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Preface: Four Ways
to Use This Book

Topology is an exciting subject to learn. Topological ideas surround us in daily life
and in mathematical musings, but we can’t fully enjoy their wonders until we learn
topology. Is a shoelace knotted? If point 𝑝 and point 𝑞 are part of a connected set,
is there a path between them? Can we count to infinity and beyond? Can a surface
have only one side or one edge? Topology is compelling because it can give us a new
perspective and surprising answers to such questions.

Topology is an exciting subject to learn. Topology is not just an exciting subject to
know—it is an exciting subject to discover.

One of the reasons that we, the authors, are writing this book comes from a per-
sonal source. For each of us, a topology class was the first setting in which we learned
how to prove theorems on our own. Topology was the arena in which our personal re-
lationship with mathematics was transformed. Proving theorems in topology was the
experience that shifted our self-image from being purely consumers of mathematics to
becoming producers of mathematics.

The presentation in this book invites readers, too, to feel the joy of discovering in-
sights for themselves. They will learn not only some fascinating mathematics but also
how to create insights and concepts by intent. We will preview a few of the delightful
enticements of topology in Chapter 1, but in this prefacewe describe our vision for how
this book might be used by instructors and independent learners.

(1) A textbook for introductory topology:
Potential road maps
This book can be used as a textbook in an introductory topology class that is taught in
an inquiry-based learning format. In this format, the instructor selects which exercises
and theorems the students are to work on for the next sessions of the class. Then in
class the students spendmost of the time either in group work on unresolved theorems
or in making and listening to presentations by students. The standing assignment for
the students is to prove selected theorems and do selected exercises on their own, write
up their own proofs and solutions, engage in group work during the classroom session,
make presentations, and respond to presentations made by other students.

Sources about Inquiry-Based Learning. There are many variations on how inquiry-
oriented classes can be conducted. Our Instructors’ Resource, which can be accessed at

ix



x Preface: Four Ways to Use This Book

Francis Su’s website (http://www.math.hmc.edu/~su/), describes some such meth-
ods and also includes recommendations for other sources of information and training
about inquiry-based learning. The Instructors’ Resource also includes sample syllabi
that describe in detail the daily running of the course.

Important note to instructors: It is not possible to do every theorem in any
section during an introductory class, so only selected theorems and exercises should be
assigned. Every chapter contains many additional concepts, examples, and theorems
that an instructor may include.

Core General Topology: Here we list a collection of theorems and exercises that
would provide students with the core ideas, examples, and theorems of point-set topol-
ogy. In general, theorems are more important than exercises, so in any given section,
skipping exercises is not likely to affect later theorems. It is still good to encourage stu-
dents to read over skipped exercises or theorems within each section. In each chapter,
reading the introduction and conclusion section is recommended.
• Cardinality—Section 1.1; Section 1.2 except Theorem 1.14 and Exercise 1.15; The-

orem 1.16.

• Topological Space Fundamentals—Section 2.1; Section 2.2; Section 2.3.

• Bases, Subspaces, Products—Section 3.1; in Section 3.2, familiarize yourself with
the definition of a subbasis; in Section 3.3, become acquainted with the lexico-
graphically ordered square; Section 3.4; in Section 3.5, just do the theorems.

• Separation Properties—Section 4.1 through Theorem 4.9, and the table in Exercise
4.13; in Section 4.2, Exercise 4.18 can be skipped; in Section 4.3, only Theorems
4.19, 4.20, 4.23.

• Countable Features—Section 5.1 through Theorem 5.5; Section 5.2.

• Compactness—in Section 6.1, just focus on theorems; Section 6.2 will be a review
if you’ve had analysis; in Section 6.3, up through the Heine-Borel Theorem.

• Continuity and Homeomorphisms—Section 7.1; in Section 7.2 skip problems us-
ing the countably compact and Lindelöf properties; Section 7.3; in Section 7.4, only
Theorems 7.32, 7.35, 7.36 and Exercise 7.34; in Section 7.5, through Theorem 7.47.

• Connectedness—in Section 8.1, skip theorems about infinite products.

• Metric Spaces—in Section 9.1, focus on theorems, skip exercises and theorems in-
volving properties you did not cover earlier; in Section 9.2 do the first theorem.

There aremany possible variations for an introductory topology course. We sometimes
include either the Classification of 2-Manifolds or the Fundamental Group as a part of
the experience.

Classification of 2-Manifolds: Here is a path to give students an introduction to the
classification of 2-manifolds after they have learned some general topology.
• Introduction to Geometric and Algebraic Topology—Chapter 10 is an introduction

to geometric topology. It is basically just a short reading assignment.

• 2-Manifolds—Section 11.1; Section 11.2; Section 11.3; Section 11.4 (or Sections 11.6
and 11.7) (these are two different approaches); Section 11.5; Section 11.8; Section
11.9.

http://www.math.hmc.edu/~su/
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Fundamental Group: Here is a path to give students an introduction to the funda-
mental group after they have learned some general topology.

• The Fundamental Group—in Section 12.1, focus on theorems; Section 12.2; in Sec-
tion 12.3, focus on theorems; in Section 12.4, the first lemma is a good one to do,
then aim to understand the statement of Van Kampen’s theorem, and compute
examples, if there isn’t time to work through the proof.

(2) Topology courses beyond an introductory
course
This book contains farmorematerial than could be covered in a single-semester course,
and more than could be completely done in a year. So there are several alternatives for
a second- or even third-semester course.

One possibility would be to treat point-set topology in the first semester and then
do the more geometric and algebraic topology as a second-semester course.

Another possibility is for those who might have an interest in considering some
of the more advanced topics in point-set topology. There is plenty of more advanced
material in the point-set topology chapters so that an interesting second semester of
point-set topology could be offered. Then the geometric and algebraic topology topics
could be yet a third semester.

Algebraic and Geometric Topology: Here we list a collection of theorems and ex-
ercises that would provide students with the core ideas, examples, and theorems in-
troducing geometric and algebraic topology. Every chapter contains many additional
concepts, examples, and theorems that an instructor may include. In each chapter,
reading the introduction and conclusion section would be good.

(1) Start with the Classification of 2-Manifolds as described above.

(2) Fundamental Group—Sections 12.1–13.4

(3) Covering Spaces—Sections 13.1–13.4; Section 13.6

(4) Manifolds and Complexes—Sections 14.1–14.4 (Section 14.5 is a fun application)

(5) ℤ2-Homology—Sections 15.1–15.4

(6) Applications of ℤ2-Homology—Sections 16.1–16.4

(7) Simplicial ℤ-Homology—Sections 17.1–17.4, 17.7 (Section 17.8 is quite cool)

(8) Singular ℤ-Homology—Sections 18.1–18.5

(3) Independent study projects
Another use for this book is as a source for many possible independent study projects.
Many of the chapters include more advanced theorems than would be treated dur-
ing a standard course, so many of those theorems or sections could be used as an in-
dependent study topic. Individual students or small groups working together could
take a topic and work through the theorems and write a booklet describing their work.
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For example, the section on metrizability theorems or the section on the Cantor set
would be good topics for independent study. The student or group of students could
be asked to come to grips with well-ordering, ordinal numbers, transfinite induction,
and other concepts involved in the proofs of the basic metrization theorems. These
concepts and techniques would form a satisfying, challenging collection of ideas that
would be accessible to students during an independent study forumwith help from the
instructor. Many other such topics are available from this book including topics about
issues around product spaces, continua, classification of 2-manifolds, and some alge-
braic topology, among many others. Some of these possible independent study topics
are described in the Instructors’ Resource.

(4) Joyful challenges for independent learners
(This category includes those who may have skipped or given short shrift to point-set
topology during their mathematical education.) Yet another use of this book is simply
for a person who wants to enjoy a rich collection of intriguing mathematical puzzles
and challenges. Proving the theorems in this book can be an intrinsically rewarding
and satisfying experience. So a person can simply take the whole book as a delightful
collection of intellectual treats. Working on the proofs of the theorems can be a truly
rewarding enterprise for those who enjoy thinking about challenges for their own sake.
And these challenges have the added benefit that, as you master them, you develop a
robust understanding of a significant body of mathematics. Perhaps these theorems
should be put on a theorem-a-day calendar or should appear in newspapers, where the
harder theorems are suggested during the later days of the week.

A word about prerequisites
Little preliminary mathematical knowledge is specifically required to undertake a
study of this book; however, realistically speaking, a successful reader will probably
need enough mathematical experience to be able to deal with mathematical abstrac-
tion. That mathematical maturity will be greatly enhanced while interacting with this
book. At our schools, the topology class is generally offered as an upper-division under-
graduate course that has the prerequisite of at least one proof-based course in abstract
mathematics. Students would do well to have a basic grounding of elementary set the-
ory, such as understanding the concepts of sets, unions, intersections, and DeMorgan’s
Laws. For the sections on the fundamental group and homology groups, a basic intro-
duction to group theory would be helpful background. The appendix we’ve provided
summarizes the background from group theory that might be useful; for homology
theory, a student would really only need the abelian material from the appendix.
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Introduction: The Enchanting
World of Topology

Enticements to Topology
The Möbius band and the Klein bottle may be the most famous objects of topology.
These twisted surfaces are intriguing, thought-provoking, and beautiful—perfect de-
scriptors of topology.

A Klein bottle.

Butwe’ve gotten ahead of ourselves. No introduction to topology should startwith-
out recounting the most famous characterization of a topologist. A joke, among some
admittedly nerdy people, is that a topologist is a person who can’t tell the difference
between a coffee cup and a doughnut. This apparent insult to topologists is really an
observation about how topology considers when two absurdly elastic objects can be de-
formed continuously into one another—like elastic doughnuts and coffee cups can (try
it). For this reason, topology enjoys the nickname “rubber sheet geometry.” Actually,
topology contains many facets besides rubber sheet geometry.

Perhaps the driving impulse behind topology is the urge to find the essence of fa-
miliar objects and concepts. The real line and continuous functions are part of familiar
mathematics. When we isolate the fundamentals of those ideas, we create the subject
of topology. Topology finds a way to isolate the most essential features that underlie
ideas such as convergence, connectedness, continuity, and dimension.

1



2 Introduction: The Enchanting World of Topology

One by-product of seeking essentials is that we discover incredible insights and
entertaining examples that challenge our understanding of those fundamentals. For
example, when we consider the basic idea of counting and extend that idea to infinity,
we learn that infinity itself comes in more than one size. Or when thinking about
connectedness, we consider the graph of the function 𝑓(𝑥) = sin(1/𝑥) for 0 < 𝑥 ≤ 1
togetherwith the interval on the 𝑦-axis between−1 and 1. Should that set be considered
connected or not connected?

The iconic Möbius band and the Klein bottle invite our curiosity to play. We can
imagine being a 2-dimensional bug whose universe is a Möbius band while our cousin
lives on the surface of a doughnut or a sphere. And immediately a cascade of questions
delight us. What features are the same in our world and our cousin’s? How can we tell
the difference between our worlds when our immediate neighborhoods look the same?

It may appear that such questions are trivial or inconsequential; however, the his-
tory of science has taught us repeatedly that explorations of abstract, mathematical
concepts continually surprise us with their applicability to the real world, and topol-
ogy is no exception.

The concepts of topology—including insights garnered from conceiving of a uni-
verse of unrealistically elasticmaterial—have found applications from cosmology to bi-
ology. Descriptions of the potential shape and structure of our entire universe depend
on topological ideas—including ideas arising from trying to distinguish aMöbius band
from the surface of a sphere. At the other end of the size spectrum, topology provides
insight into string theory, formulated to describe themost fundamental building blocks
of the physical universe. And the structure and behavior of twistedDNAmolecules can
be studied using the topological concepts of knots and links.

Topology is a subject whose power arises from the impulse to abstract essential
features from complex situations and then to let our curiosity roam while striving to
truly understand what is essential about fundamental ideas.

The whole of topology arises from employing various learnable strategies of dis-
covery and exploration. In the chapters to come, we will point out these methods of
creativity and you will see how new mathematical ideas emerge.

Learning to Create Mathematics
People are generally better persuaded by the reasons which they have them-
selves discovered than by those which have come in to the mind of others.

—Blaise Pascal, Pensees #10

Every student spends the vastmajority of the first years ofmathematics instruction
believing that mathematics is a subject that some brilliant dead people in the past cre-
ated and that nowwe learn. It was during an inquiry-based-learning topology class that
the authors’ eyes were opened to the idea that mathematics is something that human
beings create by virtue of thought that is within the reach of regular people—including
ourselves—and not just specially endowed geniuses. So the theorems that appear in
this book have played a special role in our development as mathematicians and, more
generally, as people who seek to be effective thinkers in all areas of our lives.
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Educational researchers now unanimously emphasize the importance of active
struggle as a central experience for meaningful learning and for making the learning
have a permanent effect. There are many inquiry-based learning methods of instruc-
tion; however, the fundamental ingredient is the students’ engagement in doing math-
ematics for themselves.

So it is a special honor for us to be able to present the topological challenges in
this book as opportunities for students or others to enjoy the process of discovering
wonderful mathematical proofs and insights. Each theorem statement or exercise in
this book is a puzzle to be thought through and added to an ever-growing toolbox of
insights and techniques—insights and techniques both about topology and about how
to think in general. The topological theorems in this book were among the first occa-
sions when we personally proved theorems on our own. For us these challenges were
a candy jar filled with delectable treats, and we hope that you too find many hours of
pleasure from grappling with these intriguing ideas.

This book contains essentially no proofs of theorems. Instead, it presents theorem
statements in an order designed to guide you to discover topology on your own.

Each of the remaining chapters is devoted to a topic in topology. After a brief
introduction, the remaining sections of each chapter consist of examples, definitions,
exercises, and theorem statements. Those sections are where the fun lies, because your
challenge is to devise proofs of all the theorems and answers to all the exercises. Note
that exercises are often implicit theorem statements, and the implicit prompt is to prove
the statement. In proving the exercises and theorems, you will be creating and ex-
ploring the wonderful mathematical techniques and ideas that are the essence of the
subject.

The examples, exercises, and theorem statements are ordered in such a way that
each theorem can be proved by the diligent reader. Of course, all the theorems in topol-
ogy were originally proved by people who had never seen the ideas before. This book
presents the statements in such a way that you will have the genuine experience of
discovering the insights that make the theorems true.

Many of the theorems are difficult to prove or require an insight thatmay not occur
to you right away. After you have gained additional experience, youwill often look back
on a theorem and see it as far more meaningful, clearer, and easier than it appeared at
first. But there is no royal road to understanding. The struggle is where the learning
comes—and where the enjoyment and satisfaction are.

No reader should expect to successfully prove all the theorems, and that is fine.
Some theorems may require weeks of effort that is rewarded with an “aha!” moment
of joyful insight and resolution. Some theorems may seem impossible and you may
reluctantly eventually feel the need to seek other sources to find a proof. However,
having toiled on a theorem, you will find that the insights you encounter in a proof
will be far more significant to you even if you do not succeed in discovering the proofs
for yourself.

Working with the concepts; grappling with the fine details of the definitions, ex-
amples, and theorems; and struggling to find the right way to look at an unfamiliar
world is the experience that this book offers. The strategy of persevering through dif-
ficulties and enjoying the struggle as well as the triumphs makes the experience of
this book meaningful. That process makes the mathematics come to life, but it also
awakens many people to an extremely satisfying method for dealing with the whole
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range of unknown situations that arise constantly in all areas of life. Persistence, self-
confidence, and skill at coming up with creative ideas are among the lessons that this
experience helps to develop.

Introduction to Set-Theoretic Topology
Our journey through topology will begin with the part of topology referred to as point-
set topology or set-theoretic topology. It arose from an impulse to find the essence of
mathematics.

At the end of the 19th century, mathematicians embarked on a programwhose aim
was to axiomatize all of mathematics. The goal was to emulate the format of Euclidean
geometry in the sense of explicitly stating a collection of definitions and unproved ax-
ioms and then proving all mathematical theorems from those definitions and axioms.
The foundation on which this program rested was the concept of a set. Axioms for set
theory were proposed and then the goal was to cast known mathematical theorems in
set-theoretic terms. So the challenge for mathematicians was to take familiar objects,
such as the real line, and familiar concepts, such as continuity and convergence, and
recast them in terms of sets. From this effort arose the concept of a topological space,
and the field of topology was born.

The first half of this book is an introduction to point-set or set-theoretic topology.
It begins with a chapter on cardinality—the concept that extends to infinity the basic
concept of counting. What should the analogy to simple counting be when you are
trying to compare the sizes of sets that are infinite? The study of infinite sets could
well be regarded as one of the triumphs of human thought. The concept of cardinality
provides a foundational part of the basis of topology.

We next create the definition of a topological space by looking at familiar math-
ematical objects like the real line and plane with an eye toward finding out what is
fundamental about certain subsets of those spaces. By abstracting features of sets that
are important in the familiar definitions of continuity and convergence, we are led to
the definition of a topological space. The definition of a topological space opens the
door for the explorations that make up the rest of this book.

After defining a mathematical object that is as fundamental as a topological space,
the next steps are to see the consequences of the definition. One thread of exploration
involves creating examples of topological spaces that illustrate the range of possibilities
for topological spaces. Another thread involves creating concepts that capture distinc-
tions among features of spaces. These distinctions create categories of concepts.

One sequence of properties are called separation properties because they capture
ideas concerning what types of subsets can be separated from one another by putting
them in disjoint special sets described by the topology. Another collection of proper-
ties refers back to our concept of cardinality. This collection of properties explores
the implications of having some features of a topological space being countable or
uncountable—words describing cardinality. Another category of properties are the
covering properties such as compactness, which turns out to capture many important
features of spaces and maps.

As we create these properties of topological spaces and investigate their conse-
quences, we find that the exploration becomes increasingly interesting and nuanced
as we proceed. Part of the reason for the ever-increasing interest is that as we become
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aware of more features of topological spaces, we encounter ever-increasing numbers of
potential interactions among those properties. So we find that covering properties to-
gether with countability properties have implications about separation properties, for
example.

One of the consequences of seeking essentials is that the familiar objects and con-
cepts that generated the ideas to begin with later become increasingly fascinating as
we come to appreciate their topological connections. After learning about the topolog-
ical view of convergence and continuity, the definition of those ideas that wemay have
learned in calculus or analysis will become clearer and more meaningful. After learn-
ing about the topological distinctions of connectedness, we see that being connected
has far more nuance and interest than it did before we explored the idea topologically.
The idea of distance takes on a new meaning after we define the topological idea of a
metric. And then we are led to see how the purely topological ideas that we developed
in the earlier chapters are related to the property of having ametric, that is, a concept of
distance in a space. Characterizing those topological spaces that are metrizable is ap-
propriately one of the objectives inmaking the connection between set-theoretic topol-
ogy and the concept of metric that seems so fundamental to ideas such as Euclidean
spaces.

The more we learn, the richer the world of topology becomes. We hope you enjoy
the journey.





Part 1

Point-Set Topology





1
Cardinality: To Infinity

and Beyond

We begin our exploration of set-theoretic topology by starting with perhaps the most
basic mathematical idea—counting—and finding a way to generalize that notion to
apply to infinite sets in a reasonable way. This exploration is fascinating and contains
some of the most counterintuitive ideas in mathematics.

On the one hand, you will love to think through these ideas and relish their sur-
prises. On the other hand, we do not want you to get so engrossed with these cardinal-
ity results that you delay your enjoyment of the topology to come. So, you may wish to
read the definitions and theorems in those sections now, resolve to come back to them
later, and begin proving theorems in the next chapter, where we introduce the idea of
a topology.

1.1 Sets and Functions
The first accomplishment of the late 19th century program to axiomatize mathemat-
ics was to redefine the known fields such as calculus and analysis in terms of sets and
functions between sets. Most of mathematics can now be viewed as the study of some
collection of sets, usually with some structure added to them, along with a correspond-
ing set of functions between those sets. Here we outline the basic concepts about sets
and functions we will need to get started.

Definition. If 𝐴 is a set and 𝑎 is an element of 𝐴, we write 𝑎 ∈ 𝐴.

