the expectation
value of an auxiliary field in the presence of the external field. If it remains nonvanishing
after turning off the external field, it shows that SUSY is spontaneously broken because it
implies that the effect of the infinitesimal external field we have introduced at the beginning
remains. Here, it should be noticed that, if we are interested in the large-N behavior of SUSY
matrix models, we have to take the large-N limit before turning off the external field, which
is reminiscent of the thermodynamic limit of the Ising model taken before turning off the
magnetic field in detecting the spontaneous Z2 breaking.
In view of this, it is quite important to calculate the partition function in the presence
of the external field in the path integral for systems which spontaneously break SUSY.
Especially it would be better to calculate it in matrix models at finite N in order to observe
breaking/restoration of SUSY in the large-N limit. We address this problem by utilizing two
methods: localization and Nicolai mapping (Nicolai, 1979) in sections 3 and 4, respectively.
As for the localization, in section 3 we make change of integration variables in the path
integral, which is always possible whether or not the SUSY is explicitly broken (the external
field is on or off). It is investigated in detail how the integrand of the partition function with
respect to the integral over the auxiliary field behaves as the auxiliary field approaches to zero.
It plays a crucial role to understand the localization from the change of variables. For SUSY
matrix models with Q-SUSY preserved, the path integral receives contributions only from the
fixed points of Q-transformation, which are nothing but the critical points of superpotential,
i.e. zeros of the first derivative of superpotential. However, in terms of eigenvalues of matrix
variables, an interesting phenomenon arises. Localization attracts the eigenvalues to the
critical points of superpotential, while the square of the Vandermonde determinant arising
from the measure factor prevents the eigenvalues from collapsing. The dynamics of the
eigenvalues is governed by balance of attractive force from the localization and repulsive force
from the Vandermonde determinant. Without the external field, contribution to the partition
function from each eigenvalue distributed around some critical point is derived for a general
superpotential.
In the case that the external field is turned on, computation is still possible, but in section 4
we find that a method by the Nicolai mapping is more effective. Interestingly, the Nicolai
mapping works for SUSY matrix models even in the presence of the external field which
explicitly breaks SUSY. It enables us to calculate the partition function at least in the leading
nontrivial order of an expansion with respect to the small external field for finite N. We can
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take the large-N limit of our result before turning off the external field and detect whether
SUSY is spontaneously broken or not in the large-N limit. For illustration, we obtain large-N
solutions for a SUSY matrix model with double-well potential.
Section 5 is devoted to summarize the results and discuss future directions.
This chapter is mainly based on the two papers (Kuroki & Sugino, 2010; 2011).

2. Preliminaries on SUSY quantum mechanics

As a preparation to discuss large-N SUSY matrix models, in this section we present some
preliminary results on SUSY quantum mechanics.
Let us start with a system defined by the Euclidean (Wick-rotated) action:

SQM =
∫ β

0
dt

[
1
2

B2 + iB
(
φ̇ + W ′(φ)

)
+ ψ̄

(
ψ̇ + W ′′(φ)ψ

)]
, (1)

where φ is a real scalar field, ψ, ψ̄ are fermions, and B is an auxiliary field. The dot means the
derivative with respect to the Euclidean time t ∈ [0, β]. For a while, all the fields are supposed
to obey the PBC. W(φ) is a real function of φ called superpotential, and the prime (′) represents
the φ-derivative.
SQM is invariant under one-dimensional N = 2 SUSY transformations generated by Q and Q̄.
They act on the fields as

Qφ = ψ, Qψ = 0, Qψ̄ = −iB, QB = 0, (2)

and
Q̄φ = −ψ̄, Q̄ψ̄ = 0, Q̄ψ = −iB + 2φ̇, Q̄B = 2i ˙̄ψ, (3)

with satisfying the algebra

Q2 = Q̄2 = 0, {Q, Q̄} = 2∂t. (4)

Note that SQM can be written as the Q- or QQ̄-exact form:

SQM = Q
∫

dt ψ̄

{
i
2

B − (
φ̇ + W ′(φ)

)}
(5)

= QQ̄
∫

dt
(

1
2

ψ̄ψ + W(φ)

)
. (6)

For demonstration, let us consider the case of the derivative of the superpotential

W ′(φ) = g(φ2 − μ2) with g, μ2 ∈ R. (7)

For μ2 < 0, the classical minimum is given by the static configuration φ = 0, with its energy
E0 = 1

2 g2μ4 > 0 implying spontaneous SUSY breaking. Then, B = igμ2 �= 0 from the equation
of motion, leading to Qψ̄, Q̄ψ �= 0, which also means the SUSY breaking.
For μ2 > 0, the classical minima φ = ±√

μ2 are zero-energy configurations. It is known
that the quantum tunneling (instantons) between the minima resolves the degeneracy giving
positive energy to the ground state. SUSY is broken also in this case.
Next, let us consider quantum aspects of the SUSY breaking in this model. For later
discussions on matrix models, it is desirable to observe SUSY breaking via the path-integral
formalism, that is, by seeing the expectation value of some field. We take 〈B〉 (or 〈Bn〉
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(n = 1, 2, · · · )) as such an order parameter. Whichever μ2 is positive or negative, the SUSY
is broken, so the ground state energy E0 is positive. Then, for each of the energy levels En
(0 < E0 < E1 < E2 < · · · ), the SUSY algebra1

{Q, Q̄} = 2En, Q2 = Q̄2 = 0 (8)

leads to the SUSY multiplet formed by bosonic and fermionic states

|bn〉 = 1√
2En

Q̄| fn〉, | fn〉 = 1√
2En

Q|bn〉. (9)

As a convention, we assume that |bn〉 and | fn〉 have the fermion number charges F = 0 and 1,
respectively. Since the Q-transformation for B in (2) is expressed as [Q, B] = 0 in the operator
formalism, we can see that

〈bn|B|bn〉 = 〈 fn|B| fn〉 (10)

holds for each n. Then, it turns out that the unnormalized expectation value of B vanishes2:

〈B〉′ ≡
∫

PBC
d(fields) B e−SQM

= Tr
[

B(−1)Fe−βH
]

=
∞

∑
n=0

(〈bn|B|bn〉 − 〈 fn|B| fn〉) e−βEn = 0. (11)

This observation shows that, in order to judge SUSY breaking from the expectation value of B,
we should choose either of the SUSY broken ground states (|b0〉 or | f0〉) and see the expectation
value with respect to the chosen ground state. The situation is somewhat analogous to the case
of spontaneous breaking of ordinary (bosonic) symmetry.
However, differently from the ordinary case, when SUSY is broken, the supersymmetric
partition function vanishes:

ZQM
PBC =

∫
PBC

d(fields) e−SQM
= Tr

[
(−1)Fe−βH

]
(12)

=
∞

∑
n=0

(〈bn|bn〉 − 〈 fn| fn〉) e−βEn = 0, (13)

where the normalization 〈bn|bn〉 = 〈 fn| fn〉 = 1 was used. So, the expectation values
normalized by ZQM

PBC could be ill-defined (Kanamori et al., 2008a;b).

2.1 Twisted boundary condition
To detect spontaneous breaking of ordinary symmetry, some external field is introduced so
that the ground state degeneracy is resolved to specify a single broken ground state. The
external field is turned off after taking the thermodynamic limit, then we can judge whether
spontaneous symmetry breaking takes place or not, seeing the value of the corresponding
order parameter. (For example, to detect the spontaneous magnetization in the Ising model,
the external field is a magnetic field, and the corresponding order parameter is the expectation
value of the spin operator.)

1 In the operator formalism, Q̄, ψ̄ are regarded as hermitian conjugate to Q, ψ, respectively.
2 Furthermore, 〈Bn〉′ = 0 (n = 1, 2, · · · ) can be shown.
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We will do a similar thing also for the case of spontaneous SUSY breaking. For this purpose,
let us change the boundary condition for the fermions to the TBC:

ψ(t + β) = eiαψ(t), ψ̄(t + β) = e−iαψ̄(t), (14)

then the twist α can be regarded as an external field. Other fields remain intact. As seen
shortly in section 2.1.1, the partition function with the TBC corresponds to the expression (12)
with (−1)F replaced by (−e−iα)F:

ZQM
α ≡ −e−iα

∫
TBC

d(fields) e−SQM
= Tr

[
(−e−iα)Fe−βH

]
(15)

=
∞

∑
n=0

(
〈bn|bn〉 − e−iα〈 fn| fn〉

)
e−βEn =

(
1 − e−iα

) ∞

∑
n=0

e−βEn . (16)

Then, the normalized expectation value of B under the TBC becomes

〈B〉α ≡ 1

ZQM
α

Tr
[

B(−e−iα)Fe−βH
]

=
1

ZQM
α

∞

∑
n=0

(
〈bn|B|bn〉 − e−iα〈 fn|B| fn〉

)
e−βEn

=
∑∞

n=0〈bn|B|bn〉e−βEn

∑∞
n=0 e−βEn

=
∑∞

n=0〈 fn|B| fn〉e−βEn

∑∞
n=0 e−βEn

. (17)

Note that the factors
(

1 − e−iα
)

in the numerator and the denominator cancel each other,
and thus 〈B〉α does not depend on α even for finite β. As a result, 〈B〉α is equivalent to the
expectation value taken over one of the ground states and its excitations {|bn〉} (or {| fn〉}).
The normalized expectation value of B under the PBC was of the indefinite form 0/0, which
is now regularized by introducing the parameter α. The expression (17) is well-defined.
On the other hand, from the Q-transformation ψ = [Q, φ], we have

〈bn|φ|bn〉 = 〈 fn|φ| fn〉+ 1√
2En

〈 fn|ψ|bn〉. (18)

The second term is a transition between bosonic and fermionic states via the fermionic
operator ψ, which does not vanish in general. Thus, differently from 〈B〉α, the expectation
value of φ becomes

〈φ〉α =
1

ZQM
α

Tr
[
φ(−e−iα)Fe−βH

]

=
1

ZQM
α

∞

∑
n=0

(
〈bn|φ|bn〉 − e−iα〈 fn|φ| fn〉

)
e−βEn

=
∑∞

n=0〈 fn|φ| fn〉e−βEn

∑∞
n=0 e−βEn

+
1

1 − e−iα

∑∞
n=0〈 fn|ψ|bn〉 1√

2En
e−βEn

∑∞
n=0 e−βEn

. (19)

When 〈 fn|ψ|bn〉 �= 0 for some n, the second term is α-dependent and diverges as α → 0.
The divergence comes from the transition between |bn〉 and | fn〉. Since the two states are
transformed to each other by the (broken) SUSY transformation, we can say that they should
belong to the separate superselection sectors, in analogy to spontaneous breaking of ordinary
(bosonic) symmetry. Thus, the divergence of 〈φ〉α as α → 0 implies that the superselection
rule does not hold in the system.
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2.1.1 Partition function with the twist α
We here show that the partition function with the TBC for the fermions (14) can be expressed
in the form (15).
Let b̂, b̂† be annihilation and creation operators of the fermions:

b̂2 = (b̂†)2 = 0, {b̂, b̂†} = 1, (20)

and they are represented on the Fock space {|0〉, |1〉} as

b̂|0〉 = 0, b̂†|0〉 = |1〉. (21)

We assume that |0〉, |1〉 have the fermion numbers F = 0, 1, respectively.
The coherent states |ψ〉, 〈ψ̄| satisfying

b̂|ψ〉 = ψ|ψ〉, 〈ψ̄|b̂† = 〈ψ̄|ψ̄ (22)

(ψ, ψ̄ are Grassmann numbers, and anticommute with b̂, b̂†.) are explicitly constructed as

|ψ〉 = |0〉 − ψ|1〉 = e−ψb̂† |0〉, 〈ψ̄| = 〈0| − 〈1|ψ̄ = 〈0|e−b̂ψ̄. (23)

Also,

|0〉 =
∫

dψ ψ|ψ〉, 〈0| =
∫

dψ̄ 〈ψ̄|ψ̄, |1〉 = −
∫

dψ |ψ〉, 〈1| =
∫

dψ̄ 〈ψ̄|. (24)

Thus, we can obtain

Tr
[
(−e−iα)Fe−βH

]
= 〈0|e−βH |0〉 − e−iα〈1|e−βH |1〉

=
∫

dψ̄dψ (e−iα + ψψ̄)〈ψ̄|e−βH |ψ〉

= e−iα
∫

dψ̄dψ exp
(

eiαψψ̄
)
〈ψ̄|e−βH |ψ〉. (25)

Since the bosonic part of H is obvious, below we focus on the fermionic part HF = b̂†W ′′ b̂.
Dividing the interval β into M short segments of length ε: β = Mε in (25) and applying the
relations

〈ψ̄|ψ〉 = eψ̄ψ, 1 =
∫

dψ̄dψ |ψ〉eψψ̄〈ψ̄| (26)

to each segment, we have the following expression:

Tr
[
(−e−iα)Fe−βHF

]
= −e−iα

∫ ⎛
⎝ M

∏
j=1

dψjdψ̄j

⎞
⎠ exp

⎡
⎣−ε

M

∑
j=1

ψ̄j

(
ψj+1 − ψj

ε
+ W ′′ψj

)⎤
⎦ (27)

with
ψM+1 = eiαψ1, (28)

or

Tr
[
(−e−iα)Fe−βHF

]
= −e−iα

∫ ⎛
⎝ M

∏
j=1

dψjdψ̄j

⎞
⎠ exp

⎡
⎣−ε

M

∑
j=1

(
− ψ̄j − ψ̄j−1

ε
+ ψ̄jW ′′

)
ψj

⎤
⎦ (29)

with
ψ̄0 = eiαψ̄M. (30)

Since (28) and (30) correspond to (14) in the continuum limit ε → 0, M → ∞ with β = Mε
fixed, we find that the formula (15) holds.
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2.2 Discretized SUSY quantum mechanics
In this subsection, we consider a discretized system of (1), namely the Euclidean time is
discretized as t = 1, · · · , T. The action is written as

SdQM = Q
T

∑
t=1

ψ̄(t)
{

i
2

B(t)− (
φ(t + 1)− φ(t) + W ′(φ(t))

)}
(31)

=
T

∑
t=1

[
1
2

B(t)2 + iB(t)
{

φ(t + 1)− φ(t) + W ′(φ(t))
}

+ ψ̄(t)
{

ψ(t + 1)− ψ(t) + W ′′(φ(t))ψ(t)
}]

, (32)

where the Q-SUSY is of the same form as in (2). As is seen by the Q-exact form (31), the action
is Q-invariant and the Q-SUSY is preserved upon the discretization (Catterall, 2003). On the
other hand, the Q̄-SUSY can not be preserved by the discretization in the case of T ≥ 2.
When T is finite, the partition function or various correlators are expressed as a finite number
of integrals with respect to field variables. So, at first sight, one might expect that spontaneous
breaking of the SUSY could not take place, because of a small number of the degrees of
freedom. In what follows, we will demonstrate that the expectation is not correct, and that
the SUSY can be broken even in such a finite system.
Expressing as SdQM

α the action (32) under the TBC

φ(T + 1) = φ(1), ψ(T + 1) = eiαψ(1), (33)

the partition function

ZdQM
α ≡

(−1
2π

)T ∫ T

∏
t=1

(dB(t) dφ(t) dψ(t) dψ̄(t)) e−SdQM
α (34)

is computed to be

ZdQM
α = (−1)T

(
1 − eiα

)
CT , (35)

CT ≡
∫ (

T

∏
t=1

dφ(t)√
2π

)
exp

[
−1

2

T

∑
t=1

(
φ(t + 1)− φ(t) + W ′(φ(t))

)2
]

. (36)

Here we used

∫ (
T

∏
t=1

dφ(t)√
2π

)[
T

∏
t=1

(−1 + W ′′(φ(t))
)− (−1)T

]

× exp

[
−1

2

T

∑
t=1

(
φ(t + 1)− φ(t) + W ′(φ(t))

)2
]
= 0 (37)

for the superpotential (7), which is derived from the Nicolai mapping (Nicolai, 1979). (Note

the factor
[
∏T

t=1 (−1 + W ′′(φ(t)))− (−1)T
]

is equal to the fermion determinant under the
PBC.) Also, CT is positive definite.
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Similarly, for the normalized expectation value

〈B(t)〉α ≡ 1

ZdQM
α

(−1
2π

)T ∫ T

∏
t=1

(dB(t) dφ(t) dψ(t) dψ̄(t)) B(t) e−SdQM
α , (38)

we use the Nicolai mapping to have

〈B(t)〉α =
1

ZdQM
α

(−1)T
(

1 − eiα
) ∫ (

T

∏
t=1

dφ(t)√
2π

)
(−i)

(
φ(t + 1)− φ(t) + W ′(φ(t))

)

× exp

[
−1

2

T

∑
t=1

(
φ(t + 1)− φ(t) + W ′(φ(t))

)2
]

=
1

CT

∫ (
T

∏
t=1

dφ(t)√
2π

)
(−i)

(
φ(t + 1)− φ(t) + W ′(φ(t))

)

× exp

[
−1

2

T

∑
t=1

(
φ(t + 1)− φ(t) + W ′(φ(t))

)2
]

. (39)

The factor (−1)T
(

1 − eiα
)

was canceled, and 〈B(t)〉α does not depend on α, again. The
result (39) is finite and well-defined. By using the Nicolai mapping, it is straightforward to
generalize this result to the case of W ′ being a general polynomial

W ′(φ) = gpφp + gp−1φp−1 + · · ·+ g0. (40)

We find that (39) holds and it is finite and well-defined for even p, and that limα→0 〈B(t)〉α = 0
for odd p.

2.2.1 No analog of Mermin-Wagner-Coleman theorem for SUSY
As claimed in the Mermin-Wagner-Coleman theorem (Coleman, 1973; Mermin & Wagner,
1966), continuous bosonic symmetry cannot be spontaneously broken at the quantum level
in the dimensions of two or lower. In dimensions D ≤ 2, although the symmetry might
be broken at the classical level, in computing quantum corrections to a classical (nonzero)
value of a corresponding order parameter, one encounters infrared (IR) divergences from
loops of a massless boson. It indicates that the conclusion of the symmetry breaking from
the classical value is not reliable at the quantum level any more. It is a manifestation of the
Mermin-Wagner-Coleman theorem.
Here, we consider whether an analog of the Mermin-Wagner-Coleman theorem for SUSY
holds or not. Naively, since loops of a massless fermion (“would-be Nambu-Goldstone
fermion”) would be dangerous in the dimension one or lower, we might be tempted to expect
that SUSY could not be spontaneously broken at the quantum level in the dimension of one or
lower. However, this expectation is not correct. Because the twist α in our setting can also be
regarded as an IR cutoff for the massless fermion, the finiteness of (39) shows that 〈B(t)〉α is
free from IR divergences and well-defined at the quantum level for less than one-dimension.
(For one-dimensional case, (17) has no α-dependence, thus no IR divergences.)
We can see it more explicitly in perturbative calculations. Let us consider the
superpotential (7) with μ2 < 0, where the classical configuration φ(t) = 0 gives B(t) = igμ2.
If the theorem held, quantum corrections should modify this classical value to zero, and
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there we should come across IR divergences owing to a massless fermion. Although we
have obtained the finite result (39), the following perturbative analysis would clarify a role
played by the massless fermion. We evaluate quantum corrections to the classical value of
B(t) perturbatively. Under the mode expansions

φ(t) =
1√
T

(T−1)/2

∑
n=−(T−1)/2

φ̃n ei2πnt/T with φ̃∗
n = φ̃−n,

ψ(t) =
1√
T

(T−1)/2

∑
n=−(T−1)/2

ψ̃n ei(2πn+α)t/T ,

ψ̄(t) =
1√
T

(T−1)/2

∑
n=−(T−1)/2

ψ̃n e−i(2πn+α)t/T , (41)

free propagators are

〈
φ̃−nφ̃m

〉
free =

δnm

4 sin2 (πn
T
)
+ M2

,

〈
ψ̃nψ̃m

〉
free

=
δnm

ei(2πn+α)/T − 1
(42)

with M2 ≡ −2g2μ2. Here we consider the case of odd T for simplicity of the mode expansion.
Note that the boson is massive while the fermion is nearly massless regulated by α. Also, there
are three kinds of interactions in SdQM

α (after B is integrated out):

V4 =
T

∑
t=1

1
2

g2φ(t)4,

V3B =
T

∑
t=1

gφ(t)2 (φ(t + 1)− φ(t)) ,

V3F =
T

∑
t=1

2gφ(t)ψ̄(t)ψ(t). (43)

We perturbatively compute the second term of

〈B(t)〉α = igμ2 − i
〈

gφ(t)2 + φ(t + 1)− φ(t)
〉

α
(44)

up to the two-loop order, and directly see that the nearly massless fermion (“would-be
Nambu-Goldstone fermion”) does not contribute and gives no IR singularity. It is easy
to see that the tadpole 〈φ(t + 1)− φ(t)〉α vanishes from the momentum conservation. For
−i

〈
gφ(t)2〉

α, the one-loop contribution comes from the diagram (1B) in Figure 1, which
consists only of a boson line independent of α. Also, the two-loop diagrams (2BBa), (2BBb),
(2BBc) and (2BBd) do not contain fermion lines. The relevant diagrams for the IR divergence
at the two-loop order are the last four (2FFa), (2FFb), (2BFa) and (2BFb), which are evaluated
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(1B) (2BBa) (2BBb)

(2BBc) (2BBd)

(2BFa) (2BFb)

(2FFb)(2FFa)

Fig. 1. One- and two-loop diagrams. The crosses represent the insertion of the operator
−igφ(t)2. The solid lines with (without) arrows mean the fermion (boson) propagators. (1B)
is the one-loop diagram, and the other eight are the two-loop diagrams. The diagrams with
the name “FF” (“BB”) are constructed by using the interaction vertices V3F twice (V4 once or
V3B twice), and those with “BF” are by using each of V3B and V3F once.

as

(2FFa) = i
4g3

T2

(T−1)/2

∑
m,k=−(T−1)/2

(
1

4 sin2 (πm
T

)
+ M2

)2
1

ei(2πk+α)/T − 1
1

ei(2π(m+k)+α)/T − 1
,

(2FFb) = −i
4g3

T2
1

M4

⎛
⎝ (T−1)/2

∑
m=−(T−1)/2

1
ei(2πm+α)/T − 1

⎞
⎠

2

,

(2BFa) = −i
4g3

T2
1

M2

(T−1)/2

∑
m=−(T−1)/2

(
1 − M2

4 sin2 (πm
T

)
+ M2

)
1

4 sin2 (πm
T

)
+ M2

×
(T−1)/2

∑
k=−(T−1)/2

1
ei(2πk+α)/T − 1

,

(2BFb) = −i
4g3

T2
1

M4

(T−1)/2

∑
m=−(T−1)/2

(
1 − M2

4 sin2 (πm
T

)
+ M2

)
(T−1)/2

∑
k=−(T−1)/2

1
ei(2πk+α)/T − 1

.

(45)
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Each diagram is singular as α → 0 due to the fermion zero-mode, however it is remarkable
that the sum of them vanishes:

(2FFa) + (2FFb) + (2BFa) + (2BFb)

= −i
4g3

T2
1

M4

T−1

∑
m=1

⎡
⎣1 −

(
M2

4 sin2 (πm
T

)
+ M2

)2
⎤
⎦ F(m) (46)

with

F(m) ≡
T

∑
k=1

(
1 +

1
ei(2π(m+k)+α)/T − 1

)
1

ei(2πk+α)/T − 1

=
T

∑
k=1

1
ei(2πk+α)/T − 1

[
1 − e−i(2πk+α)/T

1 − ei2πm/T − e−i(2πk+α)/T

1 − e−i2πm/T

]

=
T

∑
k=1

e−i(2πk+α)/T = 0. (47)

Thus, the two-loop contribution turns out to have no α-dependence, and the quantum
corrections come only from the boson loops which are IR finite, that is consistent with (39).
Since the classical value igμ2 = −i M2

2g is regarded as O(g−1), and �-loop contributions are

of the order O(g2�−1), the quantum corrections can not be comparable to the classical value
in the perturbation theory. Thus, the conclusion of the SUSY breaking based on the classical
value continues to be correct even at the quantum level.

3. Change of variables and localization in SUSY matrix models

As argued in the previous section, in order to discuss spontaneous SUSY breaking in the
path-integral formalism of (discretized) SUSY quantum mechanics, we introduce an external
field to twist the boundary condition of fermions in the Euclidean time direction and observe
whether an order parameter of SUSY breaking remains nonzero after turning off the external
field. This motivates us to calculate the partition function in the presence of the external field.
In the following, we consider a matrix-model analog of (32)

SM = Q
T

∑
t=1

N tr ψ̄(t)
{

i
2

B(t)− (
φ(t + 1)− φ(t) + W ′(φ(t))

)}

=
T

∑
t=1

N tr
[

1
2

B(t)2 + iB(t)
{

φ(t + 1)− φ(t) + W ′(φ(t))
}

+ ψ̄(t)
{

ψ(t + 1)− ψ(t) + QW ′(φ(t))
}]

, (48)

where all variables are N × N Hermitian matrices. Under the PBC, this action is manifestly
invariant under Q-transformation defined in (2). When N = 1, it reduces to the discretized
SUSY quantum mechanics in section 2.2. We will focus on the simplest case T = 1 below.
Under the twisted boundary condition (33) with T = 1, the action is

SM
α = N tr

[
1
2

B2 + iBW ′(φ) + ψ̄
(

eiα − 1
)

ψ + ψ̄QW ′(φ)
]

, (49)
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and the partition function is defined by

ZM
α ≡ (−1)N2

∫
dN2

B dN2
φ

(
dN2

ψ dN2
ψ̄
)

e−SM
α , (50)

where we fix the normalization of the measure as∫
dN2

φ e−Ntr ( 1
2 φ2) =

∫
dN2

B e−Ntr ( 1
2 B2) = 1, (−1)N2

∫ (
dN2

ψ dN2
ψ̄
)

e−Ntr (ψ̄ψ) = 1.

(51)
Explicitly, when W ′(φ) is a general polynomial (40), (49) becomes

SM
α = N tr

[
1
2

B2 + iBW ′(φ) + ψ̄
(

eiα − 1
)

ψ +
p

∑
k=1

gk

k−1

∑
�=0

ψ̄ φ� ψ φk−�−1

]
. (52)

Notice the ordering of the matrices in the last term. We see that the effect of the external field
remains even after the reduction to zero dimension (T = 1). When α = 0, SM

α=0 is invariant
under Q and Q̄:

Qφ = ψ, Qψ = 0, Qψ̄ = −iB, QB = 0, (53)

and
Q̄φ = −ψ̄, Q̄ψ̄ = 0, Q̄ψ = −iB, Q̄B = 0, (54)

both of which become broken explicitly in SM
α by introducing the external field α.

Now let us discuss localization of the integration in ZM
α . Some aspects are analogous to the

discretized SUSY quantum mechanics with T ≥ 2 under the identification N2 = T from the
viewpoint of systems possessing multi-degrees of freedom, while there are also interesting
new phenomena specific to matrix models 3. We make a change of variables

φ = φ̃ + ε̄ψ, ψ̄ = ˜̄ψ − iε̄B, (55)

where in the second equation, ˜̄ψ satisfies

N tr(B ˜̄ψ) = 0, (56)

namely, ˜̄ψ is orthogonal to B with respect to the inner product (A1, A2) ≡ N tr(A†
1 A2). Let us

take a basis of N × N Hermitian matrices {ta} (a = 1, · · · , N2) to be orthonormal with respect
to the inner product: N tr(tatb) = δab. More explicitly, we take

ε̄ ≡ i
tr(Bψ̄)

trB2 =
i

N 2
B

N tr(Bψ̄) (57)

with NB ≡ ||B|| = √
N tr(B2) the norm of the matrix B. Notice that for general N ψ̄ is an

N × N matrix and that ε̄ does not have enough degrees of freedom to parametrize the whole
space of ψ̄. In fact, ε̄ is used to parametrize a single component of ψ̄ parallel to B.
If we write (50) as

ZM
α =

∫
dN2

B Ξα(B), Ξα(B) ≡ (−1)N2
∫

dN2
φ

(
dN2

ψ dN2
ψ̄
)

e−SM
α , (58)

3 Localization in the discretized SUSY quantum mechanics is discussed in appendix A in ref. (Kuroki &
Sugino, 2011).
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and consider the change of the variables in Ξα(B), B may be regarded as an external variable.
The measure dN2

ψ̄ can be expressed by the measures associated with ˜̄ψ and ε̄ as

dN2
ψ̄ =

i
NB

dε̄ dN2−1 ˜̄ψ, (59)

where dN2−1 ˜̄ψ is explicitly given by introducing the constraint (56) as a delta-function:

dN2−1 ˜̄ψ ≡ (−1)N2−1dN2 ˜̄ψ δ

(
1
NB

N tr(B ˜̄ψ)
)

= (−1)N2−1

(
N2

∏
a=1

d ˜̄ψa

)
1
NB

N2

∑
a=1

Ba ˜̄ψa. (60)

˜̄ψa and Ba are coefficients in the expansion of ˜̄ψ and B by the basis {ta}:

ψ̃ =
N2

∑
a=1

˜̄ψata, B =
N2

∑
a=1

Bata. (61)

Notice that the measure on the RHS of (59) depends on B. When B �= 0, we can safely change
the variables as in (55) and in terms of them the action becomes

SM
α = N tr

[
1
2

B2 + iBW ′(φ̃) + ˜̄ψ
(
(eiα − 1)ψ + QW ′(φ̃)

)
− (eiα − 1)iε̄Bψ

]
(62)

with Qφ̃ = ψ.

3.1 α = 0 case
Let us first consider the case of the PBC (α = 0). SM

α=0 does not depend on ε̄ as a consequence
of its SUSY invariance, because (55) reads

φ = φ̃ + εQφ̃, ψ̄ = ˜̄ψ + ε̄Q ˜̄ψ. (63)

Therefore, the contribution to the partition function from B �= 0

Z̃α=0 =
∫
||B||≥ε

dN2
B Ξα=0(B) (0 < ε 
 1) (64)

vanishes due to the integration over ε̄ according to (59). Namely, when α = 0, the path integral
of the partition function (50) is localized to B = 0.
For the contribution to the partition function from the vicinity of B = 0

Z(0)
α=0 =

∫
||B||<ε

dN2
B Ξα=0(B), (65)

when W ′(φ) is given by (40) of degree p ≥ 2, rescaling as

φ̃ = N− 1
p

B φ′, ˜̄ψ = N
p−1

p
B ψ̄′, (66)
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we obtain

Z(0)
α=0 = i

( −1√
2π

)N2
⎛
⎝∫ ε

0
dNB

1

N 1+ 1
p

B

e−
1
2 N 2

B

⎞
⎠ ∫

dΩB

∫
dN2

φ′ e−iN tr(ΩB gpφ′p)

×
∫

dN2
ψ
∫

dε̄ dN2−1ψ̄′ e−N tr
[
ψ̄′gp ∑

p−1
�=0 φ′�ψφ′p−�−1

] [
1 +O(ε1/p)

]
, (67)

where the measure of the B-integral was expressed in terms of polar coordinates in RN2
as

dN2
B =

N2

∏
a=1

dBa
√

2π
=

(
1

2π

) N2
2 N N2−1

B dNB dΩB, (68)

and ΩB ≡ 1
NB

B represents a unit vector in RN2
. Since the ε̄-integral vanishes while the

integration of NB becomes singular at the origin, Z(0)
α=0 takes an indefinite form (∞ × 0). When

W ′(φ) is linear (p = 1), the φ̃-integrals in (65) yield

Z(0)
α=0 = i

( −1
|g1|

)N2 ∫
||B||<ε

(
N2

∏
a=1

dBa

)
1
NB

e−
1
2 N 2

B

N2

∏
a=1

δ(Ba)

×
∫

dN2
ψ

∫
dε̄ dN2−1 ˜̄ψ e−N tr( ˜̄ψg1ψ), (69)

which is also of indefinite form – the B-integrals diverge while
∫

dε̄ trivially vanishes. The

indefinite form reflects that Z(0)
α=0 possibly takes a nonzero value if it is evaluated in a

well-defined manner.

3.1.1 Unnormalized expectation values
Next, let us consider the unnormalized expectation values of 1

N tr Bn (n ≥ 1):〈
1
N

tr Bn
〉′

≡
∫

dN2
B

(
1
N

tr Bn
)

Ξα=0(B). (70)

Since contribution from the region ||B|| ≥ ε is shown to be zero by the change of variables
(55), we focus on the B-integration around the origin (||B|| < ε).
When W ′(φ) is a polynomial (40) of degree p ≥ 2, after the rescaling (66) we obtain〈

1
N

tr Bn
〉′

= i
(∫ ε

0
dNB N n−1− 1

p
B e−

1
2 N 2

B

)
YN

[
1 +O(ε1/p)

]
,

YN ≡
( −1√

2π

)N2 ∫
dΩB

1
N

tr (Ωn
B)

∫
dN2

φ′ e−iN tr(ΩB gpφ′p)

×
∫

dN2
ψ

∫
dε̄ dN2−1ψ̄′ e−N tr

[
ψ̄′gp ∑

p−1
�=0 φ′�ψφ′p−�−1

]
. (71)

The NB-integral is finite, and it is seen that YN definitely vanishes. Thus, the change of

variables (55) is possible for any B in evaluating
〈

1
N tr Bn

〉′
to give the result

〈
1
N

tr Bn
〉′

= 0 (n ≥ 1). (72)
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When W ′(φ) is linear,
〈

1
N tr Bn

〉′
has the same expression as the RHS of (69) except the

integrand multiplied by 1
N tr Bn. It leads to a finite result of the B-integration for n ≥ 1,

and (72) is also obtained.
Furthermore, it can be similarly shown that the unnormalized expectation values of
multi-trace operators ∏k

i=1
1
N tr Bni (n1, · · · , nk ≥ 1) vanish:

〈
k

∏
i=1

1
N

tr Bni

〉′
= 0. (73)

3.1.2 Localization to W ′(φ) = 0, and localization versus Vandermonde
Since (73) means

〈
e−N tr( u−1

2 B2)
〉′

=
∞

∑
n=0

1
n!

(
−N2 u − 1

2

)n 〈(
1
N

tr B2
)n〉′

= 〈1〉′ = ZM
α=0 (74)

for an arbitrary parameter u, we may compute
〈

e−N tr( u−1
2 B2)

〉′
to evaluate the partition

function ZM
α=0. It is independent of the value of u, so u can be chosen to a convenient value to

make the evaluation easier.
Taking u > 0 and integrating B first, we obtain

ZM
α=0 = (−1)N2

∫
dN2

φ

(
1
u

) N2
2

e−N tr[ 1
2u W ′(φ)2]

∫ (
dN2

ψ dN2
ψ̄
)

e−N tr[ψ̄QW ′(φ)]. (75)

Then, let us consider the u → 0 limit. Localization to W ′(φ) = 0 takes place because

lim
u→0

(
1
u

) N2
2

e−N tr[ 1
2u W ′(φ)2] = (2π)

N2
2

N2

∏
a=1

δ(W ′(φ)a). (76)

It is important to recognize that W ′(φ)a = 0 for all a implies localization to a continuous space.
Namely, if this condition is met, W ′(U†φU)a = 0 for ∀U ∈ SU(N). Thus the original SU(N)
gauge symmetry in the matrix model makes the localization continuous in nature. This is
characteristic of SUSY matrix models.
The observation above suggests that in order to localize the path integral to discrete points,
we should switch to a description in terms of gauge invariant quantities. This motivates us to
change the expression of φ to its eigenvalues and SU(N) angles as

φ = U

⎛
⎜⎝

λ1
. . .

λN

⎞
⎟⎠U†, U ∈ SU(N). (77)

This leads to an interesting situation, which is peculiar to SUSY matrix models and is not seen
in the (discretized) SUSY quantum mechanics. For a polynomial W ′(φ) given by (40), the
partition function (75) becomes

ZM
α=0 =

(
1
u

) N2
2

∫
dN2

φ e−N tr[ 1
2u W ′(φ)2] det

[
p

∑
k=1

gk

k−1

∑
�=0

φ� ⊗ φk−�−1

]
, (78)
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after the Grassmann integrals. Note that the N2 × N2 matrix ∑
p
k=1 gk ∑k−1

�=0 φ� ⊗ φk−�−1 has
the eigenvalues ∑

p
k=1 gk ∑k−1

�=0 λ�
i λk−�−1

j (i, j = 1, · · · , N). Thus, the fermion determinant can
be expressed as

det

[
p

∑
k=1

gk

k−1

∑
�=0

φ� ⊗ φk−�−1

]
=

N

∏
i,j=1

[
p

∑
k=1

gk

k−1

∑
�=0

λ�
i λk−�−1

j

]

=

(
N

∏
i=1

W ′′(λi)

)
∏
i>j

(
W ′(λi)− W ′(λj)

λi − λj

)2

. (79)

The measure dN2
φ given in (51) can be also recast to

dN2
φ = C̃N

( N

∏
i=1

dλi

)
�(λ)2 dU, (80)

where �(λ) = ∏i>j(λi − λj) is the Vandermonde determinant, and dU is the SU(N) Haar
measure normalized by

∫
dU = 1. C̃N is a numerical factor depending only on N determined

by
1

C̃N
=

∫ ( N

∏
i=1

dλi

)
�(λ)2 e−N ∑N

i=1
1
2 λ2

i . (81)

Plugging these into (78), we obtain

ZM
α=0 = C̃N

∫ ( N

∏
i=1

dλi

) (
N

∏
i=1

W ′′(λi)

) ⎧⎨
⎩∏

i>j

1
u

(
W ′(λi)− W ′(λj)

)2

⎫⎬
⎭

×
(

1
u

) N
2

e−N ∑N
i=1

1
2u W ′(λi)

2
. (82)

In this expression, the factor in the second line forces eigenvalues to be localized at the
critical points of the superpotential as u → 0, while the last factor in the first line, which is
proportional to the square of the Vandermonde determinant of W ′(λi), gives repulsive force
among eigenvalues which prevents them from collapsing to the critical points. The dynamics
of eigenvalues is thus determined by balance of the attractive force to the critical points
originating from the localization and the repulsive force from the Vandermonde determinant.
This kind of dynamics is not seen in the (discretized) SUSY quantum mechanics.
To proceed with the analysis, let us consider the situation of each eigenvalue λi fluctuating
around the critical point φc,i:

λi = φc,i +
√

u λ̃i (i = 1, · · · , N), (83)

where λ̃i is a fluctuation, and φc,1, · · · , φc,N are allowed to coincide with each other. Then, the
partition function (82) takes the form

ZM
α=0 = C̃N ∑

φc,i

∫ ( N

∏
i=1

dλ̃i

) N

∏
i=1

W ′′(φc,i) ∏
i>j

(
W ′′(φc,i)λ̃i − W ′′(φc,j)λ̃j

)2

×e−N ∑N
i=1

1
2 W ′′(φc,i)

2λ̃2
i +O(

√
u). (84)
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Although only the Gaussian factors become relevant as u → 0, there remain N(N − 1)-point
vertices originating from the Vandermonde determinant of W ′(λi) which yield a specific effect
of SUSY matrix models.
In the case of W ′(φ) = g1φ, where the corresponding scalar potential 1

2 W ′(φ)2 is Gaussian,
the critical point is only the origin: φc,1 = · · · = φc,N = 0. Then, (84) is reduced to

ZM
α=0 = C̃N

∫ ( N

∏
i=1

dλ̃i

)
gN2

1 ∏
i>j

(
λ̃i − λ̃j

)2
e−N ∑N

i=1
1
2 g2

1 λ̃2
i , (85)

where no O(
√

u) term appears since W ′(φ) is linear. By using (81) we obtain

ZM
α=0 = (sgn(g1))

N2
= (sgn(g1))

N . (86)

For a general superpotential, we change the integration variables as

λ̃i =
1

W ′′(φc,i)
yi, (87)

then the integration of λ̃i becomes
∫ ∞
−∞ dλ̃i · · · = 1

|W ′′(φc,i)|
∫ ∞
−∞ dyi · · · . In the limit u → 0, (84)

is computed to be

ZM
α=0 = ∑

φc,i

N

∏
i=1

W ′′(φc,i)

|W ′′(φc,i)|

{
C̃N

∫ ∞

−∞

( N

∏
i=1

dyi

)
�(y)2 e−N ∑N

i=1
1
2 y2

i

}

= ∑
φc,i

N

∏
i=1

sgn
(
W ′′(φc,i)

)

=

⎡
⎣ ∑

φc : W ′(φc)=0
sgn

(
W ′′(φc)

)⎤⎦
N

. (88)

Note that the last factor in the first line of (88) is nothing but the partition function of the
Gaussian case with g1 = 1. The last line of (88) tells that the total partition function is given
by the N-th power of the degree of the map φ → W ′(φ).
Furthermore, we consider a case that the superpotential W(φ) has K nondegenerate critical
points a1, · · · , aK . Namely, W ′(aI) = 0 and W ′′(aI) �= 0 for each I = 1, · · · , K. The scalar
potential 1

2 W ′(φ)2 has K minima at φ = a1, · · · , aK . When N eigenvalues are fluctuating
around the minima, we focus on the situation that
the first ν1N eigenvalues λi (i = 1, · · · , ν1N) are around φ = a1,
the next ν2N eigenvalues λν1 N+i ( i = 1, · · · , ν2N) are around φ = a2,
· · · ,
and the last νK N eigenvalues λν1 N+···+νK−1 N+i (i = 1, · · · , νK N) are around φ = aK ,
where ν1, · · · , νK are filling fractions satisfying ∑K

I=1 νI = 1. Let Z(ν1,··· ,νK) be a contribution to
the total partition function ZM

α=0 from the above configuration. Then,

ZM
α=0 =

N

∑
ν1 N,··· ,νK N=0

N!
(ν1N)! · · · (νK N)!

Z(ν1,··· ,νK). (89)
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(The sum is taken under the constraint ∑K
I=1 νI = 1.) Since Z(ν1,··· ,νK) is equal to the second

line of (88) with φc,i fixed as

φc,1 = · · · = φc,ν1 N = a1,

φc,ν1 N+1 = · · · = φc,ν1 N+ν2 N = a2,

· · ·
φc,ν1 N+···+νK−1 N+1 = · · · = φc,N = aK , (90)

we obtain

Z(ν1,··· ,νK) =
K

∏
I=1

ZG,νI , ZG,νI =
(
sgn

(
W ′′(aI)

))νI N . (91)

ZG,νI can be interpreted as the partition function of the Gaussian SUSY matrix model with the
matrix size νI N × νI N describing contributions from Gaussian fluctuations around φ = aI .

3.2 α �= 0 case
In the presence of the external field α, let us consider Ξα(B) in (58) with the action (62) obtained
after the change of variables (55). Using the explicit form of the measure (59) and (60), we
obtain

Ξα(B) = (eiα − 1)
(−1)N2−1

N 2
B

∫
dN2

φ̃
(

dN2
ψ dN2 ˜̄ψ

)
e−N tr[ 1

2 B2+iBW ′(φ̃)+ ˜̄ψQW ′(φ̃)]

×N tr(B ˜̄ψ) N tr(Bψ) e−(eiα−1) N tr( ˜̄ψψ), (92)

which is valid for B �= 0. It does not vanish in general by the effect of the twist eiα − 1.
This suggests that the localization is incomplete by the twist. Although we can proceed the
computation further, it is more convenient to invoke another method based on the Nicolai
mapping we will present in the next section.

4. (eiα − 1)-expansion and Nicolai mapping

In the previous section, we have seen that the change of variables is useful to localize the
path integral, but in the α �= 0 case the external field makes the localization incomplete and
the explicit computation somewhat cumbersome. In this section, we instead compute ZM

α in
an expansion with respect to (eiα − 1). For the purpose of examining the spontaneous SUSY
breaking, we are interested in behavior of ZM

α in the α → 0 limit. Thus it is expected that it
will be often sufficient to compute ZM

α in the leading order of the (eiα − 1)-expansion for our
purpose.

4.1 Finite N
Performing the integration over fermions and the auxiliary field B in (50) with W ′(φ) in (40),
we have

ZM
α =

∫
dN2

φ det

(
(eiα − 1)1 ⊗ 1 +

p

∑
k=1

gk

k−1

∑
�=0

φ� ⊗ φp−�−1

)
e−N tr 1

2 W ′(φ)2
. (93)

Hereafter, let us expand this with respect to (eiα − 1) as

ZM
α =

N2

∑
k=0

(eiα − 1)k Zα,k, (94)
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and derive a formula in the leading order of this expansion. The change of variable φ as (77)
recasts (93) to

ZM
α = C̃N

∫ ( N

∏
i=1

dλi

)
�(λ)2

N

∏
i,j=1

(
eiα − 1 +

p

∑
k=1

gk

k−1

∑
�=0

λ�
i λ

p−�−1
j

)
e−N ∑N

i=1
1
2 W ′(λi)

2
, (95)

after the SU(N) angles are integrated out. Crucial observation is that we can apply the Nicolai
mapping (Nicolai, 1979) for each i even in the presence of the external field

Λi = (eiα − 1)λi + W ′(λi), (96)

in terms of which the partition function is basically expressed as an unnormalized expectation
value of the Gaussian matrix model

ZM
α = C̃N

∫ ( N

∏
i=1

dΛi

)
∏
i>j

(Λi − Λj)
2e−N ∑i

1
2 Λ2

i e−N ∑i(−AΛiλi+
1
2 A2λ2

i ), (97)

where A = eiα − 1. However, there is an important difference from the Gaussian matrix
model, which originates from the fact that the Nicolai mapping (96) is not one to one. As
a consequence, λi has several branches as a function of Λi and it has a different expression
according to each of the branches. Therefore, since the last factor of (97) contains λi(Λi),
we have to take account of the branches and divide the integration region of Λi accordingly.
Nevertheless, we can derive a rather simple formula at least in the leading order of the
expansion in terms of A owing to the Nicolai mapping (96). In the following, let us concentrate
on the cases where

Λi → ∞ as λi → ±∞, or Λi → −∞ as λi → ±∞, (98)

i.e. the leading order of W ′(φ) is even. In such cases, we can expect spontaneous SUSY
breaking, in which the leading nontrivial expansion coefficient is relevant since the zeroth
order partition function vanishes: ZM

α=0 = Zα,0 = 0. Namely, in the expansion of the last
factor in (97)

e−N ∑N
i=1(−AΛiλi+

1
2 A2λ2

i ) = 1 − N
N

∑
i=1

(
−AΛiλi +

1
2

A2λ2
i

)
+ · · · , (99)

the first term “1” does not contribute to ZM
α . It can be understood from the fact that it does

not depend on the branches and thus the Nicolai mapping becomes trivial, i.e. The mapping
degree is zero. Notice that the second term also gives a vanishing effect. For each i, we have

the unnormalized expectation value of N
(

AΛiλi − 1
2 A2λ2

i

)
, where the Λj-integrals (j �= i)

are independent of the branches leading to the trivial Nicolai mapping. Thus, in order to get
a nonvanishing result, we need a branch-dependent piece in the integrand for any Λi. This
immediately shows that in the expansion (94), Zα,k = 0 for k = 0, . · · · , N − 1 and that the first
possibly nonvanishing contribution starts from O(AN) as

Zα,N = C̃N NN
∫ ( N

∏
i=1

dΛi

)
∏
i>j

(Λi − Λj)
2 e−N ∑N

i=1
1
2 Λ2

i

N

∏
i=1

(Λiλi)

∣∣∣∣∣∣
A=0

. (100)
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Note that the A(= eiα − 1)-dependence of the integrand comes also from λi as a function of Λi
through (96). Although the integration over Λi above should be divided into the branches, if
we change the integration variables so that we will recover the original λi with A = 0 (which
we call xi) by

Λi = W ′(xi), (101)

then by construction the integration of xi is standard and runs from −∞ to ∞. Therefore, we
arrive at

Zα,N = C̃N NN
∫ ∞

−∞

( N

∏
i=1

dxi

) N

∏
i=1

(
W ′′(xi)W ′(xi)xi

)
∏
i>j

(W ′(xi)− W ′(xj))
2

×e−N ∑N
i=1

1
2 W ′(xi)

2
, (102)

which does not vanish in general. For example, taking W ′(φ) = g(φ2 − μ2) we have for N = 2

Zα,2 = 10g2C̃2 I2
0

[
I4
I0

− 9
5

(
I2
I0

)2
]

, (103)

where
In ≡

∫ ∞

−∞
dλ λn e−g2(λ2−μ2)2

(n = 0, 2, 4, · · · ). (104)

In fact, when g = 1, μ2 = 1 (double-well scalar potential case) we find

I0 = 1.97373,
I4
I0

− 9
5

(
I2
I0

)2
= −0.165492 �= 0, (105)

hence Zα,2 actually does not vanish. In the case of the discretized SUSY quantum mechanics,
we have seen in (35) that the expansion of ZM

α with respect to (eiα − 1) terminates at the linear
order for any T. Thus, the nontrivial O(AN) contribution of higher order can be regarded as
a specific feature of SUSY matrix models.
We stress here that, although we have expanded the partition function in terms of (eiα − 1)
and (102) is the leading order one, it is an exact result of the partition function for any finite
N and any polynomial W ′(φ) of even degree in the presence of the external field. Thus, it
provides a firm ground for discussion of spontaneous SUSY breaking in various settings.

4.2 Large-N
As an application of (102), let us discuss SUSY breaking/restoration in the large-N limit of our
SUSY matrix models. From (102), introducing the eigenvalue density

ρ(x) =
1
N

N

∑
i=1

δ(x − xi) (106)

rewrites the leading O(AN) part of ZM
α as

Zα,N = NN
∫ ( N

∏
i=1

dxi

)
exp(−N2F), (107)

F ≡ −
∫

dx dy ρ(x)ρ(y) log
∣∣W ′(x)− W ′(y)

∣∣+ ∫
dx ρ(x)

1
2

W ′(x)2 − 1
N2 log C̃N

− 1
N

∫
dx ρ(x) log(W ′′(x)W ′(x)x). (108)
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In the large-N limit, ρ(x) is given as a solution to the saddle point equation obtained from
O(N0) part of F as

0 = −
∫

dyρ(y)
W ′′(x)

|W ′(x)− W ′(y)| −
1
2

W ′(x)W ′′(x). (109)

Plugging a solution ρ0(x) into F in (108), we get ZM
α in the large-N limit in the leading order

of (eiα − 1)-expansion as

Zα,N → NN exp(−N2F0),

F0 = −
∫

dx dy ρ0(x)ρ0(y) log
∣∣W ′(x)− W ′(y)

∣∣+ ∫
dx ρ0(x)

1
2

W ′(x)2

− 1
N2 log CN , (110)

where CN is a factor dependent only on N which arises in replacing the integration over φ
by the saddle point of its eigenvalue density, thus including C̃N . From consideration of the
Gaussian matrix model (85), CN is calculated in appendix B in ref. (Kuroki & Sugino, 2010) as

CN = exp
[

3
4

N2 +O(N0)

]
. (111)

In (110) we notice that, if we include O(1/N) part of F (the last term in (108)) in deriving
the saddle point equation, the solution will receive an O(1/N) correction as ρ(x) = ρ0(x) +
1
N ρ1(x). However, when we substitute this into (108), ρ1(x) will contribute to F only by the
order O(1/N2), because O(1/N) corrections to F0 under ρ0(x) → ρ0(x) + 1

N ρ1(x) vanish as
a result of the saddle point equation at the leading order (109) satisfied by ρ0(x).

4.3 Example: SUSY matrix model with double-well potential
For illustration of results in the previous subsection, let us consider the SUSY matrix model
with W ′(φ) = φ2 − μ2. The saddle point equation (109) becomes

−
∫

dy
ρ(y)
x − y

+−
∫

dy
ρ(y)
x + y

= x3 − μ2x. (112)

Let us consider the case μ2 > 0, where the shape of the scalar potential is a double-well
1
2
(

x2 − μ2)2.

4.3.1 Asymmetric one-cut solution
First, we find a solution corresponding to all the eigenvalues located around one of the minima
λ = +

√
μ2. Assuming the support of ρ(x) as x ∈ [a, b] with 0 < a < b, the equation (112) is

valid for x ∈ [a, b].
Following the method in ref. (Brezin et al., 1978), we introduce a holomorphic function

F(z) ≡
∫ b

a
dy

ρ(y)
z − y

, (113)

which satisfies the following properties:

1. F(z) is analytic in z ∈ C except the cut [a, b] .
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2. F(z) is real on z ∈ R outside the cut.
3. For z ∼ ∞,

F(z) = 1
z +O

(
1
z2

)
.

4. For x ∈ [a, b],
F(x ± i0) = F(−x) + x3 − μ2x ∓ iπρ(x).

Note that, if we consider the combination (Eynard & Kristjansen, 1995)

F−(z) ≡ 1
2
(F(z)− F(−z)) , (114)

then the properties of F−(z) are
1. F−(z) is analytic in z ∈ C except the two cuts [a, b] and [−b,−a].
2. F−(z) is odd (F−(−z) = −F−(z)), and real on z ∈ R outside the cuts.
3. For z ∼ ∞,

F−(z) = 1
z +O

(
1
z3

)
.

4. For x ∈ [a, b],
F−(x ± i0) = 1

2
(

x3 − μ2x
)∓ i π

2 ρ(x).
These properties are sufficient to fix the form of F−(z) as

F−(z) =
1
2

(
z3 − μ2z

)
− 1

2
z
√
(z2 − a2)(z2 − b2) (115)

with
a2 = −2 + μ2, b2 = 2 + μ2. (116)

Since a2 should be positive, the solution is valid for μ2 > 2. The eigenvalue distribution is
obtained as

ρ0(x) =
x
π

√
(x2 − a2)(b2 − x2). (117)

From (117), we see that

lim
α→0

(
lim

N→∞

〈
1
N

tr φ

〉
α

)
=

∫ b

a
dx xρ0(x) (118)

is finite and nonsingular, differently from the situation in (19). It can be understood that the
tunneling between separate broken vacua is suppressed by taking the large-N limit, and thus
the superselection rule works. Note that the large-N limit in the matrix models is analogous
to the infinite volume limit or the thermodynamic limit of statistical systems. In fact, this will
play an essential role for restoration of SUSY in the large-N limit of the matrix model with a
double-well potential.
Using (117), we compute the expectation value of 1

N tr B as

lim
α→0

(
lim

N→∞

〈
1
N

tr B
〉

α

)
=

∫ b

a
dx (x2 − μ2)ρ0(x) = 0. (119)

Furthermore, all the expectation values of 1
N tr Bn are proven to vanish:

lim
α→0

(
lim

N→∞

〈
1
N

tr Bn
〉

α

)
= 0 (n = 1, 2, · · · ). (120)

(For a proof, see appendix C in ref. (Kuroki & Sugino, 2010).) Also, the large-N free energy
(110) vanishes. These evidences convince us that the SUSY is restored at infinite N.
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4.3.2 Two-cut solutions
Let us consider configurations that ν+N eigenvalues are located around one minimum λ =

+
√

μ2 of the double-well, and the remaining ν−N(= N − ν+N) eigenvalues are around the
other minimum λ = −√

μ2.
First, we focus on the Z2-symmetric two-cut solution with ν+ = ν− = 1

2 , where the eigenvalue
distribution is supposed to have a Z2-symmetric support Ω = [−b,−a] ∪ [a, b], and ρ(−x) =
ρ(x). The equation (112) is valid for x ∈ Ω. Due to the Z2 symmetry, the holomorphic function
F(z) ≡ ∫

Ω dy ρ(y)
z−y has the same properties as F−(z) in section 4.3.1 except the property 4,

which is now changed to

F(x ± i0) =
1
2

(
x3 − μ2x

)
∓ iπρ(x) for x ∈ Ω. (121)

The solution is given by

F(z) =
1
2

(
z3 − μ2z

)
− 1

2
z
√
(z2 − a2)(z2 − b2), (122)

ρ0(x) =
1

2π
|x|

√
(x2 − a2)(b2 − x2), (123)

where a, b coincide with the values of the one-cut solution (116). It is easy to see that,
concerning Z2-symmetric observables, the expectation values are the same as the expectation
values evaluated under the one-cut solution. In particular, we have the same conclusion for
the expectation values of 1

N tr Bn and the large-N free energy vanishing.
It is somewhat surprising that the end points of the cut a, b and the large-N free energy
coincide with those for the one-cut solution, which is recognized as a new interesting feature
of the supersymmetric models and can be never seen in the case of bosonic double-well matrix
models. In bosonic double-well matrix models, the free energy of the Z2-symmetric two-cut
solution is lower than that of the one-cut solution, and the endpoints of the cuts are different
between the two solutions (Cicuta et al., 1986; Nishimura et al., 2003).
Next, let us consider general Z2-asymmetric two-cut solutions (i.e., general ν±). We can check
that the following solution gives a large-N saddle point:
The eigenvalue distribution ρ0(x) has the cut Ω = [−b,−a] ∪ [a, b] with a, b given by (116):

ρ0(x) =
{ ν+

π x
√
(x2 − a2)(b2 − x2) (a < x < b)

ν−
π |x|√(x2 − a2)(b2 − x2) (−b < x < −a).

(124)

This is a general supersymmetric solution including the one-cut and Z2-symmetric two-cut
solutions. The expectation values of Z2-even observables under this saddle point coincide
with those under the one-cut solution, and the expectation values of 1

N tr Bn and the large-N
free energy vanish, again. Thus, we can conclude that the SUSY matrix model with
the double-well potential has an infinitely many degenerate supersymmetric saddle points
parametrized by (ν+, ν−) at large N for the case μ2 > 2.

4.3.3 Symmetric one-cut solution
Here we obtain a one-cut solution with a symmetric support [−c, c]. As before, let us consider
a complex function

G(z) ≡
∫ c

−c
dy

ρ(y)
z − y

, (125)
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and further define
G−(z) ≡ 1

2
(G(z)− G(−z)). (126)

Then G−(z) has following properties:

1. G−(z) is odd, analytic in z ∈ C except the cut [−c, c].

2. G−(x) ∈ R for x ∈ R and x /∈ [−c, c].

3. G−(z) → 1
z +O( 1

z3 ) as z → ∞.

4. G−(x ± i0) = 1
2 (x2 − μ2)x ∓ iπρ(x) for x ∈ [−c, c].

They lead us to deduce

G−(z) =
1
2
(z2 − μ2)z − 1

2

(
z2 − μ2 +

c2

2

)√
z2 − c2 (127)

with

c2 =
2
3

(
μ2 +

√
μ4 + 12

)
, (128)

from which we find that

ρ0(x) =
1

2π

(
x2 − μ2 +

c2

2

)√
c2 − x2, x ∈ [−c, c]. (129)

The condition ρ0(x) ≥ 0 tells us that this solution is valid for μ2 ≤ 2, which is indeed the
complement of the region of μ2 where both the two-cut solution and the asymmetric one-cut
solution exist. (129) is valid also for μ2 < 0. Given ρ0(x), it is straightforward to calculate the
large-N free energy as

F0 =
1
3

μ4 − 1
216

μ8 − 1
216

(μ6 + 30μ2)
√

μ4 + 12 − log(μ2 +
√

μ4 + 12) + log 6, (130)

which is positive for μ2 < 2. Also, the expectation value of 1
N tr B is computed to be

〈
1
N

tr B
〉

= −i

[
c4

16
(c2 − μ2)− μ2

]
�= 0 for μ2 < 2. (131)

These are strong evidence suggesting the spontaneous SUSY breaking. Also, the
μ2-derivatives of the free energy,

lim
μ2→2−0

F0 = lim
μ2→2−0

dF0

d(μ2)
= lim

μ2→2−0

d2F0

d(μ2)2 = 0, lim
μ2→2−0

d3F0

d(μ2)3 = −1
2

, (132)

show that the transition between the SUSY phase (μ2 ≥ 2) and the SUSY broken phase (μ2 <
2) is of the third order.
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5. Summary and discussion

In this chapter, firstly we discussed spontaneous SUSY breaking in the (discretized) quantum
mechanics. The twist α, playing a role of the external field, was introduced to detect the
SUSY breaking, as well as to regularize the supersymmetric partition function (essentially
equivalent to the Witten index) which becomes zero when the SUSY is broken. Differently
from spontaneous breaking of ordinary (bosonic) symmetry, SUSY breaking does not require
cooperative phenomena and can take place even in the discretized quantum mechanics
with a finite number of discretized time steps. There is such a possibility, when the
supersymmetric partition function vanishes. In general, some non-analytic behavior is
necessary for spontaneous symmetry breaking to take place. For SUSY breaking in the finite
system, it can be understood that the non-analyticity comes from the vanishing partition
function.
Secondly we discussed localization in SUSY matrix models without the external field. The
formula of the partition function was obtained, which is given by the N-th power of the
localization formula in the N = 1 case (N is the rank of matrix variables). It can be
regarded as a matrix-model generalization of the ordinary localization formula. In terms of
eigenvalues, localization attracts them to the critical points of superpotential, while the square
of the Vandermonde determinant originating from the measure factor gives repulsive force
among them. Thus, the dynamics of the eigenvalues is governed by balance of the attractive
force from the localization and the repulsive force from the Vandermonde determinant.
It is a new feature specific to SUSY matrix models, not seen in the (discretized) SUSY
quantum mechanics. For a general superpotential which has K critical points, contribution
to the partition function from νI N eigenvalues fluctuating around the I-th critical point
(I = 1, · · · , K), denoted by Z(ν1,··· ,νK), was shown to be equal to the products of the partition
functions of the Gaussian SUSY matrix models ZG,ν1 · · · ZG,νK . Here, ZG,νI is the partition
function of the Gaussian SUSY matrix model with the rank of matrix variables being νI N,
which describes Gaussian fluctuations around the I-th critical point. It is interesting to
investigate whether such a factorization occurs also for various expectation values.
Thirdly, the argument of the change of variables leading to localization can be applied to
α �= 0 case. Then, we found that α-dependent terms in the action explicitly break SUSY and
makes localization incomplete. Instead of it, the Nicolai mapping, which is also applicable
to the α �= 0 case, is more convenient for actual calculation in SUSY matrix models. In the
case that the supersymmetric partition function (the partition function with α = 0) vanishes,
we obtained an exact result of a leading nontrivial contribution to the partition function with
α �= 0 in the expansion of (eiα − 1) for finite N. It will play a crucial role to compute various
correlators when SUSY is spontaneously broken. Large-N solutions for the double-well case
W ′(φ) = φ2 − μ2 were derived, and it was found that there is a phase transition between the
SUSY phase corresponding to μ2 ≥ 2 and the SUSY broken phase to μ2 < 2. It was shown to
be of the third order.
For future directions, this kind of argument can be expected to be useful to investigate
localization in various lattice models for supersymmetric field theories which realize some
SUSYs on the lattice. Also, it will be interesting to investigate localization in models
constructed in ref. (Kuroki & Sugino, 2008), which couple a supersymmetric quantum field
theory to a certain large-N matrix model and cause spontaneous SUSY breaking at large N.
Finally, we hope that similar analysis for super Yang-Mills matrix models (Banks et al., 1997;
Dijkgraaf et al., 1997; Ishibashi et al., 1997), which have been proposed as nonperturbative
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definitions of superstring/M theories, will shed light on new aspects of spontaneous SUSY
breaking in superstring/M theories.
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1. Introduction 

We perform a critical analysis of some quantum mechanical models such as the 
hydrodynamic model (Madelung’s model), de Broglie’s theory of double solution etc., 
specifying both mathematical and physical inconsistencies that occur in their construction. 
These inconsistencies are eliminated by means of the fractal approximation of motion 
(physical objects moving on continuous and non-differentiable curves, i.e. fractal curves) 
developed in the framework of Scale Relativity (SR) (Nottalle, L., 1993; Chaline, J. et al, 2009; 
Chaline, J. et al, 2000; Nottale, L., 2004; Nottale, L. & Schneider J., 1984; Nottale, L., 1989; 
Nottale, L., 1996). The following original results are obtained: i) separation of the physical 
motion of objects in wave and particle components depending on the scale of resolution 
(differentiable as waves and non-differentiable as particles) - see paragraphs  5-7; ii) solidar 
motion of the wave and particle (wave-particle duality) - see paragraph 8, the mechanisms 
of duality (in phase wave-particle coherence, paragraphs 9 and 10 and wave-particle 
incoherence, see paragraph 11); iii) the particle as a clock, its incorporation into the wave 
and the implications of such a process - see paragraphs 12 and 13; iv) Lorentz-type 
mechanisms of wave-particle duality - see paragraph 14. 
The original results of this work are published in references (Harabagiu A. et al , 2010; 
Agop, M. et al, 2008; Harabagiu, A. & Agop, M., 2005;Harabagiu, A. et al, 2009; Agop, M. et 
al, 2008). Explicitely, Eulerian’s approximation of motions on fractal curves is presented in 
(Agop, M. et al, 2008), the hydrodynamic model in a second order approximation of motion 
in (Harabagiu, A. & Agop, M., 2005), wave-particle duality for „coherent” fractal fluids with 
the explanation of the potential gap in (Harabagiu, A. et al, 2009), the physical self-
consistence of wave-particle duality in various approximations of motion and for various 
fractal curves in (Agop, M. et al, 2008). A unitary treatment of both the problems listed 
above and their various mathematical and physical extensions are developed in (Harabagiu 
A. et al , 2010). 

2. Hydrodynamic model of quantum mechanics (Madelung’s model) 

Quantum mechanics is substantiated by the Schrődinger wave equation (Ţiţeica, S., 1984; 
Felsager, B., 1981; Peres, A., 1993; Sakurai J.J. & San Fu Taun, 1994) 
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2

02
i U

t m


   


  (1) 

where   is the reduced Planck’s constant, 0m  the rest mass of the test particle, U the 
external scalar field and   the wave-function associated to the physical system. This 
differential equation is linear and complex. 
Starting from this equation, Madelung (Halbwacs, F., 1960; Madelung R., 1927) constructed 
the following model. One separates real and imaginary parts by choosing   of the form: 

      ,, , iS tt R t e  rr r  (2) 

which induces the velocity field:  

 
0

S
m

 v   (3) 

and the density of the probability field: 

 2( , ) ( , )t R t r r  (4) 

Using these fields one gets the hydrodynamic version of quantum mechanics (Madelung’s 
model) 

 0 0( ) ( ) ( )m m U Q
t

  
     


v vv  (5) 

   0
t
 
  


v  (6) 

where 

 
2

02
Q

m




 

  (7) 

is called the quantum potential. Equation (5) corresponds to the momentum conservation 
law and equation (6) to the conservation law of the probability’s density field (quantum 
hydrodynamics equations). 
We have the following: i) any micro-particle is in constant interaction with an environment 
called „subquantic medium” through the quantum potential Q, ii) the „subquantic 
medium” is identified with a nonrelativistic quantum fluid described by the equations of 
quantum hydrodynamics. In other words, the propagation of the Ψ field from wave 
mechanics is replaced by a fictitious fluid flow having the density   and the speed v , the 
fluid being in a field of forces ( )U Q  . Moreover, the following model of particle states 
(Bohm D. & Hiley B.J., 1993; Dϋrr D. et al,1992; Holland P.R., 1993; Albert D.Z., 1994; Berndl 
K. et al, 1993; Berndl K. et al, 1994; Bell J.S., 1987; Dϋrr D. et al, 1993): Madelung type fluid in 
„interaction” with its own „shell” (there is no space limitation of the fluid, though of the 
particle).  
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3. DeBroglie’s theory of double solution. The need for introducing the model of Bohm 
and Vigier 

One of the key observations that de Broglie left in the development of quantum mechanics, 
is the difference between the relativistic transformation of the frequency of a wave and that 
of a clock’s frequency (de Broglie L., 1956; de Broglie L., 1957; de Broglie L., 1959; de Broglie 
L., 1963; de Broglie L., 1964; de Broglie L., 1980). It is well known that, if 0  is the frequency 
of a clock in its own framework, the frequency confered by an observer who sees it passing 
with the speed v c  is   

2
0 1c    . 

