14

Homogeneous Linear Equations — The
Big Theorems

Let us continue the discussion we were having at the end @ibset2.3 regarding the general
solution to any given homogeneous linear differential éigna By then we had seen that any
linear combination of particular solutions,

y(X) = Cc1yi(X) + CY2(X) + -+ + Cuym(X)

is another solution to that homogeneous differential égonatin fact, we were even beginning
to suspect that this expression could be used as a genentibedio the differential equation

provided theyi’s were suitably chosen. In particular, we suspected tleagéneral solution to

any second-order, homogeneous linear differential egoatn be written

y(X) = C1y1(X) + Czy2(X)

werec; andc, are arbitrary constants, and and y, are any two solutions that are not constant
multiples of each other.

These suspicions should have been reinforced in the laptexhia which general solutions
were obtained via reduction of order. In the examples andcesas, you should have noticed
that the solutions obtained to the given homogeneous difteal equations could all be written
as just described.

Itis time to confirm these suspicions, and to formally sthgedorresponding results. These
results will not be of merely academic interest. We will usernh for much of the rest of this text.

For practical reasons, we will split our discussion betwiws and the next chapter. This
chapter will contain the statements of the most importaebtems regarding the solutions to
homogeneous linear differential equations, along withtke ldiscussion to convince you that
these theorems have a reasonable chance of being true. dfaiecing (and lengthier) analysis
will be carried out in the next chapter.

14.1 Preliminaries and a Little Review

We are discussing general homogeneous linear differegjigtions. If the equation is of second
order, it will be written as
ay’” + by +cy =0
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298 Homogeneous Linear Equations — The Big Theorems

More generally, it will be written as
aoy™ + ay™ P 4+ - 4 a2y’ + a1y + any = 0

where N, the order, is some positive integer. The coefficientsas—b and c in the second
order case, and tha's in the more general case — will be assumed to be continuomibns
over some open intervdl , and the first coefficient—a or ag — will be assumed to be nonzero
at every point in that interval.

Recall the “principle of superposition™ Ifyi, V2, ..., Yk} is a set of particular solutions
over T to a given homogeneous linear equation, then any linear ratibn of these solutions,

Y(X) = Ciyi(X) 4+ CYo(X) + -+ + CkYk(X) forall x in I

is also a solution over to the the given differential equation. Also recall thastkét ofy’s is
called afundamental set of solutions (over 1) for the given homogeneous differential equation
if and only if both of the following hold:

1. The setis linearly independent ovér (i.e., none of theyy’s is a linear combination of
the others overl ).

2. Every solution overT to the given differential equation can be expressed as arline
combination of theyy's .

14.2 Second-Order Homogeneous Equations

Let us limit our attention to the possible solutions to a selcorder homogeneous linear differ-
ential equation

ay’” + by +cy =0 . (14.1)

We will first look at what we can derive just from the reductiminorder method (with a few
assumptions), and then see how that can be extended by sadibear algebra. Because
of some of the assumptions we will make, our discussion hdr@et be completely rigorous,
but it will lead to some of the more important ideas regardjageral solutions to second-order
homogeneous linear differential equations. After that,ll igll you what can be rigorously
proven regarding these general solutions. If you are impgtiyou can skip ahead and read that
part (theorem 14.1 on page 302).

The Form of the Reduction of Order Solution

As | hope you observed, the reduction of order method appdie@sh equation of the form (14.1)
always led (in the previous chapter, at least) to a genehatiso of the form

y(X) = C1y1(X) + CrYr(X)

where{y:1, yr} is alinearly independent set of solutions on the intervahterest (we are using
the “subscriptR” just to emphasize that this part came from reduction of gtde
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»Example 14.1: In section 13.2, we illustrated the reduction of order mdthy solving
X2y — 3xy + 4y =0
on the intervall = (0, co) . After first observing that
yi(x) = x

was one solution to this differential equation, we applieeimethod of reduction of order to
obtain the general solution

y(x) = x’[Aln|x| + B] = AX’In|x| + Bx?
(where A and B denote arbitrary constants). Observe that this is in the for
y(X) = c1y1(X) + CrYR(X)

