
Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 14-28 www.itspoa.com/journal/mana

A Review on Importance of Maintenance in
Software Engineering

Bindia Tarika1*
1 Computer Science & Engineering, PTU, Punjab, India

Email Address
bindiatarika11@gmail.com (Bindia Tarika)
*Correspondence: bindiatarika11@gmail.com

Received: 21 December 2019; Accepted: 20 February 2020; Published: 10 March 2020

Abstract:
Software maintenance is widely accepted part of SDLC now a days. It stands for all
the modifications and updations done after the delivery of software product. A
common perception of maintenance is that it merely involves fixing defects. However,
one study indicated that over 80% of maintenance effort is used for non-corrective
actions. This perception is perpetuated by users submitting problem reports that in
reality are functionality enhancements to the system. This paper describes the
importance of maintenance by describing the each phase of maintenance cycle and by
describing the different types of maintenance and their needs at different stages of
software development.

Keywords:
Software, SDLC, SMLC, Maintenance, Phase

1. Introduction
Software maintenance is a part of the SDLC (Software Development Life Cycle).

Its main purpose is to modify and update software application after delivery to correct
faults and to improve the performance of the system. It is a very broad activity that
takes place soon after the development completed. It optimizes the system’s
performance by reducing errors, eliminating useless development and applying
advanced development.
Software maintenance is a vast activity which includes optimization, error

correction, deletion of discarded features and enhancement of existing features. Since
these changes are necessary, a mechanism must be created for estimation, controlling
and making modifications. The essential part of software maintenance requires
preparation of an accurate plan during the development cycle. Typically, maintenance
takes up about 40-80% of the project cost, usually closer to the higher pole. Hence, a
focus on maintenance definitely helps keep costs down.
Software maintenance sustains the software product throughout its life cycle (from

development to operations). Modification requests are logged and tracked, the impact
of proposed changes is determined, code and other software artifacts are modified,
testing is conducted, and a new version of the software product is released. Also,



Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 15-28 www.itspoa.com/journal/mana

training and daily support are provided to users. The term maintainer is defined as an
organization that performs maintenance activities.
Software development gets completed within 5 years (depends on the complexity)

while software maintenance is an ongoing activity and can be extended up to 15-20
years.
“Software maintenance is the process of modifying a software system or component

after delivery to correct faults, improve performance, or adapt to a changed
environment” – The Institute of Electrical and Electronics Engineers (IEEE).
Put simply, software maintenance is the process where software vendors provide

updates, modifications, bug fixes, patches and additional features to existing software
solutions to increase performance. Typically software maintenance fees are a small
percentage of overall license fees paid on an annual or monthly basis.

1.1. Key Issues in Software Maintenance
A number of key issues must be dealt with to ensure the effective maintenance of

software. Software maintenance provides unique technical and management
challenges for software engineers—for example, trying to find a fault in software
containing a large number of lines of code that another software engineer developed.
Similarly, competing with software developers for resources is a constant battle.
Planning for a future release, which often includes coding the next release while
sending out emergency patches for the current release, also creates a challenge. The
following section presents some of the technical and management issues related to
software maintenance. They have been grouped under the following topic
headings:Technical issues, Management issues, Cost estimation, and Measurement.

1.1.1. Technical Issues
Limited understanding refers to how quickly a software engineer can understand

where to make a change or correction in software that he or she did not develop.
Research indicates that about half of the total maintenance effort is devoted to
understanding the software to be modified. Thus, the topic of software comprehension
is of great interest to software engineers. Comprehension is more difficult in text-
oriented representation—in source code, for example—where it is often difficult to
trace the evolution of software through its releases/ versions if changes are not
documented and if the developers are not available to explain it, which is often the
case. Thus, software engineers may initially have a limited understanding of the
software; much has to be done to remedy this.

1.1.2. Testing
The cost of repeating full testing on a major piece of software is significant in terms

of time and money. In order to ensure that the requested problem reports are valid, the
maintainer should replicate or verify problems by running the appropriate tests.
Regression testing (the selective retesting of software or a component to verify that
the modifications have not caused unintended effects) is an important testing concept
in maintenance. Additionally, finding time to test is often difficult. Coordinating tests
when different members of the maintenance team are working on different problems
at the same time remains a challenge. When software performs critical functions, it
may be difficult to bring it offline to test. Tests cannot be executed in the most
meaningful place–the production system. The Software Testing KA provides



Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 16-28 www.itspoa.com/journal/mana

additional information and references on this matter in its subtopic on regression
testing.