This is what is called the phenomenon of “slowing down of horologes”. This phenomenon 
takes place due to the relative motion of horologes. On the contrary, if a wave within a 
certain reference system is a stationary one, with frequency 0  and is noticed in a reference 
system animated with speed v c , as compared with the first one, it will appear as a 
progressive wave that propagates in the sense of the relative motion, with frequency 

0
21







 

and with the phase speed 

2c c
V

v
  . 

If the corpuscle, according to relation W = hv, is given an internal frequency  

2

0
om c
h

   

and if we admit that within the appropriate system of the corpuscle the associated wave is a 
stationary one, with frequency 0 , all the fundamental relations of undulatory mechanics 

and in particular h
p

  , in which p is the impulse of the corpuscle, are immediately 

obtained from the previous relations. 
Since de Broglie considers that the corpuscle is constantly located in the wave, he notices the 
following consequence: the motion of the corpuscle has such a nature that it ensures the 
permanent concordance between the phase of the surrounding wave and the internal phase 
of the corpuscle considered as a small horologe. This relation can be immediately verified in 
the simple case of a corpuscle in uniform motion, accompanied by a monochromatic plain 
wave. Thus, when the wave has the general form 

 2 , , ,
( , , , )

i
x y z t

hA x y z t e



   

in which A and Φ are real, the phase concordance between the corpuscle and its wave 
requires that the speed of the corpuscle in each point of its trajectory be given by the relation  
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0

1
m

  v  

Nevertheless it was not enough to superpose the corpuscle with the wave, imposing it to be 
guided by the propagation of the wave: the corpuscle had to be represented as being 
incorporated in the wave, i.e. as being a part of the structure of the wave. De Broglie was thus 
directed to what he himself called the theory of “double solution”. This theory admits that the 
real wave is not a homogeneous one, that it has a very small area of high concentration of the 
field that represents the corpuscle and that, besides this very small area, the wave appreciably 
coincides with the homogeneous wave as formulated by the usual undulatory mechanics.  
The phenomenon of guiding the particle by the surrounding undulatory field results from 
the fact that the equations of the field are not linear ones and that this lack of linearity, that 
almost exclusively shows itself  in the corpuscular area, solidarizes the motion of the particle 
with the propagation of the surrounding wave (de Broglie L., 1963; de Broglie L., 1964; de 
Broglie L., 1980). 
Nevertheless there is a consequence of “guidance” upon which we should insist. Even if a 
particle is not submitted to any external field, if the wave that surrounds it is not an appreciably 
plain and monochromatic one (therefore if this wave has to be represented through a 
superposition of monochromatic plain waves) the motion that the guidance formula imposes is 
not rectilinear and uniform. The corpuscle is subjected by the surrounding wave, to a force that 
curves its trajectory: this “quantum force” equals the gradient with the changed sign of the 
quantum potential Q given by (7). Therefore, the uniform motion of the wave has to be 
superposed with a “Brownian” motion having random character that is specific to the corpuscle.  
Under the influence of Q, the corpuscle, instead of uniformly following one of the trajectories 
that are defined by the guidance law, constantly jumps from one of these trajectories to 
another, thus passing in a very short period of time, a considerably big number of sections 
within these trajectories and, while the wave remains isolated in a finite area of the space, this 
zigzag trajectory hurries to explore completely all this region. In this manner, one can justify 
that the probability of the particle to be present in a volume element d  of the physical space 
is equal to 2 d . This is what Bohm and Vigier did in their statement:  therefore they 
showed that the probability of repartition in 2  must take place very quickly. The success of 
this demonstration must be correlated with the characteristics if “Markov’s chains.”(Bohm, D., 
1952; Bohm D. & Hiley B.J., 1993; Bohm D., 1952; Bohm D., 1953).  

4. Comments 

In his attempt to built the theory of the double solution, de Broglie admits certain assertions 
(de Broglie L., 1956; de Broglie L., 1957; de Broglie L., 1959; de Broglie L., 1963; de Broglie L., 
1964; de Broglie L., 1980):  
i. the frequency of the corpuscle that is assimilated to a small horologe must be identified 

with the frequency of the associated progressive wave;  
ii. the coherence of the inner phase of the corpuscle-horologe with the phase of the 

associated wave;  
iii. the corpuscle must be “incorporated” into the progressive associated wave through the 

“singularity” state. Thus, the motion of the corpuscle “solidarizes” with the propagation 
of the associated progressive wave. Nevertheless, once we admit these statements, de 
Broglie’s theory does not answer a series of problems, such as, for example:  
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1. What are the mechanisms through which either the undulatory feature or the 
corpuscular one impose, either both of them in the stationary case as well as in the 
non stationary one?;  

2. The limits in the wave-corpuscle system of the corpuscular component as well as 
the undulatory one and their correspondence;  

3. How is the “solidarity” between the motion of the corpuscle and the one of the 
associated progressive wave naturally induced?  

iv. What are the consequences of this “solidarity”? And we could continue … . Moreover, 
Madelung’s theory (Halbwacs, F., 1960; Madelung R., 1927) brings new problems. How 
can we built a pattern of a corpuscle (framework + Madelung liquid) endlessly 
extended in space? 
Here are some of the “drawbacks” of the patterns in paragraphs 2 and 3 which we shall 
analyze and remove by means of introducing the fractal approximation of the motion. 

5. The motion equation of the physical object in the fractal approximation of motion. 
The Eulerian separation of motion on resolution scales 

The fractal approximation of motion refers to the movement of physical objects (wave + 
corpuscle) on continuous and non differentiable curves (fractal curves). This approximation 
is based on the scale Relativity theory (RS) (Nottalle, L., 1993; Chaline, J. et al, 2009; Chaline, 
J. et al, 2000; Nottale, L., 2004, Nottale, L. & Schneider J., 1984; Nottale, L., 1989; Nottale, L., 
1996). Thus, the fractal differential operator can be introduced  

 
 2/ 12ˆ ˆ

2

FDd dt
i

dt t

 

         
V   (8) 

where V̂  is the complex speed field 

 ˆ iV = V- U   (9) 

λ is the scale length, dt is the temporary resolution scale,   is the specific time to fractal-non 
fractal transition, and DF is the arbitrary and constant fractal dimension. Regarding the 
fractal dimension, we can use any of Hausdorff-Bezicovici, Minkowski-Bouligand or 
Kolmogoroff dimensions, etc. (Budei, L., 2000; Barnsley, M., 1988; Le Mehante A., 1990; 
Heck, A. & Perdang, J.M., 1991; Feder, J. & Aharony, A., 1990; Berge, P. et al, 1984; Gouyet 
J.F., 1992; El Naschie, M.S. et al, 1995; Weibel, P. et al, 2005; Nelson, E., 1985; Nottalle, L., 
1993; Chaline, J. et al, 2009; Chaline, J. et al, 2000; Nottale, L., 2004; Agop, M. et al, 2009). The 
only restriction refers to the maintaining of the same type of fractal dimension during the 
dynamic analysis. The real part of the speed field V  is differentiable and independent as 
compared with the resolution scale, while the imaginary scale U  is non differentiable 
(fractal) and depends on the resolution scale. 
Now we can apply the principle of scale covariance by substituting the standard time 
derivate (d/dt) with the complex operator d /dt . Accordingly, the equation of fractal 
space-time geodesics (the motion equation in second order approximation, where second 
order derivates are used) in a covariant form: 

 
 2/ 12

2
ˆ ˆ ˆ ˆ ˆ 0

2

FDd dt
i

dt t

 

          

V V V V V  (10) 
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This means that the sum of the local acceleration ˆ t V , convection ˆ ˆV V  and 
”dissipation” 2 ˆ V  reciprocally compensate in any point of the arbitrarily fractal chosen 
trajectory of a physical object.  
Formally, (10) is a Navier-Stokes type equation, with an imaginary viscosity coefficient, 

 
 2/ 12

2

FDdt
i

 


   
 

 (11) 

This coefficient depends on two temporary scales, as well as on a length scale. The existence 
of a pure imaginary structured coefficient specifies the fact that “the environment” has 
rheological features (viscoelastic and hysteretic ones (Chioroiu, V. et al, 2005; Ferry, D. K. & 
Goodnick, S. M., 2001; Imry, Y., 2002)). 
For 

 
 2/ 12

0
2

FDdt
 


   
 

 (12) 

equation (10) reduces to Euclidian form (Harabagiu A. et al , 2010; Agop, M. et al, 2008): 

 
ˆ ˆ ˆ 0
  

t
V V V  (13) 

and, hence, separating the real part from the imaginary one 

 
0

0

t

t


    




    


V V V U U

U U V V U
 (14a,b) 

Equation (14a) corresponds to the law of the impulse conservation at differentiable scale (the 
undulatory component), while (14b) corresponds to the same law, but at a non differentiable 
scale (corpuscular component). As we will later show, in the case of irotational movements 
(14) it will be assimilated to the law of mass conservation. 

6. Rotational motions and flow regimes of a fractal fluid 

For rotational motions, ˆ 0 V  relation (10) with (9) through separating the real part from 
the imaginary one, i.e. through separating the motions at a differential scale (undulatory 
characteristic) and non differential one (corpuscular characteristic), results (Harabagiu A. et 
al , 2010) 

 

 

 

2/ 12

2/ 12

0
2

0
2

F

F

D

D

dt
t

dt
t


 


 





           

           

V V U U

U U V V U

V U

V

 (15a,b) 

According to the operator relations 
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2

2

( )
2

( )
2

( ) ( ) ( )

 
       

 
 

       
 

           

VV V V V

UU U U U

U V V U U V V U U V

 (16a-c) 

equations (15) take equivalent forms 

 

 

 
 

dt
t

dt
t

2/ 12 2 2

2/ 12

( ) ( ) 0
2 2 2

( ) ( ) 0
2

F

F

D

D


 


 





                     

               

V V U V V U U U

U V U V U U V V

 (17a,b) 

We can now characterize the flow regimes of the fractal fluid at different scales, using some 
classes of Reynolds numbers. At a differential scale we have  

 
2 2

( ) ( )
V V V l

R differential nondifferential R D N
D U DUL


    


 (18) 

 ( ) ( )
U U Ul

R nondifferential nondifferential R N N
D U D


    


 (19) 

with 

 
 2/ 12

2

FDdt
D


 


   
 

 (20) 

and at  nondifferential scale 

R (differential-non differential-differential transition) = R(TDN-D)
U V UL
D V D


 


 (21) 

R (non differential-differential-differential transition) = R(TND-D)
2V U UL

D V Dl


 


 (22) 

In previous relations V, L, D, are the specific parameters, while U, l, D are the parameters of 
the non differential scale. The parameters V, U are specific speeds, L, l specific lengths and D 
is a viscosity coefficient. Moreover, the common “element” for R(D-N), R(N-N), R(TDN-D) 
and R(TND-D) is the ”viscosity” which, through (20) is imposed by the resolution scale. 
Equations (15) are simplified in the case of the stationary motion for small Reynolds 
numbers. Thus, equation (15) for small R (D-N) becomes 

 
 dt 2/ 12

0
2

FD
 


      
 

U U U  (23) 
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and for small R(N-N)  

 
 

dt
2/ 1

2
0

2

DF


 



      
 

V V U  (24) 

Equation (15b) for small R(TDN-D) takes the form 

 

 

dt
2/ 1

2
0

2

DF


 



     
 

V U V  (25) 

and for small R(TND-D)  

 
 

dt
2/ 1

2
0

2

DF


 



     
 

U V V  (26) 

7. Irotational motions of a fractal fluid. The incorporation of the associate wave 
corpuscle through the solidarity of movements and generation of Schrodinger 
equation 

For irotational motions 

 ˆ 0 V  (27) 

which implies 

 0, 0   V U  (28 a,b) 

equation (10) (condition of solidarity of movements) becomes (Harabagiu A. et al , 2010) 

 
 2/ 12 2

0
2 2

FDdt
i

t

 

              

V V V  (29) 

Since through (27) the complex speed field is expressed by means of a scalar function 
gradient , 

 ˆ  V  (30) 

equation (29) taking into account the operator identities 

 ,
t t
 
     

 
 (31) 

takes the form 

  
 

i
2/ 12

21 0
2 2

FDdt
t


 

              
 (32) 
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or furthermore, through integration 

  
 

 
2/ 12

21
2 2

FDdt
i F t

t

 

         
 (33) 

where F(t)  is an arbitrary function depending only on time. 
In particular, for  having the form 

 
 2/ 12

2 ln
2

FDdt
i

 


     
 

 (34) 

where  is a new complex scalar function, equation  (46), with the operator identity 

  2ln ln
     


 (35) 

takes the form : 

 
     4/ 2 2/ 14 2

2 0
2 24

F FD D F tdt dt
i

t
 

  

                
 (36) 

The Schrodinger “geodesics” can be obtained as a particular case of equation (36), based on 
the following hypothesis (conditions of solidarity of the motion, incorporating the 
associated wave corpuscle):  
i. the motions of the micro-particles take place on fractal curves with the fractal 

dimension DF=2, i.e. the Peano curves (Nottalle, L., 1993; Nottale, L., 2004);  
ii. id  are the Markov-Wiener type stochastic variables (Nottalle, L., 1993; Nottale, L., 

2004) that satisfy the rule 

 
2

i l ild d dt
  
     (37) 

iii. space scale  and temporary one are specific for the Compton scale 

 2
0 0

,
m c m c

  
   (38) 

with m0 the rest mass of the microparticle, c the speed of light in vacuum and   the 
reduced Planck constant. The parameters (38) should not be understood as “structures” 
of the standard space-time, but as standards of scale space-time; iv) function F(t) from 
(36) is null. Under these circumstances, (36) is reduced to the standard form of 
Schrodinger’s equation (Ţiţeica, S., 1984; Peres, A., 1993) 

 
2

0
0

2
i

m t


  


   (39) 

In such a context, the scale potential of the complex speeds plays the role of the wave 
function. 
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8. Extended hydrodynamic model of scale relativity and incorporation of associated 
wave corpuscle through fractal potential. The correspondence with Madelung model 

Substituting the complex speed (9) with the restriction (27) and separating the real part with 
the imaginary one, we obtain the set of differential equations (Harabagiu A. et al , 2010) 

 
 
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FD

m m
t

dt
t


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

 
       

          

V V

U V U V

 (40a,b) 

where Q is the fractal potential, expressed as follows 
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FDm m dt
Q


 


      
 

U U  (41) 

For 

 iSe   (42) 

with   an amplitude and S a phase, then (34) under the form 
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 
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
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implies the complex speed fields of components 
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F FD Ddt dt
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  
   

 
         
   

V U  (43a,b) 

From the perspective of equations (43), the equation (40) keeps its form, and the fractal 
potential is given by the simple expression 

 
 2/ 12

0

FDdt
Q m


  

     
 

 (44) 

Again through equations (43), equation (40b) takes the form: 

ln ln 0
t
          

V V  

or, still, through integration with 0   

    T t
t
 
  


V  (45) 
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with T(t), an exclusively time dependent function 
Equation (40) corresponds to the impulse conservation law at differential scale (the classical 
one), while the impulse conservation law at non differential scale is expressed through (45) 
with   0T t  , as a probability density conservation law 
Therefore, equations 
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t

t
 
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
   



VV V

V

 (46a,b) 

with Q given by (41) or (44) forms the set of equations of scale relativity extended 
hydrodynamics in fractal dimension DF. We mention that in references (Nottalle, L., 1993; 
Chaline, J. et al, 2009; Chaline, J. et al, 2000; Nottale, L., 2004) the model has been extended 
only for DF=2. The fractal potential (41) or (44) is induced by the non differentiability of 
space-time. 
In an external scalar field U, the system of equations (46) modifies as follows 
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
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

VV
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 (47a,b) 

Now the quantum mechanics in hydrodynamic formula (Madelung’s model (Halbwacs, F., 
1960)) is obtained as a particular case of relations (47), using the following hypothesis: i) the 
motion of the micro-particles takes place on Peano curves with DF=2; ii) id   are the 
Markov-Wiener variables (Nottalle, L., 1993; Chaline, J. et al, 2009; Chaline, J. et al, 2000; 
Nottale, L., 2004); iii) the time space scale is a Compton one. Then, (38) have the expressions 

 
0 0
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2

S
m m

   
 V U  (48) 

and (41), 

 
2

0
2 2

m
Q     

U U  (49) 

9. “Mechanisms” of duality through coherence in corpuscle-wave phase 

In the stationary case, the system of equations (46) becomes (Harabagiu A. et al , 2010) 
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 (50a,b) 

or, still, through integration 
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.

Q E const

const
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

V

V
 (51a,b) 

Let us choose the null power density in (51b). Then there is no impulse transport at 
differential scale between corpuscle and wave. Moreover, for 0   

 0V  (52) 

which implies through relation (43) 

 .S const  (53) 

In other words, the fluid becomes coherent (the fluid particles have the same phase). Such a 
state is specific for quantum fluids (Ciuti C. & Camsotto I., 2005; Benoit Deveand, 2007), 
such as superconductors, superfluids, etc. (Felsager, B., 1981; Poole, C. P. et al, 1995). Under 
such circumstances, the phase of the corpuscle considered as a small horologe equals the 
phase of the associated wave (coherence in corpuscle-wave phase). 
At non-differential scale, equation (51) , with restriction (52) takes the form 
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 

U U
 (54 a,b) 

or, still, by applying the gradient operator 

 ( ) A  (55) 

 2
0

0
2

E
m D

  A A  (56) 

We distinguish the following situations 
i. For E>0 and with substitution 

 2 2
0

1
2

E
m D




 (57) 

equation (56) becomes 

 2
1 0  


A A  (58) 

Therefore:  
1. the space oscillations of field A and, therefore the space associated with the motion 

of coherent fluid particles is endowed with regular non homogeneities (of lattice 
type). In other words, the field A crystallizes (“periodicizes”) the space. The one 
dimensional space “crystal” has the constant of the network  
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 (59) 

that depends both on the “viscosity” – iη given by (11) and on the energy of the 
particle;  

2. the one dimensional geodesics of the “crystallized” space given by the expression 

 2 2( ) sin ( )x A kx    (60) 

implies both fractal speed 

 ln 2 ( )x
d

U D Dkctg kx
dx
     (61) 

and fractal potential  
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 (62) 

with A and  and the integration constants 

 1
k 


 (63) 

3. for the movements of microparticles on Peano curves (DF=2) at Compton scale 

0D 2m   , 

therefore, through (62) under the form 

 
2

2 2
0 0

0
2 ,    2

2
x

x x
p

Q m D k p m Dk
m

    (64a,b) 

de Broglie “quantum” impulse is found 

 xp 

  (65) 

4. the dominant of the undulatory characteristic is achieved by the “self diffraction” 
mechanism of the fractal field, ρ, on the one dimensional space “crystal” of 
constant Λ induced by the same field. Indeed, relation (61) with notations  

 1   ,     kx k   


 (66a,b) 

in approximation «1 , i.e. for sintg    and using Nottale’s relation (Nottalle, L., 
1993; Chaline, J. et al, 2009; Chaline, J. et al, 2000; Nottale, L., 2004; Nottale, L. & 
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Schneider J., 1984; Nottale, L., 1989; Nottale, L., 1996) 2 / xD U n  it takes the 
common form (Bragg’s relation) 

 sin ;n    (67) 

This result is in concordance with the recently expressed opinion in (Mandelis A. et 
al, 2001; Grössing G., 2008; Mandelis A., 2000);  

5. there is impulse transfer on the fractal field between the corpuscle and the wave;  
6. according to Taylor’s criterion (Popescu, S., 2004) self-organization (crystallization 

and self diffraction of the space) appears when the energy of the system is minimal. 
This can be immediately verified using relation (51a); 

ii. For E=0, equations (51a) and (56) have the same form 

 =0  0  A  (68) 

It follows that:  
1. the geodesics are expressed through harmonic functions and the particle finds itself 

in a critical state, i.e. the one that corresponds to the wave-corpuscle transition;  
2. in the one –dimensional case, the geodesics have the form 

 ( )x kx    (69) 

which induces the fractal speed field 

 x
D

U
kx 




 (70) 

namely the null value of the fractal potential 
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2 2
0 0
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2 2x

m mD D
Q

kx kx 
   

 
 (71) 

3. although the energy is null, there is impulse transfer between corpuscle and wave 
on the fractal component of the speed field 

iii. For E<0 and with notations 

 2 2
0

1 ,   
2

E
E E

m D
  


 (72) 

equation (56) takes the form  

 2
1 0  


A A  (73) 

The following aspects result:  
1. field A is expelled from the structure, its penetration depth being 
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2. the one-dimensional geodesics of the space are described through function 

 2 2( ) ( )x A sh kx    (75) 

and lead to the fractal speed 

 2 ( )xU Dkcth kx    (76) 

the fractal potential respectively 
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( )x
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Q m D k cth kx m D m D k
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

 (77) 

where ,   A  are two integration constants and 

 

1
k 


 (78) 

3. the dominant of the corpuscular characteristic is accomplished by means of “self-
expulsion” mechanism of the fractal field from its own structure that it generates 
(that is the corpuscle), the penetration depth being  . The identification 

 
2

2 2
0

0
2

2x
p

Q m D k
m

    (79) 

implies the purely imaginary impulse 

 02p im Dk   (80) 

that suggests ultra rapid virtual states (ultra rapid motions in the wave field, 
resulting in the “singularity“of the field, i.e. the corpuscle). As a matter of fact, if 
we consider de Broglie’s original theory (motions on Peano curves with DF=2, at 
Compton’s scale), singularity (the corpuscle) moves “suddenly” and chaotically in 
the wave field, the wave-corpuscle coupling being accomplished through the 
fractal potential. The corpuscle “tunnels” the potential barrier imposed by the field 
of the associate progressive wave, generating particle-antiparticle type pairs (ghost 
type fields (Bittner E.R., 2000)). Nevertheless this model cannot specify the type of 
the physical process by means of which we reach such a situation: it is only the 
second quantification that can do this (Ciuti C. & Camsotto I., 2005; Benoit 
Deveand Ed., 2007; Mandelis A. et al, 2001; Grössing G., 2008; Mandelis A., 2000; 
Bittner E.R., 2000);  

4. there is an impulse transfer between the corpuscle and the wave on the fractal 
component of the speed field, so that all the attributes of the differential speed 
could be transferred on the fractal speed.  
All the above results indicate that wave-particle duality is an intrinsic property of 
space and not of the particle. 
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10. Wave-corpuscle duality through flowing stationary regimes of a coherent fractal 
fluid in phase. The potential well 

According to the previous paragraph, let us study the particle in a potential well with 
infinite width and walls. Then the speed complex field has the form (Harabagiu A. et al, 
2010; Agop, M. et al, 2008; Harabagiu, A. & Agop, M., 2005; Harabagiu, A. et al, 2009) 

 ˆ 0 2x x x
n n

V V iU iD ctg x
a a
           

   
 (81) 

and generates the fractal potential (the energy of the structure) under the form of the 
noticeable 

 
2

2
02n n

n
Q m D E

a
   

 
 (82) 

The last relation (82) allows the implementation of Reynold’s criterion 

  
1
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22 ,    c n
c

V a E
R n n V

D m


 
    

 
 (83a,b) 

For movements on Peano curves (DF=2) at Compton scale 0(2 )m D   (83) with substitutions 

 0 ,    c xm V P a x     (84a,b) 

and n=1 reduces to Heinsenberg’s relation of uncertainty under equal form 

 
2x
h

p x    (85) 

while for n   it implies a Ruelle-Takens’ type criterion of evolution towards chaos 
(Ruelle D. & Takens, F., 1971; Ruelle, D., 1975). Therefore, the wave-corpuscle duality is 
accomplished through the flowing regimes of a fractal fluid that is coherent in phase. Thus, 
the laminar flow (small n) induces a dominant ondulatory characteristic, while the turbulent 
flow (big n) induces a dominant corpuscular characteristic.  

11. Wave-corpuscle duality through non-stationary regimes of an incoherent fractal 
fluid 

In the one dimensional case the equations of hydrodynamics (46) take the form 

    
2

2 1/2
0 0 1/2 2

12m ; 0V V
m V D V

t x x t xx
 



                       
 (86a,b) 

Imposing the initial conditions 
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and on the frontier  

  ,
( , ) ( , ) 0

V x ct t c

x t x t 
 

     
 (88a,b) 

the solutions of the system (86), using the method in (Munceleanu, C.V. et al, 2010), have the 
expressions 
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 (89a,b) 

The complex speed field is obtained 
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 (90) 

and the field of fractal forces  
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 (91) 

Therefore:  
i. both differential scale speed V and non-differential one U are not homogeneous in x 

and t. Under the action of fractal force F, the corpuscle is assimilated to the wave, is a 
part of its structure, so that it joins the movement of the corpuscle with the propagation 
of the associated progressive wave;  

ii. the timing of the movements at the two scales, V=U implies the space-time 
homographic dependence 

 
2 2

2

21

22 1

D
tc

x
DD t

 







 (92) 

in the field of forces  
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 (93) 

Considering that the type (92) changes are implied in gravitational interaction (Ernst, 
F.J., 1968; Ernst, F.J., 1971), it follows that the solidarity of the corpuscle movement with 
the movement of the associated progressive wave is accomplished by means of the 
appropriate gravitational field of the physical object;  

iii. the uniform movement V=c is obtained for null fractal force F=0 and fractal speed U=0, 
using condition x=ct. The fractal forces in the semi space. x x    and x x    
are reciprocally compensated. 

x
xF F 

   

This means that the corpuscle in “free” motion simultaneously polarizes the 
“environment” of the wave behind x ct  and in front of x ct , in such a manner that 
the resulting force has a symmetrical distribution as compared with the plane that 
contains the position of the noticeable object x ct  at any time moment t. Under such 
circumstances, the physical object uniformly moves (the corpuscle is located in the field 
of the associated wave). 

12. The corpuscle as a horologe and its incorporation in the associated wave. 
Consequences 

According to de Broglie’s theory, the corpuscle must be associated to a horologe having the 
frequency equal to that of the associated progressive wave. Mathematically we can describe 
such an oscillator through the differential equation 

 2 0q q   (94) 

where ω defines the natural frequency of the oscillator as it is dictated by the environment (the 
wave), and the point above the symbol referes to the differential as compared with time. The 
most general solution of equation (94) generally depends not on two arbitrary constants, as it is 
usually considered, but on three: the initial relevant coordinate, the initial speed and the phase 
of the harmonic oscillatory within the ensemble that structurally represents the environment 
(the isolated oscillator is an abstraction !). Such a solution gives the relevant co-ordinate 

      i t i tq t he he      (95) 

where h  refers to the complex conjugate of h and   is an initial phase specific to the 
individual movement of the oscillator. Such a notation allows us to solve a problem that we 
could name “the oscillators with the same frequency”, such as Planck’s resonators’ 
ensemble-the basis of the quantum theory arguments in their old shape. That is, given an 
ensemble of oscillators having the same frequency in a space region, which is the relation 
between them? 
The mathematical answer to this problem can be obtained if we note that what we want here 
is to find a mean to pass from a triplet of numbers –the initial conditions- of an oscillator 
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towards the same triplet of another oscillator with the same frequency. This process 
(passing) implies a simple transitive continuous group with three parameters that can be 
built using a certain definition of the frequency. We start from the idea that the ratio of two 
fundamental solutions of equation (94) is a solution of Schwarts’ non linear equation (Agop, 
M. & Mazilu, N., 1989; Agop, M. & Mazilu, N., 2010; Mihăileanu, N., 1972) 
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 (96) 

This equation proves to be a veritable definition of frequency as a general characteristic of 
an ensemble of oscillators that can be scanned through a continuous group of three 
parameters. Indeed equation (96) is invariant to the change of the dependent variable 
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c t d




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
 (97) 

which can be verified through direct calculation. Thus,  t characterizes another oscillator 
with the same frequency which allows us to say that, starting from a standard oscillator we 
can scan the whole ensemble of oscillators of the same frequency when we let loose the three 
ratios a: b: c: d in equation (97). We can make a more precise correspondence between a 
homographic change and an oscillator, by means of associating to each oscillator a personal 
 t through equation 
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 (98) 

Let us notice that 0 1,  can be freely used one instead the other, which leads to the next 
group of changes for the initial conditions 

                      , , ,  ah b ah b ch d
h h k k a b c d R

ch d ch dch d
       
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 (99a-d) 

This is a simple transitive group: one and only one change of the group (the Barbilian group 
(Agop, M. & Mazilu, N., 1989; Agop, M. & Mazilu, N., 2010; Barbilian, D., 1935; Barbilian, 
D., 1935; Barbilian, D., 1938; Barbilian, D., 1971)) corresponds to a given set of values (a/c, 
b/c, d/c). 
This group admits the 1-differential forms, absolutely invariant through the group (Agop, 
M. & Mazilu, N., 1989) 

 0 1 2 ,   
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dk dh dh dh
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k h h k h h
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 (100) 

and the 2- differential form 
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respectively. 
If we restrict the definition of a parallelism of directions in Levi-Civita manner (Agop, M. & 
Mazilu, N., 1989)   

 du
d

v
    (102) 

with 

 =  , ,  =e ih u iv h u iv k     (103) 

Barbilian’s group invariates the metrics of Lobacevski’s plane (Agop, M. & Mazilu, N., 1989), 

 
2 2 2

2 2
ds du dv

v


   (104) 

Metrics (104) coincides with the differential invariant that is built with the complex scalar 
field of the speed, 
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d d Dds iDd Dds iDd D ds D
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 (105) 

which admits the identities 

 ,  2 = - ,  ln ln  du
D ds d d d v

v
      (106a-c) 

Now, through a Matzner-Misner type principle one can obtain Ernst’s principle of 
generating the symmetrical axial metrics (Ernst, F.J., 1968; Ernst, F.J., 1971) 

 1/2 3
2 0

( )
h h

d x
h h

  


  (106d) 

where  = det   with  the metrics of the “environment”. 
Therefore, the incorporation of the corpuscle in the wave, considering that it functions as a 
horologe with the same frequency as that of the associated progressive wave, implies 
gravitation through Einstein’s vacuum equations (equivalent to Ernst’s principle (106d)). On 
the contrary, when the frequencies do not coincide, there is an induction of Stoler’s group 
from the theory of coherent states (the parameter of the change is the very ratio of 
frequencies when creation and annihilation operators refer to a harmonic oscillator (Agop, 
M. & Mazilu, N., 1989)). 
Let us note that the homographic changes (99) generalize the result (92). Moreover, if 
a,b,c,d є then the Ernst type equations describe supergravitation N=1 (Green, M.B. et al, 1998). 

13. Informational energy through the fractal potential of complex scalar speed field. 
The generation of forces 

The informational energy of a distribution is defined through the known relation (Mazilu N. 
& Agop M., 1994), 
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 lnE dx    (107) 

where  x  is the density of distributions, and we note by x, on the whole, the random 
variables of the problem, dx being the elementary measure of their field. 
This functional represents a measure of the uncertainty degree, when defining the 
probabilities, i.e. it is positive, it increases when uncertainty also incresases taken in the 
sense of expanding distribution and it is additive for sources that are independent as 
compared to uncertainity. If we admit the maximum of informational energy in the 
inference against probabilities, having at our disposal only a partial piece of information this 
is equivalent to frankly admitting the fact that we cannot know more. Through this, the 
distributions that we obtain must be at least displaced, as compared to the real ones, because 
there is no restrictive hypothesis regarding the lacking information. In other words, such a 
distribution can be accomplished in the highest number of possible modalities. The partial 
piece of information we have at our disposal, is given, in most cases, in the form of a f(x) 
function or of more functions. 

 ( ) ( )f x f x dx   (108) 

Relation (108), together with the standard relation of distribution density 

 ( ) 1x dx   (109) 

are now constraints the variation of the functional (107) has to subject to, in order to offer the 
distribution density corresponding to the maximum of informational energy. In this 
concrete case, Lagrange’s non determined multipliers method directly leads to the well 
known exponential distribution 

 ( ) exp( ( ))x x f x     (110) 

Let us notice that through the fractal component of the complex scalar of speed field 

 lnD    (111) 

expression (107), ignoring the scale factor D, is identical with the average mean of (111) 

 lnE dx
D

 
     (112) 

In the particular case of a radial symmetry, imposing the constraints 

 ( )r r rdr   (113) 

 ( ) 1r dr   (114) 

the distribution density ( )r  through the maximum of informational energy implies the 
expression 

 ( ) exp( ),    , .r r const         (115) 
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or in notations 

 0exp( ) ,     2 / a      (116) 
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Then the fractal speed 
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through the fractal potential 

    
2 22

20 0
0 2

22 1 2ln ln
2

m u m Dd d
Q m D

r dr a a rdr
 

            
   

 (119) 

implies the fractal field of central forces 
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Consequently, the fractal “medium” by maximization of the informational energy becomes 
a source of central forces (gravitational or electric type). 

14. Lorenz type mechanism of wave-corpuscle duality in non stationary systems 

Impulse conservation law 

Let us rewrite the system of equations (15) for an external scalar field U under the form   
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with D given by relation (54). Hence, through their decrease and using substitution 

  UV V  (122) 

we find 

 2 2D D U
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Taking into account that the fractal term, 2 2D  U U U  intervenes as a pressure (for 
details see the kinetic significance of fractal potential Q (Bohm, D., 1952)) then we can admit 
the relation 
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then equation (123) takes the usual form 

 p
U D

t 

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
V V V - V  (125) 

In particular, if U  g  is a gravitational accelaration (125) becomes 

 . p
D

t 


     

V V V - g V  (126) 

Energy conservation law 

Energy conservation law, ε in the case of movements on fractal curves of fractal dimension 
DF is written under the form 

 
ˆ

ˆ 0d d
iD

dt dt
        V  (127) 

or, still, by separating the real part from the imaginary one 

 0,    D
t
   
     


V - U  (128) 

Hence, through addition and taking into account relation (122), we obtain the expression 

 D
t
  
   


V  (129) 

In particular, for 02m D    with   the wave pulsation (for movements on Peano curves 
with DF=2 at Compton scale    ) the previous relation becomes 

 D
t


   


V  (130) 

Lorenz type “mechanism” 

For an incompressible fractal fluid, the balance equations of the “impulse” -see (126), of the 
energy -see (129) and ”mass” – see (46) with .const   and 0  U  become 

 

0

p
D

t

D
t


  


     




   

 

V V V - g V

V

V

 (131a-c) 

Let us take into account the following simplyfing hypothesis:  
i. constant density, 0 .const    excepting the balance equation of the impulse where 

density is disturbed according to relation  

 0     (132) 
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ii. the energy “expansion” is a linear one 

  0 01          (133) 

with α the energy “dilatation” constant. 
Under such circumstances, system (131) becomes 

 

 p
t

t

0 0 0

0

D

D

   

  

 
         


   


 

V V V g V

V

V

 (134a-c) 

In order to study the dynamics of system (134), our description closely follows the 
approach in (Bârzu, A. et al, 2003). 
The convection in the fractal fluid takes place when the ascending force that results 
from energy “dilatation” overcomes the viscous forces. Then we can define the Rayleigh 
number 

 0asc

visc

g
F

R
F D




 
V

 (135) 

The variation of the density satisfies through (133) the relation 

 
0

  


   (136) 

and the “energy” balance equation (134c) implies 

 D
V

d
  (137) 

where d is the thickness of the fractal fluid level. Substituting (136) and (137) in (135) we 
obtain Rayleigh’s number under the form 

 
4

2
gd

R
D


  (138) 

where /d 0     is the energy gradient between the superior and inferior frontiers 
of fluid layer. In the case of convection, Rayleigh’s number plays the role of control 
parameter and takes place for 

criticR R  

In general, R is controlled through the gradient β of the energy. 
As reference state, let us choose the stationary rest state ( 0) V , for which equations 
(134a-c) take the form 
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 0 0ˆ ˆ[1 ( )]
0

S S S

S

p gz gz    


      
 

 (139a,b) 

where ẑ  represents the versor of vertical direction. We take into account that pressure 
and ε vary only in vertical direction due to the considered symmetry. For ε the 
conditions on the frontier are 

    0 1, ,0 ,    , ,x y x y d      (140a,b) 

Integrating equation (139b) with these conditions on the frontier, it will follow that in 
the reference rest state, the profile of ε on vertical direction is linear. 

 0= S z    (141) 

Substituting (141) in (139) and integrating, we obtain 

  S 0 0 1
2

z
p z p g z

     
 

 (142) 

The features of the system in this state do not depend on coefficient D that appears in 
balance equations. 
We study now the stability of the reference state using the method of small 
perturbations (Bârzu, A. et al, 2003). The perturbed state is characterized by 

 

   
   
   
   

,
,

,

, , ,

S

S

S

z r t

z r t

p p z p r t

r t u v w

  

  



  


 
   
  V V

 (143a-d) 

One can notice that the perturbations are time and position functions. Substituting (143) 
in equations (134) and taking into account (141) and (142) the following equations for 
perturbations (in linear approximation) are obtained: 

 2

2

0

  0

1 ˆ

w D
t

p D g z
t


  

   


  


  



     


V

V V

 (144a-d) 

We introduce adimensional variables ', ', ', ', 't p  r V  through the changes 

2 22

0 23

' ;   ' ;   ' ;   ' ;   ' pt
t p

d D dd D DD
dg d

   




    
   
        

r Vr V  

Replacing these changes and renouncing, for simplicity, at the prime symbol, the 
adimensional perturbations satisfy the equations 
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t

t

2

2

ˆ

( )

0

p z

Rw



  


     




   

  

V V V V

V

V

 (145) 

where R is Rayleigh’s number. 
For R>RC, the reference state becomes unstable, and the convection “patterns” appear. 
We consider them as being parallel therefore the speed vector will be always 
perpendicular to their axis. We assume the patterns parallel to the y axis, i.e., the speed 
component along this direction is zero. 
The incompressibility condition becomes 

 0x zu w   (146) 

Equation (146) is satisfied if and only if 

 z x;    u w     (147) 

where  , ,x y z  defines Lagrange’s current function. The speed field must satisfy the 
conditions on frontiers (the inferior and superior surfaces) 

 1/2| 0zw    (148) 

If the frontiers are considered free (the superficial tension forces are neglected), the 
“shear” component of the pressure tensor is annulated  

 1/2| 0z
u
z 





 (149) 

Using Lagrange’s function,  , ,x y z  the limit conditions (148) and (149) become 

1/2

1/2

| 0
| 0

x z

zz z





 

 
 

Let us choose ψ with the form 

       1, , cos sinx z t t z qx    

According to (147), the components of the speed field are  

1

1

( )sin( )sin( )
( )cos( )cos( )

u t z qx
w q t z qx

 


 
  

 

The impulse conservation equation (for equation (145)) for directions x and z becomes 

 
 
 

t x z x

t x z z

u uu wu p u

w uw ww p w 

     

      
 (150a,b) 

We derive (150 a) according to z and (150) according to x. One finds 
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   

   

tz x z xz

tz x z zx

u uu wu p u
z z

w uw ww p w
x x x



          
             

 

Through the sum we obtain 

       2
x z x z xt uu wu uw ww

z x
              

 (151) 

The value ε being fixed on the two frontiers, we shall have 

1/2| 0z    

We consider θ having the form 

            1 2, , cos cos sin 2x z t t z qx t z       (152) 

If we consider in (151) the expressions for u, w, θ and ψ it follows that 

 2 21
1 12 2 ( )q

q
q


  


  


  (153) 

The balance equation for the energy becomes 

 
2 2

1 1 2 1 1

2
2 1 1 2

( )
1 4
2

q qR q

q

      

     

    

 



  (154) 

In (153) and (154) we change the variables 

' 2 2
12 2

2 2

1 22 2 3 2 2 3

( ) ;    
2( )

;    
2( ) ( )

q
t q t X

q

q q
Y Z

q q


 



 
 

 

  


 
 

 

We obtain the Lorenz type system 

 
 X Y X

Y XZ rX Y

Z XY bZ

 

   

 






 (155) 

where 

2 2

2 2 3 2 2
4,    

( )
q

r R b
q q


 

 
 

 

The Lorenz system 
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 X Y X

Y XZ rX Y

Z XY bZ

 

   

 






 

reduces to (155) for 1  . 
Characteristics of Lorenz type system. Transitions towards chaos. 

We consider the evolution equations of Lorenz type system (155) with the notation 

 
 x y x

y rx y xz
z xy bz

 

  
 





 (156) 

The system is a dissipative one, since the divergence (for details see (Bărzu, A. et al, 2003)) 

2 0yx z
FF F

F b
x y z

 
        

  
 

since b>0. 
Therefore, the phase volume exponentially diminishes in time, as the system tends towards 
the atractor. For any value of the control parameter r, the system (156) admits as a fixed 
point the origin 

 0 0 0 0x y z    (157) 

The characteristic equation is 

 0 0

0 0

1 1 0
1 0r z x

y x b






 
    

 
 (158) 

For the fixed point (157), it takes the form 

1 1 0
1 0 0

0 0
r

b






 
  

 
 

from where we find 

     = 02 2 1b r         (159) 

Since parameters b and r are positive ones, it follows that the first eigenvalue 1 b    is 
negative for any values of the parameters. The other two eigenvalues 2 and 3 satisfy the 
relations 

 
 

+2 3

2 3

2 0
1r

 
 

  
   

 (160) 



 
Correspondences of Scale Relativity Theory with Quantum Mechanics 

 

437 

According to (160), if 0 r 1   the sum of the two eigenvalues is negative and the product is 
positive. Therefore, all the eigenvalues are negative and the origin is a stable node. For r > 1, 
according to (160), the origin becomes unstable and two new fixed points appear in a fork 
bifurcation. These points are noted with C  and C  which corresponds to patterns 

 0 0 0 0

0 0

( 1) ( 1)
( ) ,    ( )

1 1
x y b r x y b r

C C
z r z r

         
 

     
 (161) 

 

 
Fig. 1. (according to (Bărzu, A. et al, 2003)) 

Let us study their stability. Replacing the values that correspond to the branch ( C ) in (158), 
the characteristic equation becomes 

 
   

1 1 0

1 1 1 0

1 1

b r

b r b r b







 

    

   

 

from where it follows that 

 3 2( 2) (1 ) 2 ( 1) 0b b r b r          (162) 

If the fixed points (161) will bear a Hopf bifurcation, for a value of control parameter Hr 1 , 
there will be two complex conjugated purely imaginary eigenvalues. Replacing i   in 
(162) we obtain 

 3 2( 2) (1 ) 2 ( 1) 0i b i b r b r           (163) 

Separating the real part from the imaginary one in (163) we obtain the system 

 
3

2

(1 ) 0

( 2) 2 ( 1) 0

b r

b b r

 



   

    
 (164a,b) 
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From equation (164a) it follows that  2 1b r   . Replacing this value in equation (164), 
Hopf bifurcation takes place in 

 4
H

b
r

b


   (165) 

Considering that Hr 1 the condition for b results 

 4b   (166) 

For this value of the control parameter, the two fixed points C and C lose their stability in 
a subcritical Hopf bifurcation. Beyond the bifurcation point all the periodical orbits are 
unstable and the system has a chaotic behavior. Figures 2a-c to 8a-c show the trajectories, 
the time evolutions, the phase portraits and the Fourier transform for the different values of 
the parameters. It follows that when the value of the parameter r increases, there is a 
complicated succession of chaotic regimes with certain periodicity windows. The limit cycle 
appears through a reverse subarmonic cascade and loses stability through intermittent 
transition towards a new chaotic window. 
 
 

 
Fig. 2. a) Trajectory b) time evolution c) phase pattern for r=80, b=0.15  

 
 

 
Fig. 3. a) Trajectory b) time evolution c) phase pattern for r=100, b=0.19 
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Fig. 4. a) Trajectory b) time evolution c) phase pattern for r=100, b=0.06 

 

 
Fig. 5. a) Time evolution b) phase portrait c) the Fourier transform for r=416, b=0.067 

 

 
Fig. 6. a) Time evolution b) phase portrait c) the Fourier transform for r=403, b=0.067 

 

 
Fig. 7. a) Time evolution b) phase portrait c) the Fourier transform for r=401, b=0.067 



 
Theoretical Concepts of Quantum Mechanics 

 

440 

 
Fig. 8. a) Time evolution b) phase portrait c) the Fourier transform for r=380, b=0.067 

In Fig.9 we present the map of the Lyapunov exponent with the value 1   (the co- 
ordinates of the light points represent the pairs of values    , ,x y b r  for which the 
probability of entering in a chaotic regime is very high. 
 

 
 

Fig. 9. The Lyapunov exponent map for value 1   of  the Lorenz system 

Correspondences with quantum mechanics 

The previous analysis states the following: 
i. a model of a physical object can be imagined. This model is built from a Madelung type 

fluid limited by two carcases that are submitted to an energy “gradient”, from the 
inferior carcase towards the superior one; 

ii. for small energy gradients, i.e. R<RC the reference state is a stable one. The ascending 
force resulting from energy ”dilatation” is much smaller than the dissipative one. 

iii. for energy gradients that impose restriction R>RC the reference state becomes unstable 
through the generation of convective type “rolls”. The ascensional force is bigger than 
the dissipative one; 

iv. the increase of energy gradient destroys the convective type ”patterns” and induces 
turbulence; 

b

r
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v. this behavior of fractal fluid can correspond  to a Lorenz type “mechanism”: limit cycles 
the convective type “rolls”, intermitences (“jumps” between limit cycles) with the 
“destroy” of the convective type “rolls”, chaos with “turbulence” of the convective type 
state etc.; 

vi. the stability of solutions corresponds to the dominant undulatory feature, the wave-
corpuscle duality can be correlated with the Lorenz type mechanism: self-organization 
of the structure through the generation of convective type “rolls” implies the wave-
corpuscle transition, while the “jumps” among limit cycles, i.e. the intermittences 
induce a critical state that corresponds to chaos transition, thus ensuring the dominance 
of corpuscular effect. 

15. Conclusions 

Finally we can display the conclusions of this chapter as follows: 
- a critical analisys of the hydrodinamic model of Madelung and of the double solution 

theory of de Broglie’s theory of double solution was performed – departing from here, 
we built a fractal approximation of motion; 

- we got the equation of motion of the physical object in the fractal approximation and 
the Eulerian case was studied; 

- the flowing regimes of a rotational fractal fluid were studied;  
- we studied the irotational regime of a fractal fluid and the incorporation of the particle 

into the associated wave by generating a Schrödinger equation; 
- the extended hydrodinamic model of scale relativity was built and the role of the fractal 

potential in the process of incorporation of the particle into the wave, specified; 
- we indicated the mechanisms of wave–particle duality by their in phase coherences; 
- we studied the wave-particle duality by stationary flow regimes of a fractal fluid which 

is coherent in phase, and by non-stationary flow regimes of an incoherent fractal fluid 
by means of a „polarization” type mechanism; 

- considering the particle as a singularity in the wave, we showed that its incorporation 
into the associated wave resulted in Einstein’s equations in vacuum - contrary, its non-
incorporation led to the second quantification; 

- we established a relation between the informational energy and the fractal potential of 
the complex speed field - it resulted that the generation of forces implies the maximum 
of the information energy principle; 

- we showed that a particle model in a fractal approximation of motion induced a Lorenz 
type mechanism. 
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1. Introduction

In quantum mechanics, it is well known that the exact solutions play fundamental role, this
is because, these solutions usually contain all the necessary information about the quantum
mechanical model under investigation. In recent years, there has been a renewed interest in
obtaining the solutions of the Dirac equations for some typical potentials under special cases
of spin symmetry and pseudo-spin symmetry (Arima et al., 1969; Hecht and Adler, 1969).
The idea about spin symmetry and pseudo-spin symmetry with the nuclear shell model has
been introduced in 1969 by Arima et al. (1969) & Hecht and Adler (1969). This idea has
been widely used in explaining a number of phenomena in nuclear physics and related areas.
Spin and pseudo-spin symmetric concepts have been used in the studies of certain aspects
of deformed and exotic nuclei (Meng & Ring, 1996; Ginocchio, 1997; Ginocchio & Madland,
1998; Alberto et al., 2001; 2002; Lisboa et al., 2004a; 2004b; 2004c; Guo et al., 2005a; 2005b; Guo
& Fang, 2006; Ginocchio, 2004; Ginocchio, 2005a; 2005b).
Spin symmetry (SS) is relevant to meson with one heavy quark, which is being used to
explain the absence of quark spin orbit splitting (spin doublets) observed in heavy-light
quark mesons (Page et al., 2001). On the other hand, pseudo-spin symmetry (PSS) concept
has been successfully used to explain different phenomena in nuclear structure including
deformation, superdeformation, identical bands, exotic nuclei and degeneracies of some shell
model orbitals in nuclei (pseudo-spin doublets)(Arima, et al., 1969; Hecht & Adler, 1969; Meng
& Ring, 1996; Ginocchio, 1997; Troltenier et al., 1994; Meng, et al., 1999; Stuchbery, 1999; 2002).
Within this framework also, Ginocchio deduced that a Dirac Hamiltonian with scalar S(r)
and vector V(r) harmonic oscillator potentials when V(r) = S(r) possesses a spin symmetry
(SS) as well as a U(3) symmetry, whereas a Dirac Hamiltonian for the case of V(r) + S(r) =
0 or V(r) = −S(r) possesses a pseudo-spin symmetry and a pseudo-U(3) symmetry
(Ginocchio, 1997; 2004; 2005a; 2005b). As introduced in nuclear theory, the PSS refers
to a quasi-degeneracy of the single-nucleon doublets which can be characterized with the
non-relativistic quantum mechanics (n, �, j = �+ 1

2 ) and (n − 1, �+ 2, j = �+ 3
2 ), where n, �

and j are the single-nucleon radial, orbital and total angular momentum quantum numbers
for a single particle, respectively (Arima et al., 1969; Hecht & Adler, 1969; Ginocchio, 2004;
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2005a; 2005b; Page et al., 2001). The total angular momentum is given as j = � + s, where
� = �+ 1 is a pseudo- angular momentum and s = 1

2 is a pseudo-spin angular momentum.
Meng et al., (1998) deduced that in real nuclei, the PSS is only an approximation and
the quality of approximation depends on the pseudo-centrifugal potential and pseudo-spin
orbital potential. The orbital and pseudo-orbital angular momentum quantum numbers for SS
� and PSS � refer to the upper-and lower-spinor components (for instance, Fn,κ(r) and Gn,κ(r),
respectively.
Ginocchio (1997); (1999); (2004); (2005a); (2005b) and Meng et al., (1998) showed that SS occurs
when the difference between the vector potential V(r) and scalar potential S(r) in the Dirac
Hamiltonian is a constant (that is, Δ(r) = V(r)− S(r)) and PSS occurs when the sum of two
potential is a constant (that is, Σ(r) = V(r) + S(r)).
A large number of investigations have been carried out on the SS and PSS by solving the Dirac
equation with various methods (Alberto et al., 2001; 2002; Lisboa et al., 2004a; 2004b; 2004c;
Ginocchio, 2005a; 2005b; Xu et al., 2008; Guo et al., 2005a; 2005b; de Castro et al., 2006; Wei and
Dong, 2009; Zhang, 2009; Zhang et al., 2009a; Setare & Nazari, 2009; Ginocchio, 1999; Soylu
et al., 2007; 2008a; 2008b; Berkdermir, 2006; 2009; Berkdemir & Sever, 2009; Xu & Zhu, 2006;
Jia et al., 2006; Zhang et al., 2009a; Zhang et al., 2008; Aydoǧdu, 2009; Aydoǧdu & Sever, 2009;
Wei and Dong, 2008; Jia et al., 2009a; 2009b; Guo et al., 2007).
Some of these potentials are exactly solvable, these include: harmonic potential (Lisboa et
al., 2004a; 2004b; 2004c; Ginocchio, 1999; 2005a; 2005b; Guo et al., 2005a; 2005b; de Castro et
al., 2006; Akcay & Tezcan, 2009), Coulomb potential (Akcay, 2007; 2009), pseudoharmonic
potential (Aydoǧdu, 2009; Aydoǧdu & Sever, 2009; Aydoǧdu & Sever, 2010a), Mie-type
potential (Aydoǧdu, 2009; Aydoǧdu & Sever, 2010b).
Also, for the s−wave with zero pseudo-orbital angular momentum � = 0 and spin-orbit
quantum number κ = 1, exact analytical solutions have been obtained for some potentials
with different methods, such as: Woods-Saxon potential (Aydoǧdu, 2009; Guo & Sheng, 2005;
Aydoǧdu & Sever, 2010c), Eckart potential (Jia et al., 2006), Pöschl-Teller potential (Jia et al,
2009b), Rosen-Morse potential (Oyewumi & Akoshile, 2010), trigonometric Scarf potential
(Wei et al., 2010).
However, exact analytical solution for any �− states are possible only in a few instances. it is
important to mention that most of these potentials can not be solved exactly for � �= 1(κ �= −1)
or � �= 0(κ �= 1) state, hence, a kind of approximation to the (pseudo or) - centrifugal term
is necessary (Pekeris-type approximation) (Ikhdair, 2010; 2011; Ikhdair et al., 2011; Xu et al.,
2008; Jia et al., 2009a; 2009b; Wei and Dong, 2009; Zhang et al., 2009b; Soylu et al., 2007; 2008a;
2008b; Zhang et al., 2008; Aydoǧdu and Sever, 2010c; Aydoǧdu and Sever, 2010d; Bayrak and
Boztosun, 2007; Pekeris, 1934; Greene and Aldrich, 1976; Wei and Dong, 2010a; 2010b; 2010c).
With this kind of approximation to the (pseudo or) - centrifugal term, the SS and PSS problems
have been solved using different methods to obtain the approximate solutions: AIM (Soylu
et al., 2007; 2008a; 2008b; Aydoǧdu & Sever, 2010c; Bayrak & Boztosun, 2007; Hamzavi et al.,
2010c), Nikiforov- Uvarov method (Aydoǧdu & Sever, 2010c; Hamzavi et al., 2010a; 2010b;
Berkdemir, 2006; 2009; Berkdemir & Sever, 2009; Ikhdair, 2010; 2011; Ikhdair et al., 2011),
functional analysis method (Xu et al., 2008; Wei & Dong, 2010d), SUSY and functional analysis
(Jia et al., 2006; 2009a; 2009b; Wei & Dong, 2009; Zhang et al., 2009b; Setare & Nazari, 2009;
Wei & Dong, 2010a; 2010b; 2010c). Therefore, by applying a Pekeris-type approximation to
the (pseudo or) - centrifugal-like term, the relativistic bound state solutions can be obtained
in the framework of the PSS and SS concepts.
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In this study, the Rosen-Morse potential is considered, due to the important applications of
in atomic, chemical and molecular Physics as well (Rosen & Morse, 1932). This potential is
very useful in describing interatomic interaction of the linear molecules. The Rosen-Morse
potential is given as

V(r) = −V1sech2αr + V2 tanh αr, (1)

where V1 and V2 are the depth of the potential and α is the range of the potential, respectively.
Thus, our aim is to employ the newly improved approximation scheme (or Pekeris-type
approximation scheme) in order to obtain the PSS and SS solutions of the Dirac equations
for the Rosen-Morse potential with the centrifugal term. This potential has been studied by
various researchers in different applications (Rosen & Morse, 1932; Yi et al., 2004; Taşkin, 2009;
Oyewumi & Akoshile and reference therein, 2010; Ikhdair, 2010; Ibrahim et al., 2011; Amani
et al., 2011). In the light of this study, standard function analysis approach will be used (Yi et
al, 2004; Taşkin, 2009).
In this chapter, Section 2 contains, the basic equations for the upper- and lower- component of
the Dirac spinors. In Section 3, the approximate analytical solutions of the Dirac equation with
the Rosen-Morse potential with arbitrary κ under pseudospin and spin symmetry conditions
are obtained by means of the standard function analysis approach. Also, the solutions of
some special cases are obtained. The bound state solutions of the relativistic equations
(Klein-Gordon and Dirac) with the equally mixed Rosen-Morse potentials for any � or κ are
contained in Section 4. Section 5 contains contains the conclusions.

2. Basic Equations for the upper- and lower-components of the Dirac spinors

In the case of spherically symmetric potential, the Dirac equation for fermionic massive
spin− 1

2 particles interacting with the arbitrary scalar potential S(r) and the time-component
V(r) of a four-vector potential can be expressed as (Greiner, 2000; Wei & Dong, 2009; 2010a;
2010b; 2010c; 2010d; Ikhdair, 2010; 2011; Oyewumi & Akoshile, 2010; Ikhdair et al., 2011):[

c�α.�P + β[Mc2 + S(�r)] + V(�r)− E
]

ψnκ(�r) = 0, (2)

where E is the relativistic energy of the system, M is the mass of a particle, �P = −ih̄∇ is the
momentum operator.�α and β are 4 × 4 Dirac matrices, given as

�α =

(
0 σi
σi 0

)
, β =

(
I 0
0 −I

)
, (3)

where I is the 2 × 2 identity matrix and σi(i = 1, 2, 3) are the vector Pauli matrices.
Following the procedure stated in (Greiner, 2000; Wei & Dong 2009; 2010a; 2010b; 2010c;
2010d; Ikhdair, 2010; 2011; Ikhdair et al., 2011), the spinor wave functions can be written
using the Pauli-Dirac representation as:

ψnκ(�r) =
1
r

[
Fnκ(r) Y�

jm(θ, φ)

iGnκ(r) Y�
jm(θ, φ)

]
; κ = ±(j +

1
2
), (4)

where Fnκ(r) and Gnκ(r) are the radial wave functions of the upper and lower spinors
components, respectively. Y�

jm(θ, φ) and Y�
jm are the spherical harmonic functions coupled
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to the total angular momentum j and its projection m on the z−axis. The orbital and
pseudo-orbital angular momentum quantum numbers for SS (�) and PSS (�) refer to the upper
(Fnκ(r)) and lower (Gnκ(r)) spinor components, respectively, for which �(� + 1) = κ(κ + 1)
and �(�+ 1) = κ(κ − 1). For the relationship between the quantum number κ to the quantum
numbers for SS (�) and PSS (�) (Ikhdair, 2010; 2011; Ikhdair et al., 2011; Jia et al., 2009a; 2009b;
Xu et al., 2008; Wei & Dong, 2009; Ginocchio, 2004; Zhang et al., 2009b; Setare & Nazari, 2009).
For comprehensive reviews, see Ginocchio (1997) and (2005b).
On substituting equation (4) into equation (2), the two-coupled second-order ordinary
differential equations for the upper and lower components of the Dirac wave function are
obtained as follows: (

d
dr

+
κ

r

)
Fnκ(r) =

[
Mc2 + Enκ − Δ(r)

]
Gnκ , (5)

(
d
dr

− κ

r

)
Gnκ(r) =

[
Mc2 − Enκ + Σ(r)

]
Fnκ . (6)

Eliminating Fnκ(r) and Gnκ(r) from equations (5) and (6), the following two Schrödinger-like
differential equations for the upper and lower radial spinors components are obtained,
respectively as:

{
− d2

dr2 +
κ(κ + 1)

r2 +
1

h̄2c2

[
Mc2 + Enκ − Δ(r)

] [
Mc2 − Enκ + Σ(r)

]}
Fnκ(r)

=
dΔ(r)

dr ( d
dr +

κ
r )

[Mc2 + Enκ − Δ(r)]
Fnκ(r), (7)

{
− d2

dr2 +
κ(κ − 1)

r2 +
1

h̄2c2

[
Mc2 + Enκ − Δ(r)

] [
Mc2 − Enκ + Σ(r)

]}
Gnκ(r)

= −
dΣ(r)

dr ( d
dr − κ

r )

[Mc2 − Enκ + Σ(r)]
Gnκ(r), (8)

where Δ(r) = V(r) − S(r) and Σ(r) = V(r) + S(r) are the difference and the sum of the
potentials V(r) and S(r), respectively.
In the presence of the SS, that is, the difference potential Δ(r) = V(r) − S(r) = Cs =

constant or dΔ(r)
dr = 0, then, equation (7) reduces into

{
− d2

dr2 +
κ(κ + 1)

r2 +
1

h̄2c2

[
Mc2 + Enκ − Cs

]
Σ(r)

}
Fnκ(r)

=
[

E2
nκ − M2c4 + Cs(Mc2 − Enκ)

]
Fnκ(r), (9)

where κ(κ + 1) = �(� + 1), κ =

{
�, for κ < 0
−(�+ 1), for κ > 0 .

The SS energy eigenvalues depend

on n and κ, for � �= 0, the states with j = �± 1
2 are degenerate. Then, the lower component
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Gnκ(r) of the Dirac spinor is obtained as

Gn,κ(r) =
1

Mc2 + Enκ − Cs

[
d
dr

+
κ

r

]
Fnκ(r), (10)

where Enκ + Mc2 �= 0, only real positive energy state exist when Cs = 0 (Guo & Sheng, 2005;
Ikhdair, 2010; Ikhdair et al., 2011).
Also, under the PSS condition, that is, the sum potential Σ(r) = V(r) + S(r) = Cps

constant or dΣ(r)
dr = 0, then, equation (7) becomes

{
− d2

dr2 +
κ(κ − 1)

r2 − 1
h̄2c2

[
Mc2 − Enκ + Cps

]
Δ(r)

}
Gnκ(r)

=
[

E2
nκ − M2c4 + Cps(Mc2 − Enκ)

]
Gnκ(r), (11)

and the upper component Fnκ(r) is obtained as

Fn,κ(r) =
1

Mc2 − Enκ + Cps

[
d
dr

− κ

r

]
Gnκ(r), (12)

where Enκ − Mc2 �= 0, only real negative energy state exist when Cps = 0. Also, κ is
related to the pseudo-orbital angular quantum number � as κ(κ − 1) = �(� + 1), κ ={−�, for κ < 0
(�+ 1), for κ > 0

, which implies that j = � ± 1
2 are degenerate for � �= 0 (Guo & Sheng,

2005; Ikhdair, 2010; Ikhdair et al., 2011). It is required that the upper and lower spinor
components must satisfy the following boundary conditions Fnκ(0) = Gnκ(0) = 0 and
Fnκ(∞) = Gnκ(∞) = 0 for bound state solutions.
Exact solutions of equations (9) and (11) with the Rosen-Morse potential (1) can be obtained
only for the s−wave (κ = 0,−1) and (κ = 0, 1) due to the spin-orbit (or pseudo)
centrifugal term κ(κ+1)

r2 (or κ(κ−1)
r2 ). Therefore, a newly improved approximation in dealing

with the spin-orbit (or pseudo) centrifugal term to obtain the approximate solutions for the
Rosen-Morse is adopted.
This type of approximation, (Pekeris-type) approximation can be traced back to Pekeris (1934),
and for short-range potential, Greene & Aldrich (1976) proposed a good approximation to the
centrifugal term (1/r2). The idea about the use of approximation to centrifugal (or pseudo
centrifugal) term has received much attention and considerable interest due to its wide range
of applications (Wei & Dong, 2010a; 2010b; 2010c; 2010d; Aydoǧdu & Sever, 2010; Zhang et
al., 2009b; Jia et al., 2009a; 2009b; Lu, 2005; Ikhdair, 2010; Ikhdair et al., 2011). We adopt the
centrifugal (or pseudo centrifugal) approximation introduced by Lu (2005) for values of κ that
are not large and vibrations of the small amplitude about the minimum. This approximation
to the centrifugal or (pseudo centrifugal) term near the minimum point r = r0 introduced by
Lu (2005) is given as follows:

1
r2 ≈ 1

r2
0

[
c0 + c1

( −e−2αr

1 + e−2αr

)
+ c2

( −e−2αr

1 + e−2αr

)2]
, (13)
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where

C0 = 1 −
(

1 + e−2αr0

2αr0

)2 ( 8αr0

1 + e−2αr0
− (3 + 2αr0)

)
,

C1 = −2(e2αr0 + 1)
[

3
(

1 + e−2αr0

2αr0

)
− (3 + 2αr0)

(
1 + e−2αr0

2αr0

)]
,

C2 = (e2αr0 + 1)2
(

1 + e−2αr0

2αr0

)2 [
(3 + 2αr0)−

(
4αr0

1 + e−2αr0

)]
, (14)

other higher terms are neglected.

3. Bound state solutions of the Dirac equation with the Rosen-Morse potential
with arbitrary κ

3.1 Spin symmetry solutions of the Dirac equation with the Rosen-Morse potential with
arbitrary κ

In equation (9), we adopt the choice of Σ(r) = 2V(r) → V(r) as earlier illustrated by Alhaidari
et al. (2006), which enables us to reduce the resulting solutions into their non-relativistic limits
under appropriate transformations, that is,

Σ(r) = −4V1
e−2αr

(1 + e−2aαr)2 + V2
(1 − e−2αr)

(1 + e−2aαr)
. (15)

Using the centrifugal term approximation in equation (13) and introducing a new variable of
the form z = e−2αr in equation (9), the following equation for the upper component spinor
Fnκ(r) is obtained as:

z2 d2

dz2 Fnκ(z) + z
d
dz

Fnκ(z) +
1

4α2

{
1

h̄2c2

[
E2

nκ − M2c4 + Cs(Mc2 − Enκ)
]}

Fnκ(z)

− κ(κ + 1)
4α2

{
1
r2

0

[
C0 + C1

z
1 − z

+ C2
z2

(1 − z)2

]
− 4Ṽ1z

(1 − z)2 − Ṽ2 − 2Ṽ2z
(1 − z)

}
Fnκ(z), (16)

where
Ṽ1 =

V1

h̄2c2
[Mc2 + Enκ − Cs] and Ṽ2 =

V2

h̄2c2
[Mc2 + Enκ − Cs]. (17)

The upper component spinor Fnκ(z) has to satisfy the boundary conditions, Fnκ(z) = 0 at
z → 0 (r → ∞) and Fnκ(z) = 1 at z → 1 (r → 0). Then, the function Fnk(z) can be written as

Fnκ(z) = (1 − z)1+qzβ fnκ(z), (18)

where

q =
1
2

[
−1 +

√
1 +

κ(κ + 1)C2

α2r2
0

+
4Ṽ1
α2

]
(19)

and

− β2 =
1

4α2

{
1

h̄2c2

[
E2

nκ − M2c4 + Cs(Mc2 − Enκ)
]
− κ(κ + 1)

r2
0

C0 − Ṽ2

}
. (20)
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On substituting equation (18) into equation (16) with equations (17), (19) and (20) , the
second-order differential equation is obtained as

z(1 − z)
d2

dz2 fnκ(z) + [(2β + 1)− (2q + 2β + 3)z]
d
dz

fnκ(z)

−
[
(2β + 1)(1 + q) +

Ṽ2 + 2Ṽ1
2α2 +

κ(κ + 1)C1

4α2r2
0

]
fnκ(z), (21)

whose solutions are the hypergeometric functions (Gradshteyn & Ryzhik, 2007), its general
form can be expressed as

fnκ(z) = A 2F1(a, b; c; z) + Bz1−c
2F1(a − c + 1, b − c + 1; 2 − c; z), (22)

in which the first term can be expressed as:

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞

∑
k=0

Γ(a + k)Γ(b + k)zk

Γ(c + k)k!
, (23)

where

a = 1 + q + β − γ

b = 1 + q + β + γ

c = 1 + 2β

γ =

√
β2 − (Ṽ2 + 2Ṽ1)

2α2 + q(1 + q)− κ(κ + 1)C1

4α2r2
0

. (24)

The hypergeometric function fnκ(z) can be reduced to polynomial of degree n, whenever
either a or b equals to a negative integer −n. This implies that the hypergeometric function
fnκ(z) given by equation (23) can only be finite everywhere unless

a = 1 + q + β − γ = −n; n = 0, 1, 2, 3, . . . . (25)

Using equations (17), (19) and (20) in equation (25), an explicit expression for the energy
eigenvalues of the Dirac equation with the Rosen-Morse potential under the spin symmetry
condition is obtained as:

(Mc2 + Enκ − Cs)(Mc2 − Enκ + V2) = − κ(κ + 1)C0

r2
0

h̄2c2

+4α2h̄2c2

⎡
⎢⎣

(C2−C1)
4α2r2

0
κ(κ + 1)− (Mc2+Enκ−Cs)V2

2α2 h̄2c2

2(n + q + 1)
− (n + q + 1)

2

⎤
⎥⎦

2

. (26)

It is observed that, the spin symmetric limit leads to quadratic energy eigenvalues. Hence, the
solution of equation (26) consists of positive and negative energy eigenvalues for each n and
κ. In 2005, Ginocchio has shown that there are only positive energy eigenvalues and no bound
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negative energy eigenvalues exist in the spin limit. Therefore, in the spin limit, only positive
energy eigenvalues are chosen for the spin symmetric limit.
Using equations (18) to (25), the radial upper component spinor can be obtained as

Fnκ(r) = Nnκ(1 + e−2αr)1+q(−e−2αr)β
2F1(−n, n + 2(β + q + 1); 2β + 1;−e−2αr)

= Nnκ
n!Γ(2β + 1)
Γ(n + β + 1)

(1 + e−2αr)1+q(−e−2αr)βP(2β, 2q+1)
n (1 + 2e−2αr), (27)

Nnκ is the normalization constant which can be determined by the condition that∫ ∞
0 | Fnκ(r) |2 dr = 1.

