Robotics Terminology

Dr. Atul Thakur

Mechanical Engineering Department

IIT Patna

Parts of Stationary Robot

- Mechanisms (Mechanical Structure)
- End Effecters
- Tools
- Controllers
- Actuators
- Sensors
- Programming Interface

Mechanism Anatomy

Links and Joints

- Links are rigid parts
- Joints permit relative motion between links

Types of Joints

Prismatic Joint

Revolute Joint

Degrees of Freedom in Mechanisms

How many degrees of freedom (DOF) are needed to position and orient an object in space?

Desired Degrees of Freedom

- 3 Dimensional Case
 - 3 DOF for positioning (x, y, z)
 - 3 DOF for orientation (pitch, yaw, roll)
- 2 Dimensional Case (Planar case)
 - 2 DOF for positioning (x, y)
 - 1 DOF for orientation (tilt)

Mechanism Types

- Two different category
 - Arm
 - Two to three degrees of freedom
 - Wrist
 - One to three degrees of freedom

Arm: Cartesian Configuration

Arm: Cylindrical Configuration

Arm: Polar Configuration

Arm: SCARA Configuration

Arm: Articulated Configuration

Comparison of Arm Configurations

More Revolute Joints

3 DOF Wrist

End Effectors

- Mechanical grippers
- Vacuum gripper
- Magnetic gripper
- Gripper with Adhesive strips

Tools

- Welding guns
- Spray paint guns
- Spindle for drilling and milling
- Screw drivers
- Heating torch

Robot Controllers

- Limited Sequence Control
 - Run one Joint at a time
- Point to Point Control
 - No synchronization of joint motion
- Continuous Path Control
 - Synchronized motion of joints

Commonly Used Actuators

- Electric motors
 - Most commonly used
- Pneumatic cylinders
 - Used in small compact robots
- Hydraulic cylinders
 - Used in very large robots

Commonly Used Sensors

- Proximity sensor (also sometimes called range sensor)
- Tactile sensor (also sometimes called contact sensor)
- Machine vision

Robot Programming

- Manual lead through
- Powered lead through
- Motion programming

A Typical Task

What do we need?

- How to move the robot through space to complete the specified task
 - What torques and forces to apply on the joints?

Modeling

- The underlying mathematical model that describes the robot behavior
 - Will be needed to support off line programming
 - Will be needed to design robots
 - Selecting motors, link lengths and cross sections

Forward Kinematics

• Given joint parameters, determine the final end effecter location

Inverse Kinematics

 Given desired end effecter position and orientation determine the joint parameters

Inverse Kinematics Solutions

- Inverse kinematics may produce
 - One solution
 - Multiple solution
 - No solution

Multiple Solution Case

No Solution Case

The selected location is outside the robot workspace

Workspace

• The set of locations that can be reached by the robot

Example

$$x = a_1 \cos \theta_1 + a_2 \cos(\theta_1 + \theta_2)$$
$$y = a_1 \sin \theta_1 + a_2 \sin(\theta_1 + \theta_2)$$

Jacobian: Relating Velocities with Joint Velocities

Given joint velocities determine the desired end effecter velocities

Example

Recall

$$x = a_1 \cos \theta_1 + a_2 \cos(\theta_1 + \theta_2)$$

$$y = a_1 \sin \theta_1 + a_2 \sin(\theta_1 + \theta_2)$$

$$\Rightarrow \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -a_1 \sin \theta_1 - a_2 \sin(\theta_1 + \theta_2) & -a_2 \sin(\theta_1 + \theta_2) \\ a_1 \cos \theta_1 + a_2 \cos(\theta_1 + \theta_2) & a_2 \cos(\theta_1 + \theta_2) \end{pmatrix} \begin{pmatrix} \dot{\theta}_1 \\ \dot{\theta}_2 \end{pmatrix}$$

Jacobian

$$\dot{x} = J\dot{\Theta}$$

Achieving Desired End Effecter Velocities

- Jacobian matrix needs to be inverted to determine the joint velocities to achieve the desired end effecter velocity
 - This is not always possible
 - Matrix may not be invertible

Singularity

$$\dot{\Theta} = J^{-1}\dot{x}$$

Can it be guaranteed that J is always invertible?

$$\det(J) = a_1 a_2 \sin(\theta_2)$$

At θ_2 =0 or 180 degrees *J* can't be inverted

Singularity

- Losing effective degrees of freedom
 - Cannot specify desired velocity
- Two types of singularitiε
 - Work-space boundary
 - Workspace-interior

At elevation of zero degrees no effect of changing azimuth

Craig, 2005

Dynamics

What forces and torque need to be applied to joints to achieve the desired velocities and accelerations?

Trajectory Generation

 How to trace a path through the space at the specified velocities

Open Loop vs Closed Loop Control

- If we have a perfect model, then we can just position motors at the desired location with no feedback
- But this does not work in practice

Position Control

How to compensate for errors and inaccuracies

Force Control

 Control force to ensure that robot can handle delicate objects and move more constrained surfaces

Serial Mechanisms vs Closed Loop Mechanisms

Accuracy vs Repeatability

- Accuracy is a measure of how close the robot reaches to the programmed point in the workspace
- Repeatability is measure of how close the robot reaches to the point previously reached by the robot (for the same programmed point)