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Preface

From 1965 to 1991 I was a professor in the Department of Mathematics at the
University of California, San Diego (UCSD). I taught many calculus classes
large and small during this period. In 1991 I transferred to the Department of
Computer Science and Engineering - my calculus teaching days were over.

Recently (2011), cleaning out some files, I came across a long lost typewritten
handout that I used to give to students who officially or unofficially wanted to
tutor for my integral calculus classes. I had fun rereading this “tutors’ guide”
so I decided to redo it in LaTeX and bring it up to date with respect to online
resources now regularly used by students.

This material assumes that as a prospective integral calculus tutor you have
mastered the standard undergraduate level differential and integral calculus
courses. The most common conceptual and pedagogical pitfalls of tutoring
integral calculus are discussed along with worked exercises.

S. Gill Williamson, 2012
http : \www.cse.ucsd.edu\ ~ gill
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Chapter 1

Integrals as Antiderivatives

1.1 Integration as the inverse of differentiation

This material assumes that you have had a course in calculus through integral
calculus and want to tutor (or home tutor) students who are studying integral
calculus for the first time. We focus on developing the skill and intuition to
prepare yourself to face a small group of students who are stuck or, worse
yet, not stuck and full of questions. We start with a review of basics. In our
discussion, we have in mind real valued functions defined for all real numbers
or intervals of real numbers just like the ones you studied in calculus up to
this point.

The symbol “;—x" is used to mean “the derivative of" Thus, j—x sin(x) means
“the derivative of sin(x)." Correspondingly, we use the symbol “ [ " to mean
“the integral of" or “antiderivative of” Thus, we write [ 2x cos(x?) = sin(x?)

to mean the integral of 2x cos(x?) is sin(x?): % sin(x?) = 2x cos(x).

(1.1.1) Figure : Integral vs. Derivative
d d
v/— dx 4\ v/— dx 4\
2x cos(x?) sin(x?) f(x) F(x)

If f(t) is specified as a function of ¢ then [ f(t) is commonly understood to
be a function F(t) such that %F (t) = f(t). But what if we walk into an aban-
doned classroom and see “ [ 2 =?" on the blackboard. What was the variable?



If it was x, then the answer is 2x. If the variable was t, then the answer is 2t.
To avoid this and related confusions, the notation for integrals or antideriva-
tives is written [ f(x)dx or [ f(t) dt. Thus, if we had seen “ [ 2dt =?" then
the answer would have been 2t. If we had seen “ [ 2dx =?" then the answer
would have been 2x.

‘ F(x) and F(x) + C have the same derivative. ‘

There is another simple but important observation about integrals. As we
have noted, | 2x cos(x?) = sin(x?), which means that % sin(x?) = 2x cos(x?).
But, of course, %(sin(xz) +10) = 2x cos(x?) also. In fact, %(sin(xz) +C) =
2x cos(x?) for any constant function C. This fact is sometimes incorporated
into the notation for integrals by writing

(1.1.2) / 2x cos(x?) dx = sin(x?) + C.

This notation is intended to remind us that there are infinitely many functions
with derivative 2x cos(x?) and they all differ by a constant function. Once this
observation has been made and we understand what we are talking about, it
is quite all right to write simply

/ 2x cos(x?)dx = sin(x?).

We understand in this latter notation that sin(x?) is a representative from an
infinite class of antiderivatives for 2x cos(x?), and all of the rest are obtained
by adding a constant function to sin(x?).

’H’(x) =0 = H((x)=C,a constantfunction.‘

The fact that all antiderivatives of a given function f(x) differ by a constant
is a subtle idea. Suppose we have two functions, F(x) and G(x), such that
F'(x) = G'(x) = f(x). Let H(x) = F(x) —G(x). Then H' (x) = F'(x) -G’ (x) =
f(x) — f(x) = 0. To claim that F(x) and G(x) differ by a constant function is
the same as claiming that H(x) = F(x) — G(x) is a constant function. This
means that the statement that “any two antiderivatives F(x) and G(x) of f(x)
differ by a constant" is the same as the statement that “any function H(x)
with derivative function the zero function must be a constant function.” This
latter statement has strong intuitive appeal.

Suppose H’(x) = 0 for all x. Let’s try to draw the graph of such an H(x).
Suppose H(0) = 2, for example. Put your pencil at the point (0, 2) and try to
imagine what the graph is like near this point. If, in going right or left, you



draw the graph with the slightest bit of slope up or down you will construct
points on the graph where H’ (x) is not 0. You're stuck at H(x) = 2 and must
draw the graph of the constant function 2. For more advanced courses in
mathematical analysis it is essential that this intuitive idea be given a precise
analytical formulation.

Constant Functions Can Wear Many Disguises

Here is another complication. Suppose John decides that

/2 sin(2x) dx = — cos(2x)

and suppose that Mary decides that
/2 sin(2x)dx = 2sin®(x) .

If they are both right (and they are in this case) then 2 sin?(x) and — cos(2x)
must differ by a constant (i.e., 2 sin?(x) — (- cos(2x)) = 2 sin?(x) + cos(2x) is a
constant function). If you know your basic trigonometric identities, then you
will recognize that this is true and, in fact, 2 sin?(x) + cos(2x) = 1. Thus, just
because two integrals F(x) and G(x) for f (x) must differ by a constant doesn’t
mean that they are easily recognizable as differing by a constant.

1.2 Properties of the integral

The most basic property of integrals is “linearity" This property, which we
have already used, is stated in Theorem 1.2.1.
Theorem 1.2.1. Let f(x) and g(x) be functions and a and f numbers. Then

/ (af () + g(x))dx = a / Flr)dx + / g(x)dx.

Proof. This follows directly from the definition of the integral together with
linearity of %. Let F(x) and G(x) be the antiderivatives of f(x) and g(x).
Then %(aF(x) + BG(x)) = af (x) + Bg(x), which means, by definition of the
integral, that

/ (af (x) + Bg(x))dx = aF(x) + fG(x)

Substituting F(x) = [ f(x) dx and G(x) = [ g(x) dx gives the result. O



Your students’ main task in computing antiderivatives or integrals will be to
develop systematic ways to reduce new problems to ones they have already
solved. Theorem 1.2.1is a start in this direction. We have already noticed that
J 2x cos(x?) dx = sin(x?) and [ sin(2x) = sin®(x). Thus we can evaluate an
integral such as [ (27x cos(x?) + 25 sin(2x)) dx by using Theorem 1.2.1:

T / 2x cos(x?) dx + 25 / sin(2x) dx = 7 sin(x?) + 25 sin®(x) .

‘ Your students already know many integrals. ‘

As they begin to compute more integrals, your students will use the rule of
Theorem 1.2.1 automatically. They will discover that they already know many
integrals! Every differentiation formula they have memorized gives rise to a
corresponding integration formula:

dx

d 1
— In(|x|]) = 1/x becomes In|x]| :/ —dx
dx x

i sin(x) = cos(x) becomes sin(x) = / cos(x)dx

— x" =nx""! becomes x" = / nx" ldx .

This latter integral has been memorized by millions of calculus students as

xn+1
/x”dx: n for n#-1.

n+

Forn = -1, fx_ldx =In|x|.

Show: % sec(x) = sec(x) tan(x) % csc(x) = — cse(x) cot(x)

By applying Theorem 1.2.1, you can compute integrals such as

4
/(34 sin(x) + 23x° + 45 sec?(x))dx = —34 cos(x) + 23% +45tan(x) .

(1.2.2) Chain rule in reverse

To really get started on the problem of computing integrals, your students
must learn how to do the chain rule in reverse. In particular,

(29 27600 = £ gt @) = flg) = [ 1 GNg s
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Let’s start with an easy example. Consider [ cos(x?)(2x)dx. It appears
that f”(x) = cos(x) and g(x) = x? here. This is determined by guessing
or by inspection with the aid of past experience. Thus, [ cos(x?)(2x)dx =
[ f(g(x))g’(x)dx = f(g(x)) = sin(x?). We had to guess that g(x) = x*
was the proper choice since the function g is not explicitly mentioned. The
way we make such a guess is by knowing our derivative formulas well. We
know that j—xxz = 2x. As our eyes scan the expression cos(x?)(2x), we spot

the pair x? and its derivative 2x. This is the clue that prompts us to try
2

g(x) = x*.
In addition to guessing correctly that g(x) = x? in the previous example, we
had to know how to integrate f’(x) = cos(x) to getf x) = sin(x). As another
example, let’s try to calculate [ In(x?)(2x) dx

(

Again, we see the pair g(x) = x% and ¢’(x) = 2x. Thus f’(x) = In(|x|) so
that f/(g(x))g’ (x) = In(x?)(2x) (note that |x?| = x?). To compute f(g(x)), we
must compute the integral f(x) of f"(x) = In(|x|) . f(x) = xIn(|x|) — x is the
answer which you can check by differentiating. From this fact, we conclude
that [ In(x?)(2x)dx = (x?)In(x*) — x*. Check this statement by computing
the derivative of the expression on the right.

Another complication that occurs is seen in the following two integrals:

/xcos(xz)dx =? and /len(xz) dx =?.

In these integrals, we see the g(x) = x? all right, but the g’(x) = 2x is not
there. Instead, we see x in the first integral and 5x in the second integral. We
know that for any number a and any function h(x), | ah(x) dx = a [ h(x) dx.
Thus,

/xcos(xz) dx = /(1/2)(2x) cos(x?) dx = (1/2)/cos(x2)(2x) dx .

We have already discovered that [ cos(x?)(2x)dx = sin(x?), so we have
J x cos(x?) dx = (1/2) sin(x?).

Show: % tan(x) = sec?(x) % cot(x) = — csc?(x)

(1.2.4) Differential notation

Certain notations of calculus are designed to help in the task of applying the
chain rule in reverse. We know that [ cos(x)dx = sin(x). There is, of course,
nothing special about the x here:

/cos(t) dt = sin(t), /cos(r)dr = sin(7) , /cos(A)dA = sin(A),
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and
/ cos(JUNK)d(JUNK) = sin(JUNK) .

The general rule is that if F(x) is an integral or an antiderivative of f(x)) (i.e.,
F’(x) = f(x)) then

/ FJUNK)d(JUNK) = F(JUNK)

where JUNK stands for anything for which these formulas make sense. JUNK
can be quite complicated. For example

/ (In(x)ex tan(sin(x))) (ln(x)ex tan(sin(x))) , (In(x)ex tan(sin(x)))
cos d = sin .

x5 +2x3 +5x + 1 x> +2x3+5x+1 x5 +2x3 +5x + 1

In this formula

JUNK = (ln(x)ex tan(sin(x))) ‘

X%+ 2x3 +5x +1

Here is a more formal presentation:

Definition 1.2.5 (differential notation). Let g(x) be a function of x with Z—i =
g’ (x). Then define dg = ¢’(x)dx. This is the differential notation for the

derivative of g. The term dg is called the differential of g and the term dx is
called the differential of x.