By making use of the equation (23) and the following integral (see formula (7.512.12) in
Gradshteyn & Ryzhik (2007)):

∫ 1

0
(1−x)μ−1xν−1

pFq(a1, .., ap; b1, ..bq; ax)dx=
Γ(μ)Γ(ν)
Γ(μ+ν) p+1Fq+1(ν, a1, .., ap; μ+ν, b1, ..bq; a) ,

(28)
which is valid for Reμ > 0, Reν > 0, p ≤ q + 1, if p = q + 1, then | q < 1 |, this leads to

Nnκ =

⎡
⎣Γ(2q + 3)Γ(2β + 1)

2αΓ(n)

∞

∑
k=0

(−1)k (n + 2(1 + β + q))k Γ(n + k)

k!(k + 2β)!Γ
(

k + 2(β + q + 3
2 )
) Anκ

⎤
⎦
−1/2

, (29)

where Anκ = 3F2(2β+ k, −n, n+ 2(1+ β+ q); k + 2(β+ q+ 3
2 ); 2β+ 1; 1) and (x)a = Γ(x+a)

Γ(x)
(Pochhammer symbol). In order to find the lower component spinor, the recurrence relation
of the hypergeometric function (Gradshteyn & Ryzhik, 2007)

d
dξ

[ 2F1 (a, b, c; ξ)] =

(
ab
c

)
d

dξ 2
F1 (a + 1, b + 1, c + 1; ξ) , (30)

is used to evaluate equation (10) and this is obtained as

Gnκ(r) =
Nnκ(1 + e−2αr)1+q(−e−2αr)β

[Mc2 + Enκ − Cs]

[
−2αβ − 2αe−2αr

1 + e−2αr +
κ

r

]

×2F1(−n, n + 2(β + q + 1); 2β + 1;−e−2αr)+

Nnκ(1 + e−2αr)1+q(−e−2αr)β+1

[Mc2 + Enκ − Cs]

{
2αn [n + 2(β + q + 1)]

(2β + 1)

}

×2F1(−n + 1, n + 2(β + q + 3
2 ); 2(β + 1);−e−2αr). (31)

3.2 Pseudopin symmetry solutions of the Dirac equation with the Rosen-Morse potential
with arbitrary κ

In the case of pseudospin symmetry, that is, the difference as in equation (11). dΣ(r)
dr = 0 or

Σ(r) = Constant = Cps, and taking into consideration the choice of Δ(r) = 2V(r) → V(r) as
earlier illustrated by Alhaidari et al. (2006). Then,
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Δ(r) = −4V1
e−2αr

(1 + e−2aαr)2 + V2
(1 − e−2αr)

(1 + e−2aαr)
. (32)

With the pseudo-centrifugal approximation in equation (13) and substituting z = −e−2αr,
then, the following equation for the lower component spinor Gnκ(r) is obtained as:

z2 d2

dz2 Gnκ(z) + z
d
dz

Gnκ(z) +
1

4α2

{
1

h̄2c2

[
E2

nκ − M2c4 − Cps(Mc2 + Enκ)
]}

Gnκ(z)

− κ(κ − 1)
4α2

{
1
r2

0

[
C0 + C1

z
1 − z

+ C2
z2

(1 − z)2

]
− 4Ṽ3z

(1 − z)2 − Ṽ4 − 2Ṽ4z
(1 − z)

}
Gnκ(z), (33)

where
Ṽ3 =

V1

h̄2c2
[Mc2 − Enκ + Cps] and Ṽ4 =

V2

h̄2c2
[Mc2 − Enκ + Cps]. (34)

With boundary conditions in the previous subsection, then, writing the function Gnκ(z) as

Gnκ(z) = (1 − z)1+qzβgnκ(z), (35)

where

q =
1
2

[
−1 +

√
1 +

κ(κ − 1)C2

α2r2
0

− 4Ṽ3

α2

]
(36)

and

− β
2
=

1
4α2

{
1

h̄2c2

[
E2

nκ − M2c4 − Cps(Mc2 + Enκ)
]
− κ(κ − 1)

r2
0

C0 + Ṽ4

}
. (37)

On substituting equation (35) into equation (33) and using equations (34), (36) and (37),
equation (33) becomes

z(1 − z)
d2

dz2 gnκ(z) +
[
(2β + 1)− (2q + 2β + 3)z

] d
dz

gnκ(z)

−
[
(2β + 1)(1 + q)− Ṽ4 + 2Ṽ3

2α2 +
κ(κ − 1)C1

4α2r2
0

]
gnκ(z), (38)

whose solutions are the hypergeometric functions (Gradshteyn & Ryzhik, 2007), its general
form can be expressed as

fnκ(z) = A 2F1(a, b; c; z) + Bz1−c
2F1(a − c + 1, b − c + 1; 2 − c; z), (39)

in which the first term can be expressed as:

2F1(a, b; c; z) =
Γ(c)

Γ(a)Γ(b)

∞

∑
k=0

Γ(a + k)Γ(b + k)zk

Γ(c + k)k!
, (40)

453
Approximate Solutions of the Dirac Equation for 
the Rosen-Morse Potential in the Presence of the Spin-Orbit and Pseudo-Orbit Centrifugal Terms



10 Will-be-set-by-IN-TECH

where

a = 1 + q + β − γ

b = 1 + q + β + γ

c = 1 + 2β

γ =

√
β

2
+

(Ṽ2 + 2Ṽ3)

2α2 + q(1 + q)− κ(κ − 1)C1

4α2r2
0

. (41)

Also, in the similar fashion as obtained in the case of the spin symmetry condition, an explicit
expression for the energy eigenvalues of the Dirac equation with the Rosen-Morse potential
under the pseudospin symmetry is obtained as:

(Mc2 − Enκ + Cps)(Mc2 + Enκ − V2) = − κ(κ − 1)C0

r2
0

h̄2c2

+4α2h̄2c2

⎡
⎢⎣

(C2−C1)
4α2r2

0
κ(κ − 1) + (Mc2−Enκ+Cps)V2

2α2 h̄2c2

2(n + q + 1)
− (n + q + 1)

2

⎤
⎥⎦

2

. (42)

It is observed that, the pseudospin symmetric limit leads to quadratic energy eigenvalues.
Therefore, the solution of equation (42) consists of positive and negative energy eigenvalues
for each n and κ. Since, it has been shown that there are only negative energy eigenvalues
and no bound positive energy eigenvalues exist in the pseudospin limit (Ginocchio, 2005).
Therefore, in the pseudospin limit, only negative energy eigenvalues are chosen.
The radial lower component spinor can be obtained by considering equations (35)-(41) as

Gnκ(r) = Nnκ(1 + e−2αr)1+q(−e−2αr)β
2F1(−n, n + 2(β + q + 1); 2β + 1;−e−2αr)

= Nnκ
n!Γ(2β + 1)
Γ(n + β + 1)

(1 + e−2αr)1+q(−e−2αr)βP(2β, 2q+1)
n (1 + 2e−2αr) (43)

Nnκ is the normalization constant which can be determined by the condition that∫ ∞
0 | Gnκ(r) |2 dr = 1 and by making use of the equations (23) and (28), we have

Nnκ =

⎡
⎣Γ(2q + 3)Γ(2β + 1)

2αΓ(n)

∞

∑
k=0

(−1)k (n + 2(1 + β + q)
)

k Γ(n + k)

k!(k + 2β)!Γ
(

k + 2(β + q + 3
2 )
) Anκ

⎤
⎦
−1/2

, (44)

where Anκ = 3F2(2β+ k, −n, n+ 2(1+ β+ q); k + 2(β+ q+ 3
2 ); 2β+ 1; 1) and (x)a = Γ(x+a)

Γ(x)
(Pochhammer symbol).
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Similarly, by using equation (12) Fnκ(r) can also be obtained as

Fnκ(r) =
Nnκ(1 + e−2αr)1+q(−e−2αr)β[

Mc2 − Enκ + Cps
] [

−2αβ − 2αe−2αr

1 + e−2αr − κ

r

]

×2F1(−n, n + 2(β + q + 1); 2β + 1;−e−2αr)+

Nnκ(1 + e−2αr)1+q(−e−2αr)β+1[
Mc2 − Enκ + Cps

]
{

2αn
[
n + 2(β + q + 1)

]
(2β + 1)

}

×2F1(−n + 1, n + 2(β + q + 3
2 ); 2(β + 1);−e−2αr). (45)

It is pertinent to note that, the negative energy solution for the pseudospin symmetry can be
obtained directly from the positive energy solution of the spin symmetry using the parameter
mapping (Berkdemir & Cheng, 2009; Ikhdair, 2010):

Fnκ(r) ↔ Gnκ(r), V(r) → −V(r), (or V1 → −V1 and V2 → −V2), Enκ → −Enκ and Cs → −Cps.

3.3 Remarks
In this work, solutions of some special cases are studied:

3.3.1 s-wave solutions:
Our results include any arbitrary κ values, therefore, there is need to investigate if our results
will give similar results for s-wave for the spin symmetry when κ = −1 or � = 0 and for the
pseudospin when κ = 1 or � = 0.
For the SS, κ = −1 (or � = 0) in equation (26) gives

(Mc2 + En,−1 −Cs)(Mc2 − En,−1 +V2) = 4α2h̄2c2

⎡
⎣ (Mc2+En,−1−Cs)V2

2α2 h̄2c2

2(n + q1 + 1)
− (n + q1 + 1)

2

⎤
⎦

2

, (46)

where

q1 =
1
2

⎡
⎣−1 +

√
1 +

4V1[Mc2 + En,−1 − Cs]

α2h̄2c2

⎤
⎦ . (47)

For the PSS, κ = 1 (or � = 0) in equation (42) gives

(Mc2 − En,1 + Cps)(Mc2 + En,1 − V2) = 4α2h̄2c2

⎡
⎣ (Mc2−En,1+Cps)V2

2α2 h̄2c2

2(n + q1 + 1)
− (n + q1 + 1)

2

⎤
⎦

2

, (48)

where

q1 =
1
2

⎡
⎣−1 +

√
1 − 4V1[Mc2 − En,1 + Cps]

α2h̄2c2

⎤
⎦ . (49)

The corresponding upper and lower component spinors for the SS and PSS can be obtained
also. The above solutions are identical with the results obtained by Oyewumi & Akoshile
(2010) and Ikhdair (2010).
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3.3.2 Solutions for the standard Eckart potential:
By setting V1 = −V1 and V2 = −V2 in equation (1), we have the standard Eckart potential.
The energy eigenvalues for the SS and the PSS are given, respectively as:

(Mc2 + Enκ − Cs)(Mc2 − Enκ − V2) = − κ(κ + 1)C0

r2
0

h̄2c2

+4α2h̄2c2

⎡
⎢⎣

(C2−C1)
4α2r2

0
κ(κ + 1) + (Mc2+Enκ−Cs)V2

2α2 h̄2c2

2(n + q2 + 1)
− (n + q2 + 1)

2

⎤
⎥⎦

2

(50)

and

(Mc2 − Enκ + Cps)(Mc2 + Enκ + V2) = − κ(κ − 1)C0

r2
0

h̄2c2

+4α2h̄2c2

⎡
⎢⎣

(C2−C1)
4α2r2

0
κ(κ − 1)− (Mc2−Enκ+Cps)V2

2α2 h̄2c2

2(n + q2 + 1)
− (n + q2 + 1)

2

⎤
⎥⎦

2

, (51)

where q2 and q2 are obtained, respectively as:

q2 =
1
2

[
−1 +

√
1 +

κ(κ + 1)C2

α2r2
0

− 4V1[Mc2 + Enκ − Cs]

α2h̄2c2

]

q2 =
1
2

[
−1 +

√
1 +

κ(κ − 1)C2

α2r2
0

+
4V1[Mc2 − Enκ + Cps]

α2h̄2c2

]
. (52)

The corresponding upper and lower component spinors for the SS and the PSS can easily be
obtained from equations (27), (31), (43) and (45).

3.3.3 Solutions of the PT-Symmetric Rosen-Morse potential:
The choice of V2 = iV2 in equation (1) gives the PT-Symmetric Rosen-Morse potential (Jia et
al., 2002; Yi et al., 2004; Taşkin, 2009; Oyewumi & Akoshile, 2010; Ikhdair, 2010):

V(r) = −V1sech2αr + iV2 tanh αr. (53)

For a given potential V(r), if V(−r) = V∗(r) (or V(η − r) = V∗(r)) exists, then, the potential
V(r) is said to be PT-Symmetric. Here, P denotes the parity operator (space reflection, P : r →
−r, or r → η − r) and T denotes the time reversal operator (T : i → −i).
For the case of the SS and the PSS solutions of this PT-Symmetric version of the Rosen-Morse
potential, the energy eigenvalue equations are:

(Mc2 + Enκ − Cs)(Mc2 − Enκ + iV2) = − κ(κ + 1)C0

r2
0

h̄2c2

+4α2h̄2c2

⎡
⎢⎣

(C2−C1)
4α2r2

0
κ(κ + 1)− i (Mc2+Enκ−Cs)V2

2α2 h̄2c2

2(n + q + 1)
− (n + q + 1)

2

⎤
⎥⎦

2

(54)
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and

(Mc2 − Enκ + Cps)(Mc2 + Enκ − iV2) = − κ(κ − 1)C0

r2
0

h̄2c2

+4α2h̄2c2

⎡
⎢⎣

(C2−C1)
4α2r2

0
κ(κ − 1) + i (Mc2−Enκ+Cps)V2

2α2 h̄2c2

2(n + q + 1)
− (n + q + 1)

2

⎤
⎥⎦

2

, (55)

respectively. q and q have their usual values as in equations (19) and (36), the corresponding
upper and lower component spinors for the SS and the PSS can be obtained directly from
equations (27), (31), (43) and (45).

3.3.4 Solutions of the reflectionless-type potential:
If we choose V2 = 0 and V1 = 1

2 ξ(ξ + 1) in equation (1), then equation (1) becomes the
reflectionless-type potential (Grosche & Steiner, 1995; 1998; Zhao et al., 2005):

V(r) = −ξ(ξ + 1)sech2αr, (56)

where ξ is an integer, that is, ξ = 1, 2, 3, . . . .
For the SS solutions of the reflectionless-type potential, the energy eigenvalues, the upper and
the lower component spinors are obtained, respectively as:

(Mc2+Enκ−Cs)(Mc2−Enκ)=− κ(κ+1)C0

r2
0

h̄2c2+α2h̄2c2

⎡
⎣ (C2−C1)

4α2r2
0

κ(κ+1)

2(n+q3+1)
− (n+q3+1)

2

⎤
⎦

2

, (57)

Fnκ(r) = Nnκ(1 + e−2αr)1+q3 (−e−2αr)β3
2F1(−n, n + 2(β3 + q3 + 1); 2β3 + 1;−e−2αr)

= Nnκ
n!Γ(2β3 + 1)
Γ(n + β3 + 1)

(1 + e−2αr)1+q3 (−e−2αr)β3 P(2β3, 2q3+1)
n (1 + 2e−2αr) (58)

and

Gnκ(r) =
Nnκ(1 + e−2αr)1+q3 (−e−2αr)β3

[Mc2 + Enκ − Cs]

[
−2αβ3 − 2αe−2αr

1 + e−2αr +
κ

r

]

×2F1(−n, n + 2(β3 + q3 + 1); 2β3 + 1;−e−2αr)+

Nnκ(1 + e−2αr)1+q3 (−e−2αr)β3+1

[Mc2 + Enκ − Cs]

{
2αn [n + 2(β3 + q3 + 1)]

(2β3 + 1)

}

×2F1(−n + 1, n + 2(β3 + q3 +
3
2 ); 2(β3 + 1);−e−2αr), (59)

where

q3 =
1
2

[
−1 +

√
1 +

κ(κ + 1)C2

α2r2
0

+
2ξ(ξ + 1)[Mc2 + Enκ − Cs]

α2h̄2c2

]
(60)
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and

β3 =

√
κ(κ + 1)

4α2r2
0

C0 − 1
4α2h̄2c2

[
E2

nκ − M2c4 + Cs(Mc2 − Enκ)
]
. (61)

For the PSS solutions of the reflectionless-type potential, the energy eigenvalues, the upper
and the lower component spinors are obtained, respectively as:

(Mc2−Enκ+Cps)(Mc2+Enκ)=− κ(κ−1)C0

r2
0

h̄2c2+α2h̄2c2

⎡
⎣ (C2−C1)

α2r2
0

κ(κ − 1)

2(n + q3+1)
− (n+q3+1)

2

⎤
⎦

2

, (62)

Gnκ(r) = Nnκ(1 + e−2αr)1+q3 (−e−2αr)β3 2F1(−n, n + 2(β3 + q3 + 1); 2β3 + 1;−e−2αr)

= Nnκ
n!Γ(2β3 + 1)
Γ(n + β3 + 1)

(1 + e−2αr)1+q3 (−e−2αr)β3 P(2β3, 2q3+1)
n (1 + 2e−2αr) (63)

and

Fnκ(r) =
Nnκ(1 + e−2αr)1+q3 (−e−2αr)β3[

Mc2 − Enκ + Cps
] [

−2αβ3 −
2αe−2αr

1 + e−2αr − κ

r

]

×2F1(−n, n + 2(β3 + q3 + 1); 2β3 + 1;−e−2αr)+

Nnκ(1 + e−2αr)1+q3 (−e−2αr)β3+1[
Mc2 − Enκ + Cps

]
{

2αn
[
n + 2(β3 + q3 + 1)

]
(2β3 + 1)

}

×2F1(−n + 1, n + 2(β3 + q3 +
3
2 ); 2(β3 + 1);−e−2αr), (64)

where

q3 =
1
2

[
−1 +

√
1 +

κ(κ − 1)C2

α2r2
0

− 2ξ(ξ + 1)[Mc2 − Enκ + Cps]

α2h̄2c2

]
(65)

and

β3 =

√
κ(κ − 1)

4α2r2
0

C0 − 1
4α2h̄2c2

[
E2

nκ − M2c4 − Cps(Mc2 + Enκ)
]
. (66)

3.3.5 Solutions of the non-relativistic limit
The approximate solutions of the Schrödinger equation for the Rosen-Morse potential
including the centrifugal term can be obtained from our work. This can be done by equating
Cs = 0, S(r) = V(r) = Σ(r) in equations (26) and (27). By using the following appropriate
transformations suggested by Ikhdair (2010):

(Mc2 + Enκ)

h̄2c2
→ 2μ

h̄2

Mc2 − Enκ → −En� (67)

κ → �,
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the non-relativistic limit of the energy equation and the associated wave functions,
respectively become:

En� = V2 +
�(�+ 1)h̄2C0

2μr2
0

− h̄2c2

2μ

⎡
⎣ (n + 1)2 + (2n + 1)q0 +

�(�+1)C1

4α2r2
0

+
μ

α2 h̄2 (2V1 + V2)

(n + q0 + 1)

⎤
⎦

2

,

(68)

and

Fn�(r) = Nn�(1 + e−2αr)1+q0 (−e−2αr)β0
2F1(−n, n + 2(β0 + q0 + 1); 2β0 + 1;−e−2αr)

= Nn�
n!Γ(2β0 + 1)
Γ(n + β0 + 1)

(1 + e−2αr)1+q0 (−e−2αr)β0 P(2β0, 2q0+1)
n (1 − 2z) , (69)

where

q0 =
1
2

[
−1 +

√
1 +

�(�+ 1)C2

α2r2
0

+
8μV1

α2h̄2

]
(70)

and

β0 =

√
�(�+ 1)

4α2r2
0

C0 +
μV2

2α2h̄2 − μEn�

2α2h̄2 . (71)

By using the appropriate transformations suggested by Ikhdair (2010), the non-relativistic
limit of energy equation and the associated wave functions of the Schrödinger equation for the
Rosen-Morse potential are recovered completely. These results are identical with the results
of Ikhdair (2010), Taşkin (2009)(note that Taşkin (2009) used h̄ = μ = 1 in his calculations).

4. The relativistic bound state solutions of the Rosen-Morse potential with the
centrifugal term

The Klein-Gordon and the Dirac equations describe relativistic particles with zero or integer
and 1/2 integral spins, respectively ( Landau & Lifshift 1999; Merzbacher, 1998; Greiner, 2000;
Alhaidari et al., 2006; Dong, 2007). However, the exact solutions are only possible for a few
simple systems such as the hydrogen atom, the harmonic oscillator, Kratzer potential and
pseudoharmonic potential.
In the following specific examples, Soylu et al. (2008c) obtained the s-wave solutions of
the Klein-Gordon equation with equal scalar and vector Rosen-Morse potential by using
the asymptotic iteration method. Also, Yi et al. (2004) obtained the energy equation and
the corresponding wave functions of the Klein-Gordon equation for the Rosen-Morse-type
potential by using standard and functional method.
For the approximate solutions of the Schrödinger equation for the Rosen-Morse potential with
the centrifugal term, that is � �= 0 or κ = 1, with the standard function analysis method, Taşkin
(2009) has used the newly improved Pekeris-type approximation introduced by Lu (2005). In
addition, Ikot and Akpabio (2010) solved this same problem by using the Nikiforov-Uvarov
method, they used the approximation scheme introduced by Jia et al. (2009a, 2009b) and Xu
et al. (2010).
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In the recent years, some researchers have used the Pekeris-type approximation scheme for the
centrifugal term to solve the relativistic equations to obtain the � or κ− wave energy equations
and the associated wave functions of some potentials. These include: Morse potential (Bayrak
et al., 2010), hyperbolical potential (Wei & Liu, 2008), Manning-Rosen potential (Wei & Dong,
2010), Deng-Fan oscillator (Dong, 2011).
In the context of the standard function analysis approach, the approximate bound
state solutions of the arbitrary �-state Klein-Gordon and κ-state Dirac equations for the
equally mixed Rosen-Morse potential will be obtained by introducing a newly improved
approximation scheme to the centrifugal term.

4.1 Approximate bound state solutions of the Klein-Gordon equation for the Rosen-Morse
potential for � �= 0

The time-independent Klein-Gordon equation with the scalar S(r) and vector V(r) potentials
is given as (Landau & Lifshift, 1999; Merzbacher, 1998; Greiner, 2000; Alhaidari et al., 2006):{

−h̄2c2∇2 +
[

Mc2 + S(r)
]2 − [E − V(r)]2

}
ψ(r, θ, φ) = 0, (72)

where M, h̄ and c are the rest mass of the spin-0 particle, Planck’s constant and velocity of the
light, respectively. For spherical symmetrical scalar and vector potentials, putting

ψn,�,m(r, θ, φ) =
1
r

Un,�(r)Y�,m(θ, φ), (73)

where Y�,m(θ, φ) is the spherical harmonic function, we obtain the radial Klein-Gordon
equation as

U′′
n,�(r)+

1
h̄2c2

{
E2−M2c4−2

[
EV(r)+Mc2S(r)

]
+
[
V2(r)−S2(r)

]
− �(�+1)h̄2c2

r2

}
Un,�(r)=0.

(74)

We are considering the case when the scalar and vector potentials are equal (that is, S(r)=
V(r)), coupled with the resulting simplification in the solution of the relativistic problems as
discussed by Alhaidari et al., 2006, we have

U′′
n,�(r) +

1
h̄2c2

{
E2 − M2c4 −

[
E + Mc2

]
V(r)− �(�+ 1)h̄2c2

r2

}
Un,�(r) = 0. (75)

This equation cannot be solved analytically for the Rosen-Morse potential with � �= 0,
unless, we introduce the approximation scheme (earlier discussed in this chapter) to the
centrifugal term. With this approximation scheme, and the potential in (1) together with the
transformation z = −e−2αr in equation (75), we have

z2U′′
n,�(z) + zU′

n,�(z)

+
[

E2−M2c4

4α2 h̄2c2 − Ṽ5
α2

z
(1−z)2 − Ṽ6

4α2
(1+z)
(1−z)−

�(�+1)C0

4α2r2
0

− �(�+1)C1

4α2r2
0

z
(1−z)−

�(�+1)C2

4α2r2
0

z2

(1−z)2

]
Un,�(z)=0, (76)
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where

Ṽ5 =
V1

h̄2c2
[E + Mc2]

Ṽ6 =
V2

h̄2c2
[E + Mc2]. (77)

In the similar manner, the energy equation of the arbitrary �-state Klein-Gordon equation with
equal scalar and vector potentials of the Rosen-Morse potential is obtained as follows:

(E2
n,� − M2c4) = (En,� + Mc2)V2 +

�(�+ 1)C0

r2
0

h̄2c2

−4α2h̄2c2

⎡
⎢⎣

(C2−C1)
4α2r2

0
�(�+ 1)− (En,� +Mc2)V2

2α2 h̄2c2

2(n + δ1 + 1)
− (n + δ1 + 1)

2

⎤
⎥⎦

2

, (78)

where

δ1 =
1
2

[
−1 +

√
1 +

�(�+ 1)C2

α2r2
0

+
4(En,� + Mc2)

α2h̄2c2

]
. (79)

The associated wave function can be expressed as

Un,� (r) = Nn,� (1 + e−2αr)1+δ1 (−e−2αr)ξ1
2F1(−n, n + 2(ξ1 + δ1 + 1); 2ξ1 + 1;−e−2αr)

= Nn,�
n!Γ(2ξ1 + 1)
Γ(n + ξ1 + 1)

(1 + e−2αr)1+δ1 (−e−2αr)ξ1 P(2ξ1, 2δ1+1)
n (1 + 2e−2αr) (80)

where

ξ1 =

√
�(�+ 1)C0

4α2r2
0

+
V2(En,� + Mc2)

4α2h̄2c2
− E2 − M2c4

4α2h̄2c2
(81)

and Nn,� is the normalization constant which can easily be determined in the usual manner.

4.2 Approximate bound state solutions of the Dirac equation for the Rosen-Morse potential
for any κ

In this subsection, we consider equations (2), (3) and (4), and on re-writing equations (5) and
(6) for the case of equal scalar and vector, i. e. V(r) = S(r), we have the following two coupled
differential equations: (

d
dr

− κ

r

)
Fnκ(r) =

[
Mc2 + Enκ

]
Gnκ , (82)

(
d
dr

+
κ

r

)
Gnκ(r) =

[
Mc2 − Enκ

]
Fnκ . (83)

With the substitution of equation (82) into equation (83) and taking into consideration the
suggestion of Alhaidari et al., (2006), a Schrödinger-like equation for the arbitrary spin-orbit
coupling quantum number κ is obtained as

d2Fnκ(r)
dr2 +

1
h̄2c2

{
[E2

nκ − M2c4]− [Mc2 + Enκ ]V(r)− h̄2c2κ(κ − 1)
r2

}
Fnκ(r) = 0. (84)
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Here, it is observed that equation (84) is identical with equation (75). Therefore, the energy
equation of the Dirac equation with the equally mixed Rosen-Morse potential for arbitrary
κ−state is obtained as

(E2
nκ − M2c4) = (Enκ + Mc2)V2 +

κ(κ − 1)C0

r2
0

h̄2c2

−4α2h̄2c2

⎡
⎢⎣

(C2−C1)
4α2r2

0
κ(κ − 1)− (Enκ +Mc2)V2

2α2 h̄2c2

2(n + δ2 + 1)
− (n + δ2 + 1)

2

⎤
⎥⎦

2

, (85)

where

δ2 =
1
2

[
−1 +

√
1 +

κ(κ − 1)C2

α2r2
0

+
4(Enκ + Mc2)V1

α2h̄2c2

]
. (86)

The associated upper component spinor Fnκ(r) is obtained as

Fnκ(r) = Nnκ(1 + e−2αr)1+δ2 (−e−2αr)ξ2
2F1(−n, n + 2(ξ2 + δ2 + 1); 2ξ2 + 1;−e−2αr)

= Nnκ
n!Γ(2ξ2 + 1)
Γ(n + ξ2 + 1)

(1 + e−2αr)1+δ2 (−e−2αr)ξ2 P(2ξ2, 2δ2+1)
n (1 + 2e−2αr) . (87)

On substituting equation (87) into equation (82) and by using the recurrence relation of the
hypergeometric function in equation (30), the lower component spinor Gnκ(r) can be obtained
as

Gnκ(r) =
Nnκ(1 + e−2αr)1+δ2 (−e−2αr)ξ2

[Enκ + Mc2]

[
−2αξ2 − 2αe−2αr

1 + e−2αr − κ

r

]

×2F1(−n, n + 2(ξ2 + δ2 + 1); 2ξ2 + 1;−e−2αr) +

Nnκ(1 + e−2αr)1+δ2 (−e−2αr)ξ2+1

[Enκ + Mc2]

{
2αn [n + 2(ξ2 + δ2 + 1)]

(2ξ2 + 1)

}

×2F1(−n + 1, n + 2(ξ2 + δ2 +
3
2 ); 2(ξ2 + 1);−e−2αr), (88)

where

ξ2 =

√
κ(κ − 1)C0

4α2r2
0

+
V2(Enκ + Mc2)

4α2h̄2c2
− E2 − M2c4

4α2h̄2c2
(89)

and Nnκ is the normalization constant which can easily be determined in the usual manner.
Substitution of Fnκ(r) and Gnκ(r) into equation (5) gives the bound state spinors of the Dirac
equation with the equally mixed Rosen-Morse potential for the arbitrary spin-orbit coupling
quantum number κ. In the similar manner, approximate solutions can be obtained when
S(r) = −V(r).

5. Conclusions

The approximate analytical solutions of the Dirac equation with the Rosen-Morse potential
with arbitrary κ under the pseudospin and spin symmetry conditions have been studied,
the standard function analysis approach has been adopted. The Pekeris-type approximation
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scheme (a newly improved approximation scheme) has been used for the centrifugal (or
pseudo centrifugal) term in order to solve for any values of κ.
Under the PSS and SS conditions, the energy equations, the upper- and the lower-component
spinors for the Rosen-Morse potential for any κ have been obtained. The solutions of some
special cases are also considered and the energy equations with their associated spinors for
the PSS and SS are obtained, these include:
(i) the s-state solution,
(ii) the standard Eckart potential,
(iii) the PT-Symmetric Rosen-Morse potential,
(iv) the reflectionless-type potential,
(v) the non-relativistic limit.
Also, in the context of the standard function analysis approach, the approximate bound
state solutions of the arbitrary �-state Klein-Gordon and κ-state Dirac equations for the
equally mixed Rosen-Morse potential are obtained by introducing a newly improved
approximation scheme to the centrifugal term. The approximate analytical solutions with
the Dirac-Rosen-Morse potential for any κ or � have been obtained. The upper- and lower-
component spinors have been expressed in terms of the hypergeometric functions (or Jacobi
polynomials). The approximate analytical solutions obtained in this study are the same with
other results available in the literature.

6. Acknowledgments

The author thanks his host Prof. K. D. Sen of the School of Chemistry, University of
Hyderabad, India during his TWAS-UNESCO Associate research visit where part of this
work was done. Also, he thanks his host Prof. M. N.Hounkonnou (the President of the
ICMPA-UNESCO Chair), University of Abomey-Calavi, Republic of Benin where this work
has been finalized. Thanks to Ms. Maja Bozicevic for her patience. He acknowledges the
University of Ilorin for granting him leave. eJDS (ICTP) is acknowledged. Also, he appreciates
the efforts of Profs. Ginocchio, J. N., Dong, S.H., Wei, G.F., Taşkin, F., Grosche, C., Berkdemir,
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1. Introduction

Entropy is a fundamental concept which emerged along with other ideas during the
development of thermodynamics and statistical mechanics Landau and Lifshitz (1978);
Lieb and Yngvason (1999). Entropy has developed foremost out of phenomenological
thermodynamical considerations such as the second law of thermodynamics in which it plays
a prominent role Wehrl (1978). With the intense interest in the investigation of the physics of
matter at the atomic and subatomic quantum levels, it may well be asked whether this concept
can emerge out of the study of systems at a more fundamental level. In fact, it may be argued
that a correct definition is only possible in the framework of quantum mechanics, whereas
in classical mechanics, entropy can only be introduced in a rather limited and artificial way.
Entropy relates macroscopic and microscopic aspects of nature, and ultimately determines
the behavior of macroscopic systems. It is the intention here to present an introduction
to this subject in a readable manner from the quantum point of view. There are many
reasons for undertaking this. The intense interest in irreversible thermodynamics Grössing
(2008), the statistical mechanics of astrophysical objects Padmanabhan (1990); Pathria (1977),
quantum gravity and entropy of black holes Peres & al. (2004), testing quantum mechanics
Ballentine (1970) and applications to condensed matter and quantum optics Haroche & al.
(2006); Raimond & al. (2001) are just a few areas which are directly or indirectly touched on
here.
Let us begin by introducing the concept of entropy from the quantum mechanical perspective,
realizing that the purpose is to focus on quantum mechanics in particular. Quantum
mechanics makes a clear distinction between observables and states. Observables such as
position and momentum are mathematically described by self-adjoint operators in a Hilbert
space. States, which are generally mixed, can be described by a density matrix, which is
designated by ρ throughout. This operator ρ is Hermitean, has trace one and yields the
expectation value of an observable A in the state ρ through the definition

〈A〉 = Tr (ρA). (1.1)

Entropy is not an observable, so there does not exist an operator with the property that its
expectation value in some state would be the entropy. In fact, entropy is a function of state. If
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the given state is described by the density matrix ρ, its entropy is defined to be

S(ρ) = −kB Tr(ρ log(ρ)). (1.2)

This formula is due to von Neumann von Neumann (1955), and generalizes the classical
expression of Boltzmann and Gibbs to the quantum regime. Of course, kB is Boltzmann’s
constant, and the natural logarithm is used throughout. If kB is put equal to one, the entropy
becomes dimensionless. Thus, entropy is a well-defined quantity, no matter what size or type
of system is considered. It is always greater than or equal to zero, and equal to zero exactly
for pure states.
It will be useful to give some interpretation of von Neumann’s formula. The discovery for
which Boltzmann is remembered is his formula for entropy which appeared in 1877, namely,

S = kB log(W), (1.3)

This form for S was established by making a connection between a generalization S of
thermostatic entropy and the classical H-function. The identification of the constant on the
right of (1.3) as Boltzmann’s was proposed by Planck. Equation (1.3) taken in conjunction
with the H-theorem, interprets the second law, ΔS ≥ 0, simply as the tendency of an isolated
system to develop from less probable states to more probable states; that is, from small
W to large W. Thermostatic equilibrium corresponds to the state in which W attains its
maximum value. In fact, equation (1.3) has had far reaching consequences. It led Planck,
for example, to his quantum hypothesis, which is that the energy of radiation is quantized,
and then from there to the third law of thermodynamics. The H-theorem provided an
explanation in mechanical terms of the irreversible approach of macroscopic systems towards
equilibrium. By correlating entropy with the H-function and thermodynamic probability,
Boltzmann revealed the statistical character of the second law. Of course, Boltzmann was
restricted to a classical perspective. The question as to whether the number of microstates
makes literal sense classically has been discussed as an objection to his approach. As stated
by Pauli Pauli (2000), a microstate of a gas for example is defined as a set of numbers which
specify in which cell each atom is located, that is, a number labeling the atom, an index for
the cell in which atom s is located and a label for the microstate. The macrostate is uniquely
determined by the microstate, however the converse does not hold. For every macrostate
there are very many microstates, as will be discussed. Boltzmann’s fundamental hypothesis
is then: All microstates are equally probable.
However, as Planck anticipated, in quantum mechanics such a definition immediately makes
sense. There is no ambiguity at all, as there is a natural idea of microstate. The number of
microstates may be interpreted as the number of pure states with some prescribed expectation
values. Suppose there are W different pure states in a system, each occuring with the same
probability. Then the entropy is simply S = log(W). However, the density matrix of the
system is given by ρ = (1/W)P , where P is a W-dimensional projection operator. Thus, the
correspondence follows immediately, that is, log W = −Tr [ρ log ρ].
Each density matrix can be diagonalized Wehrl (1978),

ρ = ∑
k

pk |k〉〈k|, (1.4)

470 Theoretical Concepts of Quantum Mechanics



Quantum Mechanics Entropy and a Quantum Version of the H-Theorem 3

where |k〉 is a normalized eigenvector corresponding to the eigenvalue pk and |k〉〈k| is
a projection operator onto |k〉 with pk ≥ 0 and ∑k pk = 1. Here the coefficients are
positive probabilities and not complex amplitudes as in a quantum mechanical superposition.
Substituting (1.4) into (1.2) finally yields,

S(ρ) = −∑
k

pk log(pk). (1.5)

There is a more combinatorial approach Wehrl (1978). This will come up again subsequently
when ensembles take the place of a density operator. If N measurements are performed, one
will obtain as a result that for large N, the system is found p1N times in |1〉, p2N times in state
|2〉 and so on, all having the same weight. By straightforward counting, there results

WN =
N!

(p1N)!(p2N)! · · · . (1.6)

When N → ∞, Stirling’s formula can be applied to the logarithm of (1.6) so the entropy is

log
N!

n1!n2! · · · = N log(N)− N − ∑
j
(nj log nj − nj) = −N ∑

j
pj log(pj). (1.7)

Dividing both sides of (1.7) by N, then as N → ∞ (1.5) is recovered. It should also be noted
that (1.5) is of exactly the same form as Shannon entropy, which can be thought of as a measure
of unavailable information.
Of course, another way to look at this is to consider N copies of the same Hilbert space, or
system, in which there are microstates |1〉 ⊗ |2〉 · · · such that |1〉 occurs p1N times, |2〉 occurs
p2N times, and so forth. Again (1.6) is the result, and according to Boltzmann’s equation, one
obtains log(WN) for the entropy as in (1.5). In (1.5), S is maximum when all the pj are equal
to 1/N.
By invoking the constraint ∑k pk = 1, (1.5) takes the form

S = −
N−1

∑
k=1

pk log(pk)− pN log(pN), (1.8)

where pN = 1 − ∑N−1
k=1 pk, and all other pk are considered to be independent variables.

Differentiating S in (1.8), it is found that

∂S
∂pk

= − log(pk) + log(pN).

This vanishes of course when pk = pN = N−1 and this solution is the only extremum of S.
To summarize, entropy is a measure of the amount of chaos or lack of information about
a system. When one has complete information, that is, a pure state, the entropy is zero.
Otherwise, it is greater than zero, and it is bigger the more microstates exist and the smaller
their statistical weight.
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2. Basic properties of entropy

There are several very important properties of entropy function (1.5) which follow from
simple mathematical considerations and are worth introducing at this point Peres (1995).
The first point to make is that the function S(p) is a concave function of its arguments
p = (p1, · · · , pN). For any two probability distributions {pj} and {qj}, and any λ ∈ [0, 1],
S defined in (1.5) satisfies the following inequality

S(λp + (1 − λq)) ≥ λS(p) + (1 − λ)S(q), λ ∈ [0, 1]. (2.1)

This can be proved by differentiating S twice with respect to λ to obtain,

d2S(λp + (1 − λ)q)
dλ2 = −∑

j

(pj − qj)
2

λpj + (1 − λ)qj
≤ 0. (2.2)

This is a sufficient condition for a function to be concave. Equality holds only when pj = qj, for
all j. The physical meaning of inequality (2.1) is that mixing different probability distributions
can only increase uniformity.
If N is the maximum number of different outcomes obtainable in a test of a given quantum
system, then any test that has exactly N different outcomes is called a maximal test, called
T here. Suppose the probabilities pm for the outcomes of a maximal test T which can be
performed on that system are given. It can be shown that this entropy never decreases if it is
elected to perform a different maximal test. The other test may be performed either instead of
T, or after it, if test T is repeatable.
To prove this statement, suppose the probabilities for test T are {pm} and those for a
subsequent test are related to the {pm} by means of a doubly stochastic matrix Pμm. This
is a matrix which satisfies ∑μ Pμm = 1 and ∑m Pμm = 1. In this event,

qμ = ∑
m

Pμm pm

are the probabilities for the subsequent test. The new entropy is shown to satisfy the inequality
S(q) ≥ S(p). To prove this statement, form the difference of these entropies based on (1.5),

∑
m

pm log(pm)− ∑
μ

qμ log(qμ) = ∑
m

pm(log(pm)− ∑
μ

Pμm log(qμ))

= ∑
mμ

pm(Pμm log(pm)− Pμm log(qμ))

= ∑
mμ

pmPμm log(
pm

qμ
).

In the second line, ∑μ Pμm = 1 has been substituted to get this result. Using the inequality
log x ≥ 1 − x−1, where equality holds when x = 1, and the fact that S has a negative sign, it
follows that

S(q)− S(p) ≥ ∑
mμ

pmPμm(1 −
qμ

pm
) = ∑

mμ
(pmPμm − qμPμm) = ∑

μ
(qμ − qμ ∑

m
Pμm) = 0. (2.3)
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The equality sign holds if and only if Pμm is a permutation matrix, so the sets are identical.
After a given preparation whose result is represented by a density matrix ρ, different tests
correspond to different sets of probabilities, and therefore to different entropies. The entropy
of a preparation can be defined as the lowest value attained by (1.5) for any complete test
performed after that preparation. The optimal test which minimizes S is shown to be the one
that corresponds to the orthonormal basis vμ given by the eigenvectors of the density matrix
ρ

ρ vμ = wμvμ.

In this basis, ρ is diagonal and the eigenvalues wμ satisfy 0 ≤ wμ ≤ 1 and ∑μ wμ = 1.
A basic postulate of quantum mechanics asserts that the density matrix ρ completely specifies
the statistical properties of physical systems that were subjected to a given preparation. All the
statistical predictions that can be obtained from (1.1) for an operator are the same as if we had
an ordinary classical mixture, with a fraction wμ of the systems with certainty in the state vμ.
Therefore, if the maximal test corresponding to the basis vμ is designed to be repeatable, the
probabilities wμ remain unchanged and entropy S remains constant. The choice of any other
test can only increase the entropy, as in the preceding result. This proves that the optimal
test, which minimizes the entropy, is the one corresponding to the basis that diagonalizes the
density matrix.
The entropic properties of composite systems obey numerous inequalities as well. Let {vm}
and {eμ} be two orthonormal basis sets for the same physical system. Let ρ = ∑ wm|vm〉〈vm|
and σ = ∑ ωμ|eμ〉〈eμ| be two different density matrices. Their relative entropy S(σ|ρ) is
defined to be

S(σ|ρ) = Tr[ρ(log ρ − log σ)]. (2.4)

Let us evaluate S(σ|ρ) in (2.3) in the |vμ〉 basis where ρ is diagonal. The diagonal elements of
log σ are

(log σ)mm = 〈vm, ∑
μ

log ωμ|eμ〉〈eμ|vm〉 = ∑
μ

log ωμ|〈eμ, vm〉|2 = ∑
μ

log ωμ Pμm. (2.5)

The matrix Pμm is doubly stochastic, so as in (2.3) we have

S(σ|ρ) = ∑
m

wm(log wm − ∑
μ

Pμm log ωμ) = ∑
μm

wmPμm log(
wm

ωμ
) ≥ 0. (2.6)

Equality holds in (2.6) if and only if σ = ρ.
Inequality (2.6) can be used to prove a subadditivity inequality. Consider a composite system,
with density matrix ρ, then the reduced density matrices of the subsystems are called ρ1 and
ρ2. Then matrices ρ, ρ1 and ρ2 satisfy,

S(ρ) ≤ S(ρ1) + S(ρ2). (2.7)

This inequality implies that a pair of correlated systems involves more information than the
two systems separately.
To prove this, suppose that wm, ωμ and Wmμ = wmωμ are the eigenvalues of ρ1, ρ2 and ρ1 ⊗ ρ2,
respectively, then

∑
m

wm log wm + ∑
μ

ωμ log ωμ = ∑
mμ

Wmμ log Wmμ.

473Quantum Mechanics Entropy and a Quantum Version of the H-Theorem



6 Will-be-set-by-IN-TECH

This has the equivalent form,

S(ρ1) + S(ρ2) = S(ρ1 ⊗ ρ2).

Consider now the relative entropy

S(ρ1 ⊗ ρ2|ρ) = Tr[ρ(log ρ − log ρ1 ⊗ ρ2)] = Tr[ρ(log ρ − log ρ1 − log ρ2)].

It has just been shown that relative entropy is nonnegative, so it follows from this that

Tr(ρ log ρ) ≥ Tr(ρ log ρ1) + Tr(ρ log ρ2).

Since Tr(ρ log ρ1) = ∑mμnν ρmμ,nν(log ρ1)nmδνμ = Tr(ρ1 log ρ1), and similarly for Tr(ρ log ρ2),
it follows that

Tr(ρ log ρ) ≥ Tr(ρ1 log ρ1) + Tr(ρ2 log ρ2).

Now using (1.2), it follows that

−S(ρ) ≥ −S(ρ1)− S(ρ2).

Multiplying both sides by minus one, (2.7) follows.

3. Entanglement and entropy

The superposition principle applied to composite systems leads to the introduction of the
concept of entanglement Mintet & al. (2005); Raimond & al. (2001), and provides an important
application for the density matrix. A very simple composite object is a bipartite quantum
system S which is composed of two parts A and B. The states of A and B belong to two
separate Hilbert spaces called HA and HB which are spanned by the bases |iA〉 and |iB〉,
and may be discrete or continuous. If A and B are prepared independently of each other
and are not coupled together at some point, S is described by the tensor product |ψS〉 =
|ψA〉⊗ |ψB〉. Each subsystem is described by a well-defined wave function. Any manipulation
of one part leaves the measurement prediction for the other part unchanged. System S can also
be prepared by measuring joint observables, which act simultaneously on A and B. Even if S
has been prepared by measuring separate observables, A and B can become coupled by means
of an interaction Hamiltonian. In this instance, it is generally impossible to write the global
state |ψS〉 as a product of partial states associated to each component of S.
This is what the expression quantum entanglement means. The superposition principle is at
the heart of the most intriguing features of the microscopic world. A quantum system may
exist in a linear superposition of different eigenstates of an observable, suspended between
different classical realities, as when one says a particle can be at two positions at the same
time. It seems to be impossible to get a classical intuitive representation of superpositions.
When the superposition principle is applied to composite systems, it leads to the concept of
entanglement. Moreover, as Bell has shown, entanglement cannot be consistent with any local
theory containing hidden variables.
Even if the state S cannot be factorized according to the superposition principle, it can be
expressed as a sum of product states |iA〉 ⊗ |μB〉, which make up a basis of the global Hilbert
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space, HS. Consequently, an entangled state can be expressed as

|ψS〉 = ∑
i,μ

αiμ|iA〉 ⊗ |μB〉 	= |ψA〉 ⊗ |ψB〉, (3.1)

where the αiμ are complex amplitudes. The states |ψS〉 contain information not only about
the results of measurements on A and B separately, but also on correlations between these
measurements. In an entangled state, each part loses its quantum identity. The quantum
content of the global state is intricately interwoven between the parts. Often it is the case that
there is interest in carrying out measurements on one part without looking at another part. For
example, what is the probability of finding a result when measuring observable OA attached
to subsystem A, without worrying about B. The complete wave function |ψS〉 can be used to
predict the experimental outcomes of the measurement of OA ⊗ 1B. This can also be done by
introducing the density operator ρS of a system described by the quantum state |ψS〉, which
is just the projector

ρS = |ψS〉〈ψS|. (3.2)

It has the same information content as |ψS〉, and for all predictions on S, all quantum rules can
be expressed in such a fashion; for example, the expectation values of an observable OS of S is
found by (1.1). The probability of finding the system in |i〉 after a measurement corresponding
to the operator ρi = |i〉〈i| is given by |〈i|ψS〉|2 in the quantum description and Tr(ρiρS) in
terms of the density matrix.
The density operator approach is very advantageous for describing one subsystem, A, without
looking at B. A partial density operator ρA can be determined which has all the predictive
information about A alone, by tracing ρS over the subspace of B

ρA = TrB(ρS) = ∑
i,i′ ,μ

αiμα∗i′μ|iA〉〈iA|. (3.3)

Thus, the probability of finding A in state |jA〉 is found by computing the expectation value
of the projector ρj = |jA〉〈jA|, which is πj = Tr (ρAρj). Predictions on A can be done without
considering B. The information content of ρA is smaller than in ρS, since correlations between
A and B are omitted. To say that A and B are entangled is equivalent to saying that ρA and ρB
are not projectors on a quantum state. There is however a basis in HA in which ρA is diagonal.
Let us call it |jA〉, so that ρA is given by

ρA = ∑
j

λj|jA〉〈jA|. (3.4)

In (3.4), λj are positive or zero eigenvalues which sum to one. By neglecting B, there is
acquired only a statistical knowledge of state A, with a probability λj of finding it in |jA〉.
It is possible to express the state for S in a representation which displays the entanglement.
The superposition (3.1) claims nothing as to whether the state can be factored. To put this
property in evidence, choose a basis in HA, called |jA〉 in which ρA is diagonal. Then (3.1) is
written

|ψS〉 = ∑
j
|jA〉| j̃B〉, (3.5)
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where state | j̃B〉 is given by
| j̃B〉 = ∑

μ
αjμ|μB〉. (3.6)

The | j̃B〉 are mirroring in HB the basis of orthonormal states in HA in which ρA is diagonal.
These mirror states are also orthogonal to each other as can be seen by expressing the fact that
ρ is diagonal

〈jA|ρA|j′A〉 = λjδjj′ = 〈 j̃B| j̃′B〉.
At this point, the mirror state can be normalized by means of the transformation | ĵB〉 =

|jB〉/
√

λj giving rise to the Schmidt expansion,

|ψS〉 = ∑
j

√
λj|jA〉| ĵB〉. (3.7)

The sum over a basis of product mirror states exhibits clearly the entanglement between A
and B. The symmetry of this expression shows that ρA and ρB have the same eigenvalues.
Any pure entangled state of a bipartite system can be expressed in this way.
Now a measure of the degree of entanglement can be defined using the density matrix. As
the λj become more spread out over many non-zero values, more information is lost by
concentrating on one system and disregarding correlations between A and B. This loss of
mutual information can be linked to the degree of entanglement. This information loss could
be measured by calculating the von Neumann entropy of A or B from (1.5)

SA = SB = −∑
j

λj log(λj) = −Tr(ρA log ρA) = −Tr(ρB log ρB). (3.8)

This is the entropy of entanglement Se = SA = SB, and it expresses quantitatively the degree
of disorder in our knowledge of the partial density matrices of the two parts of the entangled
system S.
If the system is separable, then one λj is non-zero and Se = 0, so maximum information on
the states of both parts obtains. As soon as two λj are non-zero, Se becomes strictly positive
and A and B are entangled. The maximum entropy, hence maximum entanglement obtains
when the λj are equally distributed among the A and B subspaces. It is maximal and equal to
log NA, when ρA is proportional to 1A, that is ρA = 1A/NA. In a maximally entangled state,
local measurements performed on one part of the system are not predictable at all. What can
be predicted are the correlations between the measurements performed on both parts. For
example, consider a bipartite system in which one part has dimension two. There are only
two λ-values in the Schmidt expansion, and satisfy λ1 + λ2 = 1. Then from (1.5), the entropy
when λ1 ∈ (0, 1) is,

Se = −λ1 log(λ1)− (1 − λ1) log(1 − λ1). (3.9)

The degree of entanglement is equal to zero when λ1 = 0 or 1 and passes through a maximum
at λ1 = 1/2 at which Se = 1. The degree of entanglement measured by the von Neumann
entropy is invariant under local unitary transformations acting on A or B separately, a direct
consequence of the invariance of the spectrum of the partial density operators.
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Consider the case of a two-level system with states |0〉 and |1〉, where the density matrix is a
two-by-two hermitean matrix given by

ρA =

(
ρ00 ρ01
ρ10 ρ11

)
. (3.10)

The entropy can be calculated for this system. Its positive diagonal terms are the probabilities
of finding the system in |0〉 or |1〉 and they sum to one. The nondiagonal terms satisfy ρ01 =
ρ∗10 and are zero for a statistical mixture of |0〉 and |1〉. Since ρA is a positive operator

|ρ10| = |ρ01| ≤ √
ρ00ρ11.

is satisfied, and the upper bound is reached for pure states.
The density matrix ρA can be expanded with real coefficients onto the operator basis made up
of the identity matrix I and the Pauli matrices σi

ρA =
1
2
(I + R ·σ), (3.11)

where R = (u, v, w) is three-dimensional and σ = (σx, σy, σz). The components of R are linked
to the elements of the density matrix as follows

u = ρ10 + ρ01, v = i(ρ01 − ρ10), w = ρ00 − ρ11.

The modulus R of R satisfies R ≤ 1, equality holding only for pure states. This follows from
Tr(ρ2

A) ≤ 1. If nonlinear functions of an observable A are defined as f (A) = ∑ f (ak)|ek〉〈ek|,
the von Neumann entropy of ρ is

S = −1 + R
2

log(
1 + R

2
)− 1 − R

2
log(

1 − R
2

). (3.12)

To each density matrix ρA, the end of the vector R can be located on the surface of a sphere.
The surface of the sphere R = 1 is the set of pure states with S = 0. The statistical mixtures
correspond to inside the sphere R < 1. The closer the point to the center, the larger the von
Neumann entropy. The center of the sphere corresponds to the totally unpolarized maximum
entropy state.
Any mixed state can be represented in an infinite number of ways as a statistical mixture of
two pure states, since any P with its end inside the sphere can be expressed as a vector sum of
a P1 and P2 whose ends are at the intersection of the sphere with an arbitrary line passing by
the extreme end of P, so one can write P = λP1 + (1− λ)P2 for 0 < λ < 1. The density matrix
which is a linear function of P is then a weighted sum of the projectors on the pure states |u1〉
and |u2〉 corresponding to P1 and P2,

ρA =
1
2
[I + λP1 ·σ + (1 − λ)P2 ·σ] = λ|u1〉〈u1|+ (1 − λ)|u2〉〈u2|. (3.13)

Thus, there exists an ambiguity of representation of the density operator which, if P 	= 0, can
be lifted by including the condition that |u1〉 and |u2〉 be orthogonal.
Before finishing, it is worth discussing the following application, which seems to have very
important ramifications. A violation of the second law arises if nonlinear modifications are
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introduced into Schrödinger’s equation Weinberg (1989). A nonlinear Schrödinger equation
does not violate the superposition principle in the following sense. The principle asserts that
the pure states of a physical system can be represented by rays in a complex linear space,
but does not demand that the time evolution obeys a linear equation. Nonlinear variants of
Schrödinger’s equation can be created with the property that if u(0) evolves to u(t) and v(0)
to v(t), the pure state represented by u(0) + v(0) does not evolve into u(t) + v(t), but into
some other pure state.
The idea here is to show that such a nonlinear evolution violates the second law of
thermodynamics. This is provided the other postulates of quantum mechanics remain as they
are, and that the equivalence of the von Neumann entropy to ordinary entropy is maintained.
Consider a mixture of quantum systems which are represented by a density matrix

ρ = λΠu + (1 − λ)Πv, (3.14)

where 0 < λ < 1 and Πu, Πv are projection operators on the pure states u and v. In matrix
form the density matrix is represented as

ρ =

(
λ λ〈v|u〉

(1 − λ)〈u|v〉 1 − λ

)
.

The eigenvalues are found by solving the polynomial det(ρ − w1) = 0 for the eigenvalues w.
Setting x = |〈u, v〉|2, they are given by

wj =
1
2
± [

1
4
− λ(λ − 1)(1 − x)]1/2, j = 1, 2. (3.15)

The entropy of this mixture is found by putting wj into (1.5)

S = −w1 log(w1)− w2 log(w2). (3.16)

The polynomial p(λ) = 4λ(1 − λ) has range (0, 1) when λ ∈ (0, 1), so it follows that s =
4λ(1 − λ)(1 − x) ∈ (0, 1) as well. Setting f = 1 − s, then when s ∈ (0, 1), the derivative of
(3.16) is given by

∂S
∂x

= − λ(1 − λ)√
1 − 4λ(1 − λ)(1 − x)

log(
(1 +

√
f )2

4λ(1 − λ)(1 − x)
)

= −λ(1 − λ)√
1 − s

log(
(1 +

√
1 − s)2

s
) < 0.

Consequently, if pure quantum states evolve as u(0) → u(t) and v(0) → v(t), the entropy
of the mixture ρ shall not decrease provided that x(t) ≤ x(0), or in terms of the definition
of x, |〈u(t), v(t)〉|2 ≤ |〈u(0), v(0)〉|2. If say 〈u(0), v(0)〉 = 0, then also 〈u(t), v(t)〉 = 0, so
orthogonal states remain orthogonal. Consider now a complete orthogonal set uk. For every
v,

∑
k
|〈uk, v〉|2 = 1.

If there exists m such that |〈um(t), v(t)〉|2 < |〈um(0), v(0)〉|2, there must also exist some n
for which the reverse holds, |〈un(t), v(t)〉|2 > |〈un(0), v(0)〉|2. In this event, the entropy of a
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mixture of un and v will spontaneously decrease in a closed system, which is in violation of
the second law of thermodynamics. To retain the law, |〈u(t), v(t)〉|2 = |〈u(0), v(0)〉|2 must
hold for every u and v. From Wigner’s theorem, the mapping v(0) → v(t) is unitary, so
Schrödinger’s equation must be linear if the other postulates of quantum mechanics remain
fixed.

4. Ensemble methods in quantum mechanics

In classical mechanics, one relinquishes the idea of a description of the microscopic mechanical
states of trillions of microscopic interacting particles by instead computing averages over a
virtual ensemble of systems which replicate the real system. Quantum theory is faced with a
similar problem, and the remedy takes the form of the Gibbs ensemble. This last section will
take a slightly different track and discusses ensemble theory in quantum mechanics. Two of
the main results will be to produce a quantum version of the H-Theorem, and to show how
the quantum mechanical canonical ensemble can be formulated.
An astronomic number of states, or of microstates, is usually compatible with a given set of
macroscopic parameters defining a macrostate of a thermophysical system. Consequently, a
virtual quantum mechanical ensemble of systems is invoked, which is representative of the
real physical system. The logical connection between a physical system and ensemble is made
by requiring the time average of a mechanical property G of a system in thermodynamic
equilibrium equal its ensemble average calculated with respect to an ensemble made up of
N∗ → ∞ systems representing the actual system

Ḡ = 〈G〉. (4.1)

The ensemble average 〈G〉 is the ordinary mean of G over all the systems of the ensemble. If
N∗

r systems are in a state with eigenvalue Gr corresponding to G,

N∗〈G〉 = ∑
r

N∗
r Gr, (4.2)

where the sum is over all allowed states.
Adopt as a basic set the states ψjrm··· uniquely identifiable by the quantum numbers j, r, m, · · ·
referring to a set of compatible properties. A particular system of the ensemble will not
permanently be in one of these states ψjrm···, as there exists only a probability to find a system
in any one. Let us compress the basic states to read ψjr if we let r stand for the entire collection
of quantum numbers r, m, · · · . These cannot strictly be eigenstates of the total energy, since a
system occupying a particular eigenstate of its total Hamiltonian H at any one moment will
remain in this state forever. The state of the real system, which the ensemble is to represent,
is a superposition of eigenstates belonging to the same or different values of the energy. To
obtain an ensemble where the individual members are to change, we suppose the basic set ψjr

is made up of eigenstates of the unperturbed Hamiltonian H0. Assume it is possible to write

H = H0 + H1, (4.3)

such that H1 is a small perturbation added to the unperturbed Hamiltonian H0, and vary with
the physical system considered.
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Suppose E0
j are the eigenvalues of the unperturbed H0 and ψ0

jr the eigenstates corresponding

to them, where r again denotes a set of compatible quantum numbers. Introducing H1 now
changes the energy eigenvalues and energy eigenfunctions by an amount E1

jr and ψ1
jr, which

should be very small compared with the unperturbed values. It is precisely the eigenstates
ψ0

jr of H0 rather than H that are used as basic states for the construction of the ensemble.
Since these for the most part will appear in what follows, we continue to omit the superscript
for both the eigenfunctions ψjr and eigenvalues Ejr whenever the situation indicates that
unperturbed quantities are intended. A perturbed system finding itself initially in any one
of the unperturbed states ψjr does not remain indefinitely in this state, but will continually
undergo transitions to other unperturbed states ψks due to the action of the perturbation H1.
In analogy with a classical system, a quantum ensemble is described by the number of systems
N∗

jr in each state ψjr. The probability Pjr of finding a system, selected at random from the
ensemble, in the state ψjr is clearly

Pjr =
N∗

jr

N∗ . (4.4)

The quantities N∗
jr must sum up to N∗,

∑
jr

N∗
jr = N∗, ∑

jr
Pjr = 1. (4.5)

An ensemble can be representative of a physical system in thermodynamic equilibrium only
in this context if the occupation numbers N∗

jr are constants. A more general picture could
consider the occupation numbers as functions of time N∗

jr = N∗
jr(t). The ensemble corresponds

to a system removed from equilibrium. Let us ask then how do the N∗
jr vary with time.

Quantum mechanics claims the existence of Ajr
ks(t) which determine the probability of a

system in state ψjr at time zero to be in ψks at time t. The final state could correspond to
the initial state. Since N∗

jr(0) systems are in a state specified by quantum numbers jr at t = 0,

Ajr
ks(t)N∗

jr(0) systems will make the transition from jr to ks during (0, t) The number of systems
in ks at time t will be

N∗
ks(t) = ∑

j
∑
r

Ajr
ks(t) N∗

jr(0). (4.6)

The Ajr
ks(t) must satisfy the condition ∑j ∑r Ajr

ks(t) = 1. Multiplying this by N∗
ks(0) and

subtracting from (4.6) gives

N∗
ks(t)− N∗

ks(0) = ∑
j

∑
r

Ajr
ks(t)[N

∗
jr(0)− N∗

ks(0)]. (4.7)

This is the change in occupation number over (0, t). Dividing (4.7) by N∗ and using (4.4) gives

Pks(t)− Pks(0) = ∑
j

∑
r

Ajr
ks[Pjr(0)− Pks(0)]. (4.8)

A stationary ensemble or one in statistical equilibrium defined as N∗
ks(t) = N∗

ks(0) for all ks

holds when N∗
jr(0) = N∗

ks(0), at least when Ajr
ks(t) 	= 0. The contribution to the right side of

(4.8) comes from an extremely narrow interval ΔE = 2h̄/t centered at Ej = Ek, as indicated by
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perturbation theory. In this interval, it can be assumed Pjr(0) depends on the j-index weakly
enough that we can use Pks(0) in their place, so the term in brackets in (4.8) does not depend
on j. The energy spectrum is very nearly continuous for a thermophysical system, so the sum
over j can be approximated by an integral over E. This implies an approximation of the form

∑
j

Ajr
ks(t) = tW(k)

sr . (4.9)

The quantities W(k)
sr are time independent provided H1 is time independent. Consequently,

they are nonnegative and depend only on the displayed indices. Substituting (4.9) and
Pjr(0) = Pkr(0) into (4.8) gives

1
t
[Pks(t)− Pks(0)] = ∑

r
W(k)

sr [Pkr(0)− Pks(0)]. (4.10)

In the limit when t becomes arbitrarily small, (4.10) can be approximated by expanding about
t = 0 on the left to give the final result for the time rate of change of the probability Pks,

Ṗks = ∑
r

W(k)
sr [Pkr(0)− Pks(0)]. (4.11)

This equation was first derived by W. Pauli, and will lead to a quantum version of the
H-Theorem next. It signifies that of the N∗Pkr(0) systems occupying state kr at t = 0,

N∗Pkr(0)W
(k)
sr will, per unit time, go over to ks. Thus, the W(k)

ks are interpreted as transition
probabilities per unit time that the system will go from state kr to ks. They must satisfy

W(k)
sr ≥ 0 and the symmetry conditions W(k)

rs = W(k)
sr . This is also referred to as the principle

of microscopic reversibility.

4.1 A quantum H-theorem
The ensemble which represents a real physical system is determined by the thermodynamic
state and environment of the actual system. The virtual ensemble has constituents which
must duplicate both aspects. Of great practical interest and the one considered here is the
case of isolated systems. An isolated system is characterized not only by a fixed value of the
energy E, but also by a definite number of particles and volume V. Under these conditions,
a quantum H-theorem can be formulated Yourgrau et al. (1966). Classically the error with
which the energy of the real system can be specified can be theoretically reduced to zero.
However, quantum theory claims there is a residual error specified by the uncertainty relation.
All members of the ensemble cannot be said then to occupy eigenstates belonging to the same
energy. It must be assumed the systems are distributed over energy levels lying within a finite
range, ΔE. The following restrictions on the occupation numbers of the ensemble are imposed
for an isolated system

N∗
jr 	= 0, Ej ∈ IΔE = (E − 1

2
ΔE, E +

1
2

ΔE), N∗
jr = 0, Ej 	∈ IΔE. (4.12)

It will be shown that the ensemble specified by (4.12) exhibits a one-directional development
in time ending ultimately in equilibrium.
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Pauli’s equation can be used to obtain the rate of change of the quantum mechanical
H-function which is defined to be

H∗(t) = ∑
s

Ps log(Ps). (4.13)

The summation in (4.13) is extended over the group of states whose energies are
approximately E, that is in the interval IΔE for example. Now, differentiate (4.13) with respect
to t and use the fact that ∑s Ps = 1 to get

Ḣ∗ = ∑
s

Ṗs log(Ps) + ∑
s

Ṗs = ∑
s

Ṗs log(Ps). (4.14)

Now requiring that Ṗs be determined by (4.11), Ḣ∗ in (4.14) becomes

Ḣ∗(t) = ∑
s

∑
r

Wsr(Pr − Ps) log(Ps). (4.15)

Interchanging r and s and using the symmetry property Wrs = Wsr, this is

Ḣ∗(t) = ∑
r

∑
s

Wrs(Ps − Pr) log(Pr) = −∑
r

∑
s

Wsr(Pr − Ps) log(Pr). (4.16)

Adding (4.15) and (4.16) yields the following result,

Ḣ∗(t) = −1
2 ∑

r
∑
s

Wsr(Pr − Ps)(log(Pr)− log(Ps)). (4.17)

Recalling that Wsr ≥ 0 as well as the inequality (x − y)(log x − log y) ≥ 0 for each (r, s), it
follows that (Pr − Ps)(log(Pr)− log(Ps)) ≥ 0. Consequently, each term in the sum in (4.17) is
either zero or positive, hence H∗(t) decreases monotonically with time,

Ḣ∗(t) ≤ 0. (4.18)

Equality holds if and only if Ps = Pr for all pairs (r, s) such that Wsr 	= 0. Thus H∗ decreases
and statistical equilibrium is reached only when this condition is fulfilled. Originally
enunciated by Boltzmann in a classical context, (4.18) constitutes a quantum mechanical
version of the H-theorem.