Definition. Let 𝐴 and 𝐵 be sets. The set 𝐴 is a subset of 𝐵 if and only if every element
of 𝐴 is an element of 𝐵, and we write 𝐴 ⊂ 𝐵. Note that we will always use the notation
⊂ and not ⊆. In particular, 𝐴 is a subset of itself, i.e., 𝐴 ⊂ 𝐴. We write 𝐴 = 𝐵 if the
elements of 𝐴 and 𝐵 are identical.

One common strategy to establish that 𝐴 = 𝐵 is to show that both 𝐴 ⊂ 𝐵 and
𝐵 ⊂ 𝐴.

9
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Figure 1.1. Sets involved in DeMorgan’s Laws for two sets. The top
two figures show that the complement of the union is the intersection
of the complements. The bottom two figures show that the comple-
ment of the intersection is the union of the complements.

Definition. Theunion of𝐴 and 𝐵 is the set𝐴∪𝐵 of elements that are elements in either
(or both) 𝐴 or 𝐵. Thus 𝑥 ∈ 𝐴 ∪ 𝐵 if and only if 𝑥 ∈ 𝐴 or 𝑥 ∈ 𝐵.

Definition. Let𝐴 and 𝐵 be sets. The intersection of𝐴 and 𝐵 is the set𝐴∩𝐵 of elements
that are elements in both 𝐴 and 𝐵. Thus 𝑥 ∈ 𝐴 ∩ 𝐵 if and only if 𝑥 ∈ 𝐴 and 𝑥 ∈ 𝐵.

Definition. Let 𝐴 ⊂ 𝐵. The complement of 𝐴 in 𝐵 is the set of all elements that are in
𝐵 but not in 𝐴, and is denoted 𝐵 − 𝐴. Thus 𝑥 ∈ 𝐵 − 𝐴 if and only if 𝑥 ∈ 𝐵 and 𝑥 ∉ 𝐴.

You may wish to try this exercise to see if the above definitions make sense.

Exercise 1.1. For sets 𝐴1, 𝐴2 ⊂ 𝑋 show that
𝑋 − (𝐴1 ∪ 𝐴2) = (𝑋 − 𝐴1) ∩ (𝑋 − 𝐴2).

We can define the intersection and the union of collections of sets.

Definition. Let 𝐴1, 𝐴2, … , 𝐴𝑁 be a collection of sets. Their union 𝐴1 ∪ 𝐴2 ∪ ⋯ ∪ 𝐴𝑁 ,
also written⋃𝑁

𝑖=1 𝐴𝑖, is the set
{𝑥 ∣ 𝑥 ∈ 𝐴𝑖 for at least one 𝑖 ∈ {1, 2, … , 𝑁}}.

Their intersection 𝐴1 ∩ 𝐴2 ∩⋯ ∩ 𝐴𝑁 , also written⋂
𝑁
𝑖=1 𝐴𝑖, is the set

{𝑥 ∣ 𝑥 ∈ 𝐴𝑖 for every 𝑖 ∈ {1, 2, … , 𝑁}}.

The next theorem, known as DeMorgan’s Laws, generalizes our first exercise and
elegantly describes how unions, intersections, and complements are related.
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Theorem 1.2 (DeMorgan’s Laws). Let 𝑋 be a set, and let {𝐴𝑘}𝑁𝑘=1 be a finite collection
of sets such that 𝐴𝑘 ⊂ 𝑋 for each 𝑘 = 1, 2, … , 𝑁. Then

𝑋 − (
𝑁

⋃
𝑘=1

𝐴𝑘) =
𝑁

⋂
𝑘=1

(𝑋 − 𝐴𝑘)

and

𝑋 − (
𝑁

⋂
𝑘=1

𝐴𝑘) =
𝑁

⋃
𝑘=1

(𝑋 − 𝐴𝑘).

See Figure 1.1. The notion of union and intersection and DeMorgan’s Laws can
be established not just for finite collections of sets, but for infinite collections of sets
as well. After learning the definition of the word infinite, you may wish to return and
prove that DeMorgan’s Laws hold for arbitrary infinite collections of sets.

Next, we introduce the notion of a function. There is a formal definition involving
Cartesian products that we will encounter in a later chapter, but for now the following
definition will suffice.

Definition. A function ormap from a set 𝑋 to a set 𝑌 , written 𝑓 ∶ 𝑋 → 𝑌 , assigns to
each element of 𝑥 in 𝑋 an element 𝑓(𝑥) in 𝑌 . The set 𝑋 is called the domain of 𝑓 and
the set 𝑌 is called the codomain of 𝑓. For a subset 𝐴 ⊂ 𝑋 , the image of 𝐴 under 𝑓 is
the set

𝑓(𝐴) = {𝑓(𝑎) ∈ 𝑌 ∣ 𝑎 ∈ 𝐴}.

If 𝐵 ⊂ 𝑌 , the preimage or inverse image of 𝐵 under 𝑓 is the set

𝑓−1(𝐵) = {𝑥 ∈ 𝑋 ∣ 𝑓(𝑥) ∈ 𝐵}.

When 𝐵 = {𝑦}, a single point, we will often write 𝑓−1(𝑦) instead of 𝑓−1({𝑦}).

Definition. A function 𝑓 ∶ 𝑋 → 𝑌 is called an injection or an injective function or
a one-to-one function if and only if 𝑓(𝑎) = 𝑓(𝑏) implies 𝑎 = 𝑏.

The function 𝑓 is a surjection or a surjective function or an onto function if
and only if for all 𝑦 ∈ 𝑌 there is an 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑦.

A function that is both an injection and a surjection is a bijection or a bijective
function or a one-to-one correspondence. (A one-to-one correspondence should
not be confused with a one-to-one function which may lack surjectivity.)

Try these exercises to test your understanding of these concepts.

Exercise 1.3. For a function 𝑓 ∶ 𝑋 → 𝑌 and sets 𝐴, 𝐵 ⊂ 𝑌 , show that 𝑓−1(𝐴 ∪ 𝐵)
= 𝑓−1(𝐴) ∪ 𝑓−1(𝐵) and 𝑓−1(𝐴 ∩ 𝐵) = 𝑓−1(𝐴) ∩ 𝑓−1(𝐵).

Exercise 1.4. If 𝑓 ∶ 𝑋 → 𝑌 is injective and 𝑦 ∈ 𝑌 , then 𝑓−1(𝑦) contains at most one
point.

Exercise 1.5. If 𝑓 ∶ 𝑋 → 𝑌 is surjective and 𝑦 ∈ 𝑌 , then 𝑓−1(𝑦) contains at least one
point.
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1.2 Cardinality and Countable Sets
A fundamental counting question is: “how many” elements are in a given set? Since
our days as toddlers, we learned to signify the “size” of a non-empty set 𝑆 by associating
a natural number to it using a counting procedure. Counting is a ritual in which we
point to successive elements of 𝑆 and count out loud “1, 2, 3, …” until all the elements
of 𝑆 have been exhausted; then we declare that the size of 𝑆 is the very last number
called.

However, there are sets for which this procedure will never terminate, because
there is no last element. Such sets are called infinite and these present a problem for
counting.

Theway out is to realize that our counting procedure, when itworks, is producing a
one-to-one correspondence between the elements of 𝑆 and the elements of {1, 2, 3, … , 𝑛}
for some natural number 𝑛. This idea forms the basis of how wemight think about the
size of an infinite set 𝑆. We can focus on describing what it means for two sets to have
the same size. It is reasonable to say that two sets 𝑆 and𝑇 have the same size if there is a
way to pair up the elements of𝑆with the elements of𝑇 by a one-to-one correspondence.

Since the word “size” is a bit casual, we define a new word, “cardinality,” which
captures a natural criterion for asserting that two sets have the same size.

Definition. Two sets, 𝐴 and 𝐵, have the same cardinality if and only if there exists a
bijection 𝑓 ∶ 𝐴 → 𝐵. The cardinality of a set 𝐴 is denoted |𝐴|.

Notice that we didn’t really define the cardinality of 𝐴, but nevertheless the nota-
tion |𝐴| is helpful, because now we can write such statements as |𝐴| = |𝐵|. Formally,
|𝐴| could be thought of as the equivalence class of all sets with the same cardinality as
𝐴, but that definition is confusingly abstract, though correct. For example, we could
define the number 5 to be the equivalence class of all sets that can be put into one-to-
one correspondence with the set {1, 2, 3, 4, 5}, but most toddlers would be puzzled by
that introduction to counting.

Fortunately, we do define the cardinality of a finite set as the number of elements
in that set.

Definition. A set 𝑋 isfinite if and only if it is empty or there is a one-to-one correspon-
dence 𝑓 ∶ 𝑋 → {1, 2, … , 𝑛}, where 𝑛 is an element of ℕ, in which case we say 𝑋 has
cardinality 𝑛 and write |𝑋| = 𝑛. A set that is not finite is infinite.

These first theorems will get you accustomed to the definition of cardinality by
asking you to demonstrate some one-to-one correspondences between sets. It is not
necessary towrite down a formula for the correspondence. If you present a pattern that
indicates an unambiguousway to correspond the elements of one set with the elements
of another set, then you have shown the existence of a one-to-one correspondence.

Some of the most familiar infinite sets are the natural numbers, the integers, the
rational numbers, and the real numbers.

Definition. Throughout this book we will use the following notation:
• ℕ denotes the set of natural numbers: {1, 2, 3, …}, i.e., the positive integers.
• ℤ denotes the set of all integers: {… , −2, −1, 0, 1, 2, …}.
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• ℚ denotes the set of rational numbers: {𝑚
𝑛
∈ ℝ |𝑚, 𝑛 ∈ ℤ, 𝑛 ≠ 0}.

• ℝ denotes the set of real numbers, that is, the set of all decimal numbers.

The first theorem asks you to prove that the even positive integers have the same
cardinality as ℕ, the natural numbers.

Theorem 1.6. Let 2ℕ denote the even positive integers {2, 4, 6, …}. Then 2ℕ has the same
cardinality as ℕ, that is, |2ℕ| = |ℕ|.

Next you will prove that the set of all integers—positive, negative, and zero—has
the same cardinality as the natural numbers.

Theorem 1.7. The set ℤ has the same cardinality as ℕ, that is, |ℤ| = |ℕ|.

A basic fact about ℕ is that with the usual < ordering, every non-empty subset of
ℕ has a least element. This fact is useful in proving the following theorem.

Theorem 1.8. Every subset of ℕ is either finite or has the same cardinality as ℕ.

Definition. A set is countable if and only if it is finite or has the same cardinality as ℕ.
A set is uncountable if and only if it is not countable.

So, a countable set is either finite or has the same cardinality as ℕ. Notice that the
elements of a countable set can be viewed as a sequence indexed by natural numbers.
The next theorem shows that the set of natural numbers is in some sense the smallest
infinite set.

Theorem 1.9. Every infinite set has a countably infinite subset.

Any injection from a finite set to itself is automatically a surjection. However, such
is not the case with infinite sets.

Theorem 1.10. A set is infinite if and only if there is an injection from the set into a
proper subset of itself.

The union of finitely many countable sets or even countably many countable sets
is still a countable set.

Theorem 1.11. The union of two countable sets is countable.

Theorem 1.12. The union of countably many countable sets is countable.

There are infinitely many rational numbers between every two integers; neverthe-
less, the set of rational numbers has the same cardinality as the set of natural numbers.

Theorem 1.13. The set ℚ is countable.

There are often more ways than one to prove a theorem. So see if you can find
several different proofs of the next result. After you have found a proof or two, you
might look at the comments after the theorem that are suggestions leading to three
different approaches.
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Theorem 1.14. The set of all finite subsets of a countable set is countable.

Effective Thinking Principle. Seek Different Views of the Same Result. Un-
derstanding a theorem often resides in the proof rather than the statement. So
alternative proofs provide additional insight—look for them.

Here are some possible approaches to creating several different proofs of the pre-
ceding theorem:

(1) Stratify the set of all subsets by size.

(2) Suppose your countable set is the set of primes.

(3) Suppose your countable set is the natural numbers. Concatenating the elements of
each finite set does not quite work. Can you make it work by somehow changing
the commas into digits?

The following exercisewould be an example of a practical application of these ideas
if the ocean were an infinitely large plane and we had an infinite amount of time to
work. Doing special cases may help.

Effective Thinking Principle. Do Special Cases. By doing special cases,
particularly simple cases, you teach yourself how to do harder problems.

Exercise 1.15. Suppose a submarine is moving in the plane along a straight line at a
constant speed such that at each hour, the submarine is at a lattice point, that is, a point
whose two coordinates are both integers. Suppose at each hour you can explode one depth
charge at a lattice point that will hit the submarine if it is there. You do not know the sub-
marine’s direction, speed, or its current position. Prove that you can explode one depth
charge each hour in such a way that you will be guaranteed to eventually hit the subma-
rine.

1.3 Uncountable Sets and Power Sets
So far, all the sets we have encountered have been countable: the integers, the rationals,
the countable union of countable sets, and the set of finite subsets of a countable set.
Wemight think that every infinite set has the same cardinality as any other infinite set.
After all, once we have gotten to infinity, that might well be as far as we could hope to
go. So now we begin the process of looking for sets that may have a larger cardinality
than the set of natural numbers. The set of real numbers, that is, the set of all decimal
numbers, is a natural set to investigate.

If there were a one-to-one correspondence between the natural numbers and the
real numbers, then it would be possible to write the numbers 1, 2, 3, 4, 5, … in a column
and next to each of those natural numbers we could write a decimal number in such
a way that every decimal number would eventually appear on the list. So here is a



1.3. Uncountable Sets and Power Sets 15

challenge for you to think about. Suppose we handed you a long piece of paper that
had 1, 2, 3, 4, 5, … in one columnwith a decimal number next to each of those numbers.
Can you devise a process by which you could write down a decimal number that is
provably not anywhere on this infinitely long list? In other words, can you describe
a procedure to write down a single decimal number that is not equal to the decimal
number next to 1, that is not equal to the decimal number next to 2, that is not equal
to the decimal number next to 3, and so on forever? If so, you are well on your way to
proving one of the most famous results in mathematics: Cantor’s Theorem.

Theorem 1.16 (Cantor’s Theorem). The cardinality of the set of natural numbers is not
the same as the cardinality of the set of real numbers. That is, the set of real numbers is
uncountable.

You have now proved conclusively that infinite sets come in more than one size!!
What an amazing and counterintuitive insight.

Cantor’s Theorem has opened the door to the idea that infinite sets come in differ-
ent sizes, so we can start exploring ways to create infinite sets with different cardinali-
ties. Power sets play a central role in this exploration.

Definition. For any set 𝐴, the set of all subsets of 𝐴 is called the power set of 𝐴 and is
denoted 2𝐴.

Recall that the empty set, denoted ∅, is a subset of any set and hence is always an
element of a power set.

Exercise 1.17. Suppose 𝐴 = {𝑎, 𝑏, 𝑐}. Explicitly write out 2𝐴, the power set of 𝐴.

The following theorem justifies the 2𝐴 notation for the power set of 𝐴.

Theorem 1.18. If a set 𝐴 is finite, then the power set of 𝐴 has cardinality 2|𝐴|, that is,
|2𝐴| = 2|𝐴|.

The following easy theorem shows that every set has the same cardinality as a
subset of its power set. Later we will see that the power set of any set has a cardinality
that is strictly greater than the cardinality of the set itself. At this point we have not
yet even defined the idea of cardinalities being greater or less than one another, but we
will do so soon.

Theorem 1.19. For any set 𝐴, there is an injection from 𝐴 into 2𝐴.

One way to think about the power set of a set is to think about a set of functions
into the two-point set {0, 1}. An example of a function from the set 𝐴 = {𝑎, 𝑏, 𝑐} to the
set {0, 1} is the function 𝑓 defined by: 𝑓(𝑎) = 1, 𝑓(𝑏) = 0, and 𝑓(𝑐) = 1.

Theorem 1.20. For a set 𝐴, let 𝑃 be the set of all functions from 𝐴 to the two-point set
{0, 1}. Then |𝑃| = |2𝐴|.

In the case of the natural numbers ℕ, we can make each subset of ℕ correspond in
a natural way with a sequence of 0’s and 1’s.
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Theorem1.21. There is a one-to-one correspondence between 2ℕ and the set of all infinite
sequences of 0’s and 1’s.

Thinking of the power set in these ways may be helpful in proving the following
theorem, whose proof is similar to that of Cantor’s Theorem above.

Theorem 1.22 (Cantor’s Power Set Theorem). There is no surjection from a set 𝐴 onto
2𝐴. Thus for any set 𝐴, the cardinality of 𝐴 is not the same as the cardinality of its power
set. In other words, |𝐴| ≠ |2𝐴|.

1.4 The Schroeder-Bernstein Theorem
To show that two sets 𝐴 and 𝐵 have the same cardinality, the fundamental challenge
is to produce a bijection from one set to the other. In many cases, it may be easier
to produce two injections: one from set 𝐴 to 𝐵 and one from set 𝐵 to 𝐴. These two
injections give us the sense that 𝐴 is smaller than 𝐵 and 𝐵 is smaller than 𝐴, so morally
speaking, they should be the same size. The Schroeder-Bernstein Theorem states that
this intuition is justified—wewill be able to use these injections to construct a bijection
between 𝐴 and 𝐵.

The next exercises give you practice in using two injections to produce a single
bijection. You will be developing the insights to allow you to prove the Schroeder-
Bernstein Theorem.

Exercise 1.23. Consider 𝐴 = [0, 1] and 𝐵 = [0, 1) and injections 𝑓(𝑥) = 𝑥/3 from 𝐴 to
𝐵 and 𝑔(𝑥) = 𝑥 from 𝐵 to𝐴. Construct a bijection ℎ from𝐴 to 𝐵 such that on some points
of 𝐴, ℎ(𝑥) = 𝑓(𝑥), and for the other points of 𝐴, ℎ(𝑥) = 𝑔−1(𝑥).

You may find it helpful to draw 𝐴 and 𝐵 as parallel vertical lines so that you can
track where various sets go under 𝑓 and 𝑔−1. Can you identify on what subsets of 𝐴
you are required to use 𝑓 and on what subsets you are required to use 𝑔−1?

Exercise 1.24. Consider 𝐴 = [0, 1] and 𝐵 = [0, 1) and injections 𝑓(𝑥) = 𝑥/3 from 𝐴
to 𝐵 and 𝑔(𝑥) = 𝑥/2 from 𝐵 to 𝐴. Construct a bijection ℎ from 𝐴 to 𝐵 such that on some
points of 𝐴, ℎ(𝑥) = 𝑓(𝑥), and for the other points of 𝐴, ℎ(𝑥) = 𝑔−1(𝑥).

As you work to prove the Schroeder-Bernstein Theorem below, you may find it
helpful to draw the sets 𝐴 and 𝐵 in the hypothesis as parallel vertical lines and picture
the functions 𝑓 and 𝑔 to be like the functions 𝑓 and 𝑔 in the preceding exercise so that
you can keep track of and label where various sets go under 𝑓 and 𝑔−1. Try to identify
and label the subsets of𝐴 on which you are required to use 𝑓 and identify and label the
subsets of 𝐴 on which you are required to use 𝑔−1.

Theorem 1.25 (Schroeder-Bernstein). If𝐴 and 𝐵 are sets such that there exist injections
𝑓 from 𝐴 into 𝐵 and 𝑔 from 𝐵 into 𝐴, then |𝐴| = |𝐵|.

The Schroeder-Bernstein Theorem helps us to order cardinalities.

Definition. The cardinality of 𝐴 is less than or equal to the cardinality of 𝐵, written
|𝐴| ≤ |𝐵|, if and only if there is an injective function from 𝐴 into 𝐵. And the cardinality
of 𝐴 is less than the cardinality of 𝐵, written |𝐴| < |𝐵|, if and only if |𝐴| ≤ |𝐵|, but 𝐵 is
not less than or equal to 𝐴, that is, there is no injective function from 𝐵 into 𝐴.
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Figure 1.2. Examples that may help you visualize a proof of the
Schroeder-Bernstein Theorem.

