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Chapter 1 

Introductory Atomic Physics 

I.1.1 Introduction 

 An understanding of modern solid state theory is possible only after the 
fundamentals of quantum mechanical principles and the application of these 
principles to atomic systems are clearly understood. With this in mind, we will 
proceed to develop the concepts of quantum mechanics and their application to 
physical systems in Part I of the book. In Chapter I, we will trace the inability of 
concepts of classical physics to explain some of the experimental observed 
phenomena, In particular, classical physics proved to be unsuccessful in the 
following areas: 

(1) Inability to provide a satisfactory theory of the atom 
(2) Inability to explain the characteristic spectral lines of the various 

elements 
(3) Failure to provide a theory for the observe characteristics of thermal  

radiation 
(4) inadequacy to explain the photoelectric phenomenon 

Planck (thermal radiation), Einstein (Photoelectric effect) and Bohr (atomic 
model) made some bold assumptions to remove the failures of classical physics. 
Each made hypothetical assumptions to suit his particular model. There was no 
justification for these assumptions other than the fact that the model explained 
the experimental results. 

 In the following paragraphs we will discuss the above failures of classical 
physics and the models of Planck, Einstein and Bohr. 

 

I.1.2 Early Atomic Theories 

 As in other fields, the early Greeks contributed to the modern atomic 
theory. Democritus (460-370 BC) postulated that “the universe consists of empty 
space and an almost infinite number of indivisible and invisible particles” which 
differ in form, position and arrangement. These elementary particles were called 
atoms. The developments in the field of chemistry in the 19th century led to the 
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distinction between atoms and molecules. A collection of atoms of one type 
which cannot be decomposed into simpler units by any chemical transformation 
is called an element. The elements can be combined in many ways to form 
compounds. The smallest particle preserving the characteristics of the compound 
is called the molecule and the smallest particle similarly preserving the 
characteristics of the element is called the atom. The size of the atom or the 
molecule is so small that only indirect evidence for their existence can obtained. 

 The interest in atomic structure was renewed with the discovery of 
electrons in low pressure gas discharge experiments towards the end of the 19th 
century. Since electrons came from atoms it was surmised that any model for the 
structure of atoms should have electrons in it. Since electrons are negative in 
charge and atoms are neutral, it was concluded that the atoms also continued 
positive charge to neutral, it was concluded that the atoms also contained 
positive charge to neutralize the electronic charge. Then two questions arose-how 
many electrons are there in an atom, and how are these electrons and positive 
charges arranged within an atom? Rutherford, based on his alpha-particle 
experiment, proposed a new model for an atom in which he said that the positive 
charge and most of the atomic mass are concentrated in a very small central 
region which came to be called later, the nucleus, about which the electrons are 
grouped in some sort of configuration, Rutherford’s model suffered from many 
disadvantages because it did not say anything about the location or movement of 
the electrons or the nucleus. It gave no explanation on how these electrons could 
remain in equilibrium about the nucleus. If, as in planetary motion, electrons 
were assumed to be moving in an orbit, then classical theory would lead to loss of 
energy through radiation which would cause the electron to spiral towards the 
nucleus and finally fall into the nucleus. Another defect of the Rutherford model 
was that it did not explain the observed spectroscopic effect. 

 

I.1.3 Early Spectroscopy 

In 1666 Isaac Newton discovered that white light could be split up into 
component colors by means of a prism. By the beginning of the 19th century, 
wave theory of light was generally accepted. According to this theory, light is a 
wave phenomenon and the colors of light are due to waves of different 
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wavelengths or frequencies. When light given off by an ionized vapor of an 
element was examined with a prism or a grating which had better resolution than 
a prism, the spectrum that was obtained consisted not of just a continuous 
spectrum, but a series of lines in the spectrum. Such spectra were different from 
element to element but it was always the same for a particular element. In 1885, 
Balmer discovered that the wavelength of the nine then known lines in the 
spectrum of hydrogen can be expressed very closely by the formula 

                   𝜆 = 𝑏 𝑛2

𝑛2−4
     where 𝑛 = integer greater than 2                  (I.1.1) 

If 𝜆, the wavelength is expressed in Angstrom units (10−10 𝑚𝑚𝑚𝑚𝑚), then 𝑏 turned 
out to be 3645.6. 𝑛 is a variable integer which takes on successive integral values 
greater than 2; namely, 3,4,5, etc. In announcing this discovery Balmer raised the 
question as to whether or not his formula might be a special case of a more 
general formula applicable to other series of lines in other elements. Rydberg 
carried experimental work further and found that a universal formula for line 
wavelengths of all spectra exists in the form 

                                                           
1
𝜆

= 1
𝜆1
− 𝑅

𝑛2
                                                       (I.1.2) 

where 𝜆1 is equal to the short wavelength limit of the series and 𝑛 is an integer 
with a particular lower limit for each series. 𝑅 is equal to a universal constant 
called the Rydberg constant and is numerically equal to 1.0974 × 10−7 𝑚−1 . 

 With such obvious order in the spectral of hydrogen and other elements it 
appeared that any model of atomic structure should be capable of explaining the 
spectral series and give quantitative agreement to the wavelengths of the 
observed spectral series. But, as pointed out earlier, Rutherford’s model could not 
explain the spectral series that was observe by Balmer or Rydberg. It was not until 
Bohr used some bold assumptions in proposing a new atom model that the 
spectral series was explained. 

 

I.1.4 Thermal Radiation 

 When a body is heated it emits energy in the form of radiation and the 
quantity and quality of the radiation depends on the temperature of the body. 
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When an incandescent lamp filament is heated the amount of energy radiated by 
the filament in unit time increases rapidly with increase in the temperature of the 
filament. The spectral characteristic of the emitted energy also changes as the 
temperature increases. It is also known that when thermal or light energy falls on 
a body, the body absorbs some of the energy and scatters the rest of the energy. 
At thermal equilibrium the amount of energy emitted by a body is the same as 
the amount of energy absorbed by the body. An ideal black surface is defined as 
that one which has the property that it absorbs completely all the radiation that is 
incident on that surface, none of the radiation being reflected. Since in thermal 
equilibrium the amount of energy emitted is the same as the amount of energy 
absorbed, black surface is also an ideal radiator. 𝛼 , the absorption coefficient, is 
equal to 1 − 𝑟 where 𝑟 is the reflection coefficient. 

 It was shown by Hertz that visible and electromagnetic radiation were the 
same phenomena. The electromagnetic spectrum starts from a very low 
frequency radio wave through ultrahigh frequency radio wave. If the frequency is 
raised still farther we go to heat waves after which comes the visible spectrum 
and then the 𝑥-rays. The visible spectrum which is sandwiched between the 
infrared heat waves and the ultraviolet waves is just a small part of the entire 
spectrum. Therefore, thermal radiation, radio waves, light waves, are all one and 
the same. The energy that is emitted by a black body at a particular temperature 
is not uniformly distributed over the entire spectrum. There is a particular 
wavelength for a given temperature at which maximum radiation of energy takes 
place. This was stated as a law by Wien and Wien’s displacement law states that 
as the temperature of a black body is raised, the wavelength at which maximum 
emission occurs, move in the direction of shorter wavelength such that the 
product 𝜆𝑚𝑚𝑚𝑇 is a constant. It was found experimentally by Lummer and 
Pringsheim that 𝜆𝑚𝑚𝑚𝑇 = 0.2896 𝑐𝑐 degrees.  

 The total radiation of energy (irrespective of the spectral distribution) was 
found to be varying as the fourth power of the absolute temperature. This is 
called Stefan’s Law which was empirically derived according to which 

                                                                 𝐼𝑇 = 𝜎𝑇4                                                      (I.1.3) 

Where 𝐼𝑇 = total energy emitted (over the entire wavelength spectrum) per unit 
time by unit area of a black body at temperature 𝑇. 𝜎 is called Stefan’s constant 
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and is equal to 5.67 Joules/ 𝑚𝑚𝑚𝑚𝑚2𝑑𝑑𝑑𝑑𝑑𝑑4𝑠𝑠𝑠. If the body was not an ideal 
black body but was characterized by an emissive power 𝜖 ≠ 1, 𝑡ℎ𝑒𝑒 𝐼𝑇  was given 
by 

                                                                 𝐼𝑇 = 𝜖𝜖𝑇4                                                     (I.1.4) 

 Two notable theories were advanced to explain the spectral variation of 
thermal radiation by a hot body. The first is called Wien’s Displacement Law and 
the second is called Rayleigh-Jean Theory. Either of the two theories was not 
satisfactory in that, the first one did not give the functional form of the 
dependence of spectral distribution on 𝜆𝜆 and the latter theory agreed with 
experimental results only a long wavelengths, i.e., much longer than 𝜆𝑚𝑚𝑚. 

 The spectral distribution of energy radiated by a black body was correctly 
determined by Planck. He assumed the existence of one dimensional harmonic 
oscillators which interacted with the radiation field. He hypothesize that  

(i) Each oscillator absorbs energy from the radiation field continuously 
according to the laws of electrodynamics. 

(ii) An oscillator can radiate energy only when its total energy is an exact 
integral multiple of a certain unit of energy for that oscillator. When 
it radiates it radiates all of its energy. 

(iii) The probability of non-emission to emission of energy is proportional 
to the intensity of the radiation that excites the oscillator. 

Planck assumed that the oscillator would radiate energy when its energy is equal 
to 𝑛ℎ𝜐 

where  𝜐 = frequency of the oscillator 

              𝑛 = Integer 

              ℎ =a constant called Planck’s constant 

In other words, Planck quantize the energy of the oscillator to be an integral 
multiple of a unit of energy equal to ℎ𝜐. Using these hypotheses, he arrived at the 
following expression for the actual energy distribution: 

                                  𝐼(𝜆,𝑇)𝑑𝑑 = 2𝜋𝑐2ℎ

𝜆5�𝑒
𝑐ℎ
𝜆𝜆𝜆−1�

𝑑𝑑                                     (I.1.5) 
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The numerical value of Planck’s constant ℎ is equal to 6.62562 × 10−34𝐽𝐽𝐽𝐽𝐽 −
𝑠𝑠𝑠. 

where 𝐼(𝜆,𝑇)𝑑𝑑 is the energy radiated by the unit area of the black body in unit 
time at temperature T, between wavelengths 𝝀 and 𝝀 + d𝝀. 

 

I.1.5  Einstein’s Photoelectric Equation 

 Planck’s hypothesis quantized only the energy of the oscillator and not the 
energy of the electromagnetic field. 

 It was Einstein who proposed that the radiation field itself should be 
quantized and he put forward the famous photoelectric equation to explain the 
observed facts of photoelectric phenomenon. The experimental verification of 
Einstein’s photoelectric equation put Planck’s quantum hypothesis on a sound 
basis. 

 The photoelectric effect was first discovered by Hertz on 1887. His 
apparatus is shown in Figure I.1.1. A polished metal electrode called the cathode 
and perforated metal plate called the anode are contained in an evacuated glass 
chamber. When a positive potential is applied to the anode with respect to the 
cathode and ultraviolet light falls on the cathode, electrons are emitted by the 
cathode and collected by the anode and a current flows through the ammeter in 
the external circuit. This phenomenon is called the photoelectric phenomenon.  
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 Referring to the apparatus shown in Figure (I.1.1) if the voltage on the 
anode is reduced to zero and then made negative, some of the photoelectrons 
will be repelled. At some value of negative voltage, − 𝑉0, even the most energetic 
electron will be repelled and this value of voltage, − 𝑉0, is known as the cut-off 
voltage. A plot of the photoelectric current 𝐼 versus the anode voltage 𝑉, 
obtained typically in an experiment for various values of incident intensity of 
monochromatic beam of light is shown in Figure (I.1.2). 

 The maximum energy of the electron ejected from the cathode is equal to 
−𝑉0 where −𝑉0 is the cut-off voltage. As we increase the intensity of light falling 
on the cathode (measured in joules per second). We will expect classically the 
added energy to increase the kinetic energy of the emitted electrons and 
therefore the cut-off voltage −𝑉0 should vary with the intensity of light, a higher 
intensity giving rise to a more negative cut-off voltage. But experiment does not 
agree with this prediction, as shown in Figure (I.1.2), where the cut-off voltage 
remains a constant independent of the intensity. 
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 On the other hand, if the frequency of the incident monochromatic beam 
of light is varied keeping the intensity constant, the experimental i-v curves shown 
in Figure (I.1.3) are obtained. These curves show that the cut-off voltage varies 
with the frequency of the incident light, higher frequency corresponding to a 
more negative cut-off voltage. This showed that the maximum energy of the 
ejected electrons increased with the frequency of the incident light beam. This 
result could not be explained classically. 

 
 Einstein gave a successful explanation of the photoelectric phenomenon by 
proposing that the radiation field itself be quantized. According to Einstein’s 
photoelectric theory, energy is discrete and not indefinitely divisible. The smallest 
unit of energy which can be absorbed or emitted in a single process is called a 
quantum. A quantum of radiation energy (electromagnetic waves) is called a 
photon. The energy 𝐸 of a photon is proportional to the frequency 𝜐, of the 
electromagnetic wave and the constant of proportionality is Planck’s constant ℎ. 

i.e., 𝐸 = ℎ 𝜐 

 The light falling on the metal can act only as photons of energy hitting the 
surface of the metal. If a photon is absorbed, it means that some electron has 
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increased its energy by an amount equal to the photon energy. Normally the 
electrons are bound to the surface of the metal by a potential barrier called the 
surface barrier, i.e., it takes a certain amount of energy to pull an electron out 
from the metallic surface. The electrons have some energy inside the metal but 
this is not sufficient for them to overcome the surface barrier. The energy of the 
electrons inside the metal follows some distribution law. The difference between 
the height of the surface barrier and the energy of the most energetic electrons, 
called the work function of the metallic surface, (Figure I.1.4) represents the 
minimum amount that the electrons should increase their energy by, so that at 
least some electrons will be freed from the metallic surface. The electrons leaving 
the metallic surface have some initial velocity and a negative voltage on the 
anode tends to repel theses ejected electrons. At any given negative voltage –𝑉, 
on the anode with respect to the cathode, only those electrons whose initial 
velocity 𝑣 satisfies the relation 

 1
2

 𝑚 𝑣2 ≥ 𝑒 𝑉 

where 𝑒 = electronic charge 

             𝑚 = mass of the electron 

will be able to reach the anode. At the cut-off voltage − 𝑉0, even the most 
energetic electrons are just turned away from reaching the anode. This means 
that the energy of the photon is just equal to the sum of the work function ∅, and 
the energy barrier 𝑒𝑉0 due to the retarding voltage on the anode, i.e., 

ℎ 𝜐 = ∅ +  𝑒𝑉0 

or 

                                                            𝑉0 = ℎ 𝜐
𝑒
− ∅

𝑒
                                                  (I.1.7) 

This equation is known as Einstein’s photoelectric equation. This predicts a linear 
relationship between the cut-off voltage and the frequency of the 
electromagnetic radiation, and is experimentally verified as shown by the straight 
line graph in Figure (I.1.5). Thus Einstein’s photoelectric equation confirmed 
Planck’s quantum hypothesis. However, the most striking confirmation was given 
by Bohr in his model of the hydrogen atom. 
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I.1.6 Bohr Atom 

 Rutherford’s nuclear model of the atom could not satisfy the stability 
criterion based on classical theory of electromagnetism. The electrostatic 
attractive force between the nucleus and the electron can be balanced by the 
centrifugal force if the electron is assumed to be rotating around the nucleus. On 
the other hand, an accelerating electron has to radiate energy according to 
classical theory and, therefore, would eventually collapse on the nucleus.  This 
apparent conflict was resolved in 1913 by Niels Bohr who gave a successful model 
of the hydrogen atom Bohr postulated that: 

(1) The hydrogen atom consists of heavy nucleus with a positive charge and 
an electron (negative charge) moving in a circular orbit as in a planetary 
motion, under the action of the electrostatic attraction between the 
nucleus and the electron. 

(2) Instead of moving in any circular orbit with a radius anywhere from 0 to 
infinity, it is possible for the electron to move only in orbits for which 
the angular momentum is an integral multiple of  ℎ

2𝜋
, where ℎ is Planck’s 

constant. 
(3) An electron moving in an allowed orbit of energy though under constant 

acceleration, does not radiate energy and therefore has constant 
energy. 

(4) If an electron, initially in an orbit of energy 𝐸𝑖, jumps to an orbit of 
energy  𝐸𝑓 (𝐸𝑖 > 𝐸𝑓), electromagnetic radiation is emitted with a 
frequency υ 

𝜐 =
𝐸𝑖 − 𝐸𝑓

ℎ  

These postulates laid down by Bohr, combine classical and non-classical 
physics. The first postulate accepts the idea of a nucleus and an electron 
remaining in equilibrium according to the laws of classical electrostatics and 
classical mechanics. The second postulate quantizes the orbital angular 
momentum, and, therefore, the energy. Bohr’s quantization of the orbital angular 
momentum is a particular case of a more general quantization rule laid down 
later by Sommerfeld according to which the phase integral of any variable over a 
complete cycle of its motion must be equal to an integral number of ℎ: 
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�𝑝𝑖𝑑𝑞𝑖 = 𝑛𝑖ℎ 

In this formula, 𝑝𝑖 is the generalized momentum conjugate to be 
generalized coordinate 𝑞𝑖 and ∮means an integral over a complete cycle of its 
motion. Thus if 𝑞𝑖 is an angle, 𝑝𝑖 is the corresponding angular momentum. If 𝑞𝑖 is 
the position coordinate then 𝑝𝑖 is the component of the linear momentum 
corresponding to 𝑞𝑖 . 

The third postulate again violates classical physics according to which 
accelerated electrons should radiate energy. The fourth postulates is called 
Einstein’s frequency condition. 

We can now proceed to determine the energy states of the hydrogen atom. 
Consider the heavy nucleus of charge +𝑒 to be fixed in space and the elctron (of 
charge – 𝑒) which is very light in comparison to the heavy nucleus, to be rotating 
in a circular orbit around the nucleus, as shown in (Figure I.1.6) 

 

The electrostatic attractive force between the nucleus and the electron is given by 
Coulomb’s law to be: 

𝐹 =
 𝑒2

4 𝜋 𝜖0 𝑟2 

where 𝜖0 = permittivity of free space. 