4.2 Quantum mechanical canonical ensemble
Let us devise an ensemble which is representative of a closed isothermal system of given
volume, or characterized by definite values of the parameters T, V and N. This approach
brings us back to one of the ways entropy was formulated in the introduction, and need not
rely on the specification of a density matrix. Suppose there are N∗ members of the ensemble
each with the same values of V and N as the real system. However, they are not completely
isolated from each other, so each is surrounded by a surface that does not permit the flow
of particles but is permeable to heat. The collection of systems can be packed into the form
of a lattice and the entire construction immersed in a heat reservoir at temperature T until
equilibrium is attained. The systems are isothermal such that each is embedded in a heat
reservoir composed of the remaining N∗ − 1.
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Once the ensemble is defined, it can be asked which fraction of the N∗ systems occupies
any particular eigenstate of the unperturbed Hamiltonian of the experimental system. Let us
study the ensemble then which is regarded as a large thermophysical system having energy
E∗, volume V∗ = N∗V and made up of N∗N particles.The quantum states of this large
supersystem belonging to energy E∗ are to be enumerated. The thermal interaction energy
is assumed to be so small that a definite energy eigenstate can be assigned to each individual
system at any time. As energy can be exchanged between constituent systems, the eigenstates
accessible to them do not pertain to one value of energy. The energy eigenstates of a system
are written E1, E2, · · · , Ej, · · · with Ej+1 ≥ Ej. Only one system-state j belongs to energy
eigenvalue Ej. An energy eigenstate of the supersystem is completely defined once the energy
eigenstate occupied by each system is specified.
It is only needed to stipulate the number N∗

j of systems occupying every system state j. Any
set of values of the occupation numbers N∗

1 , N∗
2 , · · · define a quantum mechanical distribution.

Clearly the W∗ supersystem states calculated by

W(N∗
1 , N∗

2 , · · · ) = N∗!
N∗

1 !N∗
2 ! · · · (4.19)

are compatible with a given distribution N∗
1 , N∗

2 , · · · . Not all sets of N∗
j are admissible. The

physically relevant ones satisfy the two constraints

∑
j

N∗
j = N∗, ∑

j
N∗

j Ej = E∗. (4.20)

The supersystem then consists of a number N∗ of fixed but arbitrary systems with a constant
energy E∗.
The number of physically possible supersystem states is clearly given as

Ω∗(E∗, N∗) = ∑
C

W∗(N∗
1 , N∗

2 , · · · ), (4.21)

where the summation is to be extended over all N∗
j satisfying constraints (4.20). According

to the earlier postulate, all allowed quantum states of an isolated system are equiprobable.
Consequently, from this principle all states which satisfy (4.20) occur equally often. The
probability P∗ that a particular distribution N∗

1 , N∗
2 , · · · is actualized is the quotient of W∗

and Ω∗,

P∗(N∗
1 , N∗

2 , · · · ) = W∗(N∗
1 , N∗

2 , · · · )
Ω∗(E∗, N∗) . (4.22)

With respect to P∗ in (4.22), the average value of the occupation number N∗
k is given quite

simply by
N̄∗

k = ∑
k

N∗
k P∗(N∗

1 , N∗
2 , · · · ). (4.23)

Substituting P∗ into (4.23), it can be written as

Ω∗(E∗, N∗)N̄∗
k = N∗ ∑

k

(N∗ − 1)!
N∗

1 !N∗
2 ! · · · (N∗

k − 1)! · · · . (4.24)
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To obtain a more useful expression for N̄∗
k , the right-hand side can be transformed to a set of

primed integers. To this end, define

N∗′ = N∗ − 1, N∗′
k = N∗

k − 1, N∗′
j = N∗

j , j 	= k.

Using these, constraints (4.20) get transformed into

∑ N∗′
j = N∗

1 + N∗
2 + · · ·+ (N∗

j − 1) + · · · = N∗ − 1,

∑ N∗′
j Ej = N∗

1 E1 + · · ·+ (N∗
k − 1)Ek + · · · = E∗ − Ek. (4.25)

Consequently,

Ω∗(E∗, N∗) = N∗ ∑′ N∗′ !
N∗′

1 !N∗′
2 ! · · · , (4.26)

where the prime means the sum extends over all N∗′
k which satisfy constraints (4.25).

Comparing (4.26) with (4.20), the right-hand side of (4.26) is exactly N∗Ω∗(E∗ − Ek, N∗ − 1).
Thus dividing by Ω∗(E∗, N∗), we have

N̄∗
k =

N∗Ω∗(E∗ − Ek, N∗ − 1)
Ω∗(E∗, N∗) .

Dividing this by N∗ and taking the logarithm of both sides results in the expression,

log
N̄∗

k
N∗ = log Ω∗ (E∗ − Ek, N∗ − 1)− log Ω∗(E∗, N∗). (4.27)

The result in (4.27) can be expanded in a Taylor series to first order if we take N∗ >> 1 and
E∗ >> Ek,

log
N̄∗

k
N∗ = − ∂ log Ω∗

∂E∗ E∗
k − ∂ log Ω∗

∂N∗ = −βE∗
k − α. (4.28)

From the constraint N∗ = ∑j N̄∗
j = N∗e−α ∑ e−βEj , eα can be obtained. Replacing this back in

(4.28) and exponentiating gives

N̄∗
k = N∗ e−βEk

∑k e−βEj
. (4.29)

The result in (4.29) gives what the average distribution of systems over system states will
be in a supersystem at equilibrium. The instantaneous distribution will fluctuate around
this distribution. The relative fluctuations of the occupation numbers for large enough N∗
are negligible, so to this accuracy, N̄∗

k /N∗ can be equated to Pk. Setting Z = ∑j e−βEj , the
instantaneous probability that an arbitrarily chosen system of this supersystem will be in
system state k can be summarized as follows

Pk = Z−1e−βEk . (4.30)

This distribution is the quantum version of the canonical distribution in phase space, and is
referred to as the quantum mechanical canonical ensemble. The function Z so defined is called
the partition function.
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In effect, this formalism has permitted the construction of a type of measuring device. Let
us show that the microscopic ideas which have led to these results immediately imply
consequences at the macroscopic level. To this end, it will be established what the exact form
of the connection between Z and the Helmholtz free energy F actually is. The starting point is
the second part of (4.20). Putting U = E∗/N∗, it implies

U = ∑
j

PjEj. (4.31)

Formula (4.31) is in agreement with the postulate maintaining that the energy U of the
physical system must be identified with the ensemble average 〈E〉 of the energy.
Begin by considering the change dU of the energy U when the experimental system remains
closed but undergoes an infinitesimal reversible process. Equation (4.31) implies that

dU = ∑
j
(Ej dPj + Pj dEj). (4.32)

Now (4.30) can be solved for Ej in the form Ej = −β−1(log Z + log Pj). Consequently, since
∑j Pj = 1, it is found that ∑j dPj = 0. Combining these it then follows that

− ∑
j

EjdPj = β−1 ∑
j
(log Z + log Pj) dPj = β−1 ∑

j
log Pj dPj = β−1d(∑

j
Pj log Pj). (4.33)

Further, with − 	 dW the work done on the system during the given process, we have that

∑
j

Pj dEj = − 	 dW, (4.34)

Combining (4.33) and (4.34), we get the result

dU = −β−1 d(∑
j

Pj log Pj)− 	 dW. (4.35)

Comparing (4.35) with the first law dU = 	 dQ− 	 dW, it is asserted that

β 	 dQ = −d(∑
j

Pj log Pj). (4.36)

Since the right-hand side of (4.36) is an exact differential, it is concluded that β is an integrating
factor for 	 dQ. By the second law of thermodynamics, β must be proportional to T−1 and the
proportionality constant must be the reciprocal of kB. With β of this form, when combined
with the second law 	 dQ = TdS, we have

dS = −kBd(∑
j

Pj log Pj). (4.37)

This can be easily integrated to give

S = −kB ∑
j

Pj log Pj + C, (4.38)
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where the integrating constant C is independent of both T and V. In fact the additive property
of entropy requires that C = 0.
This complicated procedure has returned us in some sense to where we began with (1.5), but
by a different route. To get a relation between Z and F, use (4.30), (4.31) and (4.38) to write

TS = −kBT ∑
j

Pj log Pj = kBT log Z + ∑
j

PjEj = kBT log Z + U. (4.39)

Consequently, since F = U − TS, (4.39) implies the following result

F = −kBT log Z. (4.40)

Through the construction of these ensembles at a fundamental quantum level, a formalism
has been obtained which will allow us to obtain concrete predictions for many equilibrium
thermodynamic properties of a system once the function Z = Z(T, V, N) is known. In fact, it
follows from the thermodynamic equation

dF = −S dT − pdV + μ dN, (4.41)

where μ is the chemical potential per molecule, that

S = −(
∂F
∂T

)V,N = kB log Z + kBT(
∂Z
∂T

)V,N , (4.42)

p = −(
∂F
∂V

)N,T = kBT(
∂Z
∂V

)N,T ,

μ = (
∂F
∂N

)T,V = −kBT(
∂ log Z

∂N
)T,V ,

U = F + TS = kBT2(
∂ log Z

∂T
)V,N . (4.43)

As an application of these results, consider the one-dimensional harmonic oscillator which
has quantum mechanical energy eigenvalues given by

εn = (n +
1
2
)h̄ω, n = 0, 1, 2, · · · . (4.44)

The single-oscillator partition function is given by

z(β) =
∞

∑
n=0

e−β(n+ 1
2 )h̄ω = (2 sinh(

1
2

βh̄ω))−1.

The N-oscillator partition function is then given by

ZN(β) = [z(β)]N = (2 sinh(
1
2

βh̄ω)]−N . (4.45)

The Helmholtz free energy follows from (4.40),

F = NkBT log(2 sinh(
1
2

βh̄ω)).
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By means of F, (4.42) and (4.43) imply that μ = F/N, p = 0 and the entropy and energy are

S = NkB[
βh̄ω

eβh̄ω − 1
− log(1 − e−βh̄ω)], U = N[

1
2

h̄ω +
h̄ω

eβh̄ω − 1
]. (4.46)

5. Conclusions

It has been seen that formulating the concept of entropy at the microscopic level can be closely
related to studying the foundations of quantum mechanics. Doing so provides a useful
formalism for exploring many complicated phenomena such as entanglement at this level.
Moreover, predictions can be established which bridge a gap between the microscopic and
the macroscopic realm. There are many other topics which branch out of this introduction to
the subject. For example there is a great deal of interest now in the study of the quantization of
nonintegrable systems Gutzwiller (1990), which has led to the field of quantum chaos. There
are many indications of links in this work between the areas of nonintegrability and the kind
of ergodicity assumed in statistical mechanics which should be pursued.
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1. Introduction 

In the universe all the phenomena of physical, energetic and mental nature coexist of 
functional and harmonic management, since they are interdependent ones; for example to 
quantum level a particle have a harmonic relation with other or others, that is to say, each 
particle has a correlation energy defined by their energy density K, which relates the 
transition states , and , of a particle to along of the time. 
There is an infinite number of paths of this kind , in the space-time of the phenomena to 
quantum scale, that permits the transition or impermanence of the particles, that is to say, 
these can change from wave to particle and vice versa, or suffer energetic transmutations 
due to the existing relation between matter and energy, and of themselves in their infinity of 
the states of energy. Of this form we can realize calculations, which take us to the 
determination of amplitudes of transition inside a range of temporary equilibrium of the 
particles, that is to say, under the constant action of a field, which in this regime, remains 
invariant under proper movements in the space-time. Then exist a Feynman integral that 
extends on the space of continuous paths or re-walked , that joins both correlated 
transition states. Likewise, if Rd  It, is the space-time where happens these transitions, and 
u, v, are elements of this space, the integral of all the continuous possible paths in Rd  It, is 

 
,C [0, ]

( , ( )) exp ( )( ) ,
u v t

i
L x t Action x Dx   

  
I  (1) 

where h, is the constant of Max Planck, and the  (Action), is the realized by their Lagrangian L. 
Nevertheless, this temporal equilibrium due to the space-time between particles can turn 
aside, and even get lost (suffer scattering) in the expansion of the space-time when the 
trajectory that joins the transition states gets lost, this due to the absence of correlation of the 
particles, or of an adequate correlation, whose transition states do not turn out to be related, 
or turn out to be related in incorrect form. From a deep point of view of the knowledge of 
the matter, this succeeds when the chemical links between the atoms weaken and break, or 
get lost for lack of an electronic exchange adapted between these (process electrons emission-
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reception). All this brings with it a disharmony matter-energy producing collateral damage 
between the immensity of interacting particles whose effects are a distortion of the field 
created by them. Finally these effects become visible in the matter under structural 
deformations or production of defective matter. 
To eliminate this distortion of the field is necessary to remember the paths and to continue 
them of a systematised form through of certain path or route integrals (that belongs to a class 
of integral of the type (1)), that re-establishes normal course of the particles, re-integrating 
their field (realising the sum of all the trajectories that conform the movement of the 
particle), eliminating the deviations (that can derive in knots or ruptures in the space-time) 
that previously provoked this disequilibrium. These knots or ruptures in the space-time will 
be called singularities of the field. 
In quantum mechanics, the spectral and vibration knowledge of the field of particles in the 
space, facilitates the application of corrective and restorer actions on the same field using their 
space of energy states through of the meaning of their electromagnetic potentials studied in 
quantum theory (Aharonov-Bohm effect). Thus these electromagnetic potentials can be re-
interpreted in a spectral and vibration space that can be formulated in a set of continuous 
paths or re-walked, with the goal of realising corrective and restorers applications of the field, 
stretch to stretch, section for section, and that is inherent in this combined effect of all the 
possible trajectories to carry a particle from a point to other. By gauge theory is licit and 
consistent to manipulate the actions of correction and restoration of the field through of 
electromagnetic field, which ones are gauge fields of several types of interactions both strong 
and weak. In this last point is necessary to mention that in the class of equivalence of the 
electrodynamics potentials can be precisely re-interpreted like a connection on a trivial bundle 
of lines of SU(2) (non-Abelian part of the gauge theory using electromagnetic fields), and admitting 
non-trivial bundles of lines with connection provided with more general fields (as for example, 
the of curvature, or the corresponding to SU(3) (the strong interactions)). In both cases they are 
considered to be the phases of the corresponding functions of wave local variables and 
constant actions can be established across of their correspondents Lagrangians. The path 
integrals to these cases are of the same form that (1), except from the consideration of the 
potential states in each case. Into of this electromagnetic context and from the point of view of 
the solution of the wave equation through the alignments of lines of field, we can use the 
corresponding homogeneous bundle of lines that are used to give adequate potentials 
(potential module gauge, for example, those who come from the cohomology of O(n  2), n  1 
(Bulnes & Shapiro, 2007). Of this management we can establish that {set of fields of particles}    
I(H1(PM, O( n  2))), where  {potentials}/{gauge}    H1(PM, O( n  2)), (Bulnes & Shapiro, 
2007). Here I(H1(PM, O( n  2))), is the cohomological class of the spectral images of the integrals 
of line on the corresponding homogeneous bundle O( n  2). 
Generalising the path integrals (1), we can establish that an evaluation of a global action , 
due to the law of movement established for an operator L, that act on the space of particles 
x(s), comes given for  

 : (s) ( (s)) ( (s)),
M

x L X d x   (2) 

where M ( Rd  It), is the space-time of the transitions of the particles x(s).  
In particular, if we want the evaluation of this action to along of certain elected trajectory 
(path), inside of the field of minimal trajectories that governs the principle of minimal action 
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established by L, in our integrals (2), we have the execution of the action in a path , given, 
to know  

 

M

Exe : ( ( )) ( ( )) ( ( ))} ( ( )) ,{x s L X s d x s x ss s
 

       (3) 

where s, the corresponding measure on the path or trajectory , in M, is. The study of this 
integrals and their applications in the re-composition, alignment, correction and restoration 
of fields due to their particles are the objective of this chapter. We define as correction of a 
field X, to a re-composition or alignment of X. Is re-composition if is a re-structure or re-
definition of X, is to say, it is realize changes of their alignment and transition states. The 
corrective action is an alignment only, if X, presents a deviation or deformation in one of 
their force lines or energy channels. A restoration is a re-establishment of the field, 
strengthening their force lines.   
If we consider to the trajectory j, in terms of their deviation x(s), of the classic path xc(s), of 
their harmonic oscillator of L(x(s)), we can establish that the harmonic oscillator propagator 
has total action accord with our quantum model of correction and restoration action of the 
path integrals studied in quantum mechanics, (Bulnes et al., 2010, 2011): 

 (x(s)) = correction + restoration =  (x(s)) + (xc(s)) = (Id) + (x(s))s, (4) 

Observe that the term (x(t)), corresponds to the actions that is realised using rotations. 
This term belongs to space HomG(X(M), L(M)) = Id, being Id, the identity and R, (Bulnes, 
2005), in the dual space of a restoration action of the field.  
Now well, the relation between field and matter is realised through a quantum jump and 
only to this level succeeds. In the quantum mechanics, all the particles like pockets of energy 
works like points of transformation (states defined by energy densities). The field in the 
matter of a space-time of particles is evident like answer between these energy states, as it is 
explained in the Feynman diagrams. Due to that exist duality between wave and particle, a 
duality also exists between field and matter in the nature sense. Both dualities are 
isomorphic in the sense of interchange answers of interaction of a field. The answers 
between densities are realized in accordance with the correlation densities established in 
certain commutative diagrams that can be shaped by spaces L2, on the space-time of the 
particles (Oppenheim et al., 1983). Coding this region of transition states of the 
corresponding Feynman diagram on a logic algebra A(, , ) (like full states or empty of 
electrons like particle/wave, is to say,(0) = 0, (is not the particle electron, but is like wave) (1) = 1, 
(is not the wave electron, but is like particle) and their complements), where the given actions in 
(2), are applied and re-interpreting the region of the space-time of the particles like a 
electronic complex of a hypothetical logic nano- floodgate (is to say, like a space L2, with a 
logic given by A(, , ), on their transition states), we can define the Feynman-Bulnes 
integrals, as those that establish the transition amplitude of our systems of particles through 
of a binary code that realize the action of correction and restoration of the field established 
in (4). Likewise a Feynman-Bulnes integral (Bulnes, 2006c; Bulnes et al., 2010), is a path 
integral of digital spectra with the composition of the fast Fourier transform of densities of 
states of the corresponding Feynman diagrams. Thus, if 1, 2, 3 and 4, are four transitive 
states corresponding to a Feynman diagram of the field X(M), then the path integral of 
Feynman-Bulnes is: 
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1 2 3 41 2 3 4I F( ) F( ) F(n ) F( ) 0001101001 ,n n n nn n n





   




    (5) 

The integrals of Feynman-Bulnes, establish the amplitude of transition to that the input of a 
system with signal x(t), can be moved through a synergic action of electronic charges , 
doing through pre-determined waves functions by L(x(t)), and encoded in a binary algebra 
(pre-defined by states (0), and (1)), (in the kernel the space of solutions of the wave 
equation X FAA’ = AA’(x  x’), (Bulnes & Shapiro, 2007) of a point to other into a circuit j. 
Their integral is extended to all space of paths or re-walked included into the region of 

Lagrangian  action  (=
k k

j
j j


 
 
 
 

  ),with a topology of signals in L2(, , \) (Bulnes et al., 

2011). If we want corrective actions for stretch j, of a path , we can realize them using 
diagrams of strings of corrective action using the direct codification of path integrals with 
states of emission-reception of electrons (by means of one symbolic cohomology of strings) 
(Bulnes et al., 2011). Then the evaluation of the Feynman-Bulnes integrals reduces to the 

evaluation of the integrals: 
0 ( )

( , ) ( )
C

I
 

     , where , is the orientation of 0 ( ),C   , is 

the corresponding model of graph used to correct after identifying the singularity of the 
field X, that distorts it. For example, observe that it can vanish the corrective action of 
erroneous encoding through  a sub-graph: () = 1  -1  0  [(0)  0\(1)]  1 =  
0\(1)  1 = -1  1 = 1 + (-1) = 0. The corresponding equation in the cohomology of strings is 
(Watanabe, 2007; Bulnes et al., 2011): 

  

(6)

 

The total correction of a field requires the action to a deep level as the established in (2), and 
developing in (4), and only this action can be defined by a logic that organises and correlates 
all and each one of the movements of the particles x(s), through codes given by (5), in a beautiful 
symphony that orders the field. Finally we give an application to medicine obtaining the cure 
and organic regeneration to nano-metric level by quantum medicine methods programming 
our Path Integrals. Also, we give some applications to nano-materials. 

2. The classic and non-classic Feynman integrals and their fundamental properties. 
The synergic and holistic principles 

We consider a space of quantum particles under a regime of permanent energy defined by 
an operator of conservation called the Lagrangian, which establishes a field action on any 
trajectory of constant type. A particle has energy of interrelation defined by their energy 
density which relates the states of energy of the particle over to along of time considering 
the path or trajectory that joins both states in the space - time of their trajectories. Thus an 
infinite number of possible paths exist in the space - time that can take the particle to define 
their transition or impermanence in the space - time, the above mentioned due to the 
constant action of the field in all the possible trajectories of their space - time. In fact, the 
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particle transits in simultaneous form all the possible trajectories that define their 
movement. Likewise, if ()  R3  It, is the set of these trajectories subject to a field X, 
whose action , satisfies for any of their trajectories that () = 0, then their Lagrangian L, 
acts in such a form that the particle minimizes their movement energy for any trajectory that 
takes in the space (), doing it in a combined effect of all the possible trajectories to go 
from one point to another considering a statistical weight calculated on the base of the 
statistical mechanics. This is the exposition of Feynman known as exposition of the added 
trajectories (Feynman, 1967). Come to this point, the classic conception of the movement of a 
particle question: How can a particle continue different trajectories simultaneously and 
make an infinite number of them? 
In the quantum conception the perspective different from the movement of a particle in the 
space - time answers the previous question enunciating: 

“The trajectory of movement of a particle is this that does not manage to be annulled in the 
combined effect of all the possible trajectories to go from one point to on other in the space - time” 

2.1 Classic Feynman integrals and their properties 
We consider M  R3  It, the space - time of certain particles x(s), in movement, and be L, an 
operator that expresses certain law of movement that governs the movement of the set of 
particles in M, in such a way that the energy conservation law is applied for the entire action 
of each of his particles. The movement of all the particles of the space M, comes given 
geometrically by their tangent vector bundle TM. Then the action due to L, on M, comes 
defined as (Marsden et al., 1983): 

 L : TM  R, (7) 

with rule of correspondence 

 (x(s)) = FluxL(x(s))x(s), (8) 

and whose energy due to the movement is 

 E =  L, (9) 

But this energy is due to their Lagrangian L, defined as (Sokolnikoff, 1964) 

 L(x(s), ( ),x s


 s) = T(x(s), ( ),x s


 s) V(x(s), ( ),x s


 s), (10) 

If we want to calculate the action defined in (7) and (8), along a given path  = x(s), we have 
that the action is 

 ( ( ), ( ), )d ,L x s x s s s


    (11) 

For a classic trajectory, it is observed that the action is an extreme (minimum), namely, 

 
0( )

( )1
( ) L( ( ), ( ), ) 0,

s p

s p

x s x s s ds 
 
   
 
 
  (12) 
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Thus there are obtained the famous equations of Euler-Lagrange equivalent to the 
movement equations of Newton, 

 0 f0, ,
d L L

s s s
dt xx

classic

               
 (13) 

That is to say, we have obtained a differential equation of the second order in the time for 
the freedom grade x(s). This generalizes for a system of N grades of freedom or particles, 
with N, equations eventually connected. An alternative to solve a system of differential 
equations as the described one is to reduce their order across the formulation of Hamilton-
Jacobi that thinks about how to solve the equivalent problem of 2N equations of the first 
order in the time (Marsden et al., 1983). Identifying the momentum as 

 ,i
L

p
x


 


 (14) 

we define the Hamiltonian or energy operator to the ith-momentum pi, as: 

 ,
n

i

p x Lii


 H  (15) 

and Hamilton's equations are obtained 

 , ,p xii pixi

  
  

H H
 (16) 

Nevertheless, it is not there clear justification of this extreme principle that happens in the 
classic systems, since any of the infinite trajectories that fulfill the minimal variation 
principle, the particle can transit, investing the same energy. Nevertheless the Feynman 
exposition establishes that it is possible to determine the specific trajectory that the 
particle has elected as the most propitious for their movement to go from s(p0), to s(p1), in 
the space-time being this one the one that is not annulled in the combined effect of all. 
Thus the quantum mechanics justifies the extreme principle affirming that the trajectory 
of movement of a particle is the product of the minimal action of a field that involves to 
the whole space- time where infinite minimal trajectories, that is to say, exist where the 
extreme condition exists, but that statistically is the most real. Likewise, the nature saves 
energy in their design of the movement, since the above mentioned trajectory belongs to 
an infinite set of minimal trajectories that fulfill the principle of minimal action 
established in (12). 
The concrete Feynman proposal is that the trajectory or real path of movement continued by 
a particle to go from one point to another in the space-time is the amplitude of interference 
of all the possible paths that fulfill the condition of extreme happened in (12) (to see figure 1 
a)). Now then, this proposal is based on the probability amplitude that comes from a sum of 
all the possible actions due to the infinite possible trajectories that set off initially in x0, to 
end then in xf.  
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Fig. 1. a). The extreme condition in paths of the space (). b). Curve of the space-time in the 
R3  It. 

Using the duality principle of the quantum mechanics we find that the particle as wave 
satisfies for this superposition 

 ( , ) ( ) exp ,
i

x s A s


    
 




 (17) 

where the term A(s), comes from the standardization condition in functional analysis (Simon  
& Reed 1980)  

 2( , ) 1,x t dx




  (18) 

where to two arbitrary points in the space-time (s0, x0), and (sf, xf), whose amplitude takes 

the form A’ = 
0

.
2 ( )f

m
i s s 

 In effect, we approximate the probability amplitude taking 

only the classic trajectory. Of this way a Green function is had (propagator of x0, s0 to xf , sf) 
of the form: 

 0 0
cl( , ; , ) A'exp ,F f f

i
D x s x s

 
   

 
 (19) 

Then we consider to this classic trajectory: 

 0
0 0

0
( ) ( ),f

f

x x
x s x s s

s s


 


 (20) 

 0

0
υ( ) ,f

f

x x
s

s s





 (21) 

Of this manner, the action on this covered comes given for  

 
0

0

0

2( )
( ) ,

2

fs

clásica
s

f

f

x xm
L s ds

s s


  

  (22) 

It reduces us to calculate then the standardization term A′, for it we must bear in mind the 
following limit that in our case happens in the probability amplitude for sf → s0: 
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2

0
0 22 1/2

( )1
(x x ) lim exp ,

0 ( )
f

x x


 

 
   

   
 (23) 

Identifying then to term of normalization like A′ = , in (23) and using (22) it is had: 

 
1/2

0
' ,

2 ( )f

m
A

i s s

 
 
  

 (24) 

Therefore, the exact expression is had in the probability amplitude 

 
1/2 2

0
0 0

0 0

( )
( , ; , ) exp ,F 2 ( ) 2

f
f f

f

x xm m
D x s x s i

i s s s s

   
  

       
 (25) 

 

 
Fig. 2. Trajectories in the space-time plane, the continuous line corresponds to a classic 
trajectory while the pointed line corresponds to a possible quantum trajectory.  

This type of exact results from the Feynman expression can also be obtained for potentials of 
the form: 

 2V( , , ) a b c d e ,x x s x x x x x
  

      (26) 

But the condition given in (12), establishes that the paths that minimize the action are those 
who fulfill with the sum of paths given in terms of a functional integral, that is to say, those 
paths on the space ()  R3  It, to know: 

 
( )

exp exp[ / ] ( ( )) ( ),( )
i

i d x sx s
   

     
 

  


 (27) 

An interesting option that we can bear in mind here is to discrete the time (figure 2). Thus if 
the number of temporary intervals from s0, to sf, is N, then the temporary increase is δs = (sf  − 
s0)/N, which implies that sn = s0 + nδs. We express for xn, to the coordinate x, to the time sn, 
that is to say xn = x(sn). Then for the case of a free particle, it had that the action is given like: 
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( ) ,
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m
L s ds x


    (28) 
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Fig. 3. a) Possible trajectories in an experiment of double split. The final amplitude result of 
the interference in between paths. b) The configuration space Cn, m, is the model created by 
the due action to each corresponding trajectory to the different splits. It is clear here that it 
must be had in mind all the paths in the space-time M, that contributes to the interference 
amplitude in this space.  

Thus, on a possible path γ, it is had:  
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Thus it is observed that the propagator DF, will be given for: 
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Realizing the change 
2

,
2 δn n

m
y x
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    

  we re-write: 
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where 
(  - 1)/22

.
N

n
T
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M
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  Developing the first integral of (31), we have 
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Then integrating for y2, we consider the second member of (32) and the following one,  
(y3 − y2)2: 
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Then a recurrence has in the integrals of such form that we can express the general term as 
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 Therefore it is had for the propagator (30), which 
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identifying in this case: 
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it is had that the integration in paths is given for: 
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where in the first member of (36) we have expressed the Feynman integral using the form of 
volume (x(s)), of the space of all the paths that join in (), to obtain the real path of the 
particle (therefore we can choose also quantized trajectories (see figure 2)). Remember that the 
sum of all these paths is the interference amplitude between paths that happens under an 
action whose Lagrangian is (x(s)) =x(s)dx(s), where, if (M), is a complex with M, the space-
time, and C(M), is a complex or configuration space on M, (interfered paths in the experiment 
given by multiple split (see the figure 3, to case of double split)), endowed with a pairing  

  : (M) * (M)C   R,  (37) 

where *(M), is some dual complex (“forms on configuration spaces”), that is to say. such 
that “Stokes theorem” holds: 

 d ,

C

     



,    (38) 

then the integrals given by (36) we can be write (to m-border points and n-inner points (see 
figure 3 b))) as: 
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This is due to the infiltration in the space-time by the direct action , that happens in the 
space C, to each component of the space (), through the expressed Lagrangian in this 
case by . In (39), the integration of the space realises with the infiltration of the time. 
Two versions of (36), that use the evolution operator and their unitarity are their differential 
version and numerical version of Trotter-Suzuki1 (numerical version of (36)). The first 
version is re-obtain the Schröndinger equation from the Feynman path integral. In this case 
the wave function involves the corresponding electronic propagator given in (30) with a 
temporal step s, to pass from (x, 0), to (x, s),having the amplitude (Holstein, 1991)  
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Here, T, and V, are kinetic and potential energies in discrete form using their separate evolutions in 
slices. (s – s0), is the weight of compensation in numerical compute. 
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 (40) 

Realising the integral we obtain the differential version of the Feynman integral (36). 
Let H, be the Hopf algebra (associative algebra used to the quantized action in the space-time) 
(Kac, 1990), of a class of Feynman graphs G (Barry, 2005). If , is such a graph, then 
configurations are attached to its vertices, while momentum are attached to edges in the two 
dual representations (Feynman rules in position and momentum spaces). This duality is 
represented by a pairing between a “configuration functor” (typically C, (configuration 
space of subgraphs and strings (Watanabe, 2007), and a “Lagrangian” (e.g. , determined by 
its value on an edge, e.g. by a propagator DF). Together with the pairing (typically 
integration) representing the action, they are thought as part of the Feynman model of the 
state space of a quantum system.  
Since it has been argued in (Ionescu, 2004), this Feynman picture is more general than the 
manifold based “Riemannian picture”, since it models in a more direct way the observable 
aspects of quantum phenomena (“interactions” modeled by a class of graphs), without the 
assumption of a continuity (or even the existence) of the interaction or propagation process 
in an ambient “space-time”, the later being clearly only an artificial model useful to relate 
with the classical physics, i.e. convenient for “quantization purposes”. 
Likewise, an action on G (“int”), is a character int : H  R, (defined similarly to the given 
in (7)) which is a cocycle in the associated DG-co-algebra (T(H*), D), that is to say, the action 
in this context is an endomorphism (matrix) of transition of the certain densities of field 
given by i. 
A QFT (Quantum Field Theory) defined via Feynman Path Integral quantization method is 
based on a graded class of Feynman graphs. For specific implementation purposes these can 
be 1-dimensional CW-complexes or combinatorial objects. For definiteness we will consider 
the class of Kontsevich graphs Gn, the admissible graphs from (Kontsevich, 2003). 
Nevertheless we claim that the results are much more general, and suited for a 
generalisation suited for an axiomatic approach; a Feynman graph will be thought of both as 
an object in a category of Feynman graphs (categorical point of view), as well as a co-bordism 
between their boundary vertices (TQFT point of view). The main assumption the class of 
Feynman graphs needs to satisfy the existence of subgraphs and quotients. 
 

  
Fig. 4. The Kontsevich class is the quantized class used by the Feynman rules. 

Example 1. In the compute of path integrals on the graph configuration space C�(),The 
graphsGn, will be used in the string schemes given by BRST-quantization on gauge 
theory. For example, the BRST-quantization is always nilpotent around a vertex: 

( ) (0) 0Q dzj zBRST BRST    . The Kontsevich class not has loops everywhere (figure 4 
a)). The Feynman diagrams (figure 4 b)) conforms a subclass in the Kontsevich class, that is 
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to say, restricted in the deformation quantization in respective micro-local structure of the 
Riemannian manifold (Kontsevich, 2003).  
While the concept of subgraph  of , is clear (will be modeled after that of a subcategory), we 
will define the quotient of , by the subgraph  as the graph ’, obtained by collapsing , 
(vertices and internal edges) to a vertex of the quotient. Then it satisfies the graph class 
succession under Hom, that will define all the types of graphs with connecting arrows: 

  (41) 

We enunciate the following basic properties of the classic Feynman integrals. Let , ’, 
where G, and (), their corresponding Lagrangian with the property like in (38). We 
consider the path integral I, like a map given in (37). Let DF, their corresponding propagator 
(the value of (), in the corresponding edge ). Then are valid the following properties: 
a.  DF, propagator there is an unique extension to a Feynman rule on (39), that is to say 

() = ()  (’), with / = ’. 
b. If (), is a Lagrangian on (41) with / = ’, then   

 () = ()  (’), (42) 

c. From (38) C=  o DF, then  extension (41),  

 ()() = ()  (’), (43) 

d.  G (Feynman graph),  

 
int

int( ) (d ),
eC

e 
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


    (44) 

where e, is a simple sub-graph of , without boundary. 
e. As consequence of the integral (44), we have the composition formulas 

  o  o  o F(i -e)
int

F d ,      ,eD D     (45) 

f. Feynman integrals over codimension one strata corresponding to non-normal 
subgraphs vanish. A graph G, is normal if the corresponding quotient /, belongs 
to the same class of Feynman graphs G. 

g. The remaining terms corresponding to normal proper subgraphs meeting the boundary 
[m], of Ga, yield a forest formula, like intM (figure 3, b)) corresponding to the co-
product DFb, of G. Then for a Feynman graph Ga: 

 
  / C

b
( ) ( , ),

in
FD

    

 
  

  
G

 (46) 

where the proper normal subgraph , meets non-trivially the boundary of . 
h. If the Lagrangian (), is a closed form then the corresponding Feynman integral , is a 

cocycle. Then 
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 ( )  d ( )  0,
C C 

 


      (47) 

2.2 Non-classic Feynman integrals and their properties 
2.2.1 Twistor version (Bulnes & Shapiro, 2007) 
Consider the space of hypercomplex coordinates (coordinates in the m-dimensional complex 
projective space Pm) that determine through the position, quantum states of particles in free 

state Z1a, Z2 a, , Zm a, and we define the functional space of Feynman  

 D =  FU FU(z) = dnz 1(z) 2(z) n(z) = 000  0-box diagram, (48) 

This space is the corresponding to the group of Feynman n-integral for the 000  0-box 
diagram (that is to say, C(M) given in the before section)  with certain configuration space 
Cn, m, like was defined in section 1. 2, (with n-states i, and m-edges or lines) with arrange 

2    4    6    8   n 

  (49) 


This functional belongs to the integral operator cohomology on homogeneous bundles of 
lines H1(PT, (-2-2)), where PT = PT +  PT  for example, for n = 4, one has the diagram 

of Feynman for the 4-integral one that corresponds to the 0000-box diagram 

2  4 

  (50) 


The elements FU, can be expressed in a low unique way the map in the complex manifold 
Pm, like   

 D L(Pm(C), C), (51) 

with rule of correspondence 

 dnz 1(z) 2(z)  n(z)   dnZ W 1(ZW) 2(ZW) n(ZW),  (52) 

that allows us to identify D, with L(Pm(), ). Building  the  twistor space T = xU xU = 

 + (x)-2 + (x)-1 + (x)0 + (x)1 + , where (x)-n = (x)-n/n (contours with opposite x = 0) and 
(x)n+1 = - n(x)-n-1/2I (in an environment around x = 0). This twistor space satisfies that T  

L(Pm(C), C). Then dnz 1(z) 2(z)  n(z) =  xU  xCm. Then these integrals have their 

equivalent ones as integral of contour in the cohomology of contours Hd(, C), where 

,it is the product of all the twistor spaces (and dual twistor) and it is the subspaces union 
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on those which the factor (ZW)-1, are singular. To check this course with demonstrating, 
for the case m = 1, and using the integral operator of Cauchy has more than enough contours 

(jointly with the residue theorem) that the integral dnz 1(z) 2(z)  n(z) takes the form of 
the formalism of Sparling given by the integral one 

 
0

e
[x] { } d ,U ( )

z
z

x z



 
        (53) 

which bears to the isomorphism among the cohomological spaces 

 H1(P(C), )  H1(PT, (-2-2)),  (54) 

which would be a quaternion version of these integrals? It would be the one given for 
integral of type Cauchy of functions of H-modules (Shapiro & Kravchenko, 1996), on 
opened D, that turn out to be Liapunov domains in Rn. Since one has the you make twistor 
projective bundle S2\P3(C) P(H)  S4, and H1(PT, (-2-2))  H1(P(C), ), then the 

cohomology H1(P(C), )  H1(P(C), space in corresponding differential forms). But S1  

P3(C)  P(C), it is a principal bundle with P(C) S2, and since S1, and S3, are the 

underlying groups in the structure of the hyper-complexes and quaternion (H  C2) then S1 

S3 S2, represents in quantum mechanics a spin system ½ which can be represented by 
the cohomology of a diagram formed as an alternating chain of 0-lines and 2-lines, that is; 
H1(PT , (n 2)), that is to say for the system of quantum state of spin ½ that is the 
corresponding to a 4-integral one given by the 0000-box diagram 

     =     d4x d4y (x) A(x)x DFAA'(x - y) A'(y) (y), (55) 

But this cohomology of diagrams of contour integrals is applicable to 1-functions for P(C), 

in PT , that which is not chance, since it is a consequence of the G-structure of the manifold 
F, (where they are defined these quantum phenomena) which is induced in the S3-structure 
of the underlying spinors (Penrose & Rindler, 1986). 
If we consider that the for-according complex manifolds have a pseudo-Hermitian complex 
structure not symmetrical and induced by the sheaf of quadratic forms (2T*(M)), it can 
expand the symmetry according classic of the diagrams of Feynman from their contour 
integrals to the construction of according structures that can be induced to the pseudo-
Hermitian complex structure of the mentioned manifolds, giving the possibility to obtain a 
single integral operators cohomology of Feynman type for analytic manifolds (Huggett, 
1990). 

2.2.2 Instanton version 
The Feynman integrals are invariants in R3, under rotations of Wick, that is to say 
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exp[ [ ]] [ ] exp[ [ ]] [ ],i D D
   

       (56) 

to a coordinates system in E4, given by (x0, x1, x2, x3), with x0 = s, then  coordinates 
transformation given by s  i, we have that 

 M  E4, (57) 

then (), represents a region W(C), in E4 (a Wick region in the space time). This action has 
place in S4, to the solutions of theYang-Mills equations on S4. The action realised in this 
transformation has Euclidean action  

 ( )
2

1

21
τ V( ) ,

2
mx x d






 
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 
E  (58) 

where the potential energy V(x), changes to V(x), with the Wick rotation.  

2.2.3 Feynman-Bulnes version 
Considers a microelectronic device that is fundamented in the functional space L2(, , /) 
encoding in a logic algebra M1, 0. The corresponding functional equation to inputs and 
outputs of information signals using certain liberty based in the artificial process of thought 
to create “intelligent” computers needs the use of path to plantee their solution (Bulnes, 
2006c). Then extrapoling the Feynman integrals to calculate the amplitud of interference of 
the many paths (criteria) to resolve a automation problem that designs a cybernetic complex 
that at least to theorical level has a quantum programming with Feynman rules and an 
adequate neuronal net2. 
Def. 1 (Path Integrals of Feynman-Bulnes). A integral of Feynman-Bulnes is a path integral 
of digital spectra with composition with Fast Transform of densities of state of Feynman 
diagrams.  
If 1, 2, 3, and 4, are four densities of states corresponding to the Feynman diagrams to the 
poles of field X(M), then the path integral of Feynman-Bulnes is: 

 
1 2 3 41 2 3 4( ) ( ) ( ) ( ),

Z

n n n n
Z

I F n F n F n F nFB    




   (59) 

                                                 
2 The integrals of Feynman-Bulnes give solution to the functional equation of a automatic micro-device 
to control (micro-processor) F(XZ+, YZ) = 0 (Bulnes, 2006c). The informatics theory assign a cybernetic 
complex to C, (Gorbatov, 1986) and each cube in this cybernetic net establish a path on the which exist a 
vector of input XZ+, and a  vector of output YZ, signed with a time of transition , to carry a 
information given in XZ+, on a curve j, (path) to a state YZ, through logic certain (conscience), that 
include all the circuit C (Bulnes, 2006c). In the case of C, the logic is the real conscience of interpretation 
of C, (criteria of C). As C, has a real conscience of recognition; into of their corrective action and 
reexpert, elect the adequate path to the application of the corrective action. For it, the integrals of 
Feynman-Bulnes can be explained on the electable model , (path, see figure 1 a)) as:

  
( ( )) ( ) ( ( )) ( ) ( ).
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3. Combination of quantum factors and programming diagrams of path integrals: The 
coding and encoding problems 

Since a duality exists between wave and particle, a duality also exists between field and 
matter in the natural sense (Schwinger, 1998). Both dualities are isomorphic in the sense of 
the exchange of states of quantum particles and the interaction of a field. Indeed in this 
quantum exchange of information of the particles, that happen in the space-time () 
region, the pertinent transformations are due to realise to correct, restore, align or re-
compose (put together) a field X. 
 

    Elements of fiel            Nano-metric application                    Effect obtained on field 
         0-lines                 localization of anomalous points         encoding nodes to application 
         1-lines            application of electronic propagator          alignment of lines of field 
        -1-lines                          inversion of actions*                         reflections of restoration 

* Creation of contours around of points of application 

Table 1. Combination of quantum factors of the field X.  

Any anomalous declaration in a quantum field shows like a distortion, deviation, non-
definition or not existence of the field in the space-time where this must exist like physical 
declaration of the matter (existence of quantum particles in the space). The quantum 
particles are transition states of the material particles. We remember that from the point of 
mathematical view, a singularity of the space X(M), is a discontinuity of the flux of energy, 
where FluxDFj(z)z  0,  zM (Marsden et al., 1983). This discontinuity creates a space of 
disconnection where the alignment atoms stay unenhanced due to not have electrons that 
they do unify them under the different chemical links that exist and through the ionic 
interchange foreseen in the space TM,3(Landau & Lifshitz, 1987), (vector bundle of the 
particles in M, and responsible of the geometrical configuration of the field in M, and that 
promote the ionic restoration in X(M), (Gauge theory). In a topological sense of the field, the 
detection of these anomalies of the field X will do through anomalies in the trajectories of 
flux (z), such that FluxDFj(z)z  0,  z(z)  M. 
Def. 2. 10 If Flux: R  M   M, is a flux and zM, the curve z : R  M, with rule of 
correspondence t   t(z) = (t, z), is a line of flux. 
A anomaly in a trajectory and thus in M, will be a singular point which can be a knot 
(multiform points), a discontinuity (a hole (source or fall hole)) in M)) or a indeterminate 
point (without information of the field in whose point or region in M). But we require their 
electromagnetic mean into the context of X, for we obtain their corresponding diagnosis 
using an electromagnetic device that establish an univocal correspondence between detected 
anomalies and Feynman diagrams used to the spectral encoding through of the integrals of 
Feynman-Bulnes.  
If we consider the space C0() (Watanabe, 2007), as space of configuration associate with 
sub-graph (, ), where , is the corresponding smooth embedding to n-knot that which is 
identified as a , in an integral as the given in (6), we can define rules to sub-graphs that 
coincides with the rules of signs in the calculate of integrals like (36). Thus we can identify 
the three fundamental forms given for () = sgn(z), (figure 5). 

                                                 
3 X(M), is a section of TM, in a mathematical sense (Marsden et al., 1983).  
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In this study the path integrals and their applications in the re-composition, alignment, 
correction and restoration of fields due to their particles realise using certain rules of 
fundamental electronic state and their sub-graphs, through considering the identification. 
We define as correction of a field X, to a re-composition or alignment of X. Is re-composition 
if it is a re-structure or re-definition of X, is to say, it is realize changes of their alignment 
and transition states (properties of the table 1 and additional properties with the algebra M0, 

1). The corrective action is an alignment only, if X, present a deviation or deformation in one 
of their force lines or energy channels (properties of contours on particles:  

). A restoration is a re-establishment of the field, 
strengthening their force lines (properties of the Dirac and Heaviside function on particles: 
with t  s, w(s, t)1  (1)U0(s, t), etc) (Fujita, 1983). Consider the following corrective 
action by the string diagrams to the states of emission-receptor of electrons (see figure 5 a)). 
The evaluating of the integrals of Feynman-Bulnes is reduced to evaluating the integrals: 

I(;) = C0()(), where , is the orientation on C0(), where , is the corresponding 
model of graph used to correct and identify the anomaly and , the corresponding sub-
graph of the transitive graph determined by a re-composition field treatment. The space 
M0,1, conforms a reticular sub-algebra in mathematical logic. In the figure 5 b), the corrective 
action in the memory of an Euclidean portion of the space time (), through a sub-graph , 

of strings, in the re-composition of the alignment of field comes given as: zj = C0()1234 = 
<{[1  (1)]  0}  (1)>  1  = 1, (Bulnes, 2006c). Observe that it can vanish the corrective 

action of encoding memory through another sub-graph: 1  0  [(0)  0  (1)]  1 
= 0  (1)  1 = 1  1 = 1 + (1) = 0 (see the equation (6)). 
 
 

    
 

Fig. 5. a) String diagrams of corrective action using direct encoding by path integral. b) 
Euclidean portion of the space time ().  

All anomalies in the space-time produce scattering effects that can be measured by the 
proper states using the following rules, considering these anomalies like a process of 
scattering risked by the particle with negative potential effect of energy: 
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Particle 
1

Anti-particle 
1

Input 1
Positive future 

1
negative future 

Output 
1
Positive past

1
negative past 

Table 2. Past and future in the scattering effect of the field X.  

The negative actions in one perturbation created by an anomaly in the quantum field X, acts 
deviating and decreasing the action of the “healthy” quantum energy states i (i = 1, 2, ), 
in the re-composition of field (see the example explained in the figure 6). 
 

      
Fig. 6. a) Feynman diagram to a negative boson field. b) Cube of the net of the configuration 
space.  

Example 2. The energy in this Feynman diagram is the given by Eoutput = W = E, (negative 
boson in the field ba(of interactions given in SU(3)) (Holstein, 1991). Then their path 

integral to output energy is: I = C0()(see figure 6 a)) For other side, the cube of the 
net of the configuration space C0() of the space-time () is the 3-dimensional cube to 
arrangements in 000-box (see figure 6 b)). 

4. On a fundamental theorem to correction and restoring of fields and their corollaries  

One result that explains and generalises all actions of correction and restoring of a quantum 
field including the electromagnetic effects that observes with vector tomography is: 
Theorem 1 (F. Bulnes) (Bulnes et al., 2010). Be M = X(M)\M. Be a set of singular points of 
M, such that the states of X(M), in these points are distorted states of the field X. An  integral 
of line IH1(PM; O(k)), to k a helicity in M, determine an answer of the transformation 
IX(M), that it is an appropriate width to correct the field X(M), under the action of the 
operator DF(M), such that (10) is satisfied, then the integral of line that re-establishes the  
field and recomposes the part X(M) comes given for 

M

I ( ( )) ( , , , ) ,sF
D x s X Z W X Y



  
 

 
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The effect on the field is re-construct and re-establish their lines of field (channels of enery) 
by synergic action (see figure 8). 
Proof. (Bulnes, 2006a; Huggett, 1990).  
The fundamental consequences are great, and they have to do with the reinterpretation of 
the anomalies of the field in an electromagnetic spectra (Schwinger, 1998), (see the figure 7), 
which we can measure across detectors of electromagnetic radiation, detectors and meters of 
current, voltage or amperage calibrated in micro or nano-units (Bulnes et al., 2011).  
 

 
Fig. 7. Electronic propagators measuring corrective and restorer actions.  

An important result (that can be a consequence in a sense of the previous one (for example 
in integral geometry and gauge theory)) that applies the vector tomography to 
electromagnetic fields used to measure fields of another nature and classify the anomalies 
by their electromagnetic resonance (at least in the first approach) is given by: 
Theorem 2 (Bulnes, F) (Bulnes, 2006b). If the Radon transform (tomography on X(M)) is not 
defined, is infinite or has the value of zero, the corresponding pathologies are: great 
emission of electromagnetic radiation, current or voltage (points unless polarity due to the 
atomic degradation (isotopes), have a node with variation not bounded of current, voltage or 
resistance (it is loose or is much (ponds of energy)) due to an existence of positron states (like the 
defined in table 2)), has a peak or is a node, due to that have not unique value or this is 
indeterminate (not have determined direction, can have a source of increase scattering). 
Proof. (Bulnes, 2006a). 
In the demonstration of the theorem 1, the Stokes theorem guarantees the invariance of the 
value of the integrals of path under the application of an electromagnetic field (Landau & 
Lifshitz, 1987), like gauge of a quantum field, since the value of these integrals does not 
depend on the contour measured for the detection of a field anomaly (Bulnes et al., 2011). 
 

a)   

 

   b)     

  

 c)  

Fig. 8. The field in a) is the radiation electromagnetic spectra to recompose and restore the 
field X, given in b). The corresponding image in c), is the field restored and corrected after  
the application a) in b).  

= 
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5. Some applications to nano-medicine, nano-engineering and nano-materials 

5.1 Application to nanomedicine 
In nanomedicine the applications of the corrective actions and restorers of a field are 
essential and they are provided by the called integral medicine, which bases their methods 
on the regeneration of the codes of cellular energy across the conduits of energy of the vital 
field that keeps healthy the human body, the above mentioned for the duality principle of 
mind-body. But the transformations are realised in the quantum area of the mind of the 
body, that is to say the electronic memory of the healthy body. The mono-pharmacists of 
integral medicine contain codes of electronic memory at atomic level that return the 
information that the organs have lost for an atomic collateral damage. 

 

 

Fig. 9. Diagram of strings and path integrals of intelligence code of cure. 

Diagram of strings belonging to the cohomology of strings equivalent to the code of 
electronic memory spilled to a patient sick with the duodenum (Bulnes et al., 2011) (see 
figure 9 a)). In nanomedicine, the path integrals are intelligence codes of corrective and 
restoration actions to cure all sicknesses. In the (see figure 9 b), W, is the topological group 
of the necessary reflections to the recognition of the object space of the cure (Bulnes et al., 
2010). This recompose the amplitude of the wave defined in the spectra IX(B), (with B, 
the human body) in the context of the space-time that to our nano-metric scale this space 
is constituted of pure energy. Into this space transits the geodesics or paths, to each 
particle where to each one of those paths exist a factor of weight given by exp(i/h), with 
h, the constant of Max Planck and , is the classical action associate to each path (see 
figure 8 b)). 

5.2 Application to nanomaterials 
The study of the resultant energy due to the meta-stables conditions that it is obtains in the 
quasi-relaxation phenomena establishes clearly their plastic nature for the suffered 
deformations on the specimen. Nevertheless their study can to require the evaluation of the 
field of plastic deformation on determined sections to a detailed study on the liberated 
energy in the produced dislocations when the field of plastic deformation acts. Thus, it is 
doing necessary the introduction of certain evaluations of the actions of the field to along of 
the dislocation trajectories in mono-crystals of the metals with properties of asymptotic 
relaxation. Then we consider like specimens, mono-crystals of Molybdenum (Mo), (see figure 
10) subject to stress tensor that produce the plastic deformation given by the action inside of 
path integral 
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M 0

( ) ( ( )) ( )e ,
M

PT
tL t d t d d     

     
  

    (60) 

 

  
i) 

   
ii) 

 
iii) 

Fig. 10. i). Quasi-relaxation curves for Molybdenum single crystal: 1.- σ0 = 396 MPa, 2.- σ0 = 
346 MPa, 3.- σ0 =292 MPa, 4.- σ0 = 208 MPa. Mo <100> {100}, at T= 293 ˚C. ii). Image of the 
electronic microscope of high voltage, HVTEM  of Molybdenum single crystal in regime of 
quasi-relaxation. iii). Atomic meta-stability condition. 

By the theorem of Bulnes-Yermishkin (Bulnes, 2008), all functional of stress-deformation to 
along of the time must satisfy for hereditary integrals in the quasi-relaxation phenomena 
that have considered the foreseen actions inside of trajectory of quasi-relaxation like path 
integrals measuring field actions on crystal particles of metals: 
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0 0

( , ) ( ) ( ) ( ) ,
t

tt t d t e d       
      
  
   (61) 

The square bracket in (60), is the one differential form  using the property (42), on the 
space-time (). The figure 10 iii), establish the behavior to atomic level in the tendency of 
the mono-crystals to be joined in meta-stability regime (Alonso & Finn, 1968).  

5.3 Nanoengineering and nanosciences 
Since it has been mentioned previously if we consider a set of particles in the space E, under 
certain law of movement defined by their Lagrangian L, we have that the action defined by 
a field that expires with this movement law and that causes it is defined by the map: 

 : TE  R, 

with rule of correspondence as given in (8), we can establish that the global action in a 
particles system with instantaneous action can be re-interpreted locally as a permanent 
action of the field considering the synergy of the instantaneous temporary actions under this 
permanent action of the field. This passes to the following principle: 
Principle. The temporary or instantaneous action on a global scale can be measured like a 
local permanent action.  
The previous proposition together with certain laws of synchronicity of events in the space- 
time will shape one of the governing principles of the nanotechnology, why? Because at 
microscopic level the permanence of a field is constant in proportion to the permanence and 
the interminable state of energy that exists in the atoms. As a result of it a nano-
technological process will be directed to the manipulation of the microstructures of the 
components of the matter using this principle of "intentional" action. Then supposing that 
the field X, can control under finite actions like the described ones for , and under the 
established principle, we can execute an action on a microstructure always and when the 
sum of the actions of all the particles is major than their algebraic sum (to give an order to only 
one particle so that the others continue it). How to obtain this combined effect of all the particles 
that move and that is wanted realise a coordinated action (of tidy effect) and simultaneously 
(synchronicity), with the only effect? 
Inside the universe of minimal trajectories that satisfies the variation functional (12) we can 
choose a t(), such that 

 
2

1

Exe ( ( )) ( ( )) ,
t

p

p

L x s d x st t


 
 
 
 
 
   (62) 

which is not arbitrary, since we can define any action on t, like 

 
2

1

( ( ), ( ), ) ,
p

t
p

L x s x s s ds


    (63) 

that is to say, there exists an intention defined by the field action that infiltrates into the 
whole space of the particles influencing or "infecting" the temporary or instantaneous 
actions doing that the particles arrange themselves all and with added actions not in the 
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algebraic sense, but in the holistic sense. This action is the "conscience" that has the field to 
exercise their action in "intelligent" form that is to say, in organized form across his path 
integrals like the already described ones. Then extending the above mentioned integral to 
the whole space (), we have the synergic principle of the whole field X, 

 ( ( )) ( ( )),
t

j
TOTAL j x s d x s



     (64) 

the length and breadth of E. The order conscience is described by the operator of execution 
of a finite action of a field X, on a target (region of space that must be infiltrated by the 
action of the field which is that for which we realise our re-walked ()). 
How to measure this transference of conscience of transformation due to the field X, on an 
object defined by a portion of the space ()? What is the limit of this supported action or 
transference of conscience so that it supplies effect in the portion of the space (), and the 
temporary or instantaneous actions for every particle xi, are founded on only one synergic 
global action on ? 
We measure this transference of conscience (or intention) of X, on a particle x(s), by means of 
the value of the integral of the intelligence spilled (path integral) given like (Bulnes et al., 2008): 

 1

( )

1( ( )), ( )( ( ) ( ) ( )) ,X x s x x x x x x x        
 

            (65) 

We let at level conjecture and based on our investigations of nanotechnology and advanced 
quantum mechanics, that a sensor for the quantum sensitisation of any particle that receives an 
instruction given by a field X, must satisfy the inequality of Hilbert type (Bicheng, 2009), for 
this transference of conscience defined in (65) on the region (), to know (see figure 11 c)): 

 ( ( )) , log ( ) log ( ) , 2,
a bX x s t x x con a b           (66) 

 

 
             a)                b)        c) 

Fig. 11. a) Free particles. b) Transference of conscience in the particles. c) Transference of 
conscience by continuous action. 

Example 3. A force is spilled F(x(s)j), generated by a field that generates a "conscience" of 
order given by their Lagrangian. For it does not have to forget the principle of energy 
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conservation re-interpreted in the equations of Lagrange, and given for this force 

like T T
-  F ( ( )),

j

d

x

 
 



 
 
  
 

j
j x s

dt x
 (also acquaintances as “living forces”) transmitting their 

momentum in each ith-particle of the space E, creating a region infiltrated by path integrals 
of trajectories (), where the actions have effect. Here T, is their kinetic energy. It was 
considered to be a transference of conscience (intention) given by the product <(x(s)), 
x(s)> = [(log(x) + 2)^2]*[[(log(x) - 4.00000005)^2]. Observe that the object obtains their 
finished transformation in an established limit. The above mentioned actions of alignment 
might be realised by displacements in (= nm) (see figure 11 b)). 

6. Conclusions 

Finally and based on the development that the quantum mechanics has had along their 
history, we can affirm that the classic quantum mechanics evolves to the advanced quantum 
mechanics (created by Feynman) and known like quantum electrodynamics reducing the 
uncertainty of Heissenberg of the frame of the classic quantum mechanics, on having 
established and having determined a path or trajectory of the region of space-time where a 
particle transits. Therefore the following step will demand the evolution of the quantum 
mechanics of Feynman to a synchronous quantum mechanics that should establish rules of 
path integrals that they bear to an effect of simultaneity and coordination of temporary 
actions on a set of particles that must behave under the same intensity that could be 
programmed across their "revisited" path integrals, producing a joint effect called synergy. 
The time and the space they are interchangeable in the quantum area as we can observe it in 
the integrals (61). Where a particle will be and when it will be there, are aspects that go 
together. This way the energy is not separated from the space-time and forms with them 
only one piece in the mosaic of the universe. 
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Relativistic Models and Beyond 
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1. Introduction 

Perhaps the most troubling enigma in modern natural sciences is the principle contradiction 
that exists between quantum mechanics and Relativity theory (Greene, 2003) ; Indeed, this 
principle incompatibility between Quantum Mechanics and Relativity Theory propelled 
Einstein to relentlessly pursuit a 'Unified Field Theory' (Einstein, 1929, 1931, 1951) and 
subsequently prompted an intensive search for a 'Theory of Everything' (TOE) (Bagger & 
Lambert, 2007; Elis, 1986; Hawkins, 2002; Polchinski, 2007; Brumfiel, 2006). The principle 
contradictions that exist between quantum mechanics and relativity theory are:  
a. Probabilistic vs. deterministic models of physical reality:  

Relativity theory is based on a positivistic model of ‘space-time’ in which an object or an 
event possesses clear definitive ‘space-time’, ‘energy-mass’ properties and which 
therefore gives rise to precise predictions regarding the prospective ‘behavior’ of any 
such object or event (e.g., given an accurate description of its initial system’s state). In 
contrast, the probabilistic interpretation of quantum mechanics posits the existence of 
only a ‘probability wave function’ which describes physical reality in terms of 
complimentary ‘energy-space’ or ‘temporal-mass’ uncertainty wave functions (Born, 
1954; Heisenberg, 1927). This means that at any given point in time all we can 
determine (e.g., at the subatomic quantum level) is the statistical likelihood of a given 
particle or event to possesses a certain ‘spatial-energetic’ and ‘temporal-mass’ 
complimentary values. Moreover, the only probabilistic nature of quantum mechanics 
dictates that this statistical uncertainty is almost ‘infinite’ prior to our measurement of 
the particle’s physical properties and ‘collapses’ upon our interactive measurement of it 
into a relatively defined (complimentary) physical state... Hence, quantum mechanics 
may only provide us with a probabilistic prediction regarding the physical features of 
any given subatomic event – as opposed to the relativistic positivistic (deterministic) 
model of physical reality.  

b. “Simultaneous-entanglement” vs. “non-simultaneous-causality” features: 
quantum and relativistic models also differ in their (a-causal) ‘simultaneous-
entanglement’ vs. ‘non-simultaneous-causal’ features; In Relativity theory the speed of 
light represents the ultimate constraint imposed upon the transmission of any physical 
signal (or effect), whereas quantum mechanics advocates the existence of a 
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‘simultaneous-entanglement’ of quantum effects (e.g., that are not bound by the speed 
of light constraint). Hence, whereas the relativistic model is based on strict causality – 
i.e., which separates between any spatial-temporal ‘cause’ and ‘effect’ through the 
speed of light (non-simultaneous) signal barrier, quantum entanglement allows for ‘a-
causal’ simultaneous effects that are independent of any light-speed constraint ( 
Horodecki et al., 2007).  

c. Single vs. multiple spatial-temporal modeling:  
Finally, whereas Relativity theory focuses on the conceptualization of only a single 
spatial point at any given time instant – i.e., which therefore possesses a well defined 
spatial position, mass, energy, or temporal measures, quantum mechanics allows for the 
measurement (and conceptualization) of multiple spatial-temporal points 
(simultaneously) – giving rise to a (probability) ‘wave function’; Indeed, it is hereby 
hypothesized that this principle distinction between a single spatial-temporal quantum 
‘particle’ or localized relativistic object (or event) and a multi- spatial-temporal quantum 
‘wave’ (function) may both shed light on some of the key conceptual differences 
between quantum and relativistic modeling as well as potentially assist us in bridging 
the apparent gap between these two models of physical reality (based on a conceptually 
higher-ordered computational framework).  

2. The ‘Duality Principle’: Constraining quantum and relativistic 'Self-
Referential Ontological Computational System' (SROCS) paradigms 

However, despite these (apparent) principle differences between quantum and relativistic 
models of physical reality it is hypothesized that both of these theories share a basic 
‘materialistic-reductionistic’ assumption underlying their basic (theoretical) computational 
structure: It is suggested that mutual to both quantum and relativistic theoretical models is a 
fundamental ‘Self-Referential-Ontological-Computational-System’ (SROCS) structure 
(Bentwich, 2003a, 2003b, 2003c, 2004, 2006) which assumes that it is possible to determine the 
‘existence’ or ‘non-existence’ of a certain ‘y’ factor solely based on its direct physical interaction 
(PR{x,y}/di1) with another ‘x’ factor (e.g., at the same ‘di1’ computational level), thus: 

SROCS: PR{x,y}/di1 [‘y’ or ‘¬y]’/di1. 

But, a strict computational-empirical analysis points out that such (quantum and relativistic) 
SROCS computational structure may also inevitably lead to ‘logical inconsistency’ and 
inevitable consequent ‘computational indeterminacy’ – i.e., a principle inability of the 
(hypothesized) SROCS computational structure to determine whether the particular ‘y’ 
element “exists” or “doesn’t exist”: Indeed (as will be shown below) such ‘logical 
inconsistency’ and subsequent ‘computational indeterminacy’ occurs in the specific case in 
which the direct physical interaction between the ‘x’ and ‘y’ factors leads to a situation in 
which the ‘y’ factor “doesn’t exist”, which is termed: a ‘Self-Referential-Ontological-
Negative-System’, SRONCS)... However, since there exist ample empirical evidence that 
both quantum and relativistic computational systems are capable of determining whether a 
particular ‘y’ element (e.g., state/s or value/s) “exists” or “doesn’t exist” then this 
contradicts the SRONCS (above mentioned) inevitable ‘computational indeterminacy’, 
thereby calling for a reexamination of the currently assumed quantum and relativistic 
SROCS/SRONCS computational structure; 
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Indeed, this analysis (e.g., delineated below) points at the existence of a (new) 
computational ‘Duality Principle’ which asserts that the computation of any hypothetical 
quantum or relativistic (x,y) relationship/s must take place at a conceptually higher-ordered 
computational framework ‘D2’ – e.g., that is (in principle) irreducible to any direct (or even 
indirect) physical interaction between the (quantum or relativistic) ‘x’ and ‘y’ factors (but 
which can nevertheless determine the association between any two given ‘x’ and ‘y’ factors) 
(Bentwich, 2003a, 2003b, 2003c, 2004, 2006a, 2006b).  
In the case of Relativity theory, such basic SROCS computational structure pertains to the 
computation of any spatial-temporal or energy-mass value/s of any given event (or object) – 
solely based on its direct physical interaction with any hypothetical (differential) relativistic 
observer; We can therefore represent any such (hypothetical) spatial-temporal or energy-mass 
value/s (of any given event or object) as a particular ‘Phenomenon’: ‘P[s-t (i...n), e-m (i...n)]’; 
Therefore, based on the (above) relativistic ‘materialistic-reductionistic’ assumption whereby 
the specific value of any (spatial-temporal or energy-mass) ‘Phenomenon’ value is computed 
solely based on its direct physical interaction (‘di1’) with a specific (hypothetical differential) 
relativistic observer, we obtain the (above mentioned) SROCS computational structure:  

SROCS: PR{O-diff , P[s-t (i...n), e-m (i...n)] }/di1  
→ {‘P[s-t (i), e-m (i)]’ or ‘not P[s-t (i), e-m (i)]’}. 