The Schroeder-Bernstein Theorem justifies the notation “≤,” since it implies that
if |𝐴| ≤ |𝐵| and |𝐵| ≤ |𝐴|, then |𝐴| = |𝐵|, as we would expect.

We could reformulate the Schroeder-Bernstein Theorem using onto functions.

Theorem 1.26 (Schroeder-Bernstein). If 𝐴 and 𝐵 are sets such that there exist a surjec-
tive function 𝑓 ∶ 𝐴 → 𝐵 and a surjective function 𝑔 ∶ 𝐵 → 𝐴, then |𝐴| = |𝐵|.

The principal remaining issue about ordering cardinalities is the possibility that
some pair of sets may not be comparable. That is, could there be two sets 𝐴 and 𝐵 such
that no injection from 𝐴 to 𝐵 exists and no injection from 𝐵 to 𝐴 exists? It turns out
that the Well-Ordering Theorem, which we will discuss in the next section, implies
that every pair of sets is comparable, and therefore that cardinalities are ordered.

For now, let’s return to some other questions about cardinality of sets that we can
settle using the Schroeder-Bernstein Theorem. This next theorem tells us that intervals
have the same cardinality as the whole real line.

Theorem 1.27. |ℝ| = |(0, 1)| = |[0, 1]|.

Going up in dimension does not raise the cardinality; the unit square and the unit
interval have the same cardinality.

Theorem1.28. Let [0, 1]×[0, 1]denote theCartesian product of two closed unit intervals.
Then

|[0, 1] × [0, 1]| = |[0, 1]|.

Cantor’s Power Set Theorem (Theorem 1.22) tells us that there are sets whose car-
dinality is larger than the cardinality of ℝ. A specific set whose cardinality is greater
than that of the reals is the set of all functions from the reals to the reals. The following
theorem states that the set of all real-valued functions has the same cardinality as the
power set of ℝ.
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Theorem 1.29. The set of all functions 𝑓 ∶ ℝ → ℝ has the same cardinality as 2ℝ.

By the way, if we restrict our attention to the smaller class of continuous functions
from ℝ to ℝ, then this set has the same cardinality as ℝ (Theorem 7.8). But it would
be better to work on that later after you have proved some theorems about continuous
functions.

Cantor’s Theorem (Theorem 1.16) showed us that the cardinality of the reals is
greater than the cardinality of the natural numbers. The next theorem states that the
cardinality of the reals is the same as the cardinality of the power set of the natural
numbers. Therefore, we see that Cantor’s Theorem about the uncountability of ℝ is
actually a special case of Cantor’s Power Set Theorem (Theorem 1.22).

Theorem 1.30. |ℝ| = |2ℕ|.

Cantor’s Power Set Theorem implies that there are infinitely many different sizes
of infinity.

Theorem 1.31. There are infinitely many different infinite cardinalities.

We end this sectionwith some truly bizarre issues about cardinality. We know that
the cardinality of ℝ is uncountable. But this fact leaves open the question of whether
the cardinality of ℝ is the next bigger cardinality above the cardinality of ℕ. Perhaps
there is some uncountable set whose cardinality is strictly less than the cardinality of
ℝ. Cantor believed that there was no such intermediate set and tried in vain to prove
it; this assertion came be known as the Continuum Hypothesis.

ContinuumHypothesis. There is no uncountable set whose cardinality is greater than
the cardinality of ℕ yet less than the cardinality of ℝ.

But in 1940, Kurt Gödel proved that the ContinuumHypothesis is consistent with
the standard axioms of set theory (the Zermelo-Fraenkel axioms)—that is, no contra-
diction would arise if the Continuum Hypothesis were added as a new axiom. And in
the 1960s, Paul Cohen proved that the negation of the Continuum Hypothesis is also
consistent with the Zermelo-Fraenkel axioms. Together, this means the Continuum
Hypothesis is independent of the Zermelo-Fraenkel Axioms of Set Theory—it provably
cannot be proved or disproved with the usual axioms of set theory.

As you see, the study of infinite cardinalities presents us with some truly surreal
surprises.

1.5 The Axiom of Choice
Dealing with infinite sets presents us with some truly weird phenomena. One of the
weirdest is called the Banach-Tarski Paradox. It asserts that it is possible to take a solid
unit ball, divide it into a finite number of subsets, and then rigidly move those subsets
to create two solid unit balls. Of course, such a thing sounds ridiculous, and we do not
recommend that you try it at home. The subsets are not at all like pieces of pie. They
are certainly not measurable sets. This apparent impossibility becomes even stranger
when we learn that it is equivalent to a rather bland sounding statement, namely, if



1.5. The Axiom of Choice 19

we have a set of non-empty sets, then we can create a set that contains an element
from each of those sets. That assertion is called the Axiom of Choice. Who would have
guessed that such an innocuous statement could imply that you can take a single solid
ball, break it into a few pieces, and reassemble them to create two solid balls of the
same size?

As we learn more about the Axiom of Choice and the Banach-Tarski Paradox, we
come to feel that the Banach-Tarski Paradox is not really as surprising as it first appears.
Like the existence of different sizes of infinity, once we understand the arguments, a
new normalcy occurs. We will not explore the Banach-Tarski Paradox here, because
that would lead us too far astray. Instead, this section will introduce you to three im-
portant and equivalent statements in set theory: Zorn’s Lemma, the Axiom of Choice,
and the Well-Ordering Theorem. They are accepted as fundamental axioms and are
used freely in most standard mathematics. We will use them in this book.

If you have only worked with finite sets, these statements will not seem that in-
teresting to you. Their power comes from applying the statements to infinite sets. In
this section we give the relevant definitions and then state Zorn’s Lemma, the Axiom
of Choice, and the Well-Ordering Theorem. You may just wish to familiarize yourself
with these statements, and not prove the theorems in this section right now. Feel free
to use these statements as needed in the rest of the book.

Definition. Aset𝑋 ispartially ordered by the relation≤ if and only if, for any elements
𝑥, 𝑦, and 𝑧 in 𝑋 ,
(1) 𝑥 ≤ 𝑥,
(2) if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧, then 𝑥 ≤ 𝑧,
(3) if 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥, then 𝑥 = 𝑦.
Note that two elements in a partially ordered set may not be comparable. A partially
ordered set is sometimes called a poset. We write 𝑥 < 𝑦 to signify that 𝑥 ≤ 𝑦 but 𝑥 ≠ 𝑦.

Example. For any set 𝑋 , any collection of subsets of 𝑋 is partially ordered under the
relation of set inclusion ⊂.

Definition. Let 𝑋 be a poset with relation ≤. An element 𝑎 in 𝑋 is a least element if
and only if for any 𝑥 ∈ 𝑋 with 𝑥 ≤ 𝑎, it must be the case that 𝑥 = 𝑎. An element 𝑚
in 𝑋 is amaximal element if and only if for any 𝑥 in 𝑋 with 𝑚 ≤ 𝑥, it must be that
𝑚 = 𝑥.

Exercise 1.32. Given a set 𝑋 , consider the poset 𝑃 of all subsets of 𝑋 partially ordered by
inclusion. Show that 𝑋 is the unique maximal element of 𝑃, and show that the empty set
is the unique least element of 𝑃.

Exercise 1.33. Construct an example of a poset with several maximal elements and sev-
eral least elements.

Definition. A poset is totally ordered if and only if it is partially ordered and every
two elements are comparable (that is, for all 𝑥 and 𝑦, either 𝑥 ≤ 𝑦 or 𝑦 ≤ 𝑥).

Example. The real line ℝ with the ≤ relation is totally ordered.
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Definition. Aset iswell-ordered if and only if it is totally ordered and every non-empty
subset has a least element.

Example. The set of natural numbers ℕ is well-ordered.

Exercise 1.34. Show that ℝ with the ≤ relation is totally ordered but not well-ordered.

The next three statements—Zorn’s Lemma, the Axiom of Choice, and the Well-
Ordering Theorem—are equivalent to each other. Each is regarded as an axiom: a
statement that seems so obvious we simply accept it as true. These statements are
generally accepted and used freely in most branches of mathematics. They are known
to be independent of the usual (Zermelo-Fraenkel) axioms of set theory, so it would be
possible to investigate strange collections of axioms for set theory that do not include
them, but we will leave such exploration for interested set theorists.

Definition. Let 𝑃 be a poset with relation ≤, and let 𝐴 be a subset of 𝑃. An element 𝑏
in 𝑃 is an upper bound of 𝐴 if and only if for every 𝑎 ∈ 𝐴, 𝑎 ≤ 𝑏.

Zorn’s Lemma. Let𝑋 be a partially ordered set in which each totally ordered subset has
an upper bound in 𝑋 . Then 𝑋 has a maximal element.

The Axiom of Choice states that we can create a new set from a collection of sets
in a certain way. We will denote an arbitrary collection of sets like this: {𝐴𝛼}𝛼∈𝜆. This
notation is a fancy way of expressing the idea that a collection can be indexed. For
instance, the set {𝐴1, 𝐴2, 𝐴3} has three elements, each of which is a set, so we could
also write it as {𝐴𝑖}𝑖∈{1,2,3}. Now, an arbitrary collection might be a very large infinite
set, possibly uncountable. So we think of 𝜆 as a potentially very large index set and 𝛼
as an index. In deference to mathematical tradition, we avoid using 𝑖 as the index if 𝜆
could be uncountable.

Now we can state the Axiom of Choice.

Axiom of Choice. Let {𝐴𝛼}𝛼∈𝜆 be a set of non-empty sets. Then there is a function
𝑓 ∶ 𝜆 → ⋃𝛼∈𝜆 𝐴𝛼 such that for each 𝛼 in 𝜆, 𝑓(𝛼) is an element of 𝐴𝛼.

This function “chooses” one element from each set. Said another way, the Ax-
iom of Choice allows one to construct a set that contains one element from each of
the sets in a given set of non-empty sets. This Axiom of Choice seems like an obvi-
ous way to construct a new set, but, as we pointed out it does lead to some surprising
consequences, such as the Banach-Tarski Paradox.

Well-Ordering Theorem. Every set can be well-ordered. That is, every set can be put
in one-to-one correspondence with a well-ordered set.

To see how surprising this is, try constructing a well-ordering of an uncountable
set like ℝ. You will have a hard time. And yet this principle says that we can assume
there is a well-ordering, even if we can’t find one! You’ll be forgiven if this statement
doesn’t seem quite as obvious as the Axiom of Choice and Zorn’s Lemma. But since it
is equivalent to the others, it must be equally compelling. The proof of the equivalence
of these three statements is challenging; as a start you might want to try to prove one
or more of the six directed implications.
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Theorem 1.35. Zorn’s Lemma, the Axiom of Choice, and the Well-Ordering Theorem
are equivalent.

In any case, let’s just feel free to use any one of these statements whenever they are
useful.

1.6 Ordinal Numbers
Ordinal numbers are a fascinating topic, because they answer the question “is it pos-
sible to count an uncountable set one element at a time?” The ordinal numbers give
us a rich collection of interesting examples that we can use later. However, this whole
section can be skipped on first reading.

Effective Thinking Principle. Understand Simple Things Deeply. Under-
standing basic ideas with great depth often leads to great insights.

One of the first things we learn to do as toddlers is to count. But what is counting?
Let us try to answer this basic question and see where it leads us.

Suppose a toddler has carefully lined up five toys. There are really two features
of counting them. One is to say, “one, two, three, four, five.” The other related way is
to say, “first, second, third, fourth, fifth.” The first method is associated with deciding
how many toys there are—their cardinality. The second method records the order in
which the toys fall. That concept of ordered counting is what ordinal numbers capture.

In common English, an ordinal number refers to the numerical position of an ob-
ject that is in an ordered list: first, second, third, and so on. TheArabic numerals denote
the ordinal numbers with which we are most familiar: 0, 1, 2, 3, … (incidentally, with
ordinal numbers it is customary to start counting at 0). Continuing this list through all
the finite natural numbers gives us an infinite set of ordinal numbers with the same
order type as the natural numbers. The concept of ordinal numbers extends this list
by creating well-ordered sets of “numbers” that start with the finite numbers, but then
just keep going.

We can get a clue about how to accomplish this extension by thinking about what
must be true about a set of ordinal numbers based on properties of well-ordered sets.
For instance, since we are creating a set of ordinal numbers that will be well-ordered,
each ordinal number 𝛼 must have an immediate next ordinal. Here’s why. Suppose
there is any ordinal larger than 𝛼 in our set. Then consider the set of all ordinals larger
than𝛼. The property ofwell-ordering tells us that that setmust have a smallest element,
which must be the immediate successor of 𝛼. It is denoted 𝛼 + 1. Notice that this
reasoning applies to sets of ordinals as well as to individual ordinals. For example,
consider the set of all the finite ordinals. If there are any ordinals larger than all the
finite ordinals, we can think of all the ordinals larger than all those finite ordinals. Then
that collection of ordinals must have a least element—which is traditionally denoted
𝜔0 and read as “omega nought.”

We have been a bit vague so far, but this kind of reasoning leads us to a clever
method for constructing a list of ordinal numbers that goes on indefinitely, namely, we
think of each ordinal number as literally being the set of its predecessors.
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We start with the empty set, which we identify with the ordinal 0, and work our
way up. This strategy gives us a whole new way to look at the finite ordinals, and it has
the advantage that this method can be extended beyond the finite ordinals. So here are
the first few ordinals:

• 0 = ∅

• 1 = {∅}

• 2 = {∅, {∅}}

• 3 = {∅, {∅}, {∅, {∅}}}

• ⋯
Notice that the number of elements in each of the sets above is recorded by its

ordinary name. For example, the ordinal number {∅, {∅}, {∅, {∅}}} is a set with three
elements. We can continue this process of constructing the next ordinal by declaring it
to be the set of its predecessors to create an ordinal number for every natural number.

But there are more ordinal numbers “beyond” these finite ordinals, and we can
use the exact same method to create them! For we can now take the set of all the
finite ordinals {0, 1, 2, 3, …} and declare that set to be the next ordinal, thus creating the
smallest ordinal greater than any of the finite ordinals. As we mentioned earlier, we
call that first infinite ordinal 𝜔0. It is the first infinite ordinal number, i.e., the first
ordinal number that is an infinite set. Notice that 𝜔0 is also the union of all the finite
ordinals. Indeed, it is also the union of any infinite collection of finite ordinals.

Whenever we have created an ordinal 𝛼 (which is a set), we have a mechanism
for creating its successor, denoted 𝛼 + 1 or 𝑆(𝛼) (𝑆 for successor), namely, the set
containing all the elements of 𝛼 together with 𝛼 itself. In other words,

𝛼 + 1 = 𝑆(𝛼) = 𝛼 ∪ {𝛼}.
So the set 𝛼 is a subset of 𝛼 + 1 and 𝛼 is also an element of 𝛼 + 1.

Notice that we can create an ordinal that follows any set of ordinals similarly to
how we constructed 𝜔0 as the union of all the finite ordinals. Given a set of ordinals
{𝛼𝛽}𝛽∈𝜆 with no largest ordinal, the union⋃𝛽∈𝜆 𝛼𝛽 is the smallest ordinal that is larger
than all of the 𝛼𝛽’s.

So let’s construct somemore ordinals. The successor of𝜔0 is𝜔0+1; its successor is
𝜔0+2; its successor is𝜔0+3. Note that all of these ordered sets have the same cardinal-
ity, even though they are different order types! This is the difference between ordinal
numbers and the so-called cardinal numbers that are used to describe the cardinality
of a set. There are the finite cardinalities which all correspond to finite ordinals, and
the smallest infinite cardinality is often denoted ℵ0, called “aleph nought.”

If we continue constructing ordinal successors to 𝜔0+3, we obtain ordinals 𝜔0+𝑛
for each 𝑛 ∈ ℕ. The set of all such ordinals is the next ordinal, and it is called 2𝜔0. We
can continue this process to create 2𝜔0 + 1, 2𝜔0 + 2, … , 3𝜔0, 3𝜔0 + 1, … , 𝑘𝜔0, …, and so
on. The ordinal numbers named in the previous sentence are sets, each one being the
set of its predecessors. Notice that the process outlined in the previous sentence is a
countable process creating a countable number of countable sets.

Of course, there is no necessity to ever stop this process of creating more ordinals.
Taking the union of all the ordinals that we created above is yet another countable
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ordinal, which we may call 𝜔20. But there is no reason to ever stop, because we can
continue: 𝜔20 + 1, 𝜔20 + 2, … , 𝜔30, … , 𝜔

𝜔0
0 , … , etc., and we can imagine continuing this

process indefinitely. The next conceptual leap is to imagine thatwe have continued this
process so long that we have created all the countable ordinals. We then can take the
union of all those countable ordinals to create the first uncountable ordinal number,
called 𝜔1 (whose cardinality is denoted ℵ1, the first cardinality larger than ℵ0). The
ordinal 𝜔1 is simply the set of all the countable ordinals. Every ordinal preceding it
(hence in it) is countable. Then the successor of 𝜔1 is 𝜔1 + 1; its successor is 𝜔1 + 2,
and these have the same cardinality as 𝜔1. Continuing for a while, eventually we will
reach an ordinal whose cardinality is larger—we call that cardinal ℵ2.

Proceeding in this fashion, we can continue creating ordinals indefinitely—
creating ordinals of ever-increasing cardinality. An interesting fact about all these car-
dinalities is that they are well-ordered too! So if we continue denoting new cardinali-
ties by cardinal numbers ℵ𝛼, the index 𝛼 is an ordinal number! Cardinal numbers are
a fascinating topic in their own right, though we won’t say more about them here.

Conceptually, we can think about all the ordinals; however, the collection of all
ordinals is so vast that it is not even a set. The reason is that if it were a set, then the
set of all its subsets would have a higher cardinality than it, contradicting the idea that
there are ordinals whose cardinality is equal to the cardinality of any given set.

Suppose we have created ordinals in this way. Then one ordinal 𝛼 is less than
another ordinal 𝛽 if and only if 𝛼 is an element of 𝛽 and, also, 𝛼 is a subset of 𝛽. For
example, notice above that the set that is defined as 2 is both an element of 3 and is
a subset of 3. So the ordinal numbers are ordered by containment; that is, given two
ordinals (which, remember, are sets), one of those sets is contained in the other set.
Also, ordinals are ordered by membership; that is, given two ordinals, one of those
ordinals is a set that is an element of the other ordinal (which is a set of sets).

So we are ready now to give a formal definition of an ordinal number. This defini-
tion is not illuminating, because it is so abstract, but it captures exactly the features of
the sets that we have called ordinals and it pins down what features we want to say are
essential to saying that a set is an ordinal number.

Effective Thinking Principle. Definitions Should Capture Essentials. After
we have isolated essential features of a concept, pin them down with a defini-
tion that contains those essentials and as little else as possible.

Definition. An ordinal number is a set 𝛼 such that
(1) every element of 𝛼 is also a subset of 𝛼,
(2) the elements of 𝛼 are strictly ordered by membership, that is, an ordinal 𝛽 ∈ 𝛼 is

less than an ordinal 𝛾 ∈ 𝛼 if and only if 𝛽 is a member of 𝛾.

Effective Thinking Principle. Explore Consequences of Definitions. After
making a definition, identify immediate implications of the definition in order
to understand its meaning.
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Theorem 1.36. (1) If 𝛼 is an ordinal number, then any element of 𝛼 is also an ordinal.

(2) 𝑆(𝛼) ∶= 𝛼 ∪ {𝛼}, the successor of 𝛼, is also an ordinal.

(3) The union of any set of ordinals is an ordinal.

(4) The ordinal numbers are naturally ordered by inclusion.

(5) The intersection of any set of ordinals is an ordinal contained in that set of ordinals
and is the least element in the set. Hence, any set of ordinal numbers has a least
element. Hence, ordinals are well-ordered.

To get used to dealing with ordinal numbers, let’s make some observations about
the first uncountable ordinal number, 𝜔1, and then prove some consequences.
(1) Every ordinal less than 𝜔1 is a countable set.

(2) Every non-empty set of ordinals less than 𝜔1 has a least element, since ordinals are
well-ordered.