We can state our above discussion as a theorem:
Theorem 1.2.6. Let F(x) be such that F'(x) = f(x) and let g(x) be a function
with differential dg = g’ (x) dx. Then,

[r@ds=r).
Proof. For any function h(x) we have, by the definition of the integral, h(x) =
J W(x)dx = [ dh. Applying this to the chain rule (where F’(x) = f(x)) gives
Fge) = [ dFew) = [ Flog@dr = [ gt ds.

Thus [ f(g) dg = F(g). O

‘ How We Make Up Confusing Problems‘

You should show your students how easy it is to make up confusing problems
that “illustrate” the method of substitution. For example, let cos(x) be f(x).
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Thus, F(x) = sin(x). Next we pick any function g(x) that we can differentiate.
Let’s take g(x) = In(x? + 1). Then, ¢’(x) = -2
into the identity [ f(g) dg = F(g) we obtain

/cos(ln(x2 +1))d(In(x* + 1)) = sin(In(x? + 1)) .
But this is the same as

> dx = sin(In(x? + 1))
x% +

/cos(ln(xz +1)———
which is (almost) the same as

/ cos(In(x? + 1)) d =2

x+1/x

The following Exercises 1.3 are designed to give you practice with the method
“integration by substitution" discussed in the previous paragraphs. In these
exercises, you are to find functions f(x) and g(x) such that the given problem
can be reduced to computing [ f(g) dg

1.3 Exercises

Integration by substitution

Evaluate the following (for the appropriate values of x). Solutions follow.

Exercise 1.3.1. /x\/x2 +2dx = (f(x) = x"?and g(x) = x% + 2)

Exercise 1.3.2. (g(x) = 5+x>*)

Exercise 1.3.3

Exercise 1.3.4 = (g(x) = 1 + e%x)

x = (f(x) = cos(x), g(x) = (5x + 1))

Exercise 1.3.5.
V5x2 + 1

3/4

Exercise 1.3.6. | sin”*2x cos2xdx = (g(x) = sin(2x))

Exercise 1.3.7. [ tan®3t sec®3tdt = (f(t) = t?)

[ 5o
T
e
/xcosmd
/
/
/

Exercise 1.3.8. [ xsec(x®) tan(x?) dx =

13



21n%(|x
Exercise 1.3.9. / ﬁdx:
x
Exerci | (9(x) = x* +9)
xercise 1.3.10. ——dx = x)=x
3 (x? + 9)3 J
elogz(x)

Exercise 1.3.11.

dx = (g(x) = log,(x) or try log,(x) = log,(e) log, (x))

1
Exercise 1.3.12. [ oy do = (g(8) = cos(6))
sin

Solutions to Exercises 1.3

Solution 1.3.1: [ xVx%+2 dx = [ xg'/?dx where g = (x? + 2). Thus, dg =
2xdx so xdx = dg/2. Evaluate fgl/zdg/z = (1/2)(2/3)¢*?. The answer is
(1/3)(x? + 2)3/2. All antiderivatives of xVx2 + 2 are of the form (1/3)(x? +
2)3/2 + C, where C is a constant function. We generally omit the constant C
as previously discussed.

x1/4

4 4
Solution 1.3.2: / dx = B /(5 +x° 75+ x°%) = s In(5 + x°/%).

5 + x5/4

Solution 1.3.3: Beware of this type of problem! No tricky substitutions are

required:

-1

/ V¥ dx=/(1—x_1/2)dx=1—2x1/2.
Vx

Solution 1.3.4: Let g = (1+e2x). Then x = e"?(g—1), dx = e 2dg, and

8x _ -1 _ - -
/ 1+e2xdx:8e 4/97619286 4(/ dg+/g 1dg):8e *(g+In(|g])) .

Now set g = (1 + e?x). Note the similarity to Solution 1.3.3.

x cos V5x2 + 1
V5x2 + 1

Solution 1.3.5:

dx = /cos ((Sx2 + 1)1/2) d (%(Sx2 + 1)1/2) =
é / cos ((5x% + 1)V/2) d(5x* + 1)1/? = ésin (52 + 1)) .

Solution 1.3.6: [ sin®/4 2x cos2x dx = %f sin*/*(2x) d sin(2x) = %sin7/4(2x).

14



Solution 1.3.7: [ tan®3t sec?3tdt = [ tan®(3t) (1/3)d tan(3t) = (1/9) tan®(3t).
Solution 1.3.8: [ x sec(x?) tan(x*)dx = (1/2) [ d(sec(x?)) = (1/2) sec(x?).

3
Solution 1.3.9: / M dx = Let g(x) = In(|x]).
x

6
Solution 1.3.10: / ﬁ dx = Letg(x) =x%+9.

61052 (x)

Solution 1.3.11: dx = Let g(x) = log,(x) or directly substitute

x
log,(x) = log,(e)log,(x). The computations go as follows: Using log,(x) =
log, (e) log, (x) we get

log, (x) log, (e) In(x) log, (e) log, (e)

e e X

/ dx:/—dx:/x dx = /xlog?("’)_1 dx = )
x x x log, (e)

elogz(x)
dx = 1n(2) / eddg =1In(2)ed =

In(2)e'°€2®) = In(2)el°8:(@) 1) = In(2)x'°&(€)  Note that log, (e) = 1/ In(2).

Substituting g(x) = log,(x) we get

1
Solution 1.3.12: / md& = Let g(f) = cos(0) and use sin®(9) = 1 —
cos?(0):

/ s’mz(e) d@:/ﬂ(m:_/ dg - _1/2 /d_g+/ﬂ .
sin®(0) 1 — cos?(0) 1-¢? 1+g 1-g
The answer is (—1/2)(In |1 + g| — In |1 — g|) which can be written

(1-9)'
(1+g'2)"
We drop the absolute values because both 1 — g and 1 + g are nonnegative as
g = cos(0). Using the half-angle formulas (1 - cos())'/? = 2'/2| sin(0/2)| and
(1 + cos(0))/? = 21/2| cos(0/2)|, we can write

/ 10 d = In (2% sin(6/2)]) — In (2"/?| cos(6/2)|) = In(| tan(6/2)]) .

1 1
SInfl=gl= > Ini+gl=In(1- )"/ = In(1+ )" :m(

sin
1.4 USil’lg computer resources

At the time of writing this book, a Web search on “google directory science
math" brings up a list of categories that includes “Calculus.” Clicking on “Cal-
culus” brings you to another list of categories that includes “Software" where
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you will find a link to “The Integrator" (http://integrals.wolfram.com/). The
Wolfram Integrator is easy to use and, entering our Exercise 1.3.12 (in the
form 1/ sin(x)), yields log (sin(x/2)) — log (cos(x/2)) as the integral. In the
notation used here, “log" refers to the natural logarithm “In". This expression,
In(sin(x/2)) — In(cos(x/2)), is one of several forms for the integral that we
discovered in our solution to 1.3.12. We found the equivalent form

In (21/2| sin(x/2)|) —In (21/2| cos(x/2)|) = In (] sin(x/2)|) — In (] cos(x/2)]) .

Note that 1/sin(x) is also written (sin(x))™! or sin~!(x) (consistent with
sin?(x) for (sin(x))?). You will also find that some websites use sin~! for
arcsin(x). We prefer the latter notation but use both as both are common.

Using the online integrator is a very easy way to solve Exercise 1.3.12. Maybe
you should advise your students to stop studying calculus and just rely on
mathematical software! Mathematical software can be a tremendous help to
even the most sophisticated mathematician or scientist. However, there is
no replacement for understanding the ideas and techniques of calculus. As
a minor point, if you understand the ideas of calculus you will note that the
given solution, In(sin(x/2)) — In(cos(x/2)), would be better written as

In (| sin(x/2)) - In (| cos(x/2)|)

where we have included absolute values. This is a trivial observation, but it
might save you from making an annoying mistake in certain contexts. Some-
one who uses mathematical software without knowing the theory behind
what they are doing is like someone who drives a car without the slightest
idea of how the car works or how to fix minor problems.

As an example, suppose we do a web search for [ sec(x) dx. At the first site,
I found [ sec(x)dx = 2 tanh ™! (tan(x/2)). On two other sites I found

/sec(x) dx = In|sec(x) + tan(x)| and /sec(x) dx = tanh™!(sin(x)).
This seemed to be all of the variations until I hit upon
/sec(x) dx = (1/2)In |1 + sin(x)| — (1/2) In |1 — sin(x)].

You will have students who will come up with all of these variations and
more. It is worthwhile to go through these variations and understand them.
The same pattern will be repeated on any problem where web resources are
used.

16



(1.4.1) Variations on / sec(x) dx

As an example of how to analyze the various solutions your students might
bring to you from web searches, we go through some possibilities for

J sec(x) dx.

1. [sec(x)dx = In|sec(x) + tan(x)|: However they obtained this solu-
tion, ask your students to specify a domain for the function F(x) =
In|sec(x) + tan(x)|. A natural domain is —7/2 < x < x/2. On this
domain, sec(x) + tan(x) = (1 + sin(x))/ cos(x) is positive. They should
verify that F”(x) = sec(x) by direct differentiation. They should graph
(using a graphing program or calculator) the function F(x) together
with sec(x) and verify visually that F/(x) is approximately sec(x). If
F(x) was gotten from a table or program, you should ask for (or pro-
vide) a derivation using basic principles. For example,

/sec(x) dx = / sec(x)(sec(x) + tan(x)) dx _ / d(sec(x) + tan(x)) '

sec(x) + tan(x) sec(x) + tan(x)

2. [sec(x)dx = (1/2)In|1 + sin(x)| — (1/2) In|1 — sin(x)|: Assume that
—m/2 < x < m/2. A simple direct derivation is as follows:

/ sec(x) dx = / cos(x)dx _ 1 /d<1+sin<x>>_1 /d(l—sin(x))_

1-sin®(x) 2 1+sin(x) 2 1 — sin(x)

3. [sec(x)dx = tanh™!(sin(x)): Here, tanh™'(x) = arctanh(x) is the in-

verse of the hyperbolic tangent. Recall that j—u tanh™!(u) = 1_1u2 where
|u| < 1. Starting as in the previous example, with —7/2 < x < 7/2, we
get:

/sec(x) dx :/M —/M = tanh ™! (sin(x)) .

1-sin®(x) J 1-sin%(x)

4. [sec(x)dx =2 tanh ™! (tan(x/2)): We again use the fact that dd—u tanh™(u) =

1_1u2 where |u| < 1. We take —7/2 < x < /2 so that —7/4 < x/2 <

/4 and | tan(x/2)| < 1. The calculations go like this:

dx dx
/sec(x) dx = / cos(2(x/2)) = / COSZ(X/Z) —sinz(x/Z) .

17




Multiply numerator and denominator in the last integral by sec?(x):

/ sec?(x/2) dx _ 2/ d tan(x/2) ~ 2tanh~(tan(x/2)) .