Hence, according to the above mentioned SROCS computational structure the relativistic 
SROCS computes the “existence” or “non-existence” of any particular ‘Phenomenon’ (e.g., 
specific ‘spatial-temporal’ or ‘energy-mass’ ‘i’ value/s of any given object/event) – solely 
based upon the direct physical interaction (PR.../di1) between the potential (exhaustive 
hypothetical) values of this Phenomenon ('P[s-t (i...n), e-m (i...n)]') and any hypothetical 
differential relativistic observer; But, note that the relativistic SROCS computational 
structure assumes that it is solely through the direct physical interaction between any series 
of (hypothetical differential) relativistic observer/s and the Phenomenon’s (entire spectrum 
of possible spatial-temporal or energy-mass) value/s – that a particular ‘Phenomenon’ 
(spatial-temporal or energy mass) value is computed. The relativistic SROCS computational 
structure assumes that it is solely through the direct physical interaction between any series 
of (hypothetical differential) relativistic observer/s and the Phenomenon’s (entire spectrum 
of possible spatial-temporal or energy-mass) value/s – that the particular ‘Phenomenon’ 
(spatial-temporal or energy-mass) value is computed. But, a thorough analysis of this 
SROCS computational structure indicates that in the specific case in which the direct 
physical interaction between any hypothetical differential relativistic observer/s and the 
Phenomenon’s whole spectrum of potential values – leads to the “non-existence” of all of the 
other ‘space-time’ or ‘energy-mass’ values that were not measured by a particular relativistic 
observer ('O-i') (at the same 'di1' computational level):  

SRONCS: PR{O-diff(i…n), P[s-t (i...n), e-m (i...n)] } → ‘not P[s-t (not i), e-m (not i)]O-i’ /di1. 

However, this SRONCS computational structure inevitably leads to the (above mentioned) 
‘logical inconsistency’ and ‘computational indeterminacy’: 
This is because according to this SRONCS computational structure all of the other 
‘Phenomenon’ values (e.g., ‘space-time’ or ‘energy-mass values) – which do not correspond 
to the specifically measured ‘space-time’ or ‘energy-mass’ {i} values (i.e., that are measured 
by a particular corresponding ‘O-diff-i relativistic observer): P[{s-t ≠ i} or {e-m ≠ i}] are 
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necessarily computed by the SRONCS paradigmatic structure to both “exist” AND “not 
exist” – at the same ‘di1’ computational level: according to this SRONCS computational 
structure all of the other ‘Phenomenon’ values (e.g., ‘space-time’ or ‘energy-mass values) – 
which do not correspond to the specifically measured ‘space-time’ or ‘energy-mass’ {i} 
values (i.e., that are measured by a particular corresponding ‘O-diff-i relativistic observer): 
P[{s-t ≠ i} or {e-m ≠ i}] are necessarily computed by the SRONCS paradigmatic structure to 
both “exist” AND “not exist” – at the same ‘di1’ computational level: 

SRONCS: PR{O-diff(i…n), P[s-t (i...n), e-m (i...n)] } → ‘not P[s-t (not i), e-m (not i)]O-i’/di1. 

But, given the SROCS/SRONCS strong ‘materialistic-reductionistic’ working assumption – 
i.e., that the computation of the “existence” or “non-existence” of the particular P[{s-t ≠ i}, {e-
m ≠ i}] values solely depends on its direct physical interaction with the series of (potential) 
differential observers at the ‘di1’ computational level, then the above SRONCS 
computational assertion that the particular P[{s-t ≠ i}, {e-m ≠ i}] values both “exist” and 
“don’t exist” at the same ‘di1’ computational level inevitably also leads to both ‘logical 
inconsistency’ and a closely linked ‘computational indeterminacy’ – e.g., conceptual 
computational inability of such ‘di1’ computational level to determine whether the P[{s-t ≠ 
i}, {e-m ≠ i}] values “exist” or “doesn’t exist”... 
But, since there exists ample relativistic empirical evidence pointing at the capacity of any 
relativistic observer to determine whether or not a particular ‘P[{s-t ≠ i}, {e-m ≠ i}]’ “exists” 
or “doesn’t exist”, then a novel (hypothetical) computational ‘Duality Principle’ asserts that 
the determination of the “existence” or “non-existence” of any given P[s-t (i...n), e-m (i...n)] 
can only be computed at a conceptually higher-ordered ‘D2’ computational level e.g., that is 
in principle irreducible to any direct or even indirect physical interactions between the full 
range of possible ‘Phenomenon’ values ‘P[s-t (i...n), e-m (i...n)]’ and any one of the potential 
range of (differential) relativistic observers: 

‘D2’: P[{s-t (i...n) e-m (i...n), O-r(st-i)}, {P[s-t (i+n) e-m (i+n ), O-r(st-i+n))]  
≠ PR{O-diff , P[s-t (i...n) e-m (i...n)] }/di1  

Note that the computational constraint imposed by the Duality Principle is conceptual in 
nature – i.e., as it asserts the conceptual computational inability to determine the 
“existence” or “non-existence” of any (hypothetical) ‘Phenomenon’ (e.g., ‘space-time’ 
event/s or ‘energy-mass’ object value/s) from within its direct physical interaction with 
any (hypothetical) differential relativistic observer; Indeed, a closer examination of the 
abovementioned SROCS/SRONCS relativistic computational structure may indicate that 
the computational constraint imposed by the Duality Principle is not limited to only direct 
physical interaction between any ‘Phenomenon’ (e.g., space-time or energy-mass value/s) 
and any (hypothetical) differential relativistic observer/s, but rather extends to any direct 
or indirect physical interaction (between any such ‘Phenomenon’ and any potential 
differential relativistic observer/s); In order to prove this broader applicability of the 
computational Duality Principle – as negating the possibility of determining the 
“existence” or “non-existence” of any such ‘Phenomenon’ from within its direct or indirect 
physical interaction/s with any (hypothetical) differential relativistic observer/s (e.g., but 
only from a conceptually higher-ordered hypothetical computational level ‘D2’) let us 
assume that it is possible to determine the precise value/s of any given ‘Phenomenon’ 
based on its indirect interaction with another intervening variable (or computational level) 
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‘d2’ (which may receive any information or input/s or effect/s etc. from any direct 
physical interaction/s between the given ‘Phenomenon’ and any hypothetical differential 
relativistic observer at the ‘di1’ level); 

SROCS: PR{O-diff(i…n), P[s-t (i...n), e-m (i...n)] }/di1  
→ {‘P[s-t (i), e-m (i)]’ or ‘not P[s-t (i), e-m (i)]O-i’}/di2. 

But, a closer analysis of the this hypothetical ‘di2’ (second) intervening computational level 
(or factor/s) as possibly being able to determine whether any particular space-time event or 
energy-mass object “exists” or “doesn’t exist” may indicate that it precisely replicates the 
same SROCS/SRONCS (‘problematic’) computational structure which has been shown to be 
constrained by the (novel) computational ‘Duality Principle’. This is because despite the 
(new) assumption whereby the computation of the “existence” or “non-existence” of any 
particular ‘Phenomenon’ (e.g., space-time or energy-mass) value is computed at a different 
‘di2’ computational level (or factor/s etc.), the SROCS/SRONCS intrinsic ‘materialistic-
reductionistic’ computational structure is such that it assumes that the determination of the 
“existence”/”non-existence” of any particular Phenomenon value/s is ‘solely caused’ (or 
‘determined’) by the direct physical interaction between that ‘Phenomenon’ and any 
hypothetical (differential) relativistic observer/s, which is represented by the causal arrow 
“” embedded within the relativistic SROCS/SRONCS computational structure :  

SROCS: PR{O-diff(i…n), P[s-t (i...n), e-m (i...n)] }/di1  
→ {‘P[s-t (i), e-m (i)]’ or ‘not P[s-t (i), e-m (i)]O-i’}/di2.  

Thus, even though the direct physical interaction between the ‘Phenomenon’ and the 
differential relativistic observer seem to take place at the ‘di1’ computational level whereas 
the determination of the “existence”/”non-existence” of a particular Phenomenon value 
appears to be carried out at a different ‘di2’ computational level, the actual (embedded) 
computational structure still represents a SROCS/SRONCS paradigm. This is because even 
this new SROCS/SRONCS computational structure still maintains the strict ‘materialistic-
reductionistic’ working assumption whereby it is solely the direct physical interaction 
between the Phenomenon and the differential relativistic observer that determines the 
“existence”/”non-existence” of a particular Phenomenon value; An alternate way of 
proving that the SROCS/SRONCS computational structure remains unaltered (e.g., even 
when we assume that the computation of the “existence” or “non-existence” of the 
particular ‘Phenomenon’ value may take place at another ‘di2’ computational level) is based 
on the fact that due to its (above mentioned) ‘materialistic-reductionistic’ working 
hypothesis – the determination of the “existence” or “non-existence” of the particular 
‘Phenomenon’ value is solely computed based on the information obtained from the direct 
physical interaction between the ‘Phenomenon’ and the series of potential differential 
observers (at the ‘di1’ computational level); Hence, in effect there is a total contingency of 
the determination of the “existence”/”non-existence” of the particular ‘Phenomenon’ value 
(at the hypothetical ‘di2’ computational level) upon the direct physical interaction between 
this ‘Phenomenon’ and any differential relativistic observer (at the ‘di1’ level) which 
therefore does not alter the ‘di1’ SROCS computational structure, and may be expressed 
thus: 

SRONCS: PR{O-diff(i…n), P[s-t (i...n), e-m (i...n)] }→ ‘not P[{s-t ≠ i}, {e-m ≠ i}]O-i’ /di1 or di2. 
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(Note: precisely due to the above mentioned total “existence”/”non-existence” of the 
particular Phenomenon value (i) at ‘di2’ upon input from the Phenomenon’s direct physical 
interaction with any differential relativistic observer at ‘di1’ it may be more convenient to 
formally represent this SROCS computational structure as occurring altogether – either at 
the ‘di1’ or ‘di2’ computational level, as presented above);  
However, as proven by the Duality Principle (above), given the fact that there exists ample 
empirical evidence indicating the capacity of relativistic (computational) systems to determine 
whether a particular ‘Phenomenon’ (space-time or energy-mass) value “exists” or “doesn’t 
exist”, then the broader extension of the Duality Principle evinces that it is not possible (e.g., in 
principle) to determine such “existence” or “non-existence” of any particular ‘Phenomenon’ 
(e.g., space-time or energy-mass) value from within any direct or indirect physical 
interaction/s between any such ‘Phenomenon’ and any (hypothetical) series of differential 
relativistic observer/s; Instead, the ‘Duality Principle’ postulates that the determination of any 
‘Phenomenon’ (e.g., ‘space-time’ or energy-mass) values can only be determined by a 
conceptually higher ordered ‘D2’ computational level which is capable of determining the ‘co-
occurrence/s’ of specific Phenomenon values and corresponding differential relativistic 
observers' measurements (e.g., and which is irreducible to any direct or indirect physical 
interactions between such differential relativistic observer/s and any Phenomenon value/s):  

‘D2’: (P{s-t (i) e-m (i), O-r(st-i)}; …P{s-t (i+n) e-m (i+n ), O-r(st-i+n)})   
≠ PR{O-diff(i…n), P[s-t (i...n) e-m (i...n)] }/di1  

Hence, a thorough reexamination of Relativity’s SROCS computational structure (e.g., which 
assumes that the determination of any ‘space-time’ or ‘energy-mass’ Phenomenon value is 
solely determined based on that particular event’s or object’s direct or indirect physical 
interaction/s with any one of a series of potential relativistic observers) has led to the 
recognition of a (novel) computational ‘Duality Principle’; This 'Duality Principle' proves that 
it is not possible (in principle) to determine any such space-time or energy-mass ‘Phenomenon’ 
values based on any hypothetical direct or indirect physical interaction between such 
‘Phenomenon’ and any hypothetical series of (differential) relativistic observer/s; Rather, 
according to this novel computational Duality Principle the determination of any space-time or 
energy-mass relativistic value can only be computed based on a conceptually higher-ordered 
‘D2’ computational level (e.g., which is again in principle irreducible to any hypothetical direct 
or indirect physical interaction between any differential relativistic observer/s and any space-
time or energy-mass Phenomenon); Such conceptually higher-ordered 'D2' computational 
level is also postulated to compute the ‘co-occurrences’ of any‘differential relativistic 
observer/s’ and corresponding ‘Phenomenon’ (e.g., space-time or energy-mass value/s)... 
Intriguingly, it also hypothesized that the same precise SROCS/SRONCS computational 
structure may underlie the quantum probabilistic interpretation of the ‘probability wave 
function’ and ‘uncertainty principle’; Indeed, it is hereby hypothesized that precisely the 
same SROCS/SRONCS computational structure may pertain to the quantum mechanical 
computation of the physical properties of any given subatomic ‘target’ ('t') (e.g., assumed to 
be dispersed all along a probability wave function) which is hypothesized to be determined 
solely through its direct physical interaction with another subatomic complimentary ‘probe’ 
(P(‘e/s’ or ‘t/m’)) entity, thus: 

SROCS: PR{P('e/s' or 't/m'), t [e/s (i...n), t/m (i...n)] }  
→ [‘t [e/s (i), t/m (i)]’ or ‘not t [s/e (i), t/m (i)]’ /di1 
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In a nutshell, it is suggested that this SROCS/SRONCS computational structure accurately 
represents the (current) probabilistic interpretation of quantum mechanics in that it 
describes the basic working hypothesis of quantum mechanics wherein it is assumed that 
the determination of the particular (complimentary) ‘spatial-energetic’ or ‘temporal-mass’ 
values of any given subatomic ‘target’ particle – i.e., which is assumed to be dispersed 
probabilistically all along the probability wave function’s (complimentary) spatial-energetic 
and temporal-mass values, occurs through the direct physical interaction of such probability 
wave function dispersed ‘target’ entity with another subatomic measuring ‘probe’ element; 
Moreover, it is assumed that this direct physical interaction between the probability wave 
function dispersed ‘target’ element and the subatomic probe element constitutes the sole 
(computational) means for the “collapse” of the target’s probability wave function to a 
singular complimentary target value: This inevitably produces a SROCS computational 
structure which possesses the potential of expressing a SRONCS condition, thus: 

SRONCS: PR{P(‘e/s’ or ‘t/m’), t [e/s (i...n), t/m (i...n)] } → ‘not t [e/s (≠i), t/m (≠i)]’ /di1 

wherein the probabilistically distributed ‘target’ element (e.g., all along the complimentary 
‘spatial-energetic’ or ‘temporal-mass’ probability wave function) which possesses all the 
possible spectrum of such ‘spatial-energetic’ or ‘temporal-mass’ values: t [s/e (i...n), t/m (i...n)] 
“collapses” – solely as a result of its direct physical interaction with another subatomic ‘probe’ 
element (which also possesses complimentary ‘spatial-energetic’ and ‘temporal-mass’ 
properties); Indeed, it is this assumed direct physical interaction between the subatomic 
‘probe’ and probabilistically distributed ‘target’ wave function which “collapses” the target’s 
(complimentary) wave function, i.e., to produce only a single (complimentary) spatial-energetic 
or temporal-mass measured value (e.g., t [e-s (i), t-m (i)])– which therefore negates all of the other 
“non-collapsed” spatial-energetic or temporal-mass complimentary values (e.g., ‘not t [e-s (≠i), t-
m (≠i)]’) of the target’s (‘pre-collapsed’) wave function!  
But, as we’ve seen earlier (in the case of the relativistic SRONCS), such SRONCS 
computational structure invariably leads to both ‘logical inconsistency’ and subsequent 
‘computational indeterminacy’: This is because the above mentioned SRONCS condition 
essentially advocates that all of the “non-collapsed” complimentary ‘target’ values (i.e., t [s-e 
≠ i or t-m ≠i] seem to both “exist” AND “not exist” at the same ‘di1’ computational level – 
thereby constituting a 'logical inconsistency'!? But, since the basic ‘materialistic-reductionistic’ 
working hypothesis underlying the SROCS/SRONCS computational structure also assumes 
that the determination of any particular target complimentary (spatial-energetic or 
temporal-mass) value can only be determined based on the direct physical interaction 
between the target probability wave function’s distribution and a subatomic ‘probe’ element 
– e.g., at the same ‘di1’ computational level, then the above mentioned 'logical inconsistency' 
invariably also leads to ‘computational indeterminacy’, e.g., a principle inability to determine 
whether any such “non-collapsed” complimentary ‘target’ values (i.e., t [s-e ≠ i or t-m ≠i]) 
“exists” or “doesn’t exist”... However, as noted above, since there exists ample empirical 
evidence indicating the capacity of quantum (computational) systems to determine whether 
any such t [e-s (i…n), t-m (i…n)] quantum target value “exists” or “doesn’t exist” the 
Duality Principle once again asserts the need to place the computation regarding the 
determination of any pairs of subatomic complimentary ‘probe’ and ‘target’ values at a 
conceptually higher-ordered ‘D2’ level (e.g., that is in principle irreducible to any direct 
physical interactions between them).  
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Finally, as shown in the case of the relativistic SROCS/SRONCS paradigm, the conceptual 
computational constraint imposed by the Duality Principle further expands to include not 
only strictly ‘direct’ physical interaction/s between the subatomic ‘probe’ and ‘target’ 
elements but also any other hypothetical ‘indirect’ interaction/s, elements, effects, or even 
light-signals, information, etc. – that may mediate between these subatomic ‘probe’ and 
‘target’ elements; 
This is because even if we assume that the determination of the “existence” or “non-
existence” of any particular subatomic ‘target’ (spatial-energetic or temporal-mass) value 
can occur through a (second intervening or mediating) ‘di2’ computational interaction, 
entity, process or signal/s transfer we still obtain the same SROCS/SRONCS computational 
structure which has been shown to be constrained by the computational Duality Principle: 

SROCS: PR{P(‘e/s’ or ‘t/m’), t [e/s (i...n), t/m (i...n)]}/di1  
→ t [(e/s (≠i), t/m (≠i)) or (‘not t [e/s (≠i), t/m (≠i)])/di2.  

The rational for asserting that this (novel) computational instant precisely replicates the 
same SROCS/SRONCS computational structure (e.g., noted above) arises (once again) 
from the recognition of the strict ‘materialistic-reductionistic’ “causal” connection that is 
assumed to exist between the direct physical interaction between the subatomic ‘probe’ 
and target’ elements (e.g., taking place at the ‘di1’ level) and the hypothetical ‘di2’ 
computational level – and which is assumed to solely determine whether a particular target 
value ‘t [s/e (i), t/m (i)]’ “exists” or “doesn’t exist”; This is because since the 
(abovementioned) basic materialistic-reductionistic causal assumption whereby the ‘di2’ 
determination of the “existence”/”non-existence” of any specific (spatial-energetic or 
temporal-mass) ‘target’ value is solely determined by the direct ‘probe-target’ physical 
interaction at the ‘di1’ level value, therefore the logical or computational structure of the 
(abovementioned) SROCS/SRONCS is replicated; Specifically, the case of the SRONCS 
postulates the "existence" of the entire spectrum of possible target values t [e-s (i…n), t-m 
(i…n)] at the ‘di1’ direct physical interaction between the ‘probe’ and ‘target’ entities – but 
also asserts the “non-existence” of all the “non-collapsed” target values at the ‘di2’ 
computational level (e.g., ‘not t [e/s (≠i), t/m (≠i)]); This intrinsic contradiction obviously 
constitutes the abovementioned 'logical inconsistency' and ensuing 'computational 
indeterminacy' (that are contradicted by known empirical findings). 
Indeed, this SRONCS structure is computationally equivalent to the abovementioned 
SRONCS: PR{P(‘e-s’ or ‘t-m’), t [e-s (i...n), t-m (i...n)]} → ‘not t [e-s (i), t-m (i)]’]/di1, since the 
determination of the [‘t [e-s (i), t-m (i)]’ or ‘not t [e-s (i), t-m (i)]’] is solely determined based 
on the direct physical interaction at ‘di1’. Therefore, also the ‘logical inconsistency’ and 
‘computational indeterminacy’ (mentioned above) ensues which is contradicted by robust 
empirical evidence that inevitably leads to the Duality Principle’s assertion regarding the 
determination of any (hypothetical) ‘probe-target’ pair/s at a conceptually higher-ordered 
‘D2’ computational level: 

D2: {[P(‘e/s’ or ‘t/m’)i, t (e/s(i), t/m(i))];  
...[P(‘e/s' or ‘t/m’)n, t (e/s(n), t/m(n))]}  

≠ PR{P(‘e/s’ or ‘t/m’), t [e/s (i...n), t/m (i...n)]}/di1 

Therefore, an analysis of the basic SROCS/SRONCS computational structure underlying 
both relativistic as well as quantum’s computational paradigms has led to the identification 
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of a novel computational ‘Duality Principle’ which constrains each of these quantum and 
relativistic SROCS/SRONCS computational paradigms and ultimately points at the 
inevitable existence of a conceptually higher-ordered ‘D2’ computational level; Based upon 
the Duality Principle’s identification of such a conceptually higher-ordered ‘D2’ 
computational level (which alone can determine any relativistic ‘Phenomenon’ or any 
quantum spatial-energetic or temporal-mass target value, it also postulates the 
computational products of this conceptually higher-ordered ‘D2’ computational level – as 
the determination of the “co-occurrence” of any relativistic Phenomenon-relativistic 
observer pair/s or of any quantum ‘probe-target’ (complimentary) pair/s; Thus, the first 
step towards the hypothetical unification of quantum and relativistic theoretical frameworks 
within a singular (conceptually higher-ordered) model is the identification of a singular 
computational ‘Duality Principle' constraining both quantum and relativistic (underlying) 
SROCS paradigms and its emerging conceptually higher-ordered singular ‘D2’ 
computational level (which produces ‘co-occurring’ quantum ‘probe-target’ or relativistic 
‘observer-Phenomenon‘ pairs) – as the only feasible computational level (or means) capable 
of determining any quantum (space-energy or temporal-mass) ‘probe-target’ relationship or 
any ‘observer-Phenomenon’ relativistic relationship/s.  

3. ‘D2’: A singular 'a-causal' computational framework 

There are two (key) questions that arise in connection with the discovery of the Duality 
Principle’s conceptually higher-ordered (novel) ‘D2’ computational framework: 
a. Is there a singular (mutual) ‘D2’ computational level that underlies both quantum and 

relativistic (basic) SROCS paradigms? 
b. What may be the D2 'a-causal' computational framework – which transcends the SROCS' 

computational constraints imposed by the Duality Principle? 
In order to answer the first question, lets apply once again the conceptual proof of the 
‘Duality Principle’ regarding the untenable computational structure of the SROCS – which 
(it is suggested) is applicable (once again) when we try to determine the physical 
relationship/s between these two potential quantum and relativistic ‘D2’ computational 
frameworks; Specifically, the Duality Principle proves that it is not possible (e.g., in 
principle) to maintain two such “independent” (conceptually higher-ordered) ‘D2’ 
computational frameworks; Rather, that there can only exist a singular conceptually higher-
ordered ‘D2’ computational framework which coalesces the above mentioned quantum and 
relativistic ‘D2’ computational levels; Let’s suppose there exist two “separate” such 
conceptually higher-ordered computational frameworks: ‘D21’ and ‘D22’ as underlying 
and constraining quantum and relativistic modeling (e.g., as proven above through the 
application of the Duality Principle to the two principle SROCS/SRONCS computational 
paradigms underlying current quantum and relativistic modeling). Then, according to the 
Duality Principle this would imply that in order to be able to determine any hypothetical 
physical relationship between quantum [‘qi{1}’] and relativistic [‘ri{2}’] entities or 
processes (i.e., that exist at the above mentioned hypothetical corresponding D21 quantum 
and D22 relativistic computational levels) – we would necessarily need a conceptually 
higher-ordered ‘D3’ that is (again in principle) irreducible to the lower-ordered 
D21(‘qi{1}’) and D22('ri{2}') physical interactions at the D2 computational level. This is 
because otherwise, the determination of the “existence” or “non-existence” of any such 
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hypothetical quantum or relativistic phenomena would be carried out at the same 
computational level (‘D2’} as the direct physical interaction between these (hypothetical) 
quantum and relativistic entities (or processes), thereby precisely replicating the SROCS 
structure (that was shown constrained by the Duality Principle), thus: 

SROCS/D2: PR[‘qi{D21}’, ri{D22}’]  
→ ['(qi{D21} or ri{D22}') or ('not qi{D21}' or 'not ri{D22}') /D2.  

But, since we already know that the Duality Principle proves the conceptual computational 
inability to carry out the conceptually higher-ordered computation at the same 
computational level (e.g., in this case termed: ‘D2’) as the direct physical interaction between 
any two given elements, then we are forced (once again) to conclude that there must be only 
one singular conceptually higher-ordered D2 computational level underlying both quantum and 
relativistic SROCS models. Therefore, we are led to the (inevitable) conclusion whereby 
there may only exist one conceptually higher-ordered ‘D2’ computational framework which 
underlies (and constrains) both quantum and relativistic relationships.  
A critical element arising from the computational Duality Principle is therefore the 
recognition that it is not possible (in principle) to determine (or compute) any quantum or 
relativistic relationships based on any ‘direct’ physical relationship, (at 'di2’ or indirect 
physical relationship/s ('di3') , (as shown above) that may exist between any hypothetical 
differential relativistic observer and any hypothetical ‘Phenomenon’ or between any 
complimentary subatomic ‘probe’ measurement and the target’s (assumed) probability 
‘wave-function’; Hence, the untenable SROCS/SRONCS computational structure evident in 
the case of attempting to determine the (direct or indirect) physical relationship/s between 
the conceptually higher-ordered ‘D21’ quantum and 'D22' relativistic computational 
frameworks once again points at the Duality Principle’s conceptual computational 
constraint which can only allow for only a singular conceptually higher-ordered ‘D2’ 
computational framework – as underlying both quantum and relativistic phenomena (which 
constitutes the answer to the first theoretical question, above).  
Next, we consider the second (above mentioned) theoretical question – i.e., provided that 
(according to the Duality Principle) there can only be a singular conceptually higher-ordered 
‘D2’ computational framework as underlying both quantum and relativistic phenomena, what 
may be its computational characteristics? It is suggested that based on the recognition of the 
Duality Principle’s singular conceptually higher-ordered ‘D2’ computational framework – 
which necessarily underlies both quantum and relativistic phenomena, it is also possible to 
answer the second (above mentioned) question regarding the computational characteristics of 
such higher-ordered (singular) ‘D2’ framework; Specifically, the Duality Principle’s (above) 
proof indicates that rather than the existence of any direct (or indirect) ‘materialistic-
reductionistic’ physical interaction between any hypothetical differential relativistic 'observer' 
and any corresponding 'Phenomena', or between any complimentary subatomic ‘probe’ 
element and probability wave function ‘target’ there exists a singular conceptually higher-
ordered ‘D2’ computational framework which simply computes the “co-occurrences” of any of 
these quantum or relativistic (differential) 'observer/s' and corresponding 'Phenomenon' 
value/s or between any quantum subatomic ‘probe’ and ‘target’ elements...  
Therefore, the singular conceptually higher-ordered ‘D2’ computational framework 
produces an “a-causal” computation which computes the ‘co-occurrences’ of any range of 
quantum ‘probe-target’ or relativistic ‘observer-Phenomenon’ pairs thus: 
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1. D2: {P(‘e-s’ or ‘t-m’), T [e-s (i), t-m (i)]; ... P(‘e+n/s+n’ or ‘t+n/m+n’), T [(e+n) (s+n), 
(t+n) (m+n)]} ≠ PR{[P(‘e-s’ or ‘t-m’), T (e-s (i)), t-m (i))]; ... P(‘e+n/s+n’ or ‘t+n/m+n’), T 
(e+n) (s+n), (t+n) (m+n)]}/di1 

2. ‘D2’: {P [s-t (i...n) e-m (i...n), O-r(st-i)]; … P[s-t (i+n) e-m (i+n ), O-r(st-i+n)}] ≠ PR{O-diff, 
P[s-t (i...n), e-m (i...n)] }/di1.  

The key point to be noted (within this context) is that such ‘a-causal’ computation negates or 
precludes the possibility of any “real” ‘material-causal’ interaction taking place at either 
quantum or relativistic levels! In other words, the Duality Principle’s negation of the 
fundamental quantum or relativistic SROCS/SRONCS computational structure (e.g., as 
invariably leading to both ‘logical inconsistency’ and ‘computational indeterminacy’ that are 
contradicted by robust quantum and relativistic empirical data) also necessarily negates the 
existence of any (real) ‘causal-material’ interaction between or within any quantum or 
relativistic phenomena – e.g., at the conceptually higher-ordered ‘D2’ computational level. 
In order to prove that the Duality Principle constraining the basic (materialistic-
reductionistic) SROCS/SRONCS computational structure also necessarily points at the 
conceptual computational inability of such SROCS/SRONCS paradigms to determine the 
existence of any (real) ‘causal-material’ interactions (e.g., between any exhaustive series of x 
and y factors, interactions etc.) let us reexamine (once again) the SROCS/SRONCS working 
hypothesis wherein it is possible to determine whether a certain ‘x’ factor ‘causes’ the 
‘existence’ or ‘non-existence’ of the particular ‘y’ factor: 
Let’s suppose it is possible for the SROCS/SRONCS direct physical (quantum or relativistic) 
interaction between the ‘x’ and ‘y’ (exhaustive series’) factors to causally determine the 
‘existence; or ‘non-existence’ of the ‘y’ factor. In its most general formulation this would 
imply that: 

SROCS: PR{x,y}/di1 [‘y’ or ‘not y]’/di1 

But, as we’ve already seen (earlier), such SROCS computational structure invariably also 
contains the special case of a SRONCS of the form: 

SRONCS: PR{x,y} 'not y'/di1 

However, this SRONCS structure inevitably leads to both ‘logical inconsistency’ and 
‘computational indeterminacy’ which are contradicted by empirical findings (e.g., in the 
case of quantum and relativistic phenomena).  
Therefore, the Duality Principle inconvertibly proves that the basic materialistic-
reductionistic SROCS/SRONCS paradigmatic structure underlying the current quantum 
and relativistic theoretical models must be replaced by a conceptually higher-ordered 
(singular) ‘D2’ computation which cannot (in principle) contain any SROCS/SRONCS 
‘causal-material’ relationships – e.g., wherein any hypothetical ‘y’ element is “caused” by its 
direct (or indirect) physical interaction with another (exhaustive) X{1...n} series. As pointed 
out (above), the only such possible conceptually higher-ordered ‘D2’ computation consists 
of an ‘a-causal association’ between pairs of D2: {(‘xi’, yi)... (‘xn’, ‘yn’)}.  
The essential point to be noted is that the Duality Principle thereby proves the conceptual 
computational unfeasibility of the currently assumed ‘materialistic-reductionistic’ 
SROCS/SRONCS structure – including the existence of any hypothetical ‘causal-material’ 
interaction between any exhaustive ‘x’ and ‘y’ series! This means that in both quantum and 
relativistic domains the determination of any hypothetical (exhaustive) spatial-temporal 



 
Theoretical Concepts of Quantum Mechanics 

 

526 

event or energy-mass object, or of any complimentary spatial-energetic or temporal 
subatomic target – there cannot (in principle) exist any ‘causal-material’ interaction between 
the relativistic event and any differential relativistic observer or between the subatomic 
probe and target elements... Instead, the Duality Principle proves that the only viable means 
for determining any such exhaustive hypothetical relativistic or quantum relationship is 
through the conceptually higher-ordered singular ‘a-causal’ D2 association of certain pairs 
of spatial-temporal or energy-mass values and corresponding relativistic observer 
frameworks or between pairs of subatomic probe and corresponding complimentary pairs 
of spatial-energetic or temporal-mass target values... 
However, if indeed, the entire range of quantum and relativistic phenomena must 
necessarily be based upon a singular conceptually higher-ordered ‘D2’ computational 
level – which can only compute the “co-occurrences” of quantum ‘probe-target’ or 
relativistic ‘observer-Phenomenon’ pairs, but which precludes the possibility of any “real” 
‘material-causal’ relationship/s existing between any such quantum (‘probe-target’) or 
relativistic (‘observer-Phenomenon’) pairs, then this necessitates a potential significant 
reformulation of both quantum and relativistic theoretical models based on the Duality 
Principle’s asserted conceptually higher-ordered singular ‘D2’ ‘a-causal’ computational 
framework; This is because the current formulation of both quantum and relativistic 
theoretical frameworks is deeply anchored in- and dependent upon- precisely such direct 
(or indirect) physical interactions between a differential relativistic observer and any 
hypothetical (range of) ‘Phenomenon’ (e.g., as defined earlier), or between any subatomic 
(complimentary) ‘probe’ element and a probabilistically dispersed ‘target’ wave function. 
Thus, for instance, the entire theoretical structure of Relativity Theory rests upon the 
assumption that the differential physical measurements of different observers travelling at 
different speeds relative to any given object (or event) arises from a direct physical 
interaction between a (constant velocity) speed of light signal and the differentially 
mobilized observer/s... In contrast, the (novel) Duality Principle proves the conceptual 
computational inability to determine any such relativistic differential Phenomenon values 
– based on any direct or indirect physical interaction between any (hypothetical) 
differential relativistic observer and any given ‘Phenomenon’ (at their ‘di1’ or even ‘di2’ 
computational levels), but only from the conceptually higher-ordered ‘D2’ computational 
level through an ‘a-causal’ computation of the “co-occurrences” of any (differential) 
relativistic observer and (corresponding) Phenomenon! Hence, to the extent that we 
accept the Duality Principle’s conceptual computational proof for the existence of a 
singular higher-ordered ‘a-causal D2’ computational framework – as underlying both 
quantum and relativistic theoretical models, then Relativity’s well-validated empirical 
findings must be reformulated based on such higher-ordered ‘D2 a-causal computation’ 
framework...  
Likewise, in the case of Quantum Mechanical theory it is suggested that the current 
formalization critically depends on the ‘collapse’ of the target ‘wave-function’ – upon its 
direct physical interaction with the (complimentary) probe element, which is contradicted 
by the (earlier demonstrated) Duality Principle’s proof for the conceptual computational 
inability to determine any (complimentary) ‘target’ values based on its direct (or even 
indirect) physical interactions with another subatomic (complimentary) ‘probe’ element. 
Instead, the Duality Principle asserts that all quantum (complimentary) ‘probe-target’ 
values may only be computed ‘a-causally’ based on the conceptually higher-ordered ‘D2’ 
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computation of the “co-occurrences” of any hypothetical ‘probe-target’ complimentary 
elements... Therefore, it becomes clear that both Quantum and Relativistic theoretical 
models have to be reformulated based on the Duality Principle’s (proven) singular 
conceptually higher-ordered ‘a-causal D2’ computational framework. A key possible 
guiding principle in searching for such an alternative singular conceptually higher-
ordered ‘D2 a-causal’ computational framework formulation of both quantum and 
relativistic (well-validated) empirical findings is Einstein’s dictum regarding the fate of a 
“good theory” (Einstein, 1916) – which can become a special case in a broader more 
comprehensive framework. More specifically, based on the Duality Principle’s 
(abovementioned) negation of the current existing quantum or relativistic theoretical 
interpretations of these well-validated empirical findings including: the quantum – 
‘probabilistic interpretation of the uncertainty principle’ (and its corresponding 
probabilistic ‘wave function’), ‘particle-wave duality’ ‘quantum entanglement’, and 
relativistic constancy of the speed of light (and corresponding speed limit on transfer of 
any object or signal), there seems to arise a growing need for an alternative reformulation 
of each and every one of these physical phenomena (e.g., separately and conjointly) – 
which may “fit in” within this singular (conceptually higher-ordered) ‘D2 a-causal’ 
computational framework; Indeed, what follows is a ‘garland’ of those quantum or 
relativistic empirical findings – reformulated based upon the Duality Principle – as fitting 
within a singular ‘a-causal D2’ computational mechanism; In fact, it is this assembly of 
Duality Principle’s (motivated) theoretical reformulations of the (above) well-validated 
empirical dictums which will invariably lay down the foundations for the hypothetical 
‘Computational Unified Field Theory’. Fortunately (as we shall witness), this piecemeal 
work of the assembly of all quantum and relativistic Duality Principle’s theoretically 
refomalized ‘garlands’ may not only lead to the discovery of such singular conceptually 
higher-ordered ‘D2’ Computational Unified Field Theory’ (CUFT) , but may also resolve 
all known (apparent) theoretical contradictions between quantum and relativistic models 
(as well as predict yet unknown empirical phenomena, and possibly open new theoretical 
frontiers in Physics and beyond)...  

3.1 Single- multiple- and exhaustive- spatial-temporal measurements 
Perhaps a direct ramification of the above mentioned critical difference between empirical 
facts and theoretical interpretation which may have a direct impact on the current 
(apparent) schism between Relativity Theory and Quantum Mechanics is the distinction 
between single- vs. multiple- spatial-temporal empirical measurements and its corresponding 
“particle” vs. “wave” theoretical constructs; It is hypothesized that if we put aside (for the 
time being) the ‘positivistic’ vs. ‘probabilistic’ characteristics of Relativity theory and 
Quantum Mechanics then we may be able to characterize both relativistic and quantum 
empirical data as representing ‘single’- vs. ‘multiple’- spatial-temporal measurements; 
Thus, for instance, it is suggested that a (subatomic) “particle” or (indeed) any well-
localized relativistic object (or event) can be characterized as indicating a ‘single’ 
(localized) spatial-temporal measurement such that the given object or event is measured at a 
particular (single) spatial point {si} at any given temporal point {ti}. In contrast, the “wave” 
characteristics of quantum mechanics represent a multi spatial-temporal measurement 
wherein there are at least two separate spatial-temporal measurements for each temporal 
point {si ti , s(i+n) t(i+n)}.  
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Indeed, I hypothesize that precisely such a distinction between single- and multiple- 
spatial-temporal measurement (and conceptualization) may stand at the basis of some of 
the (apparent) quantum ‘conundrums’ such as the ‘particle-wave duality’, the ‘double-slot 
experiment’, and ‘quantum entanglement’; Specifically, I suggest that if (indeed) the 
primary difference between the ‘particle’ and ‘wave’ characterization is single- vs. 
multiple- spatial-temporal measurements, then this can account for instance for the 
(apparently) “strange” empirical phenomena observed in the ‘double-slot’ experiment. 
This is because it may be the case wherein the opening of a single slot only allows for the 
measurement of a single spatial-temporal measurement at the interference detector 
surface (e.g., due to the fact that a single slot opening only allows for the measurement of 
the change in a single photon’s impact on the screen). In contrast, opening two slots 
allows the interference detector surface to measure two spatial-temporal points 
simultaneously thereby revealing the ‘wave’ (interference) pattern. Moreover, I 
hypothesize that if indeed the key difference between the ‘particle’ and ‘wave’ 
characteristics is their respective single- vs. multiple- spatial-temporal measurements, 
then it may also be the case wherein any “particle” measurement (e.g., or for that matter 
also any single spatial-temporal relativistic measurements) is embedded within the broader 
multi- spatial-temporal ‘wave’ measurement... In this case, the current probabilistic 
interpretation of quantum mechanics (which has been challenged earlier by the Duality 
Principle) may give way to a hierarchical-dualistic computational interpretation which 
regards any ‘particle’ measurement as merely a localized (e.g., single spatial-temporal) 
segment of a broader multi spatial-temporal ‘wave’ measurement.  
One further potentially significant computational step – e.g., beyond the ‘single' spatial-
temporal “particle” (or object) as potentially embedded within the ‘multiple spatial-temporal 
“wave” measurement – may be to ask: is it possible for both the single spatial-temporal 
“particle” and the multi- spatial-temporal “wave” measurements to be embedded within a 
conceptually higher-ordered ‘D2’ computational framework? 
This hypothetical question may be important as it may point the way towards a formal 
physical representation of the Duality Principle's asserted singular conceptually higher-
ordered 'D2 a-causal computational framework': This is because the Duality Principle’s 
assertion regarding the existence of a singular higher-ordered D2 ‘a-causal’ computation can 
consist of all single- multiple- or even the entire range of spatial pixels’{si....sn} that exist at any 
point/s in time {ti ...ti} which are computed as “co-occurring” pairs of 'relativistic observer – 
Phenomenon’ or pairs of subatomic ‘probe – target’ elements (e.g., as computed at this 
singular conceptually higher-ordered ‘D2’ computational level); This implies that since there 
cannot be any “real” ‘material-causal’ interactions between any of these relativistic 
‘observer-Phenomenon’ or quantum ‘probe-target’ pairs, then all such hypothetical ‘spatial 
pixels’{si....sn} occurring at any hypothetical temporal point/s {ti ...ti} must necessarily form 
an exhaustive ‘pool’ of the entire corpus of spatial-temporal points, which according to the 
Duality Principle must only exist as the above mentioned quantum (subatomic) ‘probe-
target’ or relativistic (differential) ‘observer-Phenomenon’ computational pairs at the 
singular conceptually higher-ordered 'D2 A-Causal Computational Framework'. 

3.2 The ‘Universal Simultaneous Computational Frames’ (USCF’s) 
Indeed, an additional empirical support for the existence of such (hypothetical) singular 
conceptually higher-ordered 'D2' exhaustive pool of all "co-occurring" quantum or relativistic 
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pairs may be given by the well validated empirical phenomenon of ‘quantum entanglement’; 
In a nutshell, ‘quantum entanglement’ refers to the finding whereby a subatomic measurement 
of one of two formerly connected “particles” – which may be separated (e.g. at the time of 
measurement) by a distance greater than a lights signal can travel can ‘instantaneously' affect 
the measure outcome of the other (once interrelated) ‘entangled’ particle... 
The reason that ‘quantum entanglement’ may further constrain the operation of higher-
ordered hypothetical ‘D2 A-Causal’ computational framework is that it points at the 
existence of an empirical dictum which asserts that even in those computational instances in 
which two spatial-temporal events seem to be physically “separated” (e.g., by a distance 
greater than possibly travelled by Relativity’s speed of light limit) the higher-ordered ‘D2 A-
Causal Computation’ occurs ‘instantaneously’! Therefore, this ‘quantum entanglement’ 
empirical dictum indicates that the ‘D2 a-causal' computation of all spatial pixels in the 
universe – be carried out “at the same time”, i.e., “simultaneously” at the D2 computational 
mechanism; In other words, the above mentioned ‘D2 a-causal computation’ mechanism 
must consist of the entirety of all possible quantum ‘probe-target’ or relativistic ‘observer-
Phenomenon’ pairs occupying an exhaustive three-dimensional ‘picture’ of the entire corpus 
of all spatial pixels in the universe – for any given (minimal) ‘time-point’;  
Therefore, if (indeed) due to the empirical-computational constraint imposed by ‘quantum 
entanglement’ we reach the conclusion wherein all spatial-pixels in the (subatomic as well 
relativistic) universe must necessarily exist “simultaneously” (e.g., for any minimal 
‘temporal point') at the ‘D2 a-causal computation' level’’; And based on the Duality 
Principle’s earlier proven conceptual computational irreducibility of the determination of 
any quantum or relativistic relationship to within any direct or indirect physical interaction 
between any hypothetical subatomic ‘probe’ and ‘target’ elements or between any 
relativistic differential ‘observer’ and any ‘Phenomenon’ – but only from this singular 
higher-ordered ‘D2 A-Causal Computational Framework’; 
It is hereby hypothesized that the ‘D2 A-Causal Computational’ processing consists of a 
series of ‘Universal Simultaneous Computational Frames’ (USCF’s) which comprise the entirety 
of the (quantum and relativistic) ‘spatial-pixels’ in the physical universe (i.e., at any given 
“minimal time-point”)... Moreover, it is hypothesized that in order for this singular 
conceptually higher-ordered ‘A-Causal Computational Framework’ to produce all known 
quantum and relativistic physical phenomena there must necessarily exist a series of 
(extremely rapid) such ‘Universal Simultaneous Computational Frames’ (USCF’s) that give 
rise to three distinct ‘Computational Dimensions’ – which include: ‘Computational Framework’, 
‘Computational Consistency’ and ‘Computational Locus’; 

3.3 Computational- framework, consistency and locus 
Based on the Duality Principle’s asserted singular conceptually higher-ordered ‘D2’ 
computational framework comprising of an ‘A-Causal-Computation’ of a rapid series of 
‘Universal Simultaneous Computational Frames’ (USCF’s) it is hypothesized that three 
interrelated computational dimensions arise as different computational measures relating to 
– the ‘Framework’ of computation (e.g., relating to the entire USCF/s ‘frame/s’ or to a 
particular ‘object’ within the USCF/s), the degree of ‘Consistency’ across a series of USCF’s 
(e.g., ‘consistent’ vs. ‘inconsistent’), and the ‘Locus’ of computational measure/s (e.g., 
whether the computation is carried out ‘locally’- from within any particular ‘reference 
system’, or ‘globally’- that is, externally to a particular reference system). It is further 
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suggested that the combination of these three independent computational factors gives rise 
– not only to all relativistic and quantum basic physical features of ‘space’, ‘time’, ‘energy’, 
‘mass’ etc. but may in fact exhaustively replicate, coalesce and harmonize all apparently 
existing theoretical contradictions between quantum and relativistic theories of physical 
reality...  
First, the (four) basic physical features of physical reality are defined as the product of the 
interaction between the two Computational Dimensions of ‘Framework’ (‘frame’ vs. ‘object’) 
and ‘Consistency’ (‘consistent’ vs. ‘inconsistent’): thus, for instance, it is hypothesized that a 
computational index of the degree of ‘frame-consistent’ presentations across a series of 
USCF’s gives us a measure of the “spatial” value of any given object; In contrast, the 
computation of the degree of ‘frame-inconsistent’ measure/s of any given object – gives rise 
to the ‘”energy” value (of any measured object or event). Conversely, the computational 
measure of the degree of ‘object-consistent’ presentations (e.g., across a series of USCF’s) 
produces the object’s “mass” value. In contrast, the measure of an object’s (or event’s) 
‘object-inconsistent’ presentations computes that object’s/event’s temporal value... A 
(partial) rational for these hypothetical computational measures may be derived from 
glancing at their computational “equivalences” – within the context of an analysis of the 
apparent physical features arising from the dynamics of a cinematic (two dimensional) film;  
A quick review of the analogous cinematic measure of (any given object’s) “spatial” or 
“energetic” value/s indicates that whereas a (stationary) object’s ‘spatial’ measure or a 
measure of the ‘spatial’ distance a moving object traverses (e.g., across a certain number of 
cinematic film frames) depends on the number of pixels that object occupies “consistently”, 
or the number of pixels that object travelled which remained constant (e.g., consistent) – 
across a given number of cinematic frames. Thus, the cinematic computation of ‘spatial’ 
distance/s is given through an analysis of the number of pixels (e.g., relative to the entire 
frame’s reference system) that were either traversed by an object or which that object 
occupies (e.g., its “spatial” dimensions); In either case, the ‘spatial value’ (e.g., of the object’s 
consistent dimensions or of its travelled distance) is computed based on the number of 
consistent pixels that object has travelled through or has occupied (across a series of 
cinematic frames); In contrast, an object’s “energetic” value is computed through a measure 
of the number of pixels that object has ‘displaced’ across a series of frames – such that its 
“energy” value is measured (or computed) based on the number of pixels that object has 
displaced (e.g., across a certain number of series of cinematic frames). Thus, an object’s 
‘energy’ value can be computed as the number of ‘inconsistent’ pixels that object has 
displaced (across a series of frames)... Note that in both the cases of the ‘spatial’ value of an 
object or of its ‘energetic’ value, the computation can only be carried out with reference to 
the (entire- or certain segments of-) ‘frame/s’, since we have to ascertain the number of 
‘consistent’ or ‘inconsistent’ pixels (e.g., relative to the reference system of the entire- or 
segments of- frame/s);  
In contrast, it is suggested that the analogous cinematic measures of “mass” and “time” – 
involve a computation of the number of “object-related” (i.e., in contrast to the 
abovementioned “frame-related”) “consistent” vs. “inconsistent” presentations; Thus, for 
instance, a special cinematic condition can be created in which any given object can be 
presented at- or below- or above- a certain ‘psychophysical threshold’ – i.e., such that the 
“appearance” or “disappearance” of any given object critically depends on the number of 
times that object is presented ‘consistently’ (across a certain series of cinematic frames); 
Such psychophysical-object cinematic condition necessarily produces a situation in which 
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the number of consistent-object presentations (across a series of frames) determines 
whether or not that object will be perceived to “exist” or “not exist”; Indeed, a further 
extension of the same precise psychophysical cinematic scenario can produce a condition 
in which there is a direct correlation between the number of times an object is presented 
‘consistently’ (across a given series of cinematic frames) and its perceived “mass”: Thus, 
whereas the given object – would seem to “not exist” below a certain number of 
presentation (out of a given number of frames), and would begin to “exist” once its 
number of presentations exceeds the particular psychophysical threshold, then it follows 
that a further increase in the number of presentations (e.g., out of a given number of 
frames) will increase that object’s perceived “mass”... Perhaps somewhat less ‘intuitive’ is 
the cinematic computational equivalence of “time” – which is computed as the number of 
‘object-related’ “inconsistent” presentations; It’s a well-known fact that when viewing a 
cinematic film, if the rate of projection is slowed down (“slow-motion”) the sense of time 
is significantly ‘slowed-down’... This is due to the fact that there is much less changes 
taking place relative to the object/s of interest that we are focusing on... Indeed, it is a 
scientifically validated fact that our perception of time depends (among other factors) on 
the number of stimuli being presented to us (within a given time-interval, called the 
‘filled-duration’ illusion). Therefore, it is suggested that the cinematic computation 
(equivalence) of “time” is derived from the number of ‘object-related inconsistent’ 
presentations (across a given number of cinematic frames); the greater the number of 
object-related inconsistent presentations the more time has elapsed – i.e., as becomes 
apparent in the case of ‘slow-motion’ (e.g., in which the number of object-related 
inconsistent presentations are small and in which very little ‘time’ seems to elapse) as 
opposed to ‘fast-motion’ (e.g., in which the number of object-related inconsistent 
presentations is larger and subsequently a significant ‘time’ period seems to pass)...  
Obviously, there are significant differences between the two dimensional cinematic 
metaphor and the hypothetical Computational Unified Field Theory’s postulated rapid 
series of three-dimensional ‘Universal Simultaneous Computational Frames’ (USCF’s); 
Thus, for instance, apart from the existence of two-dimensional vs. three dimensional frames, 
various factors such as: the (differing) rate of projection, the universal simultaneous 
computation (e.g., across the entire scope of the physical universe) and other factors 
(which will be delineated below). Nevertheless, utilizing at least certain (relevant) aspects 
of the cinematic film metaphor may still assist us in better understanding some the 
potential dynamics of the USCF’s rapid series; Hence, it is suggested that we can perhaps 
learn from the (above mentioned) ‘object’ vs. ‘frame’ and ‘consistent’ vs. ‘inconsistent’ 
computational features characterizing the cinematic equivalents of “space” (‘frame-
consistent’), “energy” (‘frame-inconsistent’), “mass” (‘object-consistent’) and “time” 
(‘object-inconsistent’) – with reference to the CUFT’s hypothesized two (abovementioned) 
Computational Dimensions of ‘Computational Framework’ (e.g., ‘frame’ vs. ‘object’) and 
‘Computational Consistency’ (e.g., ‘consistent’ vs. ‘inconsistent’). The third (and final) 
hypothesized computational dimension of ‘Computational Locus’ does not correlate with 
the cinematic metaphor but can be understood when taking certain aspects of the 
cinematic metaphor and combining them with certain known features of Relativity 
theory; As outlined (earlier), this third ‘Computational Locus’ dimension refers to the 
particular frame of reference from which any of the two other Computational Dimensions 
(e.g., ‘Framework’ or ‘Consistency’) are being measured: Thus, for instance, it is suggested 
that the measurement of any of the abovementioned (four) basic physical features of 
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‘space’ (‘frame-consistent’), ‘energy’ (frame-inconsistent’), ‘mass’ (‘object-consistent’) and 
‘time’ (‘object-inconsistent’) – can be computed from within the ‘local’ frame of reference 
of the particular object (or observer) being measured, or from an external ‘global’ frame of 
reference (e.g., which is different than that of the particular object or observer).  

4. The ‘Computational Unified Field Theory’ (CUFT) 

Based on the abovementioned three basic postulates of the ‘Duality Principle’ (e.g., 
including the existence of a conceptually higher-ordered ‘D2 A-Causal’ Computational 
framework), the existence of a rapid series of ‘Universal Simultaneous Computational 
Frames’ (USCF’s) and their accompanying three Computational Dimensions of – 
‘Framework’ (‘frame’ vs. ‘object’), ‘Consistency’ (‘consistent’ vs. ‘inconsistent’) and ‘Locus’ 
(‘global’ vs. ‘local’) a (novel) ‘Computational Unified Field Theory’ (CUFT) is hypothesized 
(and delineated); 
First, in order to fully outline the theoretical framework of this (new) hypothetical CUFT 
let us try to closely follow the (abovementioned) ‘cinematic-film’ metaphor (e.g., while 
keeping in mind the earlier mentioned limitations of such an analogy in the more 
complicated three dimensional universal case of the CUFT): It is hypothesized that in the 
same manner that a cinematic film consists of a series of (rapid) ‘still-frames’ which 
produce an ‘illusion’ of objects (and phenomena) being displaced in ‘space’, ‘time’, 
possessing an apparent ‘mass’ and ‘energy’ values – the CUFT’s hypothesized rapid series 
of ‘Universal Simultaneous Computational Frames’ (USCF’s) gives rise to the apparent 
‘physical’ features of ‘space’, ‘time’, ‘energy’ and ‘mass’... It is further hypothesized that 
(following the cinematic-film analogy) the minimal (possible) degree of ‘change’ across 
any two (subsequent) ‘Universal Simultaneous Computational Frames’ (USCF’s) is given 
by Planck’s ‘h’ constant (e.g., for the various physical features of ‘space’, ‘time’, ‘energy’ or 
‘mass’)... Likewise the maximal degree of (possible) change across two such (subsequent) 
USCF’s may be given by: ‘c2’; Note that both of these (quantum and relativistic) 
computational constraints – arising from the ‘mechanics’ of the rapid (hypothetical) series 
of USCF’s – exist as basic computational characteristics of the conceptually higher-ordered 
‘D2’ (a-causal) computational framework, rather than exist as part of the ‘di1’ physical 
interaction (apparently) taking place within any (single or multiple) USCF’s... Indeed, it is 
further hypothesized that a measure of the actual rate of presentation (or computation) of 
the series of USCF’s may be given precisely through the product of these (‘D2’) 
computational constraints of the maximal degree of (inter-frame) change/s (‘c2’) divided 
by the minimal degree of (inter-frame) change/s (‘h’): ‘c2’/ ‘h’! 
Specifically, the CUFT hypothesizes that the computational measures of ‘space’, ‘energy’, 
‘mass’ and ‘time’ (and “causation”) are derived based on an ‘object’ vs. ‘frame’ and 
‘consistent’ vs. ‘inconsistent’ computational combinations;  
Thus, it is hypothesized that the ‘space’ measure of an object (e.g., whether it is the spatial 
dimensions of an object or event of whether it relates to the spatial location of an object) is 
computed based on the number of ‘frame-consistent’ (i.e., cross-USCF’s constant points or 
“universal-pixels”) which that object possesses across subsequent USCF’s, divided by 
Planck’s constant ‘h’ which is multiplied by the number of USCF's across which the object's 
spatial values have been measured. 

S: (fi{x,y,z}[USCF(i)] + … fj{x,y,z}[USCF(n)]) / h x n{USCF’s}  
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such that: 

fj{x,y,z}[USCF(i)]) ≤ fi{x+(hxn),y+(hxn),z+(hxn)}[USCF(i…n)]  

where the ‘space’ measure of a given object (or event) is computed based on a frame 
consistent computation that adds the specific USCF’s (x,y,z) localization across a series of 
USCF’s [1...n] – which nevertheless do not exceed the threshold of Planck’s constant per each 
(‘n’) number of frames (e.g., thereby providing the CUFT’s definition of “space” as ‘frame-
consistent’ USCF’s measure).  
Conversely, the ‘energy’ of an object (e.g., whether it is the spatial dimensions of an object or 
event or whether it relates to the spatial location of an object) is computed based on the 
frame’s differences of a given object’s location/s or size/s across a series of USCF’s, divided 
by the speed of light 'c' multiplied by the number of USCF's across which the object's energy 
value has been measured: 

E: (fj{x,y,z} [USCF(n)]) – (fi{(x+n),(y+n),(z+n)} [USCF(i...n)] ) /c x n{USCF’s} 

such that:  

fj{x,y,z} [USCF(n)]) > (fi{x+(hxn),y+(hxn),z+(hxn) [USCF(i…n)]) 

wherein the energetic value of a given object, event etc. is computed based on the 
subtraction of that object’s “universal pixels” location/s across a series of USCF’s, divided 
by the speed of light multiplied by the number of USCF's.  
In contrast, the of ‘mass’ of an object is computed based on a measure of the number of 
times an ‘object’ is presented ‘consistently’ across a series of USCF’s, divided by Planck’s 
constant (e.g., representing the minimal degree of inter-frame’s changes):  

M: ∑[oj{x,y,z} [USCF(n)] = o(i…j-1) {(x),(y),(z)} {USCF(i...n)} / h x n{USCF’s} 
{USCF(1...n)} / h x n{USCF’s} 

where the measure of ‘mass’ is computed based on a comparison of the number of instances 
in which an object’s (or event’s) ‘universal-pixels’ measures (e.g., along the three axes ‘x’, y’ 
and ‘z’) is identical across a series of USCF’s (e.g., ∑oi{x,y,z} [USCF(n)] = 
oj{(x+m),(y+m),(z+m)} [USCF(1...n)]) , divided by Planck’s constant.  
Again, the measure of ‘mass’ represents an object-consistent computational measure – e.g., 
regardless of any changes in that object’s spatial (frame) position across these frames.  
Finally, the ‘time’ measure is computed based on an ‘object-inconsistent’ computation of the 
number of instances in which an ‘object’ (i.e., corresponding to only a particular segment of 
the entire USCF) changes across two subsequent USCF’s (e.g., ∑ oi{x,y,z} [USCF(n)] ≠ 
oj{(x+m),(y+m),(z+m)} [USCF(1...n)]) , divided by ‘c’: 

T : ∑ oj{x,y,z} [USCF(n)] ≠ o(i…j-1){(x),(y),(z)} [USCF(1...n)] /c x n{USCF’s} 

such that:  

T: ∑oi{x,y,z}[USCF(n)] - oj{(x+m),(y+m),(z+m)} [USCF(1...n)] ≤ c x n{USCF’s} 

Hence, the measure of ‘time’ represents a computational measure of the number of ‘object-
inconsistent’ presentations any given object (or event) possesses across subsequent USCF’ 
(e.g., once again- regardless of any changes in that object’s ‘frame’s’ spatial position across 
this series of USCF’s).  
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Interestingly, the concept of “causality” – when viewed from the perspective of the (above 
mentioned) ‘D2 A-Causal Computation’ (rapid) series of USCF’s replaces the (apparent) 
‘di1’ “material-causal” physical relationship/s between any given ‘x’ and ‘y’ objects, 
factors, or phenomenon – through the existence of apparent (quantum or relativistic) 
spatial-temporal or energy-mass relationships across a series of USCF’s; Thus, for 
instance, according to the CUFT’s higher-ordered ‘D2 A-Causal Computation’ theoretical 
interpretation (e.g., as well as based on the earlier outlined ‘Duality Principle’ proof) in 
both the relativistic (assumed SROCS) direct physical interaction (‘di1’) between any 
hypothetical (differential) relativistic observer and any (corresponding) spatial-temporal 
or energy-mass ‘Phenomenon’, and in the quantum (assumed SROCS) direct physical 
interaction (‘di1’) between any subatomic ‘probe’ particle and any possible ‘target’ 
element –there does not exist any ‘direct’ (‘di1’) material-causal relationship/s between the 
relativistic observer and (measured) Phenomenon, or between the quantum subatomic 
‘probe’ and ‘target’ entities which results in the determination of the particular spatial-
temporal value of any given Phenomenon (e.g., for a particular differential observer) or 
the ‘collapse’ of the (assumed) probability wave function which results in the selection of 
only one (complimentary) spatial-energetic or temporal-mass target value... Instead, 
according to the CUFT’s stipulated conceptually higher-ordered singular (quantum and 
relativistic) D2 A-Causal Computational Framework these apparently ‘material-causal’ 
subatomic probe-target or relativistic differential observer-Phenomenon pair/s are in fact 
replaced by A hypothetical 'Universal Computational Principle' ("י") D2 A-Causal 
Computation of the ‘co-occurrence’ of a particular set of such relativistic ‘observer-
Phenomenon’ or quantum subatomic ‘probe-target’ pairs (e.g., appearing across a series of 
USCF’s!) Indeed, a thorough understanding of the CUFT’s replacement of any 
(hypothetical quantum or relativistic) ‘material-causal’ relationship/s with the 
conceptually higher-ordered (singular) ‘D2 A-Causal Computation (‘י’), which simply co-
presents a series of particular relativistic ‘observer-Phenomenon’ or subatomic ‘probe-
target’ pairs across the series of given USCF’s may also open the door for a fuller 
appreciation of the lack of any (continuous) “physical” or “material” relativistic or 
quantum object’s, event/s or phenomena etc. “in-between” USCF’s frames – except for the 
(above mentioned) ‘Universal Computational Principle’ (‘י’ - at ‘D2’). In other words, 
when viewed from the perspective of the CUFT’s conceptually higher-ordered (singular) 
 computational stance of the series of (rapid) USCF’s all of the known quantum and ’י‘
relativistic phenomena (and laws) of ‘space’, ‘time’, energy’, ‘mass’ and ‘causality’, ‘space-
time’, ‘energy-mass’ equivalence, ‘quantum entanglement’, ‘particle-wave duality’, 
“collapse” of the ‘probability wave function’ etc. phenomena – are replaced by an ‘a-
causal’ (D2) computational account (which will be explicated below);  

4.1 The CUFT’s replication of quantum & relativistic findings 
As sown above, the Computational Unified Field Theory postulates that the various 
combinations of the ‘Framework’ and ‘Consistency’ computational dimensions produce the 
known ‘physical’ features of: ‘space’ (‘frame-consistent’), ‘energy’ (‘frame-inconsistent’), 
‘mass’ (‘object-consistent’) and ‘time’ (‘object-inconsistent’). The next step is to explicate the 
various possible relationships that exists between each of these four basic ‘physical’ features 
and the two levels of the third Computational Dimension of ‘Locus’ – e.g., ‘global’ vs. ‘local’: 
It is suggested that each of these four basic physical features can be measured either from 
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the computational framework of the entire USCF’s perspective (e.g., a ‘global’ framework) 
or from the computational perspective of a particular segment of those USCF’s (e.g., ‘local’ 
framework). Thus, for instance, the spatial features of any given object can be measured 
from the computational perspective of the (series of the) entire USCF’s, or it can be 
measured from the computational perspective of only a segment of those USCF’s – i.e., such 
as from the perspective of that object itself (or from the perspective of another object 
travelling alongside- or in some other specific relationship- to that object). In much the same 
manner all other (three) physical features of ‘energy’, ‘mass’ and ‘time’ (e.g., of any given 
object) can be measured from the ‘global’ computational perspective of the entire (series of) 
USCF’s or from a ‘local’ computational perspective of only a particular USCF’s segment 
(e.g., of that object’s perspective or of another travelling frame of reference perspective). 
One possible way of formalizing these two different ‘global’ vs. ‘local’ computational 
perspectives (e.g., for each of the four abovementioned basic physical features) is through 
attaching a ‘global’ {‘g’} vs. ‘local’ {‘l’} subscript to each of the two possible (e.g., ‘global’ vs. 
‘local’) measurements of the four physical features. Thus, for instance, in the case of ‘mass’ 
the ‘global’ (computational) perspective measures the number of times that a given object 
has been presented consistently (i.e., unchanged)– when measured across the (entire) 
USCF’s pixels (e.g., across a series of USCF’s) ; In contrast, the ‘local’ computational 
perspective of ‘mass’ measures the number of times that a given object has been presented 
consistently (e.g., unchanged) when measured from within that object’s frame of reference;  

M(g): ∑[oj{x,y,z}(g) [USCF(n)] = o(i…j-1){(x),(y),(z)} (g) {USCF(i...n)} / h x n{USCF’s} 

such that  

[oi{x,y,z}USCF(n)] - [oi{(x+j),(y+j),(z+j)}USCF(1...n)] ≤ n x h[USCF(1...n)]. 

M(l): ∑[oj{x,y,z}(l) [USCF(n)] = o(i…j-1){(x),(y),(z)} (l) {USCF(i...n)} / h x n{USCF’s} 

such that  

[oi{x,y,z}USCF(n)] - [oi{(x+j),(y+j),(z+j)}USCF(1...n)] ≤ n x h[USCF(1...n)]. 

What is to be noted is that these (hypothesized) different measurements of the ‘global’ vs. 
local’ computational perspectives – i.e., as measured externally to a particular object's pixels 
(‘global’) as opposed to only the pixels constituting the particular segment of the USCFs 
which comprises the given object (or frame of reference) may in fact replicate Relativity’s 
known phenomenon of the increase in an object’s mass associated with a (relativistic) 
increase in its velocity (e.g., as well as all other relativistic phenomena of the dilation in time, 
shrinkage of length etc.); This is due to the fact that the ‘global’ measurement of an object’s 
mass critically depends on the number of times that object has been presented (consistently) 
across a series of USCF’s: e.g., the greater the number of (consistent) presentations the 
higher its mass. However, since the computational measure of ‘mass’ is computed relative to 
Planck’s (‘h’) constant (e.g., computed as a given object’s number of consistent presentations 
across a specific number of USCF’s frames); and since the spatial measure of any such object 
is contingent upon that object's consistent presentations (across the series of USCF’s) such 
that the object does not differ (‘spatially’) across frames by more than the number of USCF’s 
multiplied by Planck’s constant; then it follows that the higher an object’s energy – i.e., 
displacement of pixels across a series of USCF’s, the greater number of pixels that object has 
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travelled and also the greater number of times that object has been presented across the 
series of USCF’s – which constitutes that object’s ‘global’ mass measure! In other words, 
when an object’s mass is measured from the ‘global’ perspective we obtain a measure of that 
object’s (number of external) global pixels (reference) which increases as its relativistic 
velocity increases, thereby also increasing the number of times that object is presented (e.g., 
from the global perspective) hence increasing its globally measured ‘mass’ value. In 
contrast, when that object’s mass is measured from the ‘local’ computational perspective – 
such ‘local mass’ measurement only takes into account the number of times that object has 
been presented (across a given series of USCF’s) as measured from within that object’s frame 
of reference; Therefore, even when an object increases its velocity – if we set to measure its 
mass from within its own frame of reference we will not be able to measure any increase in 
its measured ‘mass’ (e.g., since when measured from within its local frame of reference there 
is no change in the number of times that object has been presented across the series of 
USCF’s)... 
Likewise, it is hypothesized that if we apply the ‘global’ vs. ‘local’ computational measures 
to the physical features of ‘space’, ‘energy’ and ‘time’ we will also replicate the well-known 
relativistic findings of the shortening of an object’s length (in the direction of its travelling), 
and the dilation of time (as measured by a ‘global’ observer): Thus, for instance, it is 
suggested that an application of the same ‘global’ computational perspective to the physical 
feature of ‘space’ brings about an inevitable shortening of its spatial length (e.g., in the 
direction of its travelling): 

S(g): (fi{x,y,z}(g) [USCF(i)] + … fj{x,y,z}(g) [USCF(n)]) / h x n{USCF’s}  

such that: 

fj{x,y,z}(g) [USCF(i)]) ≤ fi{x+(hxn),y+(hxn),z+(hxn)}(g)[USCF(i…n)] 

It is hypothesized that this is due to the global computational definition of an object’s spatial 
dimensions which computes a given object’s spatial (length) based on its consistent ‘spatial’ 
pixels (across a series of USCF’s) – such that any changes in that object’s spatial dimensions 
must not exceed Planck’s (‘h’) spatial constant multiplied by the number of USCF's; This is 
because given such Planck’s minimal ‘spatial threshold’ computational constraint – the 
faster a given relativistic object travels (e.g., from a global computational perspective) the 
less ‘consistent’ spatial ‘pixels’ that object possesses across frames which implies the shorter 
its spatial dimensions become (i.e., in the direction of its travelling); in contrast, measured 
from a ‘local’ computational perspective there is obviously no such “shrinkage” in an 
object’s spatial dimensions – since based on such a ‘local’ perspective all of the spatial 
‘pixels’ comprising a given object remain unchanged across the series of USCF’s.  