1.1.3. Impact Analysis
Impact analysis describes how to conduct, cost effectively, a complete analysis of

the impact of a change in existing software. Maintainers must possess an intimate
knowledge of the software’s structure and content. They use that knowledge to
perform impact analysis, which identifies all systems and software products affected
by a software change request and develops an estimate of the resources needed to
accomplish the change. Additionally, the risk of making the change is determined.
The change request, sometimes called a modification request (MR) and often called a
problem report (PR), must first be analyzed and translated into software terms. Impact
analysis is performed after a change request enters the software configuration
management process.
The severity of a problem is often used to decide how and when it will be fixed.

The software engineer then identifies the affected components. Several potential
solutions are provided, followed by a recommendation as to the best course of action.
Software designed with maintainability in mind greatly facilitates impact analysis.

More information can be found in the Software Configuration Management KA.

1.1.4. Maintainability
Maintainability is defined as the capability of the software product to be modified.

Modifications may include corrections, improvements, or adaptation of the software
to changes in environment as well as changes in requirements and functional
specifications.

Figure 1. Software Maintenance.

As a primary software quality characteristic, maintainability should be specified,
reviewed, and controlled during software development activities in order to reduce
maintenance costs. When done successfully, the software’s maintainability will
improve. Maintainability is often difficult to achieve because the subcharacteristics
are often not an important focus during the process of software development. The
developers are, typically, more preoccupied with many other activities and frequently
prone to disregard the maintainer’s requirements. This in turn can, and often does,
result in a lack of software documentation and test environments, which is a leading



Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 17-28 www.itspoa.com/journal/mana

cause of difficulties in program comprehension and subsequent impact analysis. The
presence of systematic and mature processes, techniques, and tools helps to enhance
the maintainability of software.

2. Software Maintenance Life Cycle
Changes are implemented in the software system by following a software

maintenance process, which is known as Software Maintenance Life Cycle
(SMLC).This life cycle comprises seven phases, namely, problem identification,
analysis, design, implementation, system testing, acceptance testing, and delivery
phase.

Figure 2. Phases of SMLC.

2.1. Problem Identification Phase
In this phase, the requests for modifications in the software are identified and

assigned an identification number. Each Modification Request (MR) is then assessed
to determine to which type of maintenance activity (corrective, adaptive, perfective,
and preventive) the MR belongs. After classification, each MR is assigned with a
priority to determine the order in which it is to be processed.

Figure 3. Problem Identification.

2.2. Problem Analysis Phase
In this phase, the feasibility and scope of each validated modification request are

determined and a plan is prepared to incorporate the changes in the software. The
input attribute comprises validated modification request, initial estimate of resources,
project documentation, and repository information.



Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 18-28 www.itspoa.com/journal/mana

Figure 4. Problem Analysis.

2.3. Design Phase
In this phase, the modifications to be made in the software are designed. The input

attribute comprises outputs produced by analysis phase (detailed analysis), project and
system documentation, software's source code, and databases.

Figure 5. Design.

2.4. Implementation Phase
In this phase, the actual modifications in the software code are made, new features

that support the specification of present software are added, and the modified software
is installed. The input attribute comprises the source code, the output of design phase,
and the modified system and project documentation.

Figure 6. Implementation.

2.5. System Test Phase
In this phase, the regression testing (a type of system testing) is performed on the

modified system to ensure that no new faults are introduced in the software as a result
of the maintenance activity. The input attribute comprises the updated software
documentation, test preparation review report, and the updated system.



Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 19-28 www.itspoa.com/journal/mana

Figure 7. System Test.

2.6. Acceptance Test Phase
In this phase, acceptance testing is performed on the fully integrated system by the

user or by a third party specified by the user. The objective is to detect errors and
verify that the software features are according to the requirements stated in the
modification request. The input attribute comprises the fully integrated system,
acceptance test plans, acceptance test cases, and acceptance test procedures.

Figure 8. Acceptance Test.

2.7. Delivery Phase
In this phase, the modified (or new) software system is delivered to the user. In

addition, users are provided with a proper documentation consisting of manuals and
help files that describe the operation of the software along with its hardware
specifications. The input attribute comprises a fully tested and accepted version of the
system.

Figure 9. Delivery.