(3) There are uncountably many countable ordinals less than 𝜔1.
These properties are all you will need to prove the following theorems.

Theorem 1.37. Let {𝛼𝑖}𝑖∈𝜔0 be a countable set of countable ordinal numbers, that is,
each 𝛼𝑖 < 𝜔1. Then there is an ordinal 𝛽 such that 𝛼𝑖 < 𝛽 for each 𝑖 and 𝛽 < 𝜔1.

Let’s give a name to ordinals that do not have immediate predecessors—ordinals
such as 𝜔0 and 𝜔1 .

Definition. A limit ordinal is an ordinal that is not a successor of another ordinal.

Theorem 1.38. For any countably infinite set of countable ordinals {𝛼𝑖}𝑖∈𝜔0 , there is a
countable limit ordinal 𝛾 such that for every ordinal 𝛽 < 𝛾, there exists an 𝛼𝑖 such that
𝛽 < 𝛼𝑖 < 𝛾.

Theorem1.39. Let𝐴 and𝐵 be unbounded sets of ordinals in𝜔1, that is, for every ordinal
𝛿 ∈ 𝜔1, there is an ordinal 𝛼 ∈ 𝐴 such that 𝛿 < 𝛼 and an ordinal 𝛽 ∈ 𝐵 such that 𝛿 < 𝛽.
Then there exists a limit ordinal 𝛾 in 𝜔1 such that 𝛾 is a limit of ordinals from 𝐴 and 𝛾 is
also a limit of ordinals from 𝐵.

An amazing fact (that can be shown by something called transfinite induction,
equivalent to the Axiom of Choice) is that every well-ordered set is order-isomorphic
to exactly one ordinal number.

1.7 To Infinity and Beyond
For thousands of years, people thought the study of infinity was a topic for poets or
mystics. Isolating the essence of what it means for two collections to have the same
number of things, namely, the idea of a bijection, opened a whole world of intrigue for
us to explore and enjoy. That basic idea about cardinality allowed us to reason about
infinity and to prove wonderful theorems that make the study of infinity nuanced and
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full of richness and variety. We started with several theorems about countably infinite
sets—the smallest size of infinity. We then were able to see that infinity itself comes
in different sizes. That amazing discovery opened whole new worlds to explore and
questions to consider.

You may or may not have worked through many theorems in this chapter on car-
dinality. We suggested you might choose to just get a flavor of it without delving too
deeply into it so as not to delay your coming introduction to topology. In any case, it
is now time for us to leave the intriguing issues of cardinalities and axioms about sets,
and introduce the idea of a topological space, an idea that is built on the foundation of
set theory.





2
Topological Spaces:

Fundamentals

The formal study of topology arose in the late 19th and early 20th century out of a desire
to free the ideas of analysis from the concept of distance, and to ground these ideas in
the study of sets. By this time, many ideas of topology had been around a while; Euler
had studied the Könisgberg bridge problem in 1736, the word topologie had been in
use by Listing by 1847, Riemann began studying the surfaces that bear his name in
the 1850s, and the Möbius band was introduced in the 1860s. In the 1870s the idea of
closed sets and open sets emerged in work by Cantor, and the idea of a neighborhood
in work by Weierstrass. Poincaré formalized the idea of connectivity and introduced
the idea of homology in the 1890s. By the early 1900s, the idea of a metric space was
introduced by Fréchet.

One of the basic goals of mathematics in the early 1900s was to attempt to put all
of mathematics on an axiomatic foundation, following the format of Euclidean geom-
etry. This impulse led mathematicians to seek essential features that reside at the root
of spaces like the real numbers and other Euclidean spaces and at the core of ideas
such as continuity. Sets seemed about as basic as we can get, so the goal was to try to
think about how ideas such as continuity could be described using sets rather than the
concept of distance.

2.1 Rubber Sheet Geometry and Special Sets

Effective Thinking Principle. Imagine Alternative Worlds. One way to
create concepts is to imagine our world but with some feature altered, and
then follow the consequences.

When we think about replacing the idea of distances by something based on sets,
we might want to explore the consequences of living in a world in which objects can

27
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be expanded or contracted. Expansion and contraction is just one way to manipulate
objects, so we might go further and explore the consequences of imagining a world
in which objects can be stretched and bent at will. One informal way to think of the
subject of topology is as the study of properties of objects that do not change when we
continuously stretch them or distort them. If an object suddenly became elastic, what
properties would still remain? For instance, an object that was connected would still
remain connected if stretching were allowed, so connectedness is a “topological” prop-
erty. How can we build a mathematical theory that is equipped to look at deformable
objects?

One basic challenge is to generalize the idea of what it means for points in a space
to be “close” to each other. At first, it may seem that the idea of closeness is a geomet-
ric feature that could not be meaningful in a deformable object, since two points that
seem close together could be made far apart by stretching the object. Distances are not
preserved by deformations.

On the other hand, if you imagine an elastic map of Texas, it is qualitatively appar-
ent that the border of Texas would remain close to Texas even if we greatly distorted the
map. Upon some reflection we can clarify what we mean by this observation, namely,
any “region” around a border point contains points of Texas. That feature would re-
main true no matter how much we stretched the map. The idea of a border point,
which we shall see presages the idea of a “limit point,” does not need to use a specific
distance. Instead, it suggests that we specify what sets constitute “regions” around a
border point.

Pinning down these intuitive ideas leads to the formal definition of a topological
space as well as generalizations of the notions of convergence and continuity that we
first encountered in calculus.

Effective Thinking Principle. Push Analogies. When using an analogy
to create an idea, see whether the analogy can be refined by looking at more
specific features.

The concept of a point on the border of Texas suggests that we consider the notion
of convergence of a sequence. In calculus, we learn that a sequence of numbers con-
verges to number 𝑥 if, informally speaking, for any target interval you name around 𝑥,
the terms of the sequence eventually get close to 𝑥 (within the target interval) and stay
there. Here again, notice how the idea of closeness is measured not by a single region
but by a collection of regions (in this case, intervals).

In calculus, the idea of a continuous function is also determined by a collection
of regions. Intuitively speaking, a continuous function 𝑓 maps points that are close
to 𝑥 in the domain to points that are close to 𝑓(𝑥) in the codomain. A more formal
definition says that for any target interval you name around 𝑓(𝑥) there is an interval
around 𝑥 that completely maps inside the target interval around 𝑓(𝑥).

Some subsets of the reals are not pertinent to our discussions about convergence
and continuity. For example, the set of rational numbers is not a set that comes up
when we define convergence or continuity. So some subsets of the reals arise when we
develop the ideas of convergence and continuity while some subsets are notmentioned
even implicitly in those definitions.
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Let’s try a thought experiment. Can we describe convergence and continuity with-
out using distances? In general terms, a continuous function is one that maps points
that are close to each other in the domain to points that are close to each other in the
codomain. The formal definition of continuity of a function 𝑓 at a point 𝑥 says that for
any prespecified distance around 𝑓(𝑥) in the codomain, there is a distance in the do-
main such that all points whose distance from 𝑥 is less than that distance get mapped
to within the prespecified distance from 𝑓(𝑥) in the codomain. Let’s rephrase that def-
inition without using the idea of distance. We could say: a function 𝑓 is continuous
at 𝑥 if given any special set around 𝑓(𝑥) in the codomain, there is a special set in the
domain around 𝑥 such that all the points in the domain’s special set get mapped into
the codomain’s special set.

We could phrase the concept of convergence in that same general manner. We
could say that an infinite list of points converges to a limit point should mean that for
any special set around the limit point, all but a finite number of points in our list of
points lie in that special set.

Of course, if all we meant by “special set” was 𝜖-neighborhood, we would not have
accomplished our goal of generalizing the ideas of convergence or continuity. We
would simply have rephrased them. So now we break free of the concept of distance
and think far more abstractly. The concept of convergence basically is saying that in
some set 𝑋 we have designated a special collection of subsets that we will use to define
the meaning of convergence. A sequence of points converges to a limit point if for any
one of our special sets around the limit point, all but finitely many of our set of points
lie inside that special set.

Thinking about continuity in the abstract, we have two sets 𝑋 and 𝑌 , the domain
𝑋 and the codomain 𝑌 . There are some specially designated subsets of 𝑋 and specially
designated subsets of 𝑌 . Then we want to say that a function 𝑓 ∶ 𝑋 → 𝑌 is continuous
if for any point 𝑥 ∈ 𝑋 and any specially designated subset𝑉 of 𝑌 containing 𝑓(𝑥), there
is a specially designated subset 𝑈 of 𝑋 containing 𝑥 such that 𝑓(𝑈) ⊂ 𝑉 .

These specially designated subsets are not just 𝜖-neighborhoods, but they are gen-
eralizations of that idea. So this analysis has turned our attention toward the idea of
specifying certain subsets of our space as being distinguished as sets in which we have
special interest with respect to considerations of limit points, convergence, and conti-
nuity.

So far we have described a format for the phraseology of concepts like convergence
and continuity; however, we have not defined the conditions thatwouldmake a reason-
able collection of distinguished subsets. Again let’s return to our generative example
of the real numbers with our usual sense of distance and see whether there are some
conditions on the distinguished subsets that seem especially pertinent. We want our
collection of distinguished subsets to reflect the essential features that make conver-
gence and continuity work.

In describing convergence and continuity, we find ourselves selecting a challenge
set around a point and then concluding that somepoints are in that challenge set. In the
case of convergence, all except a finite number of points are in the challenge set. So if
we have two challenge sets containing the same point, then all except a finite number of
points must be in the intersection of the two challenge sets. This observation suggests
that the intersection of two distinguished sets should also be a distinguished set. We
can reach the same intuition when we think about continuity. So let’s settle on the
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insight that the intersection of two distinguished sets should itself be in our collection
of distinguished sets.

Let’s think about a function 𝑓 ∶ 𝑋 → 𝑌 . Recall that our intuition told us that 𝑓 is
continuous if for any point 𝑥 ∈ 𝑋 and any specially designated subset𝑉 of𝑌 containing
𝑓(𝑥), there is a specially designated subset 𝑈 of 𝑋 containing 𝑥 such that 𝑓(𝑈) ⊂ 𝑉 .
However, we might want to think more globally and realize that many points may all
go to the same point 𝑦 in 𝑌 . So if 𝑓 is continuous, 𝑦 is a point in 𝑌 , and 𝑉 is a specially
designated set containing 𝑦, then for each such point 𝑥 for which 𝑓(𝑥) goes to 𝑦, there
is a designated set 𝑈𝑥 in 𝑋 with 𝑥 in 𝑈𝑥 such that 𝑓(𝑈𝑥) ⊂ 𝑉 . That means the union
of all such designated subsets 𝑈𝑥 must also have the property that their union’s image
is in 𝑉 . This property suggests that arbitrary unions of distinguished sets should be
declared to be distinguished.

Effective Thinking Principle. Settle on an Idea and Explore the Conse-
quences. After identifying essential elements, make a definition and explore
the implications.

The two properties—that finite intersections of distinguished subsets are distin-
guished, and that arbitrary unions of distinguished subsets are distinguished—form
the essential ingredients for the definition of a topology. The definition is completed
by making the whole space 𝑋 be distinguished, which is equivalent to saying that each
point of 𝑋 is in some one of the distinguished subsets. Finally, for technical reasons
it is convenient to include the empty set as distinguished. We are now ready for the
formal definition of a topology and a topological space.

2.2 Open Sets and the Definition of a
Topological Space

Definition. Suppose𝑋 is a set. Then𝒯 is a topology on𝑋 if and only if𝒯 is a collection
of subsets of 𝑋 such that
(1) ∅ ∈ 𝒯,
(2) 𝑋 ∈ 𝒯,
(3) if 𝑈 ∈ 𝒯 and 𝑉 ∈ 𝒯, then 𝑈 ∩ 𝑉 ∈ 𝒯, and
(4) if {𝑈𝛼}𝛼∈𝜆 is any collection of sets of 𝒯, then⋃𝛼∈𝜆𝑈𝛼 ∈ 𝒯.

Recall that the notation ⋃𝛼∈𝜆𝑈𝛼 means the arbitrary union over a possibly un-
countable index set 𝜆.

Definition. A topological space is an ordered pair (𝑋,𝒯), where 𝑋 is a set and 𝒯 is
a topology on 𝑋 . We use the word space to mean topological space unless otherwise
noted.

Note that a set𝑋 may admitmany different topologies. Then (𝑋,𝒯) and (𝑋,𝒯′) are
different topological spaces if 𝒯 ≠ 𝒯′, even though the underlying set 𝑋 is the same.
When it is clear what topology a space (𝑋,𝒯) has, we will denote the space by 𝑋 .
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The definition of a topological space arose from an abstraction of our familiar con-
cepts of limits and continuity in Euclidean spaces. The properties of the sets in a topol-
ogy were properties that were satisfied by the usual open sets of ℝ, so we will use the
term open to refer to sets in a topology.

Definition. A set 𝑈 ⊂ 𝑋 is called an open set in (𝑋,𝒯) if and only if 𝑈 ∈ 𝒯.

So we can think of a topology on 𝑋 as specifying what subsets of 𝑋 will be consid-
ered open. (By the way, it is customary to use the letters 𝑈 and 𝑉 to denote open sets.)
Keep in mind that open sets are elements of the topology 𝒯 and subsets of the space 𝑋 .
Elements of 𝑋 , on the other hand, are the points of the space 𝑋 .

Effective Thinking Principle. Explore Consequences of Definitions. After
making a definition, explore consequences and reformulations.

The definition of a topology includes the condition that the arbitrary union of open
sets is open. The definition also specifies that the intersection of two open sets is open,
but that condition actually implies that any finite intersection of open sets is open.

Theorem 2.1. Let {𝑈𝑖}𝑛𝑖=1 be a finite collection of open sets in a topological space (𝑋,𝒯).
Then⋂𝑛

𝑖=1𝑈𝑖 is open.

Exercise 2.2. Why does your proof not prove the false statement that the infinite inter-
section of open sets is necessarily open?

To check whether a subset𝑈 of 𝑋 is an open set, we only need to confirm that each
point of 𝑈 is in an open set that is contained in 𝑈.

Theorem 2.3. A set 𝑈 is open in a topological space (𝑋,𝒯) if and only if for every point
𝑥 ∈ 𝑈, there exists an open set 𝑈𝑥 such that 𝑥 ∈ 𝑈𝑥 ⊂ 𝑈.

We sometimes call an open set containing 𝑥 a neighborhood of 𝑥. Thus a set 𝑈
is open if and only if every point has a neighborhood that lies within 𝑈.

Effective Thinking Principle. Generalizations Should Generalize. If a def-
inition is intended to generalize a specific example, check to make certain it
does so.

Let’s check that our definition of a topological space captures the relevant features
of the prototype that spawned it, namely, the real number line and the familiar concept
of “open sets” from calculus.

Example. The standard topology 𝒯std on ℝ is defined as follows: a subset 𝑈 of ℝ be-
longs to 𝒯std if and only if for each point 𝑝 of 𝑈 there is some 𝜀𝑝 > 0 such that the
interval (𝑝 − 𝜀𝑝, 𝑝 + 𝜀𝑝) is contained in 𝑈. We write ℝstd for (ℝ,𝒯std), although any-
time we see ℝ without any topology mentioned, we should assume it has the standard
topology.
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Figure 2.1. An open set 𝑈 in ℝ𝑛.

We can generalize the standard topology on ℝ to Euclidean space ℝ𝑛, the set of
all 𝑛-tuples of real numbers. In ℝ𝑛, recall the Euclidean distance between points
𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛) and 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑛) is given by

𝑑(𝑥, 𝑦) = (
𝑛
∑
𝑖=1
(𝑥𝑖 − 𝑦𝑖)2 )1/2.

We use the Euclidean distance to produce open balls in ℝ𝑛, which will play the role
that open intervals did in ℝ. Recall in ℝ𝑛, the open ball of radius 𝜀 > 0 around point
𝑝 ∈ ℝ𝑛 is the set

𝐵(𝑝, 𝜀) = {𝑥 ∣ 𝑑(𝑝, 𝑥) < 𝜀}.

Example. The standard topology 𝒯std on ℝ𝑛 is defined as follows: a subset 𝑈 of ℝ𝑛

belongs to 𝒯std if and only if for each point 𝑝 of 𝑈 there is an 𝜀𝑝 > 0 such that 𝐵(𝑝, 𝜀𝑝)
⊂ 𝑈.

Exercise 2.4. Verify that 𝒯std is a topology on ℝ𝑛; in other words, it satisfies the four
conditions of the definition of a topology.

Let us consider some other examples of topological spaces.

Example. Given a set𝑋 , let𝒯 = 2𝑋 , the set of all subsets of𝑋 . This topology𝒯 is called
the discrete topology on 𝑋 . We call the space (𝑋, 2𝑋) a discrete topological space.
In the discrete topology, every subset of 𝑋 is an open set.

Note the spelling: discrete topology, not discreet topology! The discrete topology on
ℝ is different from the standard topology onℝ because some sets are open in one topol-
ogy but not in the other—for example, a single point is open in the discrete topology
but not open in the standard topology on ℝ.

Example. Given a set 𝑋 , the collection𝒯 = {∅, 𝑋} is called the indiscrete topology on
𝑋 . We call the space (𝑋, {∅, 𝑋}) an indiscrete topological space. In this space, there
are only two open sets: the empty set and the entire set 𝑋 .
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Thus, the discrete topology has the largest possible collection of open sets that any
topology can have, while the indiscrete topology has the smallest possible collection of
open sets that any topology can have. A funway to think about a topology is to imagine
it as a pair of glasses: when you put them on, the open sets are the sets that you can
“see.” So the discrete topology glasses allow you to see everything very sharply; in fact,
you can see individual points. But with the indiscrete topology, there’s only one thing
to see.

Example. Given a set 𝑋 , the finite complement (or cofinite) topology on 𝑋 is de-
scribed as follows: a subset 𝑈 of 𝑋 is open if and only if 𝑋 − 𝑈 is finite or 𝑈 = ∅.

Recall that a countable set is one that is either finite or countably infinite.

Example. Given a set 𝑋 , the countable complement (or cocountable) topology
on 𝑋 is described as follows: a subset 𝑈 of 𝑋 is open if and only if 𝑋 − 𝑈 is countable
or 𝑈 = ∅.

Exercise 2.5. Verify that the discrete, indiscrete, finite complement, and countable com-
plement topologies are indeed topologies for any set 𝑋 .

Exercise 2.6. Describe some of the open sets you get if ℝ is endowed with the topologies
described above (standard, discrete, indiscrete, finite complement, and countable comple-
ment). Specifically, identify sets that demonstrate the differences among these topologies,
that is, find sets that are open in some topologies but not in others. For each of the topolo-
gies, determine if the interval (0, 1) is an open set in that topology.

Although a finite intersection of open sets is an open set, an infinite intersection
of open sets need not be open.

Exercise 2.7. Give an example of a topological space and a collection of open sets in that
topological space that show that the infinite intersection of open sets need not be open.

2.3 Limit Points and Closed Sets
One of the most basic concepts in topology is the concept of a limit point of a set. This
idea captures the topological abstraction of the idea of a limit point that occurs in cal-
culus.

Definition. Let (𝑋,𝒯) be a topological space,𝐴 a subset of𝑋 , and𝑝 a point in𝑋 . Then𝑝
is a limit point of 𝐴 if and only if for each open set𝑈 containing 𝑝, (𝑈 − {𝑝}) ∩ 𝐴 ≠ ∅.
Notice that 𝑝may or may not belong to 𝐴.

In other words, 𝑝 is a limit point of 𝐴 if every open set containing 𝑝 intersects 𝐴
at some point other than 𝑝 itself. Thus, the concept of a limit point gives us a way of
capturing the idea of a point being “arbitrarily close” to a set without using the concept
of distance. Instead, we use the idea of open sets in a topology.

So if we change the topology, then what is considered “arbitrarily close” may
change, as the next exercise shows.
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Figure 2.2. The point 𝑝 is a limit point of 𝐴 if every open set 𝑈 con-
taining 𝑝 contains other points of 𝐴. Drawing a picture like this one
can greatly help you understand the definition.