S {'l’}: (fi{x,y,z}{'l’} [USCF(i)] + … fj{x,y,z}{'l’} [USCF(n)]) / h x n{USCF’s}  

such that: 

fj{x,y,z}{'l’} [USCF(i)]) ≤ fi{x+(hxn),y+(hxn),z+(hxn)} {'l’} [USCF(i…n)] 

Somewhat similar is the case of the ‘global’ computation of the physical feature of ‘time’ 
which is computed based on the number of measured changes in the object’s spatial ‘pixels’ 
constitution (across frames):  
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Tg : ∑oi{x,y,z}[USCF(n)] ≠ oj{(x+m),(y+m),(z+m)} [USCF(1...n)] /c x n{USCF’s}, 

such that:  

T: ∑oi{x,y,z}[USCF(n)] - oj{(x+m),(y+m),(z+m)} [USCF(1...n)] ≤ c x n{USCF’s}  

The temporal value of an event (or object) is computed based on the number of times that a 
given object or event has changed – relative to the speed of light (e.g., across a certain 
number of USCF's); However, the measurement of temporal changes (e.g., taking place at an 
object or event) differ significantly – when computed from the 'global' or 'local' perspectives: 
This is because from a 'global' perspective, the faster an object travels (e.g., relative to the 
speed of light) the less potential changes are exhibited in that object's or event's 
presentations (across the relevant series of USCF's). In contrast, from a 'local' perspective, 
there is no change in the number of measured changes in the given object (e.g., as its 
velocity increases relative to the speed of light) – since the local (computational) perspective 
does not encompass globally measured changes in the object's displacement (relative to the 
speed of light)…  
Note also that we can begin appreciating the fact that from the CUFT’s (D2 USCF’s) 
computational perspective there seems to be inexorable (computational) interrelationships 
that exist between the eight computational products of the three postulated Computational 
Dimensions of ‘Framework’, ‘Consistency’ and ‘Locus’; Thus, for instance, we find that an 
acceleration in an object’s velocity increases the number of times that object is presented 
(e.g., 'globally' across a given number of USCF frames) – which in turn also increases it 
‘mass’ (e.g., from the ‘global Locus’ computational perspective), and (inevitably) also 
decreases its (global) ‘temporal’ value (due to the decreased number of instances that that 
object changes across those given number of frames (e.g., globally- relative to the speed of 
light maximal change computational constraint)... Indeed, over and beyond the 
hypothesized capacity of the CUFT to replicate and account for all known relativistic and 
quantum empirical findings, its conceptually higher-ordered ‘D2’ USCF’s emerging 
computational framework may point at the unification of all apparently “distinct” physical 
features of ‘space’, ‘time’, ‘energy’ and ‘mass’ (and ‘causality’) as well as a complete 
harmonization between the (apparently disparate) quantum (microscopic) and relativistic 
(macroscopic) phenomena and laws; the apparent disparity between quantum (microscopic) 
and relativistic (macroscopic) phenomena and laws; 
Towards that end, we next consider the applicability of the CUFT to known quantum 
empirical findings: Specifically, we consider the CUFT’s account of the quantum 
(computational) complimentary properties of ‘space’ and ‘energy’ or ‘time’ and ‘mass’; of an 
alternative CUFT’s account of the “collapse” of the probability wave function; and of the 
‘quantum entanglement’ and ‘particle-wave duality’ subatomic phenomena; It is also 
hypothesized that these alternative CUFT’s theoretical accounts may also pave the way for 
the (long-sought for) unification of quantum and relativistic models of physical reality. First, 
it is suggested that the quantum complimentary ‘physical’ features of ‘space’ and ‘energy’, 
‘time’ and ‘mass’ – may be due to a ‘computational exhaustiveness’ (or ‘complimentarity’) of 
each of the (two) levels of the Computational Dimension of ‘Framework’. It is hypothesized 
that both the ‘frame’ and ‘object’ (‘D2-USCF’s’) computational perspectives are exhaustively 
comprised of their ‘consistent’ (e.g., ‘space’ and ‘energy’, or ‘mass’ and ‘time’ physical 
features, respectively): Thus, whether we chose to examine the USCF’s (D2) computation of 
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a ‘frame’ – which is exhaustively comprised of its ‘space’ (‘consistent’) and ‘energy’ 
(‘inconsistent’) computational perspectives or if we chose to examine the ‘object’ perspective 
of the USCF’s (D2) series – which is exhaustively comprised of its ‘mass’ (‘consistent’) and 
‘time’ (inconsistent) computational aspects: in both cases the (D2) USCF’s series is 
exhaustively comprised of these ‘consistent’ and ‘inconsistent’ computational aspects (e.g., 
of the ‘frame’ or ‘object’ perspectives)... 
This means that the computational definitions of each of these pairs of ‘frame’: ‘space’ 
(consistent) and ‘energy’ (inconsistent) or ‘object’: ‘mass’ (consistent) or ‘time’ (inconsistent) 
is ‘exhaustive’ in its comprising of the USCF’s Framework (i.e., ‘frame’ or ‘object’) 
Dimension: 
Indeed, note that the computational definitions of ‘space’ and ‘energy’ exhaustively define 
the USCF’s (D2) Framework computational perspective of a ‘frame’: 

S: [fi{x,y,z}[USCF(n)] + fj{x,y,z}[USCF(1...n)])] / h x n{USCF’s},  

such that:  

fi{x,y,z}[USCF(n)]) ≤ fj{x+(hxn),y+(hxn),z+(hxn)}[USCF(1...n)]);  

and  

E: (fi{x,y,z}[USCF(n)]) – (fj{(x+m),(y+m),(z+m)}[USCF(1...n)])/c x n{USCF’s} 

such that:  

fi{x,y,z}[USCF(n)]) > (fj{x+(hxn),y+(hxn),z+(hxn)[USCF(n)]) 

Likewise, note that the computational definitions of ‘mass’ and ‘time’ exhaustively define 
the USCF’s (D2) Framework computational perspective of an ‘object’: 

M: ∑ [oi{x,y,z}USCF(n)] = [oi{(x+j),(y+j),(z+j)} USCF(1...n)] / h x n{USCF’s}  

such that  

[oi{x,y,z}USCF(n)] - [oi{(x+j),(y+j),(z+j)}USCF(1...n)] ≤ n x h[USCF(1...n)]. 

and  

T: ∑oi{x,y,z}[USCF(n)] ≠ oj{(x+m),(y+m),(z+m)} [USCF(1...n)] /c x n{USCF’s} 

such that:  

T: ∑oi{x,y,z}[USCF(n)] - oj{(x+m),(y+m),(z+m)} [USCF(1...n)] ≤ c x n{USCF’s} 

Thus, it is hypothesized that it is the computational exhaustiveness of the Framework 
Computational Dimension‘s (two) levels (e.g., of ‘frame’ or ‘object’ perspectives) which 
gives rise to the known quantum complimentary ‘physical’ features of ‘space’ and ‘energy’ 
(e.g., the frame’s ‘consistent’ and ‘inconsistent’ perspectives) or of ‘mass’ and ‘time’ (e.g., the 
object’s ‘consistent’ and ‘inconsistent’ perspectives). However, since this hypothetical 
‘computational exhaustiveness’ of the Framework Dimension’s (two) levels arises as an 
integral part of the USCF’s (D2) Universal Computational Principle’s operation – it 
manifests through both the (above mentioned) computational definitions of ‘space’ and 



The ‘Computational Unified Field Theory’ (CUFT):  
Harmonizing Quantum and Relativistic Models and Beyond 

 

539 

‘energy, ‘mass’ and ‘time’, as well as through a singular ‘Universal Computational Formula’, 
postulated below: 

4.2 The ‘Universal Computational Formula’ 
Based on the abovementioned three basic postulates of the ‘Duality Principle’ (e.g., 
including the existence of a conceptually higher-ordered ‘D2 A-Causal’ Computational 
framework), the existence of a rapid series of ‘Universal Simultaneous Computational 
Frames’ (USCF’s – e.g., which are postulated to be computed at an incredible rate of ‘c2’/ ‘h’) 
and their accompanying three Computational Dimensions of – ‘Framework’ (‘frame’ vs. 
‘object’), ‘Consistency’ (‘consistent’ vs. ‘inconsistent’) and ‘Locus’ (‘global’ vs. ‘local’) a 
singular ‘Universal Computational Formula’ is postulated which may underlie all (known) 
quantum and relativistic phenomena:  

2c x s e
h t m

   

wherein the left side of this singular hypothetical Universal Computational Formula 
represents the (abovementioned) universal rate of computation by the hypothetical 
Universal Computational Principle, whereas the right side of this Universal Computational 
Formula represents the ‘integrative-complimentary’ relationships between the four basic 
physical features of ‘space’ (s), ‘time’ (t), ‘energy’ (e) and ‘mass’ (m), e.g., as comprising 
different computational combinations of the three (abovementioned) Computational 
Dimensions of ‘Framework’, ‘Consistency’ and ‘Locus’;  
Note that on both sides of this Universal Computational Formula there is a coalescing of the 
basic quantum and relativistic computational elements – such that the rate of Universal 
Computation is given by the product of the maximal degree of (inter-USCF’s relativistic) 
change ‘c2’ divided by the minimal degree of (inter-USCF’s quantum) change ‘h’; Likewise, 
the right side of this Universal Computational Formula meshes together both quantum and 
relativistic computational relationships – such that it combines between the relativistic 
products of space and time (s/t) and energy-mass (e/m) together with the quantum 
(computational) complimentary relationship between ‘space’ and ‘energy’, and ‘time’ and 
‘mass’;  
More specifically, this hypothetical Universal Computational Formula fully integrates 
between two sets of (quantum and relativistic) computations which can be expressed 
through two of its derivations: 

2s m c x
t e h

 
    

 
 

2c xt m s e
h

 
     

 
 

The first amongst these equations indicates that there is a computational equivalence 
between the (relativistic) relationships of ‘space and time’ and ‘energy and mass’; 
specifically, that the computational ratio of ‘space’ (e.g., which according to the CUFT is a 
measure of the ‘frame-consistent’ feature) and ‘time’ (e.g., which is a measure of the ‘object-
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inconsistent’ feature) is equivalent to the computational ratio of ‘mass’ (e.g., a measure of 
the ‘object-consistent’ feature) and ‘energy’ (e.g., ‘frame-inconsistent’ feature)... 
Interestingly, this (first) derivation of the CUFT’s Universal Computational Formula 
incorporates (and broadens) key (known) relativistic laws – such as (for instance) the 
‘E=Mc2’ equation, as well as the basic concepts of ‘space-time’ and its curvature by the 
‘mass’ of an object (which in turn also affects that object’s movement – i.e. ‘energy’).  
The second equation explicates the (above mentioned) quantum ‘computational 
exhaustiveness’ (or ‘complimentary’) of the Computational Framework Dimension’s two 
levels of ‘frame’: ‘space’ (‘consistent’) and ‘energy’ (‘inconsistent’) and of ‘object’: ‘mass’ 
(‘consistent’) and ‘time’ (‘inconsistent’) ‘physical’ features, as part of the singular integrated 
(quantum and relativistic) Universal Computational Formula...  

5. Unification of quantum and relativistic models of physical reality 

Thus, the three (abovementioned) postulates of the ‘Duality Principle’, the existence of a 
rapid series of ‘Universal Simultaneous Computational Frames’ (USCF’s – computed by the 
‘Universal Computational Principle’ {‘י’} at the incredible hypothetical rate of ‘c2/h’), and the 
three Computational Dimensions of ‘Framework’, ‘Consistency’ and ‘Locus’ have resulted 
in the formulation of the (hypothetical) new ‘Universal Computational Formula’:  

2c x s x e
h t m

  

It is (finally) suggested that this (novel) CUFT and (embedded) Universal Computational 
Formula can offer a satisfactory harmonization of the existing quantum and relativistic 
models of physical reality, e.g., precisely through their integration within the (above) 
broader higher-ordered singular ‘D2’ Universal Computational Formula; 
In a nutshell, it is suggested that this Universal Computational Formula embodies the 
singular higher-ordered ‘D2’ series of (rapid) USCF’s, thereby integrating quantum and 
relativistic effects (laws and phenomena) and resolving any apparent ‘discrepancies’ or 
‘incongruities’ between these two apparently distinct theoretical models of physical 
reality: 
Therefore, it is suggested that the three (above mentioned apparent) principle differences 
between quantum and relativistic theories, namely: ‘probabilistic’ vs. ‘positivistic’ models of 
physical reality, ‘simultaneous-entanglement’ vs. ‘non-simultaneous causality’ and ‘single-’ vs. 
‘multiple-’ spatial-temporal modeling can be explained (in a satisfactory manner) based on 
the new (hypothetical) CUFT model (represented by the Universal Computational 
Formula);  
As suggested earlier, the apparent ‘probabilistic’ characteristics of quantum mechanics, e.g., 
wherein an (apparent) multi spatial-temporal “probability wave function” ‘collapses’ upon 
its assumed ‘SROCS’ direct (‘di1’) physical interaction with another ‘probe’ element is 
replaced by the CUFT’s hypothesized (singular) conceptually higher-ordered ‘D2’s’ rapid 
series of USCF’s (e.g., governed by the above Universal Computational Formula); 
Specifically, the Duality Principle’s conceptual proof for the principle inability of the SROCS 
computational structure to compute the “collapse” of (an assumed) “probability wave 
function” (‘target’ element) based on its direct physical interaction (at ‘di1’) with another 
‘probe’ measuring element has led to a reformalization of the various subatomic quantum 
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effects, including: the “collapse” of the “probability wave function”, the “particle-wave 
duality”, the “Uncertainty Principle’s” computational complimentary features, and 
“quantum entanglement” as arising from the (singular higher-ordered ‘D2’) rapid USCF’s 
series:  
Thus, instead of Quantum theory’s (currently assumed) “collapse” of the ‘probability wave 
function’, the CUFT posits that there exists a rapid series of ‘Universal Simultaneous 
Computational Frames’ (USCF’s) that can be looked at from a ‘single’ spatial-temporal 
perspective (e.g., subatomic ‘particle’ or relativistic well localized ‘object’ or ‘event’) or from 
a ‘multiple’ spatial-temporal perspective (e.g., subatomic ‘wave’ measurement or 
conceptualization). Moreover, the CUFT hypothesizes that both the subatomic ‘single 
spatial-temporal’ “particle” and ‘multiple spatial-temporal’ “wave” measurements are 
embedded within an exhaustive series of ‘Universal Computational Simultaneous Frames’ 
(USCF’s) (e.g., that are governed by the above mentioned Universal Computational 
Formula). In this way, it is suggested that the CUFT is able to resolve all three 
abovementioned (apparent) conceptual differences between quantum and relativistic 
models of the physical reality: This is because instead of the ‘collapse’ of the assumed 
‘quantum probability wave function’ through its (SROCS based) direct physical interaction 
with another subatomic probe element, the CUFT posits the existence of the rapid series of 
USCF’s that can give rise to ‘single-spatial temporal’ (subatomic “particle” or relativistic 
‘object’ or ‘event’) or to ‘multiple spatial-temporal’ (subatomic or relativistic) “wave” 
phenomenon; Hence, instead of the current “probabilistic-quantum” vs. “positivistic-
relativistic” (apparently disparate) theoretical models, the CUFT coalesces both quantum 
and relativistic theoretical models as constituting integral elements within a singular rapid 
series of USCF’s. Thereby, the CUFT can explain all of the (apparently incongruent) 
quantum and relativistic phenomena (and laws) such as for instance, the (abovementioned) 
‘particle’ vs. ‘wave’ and ‘quantum entanglement’ phenomena – e.g., which is essentially a 
representation of the fact that all single- multiple- (or exhaustive) measurements are 
embedded within the series of ‘Universal Simultaneous Computational Frames’ (USCF’s) and 
therefore that two apparently “distinct” ‘single spatial-temporal’ measured “particles” that 
are embedded within the ‘multiple spatial-temporal’ “wave” measurement necessarily 
constitute integral parts of the same singular simultaneous USCF’s (which therefore give 
rise to the apparent 'quantum entanglement' phenomenon). Nevertheless, due to the above 
mentioned ‘computational exhaustiveness’ (or ‘complimentarity’) the computation of such 
apparently ‘distinct’ “particles” embedded within the same “wave” and USCF’s (series) 
leads to the known quantum (‘uncertainty principle’s’) complimentary computational (e.g., 
simultaneous) constraints applying to the measurement of ‘space’ and ‘energy’ (e.g., 'frame': 
consistent vs. inconsistent features), or of ‘mass’ ad ‘time’ (e.g., 'object': consistent vs. 
inconsistent features). Such USCF’s based theoretical account for the empirically validated 
“quantum entanglement” natural phenomena is also capable of resolving the apparent 
contradictions that seems to exist between such “simultaneous action at a distance” (to 
quote Einstein’s famous objection) and Relativity’s constraint set upon the transmission of 
any signal at a velocity that exceeds the speed of light: this is due to the fact that while the 
CUFT postulates that the “entangled particles” are computed simultaneously (along with 
the entire physical universe) as part of the same USCF/s (e.g., and more specifically of the 
same multi spatial-temporal “wave” pattern).  
Another important aspect of this (hypothetical) Universal Computational Formula’s 
representation of the CUFT may be its capacity to replicate Relativity’s curvature of ‘space-
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time’ based on the existence of certain massive objects (which in turn also affects their own 
space-time pathway etc.): Interestingly, the CUFT points at the existence of USCF’s regions 
that may constitute: “high-space, high-time; high-mass, low-energy” vs. other regions which 
may be characterized as: “low-space, low-time; low-mass, high-energy” based on the 
computational features embedded within the CUFT (and its representation by the above 
Universal Computational Formula). This is based on the Universal Computational 
Formula’s (integrated) representation of the CUFT’s basic computational definitions ‘space’, 
‘time’, ‘energy’ and ‘mass’ as: 

2s m c x
t e h

 
    

 
 

which represents: ‘space’ – as the number of (accumulated) USCF’s ‘consistent-frame’ pixels 
that any given object occupies and its (converse) computational definition of ‘time’ as the 
number of ‘inconsistent-object’ pixels; and likewise the computational definition of ‘mass’ – 
as the number of ‘consistent-object’ USCF’s pixels and of ‘energy’ – as the (computational) 
definition of ‘mass’ as the number of ‘inconsistent-frame’ USCF’s pixels.  
Hence, General Relativity may represent a 'special case' embedded within the CUFT's 
Universal Computational Formula integrated relationships between 'space', 'time', 
'energy' and 'mass' (computational definitions): This is because General Relativity 
describes the specific dynamics between the "mass" of relativistic objects (e.g., a 'global-
object-consistent' computational measure), their curvature of "space-time" (i.e., based on 
an 'frame-consistent' vs. 'object-inconsistent' computational measures) and its relationship 
to the 'energy-mass' equivalence (e.g., reflecting a 'frame-inconsistent' – 'object-consistent' 
computational measures); This is because from the (above mentioned) ‘global’ 
computational measurement perspective there seems to exist those USCF’s regions which 
are displaced significantly across frames (e.g., possess a high 'global-inconsistent-frame' 
energy value) – and therefore also exhibit increased 'global-object-consistent' mass value, 
and moreover are necessarily characterized by their (apparent) curvature of 'space-time' 
(i.e., alteration of the 'global-frame-consistent' space values and associated 'global-object-
inconsistent' time values)… 
Therefore, in the special CUFT's case described by General Relativity we obtain those 
"massive" objects, i.e., which arise from high 'global-frame-inconsistent' energy values 
(e.g., which are therefore presented many times consistently across frames – yielding a 
high 'global-object-consistent' mass value); These objects also produce low (dilated) global 
temporal values since the high 'global-object-consistent' (mass) value is inevitably linked 
with a low 'global-object-inconsistent' (time) value; Finally, such a high 'global-frame-
inconsistent' (energy) object also invariably produces low 'global-frame-consistent' spatial 
measures (e.g., in the vicinity of such 'high-energy-high-mass' object). Thus, it may be the 
case that General Relativity’s described mechanical dynamics between the mass of objects 
and their curvature of ‘space-time’ (which interacts with these objects’ charted space-time 
pathway) represents a particular instance embedded within the more comprehensive 
(CUFT) Universal Computational Formula’s outline of a (singular) USCF’s-series based 
D2 computation (e.g., comprising the three above mentioned ‘Framework’, Consistency’ 
and ‘Locus’ Computational Dimensions) of the four basic ‘physical’ features of ‘space’, 
‘time’, ‘energy’ and ‘mass’ interrelationships (e.g., as ‘secondary’ emerging computational 
products of this singular Universal Computational Formula driven process)...  
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Indeed, the CUFT’s hypothesized rapid series of USCF’s (governed by the above 
mentioned ‘Universal Computational Formula’) integrates (perfectly) between the 
essential quantum complimentary features of ‘space and energy’ or ‘time and mass’ (e.g., 
which arises as a result of the abovementioned ‘computational exhaustiveness’ of each of 
the Computational Framework Dimension’s ‘frame’ and ‘object’ levels, which was 
represented earlier by one of the derivations of the Universal Computational Formula); 
“quantum entanglement”, the “uncertainty principle” and the “particle-wave duality” 
(e.g., which arises from the existence of the postulated ‘Universal Simultaneous 
Computational Frames’ [USCF’s] that compute the entire spectrum of the physical 
universe simultaneously per each given USCF and which embed within each of these 
USCF’s any ‘single- spatial-temporal’ measurements of “entangled particles” as 
constituting integral parts of a ‘multiple spatial-temporal’ “wave” patterns); Quantum 
mechanics’ minimal degree of physical change represented by Planck’s ‘h’ constant (e.g., 
which signifies the CUFT’s ‘minimal degree of inter-USCF’s change’ for all four ‘physical’ 
features of ‘space’, ‘time’, ‘energy’ and ‘mass’); As well as the relativistic well validated 
physical laws and phenomena of the “equivalence of energy and mass” (e.g., the famous 
“E= Mc2” which arises as a result of the transformation of any given object’s or event’s 
‘frame-inconsistent’ to ‘object-consistent’ computational measures based on the maximal 
degree of change, but which also involves the more comprehensive and integrated 
Universal Computational Formula derivation: t x m x (c2/h x י) = s x e .); Relativity’s 
‘space-time’ and ‘energy-mass’ relationships expressed in terms of their constitution of an 
integrated singular USCF’s series which is given through an alternate derivation of the 
same Universal Computational Formula:  

2s m x c x
t e h

 
   

 
 

Indeed, this last derivation of the Universal Computational Formula seems to encapsulate 
General Relativity’s proven dynamic relationships that exist between the curvature of space-
time by mass and its effect on the space-time pathways of any such (massive) object/s – 
through the complete integration of all four physical features within a singular 
(conceptually higher-ordered ‘D2’) USCF’s series... Specifically, this (last) derivation of the 
(abovementioned) Universal Computational Formula seems to integrate between ‘space-
time’ – i.e., as a ratio of a ‘frame-consistent’ computational measure divided by ‘object-
inconsistent’ computational measure – as equal to the computational ratio that exists 
between ‘mass’ (e.g., ‘object-consistent’) divided by ‘energy’ (e.g., ‘frame-inconsistent’) 
multiplied by the Rate of Universal Computation (R = c2/h) and multiplied by the Universal 
Computational Principle’s operation (‘י’); Thus, the CUFT’s (represented by the above 
Universal Computational Formula) may supply us with an elegant, comprehensive and 
fully integrated account of the four basic ‘physical’ features constituting the physical 
universe (e.g., or indeed any set of computational object/s, event/s or phenomena etc.):  
Therefore, also the Universal Computational Formula’s full integration of Relativity’s 
maximal degree of inter-USCF’s change (e.g., represented as: ‘c2’) together with Quantum’s 
minimal degree of inter-USCF’s change (e.g., represented by: Planck’s constant ’h’) produces 
the ‘Rate’ {R} of such rapid series of USCF’s as: R = c2/h, which is computed by the 
Universal Computational Principle ‘י’ and gives rise to all four ‘physical’ features of ‘space’, 
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‘time’, ‘energy’ and ‘mass’ as integral aspects of the same rapid USCF’s universal 
computational process. 
Thus, we can see that the discovery of the hypothetical Computational Unified Field 
Theory’s (CUFT’s) rapid series of USCF’s fully integrates between hitherto validated 
quantum and relativistic empirical phenomena and natural laws, while resolving all of their 
apparent contradictions.  

6. CUFT: Theoretical ramifications 

Several important theoretical ramifications may follow from the CUFT; First, the CUFT’s 
(novel) definition of ‘space’, ‘time’, ‘energy’ and ‘mass’ – as emerging computational 
properties which arise as a result of different combinations of the three Computational 
Dimensions (e.g., of ‘Framework’, ‘Consistency’ and ‘Locus’) transform these apparently 
“physical” properties into (secondary) ‘computational properties’ of a D2 series of USCF’s... 
This means that instead of ‘space’, ‘energy’, ‘mass’ and ‘time’ existing as "independent - 
physical” properties in the universe they arise as 'secondary integrated computational 
properties' (e.g., ‘object’/’frame’ x ‘consistent’/’inconsistent’ x ‘global’/’local’) of a singular 
conceptually higher-ordered 'D2' computed USCF’s series…  
Second, such CUFT’s delineation of the USCF’s arising (secondary) computational 
features of ‘space’, ‘time’, ‘energy’ and ‘mass’ is also based on one of the (three) postulates 
of the CUFT, namely: the ‘Duality Principle’, i.e., recognizing the computational 
constraint set upon the determination of any “causal-physical” relationship between any 
two (hypothetical) interacting ‘x’ and ‘y’ elements (at any direct ‘di1’ or indirect '…din' 
computational level/s), but instead asserting only the existence of a conceptually higher-
ordered’D2’ computational level which can compute only the “co-occurrences” of any two 
or more hypothetical spatial-temporal events or phenomena etc. This means that the 
CUFT’s hypothesized ‘D2’ computation of a series of (extremely rapid) USCF’s does not 
leave any room for the existence of any (direct or indirect) “causal-physical” ‘xy’ 
relationship/s. Instead, the hypothesized D2 A-Causal Computation calls for the 
computation of the co-occurrences of certain related phenomena, factors or events – but 
which lack any “real” ‘causal-physical’ relationship/s (phenomena or laws)...  
Third, the Duality Principle’s above mentioned necessity to replace any (direct or indirect) 
causal-physical relationship (or scientific paradigm), e.g., “xy” by the CUFT’s 
hypothesized D2 A-Causal Computation of the “co-occurrence” of particular spatial-
temporal factors, events, phenomena etc. that constitute certain ‘spatial-pixels’ within a 
series of USCF’s may have significant theoretical ramifications for several other key 
scientific paradigms (across the different scientific disciplines); Specifically, it is suggested 
that perhaps an application of the Duality Principle’s identified- and constrained- SROCS 
computational structure (e.g., of the general form: PR{x,y}/di1→[‘y’ or ‘not y’]/di1) towards 
key existing scientific paradigms such as: ‘Darwin’s Natural Selection Principle’, ‘Gödel's 
Incompleteness Theorem’ (e.g., and Hilbert’s failed ‘Mathematical Program’), 
Neuroscience’s (currently assumed) ‘materialistic-reductionistic’ working hypothesis etc. 
may open the door for a potential reformalization of these scientific paradigms in a way that 
is compatible with the novel computational Duality Principle and its ensued CUFT.  
Hence, to the extent that the hypothesized CUFT may replicate (adequately) all known 
quantum and relativistic empirical phenomena and moreover offer a satisfactory 
(conceptually higher-ordered ‘D2’) USCF’s series based computational framework that may 
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harmonize- and bridge the gap- between quantum and relativistic models of physical 
reality, the CUFT may constitute a potential candidate to integrate (and replace) both 
quantum and relativistic theoretical models; However, in order for such (potentially) serious 
theoretical consideration to occur, the next required step will be to identify those particular 
(empirical) instances in which the CUFT’s predictions may differ (significantly) from those 
of quantum mechanics or Relativity theory.  

7. Conclusion 

In order to address the principle contradiction that exists between quantum mechanics and 
Relativity Theory (e.g., comprising of: Probabilistic vs. deterministic models of physical 
reality, “Simultaneous-entanglement” vs. “non-simultaneous-causality” features and Single vs. 
multiple spatial-temporal modeling) a computational-empirical analysis of a fundamental 
‘Self-Referential Ontological Computational System’ (SROCS) structure underlying both 
theories was undertaken; It was suggested that underlying both quantum and relativistic 
modeling of physical reality there is a mutual 'SROCS’ which assumes that it is possible to 
determine the ‘existence’ or ‘non-existence’ of a certain ‘y’ factor solely based on its direct 
physical interaction (PR{x,y}/di1) with another ‘x’ factor (e.g., at the same ‘di1’ computational 
level), thus: 

SROCS: PR{x,y}/di1→ [‘y’ or ‘not y]’/di1.  

In the case of Relativity theory, such basic SROCS computational structure pertains to the 
computation of any spatial-temporal or energy-mass value/s of any given event (or object) – 
based (solely) on its direct physical interaction with any hypothetical (differential) relativistic 
observer:  

SROCS: PR{O-diff , P[s-t (i...n), e-m (i...n)] }/di1  
→ {‘P[s-t (i), e-m (i)]’ or ‘not P[s-t (i), e-m (i)]’}/di1  

In the case of quantum mechanics, it is hypothesized that precisely the same 
SROCS/SRONCS computational structure may pertain to the quantum mechanical 
computation of the physical properties of any given subatomic ‘target’ (e.g., assumed to be 
dispersed all along a probability wave function) that is hypothesized to be determined 
solely through its direct physical interaction with another subatomic complimentary ‘probe’ 
entity, thus: 

SROCS: PR{P(‘s-e’ or ‘t-m’), t [s-e (i...n), t-m (i...n)] }/di1 
→ [‘t [s-e (i), t-m (i)]’ or ‘not t [s-e (i), t-m (i)]’/di1 

However, the computational-empirical analysis indicated that such SROCS computational 
structure (which underlies both quantum and relativistic paradigms) inevitably leads to 
both ‘logical inconsistency’ and ensuing ‘computational indeterminacy’ (i.e., an apparent 
inability of these quantum or relativistic SROCS systems to determine weather a particular 
spatial-temporal or energy-mass ‘Phenomenon’ or a particular spatial-energetic or temporal-
mass target value “exists” or “doesn’t exist”). But, since there exists ample empirical 
evidence indicating the capacity of these quantum or relativistic computational systems to 
determine the “existence” or “non-existence” of any particular relativistic ‘Phenomenon’ or 
quantum complimentary target value, then a novel computational ‘Duality Principle’ asserts 
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that the currently assumed SROCS computational structure is invalid; Instead, the Duality 
Principle points at the existence of a conceptually higher-ordered (‘D2’) “a-causal” 
computational framework which computes the “co-occurrences” of any range of quantum 
‘probe-target’ or relativistic ‘observer-Phenomenon’ pairs thus: 
1.  D2: {P(‘e-s’ or ‘t-m’), T [e-s (i), t-m (i)]; ... P(‘e+n/s+n’ or ‘t+n/m+n’), T [(e+n) (s+n), 

(t+n) (m+n)]} ≠ PR{[P(‘e-s’ or ‘t-m’), T (e-s (i)), t-m (i))]; ... P(‘e+n/s+n’ or ‘t+n/m+n’), T 
(e+n) (s+n), (t+n) (m+n)]}/di1 

2. ‘D2’: {P [s-t (i...n) e-m (i...n), O-r(st-i)]; … P[s-t (i+n) e-m (i+n ), O-r(st-i+n)}] ≠ PR{O-diff, 
P[s-t (i...n), e-m (i...n)] }/di1.  

Indeed, a further application of this (new) hypothetical computational Duality Principle 
indicated that there cannot exist “multiple D2” computational levels but rather only one 
singular ‘conceptually higher-ordered ‘D2’ computational framework as underlying both 
quantum and relativistic (abovementioned) ‘co-occurring’ phenomena.  
Next, an examination of the potential characteristics of such conceptually higher-ordered 
(singular) ‘a-causal D2’ computational framework indicated that it may embody ‘single’- 
‘multiple’- and ‘exhaustive’ spatial-temporal measurements as embedding all 
hypothetical ‘probe-target’ subatomic pairs or all hypothetical (differential) observer/s – 
‘Phenomenon’ pairs; It was suggested that such D2 (singular ‘a-causal’) arrangement of all 
hypothetical quantum ‘probe-target’ or relativistic ‘observer-Phenomenon’ pairs may give 
rise to all known single spatial-temporal (quantum) “particle” or (relativistic) “object” or 
“event” measurements or all multiple spatial-temporal “wave” measurements. Moreover, 
when we broaden our computational analysis beyond the scope of such ‘single-’ or 
‘multiple’ spatial-temporal measurements (or conceptualizations) to the entire corpus of 
all hypothetical possible spatial-temporal points- e.g., as 'co-occurring' at the Duality 
Principle’s asserted conceptually higher-ordered ‘D2’ computational framework, then this 
may point at the existence of a series of ‘Universal Simultaneous Computational Frames’ 
(USCF’s). The existence of such (a series of) hypothetical conceptually higher-ordered ‘D2’ 
series of USCF’s which constitute the entirety of all hypothetical (relativistic) spatial-
temporal or energy-mass phenomena and all hypothetical (quantum complimentary) 
spatial-energetic or temporal-mass “pixels” was suggested by the well-validated 
empirical phenomenon of ‘quantum entanglement’ (e.g., relating to a ‘computational 
linkage’ between 'greater than light-speed travelling distance' of two spatial-temporal 
"entangled particles"); This is because based on the fact that two such disparate 
'entangled' quantum “particles” (e.g., which could hypothetically comprise a probability 
wave function that can span tremendous cosmic distances) we may infer that the entirety 
of all (hypothetical) cosmic quantum (complimentary) 'probe-target' pairs or all 
(hypothetical) relativistic 'observer-Phenomenon' pairs may be computed as "co-
occurring" simultaneously as part of such (hypothetical) 'D2' 'Universal Simultaneous 
Computational Frames' (USCF's).  
This hypothetical (rapid series of) 'Universal Simultaneous Computational Frames' (USCF'S) 
was further stipulated to possess three basic (interrelated) 'Computational Dimensions' 
which include: Computational ‘Framework’ (e.g., relating to the entire USCF/s ‘frame/s’ or to 
a particular ‘object’ within the USCF/s), Computational ‘Consistency’ (which refers to the 
degree of 'consistency' of an object or of segments of the frame across a series of USCF’s (e.g., 
‘consistent’ vs. ‘inconsistent’), and Computational ‘Locus’ of (e.g., whether the computation 
is carried out ‘locally’- from within any particular object or ‘reference system’, or ‘globally’- 
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i.e., externally to a particular reference system from the perspective of the entire frame or 
segments of the frame). Interestingly (partially) by using a 'cinematic film metaphor' it was 
possible to derive and formalize each of the four basic physical features of 'space', 'time', 
'energy' and 'mass' as emerging (secondary) computational properties arising from the 
singular 'D2' computation of a series of USCF's – through a combination of the two 
Computational Dimensions of 'Framework' and 'Consistency': Thus, a combination of the 
'object' level (e.g., within the 'Framework' Dimension) with the 'consistent' vs. 'inconsistent' 
levels (of the 'Consistency' Dimension) produced the physical properties of 'mass' and 'time' 
(correspondingly); On the other hand, a combination of the 'frame' level (within the 
Framework Dimension) and the 'consistent' vs. 'inconsistent' ('Consistency' Dimension) 
yielded the two other basic physical features of 'space' and 'energy'. It was further 
hypothesized that (following the cinematic-film analogy) the minimal (possible) degree of 
‘change’ across any two (subsequent) ‘Universal Simultaneous Computational Frames’ 
(USCF’s) is given by Planck’s ‘h’ constant (e.g., for the various physical features of ‘space’, 
‘time’, ‘energy’ or ‘mass’), whereas the maximal (possible) degree of change across two such 
(subsequent) USCF’s is be given by: ‘c2’; Finally, the 'rate' at which the series of USCF's may 
be computed (or presented) was hypothesized to be given by: c2/h! 
Hence, based on the above mentioned three basic theoretical postulates of the ‘Duality 
Principle’ (e.g., including the existence of a conceptually higher-ordered ‘D2 A-Causal’ 
Computational framework), the existence of a rapid series of ‘Universal Simultaneous 
Computational Frames’ (USCF’s) and their accompanying three Computational 
Dimensions of – ‘Framework’ (‘frame’ vs. ‘object’), ‘Consistency’ (‘consistent’ vs. 
‘inconsistent’) and ‘Locus’ (‘global’ vs. ‘local’) a (novel) ‘Computational Unified Field 
Theory’ (CUFT) was hypothesized; Based on a computational formalization of each of the 
four basic physical features of 'space' and 'energy', 'mass' and 'time' (e.g., which arise as 
secondary computational measures of the singular D2 rapid series of USCF's 
Computational Dimensions combination of 'frame': 'consistent' vs. 'inconsistent' and 
'object': 'consistent' vs. 'inconsistent', correspondingly), the hypothesized 'Computational 
Unified Field Theory' (CUFT) can account for all known quantum and relativistic 
empirical findings, as well as seem to 'bridge the gap' between quantum and relativistic 
modeling of physical reality: Specifically, the various relativistic phenomena were shown 
to arise based on the interaction between the two ('global' vs. 'local') 'Framework' and 
(consistent vs. inconsistent) 'Consistency' computational dimensions. Conversely, a key 
quantum complimentary feature that characterizes the probabilistic interpretation of the 
'uncertainty principle (e.g., as well as the currently assumed "collapse" of the probability 
wave function) was explained based on the 'computational exhaustiveness' arising from the 
computation of both the 'consistent' and 'inconsistent' aspects (or levels) of the 
Computational Dimensions' levels of 'frame' or 'object'; Thus for instance, both the 
'consistent' and 'inconsistent' aspects (or levels) of the (Framework dimension's) 'frame' 
level (e.g., which comprise the quantum measurements of 'space' and 'energy', 
respectively) exhaustively describe the entire spectrum of this 'frame' computation. Thus, 
for instance, if we opt to increase the accuracy of the subatomic 'spatial' ('frame-
consistent') measurement, then we also necessarily decrease the computational accuracy 
of its converse (exhaustive) 'energy' (e.g., 'frame-inconsistent') measure etc.  
Indeed, such CUFT's reformalization of the key quantum and relativistic laws and empirical 
phenomena as arising from the singular (rapid series of) USCF's interrelated (secondary) 
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computational measures (e.g., of the four basic quantum and relativistic physical features of 
'space', 'time', 'energy' and 'mass' has led to the formulation of a singular 'Universal 
Computational Formula' which was hypothesized to underlie- harmonize- and broaden- the 
current quantum and relativistic models of physical reality: 

2c  x s x e
h t m

  

wherein the left side of this singular hypothetical Universal Computational Formula 
represents the (abovementioned) universal rate of computation by the hypothetical 
Universal Computational Principle, whereas the right side of this Universal Computational 
Formula represents the ‘integrative-complimentary’ relationships between the four basic 
physical features of ‘space’ (s), ‘time’ (t), ‘energy’ (e) and ‘mass’ (m), (e.g., as comprising 
different computational combinations of the three (abovementioned) Computational 
Dimensions of ‘Framework’, ‘Consistency’ and ‘Locus’; 
Note that on both sides of this Universal Computational Formula there is a coalescing of the 
basic quantum and relativistic computational elements – such that the rate of Universal 
Computation is given by the product of the maximal degree of (inter-USCF’s relativistic) 
change ‘c2’ divided by the minimal degree of (inter-USCF’s quantum) change ‘h’; Likewise, 
the right side of this Universal Computational Formula meshes together both quantum and 
relativistic computational relationships – such that it combines between the relativistic 
products of space and time (s/t) and energy-mass (e/m) together with the quantum 
(computational) complimentary relationship between ‘space’ and ‘energy’, and ‘time’ and 
‘mass’;Significantly, it was suggested that the three (above mentioned apparent) principle 
differences between quantum and relativistic theories, namely: ‘probabilistic’ vs. ‘positivistic’ 
models of physical reality, ‘simultaneous-entanglement’ vs. ‘non-simultaneous causality’ and 
‘single-’ vs. ‘multiple-’ spatial-temporal modeling can be explained (in a satisfactory manner) 
based on the new (hypothetical) CUFT model (represented by the Universal Computational 
Formula); 
Finally, there may be important theoretical implications to this (new) hypothetical CUFT;  
First, instead of ‘space’, ‘energy’, ‘mass’ and ‘time’ existing as "independent-physical” 
properties in the universe they may arise as 'secondary integrated computational properties' 
(e.g., ‘object’/’frame’ x ‘consistent’/’inconsistent’ x ‘global’/’local’) of a singular 
conceptually higher-ordered 'D2' computed USCF’s series…  
Second, based on the 'Duality Principle' postulate underlying the CUFT which proves the 
conceptual computational constraint set upon the determination of any “causal-physical” 
relationship between any two (hypothetical) ‘x’ and ‘y’ elements (at the ‘di1’ computational 
level), we are forced to recognize the existence of a conceptually higher-ordered’D2’ 
computational level which can compute only the “co-occurrences” of any two or more 
hypothetical spatial-temporal events or phenomena etc. This means that the CUFT’s 
hypothesized ‘D2’ computation of a series of (extremely rapid) USCF’s does not leave any 
room for the existence of any (direct or indirect) “causal-physical” ‘xy’ relationship/s, but 
instead points at the . singular conceptually higher-ordered D2 A-Causal Computation 
which computes the co-occurrences of certain related phenomena, factors or events…  
Third, an application of one of the three theoretical postulates underlying this novel CUFT, 
namely: the 'Duality Principle' to other potential 'Self-Referential Ontological Computational 
Systems' (SROCS) including: ‘Darwin’s Natural Selection Principle’, ‘Gödel's 



The ‘Computational Unified Field Theory’ (CUFT):  
Harmonizing Quantum and Relativistic Models and Beyond 

 

549 

Incompleteness Theorem’ (e.g., and Hilbert’s “failed” ‘Mathematical Program’), 
Neuroscience’s (currently assumed) ‘materialistic-reductionistic’ working hypothesis etc. 
(Bentwich, 2003a, 2003b, 2003c, 2004, 2006a, 2006b) (may open the door for a potential 
reformalization of these scientific paradigms in a way that is compatible with the novel 
computational Duality Principle and its ensued CUFT. 
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Theoretical Validation of the  
Computational Unified Field Theory (CUFT) 

Jonathan Bentwich 
Brain Perfection LTD 

Israel 

"No better destiny could be allotted to any physical theory, than that it should of itself point out 
the way to the introduction of a more comprehensive theory, in which it lives on as a limiting 
case"  

(Einstein, 1916) 

1. Introduction 

A previous article (Bentwich, 2011c) hypothesized the existence of a novel 'Computational 
Unified Field Theory' (CUFT) which was shown to be capable of replicating quantum and 
relativistic empirical phenomena and furthermore may resolve the key inconsistencies 
between these two theories; The CUFT (Bentwich, 2011c) is based upon three primary 
postulates including: the computational 'Duality Principle' (e.g., consisting of an empirical-
computational proof for the principle inability to determine the "existence" or "non-
existence" of any hypothetical 'y' element based on its direct physical interaction with 
another exhaustive set of 'x' factors) (Bentwich, 2003 a,b,c; 2004; 2006a); the existence of an 
extremely rapid series (e.g., c2 /h) of 'Universal Simultaneous Computational Frames' (USCF's) 
which comprise the entire corpus of the physical spatial universe at any given minimal 
(quantum temporal 'h') point (which is computed by a 'Universal Computational Principle', 
 .and the existence of three 'Computational Dimensions' – e.g., of 'Framework' ('frame' vs ;('י'
'object'), 'Consistency' ('consistent' vs. 'inconsistent') and Locus ('global' vs. 'local'); Taken 
together these three basic theoretical postulates give rise to the CUFT's 'Universal 
Computational Formula':  

2c x s x e
h t x m

  

which fully integrates between the four basic physical properties of 'space', 'time', 'energy' 
and 'mass' and is capable of replicating all known quantum and relativistic phenomena, 
while resolving the apparent contradictions between Quantum Mechanics and Relativity 
Theory (such as for instance the existence of the relativistic speed of light limit as opposed to 
the quantum entanglement's instantaneous phenomenon). 
Moreover, even beyond the capacity of the CUFT to replicate all known quantum and 
relativistic phenomena as well as resolve their key theoretical inconsistencies (and 
differences), the CUFT was postulated to broaden the scope of our theoretical 



 
Theoretical Concepts of Quantum Mechanics 552 

understanding of physical reality thereby qualifying as a potential candidate for a 'Theory of 
Everything' (TOE) (Brumfiel, 2006; Einstein, 1929, 1931, 1951; Ellis, 1986; Greene, 2003). 
Specifically, based on the (abovementioned) integrated postulates of the 'Duality Principle', 
existence of the 'Universal Simultaneous Computational Frames' (USCF's) and three 
(Framework, Consistency and Locus) Computational Dimensions the CUFT describes the 
four basic physical properties of 'space', 'time', 'energy' and 'mass' as emerging (secondary) 
computational properties that arise as a result of various 'Framework x Consistency x Locus' 
combinations – as computed (by the Universal Computational Principle, 'י') based on the 
rapid series of USCF's…  
However, in order to fully validate this new (hypothetical) 'Computational Unified Field 
Theory' (CUFT), it is necessary to further extend its theoretical framework to bear on (at least) 
two important aspects: i.e., to identify particular instances in which the predictions of the 
CUFT critically differ from those of both Quantum and Relativistic models, and to demonstrate 
the potency of the CUFT in broadening our understanding of key scientific phenomena (e.g., 
while demonstrating the need to perhaps reformulate these key scientific computational 
paradigms based on the CUFT's new broader theoretical scientific framework); 
Hence, the current chapter comprises two segments : the first critically contrasts (at least) three 
specific instances in which the critical predictions of the CUFT significantly differs from that of 
both quantum mechanics and Relativity theory; and the second, which delineates the 
application of one of the three major theoretical postulates of the CUFT (namely: the 'Duality 
Principle') in the particular cases of three key scientific (computational) paradigms (including: 
Darwin's 'Natural Selection Principle' and associated 'Genetic Encoding Hypothesis' and 
Neuroscience's basic materialistic-reductionistic 'Psycho-Physical Problem);  
We therefore begin by identifying (at least) three specific empirical predictions of the CUFT 
which may critically differ from those predicted by the existing quantum and relativistic 
theoretical models;  
a. Contrasting between the CUFT's Universal Computational Formula's '1' and '2' derivatives 

and their corresponding relativistic and quantum empirical predictions; 
b. Contrasting between the CUFT's critical prediction regarding the differential number of 

times that a "massive" compound (or atom/s) will be presented (consistently) across a 
series of subsequent USCF's relative to the number of times that a "lighter" compound 
(or atom/s) will be presented across the same number of (serial) USCF's, and the 
corresponding predictions of Quantum or Relativistic theories.  

c. Critically contrasting between the CUFT's prediction of the possibility of reversing any 
given object's spatial-temporal sequence (e.g., based on a computation of that object's 
serial electromagnetic values across a series of USCF's and reversal of these recorded 
values based an application of the appropriate electromagnetic field to that object's 
recorded serial USCF's electromagnetic values) – and the negation of any such capacity 
to reverse the 'flow of time' by both Quantum and Relativistic theories 

2. The CUFT's universal computational formula's relativistic & quantum 
derivatives 

The first (of these three) differential critical predictions for which the CUFT's empirical 
predictions may differ significantly from those of both quantum and relativistic theoretical 
models is based upon the CUFT's Universal Computational Formula: 
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2c x s x e
h t x m

  

Specifically, whereas Relativity theory recognizes the equivalence of mass and energy (e.g., E = 
Mc2), the unification of 'space' and 'time' as a four-dimensional continuum, and its curvature 
by mass – Relativity Theory does not allow for the complete unification (or transformation) of all of 
these four basic physical features (e.g., within one computational formula); In contrast, the 
CUFT's defines each of these four basic physical features in terms of their (particular) 
combination of three Computational Dimensions, e.g., 'Framework' ('frame'/'object'), 
'Consistency' ('consistent'/'inconsistent') and 'Locus' ('global'/'local') which are all anchored in 
the same singular (higher-ordered D2) rapid series of 'Universal Simultaneous Computational 
Frames' (USCF's). Thus, for instance it was shown (Bentwich, 2011c) that the computational 
definition of 'space' and 'energy', or of 'mass' and 'time' constitute exhaustive computational 
pairs delineating a frame's – or an 'object's - consistent vs. inconsistent computational measures 
(e.g., across a series of subsequent USCF's, respectively); (In fact, it was precisely this 
'computational exhaustiveness' of these frame- or object- consistency measures that was 
suggested to offer an alternative explanation for the currently accepted quantum's probabilistic 
interpretation of the "collapse" of the 'probability wave function'.)  
Indeed, it is hereby hypothesized that this unique capability of the CUFT's Universal 
Computational Formula to comprehensively unify between all four basic physical features 
(e.g., 'space', 'time', 'energy' and 'mass) – not only goes beyond the capacity of the existing 
(relativistic or quantum) theoretical models, but also produces particular (verifiable) 
empirical predictions that may critically from those offered by either quantum or relativistic 
theoretical models: 
Thus, it is suggested that the two previously outlined (Bentwich 2011c) computational 
derivatives of the Universal Computational Formula: ݐݏ = ݉݁ ݔ ܿଶ ݔ ℎי  (1)

ݐ ݔ ݉ ݔ (ܿଶ ݔ ℎי ) = ݏ ݔ ݁  (2)

may (in fact) provide precisely such (differential) critical predictions of the CUFT as 
opposed to their (respective) relativistic (1) and quantum (2) predictions. 
This is because according to the CUFT's Universal Computational Formula's (1) derivative a 
(relativistic or quantum) object's 'space' value divided by its 'time' value is equivalent to that 
object's 'mass' value divided by its 'energy' value – multiplied by the square of the speed of 
light (c2) divided by Planck's constant ('h') (e.g., and based on the higher-ordered D2 'י' 
Universal Computational Principle's computation of the given series of USCF's); In the case 
of the CUFT, the computational rational for this equivalence of 's'/'t' = 'm'/'e' x (c2/h x 'י') 
stems from its stipulation that the ratio between an object's 'frame-consistent' ('s') and 
'object-inconsistent' ('t') values should be the same as between that object's 'object-consistent' 
('m') and 'frame-inconsistent' ('e') values – multiplied by the rate of universal computation 
(e.g., c2/h) (e.g., as delineated in the previous publication: Bentwich, 2011c). However, when 
contrasting this particular CUFT's Universal Computational Formula (I) with its counterpart 
in Relativity Theory we find that even though relativistic theory possesses specific 
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equivalences between 'energy' and 'mass' (e.g., the famous 'E = Mc2') and the unification of 
'space-time' as a 'four-dimension' continuum, it fails to account for any such comprehensive 
equivalence of 's'/'t' = 'm'/'e' x (c2/h x 'י'); In fact, if we focus on the (above) relativistic 
'energy-mass' equivalence ('E = mc2') we can notice that the CUFT's Universal 
Computational Formula's (I) derivative 's'/'t' = 'm'/'e' x (c2/h x 'י') in fact contains this 
'energy-mass' equivalence but goes beyond that equivalence to incorporate also its precise 
(hypothetical) relationship with the (ratio between) 'space' and 'time' as well as with the 
(hypothetical) rate of universal computation (e.g., c2/h x 'י'); These broader CUFT Universal 
Computational Formula's (I) relationships between 'space' and 'time' and the (hypothesized) 
'universal computational rate' (c2/h x 'י') – and Relativity's (known) 'energy-mass 
equivalence' could be represented in this manner: 

'e' x 's'/'t' = 'm' x c2/h (x 'י') 

In this way, we can see that the CUFT Universal Computational Formula's (1 derivative) 
contains (and replicates) Relativity's core 'energy-mass equivalence' ('E = mc2'), but also goes 
beyond that particular relationship as embedded within a broader more comprehensive 
(singular) Universal Computational Formula's unification of the four basic physical features 
(e.g., of 'space', 'time', 'energy' and 'mass'). As such, the above first derivative of the 
Universal Computational Formula (1) points at a particular empirical instant in which one of 
the CUFT's critical predictions differs from those offered by Relativity Theory.  
A second instance in which the CUFT's (critical) empirical prediction may differ from that of 
Quantum Mechanic is in the case of the CUFT Universal Computational Formula's (2) 
derivative – as it relates to an extension of quantum's (current) particular complimentary 
relationships between a subatomic object's or event's 'spatial' and 'energetic' or 'temporal' and 
'mass' values: According to the current quantum mechanical account of Heisenberg' 
'Uncertainty Principle' (Heisenberg, 1927) there exist (strict) complimentary relationships 
between an object's (or event's) 'spatial' and 'energetic' values or between its 'temporal' and 
'mass' properties – e.g., such that their simultaneous measurement accuracy level cannot (in 
principle) exceed Planck's minimal 'h' value… theoretically, this is due to the (currently 
prevailing) 'probabilistic interpretation' of quantum mechanics which posits that it is due to 
the direct physical interaction between the subatomic 'probe' and 'target' elements that the 
probability wave function "collapses" – giving rise to a particular 'complimentary' spatial-
energetic' or 'temporal-mass' value, and therefore that any increase in the accuracy 
measurement of any of these pairs' complimentary values (e.g., 'e' vs. 's'; or 't' vs. 'm') 
necessarily also brings about a proportional decrease in the measurement accuracy of the other 
complimentary pair's dyad); Hence, the current (probabilistic interpretation of) Quantum 
Mechanical theory posits a strict complimentary relationship between any subatomic target's 
(simultaneous) measurement of its 'spatial' and 'energetic' values or between its 'temporal' and 
'mass' values – as necessarily constrained by the Uncertainty Principle: 

'e' x 's' ≤ 'h';  

or  

't' x 'm' ≤ 'h'. 

In contrast, the second (2) derivative of the CUFT's Universal Computational Formula 
further broadens these apparently disparate quantum complimentary relationships (e.g., of 
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an object's 'spatial' and 'energetic', or 'temporal' and 'mass' values) – to form a direct 
computational equivalence, e.g., based on the hypothesized 'mechanics' of a Universal 
Computational Principle's higher-ordered 'D2'/'י' integrated computation of a rapid series of 
USCF's that singularly define each of these 'complimentary computational' pairs;  

ℎי	ݔ	ଶܿ)	ݔ	݉	ݔ	ݐ ) =  	݁	ݔ	ݏ
Specifically, the CUFT's Universal Computational Formula's (2) derivative hypothesizes that 
due to the fact that each of the four basic physical properties (e.g., of 'space', 'time', 'energy' and 
'mass') is defined based on the same three fundamental (hypothesized) Computational 
Dimensions (i.e., of 'Framework' ['frame'/'object'], 'Consistency' ['consistent'/'inconsistent'] 
and 'Locus' ['global'/'local']) – which are all produced by the same singular (higher-ordered 
'D2'/'י') rapid series USCF's series, then each of these complimentary computational pairs (i.e., 
of 'space' and 'energy', or 'mass' and 'time') exhaustively defines an object's given 
computational (USCF's based) measurement (Bentwich, 2011c). Thus, for instance, the CUFT 
hypothesized (Bentwich, 2011c) that an object's (or event's) 'temporal' value (e.g., which 
represents an 'object-inconsistent' USCF's Index) exhaustively compliments that object's 'mass' 
('object-consistent') value, and likewise that an object's ('frame-consistent') 'spatial' USCF's 
measure exhaustively compliments its ('frame-inconsistent') 'energetic' measurement. 
Moreover, based (again) on the unification of all of these four basic physical properties as 
(secondary) computational combinations of the same three basic (abovementioned) 
Computational Dimensions (e.g., of 'Framework', 'Consistency' and 'Locus'), it was 
hypothesized that the computational relationship (i.e., multiplication) between an 'object-
inconsistent' ('t') and 'object-consistent' ('m') measures should be equivalent to the 
(multiplication) relationships between a 'frame-consistent' ('s') and 'frame-inconsistent' ('t') 
values – i.e., while taking into considerations their production by a higher-ordered (D2) 

Universal Computational Principle's ('י') rapid universal computational rate (e.g., ௖మ	௫	י௛  );  
Hence, the (2) derivative of the CUFT's Universal Computational Formula is expressed by 
the above: 

ℎי	ݔ	ଶܿ)	ݔ	݉	ݔ	ݐ ) =  	݁	ݔ	ݏ
But, note that this second derivative of the CUFT's Universal Computational Formula goes 
beyond the (abovementioned) current Quantum Mechanical Uncertainty Principle's 
complimentary measurement constraint stipulation: 

'e' x 's' ≤ 'h'; 

or  

't' x 'm' ≤ 'h'. 

This is because whereas the CUFT's (2) derivative explicitly stipulates that the multiplication 
relationship between the complimentary pair of {'t' and 'm'} is equivalent to that of {'e' and 
'm'} (i.e., while taking into account its delineated relationship with the hypothetical rate of 

universal computation: ௖మ	௫	י௛  ), current quantum mechanical (probabilistic) formulation only 
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allows for a (partial) direct (multiplication) relationship between each of these 
complimentary pairs (e.g., independently). 
Hence, an empirical contrast between the CUFT's Universal Computational Formula's (2) 
derivative and its corresponding quantum predictions also points at (potentially) significant 
differences between these theoretical models;  

2.1 The CUFT's differential USCF's presentations of "massive" vs. "light" elements 
Another interesting instance in which the predictions of the CUFT and Relativistic or 
Quantum models may critically differ is associated with the CUFT's computational 
definitions of an object's (relativistic or subatomic) "mass" value; Based on the CUFT's 
previous (Bentwich, 2011c) computational definition of an object's "mass" as the number of 
'object-consistent' presentations across any series of USCF's – it was shown that the 
computation of the number of such 'object-consistent' ("mass" measure) from the 'global' ('g') 
framework of a relativistic object may indeed produce an increased 'mass' measure relative 
to its 'local' "mass" measure. This was due to the greater number of times such a relativistic 
object would be presented from the 'global' perspective relative to its 'local' perspective' 
based on the increased number of ('global') pixels such a relativistic object would have to 
traverse across a given series of USCF's (e.g., which would nevertheless not affect its 'locally' 
measured number of presentations).  
However, a further extension of the CUFT's basic computational definition of an object's 
"mass" (e.g., as the number of 'object-consistent' presentations across a certain given number 
of USCF's) – when viewed from the 'local' framework perspective and when contrasting 
between relatively "massive" objects and "lighter" objects may in fact point an another 
interesting instance in which the critical predictions of the CUFT and Relativistic or 
Quantum models may differ significantly; This is because since the CUFT defines the "mass" 
of an object as the number of 'object-consistent' presentations across a series of USCF's, then 
when we compute a (relatively) "massive" object as opposed to a (relatively) "light" 
(relativistic) object – i.e., from the 'local' framework perspective, we obtain that the more 
"massive" object is necessarily presented a greater number of times across the same given 
number of USCF's than the "lighter" object! This means that according to the CUFT's critical 
prediction, we should obtain a difference in the number of (consistent) presentations of any 
two objects that (significantly) differ in their "mass" value… Thus, to the extent that we are 
capable of measuring a sufficiently minute number of consecutive USCF's, the CUFT 
predicts that more "massive" objects should appear consistently on a larger number of such 
consecutive USCF's – as opposed to (relatively) "lighter" objects which should appear less 
frequently across such a series of consecutive USCF's; More specifically, it is predicted that if 
we chose to examine the number of (consecutive) USCF's in which a (relatively) more 
"massive" compound (or element) appears – relative to a less "massive" compound (or 
element), then according to the CUFT we should expect to detect the more "massive" 
compound (or element) on a larger number of (consecutive) USCF's relative to the less 
"massive" compound or element; In contrast, according to the existing quantum or 
relativistic models of physical reality, the difference between more "massive" objects and 
less "massive" objects arises from the number of atoms comprising such objects, or 
differences in the weight of their nucleus etc.; However, there are no such known (quantum 
or relativistic) differences across elements (compounds or atoms, etc.) which possess 
differential mass values in terms of the "frequency" of their presentations (i.e., across a series 
of subsequent USCF's)… 
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Obviously, with the discovery of the CUFT's (hypothetical) far more rapid rate of USCF's 
computation (e.g., c2/h) than the currently assumed quantum or relativistic (direct or 
indirect) relationships, and augmented by the CUFT's USCF's emerging (secondary 
computational) properties of "mass", "space", "energy" and "time" – such a critical contrast 
between the CUFT's empirically predicted greater number of (object-consistent)presentations 
of (relatively more)"massive" relative to a lesser number of (object-consistent) presentations 
for "lighter" objects, and the complete lack of such a prediction by either quantum or 
relativistic models may test the validity of the CUFT (as opposed to either quantum or 
relativistic theories).  