3. Causes of Software Maintenance Problems
3.1. Lack of Traceability
Codes are rarely traceable to the requirements and design specifications.
It makes it very difficult for a programmer to detect and correct a critical defect

affecting customer operations.
Like a detective, the programmer pores over the program looking for clues.



Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 20-28 www.itspoa.com/journal/mana

Life Cycle documents are not always produced even as part of a development
project.

3.2. Lack of Code Comments
Most of the software system codes lack adequate comments. Lesser comments may

not be helpful in certain situations.

3.3. Obsolete Legacy Systems
In most of the countries worldwide, the legacy system that provides the backbone of

the nation's critical industries, e.g., telecommunications, medical, transportation utility
services, were not designed with maintenance in mind.
They were not expected to last for a quarter of a century or more!
As a consequence, the code supporting these systems is devoid of traceability to the

requirements, compliance to design and programming standards and often includes
dead, extra and uncommented code, which all make the maintenance task next to the
impossible.

Figure 10. Causes of Maintenance Problems.

4. Why Software Maintenance?
Maintaining a system is equally important as Web Application Development. It

keeps solutions healthy to deal with changing technical and business environment.
Generally, IT service providers suggest their clients to go for software maintenance
services for the consistent and enhanced performance of the system. Sometimes
system maintenance involves improvements in the existing solution and at times there
are requirements of new development as per the changing market needs.
Software maintenance is necessary for several reasons that are listed below:

4.1. Bug Fixing
The most important part of maintenance management is bug fixing. It is essential to

run the software seamlessly. It should be done on a priority basis.
This process contains search out for errors in code and corrects them. The issues

can occur in hardware, operating systems or any part of the software. This must be
done without hurting the rest of the functionalities of existing software.

4.2. Capability Enhancement for Changing Environment
This maintenance part is done for the improvement in the current features and

functions to make the system compatible for changing the environment.



Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 21-28 www.itspoa.com/journal/mana

It enhances software programs, work patterns, hardware upgrade, compilers and all
other aspects that affect system workflow. Boost your system performances using a
technically updated solution applying software maintenance services regularly.

4.3. Removal of Outdated Functions
The functionalities that are not in use anymore and unnecessarily occupying space

in the solution actually hamper the efficiency of the system. Hence, the removal of
outdated functionalities is necessary. Such elements of UI and coding gets removed
and replaced with new features using the latest tools and technologies.

Figure 11. Maintenance Process.

This change makes the system adaptive to cope with changing circumstances.

4.4. Performance Improvement
Performance Improvement of a system is done to cope up with the new

requirements. Data and coding restrictions, as well as re-engineering, are the part of
software maintenance. It prevents the solution from vulnerabilities. This is not any
functionality that performs in operations, but it develops to stop harmful activities like
hacking.

5. Categories of Software Maintenance
Maintenance can be divided into the following:



Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 22-28 www.itspoa.com/journal/mana

Figure 12. Categories of Maintenance.

5.1. Corrective Maintenance
Corrective maintenance of a software product may be essential either to rectify

some bugs observed while the system is in use, or to enhance the performance of the
system.

5.2. Adaptive Maintenance
This includes modifications and updations when the customers need the product to

run on new platforms, on new operating systems, or when they need the product to
interface with new hardware and software.

5.3. Perfective Maintenance
A software product needs maintenance to support the new features that the users

want or to change different types of functionalities of the system according to the
customer demands.

5.4. Preventive Maintenance
This type of maintenance includes modifications and updations to prevent future

problems of the software. It goals to attend problems, which are not significant at this
moment but may cause serious issues in future.

6. Software Maintenance Models
To overcome internal as well as external problems of the software, Software

maintenance models are proposed. These models use different approaches and
techniques to simplify the process of maintenance as well as to make is cost effective.
Software maintenance models that are of most importance are:

6.1. Quick-Fix Model
This is an ad hoc approach used for maintaining the software system. The objective

of this model is to identify the problem and then fix it as quickly as possible. The
advantage is that it performs its work quickly and at a low cost. This model is an
approach to modify the software code with little consideration for its impact on the
overall structure of the software system.

Figure 13. Quick Fix Model.

6.2. Iterative Enhancement Model



Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 23-28 www.itspoa.com/journal/mana

Iterative enhancement model considers the changes made to the system are iterative
in nature. This model incorporates changes in the software based on the analysis of
the existing system. It assumes complete documentation of the software is available in
the beginning. Moreover, it attempts to control complexity and tries to maintain good
design.