Exercise 2.8. Let𝑋 = ℝ and𝐴 = (1, 2). Verify that 0 is a limit point of𝐴 in the indiscrete
topology and the finite complement topology, but not in the standard topology nor the
discrete topology on ℝ.

An important step in understanding the definition of being a limit point is to un-
derstand what it means to not be a limit point. The following theorem is useful in
theorems to come.

Theorem 2.9. Suppose 𝑝 ∉ 𝐴 in a topological space (𝑋,𝒯). Then 𝑝 is not a limit point
of 𝐴 if and only if there exists a neighborhood 𝑈 of 𝑝 such that 𝑈 ∩ 𝐴 = ∅.

Definition. Let (𝑋,𝒯) be a topological space, 𝐴 a subset of 𝑋 , and 𝑝 a point in 𝑋 . If
𝑝 ∈ 𝐴 but 𝑝 is not a limit point of 𝐴, then 𝑝 is an isolated point of 𝐴.

Exercise 2.10. If 𝑝 is an isolated point of a set𝐴 in a topological space𝑋 , show that there
exists an open set 𝑈 such that 𝑈 ∩ 𝐴 = {𝑝}.

Effective Thinking Principle. Create Examples. When learning any defi-
nition in mathematics, one helpful step is to construct several examples that
illustrate the meaning of the definition.

The following exercise encourages you to undertake that process with the goal of
better understanding the idea of a limit point.

Exercise 2.11. Give examples of sets 𝐴 in various topological spaces (𝑋,𝒯) with
(1) a limit point of 𝐴 that is an element of 𝐴;

(2) a limit point of 𝐴 that is not an element of 𝐴;

(3) an isolated point of 𝐴;

(4) a point not in 𝐴 that is not a limit point of 𝐴.



2.3. Limit Points and Closed Sets 35

The definition of limit point forms the central idea in the definitions of closure and
closed set.

Definition. Let (𝑋,𝒯) be a topological space and 𝐴 ⊂ 𝑋 . Then the closure of 𝐴 in 𝑋 ,
denoted 𝐴 or Cl(𝐴) or Cl𝑋(𝐴), is the set 𝐴 together with all its limit points in 𝑋 .

Definition. Let (𝑋,𝒯) be a topological space and 𝐴 ⊂ 𝑋 . The subset 𝐴 is closed if and
only if 𝐴 = 𝐴, in other words, if 𝐴 contains all its limit points.

Exercise 2.12.

(1) Which sets are closed in a set 𝑋 with the discrete topology?

(2) Which sets are closed in a set 𝑋 with the indiscrete topology?

(3) Which sets are closed in a set 𝑋 with the finite complement topology?

(4) Which sets are closed in a set 𝑋 with the countable complement topology?

At first the following theorem may appear to be stating the obvious; however, it
requires you to carefully understand the definitions of closure and closed set. It’s a
good idea to draw a picture.

Effective Thinking Principle. Draw a Picture. Part of the value of drawing
a picture is to see features in your picture that you did not intentionally put
there. For example, if you draw a triangle without thinking about it, the sum
of the angles will equal 180 degrees. A picture can suggest insights that will
help with your argument. Get in the habit of drawing pictures!

Theorem 2.13. For any topological space (𝑋,𝒯) and 𝐴 ⊂ 𝑋 , the set 𝐴 is closed. That is,
for any set 𝐴 in a topological space, 𝐴 = 𝐴.

Abasic relationship between open sets and closed sets in a topological space is that
they are complements of each other.

Theorem 2.14. Let (𝑋,𝒯) be a topological space. Then the set 𝐴 is closed if and only if
𝑋 − 𝐴 is open.

Removing a closed set from an open set leaves an open set.

Theorem 2.15. Let (𝑋,𝒯) be a topological space, and let𝑈 be an open set and𝐴 a closed
subset of 𝑋 . Then the set 𝑈 − 𝐴 is open and the set 𝐴 − 𝑈 is closed.

The properties of closed sets in a topological space mirror the properties of open
sets. From that perspective, the four defining properties of a topological space are cap-
tured in the following theorem about closed sets.
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Theorem 2.16. Let (𝑋,𝒯) be a topological space. Then:
(i) ∅ is closed.

(ii) 𝑋 is closed.

(iii) The union of finitely many closed sets is closed.

(iv) Let {𝐴𝛼}𝛼∈𝜆 be a collection of closed subsets in (𝑋,𝒯). Then⋂𝛼∈𝜆 𝐴𝛼 is closed.

The theorem above shows that an alternative way to build up a theory of topology
would be to specify all subsets that are “closed,” and demand that they satisfy the above
four properties.

The following exercises will help you understand closed sets and their relation-
ships to open sets.

Exercise 2.17. Give an example to show that the union of infinitely many closed sets in
a topological space may be a set that is not closed.

Exercise 2.18. Give examples of topological spaces and sets in them that

(1) are closed, but not open;

(2) are open, but not closed;

(3) are both open and closed;

(4) are neither open nor closed.

These counterexamples show that thewords “closed” and “open” are not antonyms!

Exercise 2.19. State whether each of the following sets are open, closed, both, or neither:
(1) In ℤ with the finite complement topology: {0, 1, 2}, {prime numbers}, {𝑛 ∣ |𝑛| ≥ 10}.

(2) In ℝ with the standard topology: (0, 1), (0, 1], [0, 1], {0, 1}, {1/𝑛 | 𝑛 ∈ ℕ}.

(3) In ℝ2 with the standard topology: {(𝑥, 𝑦) | 𝑥2 + 𝑦2 = 1}, {(𝑥, 𝑦) | 𝑥2 + 𝑦2 > 1},
{(𝑥, 𝑦) | 𝑥2 + 𝑦2 ≥ 1}.

One way to think about the closure of a set is as the intersection of all the closed
sets that contain it.

Theorem 2.20. For any set 𝐴 in a topological space 𝑋 , the closure of 𝐴 equals the inter-
section of all closed sets containing 𝐴, that is,

𝐴 = ⋂
𝐵⊃𝐴,𝐵∈𝒞

𝐵,

where 𝒞 is the collection of all closed sets in 𝑋 .

Informally, we can say 𝐴 is the “smallest” closed set that contains 𝐴. To gain some
intuition about the process of taking the closure of a set, it is valuable to consider the
closures of various sets in various topological spaces. The next exercise asks you to
do so.
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Exercise 2.21. Pick several different subsets of ℝ, and find their closures in
(1) the discrete topology;

(2) the indiscrete topology;

(3) the finite complement topology;

(4) the standard topology.

The next theorem includes the fact that the closure of the union of two sets is the
union of the closures of those two sets. Try proving the following in two different ways:
(i) using the definition of a limit point, and (ii) using Theorem 2.20.

Theorem 2.22. Let 𝐴 and 𝐵 be subsets of a topological space 𝑋 . Then:
(1) 𝐴 ⊂ 𝐵 implies 𝐴 ⊂ 𝐵.

(2) 𝐴 ∪ 𝐵 = 𝐴 ∪ 𝐵.

Effective Thinking Principle. Extending Theorems. A habit that will help
you to understand mathematics is always to look for the extent to which a
theorem can be extended or not.

The following exercise asks you undertake this exploration with respect to the pre-
vious theorem.

Exercise 2.23. Let {𝐴𝛼}𝛼∈𝜆 be a collection of subsets of a topological space 𝑋 . Then is the
statement

⋃
𝛼∈𝜆

𝐴𝛼 = ⋃
𝛼∈𝜆

𝐴𝛼

true?

Sometimes the closure of a set may not be completely obvious. Let’s explore the
closures of two interesting subsets of ℝ2 with the standard topology.

Exercise 2.24. Inℝ2 with the standard topology, describe the limit points and closure of
each of the following two sets:

(1) 𝑆 = {(𝑥, sin ( 1
𝑥
)) | 𝑥 ∈ (0, 1)}. The set 𝑆 is called the topologist’s sine curve.

(2) 𝐶 = {(𝑥, 0) | 𝑥 ∈ [0, 1]} ∪ ⋃∞
𝑛=1 {(

1
𝑛
, 𝑦) | 𝑦 ∈ [0, 1]}. The set 𝐶 is called the topolo-

gist’s comb.

The following exercise is difficult, but the example that you will produce is fasci-
nating. If you cannot do this exercise now, do not worry. It will reappear again later in
the book.

Exercise 2.25. In the standard topology on ℝ, there exists a non-empty subset 𝐶 of the
closed unit interval [0, 1] that is closed, contains no non-empty open interval, and where
no point of 𝐶 is an isolated point.
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2.4 Interior and Boundary
Just as we explored the concept of the “smallest” closed set containing 𝐴, we can con-
sider what is the “largest” open set contained in 𝐴.

Definition. The interior of a set 𝐴 in a topological space 𝑋 , denoted 𝐴∘ or Int(𝐴), is
defined as:

Int(𝐴) = ⋃
𝑈⊂𝐴,𝑈∈𝒯

𝑈.

Points of Int(𝐴) are called interior points of 𝐴.

Theorem 2.26. Let 𝐴 be a subset of a topological space 𝑋 . Then 𝑝 is an interior point of
𝐴 if and only if there exists an open set 𝑈 with 𝑝 ∈ 𝑈 ⊂ 𝐴.

Exercise 2.27. Show that a set 𝑈 is open in a topological space 𝑋 if and only if every
point of 𝑈 is an interior point of 𝑈.

The following definition of theword “boundary” lets us take any set𝐴 in a topolog-
ical space and prove that the whole space is equal to the disjoint union of the interior
of 𝐴, the boundary of 𝐴, and the interior of the complement of 𝐴.

Definition. The boundary of 𝐴, denoted Bd(𝐴) or 𝜕𝐴, is defined to be 𝐴 ∩ 𝑋 − 𝐴.

Theorem 2.28. Let 𝐴 be a subset of a topological space 𝑋 . Then Int(𝐴), Bd(𝐴), and
Int(𝑋 − 𝐴) are disjoint sets whose union is 𝑋 .

Exercise 2.29. Pick several different subsets of ℝ, and for each one, find its interior and
boundary using

(1) the discrete topology;

(2) the indiscrete topology;

(3) the finite complement topology;

(4) the standard topology.

2.5 Convergence of Sequences
When you learned about convergence of sequences in calculus, you were dealing with
the standard topology on the real line. Our challenge now is to make a definition that
extends that concept to the setting of a general topological space.

Definition. A sequence in a topological space𝑋 is a function fromℕ to𝑋 . The image of
𝑖 under this function is a point of 𝑋 denoted 𝑥𝑖 and we traditionally write the sequence
by listing its images: 𝑥1, 𝑥2, 𝑥3, … or in shorter form: (𝑥𝑖)𝑖∈ℕ.

Definition. A point 𝑝 ∈ 𝑋 is a limit of the sequence (𝑥𝑖)𝑖∈ℕ, or, equivalently, (𝑥𝑖)𝑖∈ℕ
converges to 𝑝 (written 𝑥𝑖 → 𝑝), if and only if for every open set𝑈 containing 𝑝, there
is an 𝑁 ∈ ℕ such that for all 𝑖 > 𝑁, the point 𝑥𝑖 is in 𝑈.
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Theorem 2.30. Let 𝐴 be a subset of the topological space 𝑋 , and let 𝑝 be a point in 𝑋 . If
the set {𝑥𝑖}𝑖∈ℕ ⊂ 𝐴 and 𝑥𝑖 → 𝑝, then 𝑝 is in the closure of 𝐴.

Aswe shall see later, in some topological spaces, the converse of the previous result
is not true. But it is true for ℝ𝑛.

Theorem 2.31. In the standard topology onℝ𝑛, if 𝑝 is a limit point of a set 𝐴, then there
is a sequence of points in 𝐴 that converges to 𝑝.

In the standard topology on the real line, convergent sequences converge to a
unique limit. That uniqueness property does not hold for all topological spaces.

Exercise 2.32. Find an example of a topological space and a convergent sequence in that
space for which the limit of the sequence is not unique.

Exercise 2.33. (1) Consider sequences inℝwith the finite complement topology. Which
sequences converge? To what value(s) do they converge?

(2) Consider sequences in ℝ with the countable complement topology. Which sequences
converge? To what value(s) do they converge?

After we have created some additional interesting topological spaces and after we
have defined continuity in topological spaces in the chapters ahead, we will explore
convergence further, but for now let’s be satisfied with understanding the definition of
convergence and the basic properties of convergence that we have seen above.

2.6 Topological Essentials
In this chapter, we have constructed the foundation onwhich the whole study of topol-
ogy is built. From our familiar examples of the real numbers and higher-dimensional
Euclidean spaces, we extracted essential set-theoretic features that undergird ideas
such as convergence and continuity. That exploration led to the definition of a topo-
logical space, which is the topic of study for the rest of this book and much, much
more.

One of the amazing realities of mathematics and our understanding of the world
is that when we identify truly central essentials and create ideas that capture them, the
exploration of those concepts becomes an incredibly rich and limitless adventure. You
now stand at the base of a huge, invisible mountain of knowledge, currently unaware
of what lies before you. But every step ahead will expose beautiful vistas of the world
of topology.





3
Bases, Subspaces, Products:

Creating New Spaces

In the last chapter we defined a topology as a collection of sets—the open sets—which
abstracted the intuitive idea of “closeness.” Specifying which sets are in a topology
can be a difficult process. One way to simplify the specification of a topology is to
describe building blocks from which all the open sets arise. This strategy is analogous
to describing a collection of basis vectors that generate a vector space, as we do in linear
algebra. The impulse to identify generators of a topology leads to the concept of a basis
for a topology. In this chapter we will develop the concept of a basis and use it to build
new topological spaces.

Other strategies for defining new topological spaces involve starting with one or
more known spaces and creating new spaces from the old ones. Considering a subset
of a topological space gives us away to create a subspace fromanold space. And taking a
Cartesian product of topological spaces is anotherway to create a new space. Subspaces
and product spaces have topologies that naturally flow from the original spaces.

By the end of this chapter, you will have createdmany fascinating, new topological
spaces to explore and enjoy.

3.1 Bases
One of the most powerful strategies for coming up with new ideas in one field is to
consider concepts in other fields and see whether analogous reasoningmight apply. In
linear algebra, a basis is a collection of vectors that generate the whole vector space.
In number theory, the set of primes generates all natural numbers above 1. Let’s see
where the impulse to find a generating set might lead us in topology.

41
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Effective Thinking Principle. Borrow Strategies from Other Fields. Pow-
erful concepts from other fields can inspire new insights either directly or by
analogy.

As you recall, we defined a subset𝑈 ofℝ to be an open set in the standard topology
if we can find an open interval contained in 𝑈 around every point in 𝑈. Thus, every
open set in the standard topology onℝ is the union of these simpler open sets (the open
intervals).

That example motivates the definition of a basis for a topology. Because arbitrary
unions of open sets are open, a topological space can have extremely complicated open
sets. It is often convenient to describe a (simpler) subcollection of open sets (like in-
tervals in the example of ℝ with the standard topology) that generate all open sets in
a given topology by taking unions. This strategy leads to the definition of a basis for a
topology.

Definition. Let 𝒯 be a topology on a set 𝑋 , and let ℬ ⊂ 𝒯. Then ℬ is a basis for the
topology 𝒯 if and only if every open set in 𝒯 is the union of elements of ℬ. If 𝐵 ∈ ℬ,
we say 𝐵 is a basis element or basic open set. Note that 𝐵 is an element of the basis
ℬ, but a subset of the space 𝑋 .

Note. By definition, an empty union is the empty set, so any basis ℬ will generate
the empty set as a union of none of the elements of ℬ. (We recommend you spend an
empty amount of time thinking about the empty set.)

Given a topology on some space 𝑋 , how can we test whether a collection of subsets
forms a basis for that topology? The next theorem gives an answer.

Theorem 3.1. Let (𝑋,𝒯) be a topological space, and letℬ be a collection of subsets of 𝑋 .
Thenℬ is a basis for𝒯 if and only if

(1) ℬ ⊂ 𝒯, and

(2) for each set 𝑈 in𝒯 and point 𝑝 in 𝑈 there is a set 𝑉 inℬ such that 𝑝 ∈ 𝑉 ⊂ 𝑈.

The plural of basis is bases. A particular topology can have many different bases.
This next exercise describes a couple of different bases for the standard topology on ℝ.

Exercise 3.2. (1) Let ℬ1 = {(𝑎, 𝑏) ⊂ ℝ ∣ 𝑎, 𝑏 ∈ ℚ}. Show that ℬ1 is a basis for the
standard topology on ℝ.

(2) Letℬ2 = {(𝑎, 𝑏) ∪ (𝑐, 𝑑) ⊂ ℝ ∣ 𝑎 < 𝑏 < 𝑐 < 𝑑 are distinct irrational numbers}. Show
thatℬ2 is also a basis for the standard topology on ℝ.

Suppose you are given a set 𝑋 and a collection ℬ of subsets of 𝑋 . Under what
circumstances is there a topology for which ℬ is a basis? Note how this question is
different from the question that motivated Theorem 3.1. That theorem describes when
a collection of sets forms a basis for a given topology. The next theorem describes when
a collection of sets forms a basis for some topology on 𝑋 .
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Theorem 3.3. Suppose 𝑋 is a set andℬ is a collection of subsets of 𝑋 . Thenℬ is a basis
for some topology on 𝑋 if and only if
(1) each point of 𝑋 is in some element ofℬ, and
(2) if 𝑈 and 𝑉 are sets in ℬ and 𝑝 is a point in 𝑈 ∩ 𝑉 , there is a set 𝑊 in ℬ such that

𝑝 ∈ 𝑊 ⊂ (𝑈 ∩ 𝑉).

Theorem 3.3 allows us to describe topological spaces by first specifying a set 𝑋 and
then a collection ℬ of subsets of 𝑋 satisfying the two conditions listed in the theorem.
Then the topology 𝒯 with basis ℬ is the collection of all possible unions of basis ele-
ments.

Example. We can define an alternative topology on ℝ, called the lower limit topol-
ogy, generated by a basis consisting of all sets of the form [𝑎, 𝑏) = {𝑥 ∈ ℝ ∣ 𝑎 ≤ 𝑥 < 𝑏}.
Denote this space by ℝLL. It is sometimes called the Sorgenfrey line or ℝ1

𝑏𝑎𝑑.

Exercise 3.4. Check that the basis proposed above for the lower limit topology is in fact
a basis.

As we shall see, ℝLL is a topological space with many interesting (and bad) prop-
erties. Its topology has more sets than the standard topology on ℝ.

Theorem 3.5. Every open set in ℝstd is an open set in ℝLL, but not vice versa.

Definition. Suppose 𝒯 and 𝒯′ are two topologies on the same underlying set 𝑋 . If
𝒯 ⊂ 𝒯′, then we say 𝒯′ is finer than 𝒯. Alternatively, we say 𝒯 is coarser than 𝒯′.
We say strictly coarser or strictly finer if additionally 𝒯 ≠ 𝒯′.

If you find it hard to remember this definition, think of a comb with more teeth as
finer than one with fewer teeth! Theorem 3.5 shows that the topology ofℝLL is strictly
finer than the standard topology of ℝ. Not every pair of topologies on the same set is
comparable using the finer and coarser relationship.

Exercise 3.6. Give an example of two topologies on ℝ such that neither is finer than the
other, that is, the two topologies are not comparable.

The strategy of describing a topology by describing a basis for it allows us to create
many topological spaces.

Example. We construct a topological space called the Double Headed Snake. Let
ℝ+00 be the set consisting of ℝ+ (the positive real numbers) together with two points
which we’ll call 0′ and 0″. Put a topology on it generated by a basis consisting of all
intervals in ℝ+ of the form (𝑎, 𝑏) or else of the form (0, 𝑏) ∪ {0′} or (0, 𝑏) ∪ {0″} for
𝑎, 𝑏 ∈ ℝ+.

Exercise 3.7. Check that the collection of sets that we specify as a basis in the Double
Headed Snake actually forms the basis for a topology.