The centrifugal force balances the electrostatic attractive force and therefore: 
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                                                          𝑚𝑣2

𝑟
= 1

4𝜋𝜖0

𝑍𝑒2

𝑟2
                                                    (I.1.8) 

where 𝑚 = mass of the electron 

𝑣 = velocity of the electron in its orbit 

𝑟 = radius of the orbit 

According to Bohr’s second postulate, the angular momentum is quantized, i.e., 

                                                       𝑚 𝑣 𝑟 = 𝑛 ℎ
2𝜋

= 𝑛ℏ                                              (I.1.9) 

From Equation (I.1.8), we have 

                                                      𝑚𝑣2 =  𝑒2

4 𝜋 𝜖0 𝑟2
                                                      (I.1.10) 

Squaring (I.1.9) and substituting (I.1.10) we have 

𝑚 ∙
 𝑒2

4 𝜋 𝜖0 𝑟 ∙  𝑟
2 =  𝑛2ℏ2 

i.e., 

                                                𝑟 =  4 𝜋 𝜖0 𝑛2ℎ2

𝑚  𝑒2
                                                 (I.1.11) 

We will now calculate the total energy of the hydrogen atom with an electron in 
one of the allowed orbits. The potential energy is defined to be zero when the 
electron is at infinite distance from the nucleus. Then the potential energy 𝑉, at a 
distance 𝑟 is obtained by integrating the work done in bringing the elctron from 
infinity to 𝑟: 

𝑉 = �
 𝑒2

4 𝜋 𝜖0 𝑟2 𝑑𝑑 =
− 𝑒2

4 𝜋 𝜖0 𝑟

𝑟

∞
 

The kinetic energy, T, is equal to 1
2
𝑚𝑣2 and from (I.1.10) is equal to  

𝑇 =
1
2𝑚𝑣

2 =
1
2𝑚𝑣

2 =
1
2 

 𝑒2

4 𝜋 𝜖0 𝑟 

The total energy 𝐸 is equal to  
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                                                𝐸 = 𝑇 + 𝑉 = −1
2

  𝑒2

4 𝜋 𝜖0 𝑟
                                           (I.1.12) 

Substituting for r from (I.1.11) in (I.1.2) we have 

                                           𝐸 = − −𝑚 𝑒4

32 𝜋2 𝜖02ℏ2 
  1
𝑛2

                                                       (I.1.13) 

We see that the energy depends upon the integral number ‘𝑛’ which was used to 
quantize the orbital angular momentum. Since there is a negative sign before the 
expression for energy in (I.1.13), the energy increases with increasing values of 𝑛.  
The lowest energy occurs when n is a minimum, i.e., 𝑛 = 1 (𝑛 = 0 is not 
permissible since this will correspond to a radius equal to zero). Therefore, the 
smallest of these orbits corresponding to 𝑛 = 1 is the one that the electron will 
occupy when the atom is in the “ground” state or when the atom is unexcited. 

 

 The energy of each orbit as evaluated from Equation (I.1.13) is shown in 
Figure I.1.7. Hereafter, we will refer to the quantitation number n as quantum 
number. We will next set up the expression for the frequency of the 
electromagnetic radiation emitted when an electron jumps from an orbit of 
higher energy to one of lower energy.  Let the electron be initially in an orbit 
characterized by the quantum number 𝑛𝑖 and energy 𝐸𝑖 and let it jump to another 
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orbit with quantum number 𝑛𝑓 and energy 𝐸𝑓. Then the frequency of 
electdomagnetic radiation according to Einstein’s frequency condition is 

υ =
𝐸𝑖 − 𝐸𝑓

ℎ =
−1
ℎ ×

𝑚 𝑒4

32 𝜋2 𝜖02ℏ2 �
1
𝑛𝑖2

−
1
𝑛𝑓2
� 

=
𝑚 𝑒4

8  𝜖02ℎ3 �
1
𝑛𝑓2

−
1
𝑛𝑖2
� 

In terms of the wave number 𝑣̅, this becomes 

 

                                                         𝑣̅ = 𝑚 𝑒4

8  𝜖02ℎ3 
� 1
𝑛𝑓
2 −

1
𝑛𝑖
2�                                    (I.1.15A) 

                                                         𝑣̅ = 𝑅 � 1
𝑛𝑓
2 −

1
𝑛𝑖
2�                                             (I.1.15A) 

Where 

𝑅 = 𝑚 𝑒4

8  𝜖02ℎ3 
  called the Ryberg constant 

 The quantitative predictions of Bohr’s theory ae contained in Equations 
(I.1.11), (I.1.13), (I.1.14) and (I.1.15). Normally the hydrogen atom is in the lowest 
state or ground state (𝑛 = 1). It receives energy either from collisions as in 
electric discharge or by absorption of electromagnetic radiation of suitable 
frequency and gets excited, i.e., it jumps to higher energy state (𝑛 > 1). Since all 
physical systems are stable only in their lowest energy state, the atom will emit 
the excess energy and return to the ground state. The frequency of the emitted 
photon will be governed by Equation (I.1.14). 

 Earlier we had said that any satisfactory model of the atom should explain 
the spectroscopic series of lines obtained experimentally. Now, we see that 
Equation (I.1.15B) is in such a form that Balmer’s empirical formula can be 
obtained by putting 𝑛𝑓 = 2. 

For,  
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𝜆 =
1
𝑣̅ =

1

𝑅 � 1
𝑛𝑓2

− 1
𝑛𝑖2
�

=
1

𝑅 �1
4 −

1
𝑛𝑖2
�

 

                                             = 4
𝑅
𝑛𝑖2

1
𝑛𝑖
2−4

= 𝑏 𝑛𝑖
2

𝑛𝑖
2−4

                    where    𝑏 = 4
𝑅

 

It can be also be verified that Rydberg’s universal formula can be derived. Other 
series of lines in the spectrum of hydrogen corresponding to other final states, 
i.e., other values of 𝑛𝑓 were later found. The Laman series which is in the 
ultraviolet region corresponds to 𝑛𝑓 = 1 as shown in Figure I.1.8. Paschen series 
which lies in the infrared region ends up in the terminal state 𝑛𝑓 = 3 and similarly 
Brackett series lying in the far infrared region corresponds to 𝑛𝑓 = 4. The Bohr 
theory thus gave an expression not only explaining the various spectral series but 
also quantitatively predicting the value for the coefficient R (Rydberg’s constant) 
which was previously obtained experimentally. 

 It must be pointed out that the formula developed fort the hydrogen atom 
can also be applied with suitable but minor modifications to any atom or ion 
having one electron circling around the nucleus. For example, an ion with a 
nuclear charge +𝑍𝑍 and an electron circling around it would have the additional 
factor 𝑍2 in the expression for its energy.  

𝐸𝑛 = −  𝒁
𝟐𝑅 𝑐 ℎ
𝒏𝟐

 

Or 

𝑣̅ = 𝑍2𝑅 �
1
𝑛𝑓2

−
1
𝑛𝑖2
� 

In the case of singly ionized helium whose atomic number 𝑍 = 2, we will have 

𝑣̅ = 4 𝑅 �
1
𝑛𝑓2

−
1
𝑛𝑖2
� 

 From refinements were added to Bohr’s theory when the effect of the finite 
mass of the nucleus and therefore the motion of nucleus (in Bohr’s model, the 
nucleus was assumed fixed) were taken into account. Again, as instrument 
became more precise; it was found that there were more spectroscopic lines than 
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what a single quantum number 𝑛 could account for. Bohr’s circular orbit model 
was extended to include elliptical orbits using an additional quantum number 𝑘. 
Thje energy or the orbit was still determine only by the first quantum number 𝑛. 
The quantum number 𝑘 specifies the angular momentum to be 𝑘 ℏ (instead of 𝑛ℏ 
in Bohr’s model). The ratio 𝑘

𝑛
 also determines the ratio of the minor to major axis 

of the ellipse. 𝑘 can take integral values 1 to n.  

 

 In spite of all these refinements and modifications, Bohr theory was not 
able to explain the spectra of complex elements. Bohr’s theory was fairly 
successful in explaining the spectra of hydrogenic ions and atoms, i.e., atoms with 
a single planetary electron around a central charge. But it failed to explain the 
spectra of even simple elements like helium. Bohr theory had a logical 
inconsistency as explained earlier, in that it combined the concepts of orbits 
derived on the basis of classical mechanics with non-classical concepts of 
quantum transitions. It was necessary to have a new point of view and this was 
provided by quantum mechanics. 
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I.1.7 Digression on Units of Energy 

 In addition to using Joule as a unit of energy it is sometimes more practical 
to use other units of energy. One electron-volt is a widely used unit of energy in 
electronics and is equal to the energy of an electron which has been accelerated 
through a potential of q volt. The kinetic energy acquired by an electron falling 
through a potential of 𝑉 volt is equal of 𝑒𝑒 joules where 𝑒 = 1.602 × 10−19 
coulombs. Therefore, 1 electron-volt = 1.602 × 10−19 joules.  

 The energy 𝐸 of a photon of electromagnetic radiation is given by 𝐸 = ℎ𝑣 
where 𝑣 =frequency of the electromagnetic radiation. The frequency of 
alternately the wave number can therefore be used as a measure of energy. Wave 
numbers are usually expressed in units of reciprocal centimeter 

      𝑣̅ = 1
𝜆𝑣𝑣𝑣

                       where 𝜆𝑣𝑣𝑣 is in cm 

 

                                             = 𝜐
𝑐

  where c is the velocity of light in cm/second 

𝐸 = ℎ 𝑐 𝑣̅ 

Since ℎ = 6.62 × 10−34 Joules sec 

And 𝑐 = 3 × 1010  𝑐𝑐
𝑠𝑠𝑠

 

One 𝑐𝑐−1 = 1.9858 × 10−23 Joules 

                    = 1.2395 × 10−4 eV 

Conversion from one unit to another is given in Table 1. 
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Table 1 

Conversion Factors of Energy Units 

unit Joule Electron-Volt 
(eV) 𝑐𝑐−1 

Joule 1 6.2× 1018 5.03× 1022 

Electron-Volt 
eV 1.602× 10−19 1 8.067.5 

𝑐𝑐−1 1.9858× 10−23 1.2395× 10−4 1 
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Problem: Chapter I.1 

1. Given 𝐼𝜆𝑑𝜆, the energy emitted by unit area of a blackbody surface in unit 
time between the wavelength 𝝀 and 𝝀+d𝜆, to be given by equation I.1.5 of 
the text, find out an expression for 𝐼𝜐𝑑𝑑 , the energy emitted by unit area 
of a blackbody surface in unit time between frequency υ and  𝜐 +  𝑑𝜐. 

2. If Planck’s constant, ℎ, had been much smaller than it is, quantum effects 
would have been harder to discover as separate from the classical picture. 
What would the Planck formula, above, become in the classical limit for 
h → 0 

3. What is the energy in electron volts of a photon with wavelength (a) 𝝀 
=10,000 Å, (b) 𝝀 =3,000 Å (c) =100 Å? 

4. The work function of tungsten is 4.52 eV, and that of barium is 2.5 eV. 
What is the maximum wavelength of light that will give photoemission of 
electrons from tungsten? From barium? Would either of these metals be 
useful in a photocell for use with visible light? 

5. The work function of tantalum is 4.19 eV. If light of wavelength 2536 Å is 
incident on a tantalum emitter in a phototube, what value of 𝑉0 will be 
measured (the collector is also of tantalum)? What value of 𝑉0 do you 
compute for 𝝀=3650 Å and what is the physical interpretation of this value? 

6. Substituting the appropriate values of constants evaluate Rydberg’s 
constant for hydrogen atom. 

7. Show by direct substitution that the ionization energy of a hydrogen atom 
is 13.6 eV. 

8. Calculate the values in electron-volts and plot on the same energy scale, 
the energies of the various emission lines from Hydrogen for the 
i. Lyman Series 
ii. Balmer Series 
iii. Paschen Series 

9. Plot the wavelength of the Lyman Series of emission lines on a scale 
calibrated in angstroms (10−8𝑐𝑐) 
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Chapter 2 

Quantum Mechanical Principles 

I.2.1 Introduction 

 All the earlier theories including Planck’s and Bohr’s theories used classical 
mechanics and classical electromagnetic theory in part of the problem but found 
it necessary to impose certain quantum conditions in certain other aspects of the 
problem. This is not a satisfactory procedure since no definite rule was laid down 
as to where classical principles are valid and where they are not. It was necessary 
to develop a completely revolutionary and self-contained set of laws within which 
both classical and quantum principles are embodied and which will be applicable 
to all physical problems. 

 Such a formulation of new principles of mechanics was put forward 
simultaneously by Schrödinger, who extended the idea of De Broglie on the wave 
aspect of matter, and by Heisenberg. Schrödinger’s formulation makes use of 
partial differential equations while Heisenberg’s treatment is built around matrix 
algebra. However, both the formulations are equivalent and predict the same 
results. Heisenberg’s formulations is known as quantum mechanics while 
Schrödinger’s formulation is known as wave mechanics. The wave function  𝜓 
appears explicitly in Schrödinger’s theory. The terms quantum mechanics and 
wave mechanics have gradually become synonymous and we shall use only the 
name “quantum mechanics” although in this course we will be using mainly 
Schrödinger’s formulation. 

 

I.2.2 Wave Aspect of Matter 

 Louis De Broglie suggested in 1924, based on purely theoretical grounds, 
that electrons might have wave properties. Radiant energy in the form of light 
exhibits dual behavior – wave and corpuscular. The wave property is prominent in 
such phenomena as diffraction and interference. The corpuscular or particle-like 
behavior is prominent in photoelectric phenomena where the concept of photon 
is used. Two great entities in the world are energy and matter. De Broglie 
proposed that matter, like energy, should exhibit dual aspect. Matter and energy 
are both conserved. The theory of Relativity shows them to be equivalent. Close 
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analogies are known to exist between certain laws of optics and mechanics. 
Therefore, they should be alike in their dual properties also. De Broglie proposed 
that an electron in motion should exhibit properties of a packet of energy with 
wave properties. 

 De Broglie postulated that an electron with a momentum 𝑝 had the 
wavelength 𝜆 given by  

                                                       𝜆 = ℎ
𝑝

                                                                  (I.2.1) 

Where ℎ is Planck’s constant. This wavelength is referred to as De Broglie 
wavelength. De Broglie showed that the Bohr orbits of hydrogen can be defined 
by the condition that the circumference of an orbit contain an integral number of 
De Broglie wavelengths.  

 The experimental verification of De Broglie’s hypothesis came in 1928 when 
Davission and Germer determined experimentally that a beam of low energy 
electrons incident on the face of a nickel crystal is reflected in such a manner that 
can easily be interpreted as a diffraction of plane waves by the lattice of the 
crystal. In other worlds, the electrons behaved like plane waves. More 
experiments on electron diffraction were performed by G.P. Thomson and others, 
and they all confirmed De Broglie’s hypothesis.  

 Let us now determine the De Broglie wavelength for an electron that has 
been accelerated by an electrostatic potential V volts. If we assume that the 
electron is initially at rest, then all its kinetic energy arises only due to the 
electron falling though the potential V volts. The kinetic energy is therefore equal 
to  

1
2𝑚𝑣

2 = 𝑒𝑒 

where          𝑣 = final velocity 

   𝑚 = Mass of the electron 

                                                             𝑒 = Charge of the electron 

The momentum 𝑝 is equal to 𝑝 =  𝑚𝑚 = (2𝑚 𝑒𝑒)
1
2 . Therefore, the De Broglie 

wavelength is equal to  
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                            𝜆 = ℎ
𝑝

= ℎ

(2𝑚 𝑒𝑒)
1
2

=  12.26
√𝑉

 Å            where 𝑉 is in volts 

 It was soon established that other particles also exhibited wave properties. 
By the same token, it was possible to speak of the momentum of the photons 
using De Broglie relationship. 

 In order to consider an electron as a wave packet, let us take some time to 
understand what we mean by a wave packet. Consider the superposition of two 
waves of different frequencies and different propagation constants. Each wave is 
represented by the equation 𝑦 =  𝑎 𝑐𝑐𝑐 (𝑘𝑘 –𝜔𝜔), where 𝜔 = 2𝜋 times the 
frequency and 𝑘, the propagation constant, is equal to 2 𝜋 times the reciprocal of 
the wavelength. Superposing two waves of nearly the same frequency 𝜔1

2𝜋
 and 𝜔2

2𝜋
 , 

and nearly the same propagation constants 𝑘1 and 𝑘2, we have the resultant as 
equal to: 

𝑦1 + 𝑦1 = 𝑎 [cos(𝑘1𝑥 –𝜔1𝑡) + cos(𝑘2𝑥 –𝜔2𝑡)] 

= 2𝑎 �cos �
𝑘1− 𝑘2

2 𝑥 –
𝜔1 − 𝜔2

2 𝑡� + cos �
𝑘1+ 𝑘2

2 𝑥 –
𝜔1 + 𝜔2

2 𝑡�� 

= 2𝑎[cos(∆ 𝑘 𝑥 –∆ 𝜔 𝑡) cos( 𝑘0 𝑥 – 𝜔0 𝑡)]  

Where 𝑘0 = the average value, 𝑘1+ 𝑘2
2

 and ∆ 𝑘 = 𝑘1− 𝑘2
2

 

And 𝜔0 = the average value, 𝜔1+𝜔2
2

  and ∆ 𝜔 = 𝜔1−𝜔2
2

 

It will be noticed that the above expression for the resultant contains two 
sinusoidally varying terms, one at the average frequency and the other at half the 
difference frequency. Furthermore, the propagation characteristics are also in the 
same relationship. The first term, i.e., the slowly varying term, modulates the 
amplitude of the second term. The propagation characteristic of the envelope of 
the sinusoidal wave is determined by the first term (Figure I.2.1). The velocity 
with which the individual wave travels is called the phase velocity while the 
velocity of the envelope is called the group velocity. The phase velocity is equal to   
𝜔0
 𝑘0 

   while the group velocity is equal to  ∆ 𝜔  
∆ 𝑘

= 𝑑 𝜔
𝑑 𝑘

 .  Extending De Broglie’s idea, 

one may interpret the superposition of the two waves as a wave packet. Actually, 
a stricter definition of the wave packet should be as follows. A wave function that 
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is made up of a great many waves of nearly equal momenta, i.e., propagation 
constants, superimposed in such a way as to yield a function which is zero every 
where except in a restricted region, is called a wave packet. A wave packet can be 
taken to represent a particle whose position and momentum are known 
approximately. We can, therefore, say that the group velocity of the wave packet 
is equal to the velocity of the particle.  

Therefore, 

𝑣𝑔 =
𝑑𝑑
𝑑𝑑 =

𝑑(2𝜋𝜋)

𝑑 �2𝜋
𝜆 �

= −𝜆2
𝑑𝑑
𝑑𝑘 

𝑑𝑑
𝑑𝑑 = −

𝑣𝑔
𝜆2 = −

𝑣
𝜆2 

𝐸 = ℎ𝜐 =
1
2𝑚𝑣

2 + 𝑉 

𝑑𝑑
𝑑𝑑 =

1
ℎ  𝑚 𝑣 

𝑑𝑑
𝑑𝑑 = −

𝑣
𝜆2 

i.e., 𝑚 𝑑𝑑 = −ℎ 𝑑𝑑
𝜆2

 

� 𝑚 𝑑𝑑
𝑣

0
= −�

ℎ 𝑑𝑑
𝜆2  

𝑚 𝑣 =
ℎ
𝜆 

𝜆 =
ℎ
𝑝 

Thus, we can arrive at De Broglie relationship, starting with the representation of 
the particle as a wave packet. 



26 
 

 

I.2.3 Heisenberg’s Uncertainty Principle 

 Any correct system of mechanics should take into account a second 
fundamental principle that follows directly from the wave theory of matter. This 
refers to the uncertainty in the results of a measurement introduced by the 
measurement process itself. Classically, a mechanical system can be measured to 
any degree of precision without disturbing the motion of the mechanical system. 
The assumption is reasonable when one is considering the kinetics of objects of 
macroscopic size. On the other hand, when motion of very small particles is being 
observed, one should take into account the wave property, (i.e., the quantum 
nature) of the object and the error introduced by the measuring technique itself. 
As an illustration, take the case of measuring the position of an electron. We shall 
consider here the accuracy with which the 𝑥 component of position and the 
𝑥 component of momentum can be determined simultaneously by observing the 
electron through a microscope by means of scattered light. 