1 — tan?(x/2) 1 — tan?(x/2)

5. [ csc(x)dx =2 coth™(cot(x/2)) by analogy, doesn’t it? Some student
is sure to come up with this conjecture. Have the student compute the
derivative of 2 coth™*(cot(x/2)) for 0 < x < /2. The answer is again
sec(x). This means that for 0 < x < /2

2 coth™!(cot(x/2)) = 2tanh™!(tan(x/2)) + C.

In fact, the constant C = 0. From the definitions, if 0 < z < 1 then

tanh™'(z) = In (11 +Z) =1In (;Zi 11) = coth™'(1/z).

To show C = 0 for 0 < x < /2, take z = tan(x/2) so 1/z = cot(x/2).
Web resources won’t make your tutoring job any easier. Sometimes
you will have to say, "I don’t know"

1.5 Additional techniques of integration

(1.5.1) Integration by Parts

The method of substitution, uses the “chain rule in reverse" The method of
“integration by parts" is the “product rule in reverse."

We have (fg)’ = f'g + f¢’ thus f(x)g(x) = [ f'(x)g(x) dx + [ f(x)g (x) dx.
Stated as a theorem, we have the following:

Theorem 1.5.2. Integration by parts: Let h(x) be a function which we have
written as h(x) = f(x)g’(x) for some choice of f and g’. Then

(153 / h(x) dx = / £ () dx = F(x)g(x) — / F()g(x) d.

Proof. Write (fg)’ =f’g+fq" as fg’ = (fg)” — f’g and integrate. ]

This is a trivial theorem but a very useful trick of integration. The basic idea
is to start with a function h(x) expressed analytically in a nice fashion (e.g.,
h(x) = x(2 + 3x)~/?). We want to compute J h(x) dx. To do so, we write
h(x) = f(x)g’ (x) where we know how to compute f’(x) and [ g’ (x) dx (both
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answers in a desirable analytic form). In this case, take f(x) = x and ¢’ (x) =
(2 +3x)"Y2. Thus, f/(x) = 1and g(x) = [ ¢’ (x) dx = (2/3)(2 + 3x) /2.

Applying 1.5.3, we get
/x(2+3x)_1/2 dx = x ((2/3)(2 + 3x)1/2)—/g'(x) dx = (x—1)(2/3)(2+3x)"/2.

Some students are helped by the following tabular form of 1.5.3:

(15.4) Figure : Integration by Parts Table
ff(X) §(x) = flx)g) - ff'(X) g(x) J(x) g(x)
Diagonal product = top product - other diagonal (%) g (x)

1.6 Exercises

Integration by parts

Verify the following identities using integration by parts:

Exercise 1.6.1. f arctan(x) = x arctan(x) — (1/2) In(1 + x?)

arctan(x) X
Hint:
! 1
1+ x2

Exercise 1.6.2. [ x arctan(x) = (x?z) arctan(x) — f(%z)(ﬁ) dx =7
2

arctan(x) X
Hint: 2
1
X
1+ x2
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Exercise 1.6.3. [ sin(In(x)) dx = x sin(In(x)) — [ cos(In(x)) dx = ?

sin(In(x)) X cos(In(x)) X
cos(In(x)) 1 > [ sin(In(x)) 1
X X

Apply integration by parts twice and then solve for [ sin(In(x)) dx.

Exercise 1.6.4. f sec® dx = sec(x) tan(x) — f sec(x) tan?(x) dx = ?

sec(x) tan(x)

Recall: tan® = sec® —1 5
sec(x)tan(x)| sec”(x)

/sec(x) tan®(x) dx = /sec(x)(secz(x)—l)dx = /sec3(x) dx—/ sec(x) dx.

Use any of the forms 1.4.1 for [ sec(x) dx. Substitute the [ sec(x) tan?(x) dx
result into the first expression of this exercxise and solve for [ sec?(x) dx.

(1.6.5) Integral tables and online math resources

You should be familiar with online tables of integrals and mathematics soft-
ware (including graphing software), and you should encourage your students
to learn to use these resources. The online resources you use should be free
to the students. There are free tables of integrals available in pdf format. It
is helpful if you and your students have the same table of integrals, use the
same grapher, integrator, etc. Entries in the table of integrals expressed in
terms of parameters or defined recursively need to be explained to the stu-
dents in terms of usage and proof.

Our first example expresses the integral in terms of real numbers a and
B, a* # B?. The numbers @ and f are parameters in the integration for-
mula.

sin((a — p)x) B sin((a + f)x)
2(ax = p) 2a+p)

Specialized versions of 1.6.6 are found in every calculus book. Recall that

(1.6.6) / sin(ax) sin(fx) dx =

(1.6.7) cos(8 = y) = cos(8) cos(y) F sin(0) sin(y)

and hence 2 sin(ax) sin(fix) = cos(ax — fx) — cos(ax + fx). Substituting
this latter identity into the left hand side of identity 1.6.6 and integrating
cos(a — f)x and cos(a + f)x gives the result.
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Next we give an example of a recursively specified integral parametrized by
integers m and n, m # —n. This identity is in all standard tables of inte-
grals:

(1.6.8) / cos™(x) sin”(x) dx =

cos™ 1(x)sin®(x) m-1
+

m+n m+n

/ cos™ ?(x) sin™ (x) dx.

To prove 1.6.8 we use integration by parts 1.5.4:

cos 1(x) —sin’”l (%)
n+1
(m = 1) cos™2(x)(- sin(x)) cos(x) sin”(x)
We obtain the following recursive identity
(1.6.9) /cosm(x) sin”(x) dx =
cos™ 1 (x) sin™!(x) ,m-1

/cosm_z(x) sin™*?(x) dx.

n+1 n+1

Recursion 1.6.9 holds the sum of the powers of cos(x) and sin(x) constant
while reducing the power of cos(x) by two in the integral. For most applica-
tions, the identity 1.6.9 would be as good as 1.6.8. The idea is to reduce the
complexity of the integral by repeated application of 1.6.9. This reduction will
only work for certain values of m. For example, if m = 3 (or any positive odd
integer), the final integral on the right will be a power of sin(x) times cos(x)
which is easy to integrate.

We need some additional steps to prove 1.6.8. First, note that

(1.6.10) /cosm_z(x) sin™*%(x)dx = /cosm_Z(x) sin” sin®(x) dx =
/cosm_z(x) sin” (x) dx —/cosm(x) sin”(x) dx (use sin®(x) = 1 — cos?(x)).
Using 1.6.10, make the following substitution in 1.6.9.

/ cos™ %(x) sin™?(x) dx = / cos™ %(x) sin" (x) dx — / cos™(x) sin”(x) dx
and solve the resulting equation for [ cos™(x) sin"(x) dx. The result is 1.6.8.
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The integration formula 1.6.8 is but one of many that are fairly general in
description. The proofs of these identities can be tricky, as we have seen. A
good student will often ask a professor or tutor to explain why these integral
identities are true. If you don’t know it is best to say so. These identities
have been used and refined over hundreds of years. After years of teaching
calculus, I have derived most of them — but usually not on the spot as a result
of a student’s question.

To summarize, using online resources can be challenging to the tutor and
students, but the effort is well worthwhile. The student’s learning experience
is greatly enhanced and the powerful tools of calculus become even more
useful. We have included a Table of Integrals at the end of this manuscript.
This table is from the book Top-down Calculus, by S. Gill Williamson which is
available free on the author’s website (see Preface).
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Chapter 2

Fundamental Theorem and
Definite Integrals

2.1 The fundamental theorem of calculus

In the this chapter, we present some of the theory of integration. Failure to
understand this small bit of theory has resulted in some of the most serious
cases of bad advice that tutors have given to my students.

For numbers p and g, we use the notation [p, q] to denote the set (or interval)
of all x between p and q (all x such that p < x < ¢, if p < g, or all x such
that p > x > g, if p > g). The notation (p, q) denotes [p, g] minus the two
endpoints.

Given a continuous function f(x) on an interval [s, t], how hard is it to find
an antiderivative (integral) F(x) of f(x)? Problems like those in Exercises 1.6,
where we start with the function f(x) specified analytically (i.e., by some
expression) and want the answer F(x) also to be specified analytically, can
get very difficult. However, if we start with f(x) in graphical form and don’t
mind getting F(x) in graphical form also, then finding F(x) is, in principle,
very easy. We now guide you through Figure 2.1.1 to help you understand
this graphical approach.
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(2.1.1) Figure : Signed Area Basics F(x) = S}(f)

s<a<x<t
a

F(x+h) — F(x) = area of shaded region

s<x<a<t

. SE(f)= By — A, = —54(f)
F(x)= Si(f)

1. The signed area function F(x) = S} (f): Start with the upper half of
Figure 2.1.1, and look at the graph of the function f(x). Using this graph
of f (where a < x) we define a second function, F(x) = S} (f), called
the signed area function of f (x) with base point a. For the x shown on
the horizontal axis, consider the region R, = A, U B, bounded by the
interval [a, x] (on the horizontal axis) and the graph of f. R, is the
union of two sub-regions: A,, the points on or above the horizontal
axis, with area Ay, and By, the points on or below the axis, with area
By.. We define S} (f) = Ax —Bx. In the reverse case where x < a, shown
in the lower half of Figure 2.1.1, we define S¥ = B, — A_.. Note that for
any a and b, SZ = —SZ.

2. Properties of F(x) = S} (f): In Figure 2.1.1, we didn’t sketch a graph of
F(x). See Figure 2.1.4 if your curious about what the graph of F looks
like. Look again at the upper graph in Figure 2.1.1. The area of the
shaded region bounded by the graph of f and the interval [x, x + h] is
exactly F(x + h) — F(x) (definition of signed area) and approximately
h X f(x). Thus, (F(x + h) — F(x))/h = f(x) for small h, and

+h) —
tim DI < i 1) = £

Thus, the derivative F’(x) = f(x) and F(x) = S} (f) is an antiderivative
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(integral) of f(x). This result is called the Fundamental Theorem of
Calculus. The "proof" just given is sloppy and gives only the basic
intuition.

Figure 2.1.4 is an expanded version of Figure 2.1.1. In Figure 2.1.4, we take a =
—3 and graph F(x) = S} (dashed curve). The numbers at the bottom

0,+0.5,0,-1.17, —2.34, —2.84, —2.34, —1.04, +0.66, +2.36, +3.66, +4.16

correspond to the sequence F(—5), F(—4), F(-3), F(-2), ..., F(6). The differ-
ences, F(i+1)—F(i),i = =5, —4, ... 6, are also shown on the graph. They read
-0.5,+0.5,-1.17,+1.17,—0.5, +0.5, . . . . Your students should check that the
F’(x) = f(x) (approximately) for various values of x. The following table
might help.

Fl(-4)=0 F/(=3)=—-1 F(0)=0 Fl(l)=1  F(5)=1
f(=4)= f(=3)= f(0)= F)= f(5)=

Next we give a more careful definition of the signed area function, a statement
of the theorem, and a less sloppy proof.