2.2 Reversibility of USCF's spatial-temporal sequence 
Another (intriguing) critical prediction of the CUFT which (significantly) differs from the 
current quantum or relativistic models of physical reality is regarding the potential capacity 
to alter the "spatial-temporal sequence" of any given (quantum or relativistic) phenomenon; 
The critical issue is that according to both quantum and relativistic theories the "flow of time" 
may only proceed in one direction (e.g., from the 'past' towards the 'future' – but not vice 
versa), which is often termed: the "arrow of time"; This is because from the standpoint of 
Relativity Theory there exists a strict 'speed of light' limit set upon the transmission of any 
signal or upon the speed at which any relativistic object can travel – which therefore 
prohibits our capacity to "catch-up" with any signal emanating from an event in the 'past'- or 
with any actual- event/s that has happened in the 'past'; The only tentative (hypothetical) 
possibility to re-encounter any such 'past' space-time events from the standpoint of 
Relativity is in a case in which there is an extreme curvature of space-time (due to the 
presence of extremely massive objects) which may create closed 'space-time loops' that may 
allow past signals to "turn around" and arrive back to the observer… But, even in this (rare) 
hypothetical instance, our hypothetical capacity would be only to witness a light signal that 
has emanated from an event that took place in the 'past' – rather than any "real" capacity to 
"reverse" the spatial-temporal sequence of events or occurrences associated with the flow of time… 
Hence, from the perspective of Relativity Theory, we cannot "reverse" the flow of time – e.g., 
cause spatial-temporal events (or objects) to occur in the "reversed" order…  
Likewise, from the perspective of Quantum Mechanics, there seems to exist a clear limit set 
upon our capacity to "reverse" the "flow of time" – due to the fact that our entire knowledge 
of any subatomic 'target' (phenomenon) is strictly dependent upon- (and is therefore also 
constrained by-) that 'target' element's direct (or indirect) physical interaction with another 
subatomic 'probe' element. Hence, according to the (current) probabilistic interpretation of 
Quantum Mechanics, the determination of the (complimentary) 'space-energy' (s/e) or 
'temporal-mass' (t/m) values of any given subatomic 'target' phenomenon (or phenomena) 
can only be determined following its direct (or indirect) physical interaction/s with another 
subatomic 'probe' element; But, note that according to such (probabilistic interpretation of) 
Quantum Mechanical theory the subatomic 'target' element is dispersed 'all along' a 
'probability wave function' prior to its interaction with the probe element – but "collapses" into a 
single (complimentary) 'space-energy' or 'temporal-mass' value immediately following its 
direct (or indirect) physical interaction with the 'probe' element. This means that according 
to current (probabilistic) quantum mechanical theory, there exists a clear "unidirectional" 
(asymmetrical) 'flow of time' – i.e., one in which the determination of any subatomic (target) 
phenomena can be determined only following the collapse of the probability wave function' 
which takes place as a result of the direct (or indirect) physical interaction between the 
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(probability wave function's) 'target' and other subatomic 'probe' element (Born, 1954); Now, 
as shown previously (Bentwich, 2011b) the computational structure (implicitly) assumed by 
the (above) probabilistic interpretation of quantum mechanics produces a 'Self-Referential 
Ontological Computational System' (SROCS) – which was shown to inevitably lead to both 
'logical inconsistency' and 'computational indeterminacy' that are contradicted by known 
quantum empirical findings and which therefore also pointed at the computational 'Duality 
Principle' (e.g., asserting the existence of a conceptually higher-ordered 'D2' computational 
level that is capable of computing the simultaneous "co-occurrence" of any exhaustive 
hypothetical 'probe-target' pairs series). But, even beyond the Duality Principle's challenging 
of the current (implicit SROCS computational structure underlying) the probabilistic 
interpretation of Quantum Mechanics, note that it is precisely this SROCS assumed 
computational structure – which prohibits the capacity of any "collapsed" target element (or 
phenomenon) to "revert back to its 'un-collapsed' probability wave function state"! 
Therefore, it becomes clear that from the perspective of (probabilistic) Quantum Mechanical 
theory we cannot reverse any spatial-temporal quantum event/s, phenomenon or 
phenomena…  
In contrast, the CUFT postulated the existence of a (conceptually higher-ordered) rapid 
series (e.g., c2/h x 'י') of 'Universal Simultaneous Computational Frames' (USCF's) which 
give rise to all (secondary) computational properties of 'space', 'time' 'energy' and 'mass'; 
Specifically, the computational definition of "time" was given through a measure of the 
number of instances that an object is presented inconsistently across a given series of USCF's 
– relative to the USCF's displacement of the speed of light: t : ∑ oj{x,y,z} [USCF(n)] ≠ o(i…j-
1){(x),(y),(z)} [USCF(1...n)] /c x n{USCF’s} 
Therefore, the less instances in which a given object is presented 'inconsistently' (across a 
given series of USCF's), the less 'time' passes for that object – e.g., as may be observed from a 
'global' framework in the case of its measurement of a high speed relativistic observer or in 
the case of a 'massive' object etc.  
In much the same way, an object's "spatial" or "mass" or "energy" values– are all derived 
based on differential (e.g., 'frame-consistent', 'object-consistent' or 'frame-inconsistent', 
respectively) secondary computational measures of the various combinations of the three 
(abovementioned) Computational Dimensions. As a matter of fact, all of these four basic 
physical features of 'space', 'time', 'energy' and 'mass' were entirely integrated within the 
singular 'Universal Computational Formula' (Bentwich, 2011c) which outlined their intricate 
relationships with the singular (conceptually higher-ordered 'D2/'י') rapid series (c2/h) of 
USCF's. One final key factor associated with the CUFT's conceptualization of the "flow of 
time" may arise from its replacement of any (hypothetical) 'causal-material' (xy) 
relationship between any two hypothetical 'x' and 'y' factors – by a conceptually higher-
ordered 'D2 a-causal' computation which can compute the "co-occurrences" of any two such 
given 'x' and 'y' elements at any given spatial-temporal point/s (for any particular USCF(i) 
frame.  
This is because when we take into consideration the CUFT's integrated postulates of the 
Duality Principle's (conceptual) proof for the inability to determine the "existence" or "non-
existence" of any (hypothetical) 'y' element based on its direct physical interaction (e.g., at 
di1…din) with another (exhaustive set of) 'x' factor/s; and the existence of a (rapid series of) 
'Universal Simultaneous Computational Frames' (USCF's) which are computed simultaneously 
for all of the exhaustive pool of 'spatial pixels' that exist per any given (discrete) USCF(i) (e.g., by 
the Universal Computational Principle, 'י') – this leads to the CUFT assertion that there 
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cannot exist any real "causal" relationship/s between any two hypothetical 'x' and 'y' 
elements (Bentwich, 2011c)… Instead, the CUFT postulated that all (exhaustive series) of 
'universal spatial pixels' must be computed simultaneously as part of a particular (discrete) 
USCF(i) frame. Therefore, the CUFT also asserted that the appearance of any "material-
causal" relationship between any two given 'x' and 'y' elements may only arises as a result of 
a certain (apparent) 'spatial-temporal patterns' emerging across a series of USCF's – rather 
than as the result of any "real" (e.g., direct or indirect) physical interaction/s between the 'x' 
and 'y' factors (e.g., constituting a given SROCS quantum or relativistic paradigm);  
Therefore, the CUFT's standpoint (and ensuing empirical critical predictions) with regards to 
the issue of the "flow of time" may differ significantly from the strict 'unidirectional' and 'un-
altered' "flow of time" assumed by both quantum and relativistic models; This is due to the fact 
that according to the CUFT, the computational "time" measure of any object – i.e., whether it 
relates to the 'passage of time' (e.g., including the possibility of 'time dilation') or to the 
'direction or time' (e.g., including the currently assumed "arrow of time" by relativistic and 
quantum theories) is entirely contingent upon the number of inconsistent presentations of that 
object across a given series of USCF's, as well as the particular USCF's spatial-temporal 
"sequence" underlying the development of a given phenomenon (or particular 'sequence of 
events'); In order to explicate the CUFT's critical prediction regarding the possibility to 
"reverse the flow of time" – i.e., at least as it applies to a particular given object, let us analyze 
the (standard) "flow or time" as it applies say to the developmental processes taking place in a 
small plant (or ameba); According to the CUFT, the "flow of time" associated with such a small 
plant's growth essentially comprises a particular sequence of spatial-temporal as well as energetic- 
and mass- changes taking place in the particular plant – across a series of USCF's. In fact, based on 
the CUFT's postulated (higher-ordered 'D2') series of discrete USCF's that are comprised of an 
exhaustive universal pool of "spatial-pixels" (being computed for each individual USCF), a 
further postulate of the CUFT is that each of this exhaustive pool of 'universal spatial pixels' 
constitutes a particular electromagnetic value which is specific to a given spatial point within a 
particular USCF frame (e.g., as a single electromagnetic value). Thus, the "flow of time" 
associated with the growth of this given plant essentially comprises a particular series of 
specific electromagnetic value/s that are localized to particular 'universal spatial pixel/s' 
appearing at any particular (series of) USCF's frames...  
But, if the above description of the CUFT's 'mechanics' underlying the "flow of time" is 
accurate, then based on the (earlier mentioned) computational definition of 'time' as the 
number of 'object-inconsistent' presentations (across a series of USCF's) and of the "flow of 
time" as the particular sequence of 'electromagnetic-spatial pixels' series underlying a given 
sequence of events (or phenomenon), then it should be possible (in principle, at least) to 
"reverse the flow of time" for a given object (e.g., such as for the abovementioned developing 
plant) through a manipulation of the sequential order of electromagnetic-spatial pixel values 
of that plant across a series of USCF's… Let there be a particular sequence of spatial-
electromagnetic pixels points across a series of USCF's that exhaustively define that plant's 
growth curve; Now, based on the CUFT's strict definition of the "flow of time" for that given 
(developing) plant which comprises the particular sequence of spatial-electromagnetic pixels 
(series) across the given series of USCF's frames, it should be possible to exert a differential 
electromagnetic field manipulation of each of the given spatial-electromagnetic pixels per each 
of the USCF's frames so as to produce a "reversal" of the "flow of time" – i.e., the spatial-
electromagnetic pixels series' values arranged in the reversed order (such that instead of a 
USCF's series running from '1… to n' it would run from 'n… to 1')!  
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The key point to be noted (here) is that whereas both relativistic and quantum theories 
assume a strict "unidirectional" and "unaltered" flow of time, the CUFT's computational 
definition of 'time' as the number of 'object-inconsistent' USCF's presentations and of the 
"flow of time" (direction) strictly depending on the particular sequence of 'spatial-
electromagnetic pixel' values allows the CUFT to predict a (differential) critical prediction 
whereby it may be possible to "reverse the flow of time" of a given object through a 
manipulation of the sequence (e.g., order) of the series of the particular 'spatial-
electromagnetic universal pixels' comprising the series of USCFs' object presentation… Note 
that according to the CUFT there does not seem to exist any "objective", "unidirectional", or 
"unaltered" "flow of time" underlying the (quantum or relativistic) physical phenomena, but 
only a particular configuration of a certain sequence of 'spatial-electromagnetic universal 
pixels' that is presented in a particular sequence (e.g., comprising a given series of USCF's). 
Therefore, to the extent that we are able to manipulate (e.g., technologically) the 'spatial-
electromagnetic pixels' values of an object across a series of USCF's (such that it follows the 
"reversed order" of the original USCF's series) then we have in fact "reversed the flow of 
time" for that particular object (or event)… 
Moreover, from a purely technological standpoint, the process by which such a potential 
reversal of the (original) sequence of 'spatial-electromagnetic universal pixels' may be 
achieved (i.e., through a manipulation of the electromagnetic value/s of a given object's 
'spatial-electromagnetic universal pixels' in order to produce the "reversed" spatial 
electromagnetic universal pixels' USCFs' sequence) does not necessarily require the capacity 
to identify, compute and manipulate each and every individual USCF (i…n) frame, but 
instead necessitate the identification (computation) and manipulation of a "sufficiently 
large" number of USCF's from within a given pool of consecutive USCF's. (Due to the 
novelty of the possibility to manipulate the series of spatial-electromagnetic pixels values 
comprising a given object's "flow of time" the determination of the particular number or rate 
of such 'sampled' specific spatial-electromagnetic universal pixels (across a certain number 
of USCF's)that is necessary to accurately reverse that object's "time flow" sequence would 
have to be tested experimentally.)  
Finally, it is clear that to the extent that these particular CUFT's empirical predictions 
regarding the possibility to "reverse the flow of time" for any given object (or event) based 
on the manipulation of its specific sequence of 'spatial-electromagnetic universal pixels' 
may be validated experimentally, this may open the door for a series of potentially far 
reaching scientific and technological advances in our understanding of the physical 
universe, as well as in some of its potential human clinical and other potential 
applications; Thus, for instance, if it may be possible to "reverse the flow of time" for a 
relatively small object it should be possible (e.g., at least in principle) to "reverse the flow 
of time" for an entire organism or for a particular (healthy or pathological, young, 
diseased or aged) cell/s, tissue/s or organ/s… Likewise, based on an extension of the 
identification of any given object's precise 'spatial-electromagnetic universal pixels' 
composition (e.g., across a certain series of USCF's) and the potential for altering that 
object's (single or multiple) pixels values trough an electromagnetic manipulation of its 
particular pixels' values – it should be possible (e.g., again at least in principle) to also 
"encode" comprehensively the particular spatial-electromagnetic values pixels of any 
object, cell/s tissue/s or even an entire organism or physical object and subsequently 
either alter its composition (or condition), or even "de-materialize" it based on the 
application of appropriate electromagnetic field (that may 'counteract' the particular 
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'spatial- electromagnetic pixels' values of that object or certain elements within it) and 
subsequently "materialize" it elsewhere based on the appropriate application of the 
precise electromagnetic field that can produce that object's particular spatial-
electromagnetic values (e.g., at any accessible point in space) (Bentwich, 2011a)...  
Thus, a critical contrasting of three particular instances in which the CUFT's empirical 
predictions may significantly differ from the corresponding predictions offered by 
contemporary Quantum or Relativistic theories may validate the Computational Unified 
Field Theory – as not only replicating all known quantum and relativistic empirical 
phenomena as well as bridging the gap between their apparent theoretical inconsistencies 
(Bentwich, 2011c), but in fact may demonstrate the advantage of the CUFT over existing 
Quantum and Relativistic theoretical models (e.g., while incorporating all known quantum 
and relativistic phenomena within a broader novel theoretical framework); Hence, as 
outlined earlier, the aim of the second half of this chapter is to broaden the validation of the 
Computational Unified Field Theory (CUFT) through the application of one of its key 
theoretical postulates, namely: the computational 'Duality Principle' to a series of key 
(computational) scientific paradigms. Once again, to the extent that the computational-
empirical analysis of each of these key scientific paradigms may be shown (below) to be 
constrained by the CUFT's postulated 'Duality Principle', this would both extend the 
construct validity of the CUFT (to other key scientific disciplines), as well as call for these 
scientific paradigms' reformulation based on this (novel) more comprehensive 
Computational Unified Field Theory (of which the Duality Principle is one of three principle 
theoretical postulates). Needless to say that given the new (hypothetical) Computational 
Unified Field Theory's aim – to not only unify between Quantum Mechanics and Relativity 
Theory (e.g., as shown previously: Bentwich, 2011c) but to fulfill the requirements of a 
'Theory of Everything' (TOE) (Brumfiel, 2006; Einstein, 1929, 1931, 1951; Ellis, 1986; Greene, 
2003), a demonstration of the potential applicability of the CUFT to a series of key scientific 
paradigms may be significant as part of its theoretical validation process; 

3. The 'Duality Principle': Potential resolution of key ‘Self-Referential 
Ontological Computational Systems’ (SROCS) scientific paradigms 

To the extent that a series of key scientific paradigms can be shown to be constrained by the 
Computational Unified Field Theory's (CUFT) postulated 'Duality Principle' (Bentwich, 
2011c), there emerges a need to re-formalize each of these central scientific paradigms based on 
the Duality Principle's higher-ordered 'D2 A-Causal' computational framework as embedded 
within the broader Computational Unified Field Theory. 

As noted previously (Bentwich, 2011c), one of the three principle theoretical postulates 
underlying the CUFT is the computational 'Duality Principle' which constrains any 'Self 
Referential Ontological Computational System' (SROCS) of the general form: 

PR{x,y}['y' or 'not y']/di1…din  

Indeed, it was shown (there) that Quantum Mechanics' probabilistic interpretation which is 
based on the assumption whereby the determination of the complimentary values of any 
subatomic 'target' element solely depends on its direct (or indirect) physical interaction with 
another 'probe' element (at the 'di1' to 'din' computational levels), thus:  

SROCS: PR{P, t} [‘t’ or ‘¬t’]/di1…n. 
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Likewise, Relativity’s computational structure was also shown to constitute precisely such a 
SROCS computational structure:  

SROCS: PR{P, Odiff } [P or ¬P]/di1…din 

wherein it is assumed that the determination of the "existence" or "non-existence" of any 
(specific) relativistic 'Phenomenon' (e.g., 'spatial-temporal' or 'energy-mass') is solely based 
on that Phenomenon's direct (or indirect) physical interaction with a differential series of 
relativistic observer/s.  
Moreover, it was shown that both of these quantum and relativistic SROCS paradigms also 
necessarily contain the “negative” case of a ‘Self-Referential Ontological Negative 
Computational System’ (SRONCS) which inevitably leads to ‘logical inconsistency’ and 
ensuing ‘computational indeterminacy’ – i.e., a principle computational inability of such a 
SROCS/SRONCS computational structure to determine whether any particular (quantum) ‘t’ 
or (relativistic) ‘P’ value– “exists” or “doesn’t exist”; However, since in both of these 
(quantum and relativistic) cases there is robust empirical data indicating the capacity of these 
quantum or relativistic computational systems to determine the “existence” or “non-
existence” of any such particular ‘t’ or ‘P’ value/s, then the (novel) computational ‘Duality 
Principle’ asserted the conceptual inability to compute the “existence” or “non-existence” of any 
(particular) relativistic “P” or quantum “t” value from within their direct physical interaction 
with another relativistic (differential) observer/s or with another subatomic ‘probe’ element – but 
only from a conceptually higher-ordered ‘D2’ computational level which is irreducible to 
any direct (or indirect) physical interactions between any such quantum ‘probe-target’ or 
relativistic ‘observer-Phenomenon’ interactions;  
Indeed, according to this new hypothetical computational 'Duality Principle', the only 
possible determination of any such quantum or relativistic relationships can be carried out 
based on such conceptually higher-ordered ‘D2’ computation which computes the “co-
occurrences” of any relativistic ('spatial-temporal' or 'energy-mass') ‘observer-Phenomenon’ 
values, or the "co-occurrences" of any quantum (computational) complimentary ('spatial-
energetic' or 'temporal-mass') ‘probe-target’ values... In fact, based on the identification of 
such a (singular) conceptually higher-ordered 'D2 A-Causal' computational framework 
which underlies both quantum and relativistic models of physical reality the (hypothetical) 
'Computational Unified Field Theory' (CUFT) was hypothesized which postulated the 
existence of a series of extremely rapid 'Universal Simultaneous Computational Frames' 
(USCF's) that give rise to all quantum and relativistic physical phenomena (and may also 
point at new hypothetical critical physical predictions as described above which may arise 
from the discovery of the singular 'Universal Computational Principle' which computes this 
rapid series of USCF's).  
More generally, the incorporation of the computational 'Duality Principle' as one of the three 
central postulates of the 'Computational Unified Field Theory' (CUFT) has pointed at the 
possibility that to the extent that other (key) scientific paradigms may also constitute such 
SROCS computational structures, then they should also be constrained by the 'Duality 
Principle' and the CUFT (e.g., of which the Duality Principle forms an integral part). 
Specifically, it was suggested that there may exist a series of key scientific paradigms 
(including: Darwin's Natural Selection Principle and associated 'Genetic Encoding' 
hypothesis and Neuroscience's basic 'materialistic-reductionistic' Psycho-Physical Problem) 
which may all comprise such basic SROCS computational structure, and therefore may be 
constrained by the 'Duality Principle'; Again, to the extent that each of these key scientific 
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(computational) paradigm may be shown to constitute a SROCS structure and therefore be 
constrained by the Duality Principle, then these scientific paradigms will have to be 
reformulated based on the Duality Principle's conceptually higher-ordered 'D2 a-causal' 
computational framework – thereby becoming an integral part of the CUFT's delineation of 
the 'D2' rapid series of the USCF's…  
Therefore, what follows is a delineation of the SROCS computational structure underlying each 
of these key scientific paradigms – which shall therefore inevitably point at the Duality 
Principle's assertion regarding the (conceptual) impossibility of determining the "existence" or 
"non-existence" of any SROCS' (particular) 'y' element from within its direct or indirect physical 
(or computational) interaction with any exhaustive series of 'x' factor/s (e.g., that are particular 
to that specific SROCS scientific paradigm); Instead, the application of the Duality Principle to 
each of these scientific SROCS paradigms may point at the existence of a conceptually higher-
ordered 'D2' computational framework which computes an 'a-causal' "co-occurrence" of a series 
of 'x-y' pairs (e.g., which alone can explain the empirical capacity of these scientific 
paradigms to determine the "existence" or "non-existence" of any particular 'y element);  
According to the hypothesized computational Duality Principle (Bentwich, 2011c), any 
empirical scientific paradigm that is based on such a SROCS computational structure may 
inevitably lead to both ‘logical inconsistency’ and ‘computational indeterminacy’ that are 
contradicted by that (particular) scientific paradigm’s empirically proven capacity to 
determine whether any specific ‘y’ element “exists” or “doesn’t exist”; This empirically 
proven capacity of the given scientific paradigm to compute the “existence” or “non-
existence” of the ‘y’ element points at the Duality Principle’s asserted conceptually higher-
ordered ‘D2’ computational framework which computes the “co-occurrences” of any 
(hypothetical) series of [‘x-y’(st-i); ... ‘x-y’(st-i+n)] pairs; Indeed, this conceptually higher-
ordered computation of the “co-occurrence” of any such ‘x-y’ pairing (proven by the Duality 
Principle) was termed: ‘D2 A-Causal Computation’. This is due to the fact that according to 
the Duality Principle the only possible means through which these empirically validated 
scientific paradigms are able to compute the “existence” or “non-existence” of any given ‘y’ 
element is through a conceptually higher-ordered 'D2 a-causal' Computation which 
determines the “co-occurrences” of any ‘x-y’ pair/s (e.g., but which was principally shown 
to be irreducible to any hypothetical direct or even indirect ‘x-y’ physical interactions)...  
Indeed, as shown in the previous article (Bentwich, 2011c), since the Duality Principle’s 
constraint of the SROCS computational structure is conceptual in nature – e.g., in that any 
SROCS computational structure is bound to produce both logical inconsistency and 
subsequent computational indeterminacy (e.g., which are contradicted by empirical 
evidence indicating the capacity of their corresponding computational systems to determine 
whether the particular ‘y’ element “exists” or “doesn’t exist”), then it was shown that the 
Duality Principle’s assertion regarding the need to place the computation of the “existence” 
or “non-existence” of the particular ‘y’ element at a conceptually higher-ordered ‘D2’ level 
overrides (and transcends) any direct or indirect physical relationship between the ‘y’ and ‘x’ 
elements (e.g., occurring at any hypothetical exhaustive computational level/s, 'di1…din'). 
This is because even if we assume that the computation determining whether the ‘y’ element 
“exists” or “doesn’t exist” takes place at an intermediary (second) ‘di2’ computational level 
(or factor/s), then this does not alter the basic computational (causal-physical) SROCS 
structure; This is due to the basic materialistic-reductionistic working hypothesis underlying 
all key scientific SROCS paradigms wherein the sole determination of the “existence” or 
“non-existence” of the (particular) ‘y’ element is determined solely based on the direct 
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physical interaction between the ‘y’ element – e.g., as signified by the “causal-arrow” within 
the (above mentioned) SROCS computational structure: SROCS: PR{x,y} [‘y’ or ‘¬y’]/di1. 
Thus, whether we attribute the computation of the “existence/non-existence” of the ‘y’ 
element as taking place at the same ‘direct physical interaction’ (e.g., of the ‘x’ and ‘y’ 
elements at the ‘di1’ computational level) or whether we attempt to ‘rise higher’ to an 
additional hypothetical computational level/s (or factor/s etc.) the basic ‘materialiastic-
reductionistic’ assumption underlying the SROCS computational structure inevitably ties 
the direct physical ‘x-y’ interaction with a ‘causal-material’ determination of the “existence” 
or “non-existence” of the (ensuing) ‘y’ element (e.g., occurring either at the ‘di1’ or ‘di2’ 
computational levels). In other words, whether we assume that the determination of the 
‘existence/non-existence’ of the ‘y’ element takes place at the same (di1) computational level 
as the direct physical ‘x-y’ interaction or whether we assume that the determination of the 
“existence”/”non-existence” of the ‘y’ element occurs (e.g., somehow) through one or more 
intermediary computational levels (di2...din) or factor/s the basic SROCS computational 
structure which assumes that it is this direct physical interaction between the ‘x’ and ‘y’ 
element which solely can determine whether the ‘y’ element “exists” or “doesn’t exist” is 
therefore inevitably constrained by the computational Duality Principle: 
Moreover, the Duality Principle’s computational constraint asserts the conceptual inability 
to determine whether the (particular) ‘y’ element “exists” or “doesn’t exist” from within any 
direct or indirect physical interaction between that ‘y’ element and any other ‘x’ factor (at any 
‘di1... ‘din’ computational levels), but only from a conceptually higher-ordered ‘D2’ 
computational framework which can only determine an ‘a-causal’ computational 
relationship/s between any hypothetical ‘x’ and ‘y’ factor/s; Indeed, as shown in the 
previous article (and noted above), such conceptually higher-ordered ‘a-causal D2’ 
computation cannot (in principle) be reduced to any direct or indirect physical ‘x-y’ 
interactions but instead involves an association of a series of ‘x-y’ pairs occurring at different 
‘spatial-temporal’ points, thus: D2: [{x1, y1}st1; {x1, y1}st2 ... [{xn, yn}stn]. In other words, 
the (novel computational) Duality Principle effectively constrains- and replaces- any 
scientific SROCS paradigm (e.g., of the general form: SROCS: PR{x,y} [‘y’ or ‘¬y’]/di1) – 
with a conceptually higher-ordered ‘D2’ computational framework of the form: D2: [{x1, 
y1}st1; {x1, y1}st2 ... [{xn, yn}stn] which is based on the (higher-ordered ‘D2’) computation of 
the co-occurrences of certain {‘x-y’}sti...n pairs (occurring at different spatial-temporal 
points). Indeed, it is suggested that such higher-ordered D2 computational metamorphosis 
replaces (and transcends) the strict materialistic-reductionistic working hypothesis 
underlying the current SROCS’ scientific paradigm’s focus with a conceptually higher-
ordered ‘non-material’, ‘non-causal’ associative computational mechanism. Therefore, based 
on the Duality Principle’s (above) computational-empirical proof for the basic 
computational constraint imposed on any scientific SROCS paradigm – e.g., which must 
necessarily be replaced by an alternative conceptually higher-ordered ‘a-causal D2’ 
computation, then any (existing or new) scientific paradigm that can be accurately 
demonstrated to replicate the (above mentioned) SROCS computational structure must be 
replaced by the Duality Principle’s asserted conceptually higher-ordered ‘D2’ computational 
framework: D2: [{x1, y1}st1; {x1, y1}st2 ... [{xn, yn}stn].  

3.1 Darwin’s natural selection principle & genetic encoding hypothesis 
We therefore first examine the key scientific paradigms of Darwin’s 'Natural Selection 
Principle (Darwin, 1859) (e.g., and its closely related ‘Genetic Encoding' and 'Protein 
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Synthesis - Genetic Expression' hypotheses) in order to show that they all (in fact) constitute 
such 'Self-Referential Ontological Computational System' (SROCS) computational 
paradigms which are necessarily constrained by the computational 'Duality Principle'; In a 
nutshell, it is hypothesized that Darwin’s evolutionary theory comprises three (intimately 
linked) scientific SROCS paradigms which are: the (primary) ‘Natural Selection’ SROCS, the 
(secondary) ‘Genetic Encoding’ (plus associated random mutations assumption) SROCS, 
and (tertiary) Protein Synthesis (phenotype) – Genetic Expression SROCS computational 
paradigms;  
i. Natural Selection SROCS: Darwin’s ‘Natural Selection’ principle comprises a SROCS 

paradigm since it asserts that the “existence” or “non-existence” of any given organism 
(e.g., 'o' – and by extension, also all of its potential descendent organisms constituting a 
single specie) is solely dependent upon its direct (or indirect) physical interaction with 
an exhaustive series of ‘Environmental Factors’ (‘E{1...n}’):  

SROCS I {Natural Selection}: PR{ E{1...n}, o}  [‘o’ or ‘¬o’]/di1. 

But, as we’ve seen (above), such SROCS computational structure inevitably leads to both 
‘logical inconsistency’ and ‘computational indeterminacy’ – in the case of the SRONCS: PR{ 
E{1...n}, o}  ‘¬o’/di. 
This is because such a SRONCS asserts that the direct physical interaction between a given 
organism and an (exhaustive series of) Environmental Factors gives rise to the “non-
existence” of that organism, which essentially implies that that particular organism both 
“exists” and “doesn’t exist” at the same ‘di1…din’ computational level – which obviously 
constitutes a ‘logical inconsistency’. But, due to the SROCS/SRONCS computational 
structure (e.g., which assumes that the only means of determining whether the organism 
“exists” or “doesn’t exist” is through the direct physical interaction ‘di1’ between the 
organism and its exhaustive Environmental Factors), then such ‘logical inconsistency’ 
inevitably also leads to ‘computational indeterminacy’ – i.e., a principle inability of the 
SROCS/SRONCS scientific paradigm to determine whether that organism (‘o’) “exists” or 
“doesn’t exist”! However, since there exists ample empirical evidence indicating the capacity 
of evolutionary biological systems to determine whether any given organism (‘o’) “exists” 
(e.g., survives) or “doesn’t exist” (e.g., is extinct), then the Duality Principle asserts the 
conceptual computational inability of Darwin’s Natural Selection principle to determine 
whether any given organism “exists” or “doesn’t exist” based on its (strictly) assumed 
materialistic-reductionistic SROCS/SRONCS computational structure (e.g., direct physical 
interaction between the organism and an exhaustive set of Environmental Factors); Instead, 
the computational Duality Principle asserts that the only means for determining the 
evolution of any given biological species is based on a conceptually higher-ordered ‘D2’ 
computational framework which computes the “co-occurrences” of a series of any 
(hypothetical) organism/s and corresponding Environmental Factors, thus: 

D2: [{E{1...n}, o}st1; {E{1...n}, o}st2 ... [{E{1...n}, o}stn].  

Note that as in the above mentioned generalized format of the SROCS computational 
structure (e.g., PR{x,y}[‘y’ or ‘¬y’]/di1), the computational constraint imposed by the 
Duality Principle is conceptual – i.e., it applies regardless of whether we’re dealing with any 
‘direct’ or ‘indirect’ physical relationships between the ‘x’ and ‘y’ factor/s; In the same 
manner, we can see that even if we assume that the interaction between any given organism 
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(‘o’) and any exhaustive hypothetical Environmental Factors (‘E{1...n}’) comprises more than 
one Environmental Factor/s (‘E{1...n}’) or more than one (intermediary) computational 
level/s, the computational structure of Darwin’s ‘Natural Selection’ SROCS paradigm 
inevitably leads to both ‘logical inconsistency’ and ‘computational indeterminacy’; This is 
due to the fact that the fundamental ‘materialistic-reductionistic’ working hypothesis 
underlying the Natural Selection SROCS paradigm unequivocally stipulates that the 
determination of the “existence” or “non-existence” of any given organism (‘o’) is solely 
(and strictly) computed based on the direct (or even indirect) physical interaction/s between 
the organism and any exhaustive hypothetical series of Environmental Factors. Therefore, 
even if we assumed that Darwin’s Natural Selection principle involves multiple 
Environmental Factors (‘E{1...n}’) and/or multiple computational levels (‘di1’... ’diz’), thus: 

PR{ E{1...n}, o}/di1...din  [‘o’ or ‘¬o’]/diz 

then it still (inevitably) replicates the same SROCS computational structure that invariably 
produces the above mentioned ‘logical inconsistency’ and ‘computational indeterminacy’ 
(which give rise to the Duality Principle’s above mentioned computational constraint). This 
is due to the fact that regardless of the number of (hypothetical) intervening (or mediating) 
Environmental Factors or computational level/s (‘di1’...’diz’), the SROCS strict 
‘materialistic-reductionistic’ computational structure assumes that the determination of the 
“existence” or “non-existence” of the organism is solely determined based on the direct 
physical interaction between the organism and its Environmental Factors.  
Likewise, even if we assume that Darwin's Natural Selection process operates via 
innumerable organism-environment interactions taking place at different 'spatial-temporal' 
points {st1…stn), then due to the (abovementioned) 'materialistic-reductionistic' implicit 
assumption embedded within the SROCS/SRONCS computational structure (i.e., which 
assumes that the "existence" or "non-existence" of the organism 'o' is solely determined based 
on any direct or indirect physical interactions between that organism and an exhaustive set 
of Environmental Factors), this does not alter the basic SROCS/SRONCS computational 
structure which was shown (above) to be constrained by the Duality Principle:  

PR{ E{1...n}, o}/sti1...sti  [‘o’ or ‘¬o’]stn /di1… diz 

Essentially, this Natural Selection (primary) SROCS computational structure asserts that the 
determination of the "existence" or "non-existence" of any particular organism ('o') is solely 
determined based on its single- or multiple- spatial-temporal interactions with an 
exhaustive set of Environmental Factors (and even that hypothetically the actual 
computation or determination of the "existence" or "non-existence" of the particular 
organism {'o'} may take place at a later spatial-temporal point than the actual direct or 
indirect physical interaction between the organism and the exhaustive set of Environmental 
Factors);  
Note, however, that this basic SROCS/SRONCS computational structure embeds within it 
the fundamental 'materialistic-reductionistic' implicit assumption wherein there cannot be 
any other factor/s outside the direct (or indirect) physical interaction/s between the 
organism and the (exhaustive set of) Environmental Factors which determines or computes 
the "existence" (e.g., survival) or "non-existence" (e.g., extinction) of that organism; This 
strong (implicit) 'materialistic-reductionistic' assumption underlying the SROCS/SRONCS 
computational structure is represented by the causal '' connecting between the direct (or 
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indirect) physical interaction between the organism and the Environmental factors and the 
determination of the "existence"/"non-existence" of the particular organism… Therefore, 
based on this strict 'materialistic-reductionistic' assumption underlying Darwin's Natural 
Selection SROCS paradigm –the direct (or indirect) physical relationship between the 
organism and its Environmental Factors and its (strict) causal effect in determining the 
"existence" or "non-existence" of that organism must necessarily constitute a singular 
computational level (e.g., di1…dix), regardless of the number of (hypothetical) spatial-
temporal points that occupy either the direct or indirect 'organism-Environmental Factors' 
interaction/s or the specific spatial-temporal point/s at which the determination (or 
computation) of the "existence" or "non-existence" of the organism take place!  
Therefore, from a purely computational standpoint, both the direct physical interaction 
between the organism and its Environmental Factors (at ‘di1’) and the determination of the 
ensuing “existence” or “non-existence” of that organism (e.g., assumed to take place at any 
hypothetical level ‘di1’...’diz’) – must be considered to occur at the same computational level 
(e.g., at either ‘di1’...’diz’)! Indeed, it is precisely this materialistic-reductionistic 
SROCS/SRONCS paradigmatic structure which assumes that the determination of the 
“existence” or “non-existence” of the particular organism occurs at the same computational 
level (e.g., at either ‘di1’...’diz’) as the direct physical interaction between that organism and 
an exhaustive set of Environmental Factors which was shown (above) to inevitably lead to 
both ‘logical inconsistency’ and ‘computational indeterminacy’, which were shown to be 
contradicted by robust empirical findings – thereby pointing at the Duality Principle’s 
assertion regarding the need for a conceptually higher-ordered ‘D2’ computational level that 
can compute the “co-occurrences” of any spatial-temporal pairing of any given organism 
and its corresponding Environmental Factors:  

D2: [{E{1...n}, o}st1; {E{1...n}, o}st2 ... {E{1...n}, o}stn].  

Hence, based on the Duality Principle's logical-empirical analysis of the SROCS/SRONCS 
computational structure underlying Darwin's Natural Selection scientific paradigm, the 
Duality Principle has proven the conceptual computational inability to determine the 
"existence" or "non-existence" of any (hypothetical) organism based on any direct or indirect 
physical interaction/s between that organism and any (hypothetical) exhaustive set of 
Environmental Factor/s (at the same di1…dix computational level)- but only from a 
conceptually higher-ordered 'D2' computational level which simply computes the "co-
occurrences" of any hypothetical series of spatial-temporal 'organism-Environmental 
Factors' pairing… 
It is also worthwhile to note that the Duality Principle's proof for the conceptual 
computational inability of Darwin's Natural Selection Principle's SROCS computational 
structure to determine the "existence" or "non-existence" of any (hypothetical) organism ('o') 
from within its direct or indirect physical interaction within any (hypothetical) exhaustive 
series of Environmental Factors (e.g., at any 'di1… dix' computational level) also negates the 
existence of any "causal-material" relationship between the particular organism and any 
(exhaustive set of) Environmental Factors; This was previously shown (Bentwich, 2011c) 
through a thorough analysis of the Duality Principle's proof for the existence of a D2 'A-
Causal' computational characteristics – which replaces the SROCS (implicit) 'material-causal' 
relationship between any two (hypothetical) 'x' and 'y' elements (e.g., at any di1…din 
computational level) with the D2's computation of the "co-occurrences" of any (hypothetical) 
series of 'x-y' pairs. The Duality Principle's conceptual proof for the principle inability of any 
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(exhaustive series of) Environmental Factors to causally determine the "existence" or "non-
existence" of any particular organism based on any hypothetical single- or multiple- level/s 
of computation or single- or multiple- spatial-temporal points was also shown (above) based 
on the Duality Principle's proof for the basic (implicit) material-causal assumption 
underlying the SROCS computational structure which inevitably leads to both 'logical-
inconsistency' and 'computational indeterminacy' which are contradicted by robust 
empirical evidence (e.g., indicating the capacity of evolutionary-biological systems to 
determine the "existence" or "non-existence" of any particular organism). Hence, a key 
emerging property of the Duality Principle (e.g., in this case as it applies to Darwin's 
Natural Selection SROCS paradigm) is that it replaces the basic (implicit) material-causal 
assumption embedded within the SROCS computational structure with a conceptually higher-
ordered 'D2 A-Causal' computational framework which merely computes the "co-
occurrences" of any (hypothetical) series of 'organism-Environmental Factors' pairs – i.e., but 
which cannot (in principle) possess any 'material-causal' relationship between them…  
Interestingly though (as noted above), despite the Duality Principle's conceptual 
computational proof that Darwin's Natural Selection Principle (computational structure) 
constitutes a SROCS and is therefore constrained by the Duality Principle, i.e., indicating the 
conceptual computational inability to determine the "existence" or "non-existence" of any 
(hypothetical) organism ('o') based on any of its direct or indirect material-causal 
interaction/s with any exhaustive set of Environmental Factors E{1...n} (but only from a 
conceptually higher-ordered 'D2 a-causal' computational framework) – it seems that 
Darwin's evolutionary theory further contingents Darwin's Natural Selection Principle's 
SROCS paradigm upon two other (hierarchical-dualistic) SROCS paradigms, i.e., the 
(abovementioned) 'Genetic Encoding' hypothesis and 'Protein Synthesis' SROCS paradigms;  
ii. Organism Phenotype - Genetic Encoding SROCS: It is hypothesized that Darwin's 

(above mentioned) Natural Selection SROCS paradigm is anchored in- and based upon 
an additional (secondary) 'Organism Phenotype - Genetic Encoding' SROCS paradigm}: 
PR{G{1...n},o-phi} [‘o-phi' or ‘¬o-phi’]/di1…din. 

wherein the "existence" or "non-existence" of any particular phenotypic property of any 
given organism ('o-ph') (e.g., appearing in Darwin's Natural Selection primary SROCS 
paradigm) is assumed to be solely determined based on its direct (or indirect) physical 
interaction/s with any exhaustive set of Genetic factors (e.g., at the 'di1…din' computational 
levels). Note that from the (entire) dualistic relationship existing between the 'organism' and 
the Environmental Factors in Darwin's Natural Selection Principle SROCS paradigm – only 
the 'organism ('o') element is utilized within the secondary 'Organism Phenotype - Genetic 
Encoding' SROCS paradigm: 

PR{G{1...n},o-phi} [‘o-phi' or ‘¬o-phi’]/di1…din. 

In other words, the "existence" or "non-existence" of any particular organism possessing a 
specific phenotypic property is totally contingent upon its direct (or indirect) physical 
interaction with an exhaustive series of relevant Generic factors; It is to be noted that the 
implicit assumption underlying this 'hierarchical-dualistic' computational structure is the 
(tacit) contingency that exists between Darwin's (primary) Natural Selection Principle's 
organism's particular phenotypic property (e.g., which interacts directly or indirectly with the 
exhaustive set of Environmental Factors, thereby solely determining the "existence" or "non-
existence" of that particular organism) – and the exhaustive set of relevant Genetic Factors 
which together (solely) determine the "existence" or "non-existence" of that particular 
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phenotypic property! Thus, it may be said that there exists a dual 'hierarchical-dualistic' 
computational structure which constitutes Darwin's entire evolutionary theory that can be 
broken down to two interrelated SROCS computational structures, thus: 

SROCS I {Natural Selection}: PR{E{1...n}, ‘o-phi' }  [‘o-phi'’ or ‘¬o-phi’]/di1. 

 
 

SROCS II {Genetic Encoding – Organism Phenotype}: PR{G{1...n},phi (o)} 
 ['phi (o)' or ‘¬phi (o)']/dih. 

However, to the extent that it can be proven that this (secondary) 'Genetic Encoding – 
Organism Phenotype' computational structure replicates and constitutes a SROCS 
computational structure, then it automatically follows that both the primary and secondary 
SROCS paradigms comprising Darwin's (currently accepted) evolutionary theory must be 
replaced (and transcended) by a conceptually higher-ordered 'D2' computational framework;  
Thus, we now set to evince that Darwin's (secondary) Genetic Encoding- Organism's 
Phenotype computational structure constitutes a SROCS paradigm and is therefore also 
necessarily constrained by the (same) computational Duality Principle:  

PR{G{1...n},phi (o)} ['phi (o)' or ‘¬phi (o)']/dih. 

As shown above, this computational structure precisely replicates the generalized SROCS 
structure of the form: PR{x,y}['y' or '¬y'], which was shown to inevitably lead to both 
'logical inconsistency' and ensuing 'computational indeterminacy' in the case of the 'Self-
Referential Ontological Computational System' (SRONCS).  
This is simply because if it is assumed that the "existence" or "non-existence" of any 
particular phenotypic property ('phi (o)') is solely dependent upon its direct physical 
interaction with any exhaustive series of 'Genetic Factors' ('G{1...n}'), then in the case of the 
(abovementioned) SRONCS paradigm the specific phenotypic property 'phi (o)' appears to 
both "exist" and "not exist" at the same 'dih' computational level: PR{G{1...n}, phi (o)} ‘¬phi 
(o)'/dih, which obviously produces a 'logical inconsistency' – which also inevitably leads to 
an (apparent) 'computational indeterminacy', e.g., an apparent inability of the 
computational system to determine whether that particular phenotypic property "exists" or 
"doesn't exist"… But, since there exist ample empirical evidence indicating that genetic 
(computational) system do in fact possess the capacity to determine whether any given 
phenotypic property 'phi (o)' "exists" or "doesn't exist" within a given organism, then we 
must conclude that the (currently assumed) SROCS computational structure is invalid! 
As shown previously, it is important to note that the computational constraint imposed by 
the Duality Principle is conceptual in nature – i.e., it applies to any single- or multiple- 
hypothetical computational levels that may be involved in any direct or even indirect (e.g., 
dih1…dihn) physical interactions between the particular phenotypic property and any 
exhaustive series of 'Genetic Factors' (G{1...n}); 
As shown (above), the reason for this conceptual computational constraint imposed on the 
'Genetic Encoding' SROCS by the Duality Principle stems from the existence of an implicit 
'materialistic-reductionistic' assumption embedded within the SROCS computational structure 
which is represented by the 'causal arrow'  which connects between any direct physical 
interaction between the exhaustive set of 'Genetic Factors' and the particular phenotypic 
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property (at 'dih1') and any single- or multiple- direct or indirect physical interactions or 
computational levels that may mediate between this direct 'Genetic Factors – phenotype' 
physical interaction (at dihn) and between the determination of the "existence" or "non-
existence" of the particular (relevant) phenotypic property; Therefore it may be appropriate 
to represent the conceptual constraint imposed by the Duality Principle upon the 
(secondary) Genetic Encoding-phenotype SROCS structure in this manner:  

PR{G{1...n},phi (o)}di1  ['phi (o)' or ‘¬phi (o)']dih1…dihn.  

wherein any (hypothetical) direct or indirect physical interaction between an exhaustive set of 
Genetic Factors and the particular phenotypic property 'phi (o) – which can take place either at 
their direct physical interaction level ('dih1') or at any subsequent (indirect) computational 
level/s (e.g.,'dihn') causally leads to the determination of the "existence" or "non-existence" of 
that particular phenotypic property 'phi (o) at a hypothetical 'dihz' computational level;  
However, even for this (expanded) Genetic Factors – phenotypic property SROCS 
computational structure it becomes clear that the (abovementioned) 'materialistic-
reductionistic' implicit assumption embedded within it – inevitably leads to both 'logical 
inconsistency' and subsequent 'computational indeterminacy' that are contradicted by 
robust empirical findings indicating the capacity of biological evolutionary systems to 
determine the "existence" or "non-existence" of any particular phenotypic property in any 
given organism… This is due to the fact that despite the hypothesis that the determination 
of the "existence" or "non-existence" of the particular phenotypic property may occur at 
(single- or multiple) computational level/s (dih1... dihz) that may be different than the direct 
physical interaction between the particular phenotype and the (exhaustive set of ) Genetic 
Factors, due to the above mentioned 'materialistic-reductionistic' implicit assumption 
embedded within this (expanded) SROCS structure the determination of the "existence" or 
"non-existence" of that particular phenotypic property 'phi (o) is solely- and strictly- caused 
by the direct physical interaction between the (exhaustive set of) Genetic Factors (at dih1) 
and that phenotypic property 'phi (o); But, this implies that the determination of the 
"existence" or "non-existence" of the phenotypic property 'phi (o) takes place at the same 
computational level/s as the direct physical interaction level (dih1…dihz) between the Genetic 
Factors and the phenotypic property, which may be represented thus: 

PR{G{1...n},phi (o)}  ['phi (o)' or ‘¬phi (o)']/ dih1…dihz  

which precisely replicates the above SROCS computational structure which has been shown 
to be constrained by the Duality Principle… 
In other words, whether the interaction between the Genetic Factors and the phenotypic 
property takes place at the same computational level (e.g., at 'dih1') as the determination of 
the "existence" or "non-existence" of the phenotypic property, or takes place at a different 
(single or multiple) computational level/s (e.g., 'dih1… dihz') – due to the implicit 
materialistic-reductionsitic assumption embedded within the (expanded) SROCS 
computational structure this inevitably leads to both 'logical inconsistency which inevitably 
leads to both 'logical inconsistency' and 'computational indeterminacy' that were 
contradicted by empirical evidence and which therefore lead to the Duality Principle's 
assertion regarding the need for a conceptually higher-ordered 'D2' computational level 
which merely computes the "co-occurrences" of any hypothetically pairs of 'Genetic Factors 
– phenotypic property'.  
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In fact, the Duality Principle's conceptual computational proof for the principle inability to 
determine the "existence" or "non-existence" of any particular phenotypic property from 
within any direct or indirect (di1..diz) physical interaction between the Genetic Factors and the 
phenotypic property also includes any spatial-temporal span in which these direct or indirect 
physical interactions occur, or in which the determination of the "existence" or "non-existence" 
of the (particular) phenotypic property takes place; This can be seen if we formalize each of 
these direct or indirect physical interaction/s between the Genetic Factors and the particular 
phenotypic property- as well as to the determination of the "existence"/"non-existence" of 
the phenotypic property any (hypothetical) spatial-temporal value/s, thus: 

PR{G{1...n},phi (o)}st1..stj  ['phi (o)' or ‘¬phi (o)']stn/ dih1…dihz  

Wherein the direct physical interaction between the (exhaustive set of) Genetic Factors and 
the particular phenotypic property takes place at either single- or multiple- time points 
(st1…stj) that may be different than the spatial-temporal point/s at which the determination 
of the "existence" or "non-existence" of the (particular) phenotypic property takes place (e.g., 
'dih1…dihz'). This is because even if we assume that the spatial temporal points at which the 
direct physical interaction between these Genetic Factors and the particular phenotypic 
property (PR{G{1...n},phi (o)}st1..stj ) , and the determination of the "existence" or "non-
existence" of the particular phenotypic property ['phi (o)' or ‘¬phi (o)']stn are different, then 
due to the (above generalized) SROCS' embedded 'materialistic-reductionsitic' causal 
assumption wherein the determination of the "existence" or "non-existence" of the particular 
phenotypic property is assumed to be determined strictly- and solely- based on the direct 
(or indirect) physical interaction between the Genetic Factors and that phenotypic property, 
then this (generalized) SROCS computational structure inevitably leads to both logical 
inconsistency and computational indeterminacy – which (in turn) point at the Duality 
Principle's (abovementioned) computational constraint… 
We are thus forced to accept the Duality Principle's conceptual computational constraint 
imposed upon the 'Genetic Encoding - Phenotypic Property' (secondary) SROCS structure 
wherein the determination of the "existence" or "non-existence" of any particular 
phenotypic property (within any given organism) cannot (e.g., in principle) be 
determined from within any direct- or indirect- physical interaction between any 
exhaustive set of Genetic Factors and any hypothetical phenotypic property, or through 
any hypothetical single- or multiple- computational levels associated with these direct or 
indirect physical interaction/s or based on the same or different (single- or multiple-) 
spatial-temporal points (or intervals) at which these Genetic Factors may interact with any 
particular phenotypic property:  

PR{G{1...n},phi (o)}st1..stj ≠ ['phi (o)' or ‘¬phi (o)']stn/ dih1…dihz. 

As stated above, the conceptual computational proof for the Duality Principle's assertion 
arises from the inevitably 'logical inconsistency and 'computational indeterminacy' 
implications of the SRONCS computational structure wherein the particular phenotypic 
property seems to both "exist" and "not exist" at the same computational level (which not 
only constitutes an explicit 'logical inconsistency' but also produces an inevitable 
'computational indeterminacy' that is contradicted by empirical findings indicating the 
capacity of genetic-biological computational systems to determine the "existence" or "non-
existence" of any particular phenotypic property); 
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Instead, the Duality Principle asserts that there must exist a conceptually higher-ordered 
'D2' computational framework which is capable of computing the "co-occurrences" of any 
hypothetical pair/s of Genetic Factor/s and any phenotypic property (e.g., existing at any 
spatial-temporal point/s): 

D2: [{G{1...n}, 'phi (o)' }st1; {G{1...n}, 'phj (o)' }sti; ...{G{1...n}, 'phn(o)' }stn].  

Therefore, the application of the computational Duality Principle to both Darwin's 'Natural 
Selection' (primary) SROCS computational paradigm, as well as to its (secondary) 'Genetic 
Encoding – Phenotypic Property' SROCS paradigm (e.g., which is assumed to serve as a 
contingency for the primary Natural Selection SROCS paradigm) has proven that it is not 
possible to determine the "existence" or "non-existence" of any 'organism'- or organism 
related 'phenotypic property' based on any direct- or indirect- physical interaction between 
any organism- and an exhaustive set of Environmental Factors or between any (organism's) 
phenotypic property and any exhaustive set of Genetic Factors e.g., including as carried out 
by single- or multiple- computational level/s, or taking place at any spatial-temporal 
point/s etc. Instead, the (novel) computational Duality Principle asserts that there exists a 
conceptually higher-ordered D2 computational level which computes the "co-occurrences" 
of any single or multiple hypothetical pairs of any exhaustive set of 'Environmental Factors' 
and any given 'organism' or of any exhaustive set of 'Genetic Factors' and any organism's 
'phenotypic property', which may be represented in this manner: 

D2: [{E{1...n}, o}st1; {E{1...n}, o}st2 ... [{E{1...n}, o}stn].  

D2: [{G{1...n}, 'phi (o)' }st1; {G{1...n}, 'phj (o)' }sti; ...{G{1...n}, 'phn(o)' }stn]. 

Finally, it is hypothesized that with the advent of modern genetics, RNA and mRNA 
scientific research one additional (hypothetical) SROCS computational paradigm has 
emerged which is the 'Genetic Encoding – Protein Synthesis' (tertiary) SROCS paradigm; This 
is because the latest developments in genetics research (in general) and those related to the 
investigation of the relationships that exist between genetic encoding and protein synthesis 
(in particular) are based on the assumption wherein any biological synthesis of proteins 
comprising- and constructing- the biological organism are contingent upon a direct (or 
indirect) physical relationship between an exhaustive set of Genetic Factors and a certain 
protein synthesis agent, e.g., such as for instance a particular RNA or mRNA synthesis of a 
particular protein through their direct or indirect physical interaction with a given set of 
exhaustive Genetic Factors (Burgess, 1971; Geiduschek & Haselkorn, 1969; Khorana, 1965; 
Rich & Rajbhandary, 1976; Schweet, & Heintz, 1966).  
Indeed, it is suggested that this hypothetical (direct or indirect) physical relationship 
between a certain exhaustive set of Genetic Factors and any (hypothetical) protein synthesis 
agent precisely reproduces the (above mentioned) tertiary 'Genetic Expression – Protein 
Synthesis' SROCS paradigm.  
iii. Protein Synthesis (phenotype) – Genetic Expression SROCS: It is therefore 

hypothesized that both Darwin's (above mentioned 'primary') Natural Selection SROCS 
paradigm as well as the (secondary above mentioned) 'Genetic Encoding – Phenotypic 
Property' SROCS paradigms are anchored in- and contingent upon- a (tertiary) 
'Phenotypic Expression – Protein Synthesis' SROCS computational paradigm, which 
assumes that the determination of the "existence" or "non-existence" of any particular 
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Protein (phenotype) is strictly- and entirely- dependent upon its direct (or indirect) 
physical interaction with an exhaustive set of Genetic Expression ;  

SROCS III {Genetic Expression – Protein Synthesis}: PR{G{1...n}, p-synth} 
 [‘p-synth or ‘¬p-synth]. 

we therefore obtain the full hierarchical-dualistic computational structure underlying 
Darwin's evolutionary theory as comprising of:  

SROCS I {N.S.}:  PR {E{1...n}, ‘o-phi' }  [‘o-phi'’ or ‘¬o-phi’]/di1 

 

SROCS II {G.E. – O. Ph.}: PR{G{1...n},phi (o)} ['phi (o)' or ‘¬phi (o)']  

 

SROCS III {G.E. – P. S.}: PR{Ge{1...n}, p-synth (o-phi)} [‘p-synth (o-phi) or ‘¬p-synth (o-phi)]. 

This (new) hypothetical hierarchical-dualistic computational structure underlying Darwin's 
evolutionary modeling is nevertheless constrained (i.e., at each and every one of its three 
layered SROCS scientific paradigms) by the Duality Principle which therefore forces us to 
replace each of these (three) SROCS computational levels with a conceptually higher-
ordered singular 'D2' computation of the "co-occurrences" of multi-layered pairs of 
'Environmental Factors – organism', 'Genetic Factors – (organism) Phenotype' and 'Genetic 
Expression - (organism-phenotype) Protein Synthesis'…  
Based on the (above detailed) analysis of the Duality Principle's constraint of any 
(generalized) SROCS computational paradigm it is not necessary to repeat the details of 
the Duality Principle's conceptual computational proof for the inability of the (tertiary) 
'Genetic Encoding – Protein Synthesis' SROCS to determine the "existence" or "non-
existence" of any particular 'protein synthesis' based on its direct physical interaction with 
an exhaustive set of 'Genetic Expression'; Suffice to state that according to the (above 
generalized) conceptual computational proof of the Duality Principle, in the specific case 
of a SRONCS – i.e., in which any direct (or indirect) physical interaction/s between such 
(an exhaustive set of) Genetic Expression and any particular Protein Synthesis leads to the 
"non-existence" (e.g., 'non-synthesis') of any such particular protein, this produces the 
(abovementioned) 'logical inconsistency' and ensuing 'computational indeterminacy' 
which are contradicted by well-known empirical evidence indicating the capacity of 
biological-evolutionary systems to determine whether any particular protein is 
synthesized… As shown above, this leads to the Duality Principle's inevitable assertion 
regarding the existence of the conceptually higher-ordered 'D2' computational framework 
which computes the "co-occurrences" of any (hypothetical) series of 'Genetic Expression – 
Protein Synthesis' pairs occurring at any given spatial-temporal point/s in any given 
organism: 

D2: [{Ge{1...n}, pi-synth (o-phi)}st1; Ge{1...n}, pj-synth (o-phi)}sti… ;  
Ge{1...n}, pn-synth (o-phi)}stn]  

Therefore, the Duality Principle's (abovementioned) constraint of the three ('Natural 
Selection', 'Genetic Encoding' and 'Protein Synthesis') SROCS computational paradigms (or 
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levels) has proven the conceptual computational inability of each of these scientific 
paradigms (or computational levels) to determine the "existence" or "non-existence" of the 
particular 'y' element (e.g., particular 'organism', particular 'phenotypic property', or 
particular 'protein synthesis') – from within any direct or indirect physical interaction 
between the (given) 'x' factor and an exhaustive set of the (abovementioned) 'x' factor/s; 
Instead, the Duality Principle evinced the existence of a conceptually higher-ordered 'D2' 
computational level which (alone) can compute the "co-occurrences" of any of these (three-
leveled) 'x' and 'y' factors (e.g., at any given hypothetical spatial-temporal point/s or 
computational level/s etc.), thus: 

D2: [{E{1...n}, o}st1; {E{1...n}, o}st2 ... [{E{1...n}, o}stn].  

D2: [{G{1...n}, 'phi (o)' }st1; {G{1...n}, 'phj (o)' }sti; ...{G{1...n}, 'phn(o)' }stn]. 

D2: [{Ge{1...n}, pi-synth (o-phi)}st1; Ge{1...n}, pj-synth (o-phi)}sti… ;  
Ge{1...n}, pn-synth (o-phi)}stn]  

However, based on the previous (Bentwich, 2011c) conceptual proof for the singularity of the 
'D2' computational framework forces us to accept the fact that there must be a (singular) 
simultaneous computation of all three-layered SROCS' "co-occurring" pairs (e.g., which 
according to the CUFT must comprise the same USCF frame/s): 

D2: [{E{1...n}, o}st1; {E{1...n}, o}st2 ... [{E{1...n}, o}stn].  

D2: [{G{1...n}, 'phi (o)' }st1; {G{1...n}, 'phj (o)' }sti; ...{G{1...n}, 'phn(o)' }stn]. 

D2: [{Ge{1...n}, pi-synth (o-phi)}st1; Ge{1...n}, pj-synth (o-phi)}sti… ;  
Ge{1...n}, pn-synth (o-phi)}stn]  

Along these lines it is suggested that based on the Duality Principle's proof for the existence 
of a conceptually higher-ordered 'D2' computational framework for each of the two 
(Darwin's 'Natural Selection' and 'Genetic Factors – Phenotypic Property') SROCS 
paradigms, and a previous (Bentwich, 2011c) conceptual proof for the singularity of such 
higher-ordered 'D2' computational framework we are led to conclude that :  
a. Darwin's evolutionary theory is based on a three-layered hierarchical-dualistic 

computational structure which consists of a primary 'Natural Selection' SROCS 
paradigm that is contingent upon a secondary 'Genetic Encoding – Phenotypic 
Property' SROCS paradigm that is (in turn) contingent upon a tertiary 'Genetic 
Expression – Protein Synthesis' SROCS computational paradigm… 

b. Each of these SROCS computational paradigms is constrained by a (generalized) 
'Duality Principle' which asserts that it is not possible to determine the "existence" or 
"non-existence" of any (hypothetical) 'y' element based on any direct or indirect 
physical interaction of that 'y' element with any (exhaustive set of) 'x' factor/s; 
Instead, the Duality Principle postulates that it is only possible to determine the "co-
occurrences" of any series of (hypothetical) 'x-y' pairs taking place at different spatial-
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temporal point/s or interval/s as computed by a conceptually higher-ordered 'D2' 
computational framework that is (e.g., in principle) irreducible to any series of 
exhaustive hypothetical direct- or indirect- physical interaction/s, single- or multiple- 
computational level/s or any hypothetical series of spatial-temporal interactions or 
occurrences… and: 

c. That there can exist only one singular such higher-ordered 'D2' computational 
framework (e.g., as proven by the application of the Duality Principle to each and every 
one of these hypothetical SROCS paradigms); (Later on, it will be shown that this 
(hypothetical) singular conceptually higher-ordered 'D2' computational framework 
must be equivalent to the previously indicated (Bentwich, 2011c) Computational 
Unified Field Theory's (CUFT) rapid series of 'Universal Simultaneous Computational 
Frames' (USCF's) which may underlie all microscopic (quantum) and macroscopic 
(relativistic) aspects of the physical reality.)  

Note (however) that the full theoretical implications of accepting these conceptual 
computational constraints imposed by the Duality Principle upon any scientific SROCS 
paradigm (in general) and particularly which are set upon Darwin's three-layered must 
necessarily replace all material-causal (direct- or indirect- single- or multiple-) interaction/s 
with an a-causal (conceptually higher-ordered) singular computational framework (e.g., 
termed: 'D2') which alone can compute an exhaustive series of 'x-y' pairs that occur at 
different spatial-temporal point/s or level/s; Specifically, in the case of Darwin's biological-
evolutionary theory the application of the computational Duality Principle to the (above-
mentioned) three-layered (primary 'Natural Selection', secondary 'Genetic Encoding – 
Phenotypic Property' and tertiary 'Genetic Expression – Protein Synthesis') SROCS 
paradigms, may have potentially far reaching theoretical implications:  
Essentially, the acceptance of the Duality Principle's postulated singular conceptually 
higher-ordered 'D2' computation of the "co-occurrences" of an exhaustive series of 'x-y' pairs 
implies that all three ('Natural Selection', 'Genetic Encoding –Phenotypic Property', and 
'Genetic Expression – Protein Synthesis') 'material-causal' scientific SROCS paradigms must 
be replaced by a singular (conceptually higher-ordered) 'D2' computation of the "co-
occurrences" of each of these (triple-layered) 'Environmental Factors - organism', 'Genetic 
Factors – phenotypic property' and 'Genetic Expression – Phenotypic Property' 
computational pairs simultaneously!  
It is to be noted that the (above) detailed analysis of the three-layered SROCS 
computational structure points at two important (specific and more generalized) 
theoretical implications: 
First, in the specific case of Darwin's (three-layered hierarchical-dualistic) SROCS 
computational structure, it becomes evident that not only is each one of the three constituent 
SROCS paradigms constrained by the computational Duality Principle – which therefore 
points at the existence of a singular (conceptually higher-ordered) 'D2' computational 
framework that computes the "co-occurrences" of each of the (above-mentioned) 
'Environmental Factors – organism', 'Genetic Factors – phenotype' and 'Genetic Expression – 
protein synthesis' pairs (at any given spatial-temporal point/s); but also, an examination of 
the computational inter-relationships that exist between these (three-layered) SROCS 
paradigms reveals that each such (subsequent) computational SROCS layer in effect further 
fragments one of the components of the physical interaction/s in the (previous) layered 
SROCS structure: 
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SROCS I {N.S.}:   PR {E{1...n}, ‘o-phi' }  [‘o-phi'’ or ‘¬o-phi’]/di1 

 

SROCS II {G.E. – O. Ph.}: PR{G{1...n},phi (o)} ['phi (o)' or ‘¬phi (o)']  

 

SROCS III {G.E. – P. S.}: PR{Ge{1...n}, p-synth (o-phi)} [‘p-synth (o-phi) or ‘¬p-synth (o-phi)]. 