 From principles of wave optics, one can determine the accuracy of the 

position measurement to be ∆𝑥 = 𝜆
sin 𝜖

  where 𝜆  is the wavelength of the 
radiation that enters the lens 𝐿 and 𝜖 is half the angle subtended by the lens at 
the particle as shown in Figure (I.2.2). On the other hand, in order to minimize the 
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disturbance on the electron as much as possible, one ought to use only as low an 
intensity of light as a photon. The act of measuring the position of the electron 
has led to a scattering of a photon by the electron onto the screen S. The precise 
direction in which the photon is scattered into the lens in not known because of 
the finite size of the aperture of the lens. According to De Broglie relationship, the 
momentum of the photon after it is scattered is equal to  ℎ

𝜆
. The uncertainty in the 

𝑥 component in the momentum of the photon is approximately �ℎ
𝜆
� sin 𝜖. There is 

no reason why the total momentum of the system should have changed during 
the experiment. Also, the 𝑥 components of the momenta of the electron and the 
photon can be accurately known before the scattering takes place. Therefore, the 
uncertainly in the 𝑥 component of the momentum, ∆𝑝𝑥, of the electron after the 
scattering is equal to the corresponding uncertainty of the photon. Therefore, 

∆𝑝𝑥 ≈ �ℎ
𝜆
� sin 𝜖 . We see that the combined uncertainties in the position and the 

momentum give  

                                                  ∆𝑥 ∆𝑝𝑥 ≈ ℎ                                                             (I.2.2) 

Equation (I.2.2) gives the famous “Uncertainty Principle” developed by 
Heisenberg in 1927. According to this principle, it is not possible to specify 
precisely and simultaneously the values of both the position and the momentum 
of the particle. The minimum, uncertainty in the simultaneous determination of 
two canonically conjugate variables is expressible in the general form 

        ∆𝑃 ∙ ∆𝑄 ≈ ℎ                                                          (I.2.3) 

Thus, if Q is a rectangular coordinate, P is the corresponding component of 
momentum; if Q is an angular coordinate, P is the corresponding angular 
momentum: if Q is the energy, P is the time. 

 The uncertainty principle is illustrated in Figure (I.2.3). The abscissa gives 
the 𝑥 component of position of the particle while the ordinate gives the 𝑥 
component of the momentum. Three rectangular boxes, each with an area equal 
to ℎ, the Planck’s constant, are shown. The sides of the rectangular boxes depict 
the uncertainties in the position and momentum. Narrowing the uncertainty, i.e., 
the error, in one dimension spreads the uncertainty in the other. The uncertainty 
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principle becomes significant only when atomistic particles are considered 
because of the smallness of the value of Planck’s constant.  
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I.2.4 Wave Packets in Space and Time 

 We already discussed briefly the wave packet as a concentrated bunch of 
waves to describe localized particles of matter as well as photons, i.e., we 
described the particles by a wave function that depends on the space coordinates 
𝑥,𝑦, 𝑧 and time 𝑡. This quantity 𝜓 is assumed to have three basic properties. First, 
it can interfere with itself. Second, it is large in magnitude where the particle is 
likely to be, and very small everywhere else. Third, it depicts the behavior of a 
single particle and not the statistical distribution of a number of particles.  

 A typical wave packet is shown in Figure (I.2.4a) where 𝜓(𝑥, 𝑡) is plotted as 
a function of 𝑥 for a given value of 𝑡. The average wavelength 𝜆0 and the spread 
∆𝑥 of the packet are shown in the figure. The constituent waves out of which the 
wave packet is built can be obtained by a Fourier integral analysis of 𝜓(𝑥, 𝑡). The 
Fourier transform of 𝜓 (𝑥, 𝑡) is shown in Figure (I.2.4b) where it is plotted as a 
function of the propagation constant 𝑘 = 2𝜋

𝜆
. 

 It can be shown by standard mathematical techniques  

∆𝑘 ≥
1
∆𝑥 

Where ∆𝑘 = approximate spread in propagation constant. 

 If we use De Broglie relation 𝑝 = ℏ 𝑘, we obtain 

∆𝑝 ∆𝑥 ≥ ℏ 

This agrees with the uncertainty relation. Therefore, the uncertainty relation can 
be seen to follow from the description of a particle by a wave packet. 

 In a similar way, by considering a time packet, i.e., a wave packet as a 
function of time 𝑡 for a given value of 𝑥, we get the relation 

∆𝑡 ∆𝜐 ≥
1

2𝜋 

Therefore,  
∆𝑡 ∆𝐸 ≥ ℏ 
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I.2.5 Quantum Mechanical Postulates 

 It should be possible, now, to set up a quantitative formulism based on the 
wave function description of the particle. We also require that this formulism 
should be such that the result of any calculation should reduce to the result of the 
corresponding classical calculation in the appropriate limit. In classical mechanics 
one deals with distance 𝑥, momentum 𝑝, total energy E. These quantities are 
called dynamic variables. These are also called observables because they can be 
measured in a physical experiment.  

 

 In quantum mechanics the dynamical variables play a completely new role. 
They are transformed into operators by a set of rules that are laid down as 
postulates. These operators operate on the wave function. An example of an 
operator is 𝑑

𝑑𝑑
. When placed in front of a function 𝑓(𝑥), this symbol refers to a 

certain operation carried on the function, viz., differentiation with respect to 𝑥. 
𝑓(𝑥) is called the operand while 𝑑

𝑑𝑑
  is called the operator. 
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 Our first task is to develop in a quantitative fashion the properties of the 
wave function. The waves which represent the particle are not electromagnetic or 
acoustic waves. We will give the physical interpretation of the wave function once 
we have developed a method for obtaining it. 

 Let us now study the postulates of quantum mechanics. These postulates 
cannot be proved or derived. The only justification for these postulates is that 
they are logically self-consistent and that they lead to results which agree with 
experiments. In a statement of these postulates, we shall consider only one space 
coordinate 𝑥 and time 𝑡, for the sake of simplicity and ease of understanding. It is 
easy to extend the description to three dimensional space once the basic ideas 
are understood. 

Postulate I: 

 To each physical system there can be ascribed one wave function, 𝜓(𝑥, 𝑡). 

Postulate II: 

 The wave function 𝜓(𝑥, 𝑡) and its space derivative  𝜕𝜓(𝑥,𝑡)
𝜕𝜕

  must be 
continuous, single valued and finite for all values of 𝑥 (i.e., -∞ 𝑡𝑡 + ∞ ) 

Postulate III: 

 The wave function should be normalized, i.e.,  

   ∫ 𝜓∗𝜓 𝑑𝑑+∞
−∞ =  ∫ 𝜓2𝜓 𝑑𝑑 = 1+∞

−∞                                  (I.2.4) 
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Postulate IV: 

 The dynamic variables are converted into operators that operate on the 
wave function by the following rules 

Dynamical Variable                    Operator 

                                           Position: 

          𝑥           𝑥 

                            Function of position: 

               𝑓(𝑥)                                             𝑓(𝑥) 

                            𝑥-component of momentum: 𝑃𝑥                   ℏ
𝑖
𝜕
𝜕𝜕

 

                                            Energy: 

      𝐸                                                 𝑖ℏ 𝜕
𝜕𝜕

 

                    Function of position and momentum: 

                                             𝑓(𝑥,𝑃𝑥)                                       𝑓 �𝑥, ℏ
𝑖
𝜕
𝜕𝜕
� 

Postulate V: 

 The average value or the expectation value, < 𝛼 >, or any dynamical 
variable 𝛼, is calculated from the wavefunction 𝜓 from the formula 

< 𝛼 > =  � 𝜓∗𝛼 𝜓 𝑑𝑑
+∞

−∞
  

 

I.2.6 Comments on the Postulates 

 We will now make some comments on these postulates before using them 
in the solution of some physical problem. According to the first postulate, the 
information about a system of particles is contained in a function of space 
coordinate and time, called the wavefunction. The wavefunction should conform 
to certain restrictions and these are contained in Postulate II. These restrictions 
are called the rules for the proper behavior of the function. A function f(x) is said 
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to be continuous when the function has the same value at 𝑥, no matter which 
direction we approach 𝑥 from, i.e,. 𝑓−(𝑥)  = 𝑓+(𝑥)  for all values of 𝑥 where𝑓− 
refers to approaching 𝑥 from –∞ direction and 𝑓+ refers to approaching 𝑥 from  

+∞ direction. It is in this sense that ψ and 𝜕ψ
𝜕𝑥

 are said to be continuous. 

   The need for single-valuedness and postulate III will be appreciated once 
we try to give some physical interpretation for the wave function. We assume 
that all the information about the behavior of the physical system is given by the 
wave function. The only association we made so far, between the wave function 
and the particle which it represents, is that the wave function be larger where the 
particle is likely to be, and small elsewhere. This is not sufficient for s to extract 
the maximum amount of information about the behavior of the particle, out of 
the wave function. Therefore, we make an assumption, due to Max Born, that the 
wave function 𝜓(𝑥, 𝑡) be regarded as a measure of the probability of finding a 
particle at a particular position 𝑥 at time 𝑡. Since probability must be real and 
non-negative, while 𝜓 is generally complex, we assume that the position 
probability density is the product of 𝜓 and its complex conjugate 𝜓∗. 

𝑃(𝑥, 𝑡) = 𝜓∗(𝑥, 𝑡)𝜓(𝑥, 𝑡) = |𝜓(𝑥, 𝑡)|2 

This means 𝜓∗𝜓 dx is the probability of finding the particle in an interval 𝑑𝑑, 
centered aropund the point 𝑥, at the time 𝑡, when a large number of precise 
position measurements are made on independent particles, each represented by 
one-particle wave function 𝜓(𝑥, 𝑡). This justification for this physical 
interpretation of 𝜓 is the same as for the postulates, viz, logical consistency and 
agreement with experimental results. The need for restricting 𝜓 to be single-
valued is evident with this interpretation of 𝜓. 

 The probability of finding the particle somewhere in the universe (-
∞ < 𝑥 < +∞) should be unity and therefore 

� 𝑃(𝑥, 𝑡) 𝑑𝑑
+∞

−∞
= � 𝜓∗ 𝜓 𝑑𝑑 = 1

+∞

−∞
 

This is precisely what postulate III states (Equation (I.2.4). When 𝜓 obeys Equation 
(I.2.4), it is said to be normalized. This condition also implies that 

𝜓(𝑥, 𝑡) → 0 𝑤ℎ𝑒𝑒 |𝑥| → ∞ 



34 
 

 Postulate IV gives us the working formula for translating the description of 
physical phenomena, as we know it classically, to quantum mechanical language. 
It is through the formula in postulate V, that one can calculate the value of 
observable quantities which can be compared to experiment. The expectation 
value is related to the idea of probability. The expectation value is not the result 
of one observation. The expectation value is the value predicted mathematically ( 
in the sense of probability theory) for the result of a single measurement or it is 
the average of the results of measurements on a large number of independent 
systems each of which is represented by an identical wave function 𝜓. 

 

I.2.7 Schrödinger Wave Equation 

 Using the rules of transformation of dynamical variables to operators, we 
will now set up an equation known as “Schrödinger Wave Equation”, whose 
solutions are the wave functions that we are seeking.  

 The total energy 𝐸 of a particle constrained to move along the 𝑥 axis is 

                                              𝐸(𝑥,𝑣𝑥) = 1
2
𝑚𝑣𝑥2 + 𝑉(𝑥)                                           (I.2.5) 

Where                 𝑣𝑥= velocity in the x direction 

                             m = mass of the particle 

              𝑉(𝑥)= potential energy of the particle arising due to electric, 
gravitational or any other potential field 

The right hand side of Equation (I.2.5), which is a function of 𝑥 and 𝑣𝑥, can be 
converted into a function 𝑥 and 𝑝𝑥  through the relation  𝑝𝑥 = 𝑚 𝑣𝑥, 

Since 𝑝𝑥 →
ℏ
𝑖
𝜕
𝜕𝜕

 we have, 

1
2
𝑚𝑣𝑥2 + 𝑉(𝑥) = 𝑝𝑥2

2 𝑚
+ 𝑉(𝑥) →  �− ℏ2

2𝑚
𝑑2

𝑑𝑥2
+ 𝑉(𝑥)� 

But we also know from postulate IV that energy 𝐸 transforms into an operator  

�𝑖ℏ 𝜕
𝜕𝜕 
�. Both the operators, �− ℏ2

2𝑚
𝑑2

𝑑𝑥2
+ 𝑉(𝑥)�and �𝑖ℏ 𝜕

𝜕𝜕 
� are therefore energy 
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operators, and when they operate on the wave function, should give the same 
resultant. Therefore,  

                                 − ℏ2

2𝑚
𝑑2

𝑑𝑥2
𝜓(𝑥, 𝑡) + 𝑉(𝑥)𝜓(𝑥, 𝑡) = 𝑖ℏ 𝜕

𝜕𝜕 
𝜓(𝑥, 𝑡)                    (I.2.6) 

This is the famous Schrödinger’s time dependent wave Equation. The wave 
function 𝜓(𝑥, 𝑡) can therefore be obtained, by solving the Schrödinger equation 
once we know the potential energy 𝑉(𝑥). It is possible that in some cases 𝑉 is a 
function of time also, i.e., 𝑉 =  𝑉(𝑥, 𝑡). 

 In the next chapter we will solve the wave equation for some simple 
physical systems, thereby illustrating the use of the wave equation to get 
information about the physical system. 

 

I.2.8 Digression on Probability 

 The probability of an occurrence is define as a number P between 0 and 1 
such that in a large number of trials performed under identical conditions, the 
fraction of the trials in which this occurrence takes place is equal to P. If we toss a 
coin 100,000 times we will get 50,000 times heads and an equal number of times 
tails, since the probability of getting heads (or tails) is half. The probability of 1 
means that the occurrence is a certainty, i.e., the occurrence will take place 
whatever be the number of times the trials are made. On the other hand, the 
probability of 0 means that the occurrence will never take place whatever be the 
number of times the trials are made. If 𝑃(𝑥)𝑑𝑑 is the probability that the position 
would occur between 𝑥 and 𝑥 + 𝑑𝑑, then 𝑃(𝑥) is called the position probability 
density. It is also called the probability distribution for position. The probability 
that the position would be somewhere between −∞   and  +∞ is unity and 
therefore 

� 𝑃(𝑥, 𝑡) 𝑑𝑑
+∞

−∞
= 1 

Under such condition, the probability distribution is said to be normalize.   

 Let us now illustrate the method of calculating a mean or average value 
when the distribution function is known. Let us assume that we are calculating 
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the average age of men in a group. The average age of men is simply the sum of 
ages of all the men in the group divided by the number of men in the group. 
Instead of doing this, we can also compute the number of men whose age lies in 
the interval 𝑌 and 𝑌 + 𝑑𝑑 years for each value of 𝑌 such that the entire range of 
age is covered. Let 𝑑𝑑(𝑌) be the number of men with ages between 𝑌 and 
𝑌 + 𝑑𝑑. Each value of age 𝑌 is multiplied by the number of men 𝑑𝑑(𝑌), whose 
age is between 𝑌 and 𝑌 + 𝑑𝑑. The sum of all such products divided by the total 
number of men is equal to the average age: 

𝑌 =
∑𝑌 𝑑𝑑(𝑌)
∑𝑑𝑑(𝑌)  

The distribution that we talked of in this example is a discrete distribution, for the 

probability of a man having an age between 𝑌 and 𝑌 + 𝑑𝑑 is  𝑑𝑑(𝑌)
∑𝑑𝑑(𝑌)

, and changes 

discretely with 𝑌. 

 The distribution that we commonly encounter in our studies will be 
continuous distribution and in these cases the average has to be computed by 
integration rather than by summation. If 𝑃(𝑌) 𝑑𝑑 is the probability that the age 
of men will be between 𝑌 and 𝑌 + 𝑑𝑑, then  

𝑌 = �𝑌 𝑃(𝑌)𝑑𝑑 = �𝑌 𝑃(𝑌)𝑑𝑑         𝑠𝑠𝑠𝑠𝑠 �  𝑃(𝑌)𝑑𝑑 = 1  

The limits of integration are to be so chosen that the entire range of ages is 
covered. 

 Now we can generalize this treatment to compute the average of any 
arbitrary function 𝑓(𝑥), if we know the position probability density, 𝑃(𝑥). The 
average value of 𝑓(𝑥) denoted by 𝑓(𝑥), is equal to 

𝑓(𝑥) =
∫ 𝑓(𝑥)𝑃(𝑥) 𝑑𝑑+∞
−∞

∫ 𝑃(𝑥) 𝑑𝑑+∞
−∞

= � 𝑓(𝑥)𝑃(𝑥) 𝑑𝑑
+∞

−∞
 

 The expectation value of a dynamical variable, calculated according to 
quantum mechanical postulate V, follows exactly the discussion we had in the last 
few paragraphs. If 𝑃(𝑥) = 𝜓∗ 𝜓  is the position probability density of a particle, 
the average or the expectation value of any function of positon is 
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< 𝑓(𝑥) >=  �𝑓(𝑥)𝑃(𝑥)𝑑𝑑 = �𝑓(𝑥)𝜓∗ 𝜓𝜓𝜓 = �𝜓∗ 𝑓(𝑥) 𝜓  𝑑𝑑 

The question arises as to how differential operators (as in momentum operator) 
can be combined with position probability density. Therefore, we define the 
expectation value generally with the operator acting on the wave function 𝜓, and 
multiplied on the left by 𝜓∗. For example, the expectation value for energy is 

< 𝐸 > = �𝜓∗ 𝑖ℏ
𝜕
𝜕𝜕  𝜓  𝑑𝑑  

Having calculated the average value of a function f(x), let us now evaluate the 
average value of [𝑓(𝑥)]2 denoted by [𝑓(𝑥)]2���������������⃑ , to be 

[𝑓(𝑥)]2���������������⃑ = �  �𝑓(𝑥)�
2𝑃(𝑥) 𝑑𝑑

+∞

−∞
 

The standard deviation in (𝑥) , 𝜎, is obtained from  

𝜎2 = �𝑓(𝑥) − 𝑓(𝑥)���������⃑ �
2�������������������������������⃑

= �  �𝑓(𝑥)− 𝑓(𝑥)���������⃑ �
2
 𝑃(𝑥) 𝑑𝑑

+∞

−∞
 

= ∫  [𝑓(𝑥)]2 𝑃(𝑥) 𝑑𝑑+∞
−∞ − 2 𝑓(𝑥)���������⃑  ∫  𝑓(𝑥) 𝑃(𝑥)𝑑𝑑 +  �𝑓(𝑥)���������⃑ �

2
∫   𝑃(𝑥) 𝑑𝑑+∞
−∞

+∞
−∞   

=  [𝑓(𝑥)]2���������������⃑ −  �  𝑓(𝑥)����������⃑   �
2
 

The above result is important because of its relation to the expectation value of 
an operator corresponding to any dynamical variable, 𝜎. Given the wave function, 
𝜓, we can calculate 𝜎 ���⃑  as well as 𝜎2����⃑ .  If   𝜎 ���⃑ 2 is equal to 𝜎2����⃑ , then 𝜎2 is equal to 
zero. That means the expectation value is an exact number and there is no spread 
in the value of the dynamical variable. All of the measurements would give the 
same value. This result is very important.  

 

I.2.9 Eigenvalues 

 Suppose we have an operator 𝑜� which operating on a function 𝑓(𝑥) 
satisfies the following equation: 
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𝑜�𝑓(𝑥) = 𝜆𝜆(𝑥) 

where 𝜆 is a constant 

Such an equation is called an eigenvalue equation, 𝑓(𝑥) is an eigenfunction of the 
operator 𝑜� and 𝜆  is called the eigenvalue. 𝜆 is also called a characteristic value 
and 𝑓(𝑥) is called “characteristic” function.  

 Let us now consider an observable O whose quantum mechanical operator 
𝑂 � satisfies the eigenvalue equation where wavefunction 𝜓(𝑥, 𝑡)  is the 
eigenfunction 

𝑂 �𝜓(𝑥, 𝑡) = 𝐾 𝜓(𝑥, 𝑡) 

We now proceed to calculate the expectation value of the observable, the 
expectation value of the square of the observable and the expectation value of 
the 𝑛𝑡ℎ power of the observable. 