Definition 2.1.2 (S} (f)). Let f(x) be a continuous function on some interval
[s,t],s < t,and let a be anumber s < a < t. Forall x in (s,t) = {x:s < x <
t}, the region of the plane bounded by the graph of f and the interval [a, x]
of the horizontal axis is divided into two sub-regions: Ay, the region on or
above the horizontal axis with area Ay, and By, the region on or below the
horizontal axis, with area By. The signed area function, S} (f) of f with base
point a, is defined by S} (f) = Ax — By ifa < x,and S} (f) = By — Ax ifx < a.
Si(f)=0ifa=x.

Theorem 2.1.3 (Fundamental theorem). Let f be defined and continuous for all
x in the interval s, t], s < t, and let a be a number in (s, t). Let F(x) = S} (f),
x in [s, t], be the signed area function of f with base point a. For every point x
in (s, t), the function F(x) has a derivative and %F(x) = f(x). Thus the signed
area function is an antiderivative or integral of f (x) on (s, t).

Proof. (Theorem 2.1.3) In general, for a number x and for any h > 0, let I, =
[x, x + h] denote the set of all numbers z such that x < z < x + h. Let x be in
(s, t) and let h be such that the interval I, = [x, x + h] is contained in (s, t).
Choose vy, in I, such that f(vp) h = F(x + h) — F(x). !

'This is the tricky part. In Figure 2.1.4. Take x = 1 and h = 2 so that I = [1, 3]. The signed
area between I, and the graph of f is F(x + h) — F(x) = 1.3 + 1.7 = 3. If we take vy = 2, then
f(vp) =1.5and f(vp) h=1.5%X2=3=F(x+h)—F(x). Note 1 =my, < f(vp) <My =16
where my, is the minimum of f on I, and My, is the maximum. Try some other Ij, in the figure
(e.g.[-2,—1] or [-1, +1]).
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Let my, be the minimum value of f on I, and let My, be the maximum. Clearly,
my < f(vp) < My. As h > 0 tends to zero, my, and My, tend to f(x) by the
continuity of f. This means that f(vy), which is between my, and My, tends
to f(x) also. Thus, f(vp) h = F(x + h) — F(x) implies that

li

h—0 h h—0

_ h
i P+ ) — F() _ lim@ = lim f (o) = f(x) .

Thus, the right-hand derivative of F(x) is f(x). Using I, = [x—h, x] for h > 0,
the same argument works and shows that the left-hand derivative of F(x) is

f(x). Hence, the derivative of F(x) is f (x). O
(2.1.4) Figure : Graph of Signed Area Function F(x) = S}(f)
L |
a=-—3 | | | |
6 d
—8(f)=f(x
L55() = 1)
: —
F(x)=S5}
4 0 =S,
V
/
3 J
~
/
2
/
AS)% o e
! /
. w13 | +17 N +17 | +13
7 S +0.5 / +0.5
4N SN 2| -/ 1 2 /3 4 5 6
JO.50 N\ 0.5, /
L7 117/ -1 /
/
\
/
N -2 /
\\
\\\///
0 +05 0 -117  -234 284 234 -104 4066 +236 +3.66 +4.16
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Tutoring points (signed area):

1. Given a function f(x) that is continuous on an interval [s, t], it is easy,
at least conceptually, to construct the graph of f. From the graph of f,
the construction of a signed area function, and hence an antiderivative
F of f, is easy to imagine. For some students, this graphical route to
antiderivatives demystifies integral calculus - all to the good.

2. Your students should understand that if H(x) is an integral of f(x) on
(s,t), H(x) may not be a signed area function, S}, forany a, s < a < t.
Why? Find an H(x) that is not zero for every a, s < a < t (recall that S}
is always zero at x = a). Ask your students to find a specific example
of such an H(x). Under the assumptions of Theorem 2.1.3, is it always
possible to find an H(x) that is not a signed area function? Draw some
examples and use your intuition.

3. Suppose that H(x) is an integral of f(x) on (s,t) and s < a < t. Then
F(x) = H(x) — H(a) = S . Why? Also note that if a, b, and c are in the
interval (s, t) then

Se +Sj = (H(b) = H(a)) + (H(c) = H(b)) = H(c) - H(a) = S .

Ask your students to explain the formula, S2 + S, = S, directly (and
graphically) in terms of the definition of the signed area function (Def-
inition 2.1.2).

‘ The Envelope Game

Imagine that you have an envelope and inside is the signed area function
of f(x) = x* with base point a = 0. What might you see when you open
the envelope? One possibility is that you will see a drawing of a graph of
F(x) = SJ(f), constructed in a manner analogous to the graph S; (f) shown
in Figure 2.1.4. If so, you will know that whoever put such a thing in the
envelope wasn’t thinking very hard! We learned at the very beginning of
this chapter that if F(x) and G(x) are two antiderivatives for f(x) then they
differ by a constant function: F(x) = G(x) + C. Take G(x) = x*/3, an obvious
antiderivative of f(x) = x2. By Theorem 2.1.3, F(x) = S; (f) is also an an-
tiderivative of f(x). Thus F(x) = x*/3 + C and, since F(0) = 0, C = 0. What
you should find in the envelope is simply

SY(f) = x*/3.

The tedious task of computing signed areas, S} (f), of functions f(x) can be
replaced by the seemingly very different task of finding concise expressions
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(e.g., polynomials, rational functions, trigonometric functions) for antideriva-
tives F(x) of f(x). Computing areas might, at first glance, seem to be too
specialized a task — hardly worth developing the powerful techniques of in-
tegral calculus. However, many problems in physics, chemistry, engineering,
astronomy, etc., present the same basic challenge as computing areas and can
be solved using calculus in an analogous manner.

2.2 Definite integrals and Riemann sums

Here is a quick summary: Given a function f(x), any function G(x) such
that %G(x) = f(x) is called an antiderivative or integral of f(x). Any two
antiderivatives H(x) and G(x) of f (x) satisfy H(x) — G(x) = C. Thus, if H(x)
and G(x) are antiderivatives of f and H(a) = G(a) for some number a then
C = 0 and H(x) = G(x) for all values of x.

The signed area function S} (f) is an an antiderivative for f. If an antideriva-
tive H(x) for f(x) satisfies H(a) = 0 then, in fact, H(x) = Sk (f) (take
G(x) = Sk (f) and note that H(a) = G(a) = S4(f) = 0).

To find the signed area function S} (f), find any antiderivative F(x) of f(x)
and set H(x) = F(x) — F(a). Then H(x) = S} (f).

(2.2.1) Definite integrals
The common notation for the signed area function S} (f) in calculus is fax £

or faxf(t)dt, where t is called the variable of integration.

It doesn’t make any difference what we call the variable of integration:

[ rwai= [ rway= [ = =50,

If we evaluate a signed area function S} (f ) of f at a particular number, x = b,
we designate the answer (a number) by f f(t)dt. This number is referred to
in most calculus books as the definite integral of f from a to b. From our pre-
vious discussion, one way to compute [ b f(t)dt is to find any antiderivative
F(t) of f(t) and compute F(b) — F(a). Thus, F(b) — F(a) = f f(t)dt, and if
we interchange a and b, fb“f(t)dt = F(a) — F(b). Thus,

/abf(t)dtz —laf(t)dt
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Numbers such as a and b or 0 and 1 that appear at the top and bottom of the
integral sign ( ab or fol) are called the limits of integration. If the integral sign
has no limits, such as [ f(x) dx, then this stands for just any old antideriva-
tive or integral of f. Sometimes the phrase “indefinite integral [ f " is used to
mean “integral of f" or “antiderivative of f."

(2.2.2) Riemann sums

Consider Figure 2.2.4 where we see the graph of a function f. We are in-
terested in approximating the definite integral (signed area) from a to b

(f F(tydn).

To approximate fab f(t)dt, we have divided the interval [a, b], a = x1, b = x,
into subintervals [x1, x2], [x2, x3], ..., [xs, X9]. In each subinterval [x;, x;.1],
we have chosen a number #;. We then approximate the definite integral,
/ ab f(t)dt, by the sum, Z?:l f(ti)(xi+1 — x;). To indicate this approximation
we use the following notation:

b 8
[ #war= Y e -x.
a i=1

If we let A; = x;.1 — x;, this approximation can be written

b 8
[ s~y pwa
a i=1

Sums such as those used above to approximate definite integrals are called
Riemann sums.

Definition 2.2.3 (Riemann sum). Let f be a continuous function defined on
the interval [a, b]. Leta = x; < x3 < -+ < Xu+1 = b be points in the interval
[a,b], a < b. Define A; = x;.1 — x;. Choose t; in [x;,x:1],i = 1,...,n. The
following sum is called the Riemann sum for f based on the points x; and #;:

Zn: ft)a.
i=1
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(2.2.4) Figure : Riemann sums

2 70t ~ 380 51— ) ] i

a=ux; I X2 I X3 I3

X4 4 X5 l5 Xg te X7 17 X8 tg xo=>b

As we let n get larger and larger in such a way that the A; goes to zero for
all i, the Riemann sum becomes a better and better approximation to the
signed area fab f(t)dt. We won’t define these limits precisely. In appropri-
ately poorly defined notation, we write

n b
lim " f(ti)Aiz/ f)dt .
i=1 a

Using the notation of Definition 2.2.3, we can write

n b
i)hi ~ d
PO / Ftydt

to indicate that we are regarding the Riemann sum as an approximation to
the corresponding definite integral. Note that the terms f(t;)A; of the Rie-
mann sum are numbers that commute under addition. Thus, },;_; f(t;)A; =

1_, f(t:) A, and the latter sum should not be interpreted as an approxima-

tion for |, ba f(t)dt. From the definition of the signed area function

/abf(t)dt = —/baf(t)dt.

To approximate fba f(t)dt where b > a, approximate first fab f(t)dt, as in
Definition 2.2.3, and change the sign. This is equivalent to changing A; to
—-A;,i=1,2,...,n,in the Riemann sum.

We now work some exercises (Exercises 2.3) using the relationship between
integrals and signed areas. Solutions to Exercises 2.3 follow the list of prob-
lems. After working these five problems, we suggest you make some mi-
nor change to each problem and try to work the problem again. Remember,
changes that seem “minor” can sometimes make a problem much more diffi-
cult, something you should always be aware of when tutoring students.
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Working parameterized problems

2.3 Exercises

In these exercises “area” means actual area, not signed area. In Exercise 2.3.1,
for example, instead of asking for the area bounded by, “... x = -1, x = 2,
and the horizontal axis,” we replaced x = —1 by x = aand x = 2 by x = b.
The answer is then expressed in terms of the “parameters” a and b. Calculus
gives us the power to solve parameterized problems. You must be able to
create such parameterized problems for your students. This exercise will give
you experience in making up such problems.

Exercise 2.3.1. Find the area bounded by the graph of y = x?, the lines x = q,
x = b, and the horizontal axis.

Exercise 2.3.2. Find the area bounded by the graph of y = x>, the lines y = b®,
y= a3, and the vertical axis.

Exercise 2.3.3. Find the area of the bounded region between the curves y =
—x*+candy = k*. Assume k > 1and ¢ > 1.

Exercise 2.3.4. Find the area enclosed by the curve {(c+a cos(t), d+bsin(t)):
0<t<2m}.