In this case,
yix) = x* and  yr(x) = X*In|x| ,

andc; and cgr are simply the arbitrary constants and B, renamed. Observe also that,
here,y, andyg are clearly not constant multiples of each other. So

{y. Yr} = {X% x*In|x| }

is a linearly independent pair of functions on the intervahterest. And since every other
solution to our differential equation can be written as adincombination of this pair, this set
is a fundamental set of solutions for our differential edqurat

Let’'s look a little more closely at the solution to equatidd (1),
ay’ + by +cy =0 ,

generally obtained via reduction of order. Assuming we have known nontrivial particular
solution y; , we set

y = yiu
plug this into the differential equation, and obtain (afenplification) an equation of the form

AU + BU =0 , (14.2)
which can be treated as the first-order differential equatio
Av + By =0

using the substitution = u’. Assuming A and B are reasonable functions on our interval of
interest, you can easily verify that the general solutiothts first-order equation is of the form

v(X) = Crup(X)

wherecg is an arbitrary constant, ang is any particular (nontrivial) solution to this first-order
equation. (More about this differential equation, alongtweome important properties of its
solutions, is derived in the next chapter.)
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Sinceu’ = v, we can then recover the general formula tofrom the general formula for
v by integration:

ux) = /v(x)dx = /cho(x)dx = cR/vo(x)dx
= Cr[Uo(X) + Co] = €1 + CrUO(X)

where ug is any single antiderivative ofy, ¢ is the (arbitrary) constant of integration and
C1 = CrCp. This, with our initial substitution, yields the generaligimon

yx¥) = y19u(x) = yi(x)[€1 + CrUo(X)]
which, after letting
YR(X) = y1(X)uo(X) ,
simplifies to
y(X) = C1y1(X) + CrYr(X)

Thus, we have written a general solution to our second-dnderogeneous differential
equation as a linear combination of just two particular 8ohs. The question now is whether
the set{yi1, yr} is linearly independent or not. But if not, thgm = Ugy; is a constant multiple
of y;, which meansy, is a constant and, consequently,

vp = U =0 ,

contrary to the known fact thatg is a nontrivial solution to equation (14.2). Sagp is not
a constant,yr = Ugy: is not a constant multiple ofy;, and the pair{y;, yr} is linearly
independent. And since all other solutions can be writtelinear combinations of these two
solutions,{y1, Yr} is a fundamental set of solutions for out differential egurat

What we have just shown is that, assuming

1. anontrivial solutiony; to the second-order differential equation exists, and
2. the functionsA and B are ‘reasonable’ over the interval of interest

then the reduction of order method yields a general solutigifferential equation (14.1) of the
form
y(X) = ayi(X) + CrYr(X)

where {y1, yr} is a linearly independent set of solutiohs.

Applying a Little Linear Algebra

But what if we start out with any linearly independent paiisofutions{yi, y»} to differential
equation (14.1)? Using; , we can still derive the general solution

y(X) = C1y1(X) + CrYr(X)

1 n fact, theorem 11.2 on page 253 can be used to show tiatexists. The real difficulty is in verifying thas\
and B are ‘reasonable’, especially if; is zero at some point in the interval.
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where yr is that second solution obtained through the reduction délomethod. And since
this is a general solution angp is a particular solution, there must be constant@and kg such
that

Y2(X) = Kk1y1(X) + krYRr(X)
Moreover, becausgy, y»} is (by assumption) linearly independent; cannot be a constant

multiple of y;. Thus«r # 0 in the above equation, and that equation can be solveg{or
obtaining

K 1
yr(X) = _é)ﬁ(x) + v

Consequently,
Yy(X) = c1yi(X) + CrYr(X)
1
= i) + Cr[ = EH0 + —%00] = Cua0 + Cayax)
KR KR

where

c
and C, = R
KR KR

So any linear combination of; and yr can also be expressed as a linear combinatiog, of
and y, . This means

y(x) = Ciyi(X) + Coya(X)

can also be used as a general solution, and, hgggey,} is also a fundamental set of solutions
for our differential equation.