< 𝑂 > =  � 𝜓∗(𝑥, 𝑡) 𝑂 �  𝜓(𝑥, 𝑡) 𝑑𝑑
+∞

−∞
 

= 𝐾� 𝜓∗(𝑥, 𝑡)  𝜓(𝑥, 𝑡) 𝑑𝑑
+∞

−∞
= 𝐾 

< 𝑂2 > =  � 𝜓∗(𝑥, 𝑡) 𝑂 � �𝑂 �𝜓(𝑥, 𝑡)�  𝑑𝑑
+∞

−∞
 

= � 𝜓∗(𝑥, 𝑡) 𝑂 � ( 𝐾 𝜓(𝑥, 𝑡))  𝑑𝑑
+∞

−∞
  

= 𝐾2� 𝜓∗(𝑥, 𝑡) 𝜓(𝑥, 𝑡)  𝑑𝑑
+∞

−∞
 

= 𝐾2 =< 𝑂 >2 

Similary, 

< 𝑂𝑛 > =< 𝑂 >𝑛  

This means therefore that the wavefunction 𝜓(𝑥, 𝑡)  is characterized by an exact 
value 𝑘 for the observable 𝑂. The same value 𝐾 will be obtained for the 
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observable each time a measurement is made on the system in the state whose 
wavefunction is 𝜓(𝑥, 𝑡).  

 

Problems: Chapter I.2 

1. What is the De Broglie wavelength of a laboratory-scale particle (for 
example, a mass of 12 gm) moving at a laboratory-scale velocity (for 
example, 10 m/sec)? Is it necessary to consider the wave properties of 
matter in this case? 

2. Consider a pendulum bob of mass 0.10 Kg moving at 3 m/sec. Suppose that 
the momentum 𝑝𝑥   cannot be known more accurately than ∆𝑝𝑥 =
 10−6 𝑝𝑥 . What limitation does the indeterminancy principle impose on the 
simultaneous measurement of 𝑥? 

3. The De Broglie relationship tells us that the wavelength of the electron in 
any direction is inversely proportional to its momentum along that 
direction. If an electron microscope is to resolve two atoms space 3 Å apart 
normal to the electron beam, and the acceleration voltage along the beam 
is 50,000 volts, 
a. What is the largest undesired voltage that can be allowed to act on the 

electron normal to the beam before it reaches the target? 
b. What distance is the beam capable of resolving normal to the beam, 

assuming wavelength is the only limitation? 
4. The mass of a hydrogen nucleus (proton) is 1.67 × 10−27kg. Suppose a 

certain excited state of a hydrogen atom is known to have a lifetime of 
2.5 × 10−14 sec, what is the minimum error with which the energy of the 
excited state can be measured? If the center of a hydrogen atom can be 
located with a precision of 0.01 Å, what is the corresponding uncertainty in 
its velocity? 

5. If 𝜓1and 𝜓2 each be a solution of Schrödinger equation, show that 𝜓1+ 
𝜓2also is a solution of the Schrödinger equation. This is called the 
“Superposition Property”. 

6. According to postulate 4, we can express any function of 𝑥, 𝑓(𝑥) as a 
multiplication operator 𝑓(𝑥). In this sense, we know the operator for the 
potential energy 𝑉(𝑥). Is it possible to express the operator for 𝑉(𝑥) in any 
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other way? If so, write down the operator for 𝑉(𝑥). [ Hint: Total energy 
=kinetic energy + potential energy.] 

7. Are the following functions, eigen functions of momentum? If so, what is 
the eigen value? If not, what is the expectation value? 
a. 𝜓(𝑥) = 𝐴𝑒𝑖4𝑥 
b. 𝜓(𝑥) = 𝐴 sin 𝑘𝑘  
c. 𝜓(𝑥) = ∑ 𝐴𝑙𝑙 𝑒𝑖𝑖𝑖  

8. The differential equation of transverse vibration of a stretched string is 

𝑚
𝑑2𝑦
𝑑𝑡2 = 𝑇

𝑑2𝑦
𝑑𝑥2 

𝑤ℎ𝑒𝑒𝑒 𝑚 𝑖𝑖 𝑚𝑚𝑚𝑚 𝑝𝑝𝑝 𝑢𝑢𝑢𝑢 𝑙𝑙𝑙𝑙𝑙ℎ 
T is tension 
The string of length L is fastened at both ends so that  

𝑦(0) = 0 
𝑦(𝐿) = 0 

Assume a solution of the form 
𝑦 = 𝐴 ∙ sin𝑘𝑘 ∙ 𝑒𝑖𝑖𝑖 

Show that this leads to the two eigenvalue equations 
𝑑2𝑦
𝑑𝑡2 = −𝜔2𝑦, 𝑎𝑎𝑎  

𝑑2𝑦
𝑑𝑥2 = −𝑘2𝑦  

Solve this problem for 
a. The eigenvalues of 𝑘𝑛 
b. The eigen frequencies, 𝜔𝑛 
c. The eigen functions, 𝑦𝑛, corresponding to the eigenvalues. 

[Remember that 𝑒𝑖𝑖 = cos𝜃 + 𝑖 sin𝜃] 
 

9. If 0 is an observable whose quantum mechanical operator 𝑂 �  satisfies the 
eigenvalue equation 
 

𝑂 �𝜓(𝑥, 𝑡) = 𝑘 𝜓(𝑥, 𝑡) 

            Prove that  

                                < 𝑂3 > = < 𝑂 >3    
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Chapter 3 

Solution of Schrödinger Wave Equation: 

One Dimensional Problems 

I.3.1 Time Independent Schrödinger Equation 

 In the last chapter, we saw that the wave function 𝜓(𝑥, 𝑡) can be obtained 
by solving the Schrödinger’s equation. We will illustrate the solution of 
Schrödinger’s equation for simple physical problems in this chapter. 

 We mentioned that it is possible for the potential energy 𝑉 of a particle to 
be a function of time and space coordinates. Therefore, the most general form of 
Schrödinger’s equation is, 

                       − ℏ2

2𝑚
 𝜕

2

𝜕𝑥2  𝜓(𝑥, 𝑡) + 𝑉(𝑥, 𝑡)𝜓(𝑥, 𝑡) = 𝑖 ℏ 𝜕
𝜕𝜕
𝜓(𝑥, 𝑡)              (I.3.1) 

Most of the problems that we will be encountering in our studies will be those in 
which the potential energy is not a function of time. In such cases, the 
Schrödinger’s time dependent equation takes the form of Equation (I.2.6) and is 
repeated here 

                          − ℏ2

2𝑚
𝑑2

𝑑𝑥2 𝜓(𝑥, 𝑡) + 𝑉(𝑥)𝜓(𝑥, 𝑡) = 𝑖ℏ
𝜕

𝜕𝜕 
𝜓(𝑥, 𝑡)             (I.3.2) 

This equation, which contains two variables, can now be separated into two 
equations, each of which contains only one of the variables 𝑥 or 𝑡. 

 Let us assume that the solution 𝜓 can be expressed as a product of two 
separate functions, 𝜓(𝑥) which is only a function of 𝑥 and 𝑇(𝑡) which is only a 
function of 𝑡.  

                                                𝜓(𝑥, 𝑡) = 𝜓(𝑥)𝑇(𝑡)                                        (I.3.3) 

 On substitution of this solution in Equation (I.3.2), we get 

−
ℏ2

2𝑚𝑇(𝑡)
𝑑2

𝑑𝑥2 𝜓
(𝑥) + 𝑇(𝑡)𝑉(𝑥)𝜓(𝑥) = 𝑖ℏ𝜓(𝑥)

𝜕
𝜕𝜕 𝑇

(𝑡) 

Dividing this equation by 𝜓(𝑥)𝑇(𝑡) on both sides, we get 
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                              − ℏ2

2𝑚
1

𝜓(𝑥)
𝑑2

𝑑𝑥2 𝜓(𝑥) + 𝑉(𝑥) =
𝑖ℏ

𝑇(𝑡)
𝜕

𝜕𝜕 
𝑇(𝑡)                    (I.3.4) 

We notice that the left hand side is a function of the variable 𝑥 only and the right 
hand side is a function of the variable 𝑡 only. But 𝑥, the position and 𝑡, the time 
are independent variables therefore, Equation (I.3.4) is possible only if the left 
hand side and the right hand side of the equation are independently equal to a 
constant which we will denote by 𝐸. 

Then,  

                                                            𝑖ℏ 𝜕
𝜕𝜕 
𝑇(𝑡) = 𝐸𝐸(𝑡)                                   (I.3.5) 

                                    − ℏ2

2𝑚
 𝑑

2

𝑑𝑥2 𝜓(𝑥) + 𝑉(𝑥)𝜓(𝑥) = 𝐸𝜓(𝑥)                   (I.3.6) 

These two equations can be written in the form 

                                                               𝜕𝑇(𝑡)
𝜕𝜕 

= −𝑖𝑖
ℏ
𝑇(𝑡)                                    (I.3.5a) 

                                                𝑑
2𝜓(𝑥)
𝑑𝑥2

= −2 𝑚

ℏ2 (𝐸 − 𝑉) 𝜓(𝑥)                              (I.3.6a)  

Equation (I.3.5a) can be integrated directly and setting the arbitrary multiplication 
constant equal to unity, we have 

                                                      𝑇(𝑡) = exp �−𝑖𝑖𝑖
ℏ
�                                (I.3.7)       

It is clear that (𝑥) , which is the solution to Equation (I.3.6a), is the amplitude of 
𝜓(𝑥)  and 𝑇(𝑡) is the phase factor. Equation (I.3.6a) is called Schrödinger’s time 
independent equation.        

The total wave function  𝜓(𝑥) is therefore equal to 

                                            𝜓(𝑥, 𝑡) = 𝜓(𝑥) exp �−𝑖𝑖𝑖
ℏ
�                           (I.3.8) 

Let us now calculate the probability that a particle, represented by the wave 
function given in Equation (I.3.8), lies between 𝑥 and 𝑥 + 𝑑𝑑. This is equal to 

                     𝜓∗(𝑥, 𝑡) 𝜓(𝑥, 𝑡)𝑑𝑑 = 𝜓∗(𝑥) exp �𝑖𝑖𝑖
ℏ
�𝜓(𝑥) exp �−𝑖𝑖𝑖

ℏ
�        (I.3.9) 
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First, we note that the position probability density is independent of time. 
Second, the position probability density is determined by 𝜓(𝑥) which is the 
solution to the time-independent equation (I.3.6a). Therefore, a particle whose 
wave function is a solution of the time independent equation is said to be in a 
stationary state and the wave function is called the stationary solution. 

 The time-independent equation (I.3.6a) or the equation (I.3.5a), does not 
place any restriction on the value of 𝐸 and, therefore, in principle, we can have 
infinite number of solutions for the wave function corresponding to infinite 
number of values of 𝐸.  But, in practical physical problems, the requirements of 
proper behavior for the wave function to be one of those that correspond to 
certain allowed values of 𝐸. If we denote an allowed value of energy by a 
subscript 𝑛, then the corresponding wave function is also denoted by the same 
subscript 𝑛 to show that 𝜓𝑛  is an solution of the Schrödinger’s time-independent  
equation when 𝐸 = 𝐸𝑛 and these 𝜓𝑛’s for various values of 𝐸𝑛 are the only 
acceptable wave functions. 

 

I.3.2 Significance of 𝐸 

 The separation constant E, that we used to separate the time-dependence 
equations into two equations (I.3.5) and (I.3.6), has an important physical 
significance. We saw that the time-dependent part 𝑇(𝑡) was only a phase factor 
while the space-dependent part 𝜓(𝑥) determined the amplitude of the total 
wave function 𝜓(𝑥, 𝑡). This means that the exponent in 𝑇(𝑡) has no dimensions. 
That is, 𝐸𝐸

ℏ
 has no dimensions. Since ℏ has dimensions of energy-time, it means 𝐸 

should have dimensions of energy. 

 We can now show that E is actually the total energy. If we want to calculate 
the expectation value of the total energy, then according to postulate IV in the 

last chapter, we must replace the total energy by either the operator 𝑖ℏ 𝜕
𝜕𝜕 

 or the 

operator �− ℏ2

2𝑚
 𝑑

2

𝑑𝑥2
+ 𝑉(𝑥)�, in the expression for expectation value given in 

postulate V. Taking the operator 𝑖ℏ 𝜕
𝜕𝜕 

, the expectation value of energy is equal to 
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�𝜓∗(𝑥, 𝑡)𝑖ℏ
𝜕
𝜕𝜕  𝜓(𝑥, 𝑡)𝑑𝑑 = �𝜓∗(𝑥) 𝑒

𝑖𝑖𝑖
ℏ �𝑖ℏ

𝜕
𝜕𝜕 �   𝜓(𝑥)𝑒

−𝑖𝑖𝑖
ℏ 𝑑𝑑 

                                      = 𝐸 ∫𝜓∗(𝑥)   𝜓(𝑥)𝑒
−𝑖𝑖𝑖
ℏ 𝑑𝑑 = 𝐸                                     (I.3.10) 

 If we had started with the operator �− ℏ2

2𝑚  𝑑
2

𝑑𝑥2
+ 𝑉(𝑥)�, we would have 

arrived at the same result that the expectation value of energy is 𝐸. We have to 
show next, that 𝐸 is the exact of the particle. Recalling our discussion on 
probability if in each measurement we get the same value for the result, it means 
that the spread in the measured values is zero and the value that we obtain is the 
precise value for the measured observable. If in any series of measurements of a 
single observable, the mean square deviation of the results of measurement is 
zero, then the measured value is precise. We first observe that 𝜓(𝑥, 𝑡)  is an 
eigenfunction of energy with eigenvalue 𝐸. 

 If we start with the energy operator 𝑖ℏ 𝜕
𝜕𝜕 

, we get 

𝑖ℏ
𝜕
𝜕𝜕 

𝜓(𝑥, 𝑡) = 𝑖ℏ
𝜕
𝜕𝜕 

 �𝜓(𝑥)𝑒
−𝑖𝑖𝑖
ℏ � 

                                                                    = 𝐸𝜓(𝑥)𝑒
𝑖𝑖𝑖
ℏ = 𝐸𝐸(𝑥, 𝑡)                 (I.3.11) 

We would have obtained an eigenvalue if we had started with the energy 

operator �− ℏ2

2𝑚
 𝑑

2

𝑑𝑥2
+ 𝑉(𝑥)�. 

 

We conclude, therefore, that E is the precise value one would get for 
measurement of energy, no matter how many times the measurements are 
made. 

 We summarize, now, the procedures for obtaining the wave function 𝜓𝑛 
and the corresponding allowed energy value 𝐸𝑛, for a particle in a physics 
problem. 

(1) Write down the classical expression for potential energy V, of the 
particle, in the given situation. 
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(2) If V, the potential energy, is a function of time, set up Schrödinger’s 

time-dependent equation using the operator �− ℏ2

2𝑚  𝑑
2

𝑑𝑥2
+ 𝑉(𝑥)� for 

energy in the left hand side of the equation and the operator 𝑖ℏ 𝜕
𝜕𝜕 

 for 
energy in the right hand side. 

(3) If V is independent of time, i.e., 𝑉 = 𝑉(𝑥), set up Schrödinger’s time 
independent equation. 

(4) Using the boundary conditions in the given problem to solve the 
Schrödinger equation, find out the allowed values, 𝐸𝑛, of energy, and 
the corresponding wave function 𝜓𝑛. 

We will now illustrate these procedures by using them to find out 𝐸𝑛 and 
𝜓𝑛 for various physical systems and conditions. 

 

I.3.3 Particle in a Force Free Region 

 Let us consider a particle of mass 𝑚 which moves in a region where 
the potential energy is constant, i.e., 𝑉 = 𝑉0 for −∞ < 𝑥 < ∞. We will 
assume that the particle is constrained to move only along the 𝑥 direction 
since we are only equipped so far to consider one-dimensional problems. 
Since the potential energy is constant, there is no force acting on the 
particle since force is equal to the negative gradient of potential energy. 

The total energy operator is equal to �− ℏ2

2𝑚  𝑑
2

𝑑𝑥2
+ 𝑉0�. Since the potential 

energy is not a function of time, we use the time-independent Schrödinger 
equation. 

−
ℏ2

2𝑚
𝑑2

𝑑𝑥2 𝜓
(𝑥, 𝑡) + 𝑉0 = 𝐸 𝜓(𝑥, 𝑡) 

𝑖.e., 

 

                                      𝑑
2𝜓(𝑥,𝑡)
𝑑𝑥2

+ 2𝑚(𝐸−𝑉0)
ℏ2

𝜓(𝑥, 𝑡) = 0                      (I.3.12) 
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We will now distinguish two cases according to whether 𝐸 > 𝑉0 𝑜𝑜 𝐸 < 𝑉0. 

Case 1. 𝐸 > 𝑉0 

 Let us put 𝑘2 = 2𝑚(𝐸−𝑉0)

ℏ2  

 Then a general solution of Equation (I.3.12) is 

                                      𝜓 = 𝐴′𝑒𝑖𝑖𝑖 + 𝐵′𝑒−𝑖𝑖𝑖                                  (I.3.13)  

where 𝐴′ and  𝐵′ are constants to be evaluated from the conditions of the 
problem. It can be verified that Equation (I.3.13) is a solution to Equation (I.3.12) 
by direct substitution. Equation (I.3.12) is a second order equation and since the 
solution equation (I.3.13) contains two arbitrary constants 𝐴′ and  𝐵′, it is the 
general solution. If we write the expression for total wave function 
𝜓(𝑥, 𝑡) we will get 

𝜓(𝑥, 𝑡) = 𝐴′𝑒𝑖𝑖𝑖 − 𝑖𝑖𝑖ℏ + 𝐵′𝑒−𝑖𝑖𝑖 − 𝑖𝑖𝑖ℏ   

                                                    =  𝐴′𝑒𝑖 (𝑘𝑘 − 𝜔𝜔) +𝐵′𝑒− 𝑖(𝑘𝑘 − 𝜔𝜔)                (I.3.14) 

Where 𝜔 = 𝐸
ℏ 

 The first term in the solution equation (I.3.14) represents a plane wave 
traveling toward the +𝑥 direction and the second term represents a plane wave 
traveling toward the –𝑥 direction, with frequency  𝜐 = 𝜔

2𝜋
= 𝐸

ℏ  and wavelength 

λ = 2𝜋
𝑘

 

 An equally valid solution can be 

                                             𝜓 = 𝐴 𝑆𝑆𝑆 𝑘𝑘 + 𝐵 cos𝑘𝑘                         (I.3.15) 

If we include the time dependence, we would have 

                                        𝜓 = 𝐴 sin𝑘𝑘 𝑒−𝑖𝑖𝑖 + 𝐵 cos𝑘𝑘 𝑒−𝑖𝑖𝑖                   (I.3.16) 

where 𝜔 = 𝐸
ℏ 
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 Each term in Equation (I.3.16) represents a standing wave. The choice 
between traveling wave solution and standing wave solution depends on the 
physical problem. If we want to characterize an electron moving in the +𝑥 
direction, then we will use the traveling plane wave solution which represents a 
wave advancing toward the +𝑥 direction. If we want to talk of an electron in a 
finite enclosure, then we will find it more useful to represent it by a standing 
wave solution. When the particle is restricted to a certain region, the particle 
would bounce back and forth between the ends of the region with momentum of 
the same magnitude but of opposite direction. This will give rise to a standing 
wave description of the electron due to the superposition of positive going and 
negative going waves of equal amplitude. 