Exercise 2.3.5. Using polar coordinates, find the area enclosed by the curve
r(¢) =a+bcos(§),0 < $p <2m,a>0andb>0.

Solutions to Exercises 2.3

Solution 2.3.1: Assume a < b. This assumption is just a matter of notation and
can be made “without loss of generality” (WLOG). The function f(x) = x> is
zero at x = 0, negative for x < 0, and positive for x > 0. A sketch of the
situation is shown in Figure 2.3.6 where we show the case a < 0 < b.
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(2.3.6) Figure : Areas and f(x) = x°

a3

When a < 0 < b, the definite integral

b 4
x

/ x’dx = —
a 4

gives the signed area between the graph of f(x) = x* and the interval [a, b]
which does not equal the area (“actual area”). If a = —1 and b = 2 the signed
area is 2*/4 — (=1)*/4 = 15/4. The area, on the other hand, is given by

fa0x3dx‘ + ’fob x3dx’ =a*/4+Db*/4 (a<0<b).Fora=-1andb = 2 the
areais (—1)*/4+2%/4 = 17/4. As long as the function f(x) doesn’t change sign
faof(x) dx| gives the area.

b
=b*/4 - a*/4

a

over an interval, such as the interval [q, 0], then

If we drop the absolute value, fao x3dx is the signed area based at a < 0 and

is a negative number. The sum foa x3dx + fob x3dx expresses the area without
absolute value signs (fora < 0 < b). If a < b < 0 or 0 < a < b, the function
f(x) = x* does not change sign over the interval [a, b] so | fab x3dx’ gives the
area in both cases.

Solution 2.3.2: Assume a < b or, equivalently, a®> < b3. A sketch of the

situation is shown in Figure 2.3.6 where we show the case a® < 0 < b®. The
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area bounded by the graph of y = x>, the lines y = b3, y = @, and the
vertical axis is shown by horizontal dashed lines. Let’s take the point of view
of the young lady facing us in Figure 2.3.6, namely x = y!/3. Reasoning as in
Solution 2.3.1, if a®> < 0 < b® then the area between the two curves is

3 b3 a3 b3
3 43

“ 3 3, 3
/ y”?’dy+/ y Py =y o+ 2y
0 0 0

=Za*+ b,
o 4 4

4

Alternatively, we can subtract the areas computed in Solution 2.3.1 from the
areas of the a X a® rectangle and the b X b® rectangle:

a b 4 4
b 3 3
(a4—/0 x3olx)+(b4—/0 xgdx):(a4—az)+(b4—z):Za4+zb4.

As in Solution 2.3.2,ifa < b < 00or 0 < a < b, the function x = y1/3 does
3
not change sign over the interval [a®, b*]. Thus, the area is | fal; y'/3 dy| =

3143 4|
|4b 1a%| .

(2.3.7) Figure : Area betweeny = —x* + cand y = k*

y y=k*
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(2.3.8) Figure : Area bounded by ellipse

x(t)= acos(t) y(t)= bsin(t)
0<tr<2m

Solution 2.3.3: A sketch of the situation is shown in Figure 2.3.7. The area of
the bounded region between the curves y = —x? + cand y = k* (k > 1 and
¢ > 1) is given by

—x3 " - ka — kb

b
—x*+c—k¥)dx= — - = b -
l( x“+c ) dx 3 +cx ()|, 3 +ce(b—a)+ (k)

This expression shows one advantage of an analytical as opposed to graphical
or numerical solution. The analytic solution can often be expressed explicitly
in terms of parameters (in this case, a, b, c, and k). For a specific k and c, we
can solve for a and b (using an online math program, graphing calculator, or
math software). For example, if k = 2and ¢ = 2 thena = —1.26 and b = +0.65
(approximately).

Solution 2.3.4: You are asked to find the area enclosed by the curve
{(c+acos(t),d+bsin(t)) : 0 <t < 2x}.

This curve is an ellipse centered at (c, d). The area is unchanged if we trans-
late this ellipse to one centered at the origin: {(a cos(t), bsin(t)): 0 < t < 2z}
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(see Figure 2.3.8). By symmetry, we can compute the area of the shaded re-
gion in Figure 2.3.8, {(acos(t), bsin(t)): 0 < t < n/2}, and multiply by four.
The area of the shaded region is

a t=0 0 /2

/ ydx = / y(t)x’(t) dt = ab/ sin(t) (- sin(t)) dt = ab/ sin®(t) dt.
0 t=m/2 /2 0

By using trig identities or looking up the integral, the area of the ellipse

1S
/2

/2 ¢
4ab/ sin®(t) dt = 4ab (E -
0

(2.3.9) Figure : Arear(¢) =a+bcos(p), 0<¢p <2m,a>0,b>0

Ag

y QD
I
&P
.
< (\Q\ (l)\

X X

a=>b a>b

y r(¢)=a-+bcos(¢)
////——\\\\\\ 0<¢<2m
X
a<b

Solution 2.3.5: Using polar coordinates, find the area enclosed by the curve
r(¢) = a+bcos(¢),0 < ¢ < 2w, a > 0and b > 0. Figure 2.3.9 shows the
three cases, a = b, a > b, and a < b,. We discuss the first two cases and
leave the third case as an additional exercise for the student. The shaded
area in Figure 2.3.9 is approximately a triangle with base r(¢)A¢ and height
r(¢). Thus, its area is approximately %rz(gb) A¢. Reasoning as in Figure 2.1.1,
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let A(¢) be the area bounded by the curve r, the x axis, and the ray ¢. The
shaded area is thus A(¢ + A¢) — A(¢) ~ 3r(¢$) A¢. Taking limits, we write
dA = %rz (¢) d. Thus, the following integral represents the area of the upper

half of the figure (in the cases a > b and a = b):

1 71
A(r) =/ —r¥(¢) dé =/ —(a +bcos(§))*d¢.
o 2 o 2
Expanding the integral on the right, we obtain
/ —a*d¢ + / ab cos(¢) d¢ + / —b? cos?(¢) do .
o 2 0 o 2
The middle integral is zero. An antiderivative of cos?(¢) is ¢/2 + sin(2¢)/4.

Thus, A(r) = (1/2)7a? + (1/4)7b? and the area enclosed by the curve is
2A(r) = wa® + (1/2)nb? (see Figure 2.3.9, cases, a = b, a > b).

’ How well did we do with Exercises 2. 3?‘

How well did we do in parametrizing Exercises 2.3? The first four problems
could have had more parameters: y = (x +c)?, y = kP**9, ¢ + a cos(kt). These
extra parameters, however, would have increased the technical difficulty for
the students without providing much new insight. In the last problem, Ex-
ercise 2.3.5, we could have combined the cases a = b and a > b into one
case, a > b. In both cases, a = b and a > b, the function r(¢) is continu-
ous over the interval [0, 7] so the same method of computing the area works.
Also, rather than computing the integral from 0 to 7 and doubling, we could
have directly integrated from 0 to 2zz. Our most serious mistake was leaving
the case a < b “to the student” This is just being lazy, especially since the
case a < b requires clarification as to what is meant and justifies a separate
discussion.

We conclude with some review material and tables of integrals (from the book
Top-down Calculus, S. Gill Williamson, available free on the web).

2.4 Inverse trig functions, tables and index

This section contains a Table of Integrals, a table of Trigonometric Functions
and an overall Index. The tables are from the book, Top-down Calculus, by S.
Gill Williamson (with the author’s permission).

Differentiation rules for the commonly occurring function-inverse pairs of
calculus are a source of difficulty for both students and tutors. We review the
basic facts that you should know in a series of figures:
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First we review the derivative of the functional inverse of sin(x) which is de-
noted by sin~!(x) or, alternatively, arcsin(x). We refer to Figure 2.4.1. You

will recognize the first graph as that of y = sin(x) for -7 < x < +7.
The second graph is that or y = arcsin(x) for —1 < x < +1. These func-
tions are functional inverses in that sin(arcsin(x)) = arcsin(sin(x)) =

The pattern for deriving the derivative % arcsin(x) = (arcsin(x))’ is, start-

ing with x = sin(arcsin(x)), differentiate both sides using the chain rule to
get 1 = cos(arcsin(x))(arcsin(x))’. Taking note of the small triangle in Fig-
ure 2.4.1, observe that arcsin(x) = arccos((1 — x%)'/? and thus

1 = cos(arcsin(x))(arcsin(x))’ =

cos[arccos((1 — x?)'/?)](arcsin(x))” = (1 — x?)"/?(arcsin(x))’.

Thus,
. ’ _ 1
(arcsin(x))” = m
(2.4.1) Figure : sin and arcsin

y = arcsin(x) = sin”!(x) .

(1 -1

x = sin(y) = sin(arcsin(x))

/l 1 = cos[arcsin(x)](arcsin(x))’
arcsin(x) = arccos((1 — xz)”z)
+Z

<x<+ + 1 = ((1 - ¥®)Y?)(arcsin(x)y’

2

NI=I

. 1
-1 <x<+1 (arcsin(x))’ = RErayE

(2.4.2) Figure : cos and arccos

y = arccos(x) 1
a- X2)1/2
cos(x)

X

“_\ x = cos(y) = cos(arccos(x))
f 1 = — sin[arccos(x)](arccos(x))’
l \ arccos(x) = arcsin((1 — x>)/?)
0<x<nm -1

44— [
“l<x<+l (arccos(0)’ = Ty




(2.4.3) Figure : tan and arctan

S\l
tan(x) N )

T arctan(x) Q x

x = tan(arctan(x))

' 1= se(:2[arctan(x)](arctan(x))’

__ 1= secz[arcsec((l + xz)l/z)](arctan(x))/

1 = (1 + ¥*)(arctan(x))’

—00 <X < (arctan(x))” =

12 < x<n)2 L+

(2.4.4) Figure : csc and arccsc

csc(x) arccsc(x) A 1

rlex<0]0<x<ni2 : i 4
\ (arccsc(x)) = (arcsin(1/x))
1 | )
T = N2 (—l/x )
> 1 (1-())

-1
—— 1
(22 - 1)
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(2.4.5)

sec(x)

Figure : sec and arcsec

arcsec(x)

]

0<x<nj2

(2.4.6)

cot(x)

+
nj2<x<nm

O<x<m

’

(arcsec(x))’ = (arccos(1/x))

e

x| > 1

arccot(x)

(-7
1

=—— |x|>1
ez -z

—00 < X <00
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TABLE OF INTEGRALS

Fundamental Forms

fa, dx = azr.

faf(x)dﬂ: = aff(a:) da.

f% =logx. [logz=1log{—a)+(2k+17i]

m+ 1
fw'"d:c == + when m is different from — 1,
m+1

fe’dx = o,
fa‘ log adx = a*.