Figure 14. Iterative Enhancement Model.

Iterative Enhancement Model is divided into three stages:
a. Analysis of software system.
b. Classification of requested modifications.
c. Implementation of requested modifications.

6.3. The Re-use Oriented Model
The parts of the old/existing system that are appropriate for reuse are identified and

understood, in Reuse Oriented Model. These parts are then go through modification
and enhancement, which are done on the basis of the specified new requirements. The
final step of this model is the integration of modified parts into the new system.

Figure 15. Re-use Oriented Model.

6.4. Boehm's Model
Boehm's Model performs maintenance process based on the economic models and

principles. It represents the maintenance process in a closed loop cycle, wherein
changes are suggested and approved first and then executed.



Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 24-28 www.itspoa.com/journal/mana

Figure 16. Boehm’s Model.

6.5. Taute Maintenance Model
Named after the person who proposed the model, Taute’s model is a typical

maintenance model that consists of eight phases in cycle fashion. The process of
maintenance begins by requesting the change and ends with its operation. The phases
of Taute’s Maintenance Model are: Change request Phase, Estimate Phase, Schedule
Phase, Programming Phase, Test Phase, Documentation Phase, Release Phase,
Operation Phase.

Figure 17. Taute Maintenance Model.

7. Software Maintenance Cost Factors
There are two types of cost factors involved in software maintenance.These are:

Non-Technical Factors, Technical Factors, Non-Technical Factors.



Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 25-28 www.itspoa.com/journal/mana

Figure 18.Maintenance Cost Factors.

7.1. Application Domain
If the application of the program is defined and well understood, the system

requirements may be definitive and maintenance due to changing needs minimized.
If the form is entirely new, it is likely that the initial conditions will be modified

frequently, as user gain experience with the system.

7.2. Staff Stability
It is simple for the original writer of a program to understand and change an

application rather than some other person who must understand the program by the
study of the reports and code listing.
If the implementation of a system also maintains that systems, maintenance costs

will reduce.
In practice, the feature of the programming profession is such that persons change

jobs regularly. It is unusual for one user to develop and maintain an application
throughout its useful life.

7.3. Program Lifetime
Programs become obsolete when the program becomes obsolete, or their original

hardware is replaced, and conversion costs exceed rewriting costs.

7.4. Dependence on External Environment
If an application is dependent on its external environment, it must be modified as

the climate changes.
For example:
Changes in a taxation system might need payroll, accounting, and stock control

programs to be modified.
Taxation changes are nearly frequent, and maintenance costs for these programs are

associated with the frequency of these changes.
A program used in mathematical applications does not typically depend on humans

changing the assumptions on which the program is based.

7.5. Hardware Stability



Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 26-28 www.itspoa.com/journal/mana

If an application is designed to operate on a specific hardware configuration and
that configuration does not changes during the program's lifetime, no maintenance
costs due to hardware changes will be incurred.
Hardware developments are so increased that this situation is rare.
The application must be changed to use new hardware that replaces obsolete

equipment.

7.6. Technical Factors
Technical Factors include the following:

Figure 19. Technical Factors.

7.6.1. Module Independence
It should be possible to change one program unit of a system without affecting any

other unit.

7.6.2. Programming Language
Programs written in a high-level programming language are generally easier to

understand than programs written in a low-level language.

7.6.3. Programming Style
The method in which a program is written contributes to its understandability and

hence, the ease with which it can be modified.

7.6.4. Program Validation and Testing
Generally, more the time and effort are spent on design validation and program

testing, the fewer bugs in the program and, consequently, maintenance costs resulting
from bugs correction are lower.
Maintenance costs due to bug's correction are governed by the type of fault to be

repaired.
Coding errors are generally relatively cheap to correct, design errors are more

expensive as they may include the rewriting of one or more program units.
Bugs in the software requirements are usually the most expensive to correct because

of the drastic design which is generally involved.



Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 27-28 www.itspoa.com/journal/mana

7.6.5. Documentation
If a program is supported by clear, complete yet concise documentation, the

functions of understanding the application can be associatively straight-forward.
Program maintenance costs tends to be less for well-reported systems than for the

system supplied with inadequate or incomplete documentation.