 Let us consider the traveling wave solution. If we try to calculate the 
position probability density 𝜓∗ 𝜓 it is uniform all over the space from 𝑥 =
−∞ 𝑡𝑡 𝑥 = +∞. In fact this is a consequence of the uncertainty relation since the 
momentum (𝑝 = ℏ𝑘) is very accurately known once 𝑘 is known and, therefore, 
the uncertainty in the position is infinite. If we want to localize a particle within 
certain region ∆𝑥, then we must construct a wave packet made up of plane wave 
solutions (of Schrödinger equation) whose 𝑘 values have a spread ∆𝑘 ≅ 1

∆𝑥
 . 

Case 2  𝐸 < 𝑉0 

 When the total energy is less than the potential energy, it means the kinetic 
energy is negative. Classically a particle can have only positive kinetic energy. 
Therefore, the situation 𝐸 < 𝑉0, is possible only quantum mechanically. 

 The Schrödinger equation reduces in this case to 

                                                    𝑑
2𝜓
𝑑𝑥2

=  2𝑚(𝑉0−𝐸)

ℏ2  𝜓 = 𝛽2𝜓                            (I.3.17) 

where 𝛽 = �2𝑚(𝑉0−𝐸)

ℏ2
 

The general solution to this equation is 

                                              𝜓 = 𝐴 𝑒−𝛽𝛽 + 𝐵𝑒+𝛽𝛽                                 (I.3.18) 
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 The wave function is an exponential function. Because of the requirement 
that 𝜓 should be zero. When |𝑥| goes to infinity, only exponentially decaying 
solutions will be allowed. We will see more about this in later problems. 

 

I.3.4 Transmission and Reflection at a Barrier 

 Let us consider a beam of particles which impinges on a potential barrier of 
height 𝑉0 as shown in Figure (I.3.1). 

 

The particles are incident from the left. Let the discontinuity in the potential be 
located at 𝑥 = 0. The Schrödinger equation in the two regions 𝑥 < 0 and 𝑥 > 0 
are as follows:  

                       − ℏ2

2𝑚
𝑑2

𝑑𝑥2 𝜓𝑙(𝑥) = 𝐸 𝜓𝑙(𝑥)             𝑓𝑓𝑓 𝑥 < 0                  (I.3.19) 

                       − ℏ2

2𝑚
𝑑2

𝑑𝑥2 𝜓𝑟(𝑥) = (𝐸 − 𝑉0)𝜓𝑟(𝑥)         𝑓𝑓𝑓 𝑥 > 0         (I.3.20) 

Where the subscripts 𝑙 and 𝑟 on the wave functions denote wave functions in the 
regions 𝑥 < 0 and 𝑥 > 0 respectively. 

 The general solutions are 

                                  𝜓𝑙(𝑥) =  𝐴 𝑒𝑘1𝑥 + 𝐵𝑒− 𝑘1𝑥                                   (I.3.21) 

                                  𝜓𝑟(𝑥) =  𝐶 𝑒𝑘2𝑥 + 𝐷𝑒− 𝑘2𝑥                                  (I.3.22) 
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where 

𝑘1 = �2𝑚𝑚
ℏ2  

and  

𝑘2 = �2𝑚(𝐸 − 𝑉0)
ℏ2  

We now distinguish two cases 𝐸 < 𝑉0 and 𝐸 > 𝑉0 

Case 1. 𝐸 < 𝑉0 

 In this case 𝑘1 is real while 𝑘2 is imaginary in Equation (I.3.21) and (I.3.22). 
This gives rise to real coefficient in the exponent of the Equation (I.3.22). 

 The solutions are 

                            𝜓𝑙(𝑥) =  𝐴 𝑒𝑘1𝑥 + 𝐵𝑒− 𝑖 𝑘1𝑥                                    (I.3.23a) 

                            𝜓𝑟(𝑥) =  𝐶 𝑒−𝑘2′𝑥 + 𝐷𝑒+𝑘2′𝑥                                   (I.3.23b) 

where 

−𝑘2′ = �2𝑚(𝑉0 − 𝐸)
ℏ2  

Since we require 𝜓𝑟  to be finite as 𝑥 → ∞, we have to set D=0. The boundary 
conditions are 

𝜓𝑙(0) = 𝜓𝑟(0) 𝑎𝑎𝑎 
𝑑𝜓𝑟
𝑑𝑑 �𝑥=0

 

This means 𝐴 + 𝐵 = 𝐶 

𝑖𝑘1(𝐴 − 𝐵) = − 𝑘2′ 𝐶 

We may now solve for 𝐵
𝐴

  and 𝐶
𝐴

 as equal to 
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                                                          𝐵
𝐴

= 𝑖𝑘1+ 𝑘2′

𝑖𝑘1− 𝑘2′
                                      (I.3.24a) 

                                                                  
𝐶
𝐴

= 2 𝑖𝑘1
𝑖𝑘1− 𝑘2′

                                      (I.3.24b) 

 What is the physical interpretation of these results? Particles with energy E 
are incident on the potential barrier from the left. This is represented by 𝐴 𝑒𝑘1𝑥 in 
Equation (I.3.23a). At the potential barrier, classically the particle will be totally 
reflected since 𝐸 < 𝑉0. But quantum mechanically only partial reflection takes 
place, the reflected particle being represented by 𝐵𝑒− 𝑖 𝑘1𝑥  in equation (I.2.23a). 
The particle has a finite probability of penetrating into the region 𝑥 > 0. The wave 
function for the transmitted particle is exponentially decay with x as given by 
𝐶 𝑒−𝑘2′𝑥. 

 Therefore, to the left of the barrier we have an incident and reflected wave 
while to the right of the barrier we have an exponentially decaying probability of 
finding the particle. 

Case 2 𝐸 > 𝑉0 

 In this case both 𝑘1 𝑎𝑎𝑎 𝑘2 are real. We are considering particles that are 
incident on the barrier from the left. As before, the first term in Equation (I.3.21) 
represents one such particle. The reflected particle is represented ty the second 
term in Equation (I.3.21). The transmitted particle in the region 𝑥 > 0 is 
represented by the first term in Equation (I.3.22). Since no particles are incident 
on the barrier from the right, we take 𝐷 = 0 in Equation (I.3.22). The boundary 
condition at 𝑥 = 0 gives 

                                       𝐴 + 𝐵 = 𝐶         and           i𝑘1(𝐴 − 𝐵) = 𝑖𝑘2 C 

This leads to  

    
                      𝐵

𝐴
= 𝑘1−𝑘2

𝑘1+𝑘2
                                     𝐶

𝐴
= 2 𝑘1

𝑘1+𝑘2
                     (I.3.25) 

We see, therefore, that the particle incident from the left particle incident from 
the left has a certain probability of getting reflected and certain probability of 
getting transmitted. The wavefunctions are shown in Figure (I.3.2) 
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  I.3.5 Finite Potential Well; 

 We will now consider the problem of a particle moving under a potential 
well as shown in Figure (I.3.3). The potential is zero for |𝑥| less than a, and is 
equal to 𝑉𝑜 for |𝑥| > 𝑎. Such a potential is called rectangular or square well 
potential. Again we distinguish two cases  𝐸 > 𝑉𝑜,  𝐸 < 𝑉𝑜. 

 

Case 1 𝐸 < 𝑉𝑜: 

Classically, the particle is trapped inside the well (−𝑎 < 𝑥 < 𝑎) since 
outside the well the energy E is less than 𝑉0. However, quantum mechanically 
there is a certain probability that the particle will be found outside the well. We 
will consider three regions as follows: 
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 Region I 𝑥 < 𝑎 

 Region II −𝑎 < 𝑥 < 𝑎 

 Region III 𝑥 > 𝑎 

 The Schrödinger equations in the three regions are as follows: 

 The Region I and III, we have  

                                    − ℏ2

2𝑚
𝑑2

𝑑𝑥2 𝜓(𝑥) + 𝑉0𝜓(𝑥) = 𝐸 𝜓(𝑥)                     (I.3.26) 

In Region II, we have  

                                     − ℏ2

2𝑚
𝑑2

𝑑𝑥2 𝜓(𝑥) = 𝐸 𝜓(𝑥)                                       (I.3.27) 

From our previous discussions we can write the general solutions for the 
wavefunction in the three regions as follows: 

In Region I,              𝜓𝐼(𝑥) =  𝐴 𝑒𝑘2𝑥 + 𝐵𝑒− 𝑘2𝑥                                     (I.3.28) 

In Region II,               𝜓𝐼𝐼(𝑥) =  𝐶 𝑒𝑖𝑖1𝑥 + 𝐷𝑒− 𝑖 𝑘1𝑥                                 (I.3.29) 

In Region III,              𝜓𝐼𝐼𝐼(𝑥) =  𝐺 𝑒𝑖𝑖2𝑥 + 𝐹𝑒− 𝑖 𝑘2𝑥                                     (I.3.30) 

Where 

𝑘2 = �2𝑚(𝑉0 − 𝐸)
ℏ2  

And  

𝑘1 = �2𝑚𝑚
ℏ2  

These wavefunctions 𝜓𝐼 ,𝜓𝐼𝐼 ,𝜓𝐼𝐼𝐼  should satisfy the conditions of finiteness single-
valuedness and continuity. 

 In Region I, when 𝑥 → −∞, the term 𝑒− 𝑘2𝑥will increase to infinity and 
therefore we set 𝐵 = 0. Similarly, in Region III, we set 𝐺 = 0, in order that 
𝜓𝐼𝐼𝐼→0   𝑎𝑎 𝑥 → −∞. The wavefunctions becomes 
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                                                𝜓𝐼(𝑥) =  𝐴 𝑒𝑘2𝑥                                       (I.3.31) 

                                                𝜓𝐼𝐼(𝑥) =  𝐶 𝑒𝑖𝑖1𝑥 + 𝐷𝑒− 𝑖 𝑘1𝑥               (I.3.32) 

                                                𝜓𝐼𝐼𝐼(𝑥) =  𝐹𝑒− 𝑖 𝑘2𝑥                                      (I.3.33) 

The boundary conditions are 

𝜓𝐼(−𝑎) = 𝜓𝐼𝐼(−𝑎)    and             𝑑𝜓𝐼
𝑑𝑑
�
𝑥=−𝑎

= 𝑑𝜓𝐼𝐼
𝑑𝑑

�
𝑥=−𝑎

 

and 

𝜓𝐼𝐼(𝑎) = 𝜓𝐼𝐼𝐼(𝑎)          and             𝑑𝜓𝐼𝐼
𝑑𝑑

�
𝑥=𝑎

= 𝑑𝜓𝐼𝐼𝐼
𝑑𝑑

�
𝑥=𝑎

 

These boundary conditions yield 

                           𝐴 𝑒−𝑘2𝑎 = 𝐶 𝑒−𝑖𝑖1𝑎 + 𝐷𝑒  𝑖 𝑘1𝑎                                (I.3.33a) 

                          𝑘2𝐴 𝑒−𝑘2𝑎 = 𝑖𝑖1𝐶 𝑒−𝑖𝑖1𝑎 −  𝑖 𝑘1𝐷𝑒  𝑖 𝑘1𝑎               (I.3.33b) 

                          𝐹𝑒− 𝑖 𝑘2𝑎 = 𝐶 𝑒𝑖𝑖1𝑎 + 𝐷𝑒− 𝑖 𝑘1𝑎                                (I.3.33c) 

                        − 𝑘2𝐹𝑒− 𝑖 𝑘2𝑎 = 𝑖𝑖1𝐶 𝑒𝑖𝑖1𝑎 −  𝑖 𝑘1𝐷𝑒− 𝑖 𝑘1𝑎           (I.3.33d) 

By eliminating 𝐴 between Equation (I.3.33a) and (I.3.33b) we get 

                𝐶𝑘2 𝑒−𝑖𝑖1𝑎 + 𝐷𝑘2𝑒  𝑖 𝑘1𝑎 = 𝑖𝑖1𝐶 𝑒−𝑖𝑖1𝑎 −  𝑖 𝑘1𝐷𝑒  𝑖 𝑘1𝑎  (I.3.34) 

i.e., 

𝐶(𝑘2 − 𝑖𝑖1)𝑒−𝑖𝑖1𝑎 = −𝐷(𝑘2 +  𝑖 𝑘1)𝑒  𝑖 𝑘1𝑎 

Therefore,  

                                    𝐶
𝐷

= −� 𝑘2+𝑖𝑖1
𝑘2− 𝑖 𝑘1

� 𝑒 𝑖 2 𝑘1𝑎                                          (I.3.35) 

Similarly by eliminating F between Equation (I.3.33c) and (I.3.33d), we get 

      −𝑘2𝐶 𝑒𝑖𝑖1𝑎−𝑘2𝐷𝑒− 𝑖 𝑘1𝑎 = 𝑖𝑖1𝐶 𝑒𝑖𝑘1𝑎 −  𝑖 𝑘1𝐷𝑒− 𝑖 𝑘1𝑎            (I.3.36) 

i.e., 
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       −𝐶(𝑘2 +  𝑖 𝑘1)𝑒𝑖𝑖1𝑎 = 𝐷(𝑘2 −  𝑖 𝑘1)𝑒− 𝑖 𝑘1𝑎                          

            𝐶
𝐷

= −�𝑘2− 𝑖𝑖1
𝑘2+ 𝑖 𝑘1

� 𝑒−𝑖 2 𝑘1𝑎                                                                  (I.3.37) 

Multiplying Equation (I.3.35) and (I.3.37), we get 

                     𝐶
2

𝐷2
= 1                   i.e.,                                𝐶

𝐷
= ±1                              (I.3.38) 

Let 𝐶 = 𝐷. Then comparing Equation (I.3.33a) and (I.3.33c), we see 𝐴 = 𝐹. On 
the other hand, if 𝐶 = −𝐷, we will get 𝐴 = −𝐹. By putting 𝐶 = 𝐷 in Equation 
(I.3.34) we get 

𝑒𝑖𝑖1𝑎 + 𝑒−𝑘1𝑎 =
 𝑖 𝑘1
𝑘2

�𝑒− 𝑖𝑖1𝑎 − 𝑒𝑖𝑖1𝑎� 

                                                         =   𝑘1
𝑖 𝑘2

�𝑒  𝑖𝑖1𝑎 − 𝑒− 𝑖𝑖1𝑎� 

i.e., 

                                  cos𝑘1𝑎 =  𝑘1
𝑘2

sin𝑘1𝑎  or   tan (𝑘1𝑎) =  𝑘2
𝑘1

                (I.3.39) 

 Similarly by putting 𝐶 = −𝐷, we get 

cos 𝑘1𝑎 = −
 𝑘1
𝑘2

cos𝑘1𝑎 

                                            tan (𝑘1𝑎) = −  𝑘1
𝑘2

                                          (I.3.40) 

We recall that  

𝑘2 = �2𝑚(𝑉0 − 𝐸)
ℏ2  

and  

𝑘1 = �2𝑚𝑚
ℏ2  
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Solution to Equation (I.3.39) and (I.3.40) can be found graphically. For this 
purpose we write Equation (I.3.40) as 

                                                      cos 𝑘1𝑎 = −  𝑘1
𝑘2

                                            (I.3.41)         

Given the value of 𝑎 and 𝑉0 , we must solve Equation (I.3.39) and (I.3.41). 

 We can transform Equations (I.3.39) and (I.3.41) to be 

                                                  𝜖 tan 𝜖 =  �2𝑚𝑉0 𝑎2

ℏ2 − 𝜖2                                 (I.3.42) 

and 

                                                  −𝜖 cot 𝜖 =  �2𝑚𝑉0 𝑎2

ℏ2 − 𝜖2                               (I.3.43) 

where 

                                                       𝜖 = 𝑘1𝑎 = �2𝑚𝑚 𝑎2

ℏ2                                      (I.3.44) 

If we plot the function 𝑝(𝜖) = 𝜖 tan 𝜖 as a function of 𝜖 and plot the function  

𝑞(𝜖) = �2𝑚 𝑉0 𝑎2

ℏ2
− 𝜖2 on the same graph sheet., the points of intersection give 

the solutions to Equation (I.3.42). In Figure (I.3.4) the function 𝑝(𝜖) has zeros at 
𝜖 = 0,𝜋, 2𝜋,   𝑒𝑒𝑒…𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎 𝜖 = 𝜋

2
, 3 𝜋
2

,  etc.. The function 𝑞(𝜖) is a 

quarter cycle with radius �2𝑚𝑉0 𝑎2

ℏ2
 . It is clear from this figure that only discrete 

solutions are possible corresponding to the points of intersection for 𝐸 < 𝑉0. The 
number of such solutions depends on  𝑉0, which determines the value of the 
radius of the quarter cycle. Larger value of  𝑉0 corresponds to a larger number of 
points of intersection. 

 Equation (I.3.43) can be solved similarly by plotting a function 𝑝′(𝜖) =

−𝜖 cot 𝜖  and 𝑞(𝜖) = �2𝑚 𝑉0 𝑎2

ℏ2
− 𝜖2 on the same graph sheet. The functdion 

𝑝′(𝜖) = −𝜖 cot 𝜖 has zeros at 𝜋
2

, 3 𝜋
2

,  etc.. and asymptotes at 𝜋, 2𝜋,   𝑒𝑒𝑒. 

 The bound state wavefunctions are shown in Figure (I.3.5) 
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To summarize, the energy values of a particle moving under the influence of a 
potential well are discrete for 𝐸 < 𝑉0,  i.e., the energy values are quantized. The 
existence of such quantize energy levels is characteristic of all cases where the 
particle, according to classical picture, is bound to a small region of space. For this 
reason, the discrete energy levels are called bound states. It must be borne in 
mind that classical physics does not require quantization of energy levels of 
particles which are bound in space. If we make the width 2a, of the square well, 
large enough to approach laboratory scale, then the discrete levels will be so 
close that the energy can almost be considered continuous. Thus we see the 
quantum mechanical theory predicts the same results as classical theory when we 
consider systems of macroscopic dimensions. 

Case 𝐸 > 𝑉0 

 In this case, it can be verified that the solution for the wavefunctions are as 
follows: 

Region I,              𝜓𝐼(𝑥) =  𝐴 𝑒𝑖𝑖2𝑥 + 𝐵𝑒− 𝑘2𝑥                                        (I.3.45) 

Region II,               𝜓𝐼𝐼(𝑥) =  𝐶 𝑒𝑖𝑖1𝑥 + 𝐷𝑒− 𝑖 𝑘1𝑥                                    (I.3.46) 

Region III,              𝜓𝐼𝐼𝐼(𝑥) =  𝐺 𝑒𝑖𝑖2𝑥 + 𝐹𝑒− 𝑖 𝑘2𝑥                                         (I.3.47) 

where 

𝑘2 = �2𝑚(𝑉0 − 𝐸)
ℏ2  

and  

𝑘1 = �2𝑚𝑚
ℏ2  
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The solutions in all the three regions are now sinusoidal, the only difference being 
that the solutions in Region and III have smaller momentum (linger wavelength) 
and the solution in Region II corresponds to a larger momentum (shorter 
wavelength). The boundary conditions are the same as before at 𝑥 = −𝑎  and 
𝑥 = 𝑎. On inserting these boundary conditions it will be seen that there is no 
restriction on the value of energy can enter this region of space. For this reason, 
these energy states are called free states. 