Ix
fi-%; =tan—'x, or — ctn'z.

f ——— =sin"!x, or — cos 'z
V’l
dx i .
———— = sge~ 'y, or — 30,
Vet —1
f ——— = versin~'z, or — coversin—lx
'\/’a‘x — &t

fcos edr = sin®, or — coversin .
fsin zdx = — c0s z, Or versin x.
fctn:cda: = log sin=.

ftan xde = — log cosa.

ftan 2 sec wdxr = sec x.
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fsec’a:dx = {an .

fcsc‘:c dz = —¢ctox

In the following formmulas, %, v, w, and y represent any
funections of «:

f(u+-v+w+ et ydx =fud:c +f-va!:r. -f—fwd:r. + ete.

fud-u = uir — | vduw.

f —dxr = uv —fv—»da:

f Fly)dz = ff gy

Rational Algebraic Functions

Exrressions INvoLviNg (o + dz).

The substitution of y or % for «, where y = a + bz,
# = {a + bx) /o, gives

f @+tayan =3 {ymay.
fz@+oran=5 1o —aa.

S+ oz =b%+1fy"'(y — aydy.

xdx '—1*1'( y—aydy.

@+ v

fa:“(ad-‘:bx)”‘= gt ‘f{z_b)“ﬂddz

Whence

faf—xbz

og (a + bx).

ca-n—l
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f dr 1 )
(e + ) b(a+dx)
da . 1 .
{a+dx)*  2b(z+ bx)
f%:%[a+ bz — a log (a + ba)).
zdx 1 a
(@ +ixy ?I:l"g (@+é)+ 7 bm:|
Expressiors INvonving (@ + dz™),
I L. U S
c,+$,—actan c—csm Ve
f dx ___1__10 et dx 11 z—c*
S—x 2¢ Be_z JA_@ 2o az:-l—a

dx
at-ba?

_\/1—_;_5 ‘1(13 b ,Or.\/_ tanh“(m‘\!%)

1 Va+ay- if a0, b<0.

[
a2 gv/—ab

1 _2
8 e —av—b -
ax 1 dz

f(a-i—bx’)’ ta(a-i—ba:*)-i-ﬂ

o+ bt
1 ®

f(a + batym+1 = 2ma (= + ba:z)’“

xdx

2m _ If(a ¥ i)™

1
fa+b:c’ 243,1°g(z + )

f W zf (a-{-&z)"“'

51’ Where x = z*

f—jx——-—=i10 2
x(a+29) 24 Sa+b
f ridxz E j‘
a+ bat ) ot bt
f__i“’___ _l__f’f dz
z* (& + ba?) ax a + bzt
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ardx — &
(« ¥ bz')"‘*‘ " Zmb(a+ bz’)~+2mbf(a+bzf)m'

_1

S st - -
z’(a-l—&a:’)”'“ 2 {(a +6.‘c’)"' (@ +bx2)m+1

.f 2 =i"°““ 1(:) fx' el“'“'“h'“ (t)

ExrrEssioNs INVOLVING (& + bz + cx¥).

Let X=a + dx + ca® and ¢ = 4 ac — 3, then

dx 7] Zex+ b 2 Zex 40
— = -“~ tan~—! or — -tanh—! ——-
XN TN T V=g V=q

200 +b—vV —¢
= = lo —; when ¢ <0,

fX V-4 g20x+b+\/—g !

j‘ 2cx+b+ dx
Xt gX X

2ex+ b 1 3¢ 6 dz

fxs 7 (21’*"'_)*'? X
dx __20z+b+2(2ﬂ—1)c dz
el ngX® gn A
cdx 1 & fdx
=g X5, ¥
zdx bx+2a & (dx
f- et

fxd:c__2a+bz_b(2n—1)f;€£_
Xnrl ngX™» ng X

- 2ac da

fXd;u = — IogX+ f
2 . @-2a)x+ab 2a (dr

fX,dx_ o +
zndr gn—1 _n—m-l-l_é ™ dx
X7 @2a—m+DeX" Zan-—m+41 o) X0

m—1 e "M ide
T om—ma1 Ef Xn+1
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Irrational Algebraic Functions

Expresstons InvorviNg Va + bz.

The substitution of a new variable of integration,
y=Va+ bz, gives

f'\/a-f—bxdm =% V(a + 52)*,

——  2(@2a—3b)V(a + bx)°
fx\/a+ba,dm—— 55

- 2., T
f VT s = 2BE 1 ele 1) Ve  ba)

f"‘““‘” _zme

f dx _2Va+bx.
Va4 bx b

xva -+ bm

xdx ___2!2@—53:!m

W/a+bxu 34
x*dx 2(8a"— dabz + 31" T,
fm 1588
f—Z =211 (”“*“"“"“F) for a >0,
Ve + bz '\/E Vo + iz + Va

[ o b
f '\/—b-..«; ‘/_ta, \/ ;orT_t h‘\}—:—-—-

™ de _2x"”\f’a+bm_ 2 ma E‘"—ldm.
Va+ibz (Em+DE Em+1d) Vet

j‘ de Vatdiz  (2n—3) de
ovatis  (—Dazt @n—2ed zivatiz
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ExrressioNs INVOLVING Va® + ¢ ANp Ve — 23

f\/x’ia’d:c =4 [eVa!£alta®log(x + vV + %))t
fVa’— 2ldz = ﬁ-(x\/a’ — x4 af sin“E)*

fﬁ =log(z + Vo' £ a).”
x [r]

dx Y. T
————= =sin"'~s or —¢og~' —*
Va? — z? 2 a

f dx 1 _a i .=
—_——————— = - QU§T " —: 0T —§QgT T —
sVt — gt @ x u© a
f—=—-1~10g a+ vVal =4
xvVax 2t a F

2 2 — 5 ¥
JRCETF NN B LR SRS
LV ——
f%——a—'dx='\fa:“—a’—ucos_’z-~

rdr
—_—_— Ve e,

Val+

_mdr
Vit — af

fx\«’a:’ = a*dx = §V(a* £ of)f

3 — ol

J oV —Tda = — 4V

(FT ) tnms (3] tog (ST wcont

[ L]

):
)-

*log
log (“7"' :’ = :l) =sech—1 (E) i log (Ejj'%"i'z_l) esch=! (

Rk

f'\/fmjidm

—il::c'\/(:c“:l:a“ aﬂ:—m-f- —log(z-l-‘\/x‘_):’
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f V@
3ax 3¢t . =z
=*[xm LN Tsm‘"‘;:[-

+x

dz
J Vo tay ave s

de z
f'\/(a“—w’)’_—a""a’—:c‘.
j‘ xdx - -1

V@' £a®)  Vrital
f xdx _ 1 .
'\/(a,’ —ah? TV = x?

SoVE =T da =} V@ 2.

[V @= Ptz = — yV@ =
fm'x/mczx
<IVEz =L oVFES ~ L log e + VI ED
Vet — 2t dx
=u§m+fg(mm+a sin—ng).

% - T
log = slnh =1 (32—3)= cosh -1(2‘2—;1); tanh—1z= —{. tan—Mzih

f\#u’tx’dx____\/aﬁ:tx“:tlf dr
z* B 24t 2J ovarx ot

f:cs\r‘a’j: e dr = (t%x’ — &y a2tV (ug + z%)®

f dx Wl 4 ot 1 dx
:t:"-‘\/a’—_t—a;”u_ 2aiwt T4 z\/a’:l:m".
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[ MR A
Ve a2 '

_wdz =
Vrlegt 2

¢
mzp%log(m +vVerr ot

fﬂx__=_g\#a3_,xﬂ+%’sinulg_
79

-\g"a'l? — x’

f dx __Nztxa?
IV el T ok
f dx Vat — p?
Vel gt iz

+ log (z +Vai+ a.’).*

f\’x’d:a d.'a: _ YVl 1= a?
x

gin—! =

_W’—a:’dx__\?a'—m’_ 3
x - x

f\/(“”d“”' S N Y AN~ T

z? £ ) Vit + o

j‘ xidx & _ g C
‘\/(a - x’)a Vai— a
ExrrEssions Invouvizg Vo + e + e

Lt X =a+dx+cx?, g =4dac— ¥, and k—iw In order

to rationalize the function f(z, Ve + bx + cw’) we may put
Va + bz + et = Vx e VA + Bz + 2%, according as ¢ is posi-
tive or negative, and then substitute for = a new variable z,
such that

=~vA+ Bz +a*tax, if ¢ > 0.
VAT B PV

x

)i <0 and >0,

£ =1/= ___ f, where a and 8 are the roots of the equation

A+ Bz —a?=0, if ¢<<0 and _ic<o.
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By rationalization, or by the aid of reduction formulas, may
be obfained the values of the following integrals:

fvf” _Iog(\/z?+ a:\/;+§—§-/:), if ¢ >0,

f da —~1 sin Zexr 44 1 2 nn- Qentb
V¥ vJ—o¢ (\/:—q \/E ( Vg )

)8

2
dx = {1 g( —i-em:\/_-{-a >+2tan“(a:=
z'+a \/5 zi—axV2tat a’—

St () ()

Transcendental Functions

fsin‘-'xdx: —4dcoszsinz+ =3z —}sin2z
fsins xde= — 4 cos x(sivz + 2).
. sim*~'zcosz n—1 .
fsm" xdr = — + sin"~ 1z dx.
i n o
fcos xdx = sin z,

fcos’mdx:%sin:ccosx+1}x= x4+ 3sin2a

fcos3 xdr =% sinx (cos’ z + 2).
fcos“ xdz = %cos““m sinx + L;—l-fcos“"m dzz.

fsin x cosxdr =4 sinfx.

cos™ 1y
m+1

sin x cosPxdr = —

[sinta costade = — 4 (4 sin 4z — 2.
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cos™ !tz sin" g
m4n
m—1
m+ 7

fsin"‘ cos  dx sin” 'z
x = —
m-41

fcos’":c sin"x da: =

+ fcos”‘"a: sin™z dz.

sin*~lx cos™+ iy
m+n

+ n—1 fcos’“.r. sinf—9z dx.
m+n

fcos'“:c sinfxdr = —

de 1 sin n—2 de
cosfz m—1 costlzx  n—1J cosgr 3

ft.a.n xde = —log ¢os x.

fta.n’xdm =tanz — a.

ftan"zdx I —fta.n"":cdw.
n—1

fctn xde = log sin &

fctu?mdx =—ctha —a,

a—1
fctn“n:d:: = — otn 1:1: —fct.n"":cth:.