Sowhat? Well, if you are lucky enough to easily find a lineartjependent pair of solutions
to a given second-order homogeneous equation, then youseathat pair as your fundamental
set of solutions — there is no need to grind through the rédlict order computations.

The Big Theorem on Second-Order Homogeneous Linear
Differential Equations

Let me repeat what we've just derived:

The general solution of a second-order homogeneous liniéareshtial equation is
given by
y(X) = ayi(X) + C2y2(X)

where{cy, C,} is a pair of arbitrary constants anjg, Y.} is any linearly indepen-
dent pair of particular solutions to that differential etjoa.

In deriving this statement, we made some assumptions ahewetxistence of solutions, and the
‘reasonableness’ of the first-order differential equatidsing in the reduction of order method.
In the next chapter, we will rigorously rederive this stagstwithout making these assumptions.
We will also examine a few related issues regarding the timeependence of solution sets and
the solvability of initial-value problems. What we will digver is that the following theorem can
be proven. This can be considered the “Big Theorem on Se@vddr Homogeneous Linear

2f you've had a course in linear algebra, you may recognia¢ &H'fundamental set of solutions” is a “basis set”
for the “vector space of all solutions to the given homogesetifferential equation ” This is worth noting, if you
understand what is being noted.



302 Homogeneous Linear Equations — The Big Theorems

Differential Equations”. It will be used repeatedly, ofteithout comment, in the chapters that
follow.

Theorem 14.1 (general solutions to second-order homogenelinear differential equations)
Let T be some open interval, and suppose we have a second-ordegépeous linear differ-
ential equation

ay” + by +cy =0
where, onl , the functionsa, b andc are continuous, and is never zero. Then the following
statements all hold:
1. Fundamental sets of solutions for this differential equrafioverT ) exist.

2. Every fundamental solution set consists of a pair of sohgio

3. If {y1, ¥2} is any linearly independent pair of particular solutionsio¥ , then:
(@) {vi, Y2} Is a fundamental set of solutions.
(b) A general solution to the differential equation is given by

y(X) = C1yi(X) + Ca¥2(X)

wherec; andc, are arbitrary constants.

(c) Given any pointxg in I and any two fixed value#$\ and B, there is exactly one
ordered pair of constantg;, c,} such that

y(X) = C1y1(X) + Cay2(X)
also satisfies the initial conditions
yxo) = A and y(x) = B

The statement about “initial conditions” in the above tl@orassures us that second-order
sets of initial conditions are appropriate for second-pithear differential equations. It also
assures us that a fundamental solution set for a second4ordar homogeneous differential
equation can not become “degenerate” at any point in thevaite . In other words, there is
no need to worry about whether an initial-value problemitwig in 7)) can be solved. It has
a solution, and only one solution. (To see why we might be i@drabout “degeneracy’, see
exercise 14.2 on page 308.)

To illustrate how this theorem is used, let us solve a difféatequation that you may recall
solving in chapter 11 (see page 247). Comparing the appnoseth there with that used here
should lead you to greatly appreciate the theory we've jasetbped.