7.6.6. Configuration Management Techniques
One of the essential costs of maintenance is keeping track of all system documents

and ensuring that these are kept consistent.
Effective configuration management can help control these costs.

8. Conclusion
It is not good to sign up for an annual maintenance without understanding the exact

need. Thoroughly check the contract from all aspects before signing. Validate each
and every point what is required for your business.
Software Maintenance is not an option, it is a must. Like take your car as an

example, If you don’t maintain it, it may cause many other issues every year. The
amount for unperformed vehicle maintenance will cost you much more. Similarly, if
you ignore the maintenance of a system, there will be a lesser scope for optimum
business growth.
Through software maintenance, software systems can adapt to the changing

technical environment and latest market trends. It also helps in predicting cash flow
and controlling software expenditure. Hence, by adopting software maintenance
developers can provide clients services that are up-to-date with the latest trends and is
extremely beneficial.

Conflicts of Interest
The author declares that there is no conflict of interest regarding the publication of

this article.

Funding
This research received no specific grant from any funding agency in the public,

commercial or not-for-profit sectors.

References
[1] Pigoski, Thomas M. 1997: Practical software maintenance: Best practices for

managing your software investment. Wiley Computer Pub. (New York).

[2] Kaur, U.; Singh, G. A Review on Software Maintenance Issues and How to
Reduce MaintenanceEfforts. International Journal of Computer Applications,
2015, 118(1), 0975-8887.

[3] Bennett, K.H.; Rajlich, V.T., , May. Software maintenance and evolution: a
roadmap. In Proceedings of the Conference on the Future of Software
Engineering. 2000; pp. 73-87.

[4] Canfora, G.; Cimitile, A.; Lucarelli, P.B. Software maintenance. Handbook of
Software Engineering and Knowledge Engineering, 2000, 1, 91-120.



Volume 3, 2020 ISSN: 2617-4596
DOI: https://doi.org/10.31058/j.mana.2020.31002

Submitted to Management, page 28-28 www.itspoa.com/journal/mana

[5] Debray, S.K.; Evans, W.; Muth, R.; De Sutter, B. Compiler techniques for
code compaction. ACM Transactions on Programming languages and
Systems (TOPLAS), 2000, 22(2), 378-415.

[6] Kidambi, P.C. Maintenance Issues in Software Engineering. Department of
Computer Science Louisiana Tech University, 2003.

[7] Schneidewind, N.F. The State of Software Maintenance. IEEE Transactions on
Software Engineering, pp. 303-310.

[8] Godfrey, M.W.; German, D.M. The past, present, and future of software
evolution. Frontiers of Software Maintenance, 2008r; pp. 129-138.

[9] IEEE Std. 610.12. Standard Glossary of Software Engineering Terminology,
IEEE Computer Society Press, Los Alamitos, CA.

[10] Pigoski, T.M. Practical Software Maintenance – Best Practices for Managing
Your Software Investment. New York, NY, John Wiley & Sons.

[11]McDermid, J.A. Software Engineer's reference book: Oxford: Butterworth
Heinemann, 1991.

[12]McClure, J.M.A.C. Software Maintenance: The Problem and Its Solutions:
Englewood Cliffs, NJ: Prentice-Hall.

[13]Svahnberg, M. Supporting Software Architecture Evolution: Architecture
Selection and Variability. Doctoral Dissertation, Department of Software
Engineering and Computer, Science, Blekinge Institute of Technology,
Karlskrona.

[14]IEEE. IEEE Standard for Software Maintenance. Software Engineering Standards
Committee of the IEEE Computer Society, 1998.

[15] Chapin, N.; Hale, J.E.; Khan, K.M.D.; Ramil, J.F.; Tan, W.G. Types of software
evolution and software maintenance. J. Softw. Maint. Evol.: Res. Pract. 2001, 13,
3-30.

[16] A. Bryant and J. A. Kirkham. B. W. Boehm software engineering economics: a
review essay. ACM SIGSOFT Software Engineering Notes, 1983, 8, 44-60.

[17] Cimitile, G.C.A.A. Software Maintenance. Faculty of Engineering at Benevento,
University of Sannio, Benevento, Italy.

© 2020 by the author(s); licenseeInternational Technology and
Science Publications (ITS), this work for open access publication is
under the CreativeCommons Attribution InternationalLicense (CC
BY 4.0). (http://creativecommons.org/licenses/by/4.0/)