_ LAY 1+4sinz
fseca:dx—-log tan(4 +2)“'}1°g1m—sinm

fsec“a:da: = tan z.

fsee":t:dx _(de sinz +ﬂ,—2 dx
“Joeosme (n—1)cos" 'z a—1J cos"a

sin = n—2

—_ n=—14 3
(n—1)cos" 'z  n—1 sec”~*wdz
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fcsc zder = log tan .

fcso"a:dz =f_qlz_
s1n"

oS & n-—2 dz
(n—D)sin""z ' n—1.J sin"*«

eos @ n-—2
T T (- sz = 1fesc”_2‘”d“"

dx
fl Fsinz tan (F m — $a). [Bee 241.)
fd—w=ctn(iw—§$)=tm(*w+§z).
1 sinz
dx
fm—tan,}m, or ¢sex — otn 2,

dz
f = -—ctn 4z, or —cthae — csca.
1—cosx

4z 2sech .
faibsinz_‘ S tan (sec @ .tan fxt tan 8),

ifa > &, and b= e sin 6.

f dx _Eseca, 8in & (a + )
axbsinz b cost(zF @)

if6>a and e =bsina. [See 241.]

f dr .1 gin-! b4+ acosz
G+bcosz_\/as_bg' atbeosz |’
al — 8. gin

1 [Va—F.sinam
o \/a’“b’sm | e-+bcosz ]

2 - "\/ — %
or a’--b’tan a+btan1}:c:|r

1 | Va'— #.sinz
OF —me tan—1 | MO eSIRE
Vat — | i+ acosx
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f:n"‘ cos gdr = 2™ sin  — -mfa:"‘—‘sin w .

j‘sin I 1 sin v, fcos % o
zm m— 1 m"‘—‘ —1J gm—!

j‘cos 4 d = 1 cos X fsm m
Zm T T m 1 aml T gy =1 et

14

sinx x® b ! x
f oty rnitee

oS x i Fril xt x*
f de=loge— oyt i~ 661 T E.87.

rdr P 7zt 31 27 127 2
fsinm‘”+3-3!+§.'5*."5_:+3.7 7173 5.0

vde @ | 5z  61ad 138520
fcosz‘5+4.2:+6.4!+8-6:+ 1081

f%=—-m ctn & + log sin z.

f;:fm = g tan x - log cos x.

n’fa:"’ sin® zdx
= g™ !gin"—! 2z (m sin & — nx cos x)

+ nin— 1)fa:"' sin*~*xdr — m(m — l)f:c"‘—” sin*wdr.

n’fa:“‘ cos® xdx

= 2"~ cos®='x (m cos 2 + nx sin z)

+ n(n— l)f:t;"' cos" =2z dx — m (m — 1) [[&™~? cos" cda,

Csintx de 1 fsm" frdx
f cos™z  n—m ( cos"‘*‘z FRECE cos™z
1 sin*tlzp fsm";c dx
T om— (cos"‘"x (r—m+2) cos”‘*’x)

1 sin®-lz ( l)j‘sm" Yrdx
= —— n— .
m — 1 \cosm—Tp cos™ g
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fcos”‘mda:_ cogP+ly m—n+2 feosMade

sin"z ~ (r—1)sin"~ig n—1 sin" 3z
_ cosm gy m—1 feos™ rdz
(m —m)sin"~'x  m—n sin'x

1 cosmlz m—1 feos™ 2xde
n—1 sin*t!z n-—1 sin?—iz

m w
sin”x dx eos™ (E - ;c) d(? - w)
f cos"z _f ] - '
sin” (§ — :.c)

de = log tan z.

sin x ¢os x

dx T x
fm = log tan (Z =+ §> — CSC .

S s
sih™x cos"e

_ 1 1 m -+ n—2f dr
n—1 sin™ 'z .cos" 'z n—1 sin™zx - cos™ 2z

L 1 1 +m+n——2f dx .
T T m—1 sin®'z.cost 'z m—1 sin™— 2z .coshe

dz_ 1 co8 X m—2 " de
sinmz  m—1 sin" 'z wm-—1J sinmix
rdx
m=—wt,a,n‘}&w—x)+2logcos§(1}7r—a:).
%—;:xctn%(i—w—m)+210gsin1}(§'rr~x).
zdx
m:xtan:}m«{-Qlogcosm}z.

rdx .
m:—xctn\},m+2logsma}z.

tanxde 1 cos“(Vb—a‘cosx)-
Vo + btan*z b—a Vi

dz 1 \[Z P
fa+btan’x=a-b|:x_ o tan ‘(\/:—z-tanz):l.
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fM
o+ &tanz
= -ag—_llv_—z-,r {6:3 — a log{a + b tan x) + « log SGGJ:}»
f:z: sin zdr = siv = — z cos 2.
f:c’sin #de=2xsinz — (' — 2)cos .
fx‘sin zdz =32 — 6)sinz — (2* — Gx)cos .
f:c’“ sinzde = — 2™ cos x -+ mf:c"“lcos z dz.
fsc co8 xdx =008 x +  sin z.
f:c’cos cdw =2 cosx + (' - 2)sin z,

[ atconzdn = (3a1 — 6)c08 5 + (a? — E)sina

fx"’da:

slu®x

_ 1 _ &~ m sinz + (» — 2)x cos z)
Tn—-1{n—2) sin" g

. =2 g
+- 2)stm”“ +m(m— 1).1"3111*"% ’

fx"‘ dx
COs™ &
2™ 1{m cosx — (r — 2)x sin )

. 1 [
- r-1(n—2) - cosi—tx
+(n— 2)g.rcos"—“m +m(m - 1)f:01:2f2]

sin®xdzr
mm
sin* 'z ((m — 2}sin = + na cos 2)

_ 1
- (m—1)(m—2) - zm—1

sin"zdr sin"fxde
- n f =% +n (ﬂ'— l)f P
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costxdzx
xm

N 1 Iicos"*‘x(nm cos ¥ — (m — 2)cos x)
T (m— 1) (m—2) gm—i

2
— J‘cns:l:ifx_l_ 7 (n — 1)}‘003;1 a:dm:l

fx" sin™x cos™ @ dy

1
GRS

+(n—1y(m+ n)fm" sin™x cos" T xde

[zl’“ sin™x cos"~lx (p cos x4+ (m+ ) T sinx)

- mpfa:’**‘ gin™~lx cosh~ludr

-p{p—1 fa:i’—“ sin™ cos":cdx]-

-1
()

+(m—-1)(m+ n)f::f’ sin™~?z cos" wdx

|::c!’“ sin"—g cos® 2 p sin 2 — (m + n)z cosx)

+ ﬂpfx”" sin™~lwx cos"~'adx

—p{p— l)fx”" sin™ x cos“mdz]—

. For this

In this book, we use sin™'z to denote -
Sin 7

part of the table we use the classical notation

sin! z = aresin (z ), cos™ = grecos (2 ), et
fsin“:cda: =gsin—'z + V1 — 2.
fcos“‘zdx =z cos~lx — V1 —2*
ftan—‘xd::: =z tan"'z — }log(l 4 x%.

fctn"":r,da: =zectn—lz + 4 log{l + ")
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sin(m—n)z _sin(m+n)r
2(m—mn) 2(m+n)

fsin mz sin nxde =

_eos{m—n)z  cos(m+ )z
2(m—n)  2(m+n)

fsi.n mi cos nicde =

sin(m—n)m+sin(m+n)x_
Z(m—n) ¥ 2(m+n)

fcos ma o8 ne dx =
- 1 .
sin® mxde = ;— (mx — sin mz cos ma).
2m
1 1 .
cos’ madx = ;— (mx + sin me cos mz).
2m

fsinmzcoa mede = — icos 2 ma.
dm

. . 1 .
fsm nx gin"xde = ———| — cos nz sin™z
m+n

+ mfcos (z —1)x.sip™! xd:c:l
fsec“’a:dw =xsec”lz —log(z+ Va?i —1).
fcsc“’.rd:.c =aosc &+ lop(x+ \/FTI-),
fversilrl zdz = (2 — 1) versin~'x + V2x — 2
f(sin-'x)‘d:c =g(sin'a -22 + 2V —&* sin~ 'z
f(cos—’x)’dx =z(cos'x)’ — 22 — 2V] — 2 cos 1z
f:r sin~lrde = $[(22* — 1)sin~ 'z + :r\/l_:;:i_'j
fz cos~lzdx = }[(22' — Deos™ 'z — z\fl—:—;’]

f:.r: tan~ladr = § [(z* + 1) tan~x — z].
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f:r etn~'zde = §[ (2" + L)etn~"x + x].
fz sec~txda = §[x® sec™'x -Vt ~ 1].

fﬂ? ese”lade = }[27 ese ' +Vel - 1]
1 gy
LRl | =+ 1 —] .
f:r sin :.cd:c-— I(I 8in f‘/]’ = )

na 1
fz' cos iady = ﬁ—l (;c“* Teos™ 'z +f %-_i;)

1 xrtidy
n -1 — x4 1 -1 5 .
fx tan—lxdx = I(.’L‘ tan—'xz — | z

1 e
- - A+ 1] —1 "
fxnctn xdr = ] (a: ctn 'z +f 1 x’)

fsin"a:d’x (1 VI—J:) sin~'x_

= log
e

—1

x

tan'xdx tan
fT=logw—;logc1+m’)—
L o fOndy -
fﬂ“d&:=?‘ ff{e )d.:c:f%; Yy ==
fx e dx = % (az — 1),

e m
fm’“e“‘dm:: — — ] ™ te T .

117 £
-Bi-xdxz 1 I:_ e '”rfm:|
i m—1
RACLY
be P
fa,da: bloga, ff(a,)dx b]ogayy
azg. . @*x*  aatx"! a(n—1)eTz"?
fx atds = loga (log a)? * (log a)?
n(n - H(n—2)---21a*
(loga)"“
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l

& bD

o b

j‘a’dx__ 1 _at a“-loga
 a-—1| a1 (n—2)av?

_ a - (log a)* ey (log a)*—! fa-’da:
(n—2)(n — J)ar-* (n—2)(n—3)---2.1 z ]
o*de (xlogay  (zloga)®
fa: =loga+tzloge+ 5 0] + 331 S AR
log zdx
(@ + ba)"

=1 . logz dz _
T b(m—1) (& + bx)m—1 +f:::(ca + ba:)"‘—‘]

logzdz _1 1 tlog(a + bx)dx
a+bx—bloga:-log(a+ba:)—zf o

4 2
[ @tintogads =T 10g5 - L 08T oy

log zdz
va 4 bx

(ogz —2)Va + Ix +Va log{Ve+bx +'\/(;)
—Va log(Ve + iz —w/&):l, ifa>0
(Jogz—2)Vat+ids+2V—a tan“\{%]r if & <C0.

fsin log xde = } x[sin logz — cos log z].

fcos log #dx = § x[sin log = + cos log x].

j‘(log ) dx  (logaym+t
x a1l

o 1 ) ]
_mzlog(logx)-i-logm +£—2°jg—2£'l+ _(k}i;l g,

log
dx 2 1 da:
Qogzy~  (m—D)Qogay—1  a= lf(log z i
dx am+! +m+lj‘ xmdx
(logz)*  (an—1)(loga)y—' ' n—1J (logzy~!
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flogzdzza: log z — =,

| log 1 |
E ] _— m4] .
f:z: log xde == 1~ G T

f{log gy dz = x (log )" — nf(log x)"~! de,

z"+1(log )" 3

fx"‘(logx)"dx: 1 milfx”‘(log:c)“-'d:c.

de (n — 1ydx —1
f*’ logz ™ log (log =), and fa: (logzy" ~ (logzy—1

flog(a’ +2f)dr =x-log(a® + 29— 22 + 2o - tan™ (E)

a

dx 1o &
1+ Blge

dz 1
fa—_+ o a[mx — log (a + e} ).

f dx D SR e""\/g'
aemz_i_{,‘g—m:_m_v’;b b

de 1 S
—— = log(Va + be" ~Va
f\/ﬂ«‘F—be’“ mﬁ’ 8( )
el 2 Va + bere
—log (Va +be™ +Va)i, o e tan=! —
g(vVube +Va)i rm_\/_a an v
agdr &L e, e
A+zy 1+2 Ta(m+ 1)

fﬁ“r Billp:c dr = gu(a' 5“11;“‘]: - f? COprj ]
) w4+

¢ {4 cos px + p sin py
a‘& +pl

Retd . ,Md
fsulogm - Hﬂ_lﬁ_ﬁ.
a a X

fe‘“ cos pr de =

. i . . 2
fe“ sinfedr = m(sm 2{zsinz — 2cos x) + ;)
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ax q =—g¢"3_ 1 ; g .
fe cos?zde 4+mu(cosx(251nx+acosm)+a>

. 1 .
f&“ sintdxde = m ((a sin bz
— nb cos bx) e sin"—1de + nin — 1) 5% | &% sin"—? b:n-d:c)-
fs“ cos® b dx = 1 {a cos bx
o? + n¥b?