»Example 14.2: Consider (again) the homogeneous second-order lineareliffial equation

!

y +y=20
In example 12.2 on page 266 we discovered (“by inspectidra) t

yi(X) = cogx) and  yx(X) = sin(x)
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are two solutions to this differential equation, and in epéarl2.4 on page 268 we observed
that the set of these two solutions is linearly independaint he above theorem now assures
us that, indeed, this pair,

{cogx), sin(x)} ,

is a fundamental set of solutions for the above second-droleiogeneous linear differential
equation, and that
Y(X) = cicogXx) + Cpsin(x)

is a general solution.
»Example 14.3: Now, consider the initial-value problem
y ' +y=0 with y0=3 and y(0) =5

We just found that
y(X) = cisin(x) + cxco9Xx)

is a general solution to the differential equation. Takieg\tives, we have
Y(X) = [c1Sin(X) + c;co9X)]” = ¢ co9X) — CpSin(x)
Using this in our set of initial conditions, we get

3 =y0 = c¢;sin(0) + c,co090) = ¢,-0+ ¢-1
and

5 = y'(0) c1co90) — csin(0) = c¢-1 — ¢, 0

Hence,
cp =5 and ¢ =3 ,

and the solution to our initial-value problem is

y(X) = cisin(x) + c2co9Xx)
= 5sin(X) + 3cogXx)

Finding fundamental sets of solutions for most homogenéioaar differential equations
will not be as easy as it was for the differential equatiorhia tast two examples. Fortunately,
fairly straightforward methods are available for findingndiamental sets for some important
classes of differential equations. Some of these methedsaatially described in the exercises,
and will be more completely developed in later chapters.

14.3 Homogeneous Linear Equations of Arbitrary
Order

The big theorem on second-order homogeneous equationsethd 4.1, can be extended to an
analogous theorem covering homogeneous linear equati@isooders. That theorem is:
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Theorem 14.2 (general solutions to homogenous linear diffential equations)
Let T be some open interval, and suppose we havd Arrder homogeneous linear differential
equation

aoy™ + ay™ P 4+ o+ ayoy’ + a1y + any = 0
where, onl , theay’s are all continuous functions withy never being zero. Then the following
statements all hold:

1. Fundamental sets of solutions for this differential equrafioverT ) exist.

2. Every fundamental solution set consists of exadlysolutions.

3. If {y1, Vo, ..., YN} Is any linearly independent set & particular solutions over ,
then:
@) {y1, Y2, ..., Yn} Is a fundamental set of solutions.

(b) A general solution to the differential equation is given by
y(xX) = C1y1(X) + Co¥2(X) + -+ + CnYn(X)
wherecy, ¢y, ... andcy are arbitrary constants.

(c) Given any pointxg in T and anyN fixed valuesA;, A,, ... and Ay, there is
exactly one ordered set of constafts, c,, ..., Cn} such that

y(X) = Ciyi(X) + C2y2(X) + -+ + CNYN(X)
also satisfies the initial conditions
yxo) = A2, Y(x) = A,
y'(X) = A, - and  yNU(x) = Ay

A proof of this theorem is given in the next chapter.

14.4 Linear Independence and Wronskians

Let {y1, Vo, ..., yn} be asetofN (sufficiently differentiable) functions on an interval. The
correspondingVronskian, denoted by eitheW or W[yi, Vo, ..., , Yn1, is the function onZ
generated by the following determinant of a matrix of ddnixes of the yi's :
Y1 Y2 Y3 e YN
yl/ y2/ y3/ R yN/
W _ W[yl’ yz’ . yN] _ yl// yz// y3// - yN//
yi(N=D yp(N=D) o (N=D) Ly (N-D)

In particular, if N = 2,

Y1 Y2

v’y = Y1y — 1y2

W = W[y, yo] =
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»Example 14.4: Let'’s find W[y, ¥»] on the real line when

yix) = x> and  y,(x) = X°

In this case,
y'(x) = 2x and y/(x) = 3x*
and
Wlyy, Yol = ) yo00 | xE = x%3x% — 2xx% = x*
’ yi'(X)  y2'(X) 2x  3x?