 

I.3.6 Infinite Potential Well 

 We now consider the case of a particle confined to move under the 
influence of a square well whose walls are infinitely high. The potential energy is, 
𝑉0 = 0  when the particle is inside the well and is infinite everywhere else. We 
will choose the origin of the coordinate system differently this time. It must be 
pointed out that the answer to physical problems will not depend on the choice of 
the coordinate system or the origin. The reason for our changing to a different 
origin this time is just to expose the student to various methods of treating the 
problem. Therefore, we define the infinite potential well as follows: 

                                        𝑉0 = 0    when    0 < 𝑥 < 𝐿 

                                        𝑉0 = ∞    when    𝑥 < 0   𝑎𝑎𝑎 𝑥 > 𝐿 

The requirement that the potential energy is infinite on the walls gives us the 
condition that the wavefunction 𝜓  is 0 on the walls. The solution to the 
Schrödinger Wave Equation is 

                          𝜓 = 𝐴 sin𝑘𝑘 + 𝐵 cos𝑘𝑘   where  𝑘 = �2𝑚𝑚
ℏ2

 

Inside the well and is zero everywhere else. The boundary condition is 𝜓 = 0 at 
𝑥 = 0 𝑎𝑎𝑎 𝑥 = 𝐿. 

 In order for 𝜓 to be zero at the origin we must put 𝐵 = 0. At 𝑥 = 𝐿, again is 
zero. This means 𝑠𝑠𝑠(𝑘𝑘) = 0. Therefore, 𝐾𝐾 = 𝑛𝑛. The wavefunction becomes,  

𝜓 = 𝐴 sin
𝑛𝑛𝑛
𝐿   



60 
 

The normalization constant 𝐴, can be shown equal to �2
𝐿
. The energy of the 

particle is equal to 

                                          𝐸𝑛 = ℏ2𝑘2

2𝑚
= ℏ2𝜋2

2𝑚
 𝑛

2

𝐿2
                                       (I.3.48) 

Therefore, we see that energy is quantized and the quantum number is n which 
specifies a particular energy level for each value of n. Thys we have arrived at the 
important result that the particle confined to an infinite well can take on only one 
or another of a set of discrete values of energy. The wavefunctions for the three 
lowest energy states for the square well with infinite sides are shown in Figure 
(I.3.6) 
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Problems: Chapter I.3 

1. Consider a one dimensional potential well defined as follows: 𝑉 = − 𝑉0  
between 𝑥 = 0 𝑎𝑎𝑎 𝑥 = a .  𝑉 = 0 is everywhere else. If particles are 
traveling in position 𝑥 direction (𝐸 > 0), find the amplitude of the wave 
representing the particle reflected at 𝑥 = 0 in terms of the amplitude of 
the wave representing the particle incident from left to right at 𝑥 = 0. 

2. Calculate the root mean square position √< 𝑥2 > for the state 𝑛 = 1 for 
an electron confined in a one dimensional infinite well of width ‘a’. [Refer 
to the appropriate table of integrals.] 

3. We saw that the wave function of an electron confined to the space  
0 ≤ 𝑥 ≤ 𝐿 is given by 𝑢(𝑥) = 𝐴 sin 𝑛𝑛𝑛

𝐿
 where 𝑛 = integer. 𝐴 is called the 

normalization constant. Show 𝐴 is equal to �2
𝐿
. 

4. If we solved the problem of the particle confined in a one dimensional 
infinite well of width 𝐿, by choosing the origin of the coordinate system to 
be in the center of the well, what solutions would you obtain? Show these 
solutions lead exactly to the same results as the ones obtained with the 
origin of the coordinate system chosen at one end of the wall. 

5. Consider a potential barrier of height 𝑉0 existing between 𝑥 = 0 and 𝑥 = 𝑎. 
Assume potential energy is zero everywhere else. Calculate the tunneling 
probability of an electron incident from left to right with energy 𝐸 < 𝑉0. 

6. Find out the energy eigenstates of an electron bound in a square well 
potential of height of 10 eV and width 10 Å. Determine the energy of each 
of the eigenstates. Plot qualitatively the charge distribution in the three 
cases. 

7. For a particle confined to the one dimensional region from –𝑎 to +𝑎 on the 
𝑥 axis, with  𝑉0 = 0  in this region and  𝑉0 > 𝐸 outside: 
Considering the graphical solution to Schrödinger equation shown in Figure 
I.3.4 of the text 
a. How can we make the radius of the quadrant of the circle, q(𝜖), very 

large compared to the p(𝜖) plot shown? 
b. What does doing so represent physically? 
c. This gives us many possible solutions, with closely spaced energy levels. 

Find a crude approximation for a formula for the first few energy levels 
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in this case. [Hint: Assume the intersections of p(𝜖) and q(𝜖) occur along 
the almost horizontal portion of q(𝜖) approximately at the asymptotes 
of p(𝜖), ] 

d. From this formula, show how the energy level separation depends upon 
ℎ,𝑎 𝑎𝑎𝑎 𝑚. 

e. Substitute your formula for allowed energies into the expression for 𝑘1, 
and draw sketches showing how the first few wave functions (lowest 
energy levels) look between –𝑎 𝑎𝑎𝑎 𝑎. 
[Hint: The approximations called for here are the same as those for the 
infinite potential well.] 

8. How small must a single crystal of a metal be if the spacing between 
electronic energy levels at low quantum numbers is to be detected in a 
physical experiment that can detected an energy change of 0.01 eV? 
Assume that the problem can be treated as a single electron free to move 
within the walls of a cubic box. 

9. What is the potential energy if the wave function of a particle moving 
under this potential is 𝑒9000𝑥−1.4×107𝑡  where 𝑥 is measured in cm? 

10. In Figure I.3.4, we considered solutions only in the first quadrant i.e. 
positive values for 𝜖,𝑝(𝜖),𝑎𝑎𝑎 𝑝′(𝜖). Give arguments to justify this, 

  

 

 
   

 

 

 

 

 

 

 



64 
 

Chapter I.4 

Three Dimensional Schrödinger Equation 

I.4.1 Three Dimensional Systems 

 Until now, we have been concerning ourselves only with physical systems 
which are one dimensional. While the one dimensional problems illustrated the 
essential features of quantum mechanics, the real physical problems are three 
dimensional. We will now study the extension of the quantum mechanical 
principles to three dimensional case. The wavefunction now, will be a function of 
not only x and t, but also of y and z, i.e., 𝜓 = 𝜓(𝑥,𝑦, 𝑧, 𝑡). The operators 
corresponding to 𝑦, 𝑧, 𝑃𝑦 𝑎𝑎𝑎 𝑃𝑧 are exactly similar to the operators for 𝑥 and 𝑃𝑥. 
In other words, the position variables 𝑦 and 𝑧 become multiplication operators 𝑦 
and 𝑧 which multiply the wavefunction. The 𝑦 and 𝑧 components of the 

momentum operators 𝑃𝑦𝑎𝑎𝑎 𝑃𝑧 become differential operators, ℏ
𝑖
𝜕
𝜕𝜕

 and  ℏ
𝑖
𝜕
𝜕𝜕 

, 

which operate on the wavefunction. The requirement on the proper behavior of 

the wavefunction becomes that 𝜓, 𝜕𝜓
𝜕𝜕

, 𝜕𝜓
𝜕𝜕

 𝑎𝑎𝑎 𝜕𝜓
𝜕𝜕

  are finite, continuous and 

single-values, throughout the configuration space, i.e., for all values of 𝑥, 𝑦,and 𝑧. 
The normalization condition or the square integrable condition becomes 

                        ∫ ∫ ∫ 𝜓∗∞
𝑧=−∞

∞
𝑦=−∞

∞
𝑥=−∞ 𝜓 𝑑𝑑𝑑𝑑𝑑𝑑 = ∫ 𝜓∗𝜓 𝑑𝑑𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣   

where 𝑑𝑑, the elementary volume= 𝑑𝑑𝑑𝑑𝑑𝑑 

Similarly the domain of integration for the calculation of the expectation value is 
three dimensional. We have so far considered only the Cartesian coordinate 
variables 𝑥,𝑦, 𝑧 but it is possible to use other coordinate variables also, as will see 
now.  

 The operator corresponding to the momentum vector 𝑃�⃗  can now be 
written by vectorially combining the operators for the components of 
momentum.  

Therefore, 

𝑃�⃗𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 =
ℏ
𝑖  �𝑎⃗𝑥

𝜕
𝜕𝜕 + 𝑎⃗𝑦

𝜕
𝜕𝜕 + 𝑎⃗𝑧

𝜕
𝜕𝜕� 
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This can now be shortened to ℏ
𝑖
 ∇��⃗  where ∇��⃗  is the gradient operator operating on 

the wavefunction. Similarly, the operator for the square of the momentum can be 
written as - ℏ2∇2 where ∇2 is the familiar Laplacian operator and is equal to the 
divergence of the gradient. In Appendix I we have given the gradient and 
divergence operator in the Cartesian, cylindrical and spherical coordinate system. 

 

I.4.2 Particle in a Three Dimensional Box 

 We will now consider the case of a particle of mass m confined to a 
rectangular three dimensional box. Since the box is rectangular, we will choose 
the cartesian coordinate system. The box is bounded by 𝑥 = 0 and 𝑥 = 𝐿𝑥, 𝑦 = 𝑜 
and 𝑦 = 𝐿𝑦 and 𝑧 = 0 and 𝑧 = 𝐿𝑧. The potential energy is taken as zero inside the 
box and infinite on the walls.   

The Schrödinger equation for the particle is given by 

− ℏ2

2𝑚
� 𝜕

2

𝜕𝑥2 +
𝜕2

𝜕𝑦2 +
𝜕2

𝜕𝑧2� 𝜓(𝑥, 𝑦, 𝑧) = 𝐸 𝜓(𝑥,𝑦, 𝑧)                               (I.4.1) 

By writing 𝜓 as a product of three functions 𝜓 = 𝑋 𝑌 𝑍, where 𝑋 is only a function 
of 𝑥. 𝑌 is only a function of 𝑦 and 𝑍 is only a function of 𝑧, we can separate the 
Equation (I.4.1) into three single variable equations given below: 

− ℏ2

2𝑚
𝑑2

𝑑𝑥2  𝑋(𝑥) = 𝐸𝑥𝑋(𝑥)                                     (I.4.2) 

− ℏ2

2𝑚
𝑑2

𝑑𝑦2  𝑌(𝑦) = 𝐸𝑦𝑌(𝑦)                                     (I.4.3) 

− ℏ2

2𝑚
𝑑2

𝑑𝑧2  𝑍(𝑧) = 𝐸𝑧𝑍(𝑧)                                      (I.4.4) 

where 

              𝐸 = 𝐸𝑥 + 𝐸𝑦 + 𝐸𝑧                                       

Once we solve the three one dimensional equations and determine 𝑋,𝑌,𝑍  and 
𝐸𝑥,𝐸𝑦 𝑎𝑎𝑎 𝐸𝑥, we have determined 𝜓 and E. Let us consider Equation (I.4.2). We 
readily recognize this as the equation for the one dimensional infinite well which 
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we have already solved in the last chapter. The boundary condition for 𝑋 is that 
𝑋 = 0 at 𝑥 = 0 𝑎𝑎𝑎 𝑥 = 𝐿𝑥. The wavefunction 𝑋 is equal to 

                                               𝑋 = � 2
𝐿𝑥

sin 𝑛𝑥𝜋𝜋
𝐿𝑥

                                                        (I.4.5) 

Where 𝑛𝑥 is a positive integer. Similarly the other solutions ,𝑌and 𝑍 are given by 

                                               𝑌 = �
2
𝐿𝑦

sin 𝑛𝑦𝜋𝜋
𝐿𝑦

                                                       (I.4.6) 

                                                 𝑍 = �2
𝐿𝑧

sin 𝑛𝑧𝜋𝜋
𝐿𝑧

                                                      (I.4.7) 

The total wavefunction 𝜓 is therefore equal to  

                                      𝜓 = �
8

𝐿𝑥𝐿𝑦𝐿𝑧
sin 𝑛𝑥𝜋𝜋

𝐿𝑥
sin 𝑛𝑦𝜋𝜋

𝐿𝑦
sin 𝑛𝑧𝜋𝜋

𝐿𝑧
                            (I.4.8) 

The total energy E which we will characterize by the subscripts 𝑛𝑥,𝑛𝑦 ,𝑛𝑧 to 
denote the quantum numbers, is equal to  

                                       𝐸𝑛𝑥𝑛𝑦𝑛𝑧 = ℏ2𝜋2

2𝑚
�𝑛𝑥

2

𝐿𝑥2 +
𝑛𝑦2

𝐿𝑦2 +
𝑛𝑧2

𝐿𝑧2�                            (I.4.9) 

Similarly each wavefunction is characterized by the quantum numbers 𝑛𝑥,𝑛𝑦,𝑛𝑧 
and therefore for each set of integral numbers 𝑛𝑥,𝑛𝑦,𝑛𝑧 we have a wavefunction. 
We now see a new possibility which we had not seen earlier, viz., the possibility of 
two wavefunctions corresponding to the same energy. When this happens the 
two wavefunctions are said to be degenerate. 

 As an example let us consider a cubical box  𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 𝐿. Then 

𝐸𝑛𝑥𝑛𝑦𝑛𝑧 =
ℏ2𝜋2

2𝑚 𝐿2
�𝑛𝑥2 + 𝑛𝑦2 + 𝑛𝑧2� 

All the different wavefunctions which are related such that 𝑛𝑥2 + 𝑛𝑦2 + 𝑛𝑧2 =
𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣, are degenerate. For example, 𝜓112, 𝜓121 and 𝜓211 are degenerate 

with the same energy equal to 6 ℏ2𝜋2

2𝑚 𝐿2
. In Figure (I.4.1) we have shown the energy 

levels of the cubical box and the degeneracies involved. 
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I.4.3 Hydrogen Atom 

Let us now treat the hydrogen atom quantum mechanically. We shall 
assume as before that the nucleus is infinitely heavy in comparison with the 
electron and therefore we will consider the nucleus as fixed at the origin. The 
position of the electron is specified by the three spherical coordinate, 𝑟, 𝜃 and  ∅, 
as shown in Figure I.4.2. The time independent Schrödinger equation is 

                ∇2𝜓 + 2𝑚
ℏ2

[E − V(r)] 𝜓 = 0                                     (I.4.10) 
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where the potential energy is    𝑉(𝑟) = − 𝑒2

4𝜋𝜖0 𝑟
                                           (I.4.11) 

In a spherical coordinates, 

     ∇2𝜓 = 1
𝑟2

𝜕
𝜕𝜕
�𝑟2 𝜕𝜕

𝜕𝜕
� + 1

𝑟2𝑠𝑠𝑠𝑠
𝜕
𝜕𝜕
�𝑠𝑠𝑠𝑠 𝜕𝜕

𝜕𝜕
� + 1

𝑟2𝑠𝑠𝑠2𝜃
𝜕2𝜓
𝜕∅2

              (I.4.12) 

Assuming the solution 𝜓  is a product of the three functions, 𝑅 which is a function 
of 𝑟 only, Θ which is a function of 𝜃 only, and ф which is a function of ∅,   

𝜓(𝑟, 𝜃, ∅) = 𝑅(𝑟) Θ(𝜃) ф(∅ ) 

So, ∇2𝜓 is 

∇2𝜓 =
Θф
𝑟2

𝜕
𝜕𝜕 �𝑟

2 𝜕𝜕
𝜕𝜕� +

𝑅ф
𝑟2𝑠𝑠𝑠𝑠

𝜕
𝜕𝜕 �𝑠𝑠𝑠𝑠 

𝜕Θ
𝜕𝜕� +

𝑅Θ
𝑟2𝑠𝑠𝑠2𝜃

𝜕2ф
𝜕∅2   

By substituting this in Equation (I.4.10) and the Schrödinger equation becomes 

Θф
𝑟2

𝜕
𝜕𝜕 �𝑟

2 𝜕𝜕
𝜕𝜕� +

𝑅ф
𝑟2𝑠𝑠𝑠𝑠

𝜕
𝜕𝜕 �𝑠𝑠𝑠𝑠 

𝜕Θ
𝜕𝜕� +

𝑅Θ
𝑟2𝑠𝑠𝑠2𝜃

𝜕2ф
𝜕∅2  

+ 2𝑚
ℏ2
�E − V(r)�𝑅Θф = 0                            (I.4.13) 

We can rewrite this equation as  

1
ф
𝜕2ф
𝜕∅2 = −�

𝑠𝑠𝑠2𝜃 
𝑅

𝜕
𝜕𝜕 �𝑟

2 𝜕𝜕
𝜕𝜕� +

𝑠𝑠𝑠𝑠 
Θ

𝜕
𝜕𝜕 �𝑠𝑠𝑠𝑠 

𝜕Θ
𝜕𝜕�� −

2𝑚
ℏ2 �E − V(r)� 𝑟2𝑠𝑠𝑠2𝜃 

                  (I.14.14) 

where the left hand side is a function of ∅ only , and the right hand side is only a 
function of 𝑟 and 𝜃. As argued before this is possible only if each side is 
independently equal to the same constant which we will write as −𝑚𝑙

2 for 
convenience. Then 

                                                      
𝜕2ф
𝜕∅2

= −𝑚𝑙
2ф                                             (I.14.15) 

The solution to this equation is  

                                                      ф = A 𝑒±𝑖𝑚𝑙 ∅                                                     (I.14.16) 
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where A is a normalization constant. If we normalize each of the three solutions 
𝑅(𝑟)Θ(𝜃)ф(∅ ), then their product equal to 𝜓 will also be normalized. It can be 

shown that the normalization constant 𝐴 for ф, is equal to � 1
2𝜋

 .  

Therefore,  

ф = � 1
2𝜋

  𝑒  𝑖𝑚𝑙 ∅                                     (I.4.17) 

We also require that ф be single values. This means 

ф(∅ ) = ф(∅+ 2𝜋)              i.e.  𝑒  𝑖𝑚𝑙 ∅ = 𝑒  𝑖𝑚𝑙 (∅+2𝜋) 

This is possible only if 𝑚𝑙 is an integer positive or negative. For a given value of 
𝑚𝑙 , we can write Equation (I.4.14) as  

    𝑠𝑠𝑠
2𝜃 
𝑅

𝜕
𝜕𝜕
�𝑟2 𝜕𝜕

𝜕𝜕
� + 𝑠𝑠𝑠𝑠 

Θ
𝜕
𝜕𝜕
�𝑠𝑠𝑠𝑠 𝜕Θ

𝜕𝜕
� + 2𝑚

ℏ2
[E − V(r)] 𝑟2𝑠𝑠𝑠2𝜃 −𝑚𝑙

2 = 0   
               
                                                            (I.4.18a) 

This equation can be rewritten as  

1 
𝑠𝑠𝑠𝑠

1
Θ

𝜕
𝜕𝜕
�𝑠𝑠𝑠𝑠 𝜕Θ

𝜕𝜕
� − 𝑚𝑙

2 
𝑠𝑠𝑠2𝜃

= −1 
𝑅
𝜕
𝜕𝜕
�𝑟2 𝜕𝜕

𝜕𝜕
� − 2𝑚

ℏ2
[E − V(r)] 𝑟2      (I.4.18b) 

Where the left hand side is only a function of 𝜃 and the right hand side is only a 
function of 𝑟. As before, setting the separation constant as equal to −𝑙(𝑙 + 1), we 
get 

                     1 
𝑠𝑠𝑠𝑠

 𝜕
𝜕𝜕
�𝑠𝑠𝑠𝑠 𝜕Θ

𝜕𝜕
� − 𝑚𝑙

2 
𝑠𝑠𝑠2𝜃

Θ + 𝑙(𝑙 + 1) Θ = 0                             (I.4.19)        

 This equation is known as Associated Legendre equation. Physically 
meaningful solution are obtained only if 𝑙 is a positive integer and when |𝑚𝑙| ≤ 𝑙. 
These solutions are called Associated Legendre polynomials. These solutions are 
denoted by Θ𝑙,𝑚𝑙 and the first few solutions are given below.  