+ nb gin bx) e~ cos" e + n(n — 1) b’fe“’ cos““bacda:)-

fe”tan"a:da:
X n—1
=2 tan’ 7z _a f&“’tan"“xdx —fe“ta.n‘—’mda:.
n—1 71
fe‘“ctn":cda:
aX n—1
= o2 -+ 2 fe“ctn"‘lwda: —fe“ctn"‘“’mdz.
n—1 n—1
& dx e E8ina +(n— 2eos
— = — ¢ :
sin" o (n—1){rn— Zysin~~'z

al4(n—2)y e

To-DE-_2J ira
j‘s“dx _ L g=arosT —(n~2ysinx
cos"x (n — 1) (n — 2)cos" 1z

a’+(n— 2y e dx
(n—1n—2).) cos" 2z

f&‘“ 5in™ x cos™ wdic

1

I o —— T =1 T n—1 .
(m_‘_ﬂ)n_,_as{e sin™ x cos"~ 1 (z cos x 4 (m + n}sin x)

- mafe” sin™—1x cos™ 'z dx

+(o = 1) (n + ) [ esiana cos"—“xdx}
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P dz fe"’
== = log .
Tog = ” dy, where y (m+ 1ylog =

MISCELLANEOUS DEFINITE INTEGRALS

* ade T, . T,
'ﬁm:? ifa>0;0,ifa=0; =% if a <.

= 1 1 n—1
I — + —
S, wmromean= | l:logx de = T ().

T(z + 1)=2.T(2), if 220,

T .
I‘(y)-r(l—y)=gi"ﬁ—1a}! if 1>3‘j>0 I‘(?): P(l)zl.
I(z + 1}==n!, if nis an integer.

P'x=1I{—-1).
r($)= v

()= 12,[log T(y)] 2Z(1)= — 0.577216.

: m=1 Al 7 * am—ldr _P@yT'(n
[l o= e L

T T

Z 2
f sin® g da =f cos" x dx
o [+]

135 (a—-1m .. . )
= 246 (n) X if » is an even integer,

246 (n—1)
T 1857 n

r (n + 1)
=}V -—-i—, for any value of » greater
P(g+1) than — 1,

» if # is an odd integer,

[ERmEEE T > 05 0, ifm =0
o x 2

fl (1+a:)da: ?
log ==
o 1—2 x

-’2—", if m<< 0.
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f (=* — m°)d.c log

a3 ,1fp+1>0,9~+1>0.

1
jo“ (log 2)"dx = (— 1)". nl.
o 1\ Var
i) (1"8;;) de =5
1 1 i
J; (log 5) dr = nl.
1
f O i
¢ 1
log(;)

! 1)® - T(n+1
S= log(x)d J—L( i M 130, n+1>0.

S r0g (61 + 1) ’—f-

: : _
J: log sin xdx =‘£ log cos zde = — E-log 2,

"z log sin zd ™ g 2
‘j;a:- og sin zdz = — < log 2.

E - I 41
folog(aibcosz)dm=wlog(”— ‘“;b) a3z

fﬁc dz o

U M e T din

‘j'“ Tl e
woe"® — g Bpl

i wi
J; sinh (mu) - sinh (nx) doe =f cosh (mx) - cosh (ne) dx
o

= 0, if m ig different from =.
i T i 'ﬂ"i:
‘J: cosh®{(mzx) dz = —‘j: sinh?® (mz)dx = 5

+ m
f _sinh (ma)dz = 0.
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fncnsh (mx)dz = 0.
i)

fﬁfsinh (mx)cosh (nx) dze = 0.

—

L4]
ja‘ sinh {(mz)cosh (mx)dx = 0.

L
[+
€™ cos mady = y ifa >0,
Jo‘ ot + m?

-
. m .
f e~ sin made = 47— if a > 0,
0 ot -+ m
L
Vg =

2 a > 0.

E 4
f e~ ¥ gos drdr =
1}

Hog

der = —
h T~z

™
6
g , =~ =
b T4 71

2
2

2
-
8

Hogx

ul-—x"’dmz_

f"’ sinz-cos made
i

x

=0, ifm<<—-1or m>1;

E, fm=—1or m=1; ”2—: if ~1<m<1

jo"" sin:;:dx _ g
J:mcos (x?) dx =jumsin (z%) dz = ,}\/'_’;,"

L r
f sin kx - sin mxde =f cos kx « cos mede = 0,
i} ]

if % is different from m.

" L3 -
f sin?mzxdr =f cos?mrda = =+
f 0 2

“eosmadr _wm
e R > 0.

“cosxdr (sinodx _ \!-:E
o~z 1~z 2
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© 1 1
— —_—— woes —
J: ¢ dm—2a\/— ga L #)
£nx~e—u I‘q'ﬁ,+1) 7 .

!I."+1 an+l
- 1:35---2n—1) fr
In p—ar = —
J; xte dz = on+1 e Va
fag_ _:_;dz=e—!ayf.,—r
° 2
0 2n Va

a> .

a>0.

TRIGONOMETRIC FUNCTIONS

0o | 80° | 480, | 60% | 80° | 1200 | 184° | 1507 | 1800
sin 0 | #VB |4V 1 | 3VElaVE| % 0
cos 1 | 3v3 |32 | 3 0 | —¢ —gvel—3v3 —1
tan 1} 715- 1 V3 w |=v3] —1 ——:,—5- (]
en | o | V3| 1 % 0 —% ~1 |—-V3|
Bec 1 \% V2| 2 | @ | —2|—2 —% -1
esc ® 2 2 % 1 % V2 2 ©
sin § & =V {d — cos a).
cos\}a:\/ﬁ-(l-i-_cmﬁ.

s5in2a =2 8in a cos a.

sin3a=23sina —4gin®a.

sindez =8cos*a-sina — 4 cos ¢ sin a.
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sinba=>5sina — 20 sin®a } 16 sin’ a.
sinfa=32cos’asing — 32cos*a sine +6cosasing
cos 2a =cosfa —sin?a=1— 2 sin?a = 2 cos’a — 1.
cos 3a =4 costa — 3 cos a.
cosda=8costa—Beosia+1,

cos 5 a =16 cos%a — 20 cos®a + b cos a.

cos 6a=232c08"a —48 cos*a +18 costa — 1.

2tanea
tanlea = T _tanta
ctn?fa—1
eto 2a-—-—2 P

sin(e =y =sina.cos St cosa-sin g
cos(a=f8) —=cosa-cos B sine-sin B

tana+tan §
1+tan a-tan &

ctn@iﬁ):cma-ctnng 1

ctng £ctn 8

tan{e = 8) =

sing xsin8=2sin4{a = 8) cost{a=x B).
cosa4-cos B=2cosd{a + B8)-cost(a— B).
cosa—cos f=—2sin{{a+ 8) sinf{a — A).
tanad:tanﬁ:w-

cos a-cos 8

ctnaictnﬁ::tw-

sina.sin 8
sin o cos § = %{sin (@ + B) + sin (& - A)]
cos o cos f = % [cos (e + B) + cos (e - )]

sinasin,@-——%-[cos(cr—ﬁ)—cos(0+5)]
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d!?w)—zrf{-—!f+ud—”- o sin x

de oz dx T dn oS
e EEE 5& a’cosx:__slnz
“\ ¥ _-va,x—udx e ‘
dx v of tian & ;
= e,
dF () _ df0) du e
1754 da  dx o et .
= == == = engt,
Bf @) _dF B B de hr
dx? T du dx¥ dul dat o sec.r
——- = LN g - sen 2
dx? ol
—— = "},
dzx o esc
——— = = ¢th r.usc L,
e e
=g
dx o sin=tr 1
dat _ v T
dx ¢ -dz-l 8-
deos™'r -1 . 4 osch
dr Vi — P i cseh - gtnh 2
o t:ll:r".r_ 1 dsinh":r_ 1
de 1+ dr T ati1
detn=iz 1 d_(;lnsh—‘x o1
de 1+t de a1
i@ reelr i . dtanh=3z 1
dr T zVe 1 de 1 —af
dcst:"x____ﬂl datnh“x_ 1
dz - T \/_;‘ — 1 dgx - 1 -—_ 3;9
dsinhx cosh d seech— 12 _ -1
‘ d.‘.'t x '-‘.I'I —_ zﬂ
d ecosh sinh d esch—'x —1
i A T z. _— —
dr dz Vi1
d tanh » d re
— = serh? . t}zja‘ Sy de = F(b).
o etnh x d
— = escliz. (}E.I: S{z)de = — f(a).
4 thE = — gech z-tanh =.
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Index

antiderivative, 7
arcsin or sin” !, 16

integration by parts, 18
integration limits of, 29

area actual, 31
linearity, 9

chain rule in reverse, 10
computer resources, 15
contents, 5

parameter, 31
parameterized problems, 31

Riemann sum definition, 29
Riemann sum discussion, 29

differential
chain rule, 12
definition, 12

) signed area
notation, 11

definition, 25
discussion, 24

envelope game, 27
exercises, 31

fundamental theorem calculus, 25 summary, 28
tutoring points, 27
integral, 7 substitution exercises, 13

additive constant, 8
integral definite, 28
integral parameterized, 20

substitution method, 12

table of integrals, 40

integral recursive, 20 trig functions

integral summary, 28 cos and arccos, 37

integrals sin and arcsin, 37
definite, 60 tan and arctan, 38

cot and arccot, 39
csc and arccesc, 38
sec and arcsec, 39

fundamental forms, 40

irrational algebraic
involving (a + bx)/2, 44
involving (a+bx+cx?)/?, 47 inverse, 36
involving (x? +a®)'/?, 45 trig identites, 62

rational algebraic
involving (a + bx), 41
involving (a+bx+cx?), 43
involving (a + bx"), 42

transcendental, 48

same but not obvious, 9

variations [ sec(x) dx, 17
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