Wronskians naturally arise when dealing with initial-vajuroblems. For example, suppose
we have a pair of functiony; andy,, and we want to find constants and ¢, such that
y(X) = cyi(X) + C2y2(X)

satisfies
yxo) =2 and y(X) =5

for some given pointxy in our interval of interest. In solving foc; and c,, you can easily
show that

ciW(xp) = 2y2'(Xo) — 5Yy2(Xo) and  W(Xg) = 5yi(X) — 2y1'(Xo)

Thus, if W(xg) # 0, then there is exactly one possible value ¢grand one possible value for
Co, hamely,
o = 2y7'(X0) — 5Y2(Xo0) and ¢ = SYy1(X0) — 2y1'(Xo)
W(xo) W(xo0)

However, if W(xp) = 0, then the system reduces to

0 = 2y,'(Xo) — 5Y2(Xo) and 0= 5y1(X0)) — 2y1'(Xo)

which cannot be solved for; and c, .2

More generally, the vanishing of a Wronskian of a set of fiomg signals that the given set
is not a good choice in constructing solutions to initialeegproblems. The value of this fact is
enhanced by the following remarkable theorem:

Theorem 14.3 (Wronskians and fundamental solution sets)
Let W be the Wronskian of any sé¢¥1, V2, ..., Yn} of N particular solutions to am h_order
homogeneous linear differential equation

aoy™ 4+ ay™ TV 4 ... Fay oy’ + av1y +ayy =0

on some interval opefi . Assume further that thaey's are continuous functions witby never
being zero onL . Then:

3 of course, the choice of 2 and 5 as the initial values was npbitant; any other values could have been used
(we were just trying to reduce the number of symbols to keagktoff). What is important is whetheN(xg) is
Zero or not.
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1. If W(xg) = 0 for any single pointg in I ,thenW(x) = 0 for every pointx in T, and
the set{yi1, Yo, ..., Yn} Is not linearly independent (and, hence, is not a fundamenta
solution set) oril .

2. If W(xo) # 0 for any single pointxy in T, thenW(x) # O for every pointx in T,
and{yi, Yo, ..., Yn} IS a fundamental solution set solutions for the given diffgial
equation onl .

This theorem (proven in the next chapter) gives a relatigalyy to use test for determining
when a set of solutions to a linear homogeneous differeatjghtion is a fundamental set of
solutions. This test is especially useful when the ordehefdifferential equation 3 or higher.

»Example 14.5: Consider the functions
i) =1, ya(0 = cog2x)  and  y3(x) = Sir(x)

You can easily verify that all are solutions (over the ential line) to the homogeneous
third-order linear differential equation

y/// + 4y/ — o

So, is
{1, cog2x), sinf(x)}

a fundamental set of solutions for this differential eqma® To check we compute the first-
order derivatives

y'o) =0 ,  ¥X = -2sin2x) ,  y(X) = 2sinx)cogx)
the second-order derivatives
yi"(xX) = 0 , Yo" (X) = —4cog2x) and  y3'(x) = 2cog(x)—2sirf(x) ,
and form the corresponding Wronskian,

1 cog2x) Sin?(X)
W(x) = W[1, cog2x),sirP(x)] = |0 —2sin2x) 2 sin(x) cosx)
0 —4cog2x) 2co¥(x) — 2sirf(x)

Rather than compute out this determinant for ‘all’ valuex gfwhich could be very tedious),
let us simply pick a convenient value far, say x = 0, and compute the Wronskian at that
point:

1 cog2-0) sin?(0) 1 1 0
W@O) = |0 —2sin2-0) 2 sin(0) cog0) =0 0 0=0
0 —4cog2-0) 2co2(0) — 2sirf(0) 0 —4 2

Theorem 14.3 assures us that, since this Wronskian varasitiest one point, it must vanish
everywhere. More importantly for us, this theorem alsated that{1, cog2x) , Sir®(X)} is
not a fundamental set of solutions for our differential g¢ipra
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»Example 14.6: Now consider the functions
yix) =1, ya(x) = cog2x)  and  ys(x) = sin(2x)

Again, you can easily verify that all are solutions (overéhére real line) to the homogeneous
third-order linear differential equation

y/// + 4y/ — O

So, is
{1, cog2x), sin(2x)}

a fundamental set of solutions for our differential equatabove? To check we compute the
appropriate derivatives and form the corresponding Wriamsk