Exercise 3.8. In the Double Headed Snake, show that every point is a closed set; however,
it is impossible to find disjoint open sets 𝑈 and 𝑉 such that 0′ ∈ 𝑈 and 0″ ∈ 𝑉 .
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Example. Letℝhar be the setℝwith a topology whose basis is all sets of the form (𝑎, 𝑏)
or (𝑎, 𝑏)−𝐻, where𝐻 = {1/𝑛}𝑛∈ℕ is the harmonic sequence, and 𝑎, 𝑏 ∈ ℝ. You should
check that these sets forms the basis for a topology.

Exercise 3.9. (1) In the topological space ℝhar, what is the closure of the set 𝐻 =
{1/𝑛}𝑛∈ℕ?

(2) In the topological space ℝhar, what is the closure of the set𝐻− = {−1/𝑛}𝑛∈ℕ?

(3) Is it possible to find disjoint open sets 𝑈 and 𝑉 in ℝhar such that 0 ∈ 𝑈 and𝐻 ⊂ 𝑉?

Figure 3.1. Basic open sets of the Sticky Bubble Topology on the up-
per half-plane.

Example. Let ℍbub be the upper half-plane {(𝑥, 𝑦) ∶ 𝑥, 𝑦 ∈ ℝ, 𝑦 ≥ 0} with a topology
whose basis consists of

(1) all balls 𝐵((𝑥, 𝑦), 𝑟), where 0 < 𝑟 ≤ 𝑦, and

(2) all sets 𝐵((𝑥, 𝑦), 𝑟) ∪ {(𝑥, 0)}, where 𝑟 = 𝑦 > 0.
We will call this space theUpper Half-Plane with the Sticky Bubble Topology.

Thenext exercise foreshadows someof the so-called separationproperties of topolo-
gies that we will study later.

Exercise 3.10. (1) Inℍbub, what is the closure of the set of rational points on the 𝑥-axis?

(2) In ℍbub, which subsets of the 𝑥-axis are closed sets?

(3) Inℍbub, let 𝐴 be a countable set on the 𝑥-axis and let 𝑧 be a point on the 𝑥-axis not in
𝐴. Show that there exist disjoint open sets 𝑈 and 𝑉 such that 𝐴 ⊂ 𝑈 and 𝑧 ∈ 𝑉 . (Do
you need the countability hypothesis on 𝐴?)
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(4) In ℍbub, let 𝐴 and 𝐵 be countable sets on the 𝑥-axis such that 𝐴 and 𝐵 are disjoint.
Show that there exist disjoint open sets 𝑈 and 𝑉 such that 𝐴 ⊂ 𝑈 and 𝐵 ⊂ 𝑉 .

(5) In ℍbub, let 𝐴 be the rational numbers, and let 𝐵 be the irrational numbers. Do there
exist disjoint open sets 𝑈 and 𝑉 such that 𝐴 ⊂ 𝑈 and 𝐵 ⊂ 𝑉?

There is an interesting topology that we can place on the integers ℤ.

Example. Let ℤarith be the set ℤ with a topology whose basis elements are arithmetic
progressions, i.e., sets of the form {𝑎𝑧 + 𝑏 ∶ 𝑧 ∈ ℤ} for 𝑎, 𝑏 ∈ ℤ, 𝑎 ≠ 0.

Exercise 3.11. Check that the arithmetic progressions form a basis for a topology on ℤ.

In this topology, integers that are in arithmetic progressions are considered “close.”
So the topology encodes the arithmetic structure ofℤ. In fact, this topology can be used
to prove a standard theorem from number theory!

Exercise 3.12. Use ℤarith to show there are infinitely many primes.

As a hint, start by examining the set 𝑝ℤ where 𝑝 is prime, and show that it is a
closed set in ℤarith. Recall also that a prime number in ℤ is a natural number greater
than 1 whose only positive factors are 1 and itself, and that every natural number
greater than 1 can be written as a product of prime factors.

3.2 Subbases
We saw in Section 3.1 how a basis determines a topology, namely, each open set is a
union of basis elements. We can specify topologies in an even more condensed form
by means of a subbasis, which generates a topology when you allow both arbitrary
unions and finite intersections. You should familiarize yourself with the definition of
a subbasis even if you don’t prove any of the theorems in this section.

Definition. Let (𝑋,𝒯) be a topological space and let 𝒮 be a collection of subsets of 𝑋 .
Then 𝒮 is a subbasis for 𝒯 if and only if the collection ℬ of all finite intersections of
sets in 𝒮 is a basis for 𝒯. An element of 𝒮 is called a subbasis element or a subbasic
open set.

Exercise 3.13. A basis for a topology is also a subbasis for that topology.

Exercise 3.14. Show that ℝ with the standard topology has a subbasis 𝒮 consisting of
rays {𝑥 ∣ 𝑥 < 𝑎 for some 𝑎 ∈ ℝ} and {𝑥 ∣ 𝑎 < 𝑥 for some 𝑎 ∈ ℝ}.

The following theorem describes general conditions under whichwe can conclude
that a collection of subsets is a subbasis for a given topology.

Theorem 3.15. Let (𝑋,𝒯) be a topological space, and let 𝒮 be a collection of subsets of
𝑋 . Then 𝒮 is a subbasis for𝒯 if and only if

(1) 𝒮 ⊂ 𝒯, and
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(2) for each set𝑈 in𝒯 and point 𝑝 in𝑈 there is a finite collection {𝑉𝑖}𝑛𝑖=1 of elements of 𝒮
such that

𝑝 ∈
𝑛
⋂
𝑖=1
𝑉𝑖 ⊂ 𝑈.

As with bases, we also want to answer the question of when a given collection 𝒮 of
subsets of a set 𝑋 is a subbasis for some topology on 𝑋 .

Theorem 3.16. Suppose 𝑋 is a set and 𝒮 is a collection of subsets of 𝑋 . Then 𝒮 is a
subbasis for some topology on 𝑋 if and only if every point of 𝑋 is in some element of 𝒮.

The preceding theorem can thus be used to describe a topology by presenting a
subbasis that generates it.

Exercise 3.17. Let 𝒮 be the following collection of subsets of ℝ: {𝑥 ∣ 𝑥 < 𝑎 for some
𝑎 ∈ ℝ} and {𝑥 ∣ 𝑎 ≤ 𝑥 for some 𝑎 ∈ ℝ}. For what topology on ℝ is 𝒮 a subbasis?

3.3 Order Topology
Definition. Let 𝑋 be a set totally ordered by ≤. Let ℬ be the collection of all subsets of
𝑋 that are any of the following forms:

{𝑥 ∈ 𝑋 | 𝑥 < 𝑎} or {𝑥 ∈ 𝑋 | 𝑎 < 𝑥} or {𝑥 ∈ 𝑋 ∣ 𝑎 < 𝑥 < 𝑏}
for 𝑎, 𝑏 ∈ 𝑋 . Then ℬ is a basis for a topology 𝒯, called the order topology on 𝑋 .

Exercise 3.18. Let 𝑋 be a set totally ordered by ≤. Let 𝒮 be the collection of sets of the
form

{𝑥 ∈ 𝑋 | 𝑥 < 𝑎} or {𝑥 ∈ 𝑋 | 𝑎 < 𝑥}
for 𝑎 ∈ 𝑋 . Then 𝒮 forms a subbasis for the order topology on 𝑋 .

Exercise 3.19. Verify that the order topology onℝwith the usual≤ order is the standard
topology on ℝ.

Definition. Given sets 𝐴 and 𝐵, their product (or Cartesian product) 𝐴×𝐵 is the set
of all ordered pairs (𝑎, 𝑏) such that 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵. If 𝐴 and 𝐵 are totally ordered
by ≤𝐴 and ≤𝐵, respectively, then the dictionary order or lexicographic order ≤ on
𝐴× 𝐵 is specified by defining (𝑎1, 𝑏1) < (𝑎2, 𝑏2) if 𝑎1 <𝐴 𝑎2, or if 𝑎1 = 𝑎2 and 𝑏1 <𝐵 𝑏2.

Example. The square [0, 1]×[0, 1]with the lexicographic order and its associated order
topology is called the lexicographically ordered square.

To understand the topology of the lexicographically ordered square, we can gain
intuition by visualizing open sets.

Exercise 3.20. Drawpictures of various open sets in the lexicographically ordered square.

Various subsets of the lexicographically ordered square have surprising closures.
The next exercise is instructive; be sure to do it, and exclaim, “Oh” or “Wow”when you
discover the surprises.
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Exercise 3.21. In the lexicographically ordered square find the closures of the following
subsets:

𝐴 = {( 1𝑛 , 0) | 𝑛 ∈ ℕ} .

𝐵 = {(1 − 1
𝑛,

1
2) | 𝑛 ∈ ℕ} .

𝐶 = {(𝑥, 0) | 0 < 𝑥 < 1} .

𝐷 = {(𝑥, 12) | 0 < 𝑥 < 1} .

𝐸 = {(12 , 𝑦) | 0 < 𝑦 < 1} .

Recall that an ordered set is well-ordered if every non-empty subset has a least
element. Let’s investigate the lexicographic ordering of the countable product of copies
of ℕ.

Exercise 3.22. Assume that ℕ has the usual order. Let ℕ𝜔 denote the Cartesian product
of a countable number of copies of the space ℕ. It can be endowed with the dictionary
order in a natural way. Show that ℕ𝜔 with the dictionary order topology is uncountable,
is not well-ordered, and any subset that does not have a least element does have a limit
point.

The remaining theorems in this section depend on knowing about the ordinal
numbers (see Section 1.6). The ordinal numbers can be regarded as topological spaces
by giving them the order topology.

Example. For each ordinal𝛼, the collection of predecessors of𝛼with the order topology
forms a space called 𝛼.

Every infinite set of ordinals less than the first uncountable ordinal has a limit
point.

Theorem 3.23. Consider the topological space 𝜔1 consisting of all ordinals less than 𝜔1,
the first uncountable ordinal, with the order topology. Let 𝐴 be an infinite set of ordinals
in 𝜔1. Then there is an ordinal 𝛽 < 𝜔1 that is a limit point of 𝐴.

The next theorem about the space 𝜔1 shows a surprising feature of unbounded
closed sets.

Theorem 3.24. Let 𝐴 and 𝐵 be unbounded closed sets in the topological space 𝜔1. Then
𝐴 ∩ 𝐵 ≠ ∅.

3.4 Subspaces
If (𝑋,𝒯) is a topological space and 𝑌 is a subset of 𝑋 , then there is a natural topology
that the topology𝒯 induces on 𝑌 , formed by intersecting open sets of𝑋 with the subset
𝑌 .

Definition. Let (𝑋,𝒯) be a topological space. For 𝑌 ⊂ 𝑋 , the collection
𝒯𝑌 = {𝑈 ∣ 𝑈 = 𝑉 ∩ 𝑌 for some 𝑉 ∈ 𝒯}
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Figure 3.2. 𝑈 is open in the subspace topology on 𝑌 .

is a topology on𝑌 called the subspace topology. It is also called the relative topology
on 𝑌 inherited from 𝑋 . The space (𝑌,𝒯𝑌 ) is called a (topological) subspace of 𝑋 . If
𝑈 ∈ 𝒯𝑌 we say 𝑈 is open in 𝑌 .

Theorem 3.25. Let (𝑋,𝒯) be a topological space and 𝑌 ⊂ 𝑋 . Then the collection of sets
𝒯𝑌 is in fact a topology on 𝑌 .

Exercise 3.26. Consider 𝑌 = [0, 1) as a subspace of ℝstd. In 𝑌 , is the set [1/2, 1) open,
closed, neither, or both?

Exercise 3.27. Consider a subspace 𝑌 of the topological space 𝑋 . Is every subset 𝑈 ⊂ 𝑌
that is open in 𝑌 also open in 𝑋?

Closed sets in a space are related to closed sets in a subspace in essentially the same
way open sets in a space are related to open sets in a subspace.

Theorem 3.28. Let (𝑌,𝒯𝑌 ) be a subspace of (𝑋,𝒯). A subset 𝐶 ⊂ 𝑌 is closed in (𝑌,𝒯𝑌 )
if and only if there is a set 𝐷 ⊂ 𝑋 , closed in (𝑋,𝒯), such that 𝐶 = 𝐷 ∩ 𝑌 .

Corollary 3.29. Let (𝑌,𝒯𝑌 ) be a subspace of (𝑋,𝒯). A subset 𝐶 ⊂ 𝑌 is closed in (𝑌,𝒯𝑌 )
if and only if Cl𝑋(𝐶) ∩ 𝑌 = 𝐶.

What is the connection between a basis for a space and a basis for the subspace?

Theorem 3.30. Let (𝑋,𝒯) be a topological space, and let (𝑌,𝒯𝑌 ) be a subspace. Ifℬ is a
basis for𝒯, thenℬ𝑌 = {𝐵 ∩ 𝑌|𝐵 ∈ ℬ} is a basis for𝒯𝑌 .

Exercise 3.31. Consider the following subspaces of the lexicographically ordered square:

(1) 𝐷 = {(𝑥, 1
2
) | 0 < 𝑥 < 1}.
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(2) 𝐸 = {( 1
2
, 𝑦) | 0 < 𝑦 < 1}.

(3) 𝐹 = {(𝑥, 1) | 0 < 𝑥 < 1}.
As sets they are all lines. Describe their relative topologies, especially noting any connec-
tions to topologies you have seen already.

3.5 Product Spaces
There’s a natural way to project a Cartesian product to each of its coordinates.

Definition. Let 𝑋 and 𝑌 be two sets. The projection functions 𝜋𝑋 ∶ 𝑋 × 𝑌 → 𝑋 and
𝜋𝑌 ∶ 𝑋 × 𝑌 → 𝑌 are defined by 𝜋𝑋(𝑥, 𝑦) = 𝑥 and 𝜋𝑌 (𝑥, 𝑦) = 𝑦.

If sets 𝑋 and 𝑌 have topologies, there is a natural topology on 𝑋 × 𝑌 .

Figure 3.3. A basic open set 𝑈 × 𝑉 in 𝑋 × 𝑌 , where 𝑈 is open in 𝑋
and 𝑉 is open in 𝑌 .

Definition. Suppose 𝑋 and 𝑌 are topological spaces. The product topology on the
product 𝑋 × 𝑌 is the topology whose basis is all sets of the form 𝑈 × 𝑉 , where 𝑈 is an
open set in 𝑋 and 𝑉 is an open set in 𝑌 .

Exercise 3.32. Verify that the collection of basic open sets above satisfies the conditions
of Theorem 3.3, thus confirming that this collection is the basis for a topology.

Thus open sets of the product topology look like unions⋃𝛼∈𝜆(𝑈𝛼 × 𝑉𝛼), where 𝜆
is a (possibly uncountable) indexing set.

Exercise 3.33. Draw examples of basic and arbitrary open sets inℝ2 = ℝ×ℝ using the
standard topology onℝ. Find (i) an open set inℝ×ℝ that is not the product of open sets,
and (ii) a closed set in ℝ × ℝ that is not the product of closed sets.
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Exercise 3.34. Is the product of closed sets closed?

Theorem 3.35. Show that the product topology on 𝑋 × 𝑌 is the same as the topology
generated by the subbasis of inverse images of open sets under the projection functions,
that is, the subbasis is {𝜋−1𝑋 (𝑈) ∣ 𝑈 open in 𝑋} ∪ {𝜋−1𝑌 (𝑉) ∣ 𝑉 open in 𝑌}.

Exercise 3.36. Using the standard topology on ℝ, is the product topology on ℝ × ℝ the
same as the standard topology on ℝ2?

Think about how you might generalize the above constructions to define a topol-
ogy on the Cartesian product of several sets, such as 𝑋 × 𝑌 × 𝑍. As the above exercises
suggest, there are two strategies: one would be to take the product of open sets in each
coordinate, and the other is to define a topology by a subbasis of inverse images of open
sets under the projection functions. Either approach produces the same topology for a
finite product.

But the two approaches give different topologies for products of infinitely many
spaces. And the most natural topology for an infinite product is perhaps not what
one might first expect—surprisingly, the subbasis approach produces a more natural
topology.

First we should define what we mean by an infinite product of spaces. To do this,
first think about a finite product, such as 𝑋1 × 𝑋2 × 𝑋3. A shorthand notation for this
product is∏𝑖∈{1,2,3} 𝑋𝑖. This∏ notation is similar to the ∑ notation for an indexed
sum (and, in fact, the sound of the Greek letter Pi reminds us of a Product just as Sigma
reminds us of a Sum).

A generic element of ∏𝑖∈{1,2,3} 𝑋𝑖 is (𝑥1, 𝑥2, 𝑥3), where 𝑥1 ∈ 𝑋1, 𝑥2 ∈ 𝑋2, and
𝑥3 ∈ 𝑋3. However, another way to view (𝑥1, 𝑥2, 𝑥3) is as a function 𝑓 that takes in
the coordinate number 𝑖 and spits out the coordinate 𝑥𝑖, in other words, we can think
of a generic element of∏𝑖∈{1,2,3} 𝑋𝑖 as a function

𝑓 ∶ {1, 2, 3} →
3

⋃
𝑖=1

𝑋𝑖

such that 𝑓(𝑖) ∈ 𝑋𝑖. This function’s domain is the index set {1, 2, 3} and its codomain
is the union of the factors 𝑋𝑖.

The value of thinking of a product as a function is that it is now apparent how to
define an infinite product; namely, we can just replace the domain {1, 2, 3} by an infinite
index set.

Definition. Let {𝑋𝛼}𝛼∈𝜆 be a collection of topological spaces. The product∏𝛼∈𝜆 𝑋𝛼,
or Cartesian product, is the set of functions

{𝑓 ∶ 𝜆 → ⋃
𝛼∈𝜆

𝑋𝛼 ∣ for all 𝛼 ∈ 𝜆, 𝑓(𝛼) ∈ 𝑋𝛼}.

Here 𝑓(𝛼) is called the 𝛼th coordinate of 𝑓. The spaces 𝑋𝛼 are sometimes called fac-
tors of the infinite product. Thus a point in the productmay be thought of as a function
that associates to each 𝛼 an element 𝑓(𝛼) of the factor 𝑋𝛼.
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Lest you think the infinite product construction is just an abstract oddity, we men-
tion that such products are at the heart of some profound ideas in physics. For instance,
the set ℓ2 = {(𝑧1, 𝑧2, 𝑧3, …) ∣ 𝑧𝑖 ∈ ℂ, ∑∞

𝑛=1 |𝑧𝑛|2 < ∞} is a subset of the countably infi-
nite product of copies ofℂ. With extra algebraic structure, ℓ2 is an example of aHilbert
space—a complete inner product space. Hilbert spaces arise in quantum mechanics.

How do we put a topology on a (possibly infinite) product?

Figure 3.4. A basic open set in the product topology restricts points
in only finitely many factors.

Definition. For each 𝛽 in 𝜆, define the projection function 𝜋𝛽 ∶ ∏𝛼∈𝜆 𝑋𝛼 → 𝑋𝛽 by
𝜋𝛽(𝑓) = 𝑓(𝛽). We define the product topology on∏𝛼∈𝜆 𝑋𝛼 to be the one generated
by the subbasis of sets of the form 𝜋−1𝛽 (𝑈𝛽), where 𝑈𝛽 is open in 𝑋𝛽.

Theorem 3.37. A basis for the product topology on∏𝛼∈𝜆 𝑋𝛼 is the collection of all sets
of the form∏𝛼∈𝜆𝑈𝛼, where 𝑈𝛼 is open in 𝑋𝛼 for each 𝛼 and 𝑈𝛼 = 𝑋𝛼 for all but finitely
many 𝛼.

Why do you think the product topology is sometimes also called the finite gate
topology?

Example. If each factor 𝑋𝛼 is the same space 𝑋 , then the product space ∏𝛼∈𝜆 𝑋𝛼 is
sometimes denoted 𝑋𝜆, where 𝜆 is the index set of the product or an ordinal number
representing it. Thus ℝ3 is the three-fold product of copies of ℝ. The countable prod-
uct of copies of ℝ is sometimes denoted ℝℕ or ℝ𝜔, where 𝜔 represents 𝜔0, the first
countably infinite ordinal.