In fact, it is suggested that this hierarchical-dualistic computational structure underlying 
Darwin's evolutionary theory may point at a much more generalized 'Black-Box Hypothesis' 
(BBH) as underlying key materialistic-reductionistic (or "material causality" based) scientific 
paradigms; Indeed, before we attempt to further generalize this 'BBH' to other (key 
scientific) SROCS paradigms, we attempt to explicate the BBH in the case of these three-
layered (above mentioned) SROCS computational structure: It was noted (above) that the 
inter-relationships between these three (layered) scientific SROCS paradigms is such that 
each subsequent computational leveled SROCS further fragments the previous level SROCS, 
i.e., further "de-composes" the previous level SROCS' 'y' element into two (or more) 
constituting factors; Thus, for instance, the 'y' element in Darwin's (primary) 'Natural 
Selection' SROCS which is the 'organism' (e.g., which interacts directly or indirectly with the 
exhaustive set of Environmental Factors 'E{1…n}'- in order to determine whether such 
'organism'shall exist/survive or not exist/gets extinct) – that 'organism' is further "de-
composed" or 'fragmented' into the direct physical interaction between the exhaustive set of 
'Genetic Factors' G{1...n} and a particular phenotypic property 'phi (o)' e.g., possessed by 
this particular organism; In other words, Darwin's (primary) Natural Selection SROCS' 
(direct or indirect) physical interaction between the organism and an exhaustive set of 
Environmental Factors is further decomposed in the secondary 'Genetic Encoding- 
Phenotype Property' SROCS computational structure into (two) sub-set fragments of the 
organism – i.e., which are assumed to consist of a (direct or indirect) physical interaction/s 
between the exhaustive set of Genetic Factors and (relevant) phenotype property (which is 
determined to "exist" or "not exist" based on this direct or indirect Genetic Factors – property 
interaction).  
Hence, the secondary (Genetic Encoding – phenotype property) SROCS computational 
structure further decomposes one of the elements within the primary (Natural Selection) 
SROCS paradigm, i.e., the 'organism' ('y') element – into two interacting elements within the 
secondary (Genetic Encoding –phenotype property) SROCS paradigm, e.g., the exhaustive 
set of Genetic Encoding and a particular phenotypic property:  
However, a closer application of the computational Duality Principle (in the case of this dual 
hierarchical-dualistic computational structure) indicates that not only is each one of these 
(inter-related) SROCS paradigms constrained by the Duality Principle; but it is also shown 
that the further fragmentation of the 'organism' element found in the primary (Natural 
Selection) SROCS paradigm – into the 'Genetic Encoding' (exhaustive set) and 'phenotype 
property' physical relationship in the secondary (Genetic Encoding – phenotype property) 
SROCS structure in effect does not alter the basic computational structure found in the 
primary SROCS paradigm: This is because both the Genetic Encoding exhaustive set and the 
(particular) phenotype property – are necessarily included within the organism (e.g., and its 
particular phenotype property expressed as: ‘o-phi') within the primary ('Natural Selection') 
SROCS paradigm! 
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So, we can see that the initial ('generalized') SROCS computational structure:  
PR{E{1...n}, ‘o-phi' }  [‘o-phi'’ or ‘¬o-phi’]/di1 already contains within it any further 
(secondary) SROCS computational paradigms such as for instance the 'Genetic Encoding – 
phenotype property' SROCS paradigm; This is because the organism element within the 
primary SROCS paradigm (represented as: ‘o-phi') already contains any further 
segmentation or fragmentation – i.e., as consisting of the Genetic Encoding and phenotype 
property (direct or indirect) physical interaction/s. Indeed, if we wish to represent the basic 
(generalized) SROCS computational structure as: PR{X{1…n),Y{1…n),}  ['y' or '¬y'] then any 
potential (further) breakdown or fragmentation of the 'Y{1…n) element is bound to be 
contained within the (original) generalized SROCS computational structure and therefore 
bound to be constrained by the computational Duality Principle.  
In the specific case of Darwin's evolutionary theory – the generalized (above mentioned) 
SROCS computational structure may be represented by the (primary) 'Natural Selection' 
SROCS structure, thus:  
SROCS I {N.S.}: PR{E{1...n}, ‘o-phi' }  [‘o-phi'’ or ‘¬o-phi’]/di1 which precisely replicates the 
(above mentioned) generalized SROCS structure of: PR{X{1…n),Y{1…n),}  ['y' or '¬y']; 
indeed, the further fragmentation of this basic (generalized-primary) SROCS computational 
structure into the secondary 'Genetic Encoding – Phenotype Property' and tertiary 'Genetic 
Factors - Protein Synthesis' SROCS computational does not alter the basic (generalized) 
SROCS computational structure (which is obviously constrained by the computational 
Duality Principle); This is because any further breakdown of the organism (Y{1…n) factor 
(e.g., within the basic SROCS generalized structure) – i.e., into the 'Genetic Factors' and 
'Phenotype Property' [e.g., PR{G{1...n},phi (o)}] or into the 'Genetic Encoding' and 'Protein 
Synthesis' relationship [e.g., PR{Ge{1...n}, p-synth (o-phi)} – obviously does not alter the basic 
(generalized) SROCS relationship between the organism (e.g., and all of its related 
phenotypic, genetic, protein… etc. factors) and its Environmental Factors! 
More generally, we can see that any scientific SROCS paradigm which consists of the 
generalized format: PR{X{1…n),Y{1…n),}  [Y{1…n) or ' Y{1…n)']/di1 is not altered by any 
further breakdown (or fragmentation of the Y{1…n) element; Indeed, it is hypothesized that 
the BBH precisely constitutes such an explicit fragmentation of the basic SROCS 
computational structure (e.g., PR{X{1…n),Y{1…n),}  ['Y{1…n)' or ' Y{1…n)']/di1) into further 
and further computational relationships – which are nevertheless comprised within the 
PR{X{1…n),Y{1…n),} basic SROCS computational structure which has already been shown to 
be constrained by the computational Duality Principle. Indeed, the abovementioned 
conceptual computational proof may point at the generalization of the Duality Principle 
which points at the fallacy of the 'Black Box Hypothesis' – i.e., wherein it becomes clear that 
the Duality Principle's basic computational constraint imposed upon any (generalized) 
SROCS paradigm remains unaltered regardless of how many further fragmentations, sub-
divisions or computational levels (di1…din) the original 'y' element is comprised of- or 
divided into-…  
Thus, it seems that the generalized form of the Duality Principle may point at the basic 
fallacy of the 'Black Box Hypothesis' (BBH) – i.e., proving that regardless of the number of 
factors- or computational levels- that any hypothetical SROCS is fragmented (or broken 
down into), any such (original) SROCS is necessarily (still) constrained by the Duality 
Principle; This means that the Duality Principle proves the conceptual computational 
inability of any such (single- or multiple- leveled) SROCS structure to determine the 
"existence" or "non-existence" of any hypothetical 'y' element from within its direct or 
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indirect physical relationship/s with any exhaustive 'X-series' (e.g., at any 'di1…din 
computational level contained within this original SROCS computational structure): 

SROCS: PR{X1…n, y}['y' or 'not y'] 

But, if indeed the generalized form of the Duality Principle can prove that any (single- or 
multiple- level) SROCS computational structure is constrained by the Duality Principle, then 
this means that for any such scientific SROCS paradigm (e.g., for which it is known that the 
given computational system is capable of determining whether a given 'y' element "exists" or 
"doesn't exist – there must exist a conceptually higher-ordered 'D2' computational level at 
which there is an 'a-causal' computation yielding the identification of (single- or multiple-) 
pairs of 'x' and 'y' factors (e.g., occurring at different spatial-temporal point/s, interval/s 
etc.). This is because the (generalized) Duality Principle has already proven that assuming 
that the determination of the "existence" or "non-existence" of any given 'y' element from 
within its direct physical interaction with another X(1…n) factor/s inevitably leads to both 
'logical inconsistency' and 'computational indeterminacy' – which are (once again) 
contradicted by robust empirical findings. Moreover, it was shown earlier that the 
computational characteristics of such D2 level involves an 'a-causal' computation, which 
computes the "co-occurrences" of any (exhaustive hypothetical) series of 'x-y' pairs 
(occurring at any hypothetical spatial-temporal point/s or intervals etc.). 
Indeed, in the above mentioned case of Darwin's tertiary SROCS computational structure 
e.g., (comprised of the primary 'Natural Selection Principle, which was further fragmented 
into the secondary 'Genetic Factors – Phenotypic Property' SROCS paradigm and finally 
further broken down into the third level 'Genetic Encoding – Protein Synthesis' SROCS 
paradigm) – the generalized Duality Principle proof pointed at the fallacy of the (tertiary 
leveled) 'BBH'; Instead, the (generalized) Duality Principle points at the existence of a 
conceptually higher-ordered 'D2' computational level which carries out computation 
yielding the (simultaneous) "co-occurrences" of all of the above mentioned three leveled 'x-y' 
pairs series: Specifically, it is suggested that in the case of Darwin's evolutionary theory an 
adoption of the Duality Principle's singular D2 computational level indicates that all 
(abovementioned) apparent tertiary SROCS computational paradigms need to be replaced 
by three (corresponding) series of 'x-y' pairs (e.g., Environmental Factors – organism; 
Genetic Factors – Phenotype Properties; Genetic Encoding – Protein Synthesis)… 
This means that in the specific instance of Darwin's evolutionary theory instead of there 
existing multiple 'material-causal' interactions, i.e., between an exhaustive set of 
Environmental Factors and a single organism (e.g., which is assumed to determine whether 
that organism "survives" or "doesn't survive"); or between the organism's (deeper) 'Genetic 
Factors' and its 'Phenotypic Property' (e.g., which is supposed to determine whether 
particular phenotypic properties of that organism "exist" or "don't exist" – hence indirectly 
determining that organism likelihood of "surviving" or "not surviving"); or between the (still 
deeper) organism's 'Genetic Encoding' process and its expression of certain Protein 
Synthesis (e.g., which is once again assumed to determine the specific Phenotypic Property 
which determines the organism's "adaptability" or "compatibility" to the Environmental 
Factors, and hence determines whether that organism shall "survive" or be "extinct" etc.) –
according to the computational Duality Principle there seems to exist only one singular 
conceptually higher-ordered computational level, 'D2' which is responsible for an "a-causal" 
computation of the existence of "co-occurring" pairs of 'organism-environment', genetic 
factors-phenotypic property, and genetic encoding process-protein synthesis etc… 



 
Theoretical Validation of the Computational Unified Field Theory (CUFT) 579 

Obviously, such conceptually higher-ordered "a-causal" D2 computation is quite "alien" to the 
basic Cartesian-causal conception wherein it is assumed that any naturally occurring 
phenomenon is necessarily caused by another material element/s (e.g., which are implicitly 
assumed to be caused by a series of ever more fine material-causal processes)… However, it is 
suggested that precisely through the above mentioned application of the Duality Principle 
analysis of any (single- or multiple- level) SROCS scientific paradigm it can be shown that such 
Cartesian-causal 'Black Box Hypothesis' is falsified and must necessarily point at the existence 
of a singular conceptually higher-ordered 'D2' computational framework which merely 
computes the "co-occurrences" of (single or multiple) computational 'x-y' pairs… Thus, in the 
case of Darwin's evolutionary tertiary SROCS structured computational paradigm it becomes 
clear that the material-causal (Cartesian) relationships must give way to a singular higher-
ordered a-causal D2 computational framework which computes the "co-occurrences" of the 
above mentioned three pairs series, i.e., which "co-exist" rather than cause each other… 
Indeed, it is suggested that precisely due to Cartesian science's (ingrained) material-causal 
working hypothesis, that the computational Duality Principle's conceptual proof for the 
principle inability to compute the "existence" or "non-existence" of any hypothetical 
'di1…din' specific 'y' element – from within its direct or indirect physical relationship/s with 
any other (exhaustive) 'x-series' inevitably leads to both 'logical inconsistency' and (ensuing) 
'computational indeterminacy' that are contradicted by robust empirical findings (e.g., in the 
case of each of the earlier mentioned SROCS scientific computational paradigms); Hence, 
the (generalized) Duality Principle has proven the conceptual computational fallacy of any 
such single- or multiple- 'Black Box Hypothesis' (BBH) based on an exhaustive analysis of 
any single or multiple SROCS computational level/s or factor/s – instead pointing at a 
singular conceptually higher-ordered D2 computational framework which can merely 
compute the "co-occurrences" of a series of 'x-y' pairs… Indeed, it is due to the generalized 
Duality Principle's conceptual proof for the principle inability of the multi-layered and 
(infinitely) complex BBH to determine any of its (single or multiple) SROCS xy material-
causal relationships that it is able to point at the conceptually higher-ordered singular D2 
computational framework as the only viable means for determining the "co-occurrences" of 
any exhaustive series of 'x-y' pairs as underlying any such scientific SROCS paradigms! 
Finally, based on the earlier (Bentwich, 2011c) proof for the existence of only a singular such 
conceptually higher-ordered 'D2' Universal Computational Principle' which is responsible 
for computing a series of 'Universal Simultaneous Computational Frames' (USCF's) which 
give rise to all ('secondary') computational properties of 'space', 'time', 'energy', 'mass' (and 
'causality'), it becomes clear that any such specific SROCS scientific paradigm can only be 
computed strictly based on this singular (higher-ordered) D2 USCF's series… 
Hence, the next step is to prove in the case of each of the other scientific (key) scientific 
SROCS paradigms that their particular (single- or multiple-) computational (BBH) structure 
must necessarily be replaced by the singular D2 computational framework; Indeed, it is 
suggested that besides Darwin's (tertiary-leveled) SROCS evolutionary theory – there are 
two other (key) scientific paradigms that share the same (problematic) SROCS 
computational structure, and which therefore necessitate their reformalization based on the 
same singular conceptually higher-ordered D2 computational framework; These include: 
Genetics' fundamental 'genetic encoding' hypothesis and Neuroscience's basic 'psycho-
physical'problem (e.g., and underlying 'materialistic-reductionistic' working hypothesis); 
We've already seen that perhaps two out of three of Darwin's evolutionary theory SROCS 
paradigms, e.g., 'Genetic Factors – Phenotype Property' and 'Genetic Encoding – Protein 
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Synthesis' SROCS may be constrained by the computational 'Duality Principle' (and 
therefore call for their replacement by a corresponding higher-ordered singular 'D2 a-causal' 
computational framework); Indeed, when presented in the context of Darwin's evolutionary 
(tertiary) SROCS structure, it was shown that these specific 'Genetic Factors – Phenotype 
Property' and 'Genetic Encoding – Protein Synthesis' SROCS paradigms do not alter the 
basic constraint imposed by the (generalized) computational Duality Principle upon all 
SROCS scientific paradigms (as well as does not alter the need to replace all three-leveled 
Darwin's evolutionary theory SROCS with the singular higher-ordered D2 a-causal 
computational framework)… As such, the identification of these two genetics related 
computational SROCS paradigms (e.g., alongside Darwin's third evolutionary SROCS 
paradigm of 'Natural Selection') may indeed point at the (abovementioned) need to replace 
Darwin's tertiary SROCS computational structure by a singular conceptually higher-ordered 
'D2 a-causal' computational framework…  
But, given the fact that apart from the involvement of these two 'Genetic Factors – 
Phenotype Property' and 'Genetic Encoding – Protein Synthesis' SROCS paradigms within 
Darwin's (tertiary) evolutionary theory, these two SROCS computational paradigms also 
stand at the basis of the central scientific field of Genetics (e.g., in particular and Biology 
more generally), it is important to scrutinize these two basic genetics SROCS computational 
paradigms in terms of their fundamental definition of Genetics (and Biology)… 
Indeed, it is suggested that the entire field of Genetics (and Biology more generally) may be 
founded upon these two basic 'Genetic Factors – Phenotype Property' and 'Genetic Encoding 
– Protein Synthesis' scientific SROCS paradigms; As such, their (above sown) constraint by 
the computational Duality Principle may call for a rather basic transformation of the 
scientific fields of Genetics (and Biology) based on the Duality Principle's proof for the need 
to base these SROCS computational paradigms upon the singular higher-ordered D2 a-
causal computational framework; 
In a nutshell, it is suggested that the entire field of Genetics is anchored in- and (completely) 
based upon- these two basic 'Genetic Factors – Phenotype Property' and 'Genetic Encoding – 
Protein Synthesis' SROCS paradigms… This is because the basic tenet of modern Genetics 
research (and understanding) is that any genetic process or phenomenon is anchored in and 
entirely based upon the (direct or indirect) physical relationship/s between certain Genetic 
Factors and particular Phenotypic Properties which are further mediated (or fragmented 
into) a secondary (direct or indirect) physical relationship between specific Genetic 
Encoding processes and particular 'Genetic Encoding' and 'Protein Synthesis' factors… Even 
more generally, it is suggested that the whole domain of modern Biological research (and 
scientific body of knowledge) is based upon the basic working assumption that the 
fundamental 'building-blocks' of all biological organisms is guided by- and based upon- 
these dual processes of 'Genetic Factors – Phenotype Property' and 'Genetic Encoding – 
Protein Synthesis' SROCS paradigms; Indeed, one may say that in much the same manner 
that Physics serves as the most basic building block for all other scientific domains (e.g., 
because it tells us what are the basic 'building blocks' of nature), these two genetics SROCS 
paradigms inform all the rest of Genetics and Biology in terms of the fundamental processes 
by which all biological phenomena, processes or organism/s are produced (and operate 
through etc.)  
Thus, it is suggested that the whole domain of Genetics is based upon the basic working 
hypothesis wherein any characteristic/s- function/s- organ- tissue/s- or cellular structure/s 
etc. of any biological organism etc. is entirely dependent upon a series of (direct or indirect) 
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physical interactions between an exhaustive set of Genetic Encoding factors and the 
production of specific Protein Synthesis, which in return are (solely) responsible for the 
production of an organism's particular Phenotypic Property; Hence, the production of any 
(possible) protein found within an organism is assumed to be solely determined through its 
(direct or indirect) physical interaction/s with an exhaustive set of Genetic Encoding 
processes, which are governed (solely and strictly) by an exhaustive set of Genetic Factors 
(e.g., responsible for the production of the specific Protein Synthesis processes). Therefore, 
we also obtain a (slightly similar) dual leveled SROCS computational structure of this form: 

 PR{G(1…n), P-synth} ['P-synth' or 'not P-synth']  (7) 

 PR{P-synth(1…n), Phenotypei} ['Phenotypei ' or 'not Phenotypei'] (8) 

Indeed, it is suggested that all genetic-originated biological processes and functions arise 
(e.g., in one form or another) from this dual-leveled SROCS paradigm: Thus, whether it is 
the genetic encoding of certain RNA proteins, mRNA activation of specific protein 
synthesis, the translation of any genetic (single or multiple) factor/s into three-dimensional 
protein structure/s or their translation into any (simple or complex) organism phenotype, 
trait or characteristics – all of these genetic encoding, transcription, synthesis and 
production/interface with any organism's phenotypic property must necessarily rely on the 
basic assumed (above mentioned) dual-leveled SROCS computational structure.  
However, as shown (earlier) the composition of this dual-level Genetics SROCS 
computational structure is necessarily constrained by the (generalized) Duality Principle; 
This is due to the fact that each of the constituent SROCS paradigms is necessarily 
constrained by the Duality Principle (e.g., pointing at the existence of a conceptually higher-
ordered D2 a-causal computational framework); Even beyond that the (abovementioned) 
fallacy of the BBH indicates that regardless of the number of intervening- or mediating- or 
complex- fragmentation (or makeup) of the basic Genetics SROCS computational structure 
of the form: 

PR{ G(1…n), P-phenotype(1…n)}[ 'P-phenotype(1…n) ' or 'not P-phenotype(1…n)']/di1…din 

the Duality Principle necessarily constrains any such (single or multiple) computational 
levels (di1…din) or any (single or multiple) mediating factor/s P-phenotype(1…n), and points 
at the existence of a conceptually higher-ordered D2 a-causal computational framework;  
Indeed, in much the same manner in which the (generalized) Duality Principle has shown 
that all of Darwin's evolutionary (tertiary) SROCS computational levels must give way to 
(three) levels of simultaneously "co-occurring" ('x-y') pairs, so in the case of the (above 
mentioned) Genetics dual-level SROCS structure it is suggested that an application of the 
(generalized) Duality Principle points at the existence of the (same) conceptually higher-
ordered singular 'D2 a-causal' computational framework which computes (simultaneously) 
the "co-occurrences" of dual levels of 'Genetic Factors – Protein Synthesis' and 'Protein 
Synthesis – Phenotype Property' computational pairs.  
In other words, it is shown that an (embedded) part of the (above mentioned) tertiary 
computational structure of Darwin's evolutionary theory is the generalized (dual) 'Genetic 
Computation' SROCS structure; Therefore, since Darwin's (broader) evolutionary theory 
(tertiary) SROCS was shown to be based on a (triple strict) 'material-causal' physical 
relationships between an organism's 'Genetic Factors  Protein Synthesis' ; which is 
assumed to also cause any specific (e.g., single- or multiple- relevant) Phenotypic Property, 
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thus: 'Protein Synthesis Phenotypic Property'; which (in return) also caused the survival 
("existence") or extinction ("non-existence") of any given organism: 'Phenotypic Property  
Organism' ; hence, it is also shown that modern 'Genetic Computation' (dual) SROCS 
structure may be based on that organism's (direct or indirect) physical interaction/s 
between its 'Genetic Factors  Protein Synthesis '; and 'Protein Synthesis  Phenotypic 
Property'.  
But, we’ve already seen that the discovery of the Duality Principle forced relinquishing any 
such strict –'materialistic-reductionistic' (generalized) SROCS computational structure, in 
favor of a conceptually higher-ordered 'D2 a-causal' computational framework which 
negates the existence of any such material-causal (tertiary) physical relationship. Instead, the 
(generalized) Duality Principle (format) has proven that regardless of the number of 
computational levels or factors that may be associated with the production of any given 
organism's phenotype or of the number of (direct or indirect) physical interactions between 
the organism and its environment, the only viable computation that determines any 
relationships between a given organism and its environment or any between constituent 
(genetic, protein synthesis or other) elements within the organism and its phenotypic 
property or properties is a singular conceptually higher-ordered D2 computational framework 
which can only determine the simultaneous "co-occurrences" of any such (single, multiple or 
exhaustive) pairs of 'Environmental Factors – Organism' ; 'Genetic Factors – Phenotypic 
Property'; or 'Genetic Encoding Factors – Protein Synthesis' pairs series…  
Therefore, it necessarily follows that the whole of Genetic Science (e.g., including all single- 
multiple- or exhaustive- factors, computational level/s, phenomena, processes etc. 
describing an organism's genetic, protein, biological etc. makeup, functioning, development 
or characteristics etc.) must be anchored in- and based upon- such singular (conceptually 
higher-ordered) D2 a-causal computational framework which can only compute the "co-
occurrences" of any 'Genetic-Factors – Protein Synthesis'; and 'Protein Synthesis – 
Phenotypic Property' pairings (e.g., occurring simultaneously at any given spatial-temporal 
point/s)… 
Hence, instead of the current 'materialistic-reductionistic' (dual) SROCS structure 
underlying all Genetic Science (research and theoretical body of knowledge), the 
(generalized) Duality Principle points at the existence of a singular (conceptually higher-
ordered) 'D2 a-causal' computational framework which merely computes the "co-
occurrences" of any given pairs of 'Genetic Factors – Protein Synthesis' and 'Protein 
Synthesis – Phenotype Property'. This means that instead of any exhaustive pool of Genetic 
Factors "causing" a given organism's resulting Phenotypic Property (or properties), the 
application of the (generalized) Duality Principle points at the existence higher ordered 
(singular) D2 computation which simultaneously computes the "co-occurrences" of all of the 
various aspects of an organism's genetic, protein synthesis, development, traits etc. (e.g., and 
in the broader scope of Darwin's tertiary evolutionary theory – also of all exhaustive series 
of any simultaneous 'Environmental Factors') taking place at any given spatial-temporal 
point/s or interval.  
Indeed, it is suggested that such basic shift from the materialistic-reductionistic working 
assumption underlying current Genetic Science formulation towards a conceptually higher-
ordered D2 a-causal computation may bear a few potentially significant theoretical 
ramifications: First, such conceptually higher-ordered 'D2 a-causal' computational 
framework necessarily replaces the currently assumed material-causal relationships 
between any exhaustive set of Genetic Factors which are assumed to cause particular 
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Protein Synthesis which (in turn) cause particular Phenotypic Properties to appear in a 
given organism (which may be further extended to include Darwin's Natural Selection 
SROCS' assumed causal relationship between the above 'Phenotypic Properties' which are 
assumed to directly interact with an exhaustive set of 'Environmental Factors', wherein it is 
assumed that the direct or indirect physical relationship of these Environmental Factors 
with the organism's Phenotypic Properties causes the determination of the "existence" or 
"non-existence" of any such given organism): 
Instead, based on the (above mentioned) generalized Duality Principle's proof for the 
conceptual computational inability of any (single or multiple) SROCS structure to determine 
the "existence" or "non-existence" of any (SROCS') particular 'y' from within its direct (or 
indirect) physical interaction with any other exhaustive X series, the Duality Principle 
asserts the existence of a (singular) conceptually higher-ordered 'D2 a-causal' computational 
framework that computes (simultaneously) the "co-occurrences" of any (single or multiple 
levels) SROCS' 'x' and 'y' pairs series; Thus, the generalized Duality Principle points at the 
operation of a singular conceptually higher-ordered 'D2 a-causal' computational framework 
which computes (simultaneously) the "co-occurrences" of all of the abovementioned (dual or 
tertiary SROCS) computational pairs, thus: 

D2 A-Causal Computation: 

D2: [{E{1...n}, o}st1; {E{1...n}, o}st2 ... [{E{1...n}, o}stn].  

D2: [{G{1...n}, 'phi (o)' }st1; {G{1...n}, 'phj (o)' }sti; ...{G{1...n}, 'phn(o)' }stn]. 

D2: [{Ge{1...n}, pi-synth (o-phi)}st1; Ge{1...n}, pj-synth (o-phi)}sti… ;  
Ge{1...n}, pn-synth (o-phi)}stn]  

Hence, the first (potentially significant) theoretical implication of the generalized Duality 
Principle (e.g., in the case of the currently existing Genetic Science dual SROCS 
computational paradigm) is that there cannot exist any real 'material-causal' relationships 
between any of the dual Genetic SROCS (or tertiary Darwin's evolutionary theory SROCS) 
particular 'x' and 'y' factors; In other words, based on the generalized Duality Principle 
conceptual computational proof it is asserted that neither the Genetic Factors can "cause" 
any real 'Protein Synthesis', not can such (particular) Protein Synthesis "cause" any real 
'Phenotypic Property' in an organism; nor can any such 'Phenotypic Property' have any real 
physical interaction with an exhaustive set of 'Environmental Factors' – thereby "causing" 
the "existence" (survival) or "non-existence" (extinction) of any given (single or multiple) 
organism/s… Instead, the generalized Duality Principle asserts that there exist a singular 
conceptually higher-ordered D2 a-causal computational framework which computes 
simultaneously the "co-occurrences" of all of these 'Genetic Factorsst(i)', 'Protein Synthesis 
st(i)', 'Phenotypic Property st(i)', or 'Environmental Factors st(i)'! 
This means that as in the previous application of the computational Duality Principle in the 
case of the quantum and relativistic SROCS paradigms (Bentwich, 2011c) where it was shown 
that all of the physical properties of 'space', 'time', 'energy' and 'mass' cannot be computed 
based on any (quantum or relativistic) SROCS paradigms – but may only arise as secondary 
emerging (integrated) computational products of the singular conceptually higher-ordered 'D2 
a-causal' series of 'Universal Simultaneous Computational Frames' (USCF's) computation; So 
also in the case of the Genetic model's dual level SROCS (or tertiary Darwin's evolutionary 
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theory SROCS paradigm) we reach the inevitable conclusion that all of the above mentioned 
constituent biological elements of 'Genetic Factorsst(i)', 'Protein Synthesis st(i)', 'Phenotypic 
Property st(i)', or 'Environmental Factors st(i)' can only exist as secondary emerging 
computational properties of a singular conceptually higher-ordered 'D2 a-causal' 
computational framework (e.g., which are therefore computed simultaneously as "co-
occurring" at the D2 singular computational level). But, since it was earlier shown above (and 
also in Bentwich, 2011c) that there can only exist one such singular conceptually higher-
ordered D2 computational framework – which has already been shown to consist of the 
CUFT's USCF's series that are computed by a Universal Computational Principle, thus: 

2c x s x e
h t x m

  

then it follows that the 'D2 a-causal' computation of the abovementioned multiple pairs 
series of 'Genetic Factors st(i)' - 'Protein Synthesis st(i)'; 'Protein Synthesis st(i)' - 'Phenotypic 
Property st(i)'; 'Phenotypic Property st(i)' - 'Environmental Factors st(i) may only be carried 
out through the singular D2 a-causal computation of the series of USCF's! What's essential to 
understand is that given the Duality Principle's above mentioned conceptual computational 
proof for the principle inability of either of the Genetic (dual) SROCS paradigms (or 
Darwin's Natural Selection paradigm) to determine any 'material-causal' relationship/s 
between any of the (abovementioned) 'Genetic Factors st(i)'  'Protein Synthesis st(i)'; 
'Protein Synthesis st(i)'  'Phenotypic Property st(i)'; 'Phenotypic Property st(i)'  
'Environmental Factors st(i) ; but instead, the recognition that all of these 'x-y' pairs (series) 
are computed simultaneously as part of the same USCF's (e.g., at the conceptually higher-
ordered singular D2 computational level)… Moreover, if (indeed) there cannot exist any real 
'material-causal' physical relationship between any of these xy (hypothesized particular 
SROCS) pairs, but only a conceptually higher-ordered (singular) D2 'a-causal' "co-
occurrences" of all of these x-y pairs (series) as being computed simultaneously as part of the 
same (particular) USCF (frames), then it follows that the only computation responsible for 
such conceptually higher-ordered (singular) USCF's series (e.g., including all of its 
embedded particular 'x-y' pairs series) is the Universal Computational Principle which was 
hypothesized to be responsible for all USCF's series computation (i.e., including all of the 
"secondary computational integrated" physical properties of 'space', 'time', 'energy' and 
'mass' etc.) 
Note that despite the apparent "radical" theoretical conclusion that seems to stem from an 
application of the (generalized) Duality Principle in the case of the above (dual) Genetic 
Science SROCS computational structure (and its extended Darwin's Natural Selection 
assumed SROCS computational paradigm)- i.e., that there cannot exist any (real) "causal-
material" physical relationship between any (exhaustive hypothetical) series of 'Genetic 
Factors st(i)'  'Protein Synthesis st(i)'; 'Protein Synthesis st(i)'  'Phenotypic Property st(i)'; 
'Phenotypic Property st(i)'  'Environmental Factors st(i), but rather that there exists only one 
(singular) conceptually higher-ordered 'D2' a-causal' computational framework that 
computes simultaneously the series of USCF's (various) 'x-y' pairs, such conceptually 
higher-ordered D2/USCF's computational level is proven based precisely upon such a 
rigorous computational and empirical analysis (e.g., pertaining to any SROCS 
computational structure which inevitably proves the computational constraint imposed by 
the 'Duality Principle'). Furthermore, the adoption of such a conceptually higher-ordered 
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'D2 a-causal' computational mechanism – e.g., anchored in the USCF's series (computed by 
the singular 'Universal Computational Principle'), instead of the currently assumed 
'materialistic-reductionistic' SROCS computational structure does not negate any of the 
(already known) empirical facts or body of knowledge pertaining to any biological intra-
organism (genetic, protein synthesis, phenotypic etc.) or inter-organism (environmental or 
other evolutionary) empirical findings; Rather, the theoretical explanation (or construct) 
upon which these empirically well-validated facts are based is shifted (or even expanded) 
from the narrow constraints of any (hypothetical exhaustive) 'material-causal' (direct or 
indirect) physical relationship/s between any particular 'xy' pair/s to a 'D2 a-causal' 
relationship/s between all potential 'x and 'y pairs (series) that are embedded within the 
exhaustive Universal Simultaneous Computational Frames (USCF's) series that are being 
computed by a singular Universal Computational Principle…  
Finally, it should be noted that as shown previously (Bentwich, 2011b), the Computational 
Unified Field Theory's (CUFT) analysis of the production of the series of Universal 
Simultaneous Computational Frames (USCF's) is carried out by a Universal Computational 
Principle – which is the only computational (e.g., rather than "material" or "physical") 
element that exists "in-between" any two USCF's frames; This stemmed from the fact that it 
was shown that there can only exist one (singular) conceptually higher-ordered D2 
computational level – which is (in principle) irreducible to any exhaustive-hypothetical 
'xy' (direct or indirect) physical relationship/s; Based on this conceptual computational 
constraint imposed by the 'Duality Principle' (e.g., negating the existence of any real 'xy' 
physical relationship, but rather its replacement by a conceptually higher-ordered D2 
computation of the "co-occurrences" of simultaneously occurring 'x-y' pairs embedded 
within the same USCF's) and empirical-computational postulate of the existence of these 
disparate USCF's (e.g., which coalesces well-validated quantum and relativistic empirical 
phenomena such as Planck's minimal inter-USCF's 'h' constant as well as the hypothetical 
extremely rapid rate of USCF's computation given by c2/'h' ) it was hypothesized that there 
cannot exist any material element "in-between" two such postulated USCF's – except for the 
'Universal Computational Principle' which computes each of these series of USCF's… 
Indeed, the hypothesized Universal Computational Formula: 

2c x s x e
h t x m

  

precisely outlines the fact that all computational features of 'space', 'time', 'energy', 'mass' 
(and 'causality') arise as secondary (integrated) physical properties of the conceptually 
higher-ordered D2 Universal Computational Principle's production of these series of USCF's 
frames). Therefore, when viewed from the conceptually higher-ordered perspective of the 
'D2 a-causal' computational framework, all hypothetical (exhaustive) series of 'x-y' pairs 
may only be computed by the (singular) Universal Computational Principle as embedded 
within the series of USCF's (e.g., thereby replacing any of the currently assumed 
'materialistic-reductionistic' direct or indirect "causal" relationship/s between any 
hypothetical exhaustive 'xy' pair/s).  
Indeed, perhaps a good mode of explaining the potential transformation from the 
contemporary purely 'materialistc-reductionistic' SROCS computational structure (e.g., 
underlying key scientific SROCS paradigms described in this article) to the conceptually 
higher-ordered 'D2 a-causal' computational framework – is to analyze the (metaphorically 
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'equivalent') case of the cinematic film sequence underlying any apparently "material-
causal" relationships that may exist between any two 'x' and 'y' elements (e.g., within a given 
cinematic film); As hinted in a previous article (Bentwich, 2011c) it is suggested that 
underlying any such apparent "xy" physical relationship (within any given cinematic film 
sequence), there cannot be any "real" 'material-causal' relationship within the film sequence; 
This is because it is shown based on the cinematic film metaphor that in order for any 
'physical relationship' to exist through any (hypothetical) sequence of cinematic film frames, 
there must exist a certain pattern of "co-occurrences" of the given 'x' and 'y' elements – i.e., 
such as for instance that the 'x' factor appears to be located "spatial-temporally" closer and 
closer to the 'y' element (across a certain number of cinematic frames) which then leads to an 
alteration in the 'y' factor's (particular) condition (or spatial-temporal configuration etc.); In 
other words, for the appearance of any (hypothetical) "physical causality" to exist between 
the 'x' and 'y' factors within any film sequence there must be a (certain) series of film frames 
across which the "spatial-temporal" relationship between the 'x' and 'y' factors is 
transformed… To put it succinctly, it is suggested that it is not possible (e.g., in principle) to 
have any "causal-material" relationship between any two (hypothetical) 'x' and 'y' elements – 
that is not based on an alteration in the spatial-temporal (proximity and configuration) of 
any two such 'x' and 'y' elements across a number of cinematic film frames. But, once we 
realize that it is not possible to obtain any "material-causal" relationship between any two 
(hypothetical) 'x' and 'y' elements – which is not based on a change in the their "co-
occurring" pattern across a few cinematic film frames the door is open to evince that there 
cannot in fact exist any "real material" element that can "pass" in-between any two such 
(hypothetical) cinematic film frames!? But since we know that there does not exist any 
"material" element that exists "in-between" any two such hypothetical cinematic film frames 
(e.g., 'f-i' and 'f-i+n'), then we must conclude that the only viable means for producing any 
such apparent "material-causal" relationship/s is based on the alteration in the spatial-
temporal configuration of the 'x' and 'y' elements (across a series of cinematic frames)… In 
other words, since there is not "material" element that can pass "in-between" two such 
hypothetical cinematic film frames (e.g., 'f-i' and 'f-i+n') and since the existence of any 
hypothetical material-causal" physical relationship between any two hypothetical 'x' and 'y' 
elements is contingent upon a certain pattern of change in the 'x-y' spatial-temporal 
configuration across such (hypothetical) cinematic film sequence then it follows that the 
only means for producing any "causal" relationship between the 'x' and 'y' elements is only 
based on their "co-occurring" spatial-temporal across a certain number of cinematic 
frames… Finally, precisely based on this keen (computational) analysis wherein it is shown 
that any hypothetical "causal-material" xy relationship can only evolve based on their 
particular spatial-temporal configuration (across a series of cinematic film frames), and since 
there cannot be any "material" element that can pass "in between" any two subsequent 
cinematic film frames, then we are also led to conclude that the only means for arranging 
the particular "co-occurrence" of any apparently spatial-temporal "causal" pattern of change 
in the 'x' and 'y' configuration across a series of cinematic frames is based on a conceptually 
higher-ordered computation (or arrangement) of the 'x' and 'y' "spatial-temporal" 
sequencing across these series of frames… Ultimately, since there is no "material" element 
that can pass "in-between" any two subsequent (hypothetical) film frames and since the 
perception of any apparent "causal-material" physical relationship between the 'x' and 'y 
elements is contingent upon a particular pattern of change in the "spatial-temporal" 
configuration of the 'x' and 'y' elements across a series of cinematic film frames – then this 
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points at the existence of a conceptually higher-ordered "non-material" computational 
element that is responsible for this particular spatial-temporal pattern of change across the 
film frames…  
Indeed, it is hypothesized that the above metaphor of the cinematic film sequence may be 
entirely analogous to the Computational Unified Field Theory's (CUFT) (Bentwich, 2011c) 
account – not only in terms of the secondary (integrated) emerging physical features of 
"space", "time", "energy", "mass", but may also pertain to the basic (implicit) concept of 
"causality"; Previously, the cinematic film metaphor has been used as a 'pointer' to some of 
the hypothetical features of the CUFT including its delineation of the emerging (secondary) 
computational properties of 'space', 'time', 'energy' and 'mass' (e.g., wherein it was shown 
that the apparently physical properties of 'space' and 'energy', 'mass' and 'time' may arise as 
secondary computational combinations of a 'consistent' vs. 'inconsistent' computations of 
whole 'frame' presentations of the same object or event or of only partial segments of the 
whole frame entitled: 'object' - 'consistent' or 'inconsistent' presentations). The 
abovementioned postulated Computational Unified Field Theory's account of the four basic 
physical features (of 'space', 'time', 'energy' and 'mass') was also based on the existence of a 
hypothetical conceptually higher-ordered (D2) 'Universal Computational Principle' ("י") 
which may carry out extremely rapid ('c2/h') computational process giving rise to a series of 
'Universal Simultaneous Computational Frames' (USCF's). The essential point to be noted is 
that based on the earlier outlined Duality Principle which proved that there can only exist 
one singular conceptually higher-ordered 'D2' computational framework that can (solely) 
determine all exhaustive hypothetical (quantum, relativistic or any other) 'x-y' "co-
occurrences" across the series of (hypothesized) USCF's the CUFT was capable of replicating 
all known quantum and relativistic phenomena (as well as potentially harmonize all 
existing apparent contradictions between these two major pillars of modern Physics). But, if 
indeed the entire corpus of (all possible hypothetical) quantum and relativistic features, 
phenomena, laws and theoretical explanations can only be derived from such a Duality 
Principle based conceptually higher-ordered D2 (e.g., 'Universal Computational Principle' 'י ' 
) computation of a series of (extremely rapid) USCF's (Bentwich, 2011c), then it also 
necessarily follows that the CUFT's account of any (apparently) "material-causality" must 
also be transformed; Indeed, somewhat alike the cinematic film metaphor's demonstration 
that there cannot exist any real "material-causal" relationship between any hypothetical 'x' 
and 'y' factors – but only a conceptually higher-ordered ('D2') arrangement of the "co-
occurrences" of a specific spatial-temporal configuration of the 'x' and 'y' factors (as 
discussed above), it is suggested that the CUFT's portrayal of a series of extremely rapid 
USCF's does not allow for any "material" element/s to pass "in-between" any two 
(hypothetical) USCF's except for the conceptually higher-ordered (immaterial) 'Universal 
Computational Principle' ('י') which alone can compute the particular "co-occurrences" of a 
series of 'x-y' pairs that can give rise to the apparent existence of a "causal" relationship 
between the 'x' and 'y' elements… 
Hence, we arrive at the inevitable conclusion wherein any apparent "material-causal" 
relationship/s between any hypothetical 'x' and 'y' factors (e.g., embedded within one of the 
key SROCS scientific paradigms) – must necessarily arise as secondary emerging 
computational property associated with a particular 'spatial-temporal' "co-occurrences" of 
the particular 'x' and 'y' factors' configuration across a series of USCF's… To follow the 
cinematic film metaphor, there does not exit any "real material-causality" between any two 
hypothetical 'x' and 'y' elements, but only the "co-occurrence" of the particular 'x' and 'y' 
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factors across a series of USCF's (e.g., as computed by a conceptually higher ordered D2 
computational principle – which in the case of the CUFT is the 'Universal Computational 
Principle'). Therefore, it may be said that perhaps underlying all scientific SROCS 
paradigms there cannot exist any (real) "material-causal" relationship/s between any two 
hypothetical 'x' and 'y' elements, but only the computation of their "co-occurrences" (e.g., in 
a particular spatial-temporal sequence as explained above) across a series of USCF's (as 
computed by the conceptually higher-ordered D2 'Universal Computational Principle' 'י')… 
This means that in the two (abovementioned) cases of Darwin's (tertiary) evolutionary 
theory SROCS computational structure as well as in the case of the (dual) Genetic Science 
SROCS computational structure an application of the (generalized) Duality Principle and its 
broader development within the CUFT has pointed at the existence of a series of USCF's that 
are computed by the conceptually higher-ordered ('D2') 'Universal Computational Principle' 
 and which give rise to any SROCS apparent "material-causal" ('xy') relationships that ('י')
are underlie by a particular series of "co-occurring" x-y pairs in which the 'spatial-temporal' 
relationships (e.g., as embedded within a series of corresponding USCF's, as explained 
above).  
This means that both in the case of Darwin's (tertiary) SROCS computational structure as 
well as in the case of Genetic Science (dual) SROCS computational structure we must 
replace the currently assumed direct (or indirect) 'material-causal' relationship between any 
two particular 'x' and 'y' elements by the conceptually higher-ordered D2 computation of the 
"co-occurrences" of the corresponding (triple or dual) SROCS series of 'x-y' pairs that give 
rise to the appearance of any "material-causal" relationship; As discussed above, in both 
cases there exists a (hypothetical) conceptually higher-ordered D2 computational level 
which carries out the simultaneous computation of the "co-occurrences" of Darwin's SROCS 
paradigm's alternate 'Environmental Factors st(i) and 'Phenotypic Property st(i)' pairs series, 
as well the two other (Genetic SROCS dual pairs of) 'Genetic Factors st(i)' and 'Protein 
Synthesis st(i)', and the 'Protein Synthesis st(i)' and 'Phenotypic Property st(i)' series. Indeed, 
according to the CUFT's (broadened application of the Duality Principle) such conceptually 
higher-ordered D2 simultaneous computation of each of these evolutionary and genetic 
encoding computational pairs constitutes the (extremely rapid hypothetical) series of 
USCF's that are carried out by the singular 'Universal Computational Principle' ('י'). Thus, 
instead of the existence of any 'real' "material-causal" relationship/s between any of these 
(evolutionary or genetic) SROCS' particular 'x' and 'y' factors – all that truly exists is the 
conceptually higher-ordered (singular) Universal Computational Principle's ('י') 
simultaneous computation of a series of (extremely rapid) USCF's in which there is an 
embedded series of 'Environmental Factors st(i) and 'Phenotypic Property st(i)' ; 'Genetic 
Factors st(i)' and 'Protein Synthesis st(i)'; and the 'Protein Synthesis st(i)' and 'Phenotypic 
Property st(i)' pairs series (which give rise to the appearance of 'real' interactions within 
seemingly "material-causal" SROCS 'xy' relationships)… 
Finally, it is suggested that the application of the Duality Principle's asserted conceptually 
higher-ordered 'D2' (Universal Computational Principle's) computation of the series of USCF's 
which also embed all (exhaustive-hypothetical) 'x-y' pairs e.g., as replacing all scientific SROCS 
paradigms' apparent ('xy') "material-causal" relationships should be implemented; Hence, 
the next step in the application of the computational Duality Principle to various other 
scientific SROCS paradigms consists of a (triple) demonstration that each of these (remainder) 
scientific SROCS paradigms is constrained by the (generalized) Duality Principle, may contain 
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the (abovementioned) 'Black-Box-Hypothesis' (BBH) (e.g., which we've already seen cannot 
alter the basic computational constraint imposed by the generalized Duality Principle format), 
and therefore inevitably calls for the CUFT's assertion regarding the need to replace the 
currently assumed SROCS (particular) "material-causal" ('xy') relationship with a 
conceptually higher ordered (Universal Computational Principle's 'י') computed series of "co-
occurring" 'x-y' pairs (as embedded within a rapid series of USCF's being computed by this 
hypothetical Universal Computational Principle).  

3.2 The Duality Principle: Constraint of the 'Psycho-Physical Problem' (PPP) SROCS 
It is hypothesized that another key scientific SROCS paradigm consists of Neuroscience's 
Psycho-Physical Problem (PPP); This is because the PPP which is defined as the question 
regarding how it may be possible for any given physical stimulus (or stimuli) to be 
translated into a neurochemical signal within the Central Nervous System (in humans) – is 
currently assumed to be resolved through Neuroscience's basic 'materialistic-reductionistic' 
(generalized) 'Psycho-Physical SROCS' computational structure: Essentially, Neuroscience's 
basic (generalized) 'Psycho-Physical SROCS' assumes that the determination of the 
"existence" or "non-existence" of any hypothetical (exhaustive) Psycho-Physical Stimulus or 
stimuli (e.g., 'PPs-i' - including all physical stimulation or any of its derived or associated 
physical features, properties, representations etc.) is determined solely based on its direct or 
indirect physical interactions with an exhaustive set of 'Neural Activation/s' (e.g., 'Na(1…n)' – 
an exhaustive hypothetical series of neurons, neural connections, neural activation/s 
neurophysiological activity or pattern/s etc. which may take place at different single or 
multiple spatial-temporal points in the human Nervous System);  

SROCS: PR{ PPs-i , Na(1…n), } [' PPs-i' or 'not PPs-i ']/di1…din 

Thus, for instance, it is currently assumed that the computation of the "existence" or "non-
existence" of any such Psychophysical Psycho-Physical Stimulus, e.g., human consciousness 
or awareness to the existence of any given physical stimulus intensity (termed: termed: PPs-
pp) – is strictly caused by the direct (or indirect) physical interaction of such 'Consciousness 
Psychophysical Stimulus' (Cs-pp) with an exhaustive hypothetical series of 'Neural 
Activation/s' (e.g., including any exhaustive hypothetical activity or activation of any 
neuron/s, neural activation, neuronal pattern/s etc. in the human brain):  

SROCS: PR{N(1…n), Cs-pp} [' Cs-pp ' or 'not Cs-pp ']/di1…din 

But, such SROCS computational structure was previously shown (Bentwich, 2006a) to 
produce an inevitable SRONCS (e.g., 'Self-Referential Ontological Negative Computational 
System', as described earlier) in the case of sub-threshold psychophysical stimulation: SROCS: 
PR{ N(1…n), Cs-i} 'not Cs-i '/di1…din 
Indeed, such SRONCS was shown to produce both 'logical inconsistency' and ensuing 
'computational indeterminacy' that are contradicted by robust empirical findings indicating 
the capacity of such psychophysical computational systems to determine the "existence" or 
"non-existence" of any given psychophysical stimulation (e.g., including in the case of sub-
threshold psychophysical stimulus); therefore, the Duality Principle pointed at the existence 
of a conceptually higher-ordered 'D2 a-causal' computational framework which is capable of 
computing the existence of any series of pairs of any given Consciousness-Stimuli and an 
exhaustive hypothetical series of all possible 'Neural Activation' hypothetical), thus: 
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D2: [{N(1…n) st-i, Cs-pp st-i}; … {N(1…n) st-i+n, Cs-pp st-i+n }] 

As proven previously (and represented in the generalized SROCS computational structure 
encompassing any single or multiple computational elements, factors etc., di1…din), the 
computational constraint imposed on the above Psychophysical SROCS structure is 
conceptual in nature – i.e., it holds true regardless of the number of neurons, neuronal 
interactions or spatial temporal point/s at which any direct or indirect physical interaction 
may take place between the given Consciousness Psychophysical Stimulus and any 
exhaustive hypothetical series of Neural Activations; This is because the formalization of 
this (primary) Psychophysical-Consciousness Stimulation SROCS already encompasses all 
direct or indirect physical interactions between any given Psychophysical Stimulation and 
an exhaustive set of all possible Neural Activations (occurring at any potential spatial-
temporal point/s or interval/s etc.), and indicates that as such it inevitably leads to both 
'logical inconsistency' and subsequent 'computational indeterminacy' (e.g., in the case of 
sub-threshold Psychophysical Stimulation SRONCS system) that are contradicted by well 
validated empirical findings…  
Next, it is hereby hypothesized that the abovementioned Psychophysical Consciousness 
Stimulation SROCS may serve as a primary SROCS level within a multi-layered PPP SROCS 
computational structure, which may be generally divided into (at least) four separate 
SROCS computational levels including: 
1. Psycho-Physical Consciousness SROCS: PR{Cs-pp , Na(s-pp)} ['Cs-pp ' or 'not Cs-pp 

']/di1…din 
2. Functional Consciousness SROCS: PR{Cs(pp)- fi, Na(spp-fi)}[' Cs(pp)- fi ' or 'not 

Cs(pp)- fi ']. 
3. Phenomenological Consciousness SROCS: PR{Cs(pp- fi)-Ph , Na(spp-fi)-Ph )}[' Cs(pp- 

fi)-Ph ' or 'not Cs(pp- fi)-Ph ']/di1…din 
4. Self-Consciousness SROCS: PR{ Cs(pp- fi-Ph)-S, Na(pp- fi-Ph)-S}[' Cs(pp- fi-Ph)-S ' or 

'not Cs(pp- fi-Ph)-S '].  
Below is a delineation of the various hierarchical-dualistic computational levels currently 
assumed by Neuroscience's materialistic-reductionistic working hypothesis; 
1. Psycho-Physical Consciousness SROCS: PR{Cs(pp)- fi, Na(spp-fi)}[' Cs(pp)- fi ' or 'not 

Cs(pp)- fi ']: wherein it is currently assumed that the (primary) Psychophysical 
Stimulation Consciousness SROCS' resulting output (e.g., ['Cs-pp ' or 'not Cs-pp 
']/di1…din) undergoes a secondary SROCS computational structure in which the 
"existence" or "non-existence" of the (primary SROCS) 'Psychophysical Stimulation 
Consciousness' is analyzed in terms of the "existence" or "non-existence" of any 
particular 'Psychophysical Stimulation Functional Consciousness' (i.e., such as any 
given physical property, attribute, phenomenon etc., represented by: 'Cs(pp)- fi '); It is 
hypothesized that this secondary 'Functional Consciousness' SROCS computational 
structure is comprised of: any direct or indirect physical interaction between a (given) 
Psychophysical Stimulation Functional Consciousness input (e.g., 'Cs(pp)- fi ' or 'not 
Cs(pp)- fi' which is equivalent to the above primary SROCS's: 'Cs-pp ' or 'not Cs-pp ' 
output), and another exhaustive set of Neural Activation/s responsible for computing 
"existence" or "non-existence" of that particular given Psychophysical Stimulation 
Consciousness Function; However, as shown earlier, this secondary SROCS paradigm 
also shares the same SROCS computational structure and as such is constrained by the 
same (generalized) Duality Principle;  
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2. Functional Consciousness SROCS: PR{Cs(pp)- fi, Na(spp-fi)}[' Cs(pp)- fi ' or 'not 
Cs(pp)- fi ']/di1…din. 
This is because this (secondary) Functional Consciousness SROCS computational 
structure also inevitably leads to both 'logical inconsistency' and ensuing 
'computational indeterminacy' in the case of a SRONCS:  
PR{Cs(pp)- fi, Na(spp-fi)} 'not Cs(pp)- fi '/di1…din . Once again, the generalized Duality 
Principle asserts that this last 'computational indeterminacy' is contradicted by 
validated empirical findings indicating the capacity of the human Central Nervous 
System (CNS) to determine any given particular functional properties of any given 
Psychophysical Stimulation. Therefore, the generalized Duality Principle points at the 
necessary existence of a conceptually higher-ordered 'D2' computational framework 
which computes simultaneously any series of "co-occurring" pairs of Functional 
Consciousness (attributes of a given psychophysical stimulus) alongside its Neural 
Activation correlate (e.g., at any given spatial-temporal point).  

D2: [{Cs(pp)fi, Na(spp)fi}st-i ; … {Cs(pp)f(i+n), Na(spp)f(i+n)} st(i+n)]/di1…din 

Likewise, it is suggested that a further (subsequent third) potential SROCS 
computational paradigm level is that of 'Phenomenological Consciousness SROCS':  

3. Phenomenological Consciousness SROCS: PR{Cs(pp- fi)-Ph , Na(spp-fi)-Ph )}[' Cs(pp- fi)-
Ph ' or 'not Cs(pp- fi)-Ph ']/di1…din wherein the previous (secondary Functional 
Consciousness) SROCS output of ' Cs(pp)- fi ' or 'not Cs(pp)- fi ' serves as the basis for the 
input to the third level Phenomenological Consciousness SROCS in the form of the 
phenomenological experience of any such particular Consciousness Function (i.e., Cs(pp- 
fi)-Ph ) which directly interacts with an exhaustive set of Neural Activations which are 
assumed to be responsible for carrying out this processing; Hence, this third 
Phenomenological Consciousness SROCS assumes that the determination of the 
"existence" or "non-existence" of any particular 'phenomenological experience of any 
particular psychophysical stimulation function' (Cs(pp- fi)-Ph) is solely based on direct or 
indirect physical interactions between such given 'phenomenological experience of any 
particular psychophysical stimulation function' (Cs(pp- fi)-Ph) and an exhaustive set of 
Neural Activation/s (e.g., Na(spp-fi)-Ph) that are assumed to be responsible for carrying 
out such processing… 
However, as in the two preceding SROCS computational structures it is clear that such 
(third-level Phenomenological Consciousness) SROCS must also be constrained by the 
generalized Duality Principle and therefore also inevitably leads to both 'logical 
inconsistency' and 'computational indeterminacy' in the case of the SRONCS: 

PR{Cs(pp- fi)-Ph , Na(spp-fi)-Ph )} 'not Cs(pp- fi)-Ph '/di1…din 

wherein the specific phenomenological experience is asserted to both "exist" and "not 
exist" at the same (single or multiple) computational level/s (di1…din); But, since there 
exists ample empirical evidence indicating the capacity of human beings to determine 
(for each stimulus or stimuli) whether or not a certain phenomenological feature of 
function "exists" or "doesn't exist", then we must accept the (generalized) Duality 
Principle's assertion regarding the existence of a conceptually higher-ordered 'D2' 
computational level; Such conceptually higher-ordered 'D2' computational framework 
can compute the "co-occurrences" of any hypothetical series of such particular 
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'phenomenological experience of any particular psychophysical stimulation function' 
(Cs(pp- fi)-Ph) and a corresponding exhaustive set of Neural Activations (Na(spp-fi)-Ph):  

D2: [{Cs(pp- fi)-Phi, Na(spp-fi)-Phi} st-i; …{Cs(pp- fi)-Ph(i+n), Na(spp-fi)-Ph} st-(i+n)] 

4. Self-Consciousness SROCS: PR{Cs(pp- fi)Ph-S, Na(pp- fi-Ph)-S}[' Cs(pp- fi)Ph-S ' or 'not 
Cs(pp- fi)Ph-S ']/di1…din.  
It is finally hypothesized that there exists one further (fourth and final) SROCS 
computational level of 'Self-Consciousness' which combines between all (third-level) 
Phenomenological Consciousness SROCS outputs of the "existence" or "non-existence" 
of any given phenomenological experience (e.g., of a particular psychophysical stimulus 
function) as the basis for its integrated input stimulus of a 'Phenomenological Self 
Stimuli' – which is assumed to directly (or indirectly) physically interact with an 
exhaustive hypothetical set of Neural Activation/s (e.g., comprised of all potential 
neuron/s, neural connection, neural activation/s etc. responsible to determine whether 
there "exists" or "doesn't exist" any such 'Phenomenal Self Stimuli' at any given 
computational level, 'di1…din').  
However, as in all previous computational level SROCS since this (final) 'Self-
Consciousness SROCS' is necessarily constrained by the (generalized) Duality Principle, 
then it also must be replaced by the conceptually higher-ordered 'D2' computational 
framework which computes the "co-occurrences" of any series of pairs of 'Phenomenal 
Self Stimuli' (e.g., comprised of the sum total of all phenomenal functional 
psychophysical stimuli – at any given spatial-temporal point/s) and any 
simultaneously occurring (exhaustive hypothetical) Neural Activation/s, thus: 

D2: [{Cs(pp- fi)Ph-Si, Na(pp- fi)Ph-S i} st-i ; …{Cs(pp- fi)Ph-S(i+n), Na(pp- fi)Ph-S( i+n)} st-(i+n)]  

Therefore, it seems that the Psychophysical Problem of human Consciousness (PPP) is 
currently formalized as a (four-layered) computational SROCS structure which can be 
represented in the general format: 

SROCS: PR{Cs-i , Na(1…n), } [' Cs-i' or 'not Cs-i ']/di1…din 

wherein it is assumed that an hypothetical series of direct or indirect physical interactions 
between any possible ("external") psychophysical or ("internal") 'functional', 
'phenomenological' or 'self' stimuli and an exhaustive set of Neural Activations (e.g., as 
described above comprised of any single or multiple spatial-temporal neural activations, 
patterns, interactions, neurons or neural connections or neural networks etc.) is solely 
responsible for determining whether any such Psychophysical, Functional, 
Phenomenological or Self stimulus "exists" or "doesn't exist". But, it was shown (above 
and previously) that the generalized 'Duality Principle' constrains any such SROCS 
computational structure – by proving that any SROCS structure inevitably leads to both 
'logical inconsistency' and 'computational indeterminacy' which are contradicted by 
known empirical findings indicating the capacity of the human Nervous System to 
determine whether or not any given 'psychophysical', 'functional', 'phenomenological' or 
'self' stimuli "exists" or "doesn't exist"; Therefore, the generalized Duality Principle proves 
that there must exist a conceptually higher-ordered 'D2' computational framework which 
can compute the "co-occurrences" of any hypothetical series of corresponding pairs of:  
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D2: 
1. Psychophysical: [{N(1…n) st-i, Cs-pp st-i}; … {N(1…n) st-i+n, Cs-pp st-i+n }] 
2. Functional: [{Cs(pp)fi, Na(spp)fi}st-i ; … {Cs(pp)f(i+n), Na(spp)f(i+n)} st(i+n)] 
3. Phen.:[{Cs(pp- fi)-Phi, Na(spp-fi)-Phi} st-i; …{Cs(pp- fi)-Ph(i+n), Na(spp-fi)-Ph} st-(i+n)] 
4. Self: [{Cs(pp- fi)Ph-Si, Na(pp- fi)Ph-S i} st-i ; …{Cs(pp- fi)Ph-S(i+n), Na(pp- fi)Ph-S( i+n)} 

st-(i+n)] 
This means that instead of the currently assumed 'materialistic-reductionistic' SROCS 
paradigms – e.g., at the psychophysical- functional- phenomenological- and self- stimulus 
levels, the Duality Principle proves that there can only exist one (singular) conceptually 
higher-ordered 'D2' computational framework which computes the "co-occurrences" of each 
of the above (particular four level) PR{Cs-i , Na(1…n)} pairs… Moreover, instead of the 
currently assumed 'material-causal' physical relationships between the specific {Cs-i , 
Na(1…n)} pairs, and moreover between each of these four SROCS computational levels:  
5. Psychophysical: [{N(1…n) st-i, Cs-pp st-i}; … {N(1…n) st-i+n, Cs-pp st-i+n }] 
6. Functional: [{Cs(pp)fi, Na(spp)fi}st-i ; … {Cs(pp)f(i+n), Na(spp)f(i+n)} st(i+n)] 
7. Phen.:[{Cs(pp- fi)-Phi, Na(spp-fi)-Phi} st-i; …{Cs(pp- fi)-Ph(i+n), Na(spp-fi)-Ph} st-(i+n)] 
8. Self: [{Cs(pp- fi)Ph-Si, Na(pp- fi)Ph-S i} st-i ; …{Cs(pp- fi)Ph-S(i+n), Na(pp- fi)Ph-S( i+n)} 

st-(i+n)] 
The Duality Principle conceptually proves that there cannot (e.g., in principle) exist any such 
direct or indirect material-causal relationship/s between any of these (assumed) four 
leveled scientific SROCS paradigms' particular N(1…n) st-i  Cs- st-i factors, or between any of 
these SROCS paradigms (themselves – as stipulated above);  
Instead, the Duality Principle proves that at none of these (currently assumed) SROCS 
paradigms, or indeed at any other (exhaustive hypothetical) SROCS computational level/s – 
can there exist any real "material-causal" relationship between any Conscious stimulus (or 
stimuli – e.g., at any of the four above mentioned generalized computational levels or at any 
other exhaustive-hypothetical computational level/s) and any exhaustive hypothetical 
Neural Activation/s locus or loci etc. (e.g., at any hypothetical computational level 
'di1…din'); Instead, the Duality Principle asserts that there can only exist the singular 
(conceptually higher-ordered) 'D2' computational framework which can compute 
simultaneously the "co-occurrences" of any of the four abovementioned psychophysical- 
functional- phenomenological- or self- pairs… 
This means that instead of the currently assumed Neuroscientific 'materialistic-
reductionistic' working hypothesis whereby all Conscious stimulus processing (e.g., 
whether involving an "external-psychophysical" or "internal- functional, phenomenological 
or self" stimulus types) – being reduced to a particular neurophysiological material (causal) 
interaction between the specific Conscious stimulus and the corresponding brain locus (or 
loci) regions responsible for processing that particular type of information; the Duality 
Principle conceptually proves that it is not possible (e.g., again in principle) to reduce any 
such Psycho-Physical Stimulus to any direct or indirect physical interaction/s between any 
such Psycho-Physical Stimulus and any exhaustive hypothetical Neural Activation/s. 
Instead, the Duality Principle asserts that the only viable means for determining which pairs 
of the psychophysical, functional, phenomenological or 'self' 'Consciousness' and 
corresponding 'Neural Activation/s "co-occur" – is given by the abovementioned singular 
higher-ordered 'D2' computational framework. But, since it was shown (earlier) that there 
can only exist one singular such conceptually higher-ordered (a-causal) D2 computational 
framework – which was also shown previously (Bentwich, 2011b) to be equivalent to the 
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(hypothetical) Computational Unified Field Theory's (CUFT) rapid series of Universal 
Simultaneous Computational Frames (USCF's), then we must conclude that any (apparently) 
"external" (psychophysical) or "internal" (function- phenomenal- or self-) Psycho-Physical 
Stimulus (or stimuli) is necessarily computed simultaneously together with a corresponding 
Neural Activation/s locus as a series of pairs which are embedded- and computed- within the 
rapid series of USCF's... In other words, the current materialistic-reductionistic working 
hypothesis (underlying the key pillars of Neuroscience, Psychiatry Psychology and more 
fundamentally the Cartesian conception of all scientific inquiry) wherein the human brain is 
merely activated by- and can perceive- or interpret- "real-objective" psycho-physical 
stimulation and translate it (or reduce it) to specific Neural Activation/s patterns within 
specific loci in the brain – has to be abandoned in favor of the Duality Principle's proof for the 
non-existence of any such material-causal relationship between any (exhaustive hypothetical) 
computational level/s' (di1…din) SROCS Psycho-Physical Stimulus  Neural Activation/s; 
Instead, the existence of a singular conceptually higher-ordered D2 'Universal Computational 
Principle' must be recognized which can compute the rapid series of USCF's within which are 
embedded all hypothetical (exhaustive) 'a-causal' pairs (series) of all possible ("external" or 
"internal" 'psychophysical', 'functional', phenomenal', or 'self') Psycho-Physical Stimulus and 
corresponding Neural Activation/s!  
Thus, instead of the currently assumed basic Cartesian 'split' that seems to exist between the 
"objective-material" 'psycho-physical' stimulus – which is assumed to materially "cause" an 
activation of a particular set of Neural Activations, e.g., which are assumed (in turn) to 
"cause" a series of 'Black Box Hypothesis' (BBH) material interactions within the CNS that 
give rise to all "subjective" phenomenological perceptions of the ("objective") physical 
Reality - the Duality Principle proves that all that truly exists is s series of ("external" 
psychophysical or "internal" functional, phenomenological or self) Conscious Stimulus – 
that are computed to "co-occur" simultaneously together with any exhaustive hypothetical 
Neural Activations within the CNS… Moreover, both the Psycho-Physical Stimulus and "co-
occurring" Neural Activations pairs are computed simultaneously as embedded within a 
Universal Computational Principle's computed Universal Simultaneous Computational 
Frames (USCF's) rapid series… 
But, since it was already shown (above and previously – Bentwich, 2011c) that it is the same 
USCF's series that give rise to all of the basic physical features of 'space', 'time', 'energy' or 
'mass' (or 'causality'), then the recognition of the Duality Principle's asserted conceptually 
higher-ordered D2 Universal Computational Principle's computation of the series of USCF's 
in fact transforms Cartesian Science's fundamental conception of an "objective-physical" 
world that exists "externally" to our CNS' "internal-phenomenological" perception (and 
interpretation) of it! Instead, the discovery of the Duality Principle and the CUFT paves the 
way for a new (broader) understanding of both the "physical" universe alongside our 
"phenomenological" (CNS) conception of it – as mere integral pairs within the singular 
conceptually higher-ordered Universal Computational Principle computation of the rapid 
series of USCF's that embed all exhaustive hypothetical pairs of Psycho-Physical Stimulus 
and corresponding Neural Activations (within the CNS)…  

4. Summary & potential theoretical implications 

A previous publication (Bentwich, 2011c) hypothesized the existence of a novel 
'Computational Unified Field Theory' (CUFT) which was shown to be capable of replicating 
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the primary empirical findings and laws of both Quantum Mechanics and Relativity Theory 
based on a conceptually higher-ordered 'D2' rapid (e.g., c2/h) series of 'Universal 
Simultaneous Computational Frames' (USCF's) which are computed by a singular 'Universal 
Computational Principle' (termed: 'י'). Essentially, the CUFT is based on three fundamental 
theoretical postulates which consist of the computational 'Duality Principle', the existence of 
the rapid series of USCF's and the existence of three 'Computational Dimensions' associated 
with the dynamics of this rapid USCF's computation (e.g., by the singular Universal 
Computational Principle, 'י'). Moreover, the CUFT was able to resolve the key theoretical 
inconsistencies (and contradictions) that seem to exist between quantum and relativistic 
models of physical reality.  
The primary aim of the current chapter is to validate the Computational Unified Field 
Theory based on a dual approach which consists of contrasting the CUFT's identification of 
three particular empirical instances (or conditions) for which the critical predictions of the 
CUFT's may differ (significantly) from those offered by relativistic or quantum theories; and 
a broader application of one of the CUFT's three theoretical postulates, namely: the 'Duality 
Principle' towards key scientific 'Self-Referential Ontological Computational Systems' 
('SROCS') (e.g., akin to the previously identified Quantum and Relativistic SROCS 
computational paradigms) in order to point at the need to reformulate these key scientific 
paradigms based on the Duality Principle's conceptually higher-ordered 'D2 a-causal 
computational framework' – which is no other than the CUFT's (singular) rapid series of 
'Universal Simultaneous Computational Frames' (USCF's) (Bentwich, 2011c).  
The CUFT's three critical predictions include: the 'CUFT's Universal Computational 
Formula's Relativistic & Quantum Derivatives', 'Differential USCF's Presentations of 
"Massive" vs. "Light" Objects', and the 'Reversibility of USCF's Spatial-Temporal Sequence'. 
Succinctly stated, the CUFT significantly differs from both relativistic and quantum theories 
in its complete integration of all four basic physical features (e.g., of 'space', 'time', 'energy' 
and 'mass') within a singular Universal Computational Formula. In contrast, Relativity 
Theory only unifies between 'space and time' (e.g., as a four-dimensional integrated 
continuum) and 'energy' and 'mass' ('E = mc2') and describes the curvature of 'space-time' by 
massive objects etc., whereas Quantum Mechanics only constrains 'energy and space' or 
'time and mass' as complimentary pairs whose simultaneous measurement accuracy cannot 
exceed Planck's constant ('h'). Therefore, by utilizing two specific (relativistic and quantum) 
derivatives of this Universal Computational Formula it is possible to critically contrast 
between the CUFT and existing relativistic and quantum predictions (e.g., regarding the 
relativistic 'energy-mass equivalence' or regarding the complete integration of the two 
quantum complimentary pairs – as embedded within the broader Universal Computational 
Formula).  
The second empirical instance for which it seems that the critical predictions of the CUFT 
may differ (significantly) from those of quantum and relativistic theories is regarding the 
differential USCF's presentations of "massive" vs. "light" objects: Based on the CUFT's 
computational definition of "mass" as the number of 'object-consistent' presentations (across 
a given number of USCF's) (Bentwich, 2011c) it follows that when we measure the number 
of such 'object-consistent' presentations of a more "massive" compound (or atom/s) relative 
to a "lighter" compound (or atom/s, e.g., from the 'local framework' perspective - we should 
obtain that the "lighter" compound should appear on less USCF's, relative to the more 
"massive" compound)… In contrast, according to both quantum and relativistic theories the 
differences in masses (between relatively 'lighter' or 'more massive' compounds or atoms) is 
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due to differences in the weight of their nucleuses but should not entail any differences in 
their number of consistent presentations across a series of USCF's. 
The third critical prediction of the CUFT involves its capacity to reverse a given 'spatial-
temporal' sequence of events (e.g., thereby de facto "reversing the flow of time" according to 
the CUFT); According to both relativistic and quantum theories the "flow of time" is 
assumed to be "uni-directional" and "un-altered" – due to the light speed limit set by 
Relativity theory on our capacity to reach any past relativistic event (object or phenomenon), 
or due to the probabilistic interpretation of quantum mechanics which assumes a strict 
'SROCS' computational structure (Bentwich, 2011c) that is dependent on the "collapse" of the 
target's 'probability wave function' as a contingency for our capacity to determine (or even 
measure) any subatomic phenomenon, thereby negating the possibility of "un-collapsing" 
the target's probability wave function (e.g., which would be necessary if we wished to 
reverse the sequence of subatomic events such that the target's "collapsed" probability wave 
function would become "un-collapsed" as prior to its direct physical interaction with the 
'probe' element). In contrast, the CUFT predicts that it may be possible to reverse a given 
object's spatial-temporal sequence by applying a certain electromagnetic field to the relevant 
series of that object's particular series of USCF's 'spatial-electromagnetic pixel/s value/s' – 
in such a manner which may allow to reverse its recorded series of USCF's 'spatial-
electromagnetic pixel/s value/s'. It is suggested that in this manner it may be possible to 
"reverse the flow of time" of a given object/s, event/s or phenomenon (with other 
potentially associated phenomena that may allow for a "materialization" or "de-
materialization" of objects or their modulation and their potential transference to other 
regions in space…) 
The second segment of this chapter focused on attempting to apply one of the three 
theoretical postulates of the CUFT, namely: the computational 'Duality Principle' to key 
scientific 'Self-Referential Ontological Computational Systems' (SROCS) computational 
paradigms including: Darwin's Natural Selection Principle and associated Genetic Encoding 
hypothesis and Neuroscience's Psycho-Physical-Problem; The aim of applying the 
computational Duality Principle to such key ('materialistic-reductionistic') SROCS scientific 
paradigms was to demonstrate the broader potential applicability and construct validity of 
the Computational Unified Field Theory as a significant candidate for a 'Theory of 
Everything' (TOE) which therefore may possess a broader validity bearing on other 
(primary) scientific disciplines. Succinctly stated, this application of the computational 
Duality Principle to the abovementioned key scientific (SROCS) paradigms successfully 
demonstrated that each of these scientific paradigms does in fact constitute a SROCS 
computational structure and is therefore constrained by the Duality Principle; Specifically, 
the conceptual computational constraint imposed on each of these scientific SROCS 
paradigms by the Duality Principle pointed at the need to replace their current 'material-
causal' working hypothesis by a conceptually higher-ordered 'D2 a-causal' computational 
framework which simultaneously computes the "co-occurrences" of an exhaustive series of 
(particular) spatial-temporal 'x-y' pairs, which are (in turn) embedded in the Computational 
Unified Field Theory's rapid series of USCF's (Bentwich, 2011c).  
In terms of some of the potential theoretical implications of these (three) critical predictions 
differentiating the CUFT from the currently existing quantum and relativistic models of 
physical reality it is (first) suggested that a potential empirical validation of the CUFT (e.g., 
in contrast to the predictions of the existing quantum or relativistic theories) may indeed 
suggest that the CUFT may broaden the theoretical scope of our understanding of quantum 
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and relativistic phenomena – as embedded within the more comprehensive (higher-ordered) 
rapid series of USCF's which are computed by the stipulated 'Universal Computational 
Principle' ('י'), and which are delineated by the 'Universal Computational Formula'. Indeed, 
when taken together – the previous outline (Bentwich, 2011c) of the CUFT as being capable 
of both replicating all major quantum and relativistic phenomena (and laws) as well as 
bridging the apparent gap (and theoretical inconsistencies) between quantum and 
relativistic models of physical reality, together with the current chapter's identification of 
three critical predictions that may potentially validate the CUFT visa vis. the currently 
acceptable quantum and relativistic theories may point at the feasibility of the CUFT as a 
broader theoretical framework which may unify and embed the limiting cases of quantum 
and relativistic modeling within the higher-ordered ('D2') conceptualization of the rapid 
series of (a-causal) USCF's, which give rise to all known physical properties of 'space', 'time', 
'energy', 'mass' (and 'causality') as secondary computational properties of the singular 
USCF's sequential process… Second, to the extent that the CUFT's critical predictions are 
validated empirically (and based on an acceptance of the CUFT's hypothetical 
computational structure, replication of quantum and relativistic findings and tentative 
resolution of any quantum-relativistic inconsistencies), a logical next step may also involve a 
closer analysis of the very "essence" of the 'Universal Computational Principle' ('י') and its 
production of the rapid series of USCF's.  
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