W(x) = WIJ1, cog2x), sin(2x)]

Vi Y2 V3 1 cog2x) sin(2x)
= yl/ yz/ y3/ = |0 —-2sin(2x) 2cog2x)
yi" oy s 0 —4cog2x) —2sin2x)

Letting x = 0, we get

1 cog2-0) sin(2 - 0) 1 1
W@0) = |0 —-2sin2-0) 2cog2-0)| =10 O
0

2 =8 #0
0 —4c0%2-0) —2sin2-0) 4 0

Theorem 14.3 assures us that, since this Wronskian is nmatene point, it is nonzero every-
where, and thafl, cog2x), sin(2x)} is a fundamental set of solutions for our differential
equation. Hence,

y(X) = ¢c1-1 + c,co92x) + C3Sin(2x)

is a general solution to our third-order differential eqoiat

Additional Exercises

14.1 a. Assumey is a solution to

2
247 + 4xﬂ + sinx)y = 0

X
dx? dx

over the interval0, o) . Keep in mind that this automatically requirgs y' andy”

to be defined at each point i®, oo) . Thus, bothy andy’' are differentiable on this
interval and, as you learned in calculus, this meansyhabdy' must be continuous
on (0, o0) . Now, rewrite the above equation to obtain a formula y6rin terms of
y andy’, and, using this formula, show thgt must also be continuous d@, o) .
Why can we not be sure that' is continuous ap ?
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b. Let I be some interval, and assurgesatisfies

d?y dy
a—= b-—= cy =0
dx? + dx toy
overT. Assume, further, thad, b andc, as well as botty andy' are continuous
functions overl , andthat is neverzerood . Showthaty” also mustbe continuous

on T. Why do we require thaa never vanishes off ?

. Let T be some interval, and assurgesatisfies

aoy™ + aiy™ ™V 4+ ...+ ayay’ + an-1y + any = 0

over I . Assume, further, that tha,’s, as well asy, y', ... andy™Y are contin-
uous functions ovel , and thatag is never zero orf . Show thaty™ also must be
continuous onL . Why do we require thaty never vanishes off ?

14.2. The following exercises all refer to theorem 14.1 on paged@ifthe following pair of

functions:

(v, Yo} = {x% x*}

a. Using the theorem, verify that

{x% %}
is a fundamental solution set for
x2y" — 4xy’ + 6y = 0

over the intervak0, co) .

. Find the constants; andc, so that

y(x) = &x? + cx°
satisfies the initial conditions

y(l =0 and Y@ = -4

c. Attempt to find the constants andc, so that

y(x) = &x? + cx°
satisfies the initial conditions
y(0) = 0 and Y0 = -4

What ‘goes wrong’. Why does this not violate the claim in tteen 14.1 about initial-
value problems being solvable?

14.3. Particular solutions to the differential equation in ea¢hhe following initial-value

problems can found by assuming

y(x) = €~
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wherer is a constant to be determined. To determine these congpéugshis formula
for y into the differential equation, observe that the resulgaggation miraculously
simplifies to a simple algebraic equation for and solve for the possible valuesrof

Do that with each equation; then use those solutions andghbedorem on general
solutions to second order, homogeneous linear equatibasr@m 14.1 on page 302)
to construct a general solution, and, finally, solve thegingtial-value problem:

ay +y -2y =0 with y0)=1 and y(0) =1
b.y" +4y 4+ 3y =0 with yO)=2 and y (@0 =-1
c. 6y — 5/ +y =0 with y(O)=4 and y(0) =0
dy +3y =0 with y(0)=-2 and y(©0) =3

14.4. Find solutions of the form
y(x) = €~

wherer is a constant (as in the previous exercise) and use the @oduivund (along
with the results given in theorem 14.2 on page 304) to coasgreneral solutions to the
following differential equations:

ay’  —9y =0 b. y® — 10y + 9y = 0