Example. The space {0, 1}𝐴 = ∏𝑎∈𝐴{0, 1} is a product of discrete two-point
spaces, one for each element 𝑎 in 𝐴. An element of this space is a function
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𝑓 ∶ 𝐴 → {0, 1}. Note that for 𝑎 ∈ 𝐴, the projection function 𝜋𝑎 takes the function 𝑓 to
𝑓(𝑎), and note that {0, 1} has the discrete topology. Consider these subsets of {0, 1}𝐴:

𝑈(𝑎, 0) = 𝜋−1𝑎 (0) = {𝑓 ∈ {0, 1}𝐴 ∣ 𝑓(𝑎) = 0},
𝑈(𝑎, 1) = 𝜋−1𝑎 (1) = {𝑓 ∈ {0, 1}𝐴 ∣ 𝑓(𝑎) = 1}.

Then 𝒮 = {𝑈(𝑎, 𝛿) ∣ 𝑎 ∈ 𝐴, 𝛿 ∈ {0, 1}} is a subbasis for the product topology on {0, 1}𝐴.
This space {0, 1}𝐴 is also sometimes written 2𝐴, which you may recall is the no-

tation we reserved for the power set of 𝐴, because there is a natural bijection between
{0, 1}𝐴 and the power set of 𝐴. In particular, each function 𝑓 ∶ 𝐴 → {0, 1} can be
bijectively associated with the subset of all points of 𝐴where 𝑓 is 1. This bijection nat-
urally endows the power set 2𝐴 with a topology that comes from the product topology
on {0, 1}𝐴. Then for each 𝑎 in 𝐴, the subbasic set 𝑈(𝑎, 1) corresponds to the set of all
subsets of 𝐴 that contain 𝑎 and 𝑈(𝑎, 0) corresponds to the set of all subsets of 𝐴 that
do not contain 𝑎. So in thinking about 2𝐴, it may be helpful to pass back and forth
between viewing elements of 2𝐴 as subsets of 𝐴 or as functions 𝑓 ∶ 𝐴 → {0, 1}.

Exercise 3.38. Let Τ be the topology on 2𝑋 with basis generated by the subbasis 𝒮.
(1) Show that every basic open set in 2𝑋 is both open and closed.

(2) Show that if a collection of subbasic open sets of 2𝑋 has the property that every point
of 2𝑋 lies in at least one of those subbasic open sets, then there are two subbasic open
sets in that collection such that every point of 2𝑋 lies in one of those two subbasic sets.

(3) Show that if a collection of basic open sets of 2𝑋 has the property that every point of
2𝑋 lies in at least one of those basic open sets, then there are a finite number of basic
open sets in that collection such that every point of 2𝑋 lies in one of those basic open
sets.

Exercise 3.39. In the product space 2ℝ, what is the closure of the set 𝑍 consisting of all
elements of 2ℝ that are 0 on every rational coordinate, but may be 0 or 1 on any irrational
coordinate? Equivalently, thinking of 2ℝ as subsets of ℝ, what is the closure of the set 𝑍
consisting of all subsets of ℝ that do not contain any rational?

Recall from Theorem 2.30 that if a sequence (𝑥𝑖)𝑖∈ℕ converges to 𝑥 ∈ 𝑋 and each
𝑥𝑖 ∈ 𝐴, then 𝑥 ∈ 𝐴.

Effective Thinking Principle. Consider the Converse. We can deepen our
understanding of a theoremby consideringwhether or not the converse is true.

Exercise 3.40. Find a subset 𝐴 of 2ℝ and a limit point 𝑥 of 𝐴 such that no sequence in
𝐴 converges to 𝑥. For an even greater challenge, determine whether you can find such an
example if 𝐴 is countable.

You may have been wondering why the product topology, with a basis of sets with
finitely many restricted coordinates as in Theorem 3.37, is more natural than a topol-
ogy with a basis of sets in which we allow all coordinates to be restricted, i.e., where
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basic open sets are boxes: products of open sets in each coordinate. This alternative
construction yields another possible topology on an infinite product, called the box
topology.

Definition. A basis for the box topology on∏𝛼∈𝜆 𝑋𝛼 is the collection of all sets of the
form∏𝛼∈𝜆𝑈𝛼, where 𝑈𝛼 is open in 𝑋𝛼 for each 𝛼.

Every open set in the product topology is open in the box topology, but not vice
versa. Thus the box topology is finer than the product topology.

The next exercise and a few exercises in future chapters will show that the box
topology is actually quiteweird, while the product topology createsmorenatural spaces.

Exercise 3.41. Let ℝ𝜔 be the countable product of copies of ℝ. So every point in ℝ𝜔 is a
sequence (𝑥1, 𝑥2, 𝑥3, …). Let 𝐴 ⊂ ℝ𝜔 be the set consisting of all points with only positive
coordinates. Show that in the product topology, 𝟎 = (0, 0, 0, …) is a limit point of the
set 𝐴, and there is a sequence of points in 𝐴 converging to 𝟎. Then show that in the box
topology, 𝟎 = (0, 0, 0, …) is a limit point of the set 𝐴, but there is no sequence of points in
𝐴 converging to 𝟎.

Exercise 3.42. Show that the set 2ℕ with the box topology is a discrete space, whereas the
set 2ℕ with the product topology has no isolated points.

3.6 A Bounty of New Spaces
Before starting this chapter, our collection of topological spaces was rather limited.
The concepts of bases, subbases, products, and subspaces gave us an explosion of new
topological spaces to explore and enjoy. Giving the familiar real line the funky lower
limit topology produced a new space nicknamed ℝ1

𝑏𝑎𝑑. The lexicographically ordered
square has unexpected limit points and closures. The Sticky Bubble Topology is full of
interesting closed sets that can or cannot be put in disjoint open sets. The topology on
ℤ using arithmetic progressions gave us a proof of the infinitude of primes that Euclid
never dreamed of.

This ever-expanding collection of topological spaces suggests the topological con-
cepts we will explore in the chapters ahead. The Double Headed Snake had a pair of
points that cannot be put in disjoint open sets. The Sticky Bubble Topology presented
challenges about putting pairs of disjoint sets into disjoint open sets. The product topol-
ogy gave us examples suggesting properties of spaces that differentiate one topological
space from another. Concepts arise from examples and questions. This chapter has
enriched our stock of examples and opened up to us a world of questions that we will
begin exploring in the next chapter.





4
Separation Properties:

Separating This from That

Recall that one of themainmotivations for topology is to understand the essential prop-
erties of a space that make ideas from calculus work, such as convergence and continu-
ity. Specifically, we want to understand those ideas without referring to the concept of
distance. We will discover that some pertinent features of the topology revolve around
the question of whether open sets exist in the topology that separate various subsets
of the space from one another. Let’s consider the idea of convergence from calculus,
for example. A convergent sequence of real numbers cannot converge to two different
values 𝑥 and 𝑦. Why? Because we can find disjoint open intervals around 𝑥 and 𝑦. The
tail of the convergent sequence could not simultaneously be in both of those intervals,
so the sequence cannot converge to both 𝑥 and 𝑦. The key step in this little proof is the
existence of a pair of disjoint open intervals around 𝑥 and 𝑦.

The separation axioms explore the existence of pairs of open sets that separate ob-
jects in the space. In our example about convergence, we separated pairs of points,
but separating various other kinds of sets, such as closed sets, is also of interest. This
exploration gives rise to a hierarchy of so-called separation properties.

Some of the names of these separation properties consist of a capital 𝑇 with a sub-
script. Those unimaginative names have historical significance. In 1914, Felix Haus-
dorff wrote one of the foundational books about topology called Grundzüge der Men-
genlehre (Elements of Set Theory). In that book, Hausdorff defined what a topological
space is and then defined and explored properties of topological spaces. Since he wrote
in German, he naturally used the German word for separation, namely, Trennung. He
defined the separation properties in a numbered list, so the separation properties are
often referenced by the numbers appearing in that list: 𝑇1, 𝑇2, and so on. These names
seem rather unimaginative; however, the alternative names associated with these sep-
aration properties are, if anything, even less informative. “Regular” and “normal” are
two other words used to describe spaces with defined separation properties. These

55
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bland names do not help us to remember their meaning, but, as generations have be-
fore you, you too will soon happily converse about regular spaces and normal spaces
without having any concern about the anemic choice of vocabulary.

4.1 Hausdorff, Regular, and Normal Spaces
Now back to the mathematics. Figure 4.1 shows some separation properties.

Figure 4.1. Four separation properties.

Definition. Let (𝑋,𝒯) be a topological space.
(1) 𝑋 is a 𝑇1-space if and only if for every pair 𝑥, 𝑦 of distinct points there are open sets

𝑈,𝑉 such that 𝑈 contains 𝑥 but not 𝑦, and 𝑉 contains 𝑦 but not 𝑥.

(2) 𝑋 is Hausdorff, or a 𝑇2-space, if and only if for every pair 𝑥, 𝑦 of distinct points
there are disjoint open sets 𝑈,𝑉 such that 𝑥 ∈ 𝑈 and 𝑦 ∈ 𝑉 .

(3) 𝑋 is regular if and only if for every point𝑥 ∈ 𝑋 and closed set𝐴 ⊂ 𝑋 not containing
𝑥, there are disjoint open sets 𝑈,𝑉 such that 𝑥 ∈ 𝑈 and 𝐴 ⊂ 𝑉 . A 𝑇3-space is any
space that is both 𝑇1 and regular.

(4) 𝑋 is normal if and only if for every pair of disjoint closed sets 𝐴, 𝐵 in 𝑋 , there are
disjoint open sets 𝑈,𝑉 such that 𝐴 ⊂ 𝑈 and 𝐵 ⊂ 𝑉 . A 𝑇4-space is any space that
is both 𝑇1 and normal.

The most important property of a 𝑇1-space is that points are closed.

Theorem 4.1. A space (𝑋, Τ) is 𝑇1 if and only if every point in 𝑋 is a closed set.

For the topological spaces that you know, it is fun to determine which separation
axioms they satisfy. We will soon ask you to construct a chart listing examples along
the top and separation properties down the side and in each box answer the question
of whether the example of the column has the property of the row. Here are a few of
those exercises to warm up with.

Exercise 4.2. Let 𝑋 be a space with the finite complement topology. Show that 𝑋 is 𝑇1.

Exercise 4.3. Show that ℝstd is Hausdorff.

Exercise 4.4. Show that ℍbub is regular.

Exercise 4.5. Show that ℝLL is normal.
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Let’s explore some of these separation properties in our familiar example: ℝ2 with
the standard topology. Part (3) of the following exercise points out that a plausible
approach to proving the normality of ℝ2 does not work; however, as you will show in
part (4), ℝ2 is, in fact, normal.

Exercise 4.6. (1) Consider ℝ2 with the standard topology. Let 𝑝 ∈ ℝ2 be a point not in
a closed set 𝐴. Show that inf{𝑑(𝑎, 𝑝) ∣ 𝑎 ∈ 𝐴} > 0. (Recall that inf 𝐸 is the greatest
lower bound of a set of real numbers 𝐸.)

(2) Show that ℝ2 with the standard topology is regular.

(3) Find two disjoint closed subsets 𝐴 and 𝐵 of ℝ2 with the standard topology such that

inf{𝑑(𝑎, 𝑏) ∣ 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵} = 0.

(4) Show that ℝ2 with the standard topology is normal.

The separation axioms are related to one another in a hierarchical fashion sug-
gested by the 𝑇𝑖 nomenclature.

Theorem 4.7. (1) A 𝑇2-space (Hausdorff) is a 𝑇1-space.

(2) A 𝑇3-space (regular and 𝑇1) is a Hausdorff space, that is, a 𝑇2-space.

(3) A 𝑇4-space (normal and 𝑇1) is regular and 𝑇1, that is, a 𝑇3-space.

A word of caution as you read the literature: topologists sometimes differ on the
definitions of regular and normal spaces. Because of the above theorem, some books
include the𝑇1 condition as part of the definitions of regular and normal spaces, thereby
making a normal space automatically regular, and a regular space automatically Haus-
dorff. However, we will use the more common definitions of regular and normal that
do not include the 𝑇1 condition.

The following theorems give alternative characterizations of regularity and nor-
mality that can sometimes be useful.

Theorem 4.8. A topological space 𝑋 is regular if and only if for each point 𝑝 in 𝑋 and
open set 𝑈 containing 𝑝 there exists an open set 𝑉 such that 𝑝 ∈ 𝑉 and 𝑉 ⊂ 𝑈.

Theorem 4.9. A topological space 𝑋 is normal if and only if for each closed set 𝐴 in 𝑋
and open set 𝑈 containing 𝐴 there exists an open set 𝑉 such that 𝐴 ⊂ 𝑉 and 𝑉 ⊂ 𝑈.

The next theorem tells us that in normal spaces, closed sets can actually be sepa-
rated by open sets that are not only disjoint, but whose closures are also disjoint.

Theorem 4.10. A topological space 𝑋 is normal if and only if for each pair of disjoint
closed sets 𝐴 and 𝐵, there are disjoint open sets 𝑈 and 𝑉 such that 𝐴 ⊂ 𝑈, 𝐵 ⊂ 𝑉 , and
𝑈 ∩ 𝑉 = ∅.

The next characterization of normality is affectionately known as the “Incredible
Shrinking Theorem.”
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Theorem 4.11 (The Incredible Shrinking Theorem). A topological space 𝑋 is normal
if and only if for each pair of open sets𝑈, 𝑉 such that𝑈 ∪𝑉 = 𝑋 , there exist open sets𝑈′,
𝑉 ′ such that 𝑈′ ⊂ 𝑈 and 𝑉 ′ ⊂ 𝑉 , and 𝑈′ ∪ 𝑉 ′ = 𝑋 .

The previous theorem can actually be extended to a yet more Incredible Shrinking
Theorem. Using the Well-Ordering Theorem and a technique called transfinite induc-
tion, one can prove the following: if 𝑋 is normal, then for every collection {𝑈𝛼}𝛼∈𝜆 of
open sets such that⋃𝛼∈𝜆𝑈𝛼 = 𝑋 and each point of 𝑋 is in only finitely many of the
𝑈𝛼’s, there exist open sets {𝑈′

𝛼}𝛼∈𝜆 such that for each 𝛼 ∈ 𝜆, we have 𝑈′𝛼 ⊂ 𝑈𝛼 and
⋃𝛼∈𝜆𝑈′

𝛼 = 𝑋 .

Effective Thinking Principle. Find Examples to Distinguish Concepts. We
have now been introduced to a collection of new definitions. A goodway to get
accustomed to newdefinitions is to find examples thatmanifest the differences
in the various properties.

Exercise 4.12. (1) Describe an example of a topological space that is 𝑇1 but not 𝑇2.

(2) Describe an example of a topological space that is 𝑇2 but not 𝑇3.

(3) Describe an example of a topological space that is 𝑇3 but not 𝑇4.

Exercise 4.13. Construct a chart, listing our previous examples of topological spaces as
column titles, and listing the separation properties as row titles. In each box, answer the
question of whether the example of the column has the property of the row. Here are the
spaces to use as column titles:

(1) ℝstd

(2) ℝ𝑛
std

(3) indiscrete topology

(4) discrete topology

(5) finite complement topology

(6) countable complement topology

(7) lower limit topology, ℝLL

(8) Double Headed Snake, ℝ+00

(9) ℝhar

(10) Sticky Bubble Topology, ℍbub

(11) arithmetic progression topology, ℤarith
(12) lexicographically ordered square

(13) 2𝑋
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Here are the properties to use as row titles:

(1) 𝑇1
(2) Hausdorff

(3) regular

(4) normal

One of the more challenging problems in this table is the following entry.

Exercise 4.14. Show that ℍbub is not normal.

In the next sections, we will introduce additional properties and additional exam-
ples to add to your chart.

In some cases whole categories of spaces can be dealt with at once. You can add
“order topologies” as a column in your chart and use the following theorem to fill in
the separation properties of all ordered spaces with the order topology.

Theorem 4.15. Order topologies are 𝑇1, Hausdorff, regular, and normal.

4.2 Separation Properties and Products
Taking products is a method for creating new topological spaces from existing ones.
In your chart of spaces and properties add a column for products. For each property,
ask whether if you start with two spaces, each having that property, will the product
necessarily have that property? For instance:

Theorem 4.16. Let 𝑋 and 𝑌 be Hausdorff. Then 𝑋 × 𝑌 is Hausdorff.

Theorem 4.17. Let 𝑋 and 𝑌 be regular. Then 𝑋 × 𝑌 is regular.

For the above problem, Theorem 4.8 may make your life easier.
It turns out that the product of two normal spaces need not be normal. Recall that

ℝLL is normal.

Exercise 4.18. Show thatℝLL×ℝLL is not normal. It may help to consider the “negative
diagonal” line 𝐿.

4.3 A Question of Heredity
A natural question to ask is: given a topological space satisfying certain properties,
what properties do its subspaces “inherit?”

Definition. Let 𝑃 be a topological property (such as 𝑇1, Hausdorff, etc.). A topological
space 𝑋 is hereditarily 𝑃 if and only if for each subspace 𝑌 of 𝑋 , the space 𝑌 has
property 𝑃 when 𝑌 is given the relative topology from 𝑋 .

Theorem 4.19. Every Hausdorff space is hereditarily Hausdorff.
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Theorem 4.20. Every regular space is hereditarily regular.

However, not every normal space is hereditarily normal(!)— there actually exist
normal spaces that have non-normal subspaces.

Exercise 4.21. (1) Prove that the space 2ℝ is normal.

(2) Prove that if you remove a single point from 2ℝ, the resulting subspace is not normal.

This exercise asks you to prove two things, both of which are difficult. To prove
that 2ℝ is normal, you may find Exercise 3.38 useful. Or you could wait until we get to
the compactness chapter, after which this result will not be as difficult. Part (2) above
is difficult, and you are on your own.

There is a famous example of a space that is normal but not hereditarily normal
that goes by the piratical title of the Tychonoff Plank.

Example. TheTychonoffPlank is the product of two ordinal spaces: (𝜔0+1)×(𝜔1+1).

Exercise 4.22 (Walking the Tychonoff Plank, or Mutiny on the Boundary).

(1) Show that the Tychonoff Plank is normal.

(2) Show that the Tychonoff Plank minus the single point (𝜔0, 𝜔1) is not normal.

Although not every subspace of a normal space is normal, certain subspaces do
inherit normality.

Theorem 4.23. Let 𝐴 be a closed subset of a normal space 𝑋 . Then 𝐴 is normal when
given the relative topology.

Establishing whether a subset of a normal space is normal can be challenging. The
next exercise asks you to investigate a particular subset of 2𝑋 . However, this exercise is
extremely difficult, and we recommend that you skip it.

Exercise 4.24. (1) Prove that for any set 𝑋 , 2𝑋 is normal. (This part is not really differ-
ent from showing that 2ℝ is normal, which you did in a previous exercise.)

(2) Recall that there is a one-to-one correspondence between the points of 2𝑋 and subsets
of 𝑋 , as follows: recall that each point of 2𝑋 is a function 𝑓 ∶ 𝑋 → {0, 1}, so 𝑓−1(1)
is a subset of 𝑋 . Let 𝐶 ⊂ 2𝑋 consist of those points that take on the value 1 on only a
countable set of coordinates, that is, 𝐶 is the set of functions 𝑓 ∶ 𝑋 → {0, 1}, for which
𝑓−1(1) is countable. Prove that 𝐶 with the subspace topology is normal.

In trying to prove that a subspace is normal, we naturally must consider two dis-
joint sets that are closed and disjoint in the subspace topology. The next exercise con-
tains an observation about such sets.

Exercise 4.25. Let 𝑌 be a subspace of a topological space 𝑋 , and let 𝐴 and 𝐵 be two
disjoint closed subsets of 𝑌 in the subspace topology. Show that both 𝐴 ∩ 𝐵 = ∅ and
𝐴 ∩ 𝐵 = ∅, where the closures are taken in 𝑋 .
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Such pairs of sets that do not contain limit points of the other set deserve a name.