Θ𝑙,𝑚𝑙 = N𝑙,𝑚𝑙P𝑙,𝑚𝑙(𝜃) 

where N𝑙,𝑚𝑙 is a normalization constant. 
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N𝑙,𝑚𝑙 =  �
(2𝑙 + 1)

2
(𝑙 − |𝑚𝑙| ) !
(𝑙 + |𝑚𝑙| ) ! 

The first few P𝑙,𝑚𝑙(𝜃) are: 

P0 ,0(𝜃) = 1 

P1 ,0(𝜃) = cos𝜃;     P1 ,±1(𝜃) = sin𝜃 

P2 ,0(𝜃) =  (3 cos2𝜃 − 1)   

P2 ,±1(𝜃) = sin𝜃 cos𝜃;    P2 ,±2(𝜃) = sin2𝜃   

 

The function 𝑅 is called the radial function since it depends only on the 
radial distance 𝑟. The equation for the radial function 𝑅(𝑟) can now be written 
from equation (I.4.18) to be 

 1
 𝑟2

𝜕
𝜕𝜕
�𝑟2 𝜕𝜕

𝜕𝜕
� − 𝑙(𝑙+1)𝑅

 𝑟2
+ 2𝑚

ℏ2
[E − V(r)]𝑅 = 0                            (I.4.20) 

We now consider those values of energy which are less than the ionization energy 
for the electrons; i.e., we consider negative values of energy. The solution to 
Equation (I.4.20) is  
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𝑅(𝑟) = 𝑒−𝛼𝛼  (2𝛼𝛼)𝑙𝐿(2𝛼𝛼)                         (I.4.21) 

where  

𝐿(2𝛼𝛼) 𝑜𝑜𝑜𝑜𝑜 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. This equation has meaningful 
solutions only if  

𝑛2 = − 𝑚 𝑒4

8 ℎ2𝐸𝜖02
                          (I.4.22) 

where 𝑛 = 1,2,3, … . .                       𝑙 ≤ 𝑛 − 1           𝑎𝑎𝑎       𝛼2 = −2 𝑚 𝐸
ℏ2

   

The value of energy is therefore equal to 

𝐸 = − 𝑚 𝑒4

8 ℎ2𝜖0 
2 𝑛2

             (I.4.23) 

Since n can take only integral values we see the energy is quantized and we 
indicate this by a subscript 𝑛. Therefore 

𝐸𝑛 = − 𝑚 𝑒4

8 ℎ2𝜖0 
2
1
𝑛2

               (I.4.24) 

We indicate 𝛼 also by a subscript 𝑛.  

𝛼𝑛 
2 = −2𝑚 𝐸𝑛

ℏ2
= 𝑚2 𝑒4

(4𝜋)2 ℎ4𝜖0 
2
1
𝑛2

    

𝛼𝑛 = 𝑚 𝑒2

4𝜋 ℏ2𝜖0

1
𝑛

= 1
𝑎0𝑛

                           (I.4.25) 

where  

𝑎0 =
4𝜋 ℏ2𝜖0 
𝑚 𝑒2  

The associated Laguerre function 𝐿(2𝛼𝛼) is therefore characterized by two 
number 𝑛 and 𝑙 and is therefore denoted by 𝐿𝑛,𝑙(2𝛼𝛼). The radial wave function 
𝑅𝑛,𝑙(𝑟) is equal to  

𝑅(𝑟) = 𝑒−
𝑟

𝑎0𝑛 (2𝛼𝛼)𝑙 𝐿𝑛,𝑙(2𝛼𝛼) 

where we have neglected the normalization constant. The typical Associated 
Laguerre functions are as follows: 
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𝐿1,0(2𝛼𝛼) = 1 

𝐿2,0(2𝛼𝛼) = (1 − 𝛼𝛼) ;                             𝐿2,1(2𝛼𝛼) = 1 

𝐿3,0(2𝛼𝛼) = (3 − 6 𝛼𝛼 + 2 𝛼2𝑟2) ;       𝐿3,1(2𝛼𝛼) = (2 − 𝛼𝛼);       𝐿3,2(2𝛼𝛼) = 1 

  

The total wave function is characterized by three quantum numbers, 𝑛, 𝑙,𝑚𝑙 

𝜓𝑛,𝑙,𝑚𝑙 (𝑟, 𝜃, ∅) = 𝑅𝑛,𝑙,𝑚𝑙 (𝑟) Θ𝑛,𝑙,𝑚𝑙 (𝜃) ф𝑛,𝑙,𝑚𝑙 (∅ ) 

where 

ф𝑚𝑙 (∅ ) = � 1
2𝜋

  𝑒  𝑖𝑚𝑙 ∅                (I.4.26) 

Θ𝑛,𝑙,𝑚𝑙 = �
(2𝑙 + 1)

2
 
(𝑙 − |𝑚𝑙| ) !
(𝑙 + |𝑚𝑙| ) !�

1
2

P𝑙,𝑚𝑙(𝜃) 

𝑅𝑛,𝑙,𝑚𝑙 (𝑟) = 𝑐𝑐𝑐𝑐𝑐 × 𝑒−
𝑟

𝑎0𝑛 (2𝛼𝛼)𝑙𝐿𝑛,𝑙(2𝛼𝛼) 

𝛼𝑛 =
1
𝑎0𝑛

   

𝑎0 =
4𝜋 ℏ2𝜖0 
𝑚 𝑒2  

It will be recalled that 𝑎0 is precisely the same expression as the radius of 
the smallest orbit in the Bohr model of the hydrogen atom. The numerical value 
of 𝑎0 is approximately equal to 0.53 A. The Schrödinger equation can be 
interpreted as the energy operator operating on the wavefunction to give a 
number 𝐸𝑛 times the wavefunction. Such an equation where an operator 
operating on a function gives a constant times the same function is called an 
eigenvalue equation. The function is called the eigenfunction and the constant is 
called the eigenvalue. The wavefunction is therefore an energy eigenfunction and 
𝐸𝑛 is an eigenvalue. If for any other operator the wavefunction which is the 
energy eigenfunction is an eigenfunction, then it is easy to show that the 
expectation value for this operator with this wavefunction is an exact value. The 
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solution 𝜓𝑛,𝑙,𝑚𝑙  is an eigenfunction of energy and we will later show that it is also 
an eigenfunction of other operators. 

Let us now pause for a moment to consider how the electronic charge is 
distributed around the nucleus. With the help of Equation (I.4.17) we see that the 
probability density is independent of ∅. In other words, the electron is 
symmetrically smeared about the z axis. We can examine the 𝜃 dependence by 
considering Θ𝑛,𝑙,𝑚𝑙 . They are illustrated in Figure I.4.3. We see that the state 
𝑛 = 1 and 𝑙 = 0 corresponds to a spherical distribution of electronic charge. The 
radial functions for the first three states area shown in Figure I.4.4. To get a 
picture of how the electronic charge varies as a function of 𝑟 we must plot 

�𝑅𝑛,𝑙 �
2𝑟2 and this is done in Figure (I.4.5). We see that a maximum occurs for 

𝑛 = 1 and 𝑙 = 0 at approximately the same distance as the radius of the first Bohr 
orbit,  𝑎0. 

To summarize, we find in the quantum mechanical treatment that the electron 
cannot be thought of as being in a definite orbit at all, as being at a given location 
with a certain probability. The quantum number ‘𝑛’ corresponds to the total 
quantum number ‘𝑛’ in Bohr theory. The quantum numbers ‘𝑙’ and ‘𝑚𝑙‘will be 
shown, later on, to have some physical significance. For the present, all we know 
is that the energy is determined by 𝑛 while the radial distribution of electronic 
charge density is determined by 𝑛 and 𝑙 and the angular distribution of electronic 
charge is determined by 𝑙 and 𝑚𝑙. 

The normal state of the hydrogen atom is the state in which the electron 
has the lowest energy. This state, also called the ground state, corresponds to 
𝑛 = 0, 𝑙 = 0,𝑚𝑙 = 0. All states which are at a higher energy level than the ground 
state are called the ‘excited‘ states. For example, the state with 𝑛 = 2, 𝑙 =
1,𝑚𝑙 = 0 is an excited state. 

Since energy is dependent only on 𝑛, while each electronic states is characterized 
by 𝑛, 𝑙,𝑚𝑙 values, it means that we have degeneracies in each energy level. Later 
on, we will see that there is a fourth quantum number which is required to 
describe the state of the electron completely. 
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I.4.4 One Electron Wavefunction 

The previous treatment of the hydrogen atom can be carried over to 
describe any physical system where the electron is moving in a central field or 
force. By a central field or force, we mean the attractive force pulling the electron 
to the origin where the magnitude of the force is inversely proportional to the 
square of the radial distance 𝑟, of the electron from the origin. 

If we assume that the nuclear charge is +𝑍𝑍 instead of +𝑒 as in the case of 
the hydrogen atom, and is located in the origin, while a single electron is rotating 
about this nucleus, we have for the energy of the electron,  

𝐸𝑛 = − 𝑚 𝑒4

8 ℎ2𝜖0 
2
1
𝑛2

                        (I.4.27) 

The expression for 𝛼𝑛 

𝛼𝑛 = 𝑍
𝑎0𝑛

             (I.4.28) 

where  

𝑎0 =
4𝜋 ℏ2𝜖0 
𝑚 𝑒2  

These equations apply to any ionized atom where we have a single electron 
revolving around a central charge distribution. For example, these equations will 
apply to singly ionized Helium atoms where 𝑍 = 2. 

The wavefunction for an electron moving in a central field can be separated 
into a radial part and angular part as in the case of the hydrogen atom and the 
wave function will be characterized by the three quantum numbers  𝑛, 𝑙,𝑚𝑙. 

We will now give some physical interpretation for the quantum numbers 
𝑙 𝑎𝑎𝑎 𝑚𝑙. The angular momentum 𝐿 of a particle is given classically to be 𝑟 × 𝑝.  
By transforming this to corresponding operator formalism �𝑥 → 𝑥𝑜𝑜;  𝑝𝑥 →

ℏ
𝑖
𝜕
𝜕𝜕
�, 

it can be shown that the 𝑥, 𝑦, 𝑎𝑎𝑎 𝑧 components of the angular momentum are 
equal to 

                  𝐿𝑥 = ℏ
𝑖
�− sin∅  𝜕

𝜕𝜕
− 𝑐𝑐𝑐𝑐 𝑐𝑐𝑐∅ 𝜕

𝜕∅
�                                          (I.4.29) 
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                 𝐿𝑦 = ℏ
𝑖
�cos∅  𝜕

𝜕𝜕
− cot𝜃  𝑐𝑐𝑐∅ 𝜕

𝜕∅
�                                              (I.4.30) 

                        𝐿𝑧 = ℏ
𝑖
𝜕
𝜕∅

                                                                                          (I.4.31) 

The square of the magnitude of the total angular momentum is equal to 

|𝐿2| = ℏ2 � 1
sin𝜃

 𝜕
𝜕𝜕
�sin𝜃 𝜕

𝜕𝜕
� + 1

𝑠𝑠𝑠2𝜃
𝜕2

𝜕∅2
�                                   (I.4.32) 

We see, by operating on the wavefunction with the operator for the Z-
component of the angular momentum given in Equation (I.4.31) we get 𝑚𝑙ℏ to be 
the eigenvalue for the operator 𝐿𝑧.  This gives 𝑚𝑙ℏ to be the exact value of the Z-
component of the angular momentum of the electron whose quantum numbers 
are 𝑛, 𝑙,𝑚𝑙 . In other words, the 𝑍-component of the angular momentum is 
quantized. What this means is that the angular momentum vector can be only 
oriented in certain directions in space such that the 𝑍-component of the angular 
momentum is an integral number of ℏ. For this reason, the angular momentum is 
said to be “space quantized”. 

Similarly if we operate on the wavefunction with the operator for the 
square of the angular momentum given in Equation (I.4.32) we get the eigenvalue  
𝑙(𝑙 + 1)ℏ2 for the operator |𝐿2|. This shows that the magnitude of angular 
momentum is also quantized with 𝑙 as the quantum number. Therefore, an 
electron described by a wavefunction characterized by 𝑛, 𝑙,𝑚𝑙 is in a state where 
the angular momentum magnitude is equal to �𝑙(𝑙 + 1) ℏ and Z-component of 
the angular momentum is equal to 𝑚𝑙ℏ. In order to distinguish this angular 
momentum which is associated with the orbital motion of the electron from an 
intrinsic angular momentum that we will discuss shortly, we call this the orbital 
angular momentum. 

 

I.4.5 Orbital Magnetic Moment 

We saw earlier that an electron in a quantum state characterized by certain 
𝑙 and 𝑚𝑙 values has an angular momentum of magnitude �𝑙(𝑙 + 1) ℏ  and 𝑧 
component of angular momentum 𝑚𝑙ℏ. By rigorous quantum mechanical 
analysis, it can be shown that an electron with a given angular momentum, 
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possesses a proportionate magnetic moment. However, for our purpose, we will 
use the Bohr’s picture of an electron revolving around the nucleus, to derive an 
expression for the magnetic moment which is exactly identical to what one would 
obtain by more rigorous methods. 

Let an electron of mass 𝑚 and charge – 𝑒 revolve around the nucleus, in a circular 
orbit of radius 𝑟. The magnitude of angular momentum due to this orbital motion 
is equal to 

�𝐿�⃗ � = 𝑚 𝑟2𝜔 

This electron motion is equal to a current of 𝑒𝑒
2𝜋

 (Figure I.4.6). According to 
electromagnetic theory, a circular loop of current of 𝐼 amps gives rise to a 
magnetic moment of 𝜇 = 𝐴 𝐼 where 𝐴 is area in square meters. Therefore the 
electron orbital motion gives rise to a magnetic moment of magnitude 

|𝜇𝑙| = 𝜋𝑟2  
𝑒𝑒
2𝜋 =

𝑒 𝑟2𝜔
2 =

𝑒
2 𝑚 �𝐿�⃗ � 

Vectorially, 𝜇𝑙���⃗  and 𝐿�⃗  are oppositely directed because of the negative sign of the 
electronic charge so that  

𝜇𝑙���⃗ = −
𝑒

2 𝑚𝐿�⃗  

The subscript 𝑙 𝑎𝑎𝑎 𝜇𝑙 serves the purpose of denoting that this magnetic 
moment arises from orbital motion of the electron, i.e., from the orbital angular 
momentum. 

We define a unit of magnetic moment called the Bohr magneton as equal 

to 𝜇𝐵 = 𝑒ℏ
2 𝑚

 which is the magnetic moment of a particle of mass same as that of 
the electron and charge +𝑒. In terms of 𝜇𝐵 ,𝜇𝑙���⃗  becomes  

                                                𝜇𝑙���⃗ = −𝜇𝐵
ℏ
𝐿�⃗                                                     (I.4.33) 

We will now generalize (without proof) that no matter what kind of orbital 
motion the electron executes, Equation (I.4.33) gives the correct relation between 
magnetic moment and orbital angular momentum. Therefore, we can substitute 
the quantum mechanical expression for 𝐿�⃗   in Equation (I.4.33). 
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Quantum mechanically 

�𝐿�⃗ � = �𝑙(𝑙 + 1) ℏ 

therefore,  

                                                        |𝜇𝑙���⃗ | = 𝜇𝐵�𝑙(𝑙 + 1)                                        (I.4.34) 

From Equation (I.4.33) we see that the Z components of magnetic moment and 
angular momentum are related by 

                                                    𝜇𝑙𝑧 = −𝜇𝐵𝐿𝑧
ℏ

                                         (I.4.35) 

Since 𝐿𝑧 = 𝑚𝑙ℏ, this means that the magnetic moment 𝜇𝑙���⃗  and therefore, 𝐿�⃗  
can have only certain orientations in space with respect to the Z-axis. However, 
any direction could have been chosen as a Z direction and as such it is 
meaningless to talk of space quantization. We must have an external field 
(electric or magnetic) then this direction can be taken as our quantization axis. In 
the next section we consider the effect of an external magnetic field.  

 

I.4.6    Effect of a magnetic field  

 Let the electron with a magnetic moment 𝜇𝑙 be placed in an uniform 
magnetic flux density 𝐵. From electromagnetic theory we know a torque is acting 
on the magnetic moment tending to orient the magnetic moment parallel to the 
uniform field. The magnitude and direction of this torque is equal to 
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                                                       𝛤⃗ = −𝜇𝑙���⃗  × 𝐵�⃗                                                       ( I.4.36) 

However, the potential energy due to the orientation of the magnetic moment is 
equal to  

∆𝐸 = −𝜇𝑙���⃗  ∙ 𝐵�⃗  

 The potential energy is a minimum when the elementary magnet is aligned 
parallel to the magnetic field. In any other orientation, the potential energy is 
higher and the elementary magnet should be able to transfer this excess energy if 
it were to align itself parallel to the field. In the absence of any such dissipative 
mechanism the magnet has to maintain the same orientation as it had before the 
application of the field. The effect of the torque 𝛤⃗  is therefore to make the 
magnetic moment precess around the direction of the external field. We will now 
find an expression for the precessional angular velocity. From classical mechanics, 
we know the torque to be the time-rate of change of angular momentum. We 
know the torque to be the time rate of change of angular momentum, i.e. 

𝑑𝐿�⃗
𝑑𝑑 = 𝛤⃗ 

But 

𝛤⃗ = −𝜇𝐵
ℏ  𝐿�⃗  × 𝐵�⃗  

Therefore,  

                                                      
𝑑𝐿�⃗

𝑑𝑑
= −𝜇𝐵

ℏ
 𝐿⃗ × 𝐵�⃗                                              (I.4.37) 

i.e. 

                                            𝑑𝐿�⃗ = −
𝜇𝐵
ℏ

 𝐿⃗ × 𝐵�⃗  𝑑𝑑                                             (I.4.38) 

 

𝑑𝐿�⃗  in Equation (I.4.38) represents an infinitesimal change in 𝐿�⃗  in a time interval 
𝑑𝑑. Since 𝐿�⃗  × 𝐵�⃗  is perpendicular to 𝐿�⃗  , 𝑑𝐿�⃗  is perpendicular to 𝐿�⃗  . This means that 
in a time interval 𝑑𝑑, the magniutuide of 𝐿�⃗  does not change but only its direction. 
The change 𝑑𝐿�⃗   is perpendicular to the plane containing 𝐿�⃗  𝑎𝑎𝑎  𝐵�⃗ , this means that 
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𝐿�⃗  and therefore 𝜇𝑙���⃗  is precessing around 𝐵�⃗  as shown in Figure (I.4.7). The 
projection of the vector 𝐿 ���⃗ on the plane perpendicular to 𝐵�⃗  moves through an 
angle 𝑑∅, in time 𝑑𝑑 equal to  

         𝑑∅ =
�𝑑𝐿��⃗ �
𝐿 𝑠𝑠𝑠𝑠

= 𝜇𝐵
ℏ  

�𝐿��⃗ �𝐵 𝑠𝑠𝑠𝑠 𝑑𝑑

�𝐿��⃗ �𝑠𝑠𝑠𝑠
= 𝜇𝐵

ℏ 𝐵 𝑑𝑑                              

                                                  = 𝜇𝐵
ℏ  𝐵 𝑑𝑑                                                                 (I.4.39) 

Therefore the precessional angular velocity  

                                                    𝜔𝐿 = 𝑑∅
𝑑𝑑

= 𝜇𝐵
ℏ 𝐵                                                      (I.4.40) 

This phenomenon of precession of a magnetic moment about 𝐵�⃗ , is called 
Larmour precession. Since 𝜇𝑧 is quantized Equation (I.4.35), it means 𝜇𝑙���⃗  and 𝐿�⃗  can 
therefore have only certain orientations with respect to the 𝐵 field, i.e., Z axis. For 
a given value of 𝑙,𝑚𝑙 can take any one of (2𝑙 + 1) values and therefore there are 
2𝑙 + 1 orientations possible for the magnetic moment. Figure (I.4.8) illustrates 
the possible orientations of the atomic magnet for 𝑙 = 1 with the magnetic field 
𝐵�⃗  along Z axis. Since  𝜇𝑙𝑧 = −𝜇𝐵 𝑚𝑙,  𝜇𝑙𝑧 can be  +𝜇𝐵  0 𝑜𝑜 − 𝜇𝐵  corresponding 
to 𝑚𝑙 = −1, 0 𝑜𝑜 + 1  respectively.  

In a magnetic field each of the 2𝑙 + 1 orientations will have a different 
energy, since the magnetic potential energy is equal to −𝜇𝑙���⃗  ∙ 𝐵�⃗ =  𝜇𝑙𝑧𝐵.  The 
energy will be a minimum where  𝜇𝑙𝑧is a maximum and therefore the state 
𝑚𝑙 = −𝑙  will have the lowest energy and the energy will increase with increasing 
values 𝑚𝑙 until the maximum energy is obtained for the state 𝑚𝑙 = +𝑙. This is 
illustrated in Fig. (I.4.9). The difference in energy between successive sublevels is 
equal to  

∆𝐸 = 𝜇𝐵 𝐵 

A level which is (2𝑙 + 1) fold degenerate in the absence of the field 𝐵�⃗ , is 
split into (2𝑙 + 1) levels in the presence of 𝐵�⃗  and this is called the Zeeman 
splitting of the energy level. The spectral lines due to transitions from the 
degenerate level will split in the presence of the magnetic field and this effect is 
called Zeeman Effect. 
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I.4.7  Spin Angular Momentum 

 Till now, we considered only the orbital angular momentum. However the 
electron has an intrinsic angular momentum called the spin-angular momentum. 
The existence of spin angular momentum was first postulated by Goudsmit and 
Uhlenbeck to explain the spectrum observed with one electron atoms.   

 Later on Dirac, in developing a relativistically corrected system of quantum 
mechanics, accounted for the existence of a spin angular momentum and an 
associated magnetic moment. He showed that the magnitude of the spin angular 
momentum is equal to 

                                    �𝑆� = �𝑠(𝑠 + 1) ℏ                                                             (I.4.41) 



84 
 

where the spin quantum number s = 1
2
 for an electron and the magnetic moment 

due to spin is equal to  

                                             𝜇𝑠���⃗ = − 𝑙
𝑚
𝑆                                                       (I.4.42) 

where 𝑆 = spin angular momentum vector.  It must be realized that the spin 
angular momentum is a quantum mechanical entity and has no classical analogue. 
The magnetic moment is usually also written in the form 

                                                         𝜇𝑠���⃗ = −𝑔𝑠
𝜇𝐵
ℏ 𝑆                                                    (I.4.43) 

where 𝑔𝑠 is called the spin g factor and is taken to be equal to 2. The Z-
component of spin angular momentum is equal to  

                                                    𝑠𝑧 = 𝑚𝑠ℏ                                                                 (I.4.44) 

where 𝑚𝑠 = + 1
2

 𝑜𝑜 − 1
2
 for electrons. Therefore the Z component of the 

magnetic moment due to spin is given by  

                                         𝜇𝑠𝑧 = −𝑔𝑠 𝜇𝐵  𝑚𝑠                                                      (I.4.45) 

Thus we see that the quantum state of an electron in a central field is not 
only specified by the three quantum numbers 𝑛, 𝑙,𝑚𝑙 which define the spatial 
part of the wavefunction but also by a fourth quantum number which defines the 
spin state of the electron. The total wavefunction should be therefore written as a 
product of the spatial part 𝜓𝑛,𝑙,𝑚𝑙 and the spin part 𝜎( 𝑚𝑠).  For our purposes, it is 
not necessary to know the explicit form of the spin part of the wavefunction. 
Hereafter, when we write 𝜓𝑛,𝑙,𝑚𝑙, 𝑚𝑠  for the wavefunction we mean the product 
of space and spin parts. Whenever we specified the quantum state of the 
electron. 

 We saw earlier that the energy of the electron in a given state depends only 
on the quantum number 𝑛. Actually there is a magnetic interaction between the 
spin and orbital angular momentum called the spin-orbit interaction, which 
makes the energy depend upon 𝑛, 𝑙 and another quantum number j which 
specifies the total angular momentum the same way as the quantum number 𝑙 
specifies the orbital angular momentum. The total angular momentum 
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𝐽 = 𝐿�⃗ + 𝑆 

is the vector sum of orbital and spin angular momentum and for the case of one 
electron system the quantum number j can be 𝑙 + 1

2
 or 𝑙 − 1

2
. Thus, the spin-orbit 

interaction partially removes the degeneracy of energy levels which were 2 𝑛2 
fold degenerate, and splits it into sublevels whose energies depend now on 
𝑛, 𝑙,𝑎𝑎𝑎 𝑗. Since the spin-orbit interaction is very small of the order of 1

10,000
 eV, 

the various levels corresponding to different 𝑙 and 𝑗 for a given value of n, lie very 
close to each other and for this reason, the spectral lines form groups of closed 
spaced lines. This close spacing of lines is referred to as the fine structure of the 
spectral lines. A quantum state now (in the presence of spin-orbit interaction) is 
defined by the four quantum numbers 𝑛, 𝑙, 𝑗 𝑎𝑎𝑎  𝑚𝑗 and not by 𝑛, 𝑙,𝑚𝑙, 𝑚𝑠. What 
we mean by this, is that the wavefunction we obtain by including the spin-orbit 
interaction is not an eigenfunction of 𝐿𝑧����⃗  and 𝑆𝑧���⃗  but is an eigenfunction �𝐽2� and 
 𝐽𝑧.  

 We will now describe the spectroscopic notation to describe the one 
electron states. The electronic state is denoted by writing the value of the 
principal quantum number n followed by a letter to denote the value of the 
orbital angular momentum quantum number 𝑙 as follows: 

Value of 𝑙 Letter 
designation 

0 𝑆 
1 𝑃 
2 𝐷 
3 𝐹 
4 𝐺 
5 ℎ 

 

For example, if we say the electron is in 2𝑠 state we mean 𝑛 = 2 and 𝑙 = 0 for the 
state in which the electron is. Usually the electron in a given state, say 2𝑠, is 
called an 2𝑠 electron. If it is in 3𝑝 state it is called an 3𝑝 electron. 



86 
 

The total number of electronic states for a given value of 𝑛, can be shown to 
be 2 𝑛2. For, there are 𝑛 values of 𝑙 ranging from 0 to 𝑛 − 1. For each value of l 
there (2𝑙 + 1) values of  𝑚𝑙. In addition there are two independent values of  𝑚𝑠. 

 To summarize, we saw in this chapter that we were able to apply quantum 
mechanical principles to a particle in three dimensional space. We treated the 
hydrogen atom (an electron moving under the influence of a nucleus fixed at the 
origin) quantum mechanically and arrived at results which fitted the experimental 
values exactly. We found we had to give up the classical ideas of describing the 
position of the electron as in the Bohr atom and talk of the probability of find the 
electron at various positions around the nucleus. Later on in the chapter we 
arrived at expressions for the magnetic moment of the electron, using Bohr 
model of the atom and then stated without proof that the same expressions hold 
good even if we use rigorous quantum mechanical techniques. We discussed the 
existence of an intrinsic or spin angular momentum in addition to the orbital 
angular momentum. We considered the effect of spin-orbit interaction on the 
splitting of energy levels and characterized quantum states by a new set of four 
quantum numbers. We defined the total angular momentum of the electron.   

 

I.4.8  Complex Atoms 

 Till now we considered problems in which only one particle is involved. 
Even in the case of hydrogen atom, we considered the nucleus to be fixed and the 
electron to be the only particle in the problem capable of motion. We will now 
discuss qualitatively the more complex atoms which contain more than one 
electron. A neutral atom is said to have an atomic number Z if it has Z electrons 
around the nucleus. The problem of a complex atom is a dynamical problem 
where each of the Z electrons is acted on by the nucleus as well as the other (Z-1) 
electrons. This problem is too difficult to solve analytically. Only approximate 
methods are possible. The most useful approximation is to replace the force 
acting on an electron (which force depends on the coordinates of this electron as 
well as the coordinates of all other electrons belonging to the given atom) by an 
average force which is a central force. As we saw earlier, the central field problem 
is similar to hydrogen atom problem and therefore each of the Z electrons will be 
described by hydrogen-like wavefunctions characterized by the four quantum 
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numbers 𝑛, 𝑙,  𝑚𝑙, 𝑚𝑠. It is natural to expect that all the Z electrons will therefore 
remain in the state 𝑛 = 1 in the normal state, since this will correspond to the 
lowest energy for the atom as a whole. But, there is an interaction between the 
electrons which is described by Pauli’s Exclusion Principle. According to this 
principle no two electrons can occupy the same quantum state. Since each 
quantum state is characterized by the four quantum numbers 𝑛, 𝑙,  𝑚𝑙, 𝑚𝑠, no 
two electrons can have the same set of four quantum numbers. 

 Now we can examine how the electrons are distributed among the 
available quantum states in a complex atom. The two guiding principles are: (1) 
there can be only one electron in each quantum states and (2) subject to principle 
1, the electrons occupy the lowest energy states. 

 

I.4.9 Electronic Structure of Atoms 

 We now begin the study of the periodic table and the electronic structure 
of the atoms. 

𝑍 = 1:  Hydrogen: As we already saw in our earlier studies, the single electron is 
in a state 𝑛 =1, 𝑙 = 0,  𝑚𝑙, = 0 𝑎𝑎𝑎  𝑚𝑠 = ± 1

2
. The ionization energy of the atom 

which is required to remove one electron from the atom to infinity is 13.6 eV. The 
average distance of the electron from the nucleus is approximately 3

4
 Å. 

𝑍 = 2:  Helium: Helium has two electrons. There are two states for n=1, 
corresponding to  𝑙 = 0, 𝑚𝑙, = 0 𝑎𝑎𝑎  𝑚𝑠 = + 1

2
  and  𝑙 = 0, 𝑚𝑙, = 0 𝑎𝑎𝑎  𝑚𝑠 =

−1
2
. Therefore, both the electrons occupy the 1𝑠 states. It must be pointed out 

that the wavefunction for either of the two electrons, is not the same as for the 
electron in hydrogen atom, since we must take into account the electrostatic 
repulsion between the two electrons. The ionization potential is 24.58 volts band 
because of this large ionization potential, helium is an inert element. The amount 
of energy involved when helium gives up or takes another electron is very high 
and therefore helium does not form a chemical compound with other elements. 
The electron configuration for Helium is 1𝑠2. 
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𝑍 = 3:  Lithium: Lithium has three electrons. Only two of these can go to the 1𝑠 
state. So the third electron goes into 2𝑠 states. It might be asked why 2𝑠 state and 
not 2 𝑝 state, since energy is dependent only on the principal quantum number 𝑛. 
The two 1𝑠 electrons are localized near the nucleus and their wavefunctions (and 
therefore the position probability density) are spherically symmetric. The third 
electron therefore moves around this spherical core. The wavefunction of an 
electron in a state of lower angular momentum is large close to the nucleus 
compared with that for an electron in a state of higher angular momentum. 
Therefore the 2𝑠 electrons spend more time close to the nucleus where the 
screening due to the two 1𝑠 electrons is less effective. On the other hand, the 
electron in a state of higher angular momentum is kept away from the nucleus 
and therefore the energy of the electron in 2𝑠 state is lower than the energy of 
the electron in the 2𝑝 state. Actually this is a general result which applies to all 
values of 𝑛 higher than 𝑛 = 1. For a given value of 𝑛, states of smaller 𝑙 have 
lower energy. All states having the same 𝑙 value within a shell, are said to belong 
to the same subshell. 

 The electron configuration of lithium is therefore 1𝑠22𝑠. The ionization 
potential of lithium is only 5.39 volts. Low ionization mans that positive ions are 
formed with very little expenditure of energy and this is the reason why lithium is 
strongly active in forming chemical compounds. The number of electrons that an 
element gives up or takes in forming a chemical compound is called the valency of 
the element. Thus we see that the valency of lithium is one and lithium is electro-
positive. Since the second ionization energy, i.e., the energy required to remove a 
second electron from lithium, is very large (75.6 eV), lithium always goes into 
chemical compound with a valency of one. 

𝑍 = 4:  Beryllium: The electron configuration is 1𝑠22𝑠2. Beryllium has a valency 
of 2; the ionization potential is 9.32 volts. 

𝑍 = 5:  Boron: The electron configuration is 1𝑠22𝑠22𝑝. Boron has a valency of 3 
and therefore, Boron is said to be trivalent. The ionization potential of Boron is 
8.30 Volts. 

𝑍 = 6:  Carbon: The electronic structure of carbon is 1𝑠22𝑠22𝑝2 and therefore is 
tetravalent. The ionization potential is 11.26 volts. 
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𝑍 = 7:  Nitrogen through 𝑍 = 9: Florine: We fill the 2𝑝 sates as the atomic 
number increases until we have filled five 2𝑝 states corresponding to Fluorine. All 
of these atoms are electro-negative which means that these elements form 
compounds by taking up additional electrons. The energy with which the 
additional electron is bound to Fluorine is equal to 4.2 eV. The common way of 
expressing this is to say that Fluorine has an electron affinity of 4.2 eV. The 
concept of electron affinity is similar to ionization potential for electro-positive 
elements. 

𝑍 = 10:  Neon: Neon has a closed shell since all the 2𝑝 states are filled giving rise 
to an electron configuration  1𝑠22𝑠22𝑝6. Therefore, Neon is inert. 

𝑍 = 11:  Sodium to 𝑍 = 18: Argon: In this case the shell 𝑛 = 3 is filled the same 
way as 𝑛 = 2 until we complete the subshell 3𝑝. The electron configuration 
corresponding to Argon is the completed subshell 3𝑝 and this element is an inert 
element although the shell 𝑛 = 3 is not completely filled because the ionization 
energy of the closed subshell structure 3𝑝 is high. 

𝑍 = 19:  Potassium and Z=20: Calcium: Instead of filling 3𝑑 subshell, Potassium 
and Calcium have the 4𝑠 states occupied since the energy of 4𝑠 subshell is lower 
than that of 3𝑑. 

𝑍 = 21:  Scandium through  𝑍 = 30: Zinc: The energy of 3𝑑 subshell lies between 
4𝑠 and 4 𝑝 subshells and therefore 3𝑑 levels get filled up. For copper, 𝑍 = 29, the 
4𝑠 subshell is higher than 3𝑑 and so we end up having 10 electrons in 3𝑑 subshell 
and one electron in 4𝑠 subshell. 

  The elements with incomplete 3𝑑 subshells while the 4s subshells are 
occupied are called transition elements. All these transition elements are very 
similar in chemical properties since the 3𝑑 subshells do not affect the ionization 
energy. 

𝑍 = 21:  Gallium through 𝑍 = 36: Krypton: The 4𝑝 shells get filled up for these 
elements. 

 Having seen how the electronic structure of elements up to 𝑍 = 36 is 
arrived at it is a simple matter to know the electronic structure of the remaining 
elements. Table (I.4.1) gives the electronic structure of all the known elements 
while Appendix II gives the periodic table. We see from an examination of Table 
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(I.4.1) and the periodic table that the regularities of chemical properties are 
precisely predicted by quantum mechanics. 
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Problems:  Chapter I. 4 

1. For a box 1 cm on a side, how many electron states exist with total 
momentum 𝑃�= ℏ�𝑘𝑥2 + 𝑘𝑦2 + 𝑘𝑧2� less than 10−25  Kg-meter/sec? 

2. Consider an electron in a three dimensional rectangular box of dimension 
2Å × 2Å × 4Å. 

a. Find the energy and degeneracy of the lowest degenerate state 
b. Calculate the probability of find the electron in the second lowest 

energy state in an elementary rectangular volume (no interpretation) 
0.01 Å × 0.01Å × 0.2Å center around the center of the box 

3. Determine the normalization constant for the radial part of the 
wavefunction of an electron in the 1s state of Hydrogen atom. Hint: 

∫ 𝑦2𝑒−𝑦2∞
0 𝑑𝑑 = √𝜋

4
 

4. Show that normalizing the total wave function, for the hydrogen atom, 
𝑅𝑛,𝑙,𝑚𝑙 (𝑟) Θ𝑛,𝑙,𝑚𝑙 (𝜃) ф𝑛,𝑙,𝑚𝑙 (∅ ), 

𝑤ℎ𝑒𝑒𝑒   
ф(∅) = A 𝑒±𝑖𝑚𝑙 ∅ 

results in 𝐴−1 = √2𝜋 
 

5. Consider an electron bound within a spherical region of space of radius 𝑏, 
so that 𝑈 = 0 from 𝑟 = 0 𝑡𝑡 𝑟 = 𝑏 𝑎𝑎𝑎 𝑈 → ∞ 𝑎𝑎 𝑟 = 𝑏. Separate the 
Schrödinger equation in spherical coordinates to obtain three ordinary 
differential equations for 𝑅(𝑟), Θ(𝜃),ф(∅ )  as was done for the H-atom. 
Are any of these three equations familiar? This problem demonstrates that 
there are important similarities among all problems with a spherically 
symmetric potential energy function. 

6. Prove that, to show the variation of electronic charge density as a function 
of radial distance, 𝑟1 , from the nucleus in the hydrogen atom, we must plot  

�𝑅𝑛,𝑙�
2𝑟2 

𝑟𝑟𝑟ℎ𝑒𝑒 𝑡ℎ𝑎𝑎 𝑗𝑗𝑗𝑗  
�𝑅𝑛,𝑙�

2
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7. Calculate the probability that an electron in the 1s state will lie in an 
elementary volume contained between the following coordinates 
= 0.5Å 𝑎𝑎𝑎 0.5001 Å,𝜃 = 300 𝑎𝑎𝑎 30.010 𝑎𝑎𝑎 ∅ = 450 𝑎𝑎𝑎 45.010 . 
[Hint: Consider the elementary volume to be so small that integration is not 
required] 

8. Show that the most probable radius for the electron in the ground state of 
hydrogen is ‘a’ by finding the value of 𝑟 for which 𝑑𝑑/𝑑𝑑 is a maximum. 

9. What is the angular momentum of an “ 𝑓 ” electron? 
10. How many “ 𝑓 ” electrons can be placed in the 𝑛 = 4 “orbit”? 

11. Show that the operator for z-component of angular momentum is ℏ
𝑖
𝜕
𝜕∅

 

12. Show that the total number of electron states in a shell characterized by 
quantum number n is equal to 2𝑛2. 

13. How many valence electrons (electrons not in a filled n-shell) are there for 
an atom with 32 electrons? 

14.  An electron moving in a central filed (i.e. under the influence of a positive 
charge fixed at the origin) is in a state 𝑙 = 2. A magnetic field is applied 
along the Z-direction of magnitude 10,000 ampere-turns/meter. Show in a 
figure the spatial quantization of both 𝜇𝑙���⃗  and 𝐿�⃗  . Also what is the splitting in 
energy level (in eV or 𝑐𝑐−1) of the (2𝑙 + 1) degenerate state due to the 
magnetic field? What is the value of Larmour frequency? 

  

 

 

 