Definition. Two sets 𝐴 and 𝐵 in a space 𝑋 are separated if and only if both 𝐴 ∩ 𝐵 = ∅
and 𝐴 ∩ 𝐵 = ∅.

Definition. A space 𝑋 is completely normal if and only if for any two separated sets
𝐴 and 𝐵 there exist disjoint open sets𝑈 and 𝑉 such that 𝐴 ⊂ 𝑈 and 𝐵 ⊂ 𝑉 . A 𝑇5-space
is any space that is both 𝑇1 and completely normal.

Theorem 4.26. The space 𝑋 is a completely normal space if and only if 𝑋 is hereditarily
normal.

Ordered spaces, that is, spaces whose topology is generated from an order on the
points, are all normal. But as you’ll see in the next exercise, the relative topology on
subsets of ordered spaces is not necessarily generated by the ordering of the points in
the subset. So the hereditary normality of ordered spaces is not immediate.

Exercise 4.27. (1) Recall that ℝ is an order topology. Find a subset of ℝ where the sub-
space topology is not the order topology on the subset.

(2) Find a line in the lexicographically ordered square whose relative topology is the dis-
crete topology on this line, but this is not the order topology on the subset.

(3) Notice that ℝLL is not an order topology. Find a line in the lexicographically ordered
square whose relative topology is the lower limit topology.

The above exercise shows us that the relative topology on a subset of an ordered
space is not necessarily an order topology. Nevertheless, all subspaces of order topolo-
gies are normal.

Theorem 4.28. Order topologies are hereditarily normal.

4.4 The Normality Lemma
In trying to prove that a topological space is normal, we are faced with the challenge of
producing two disjoint open sets that contain a pair of disjoint closed sets. The follow-
ing theorem describes conditions under which it is possible to construct disjoint open
sets around a pair of sets that may or may not be closed.

Theorem 4.29 (The Normality Lemma). Let 𝐴 and 𝐵 be subsets of a topological space
𝑋 , and let {𝑈𝑖}𝑖∈ℕ and {𝑉𝑖}𝑖∈ℕ be two collections of open sets such that
(1) 𝐴 ⊂ ⋃𝑖∈ℕ𝑈𝑖,
(2) 𝐵 ⊂ ⋃𝑖∈ℕ 𝑉𝑖,

(3) for each 𝑖 in ℕ, 𝑈 𝑖 ∩ 𝐵 = ∅ and 𝑉 𝑖 ∩ 𝐴 = ∅.
Then there exist open sets 𝑈 and 𝑉 such that 𝐴 ⊂ 𝑈, 𝐵 ⊂ 𝑉 , and 𝑈 ∩ 𝑉 = ∅.

Not all subspaces of normal spaces are normal, but we showed in Theorem 4.23
that closed subspaces of a normal space are normal. The next theorem shows that
subspaces of normal spaces that are countable unions of closed sets are also normal.
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Figure 4.2. The Normality Lemma.

Theorem 4.30. If 𝑋 is normal and 𝐶 = ⋃𝑖∈ℕ 𝐾𝑖 is the union of closed sets 𝐾𝑖 in 𝑋 , then
the subspace 𝐶 is normal.

Another application of the Normality Lemma shows that countable regular spaces
are normal.

Theorem 4.31. Suppose a space 𝑋 is regular and countable. Then 𝑋 is normal.

Theorem 4.32. Suppose a space 𝑋 is regular and has a countable basis. Then 𝑋 is nor-
mal.

Definition. A space 𝑋 is perfectly normal if and only if 𝑋 is normal and each closed
set 𝐴 in 𝑋 is the intersection of countably many open sets.

Theorem 4.33. Let 𝑋 be a perfectly normal space. Then 𝑋 is completely normal.

4.5 Separating This from That
Topological spaces differ in which pairs of sets can be separated by disjoint open sets.
In this section, we saw a whole hierarchy of separation properties. Among 𝑇1 spaces
the hierarchy went from 𝑇1 to Hausdorff to regular to normal to completely normal to
perfectly normal. When we got to normality in this hierarchy, issues of inheritance
of properties to subsets and products became more interesting. Perhaps it requires a
special kind of person to enjoy the myriad challenges of determining which examples
of spaces exhibit which properties, but we hope you are one of those special people.

The separation properties are characteristics of topological spaces that can help
us to distinguish one space from another. As is the case with most any meaningful
subject, when we examine topological spaces more closely, we become attentive to in-
creasingly detailed and increasingly interesting features of them. In this chapter we
examined spaces from the perspective of how various kinds of subsets can be separated
from one another by disjoint open sets. In the next chapters, we will look at features
of spaces that focus on other kinds of characteristics. This strategy of exploring topo-
logical spaces is a metaphor for one of the most powerful methods of understanding
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our world more deeply, namely, choosing a perspective and undertaking explorations
using that lens; and then choosing another perspective and exploring the same world
again using that alternative lens. We have a whole optometrist’s storehouse of lenses
ahead. Enjoy.





5
Countable Features of Spaces:

Size Restrictions

In this chapter, we will explore several properties of topological spaces that have to do
with countability—countability of a dense set, countability of a basis, countability of a
local version of a basis. Recall from Chapter 1 that a countable set is one that is finite
or has the same cardinality as ℕ.

In some sense, these countability properties impose a restriction on the “size” of
the space by restricting the size (the cardinality) of some of its topological features.
Countability affords us a systematic way to study the space, namely, countability al-
lows us to go through an enumerated list, one item after another. We will see that the
countability properties often have implications about other topological properties of
the space.

For instance, one of the final theorems of the previous chapter asserted that a reg-
ular space that is countable must be normal. One way to view that theorem is that the
countability property strengthens the separation property of the space: a regular space
with only a countable number of points now has further structure—it must be normal.
The proof of that theorem relies on creating a step-by-step process that deals with the
points one at a time.

As another example, in this chapter you will prove that in any space with a count-
able basis, an uncountable set has further structure—it must have a limit point. The
proof uses the enumerability of the basis to perform a construction that produces a
limit point.

5.1 Separable Spaces, An Unfortunate Name
We introduce the idea of a dense subset of a topological space.

Definition. Let 𝐴 be a subset of a topological space 𝑋 . Then 𝐴 is dense in 𝑋 if and only
if 𝐴 = 𝑋 .
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So you can think of a dense subset𝐴 of a space𝑋 as a set that permeates the space—
every point in 𝑋 can be approached arbitrarily closely by points of 𝐴.

Exercise 5.1. Show that 𝐴 is dense in 𝑋 if and only if every non-empty open set of 𝑋
contains a point of 𝐴.

Definition. A topological space 𝑋 is separable if and only if 𝑋 has a countable dense
subset.

The choice of theword separable for the property described above is an unfortunate
one (due to Fréchet), since it is not related to the separation properties we described in
the previous chapter. Nor is it related to the concept of separated sets also defined in
the previous chapter.

You can think of a separable space as one that is not too large, because there is a
countable set which every open set intersects, so there is a countable set of points that
is “close” to every point in the space.

Exercise 5.2. Show that ℝstd is separable. With which of the topologies on ℝ that you
have studied is ℝ not separable?

Exercise 5.3. Add “separable” as a new property in your chart from Exercise 4.13, and
complete your chart by deciding which of the spaces we’ve studied are separable.

In exploring a newproperty, it is natural to askwhether it is inherited by subspaces.

Exercise 5.4. Find a separable space that contains a subspace that is not separable in
the subspace topology.

Fortunately the property of being separable is better behaved when we take prod-
ucts.

Theorem 5.5. If 𝑋 and 𝑌 are separable spaces, then 𝑋 × 𝑌 is separable.

Theorem 5.6. The space 2ℝ is separable.

This theorem is a special case of the following more general fact, which says if the
size of the indexing set is relatively small, then the product will have a countable dense
set in it.

Exercise 5.7. Let {𝑋𝛽}𝛽∈𝜇 be a collection of separable spaces where |𝜇| ≤ 2𝜔0 . Then
∏𝛽∈𝜇 𝑋𝛽 is separable.

In a sense, a separable space is not too large since every point in it is a limit point
of some countable set. The next, challenging theorem shows us that indeed the cardi-
nality of any separable Hausdorff space is limited.

Exercise 5.8. If 𝑋 is a separable, Hausdorff space, then |𝑋| ≤ ||22
ℕ ||.

To prove it, you may wish to associate a point in 22ℕ with a set of subsets of the
countable dense set.
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5.2 2nd Countable Spaces
Another way to measure the size of a space is to measure the size of a basis for its
topology.

Definition. A space 𝑋 is 2nd countable if and only if 𝑋 has a countable basis.

So in a 2nd countable space every open set can be built up from a countable col-
lection of basic open sets. You may be wondering two things: (1) why do we define
2nd countable before defining 1st countable? and (2) why do we name it 2nd countable
instead of something more descriptive, such as “basis-countable?”

Both these questions have the same answer: they were introduced as axioms about
topological spaces by Hausdorff inMengenlehre.

Theorem 5.9. Let 𝑋 be a 2nd countable space. Then 𝑋 is separable.

The following exercise asks you to establish the separability or 2nd countability of
a few specific spaces. Notice that in order to show that a space is not 2nd countable, you
must show that any possible basis cannot be countable, not just a given basis. Equiva-
lently, in order to show that a given topological space is not 2nd countable, you need
to show that any countable collection of open sets in the topology cannot generate the
whole topology.

Exercise 5.10. (1) The space ℝstd is 2nd countable (and hence separable).

(2) The space ℝLL is separable but not 2nd countable.

(3) The space ℍbub is separable but not 2nd countable.

These countability properties suggest that in some way the space is not too large.
If you try to cram a “large” set in a space that isn’t too large, what do you expect to
happen? The set should have a limit point!

Theorem 5.11. Every uncountable set in a 2nd countable space has a limit point.

The property of 2nd countability behaves well with respect to heredity and prod-
ucts.

Exercise 5.12. A 2nd countable space is hereditarily 2nd countable.

Exercise 5.13. If 𝑋 and 𝑌 are 2nd countable spaces, then 𝑋 × 𝑌 is 2nd countable.

5.3 1st Countable Spaces

Effective Thinking Principle. Consider Ideas at Different Scales. One of
the strategies of mathematics is, after conceiving of a property at some level,
to consider whether that same idea could be valuable at a different scale.
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The property of 2nd countability refers to a basis for the whole topology; however,
we could consider a local version of that idea. Thinking in this way leads to the concept
of a local basis at a point. After we have pinned down the idea of a local basis at a point,
then we can give a version of 2nd countability at a local level.

Definition. Let 𝑝 be a point in a space 𝑋 . A collection of open sets {𝑈𝛼}𝛼∈𝜆 in 𝑋 is a
neighborhood basis for 𝑝 if and only if: (i) each 𝑈𝛼 contains 𝑝, and (ii) every open
set containing 𝑝 contains some 𝑈𝛼.

Definition. A topological space 𝑋 is 1st countable if and only if every point of 𝑋 has a
countable neighborhood basis.

The next theorem shows the relationship between 2nd countability and 1st count-
ability.

Theorem 5.14. Let 𝑋 be a 2nd countable space. Then 𝑋 is 1st countable.

Effective Thinking Principle. Look for Implications of Definitions. Some-
times a definition immediately implies an apparently stronger version or ver-
sions of the definition. Seek them out and formulate them.

One of the simplifying insights about countable neighborhood bases is that they
can be chosen to be nested, that is, they can be indexed by the natural numbers in such
a way that each subsequent set is a subset of the previous one.

Theorem 5.15. If 𝑋 is a topological space, 𝑝 ∈ 𝑋 , and 𝑝 has a countable neighborhood
basis, then 𝑝 has a nested countable neighborhood basis.

The next exercise asks you to investigate the 1st countability properties of some
specific spaces.

Exercise 5.16. (1) The space ℝLL is 1st countable.

(2) The space ℍbub is 1st countable.

(3) The space 2ℝ is not 1st countable.

Exercise 5.17. Youmay aswell extend your chart of spaces and properties by adding new
rows for the properties 1st countable and 2nd countable and determining those properties
for each of your spaces.

One important feature of a 1st countable space is that in such a space, every limit
point is “reachable” by some convergent sequence. Recall from Exercises 3.40 and 3.41
that there are spaces in which limit points are not accessible by convergent sequences.

Theorem 5.18. Suppose 𝑥 is a limit point of the set 𝐴 in a 1st countable space 𝑋 . Then
there is a sequence of points {𝑎𝑖}𝑖∈ℕ in 𝐴 that converges to 𝑥.
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Theproperty of 1st countability also behaveswellwith respect to heredity andprod-
ucts.

Exercise 5.19. A 1st countable space is hereditarily 1st countable.

Exercise 5.20. If 𝑋 and 𝑌 are 1st countable spaces, then 𝑋 × 𝑌 is 1st countable.

5.4 The Souslin Property
For fun, we include some theorems about the Souslin property, but they are not central
for understanding the main ideas that follow in subsequent chapters.

Definition. A space 𝑋 has the Souslin property if and only if 𝑋 does not contain an
uncountable collection of disjoint open sets.

Exercise 5.21. Show that the real line with the standard topology is Souslin.

The previous exercise is really an example of the following theorem.

Theorem 5.22. A separable space has the Souslin property.

You might think that having the Souslin property is basically the same as being
separable; however, there are counterexamples. The spaces of the form 2𝑋 might be
places to look for such examples.

Theorem 5.23. For any set 𝑋 , the topological space 2𝑋 has the Souslin property.

Exercise 5.24. Find a Souslin space that is not separable.

Theorem 5.23 is a special case of a more general result, namely:

Theorem5.25. Let {𝑋𝛽}𝛽∈𝜇 be a collection of separable spaces. Then∏𝛽∈𝜇 𝑋𝛽 is Souslin.

The Souslin property is part of an investigation about basic properties of the real
line that turn out to push us to the boundary of set theory and beyond. Products of
Souslin spaces take us to perhaps even weirder realms. It turns out that the question of
whether the product of Souslin spaces is Souslin is independent of the standard axioms
of set theory.

5.5 Count on It
This chapter invited you to explore the implications of restricting the size (the cardinal-
ity) of some features of spaces. You considered spaces that have a countable dense set
(separable spaces); spaces that have a countable basis (2nd countable spaces); spaces
where each point has a local countable basis (1st countable spaces); and spaces that do
not contain an uncountable collection of disjoint open sets (Souslin spaces).

The exploration of these countability properties of spaces demonstrated great
strategies for creating and learning mathematical ideas. When you saw a new idea,
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you connected it with previous ideas. For example, once a property was identified,
you investigated whether or not subspaces or products of those spaces would still have
that property. After a property was identified, such as 2nd countability, you considered
whether a local version would bemeaningful (in this case, the concept of 1st countabil-
ity) and explored its consequences.

The special feature of countability is that a countable set can be listed in order like
the natural numbers. That ordering gives you the option to deal with the situation one
step at a time. In this chapter, you thought about countable features of spaces. In the
next chapter, you will consider a version of size restriction of spaces associated with
covering spaces with open sets.



6
Compactness: The Next Best

Thing to Being Finite

The next properties we will study are the “covering” properties, so called because they
involve collections of open sets (called, appropriately, “open covers”) that cover the
space or a subset of the space. Like the countability properties, these covering proper-
ties in some sense give us a measure of the size of the space in relation to its topology.

Open covers of topological spaces or subsets of topological spaces arise naturally.
Frequently, we are presentedwith a scenario in which every point of the space or a sub-
set of the space has an open set containing it with some property or other. Many proofs
that involve open covers become accessible if infinite open covers can be replaced by
subcollections of open sets that still cover but are finite.

For example, in a Hausdorff space, if you are given a point 𝑝 and a set 𝐴 not con-
taining 𝑝, then for every point 𝑞 ∈ 𝐴, the Hausdorff property assures you that there
exist disjoint open sets 𝑈𝑞 and 𝑉𝑞 with 𝑝 ∈ 𝑈𝑞 and 𝑞 ∈ 𝑉𝑞. The collection of open sets
{𝑉𝑞}𝑞∈𝐴 is an open cover of 𝐴. In general, it may not be possible to put 𝑝 and 𝐴 into
disjoint open sets; however, if there were a finite number of those open sets 𝑉𝑞 that
completely covered 𝐴, then you would be able to put 𝑝 and 𝐴 into disjoint open sets.
(Do you see why?) Such a finite collection of open sets 𝑉𝑞 would make 𝐴’s behavior
like a set with only a finite number of points, and you would be able to separate 𝑝 from
𝐴. In other words, if you somehow knew that the open cover {𝑉𝑞}𝑞∈𝐴 had a finite sub-
collection that also contained every point of 𝐴, then you could succeed in separating 𝑝
from 𝐴.

As in the example above, replacing infinite open covers by finite subcollections
of open sets that still cover frequently allows you to do something that you would not
otherwise be able to do. One strategy ofmathematics is to create a concept that captures
desirable features that you would like to have available in trying to prove a theorem or
set of theorems. For example, the concepts of differentiability or continuity focus our
attention on functions with desirable properties that allow us to deduce results that
are not true for arbitrary functions. As you will see in this chapter, many important
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topological spaces have this desirable property that every open cover has a subcover
that is finite.

In this chapter you will explore open covers of topological spaces. You will de-
fine concepts related to these open covers and will discover the rich world of covering
properties and the consequences that emerge.

6.1 Compact Sets
Definition. Let 𝐴 be a subset of 𝑋 and let 𝒞 = {𝐶𝛼}𝛼∈𝜆 be a collection of subsets of 𝑋 .
Then 𝒞 is a cover of 𝐴 if and only if 𝐴 ⊂ ⋃𝛼∈𝜆 𝐶𝛼. The collection 𝒞 is an open cover
of 𝐴 if and only if 𝒞 is a cover of 𝐴 and each 𝐶𝛼 is open. A subcover 𝒞′ of a cover 𝒞 of
𝐴 is a subcollection of 𝒞 whose elements form a cover of 𝐴.

For instance, the open sets {(−𝑛, 𝑛)}𝑛∈ℕ form an open cover of ℝ. A subcover of
this cover is {(−𝑛, 𝑛)}𝑛≥5, because these sets still cover all of ℝ.

Definition. A space 𝑋 is compact if and only if every open cover of 𝑋 has a finite
subcover.

So for instance, in the example above, does the open cover {(−𝑛, 𝑛)}𝑛∈ℕ ofℝ have a
finite subcover? If you think about it, youmay see that this cover has no finite subcover,
because any finite collection of these sets has a largest set that contains all the others,
and points outside this set are not covered by this finite collection. So ℝ cannot be
compact, because not every open cover has a finite subcover.

Be careful: many students new to the concept think the definition of compactness
says a space is compact if and only if it has a finite cover. No! If having a finite open
coverwere the definition, the conceptwould be useless, because every space has a finite
open cover—namely, just cover the space 𝑋 by one set: 𝑋 itself, which is open.

To show a space is compact, you must prove that for any open cover that you are
given, that is, for every possible open cover, you can prove that that open cover has a
finite subcover.

Theorem 6.1. Let 𝑋 be a finite topological space. Then 𝑋 is compact.

A compact space may not be finite, but in some respects, it is the next best thing.
Compact spaces enjoy many properties that finite sets do. For instance, as we shall
see, not all subsets of real numbers have a maximum, but finite subsets and compact
subspaces do.

Theorem 6.2. Let 𝐶 be a compact subset ofℝstd. Then 𝐶 has a maximum point, that is,
there is a point𝑚 ∈ 𝐶 such that for every 𝑥 ∈ 𝐶, 𝑥 ≤ 𝑚.

And the “smallness” of a compact space 𝑋 is reflected in the fact that every infinite
subset 𝐸 has a limit point.

Theorem 6.3. If 𝑋 is a compact space, then every infinite subset of 𝑋 has a limit point.

Corollary 6.4. If 𝑋 is compact and 𝐸 is a subset of 𝑋 with no limit point, then 𝐸 is finite.
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Compactness is framed in terms of open sets and unions; the next two theorems
give equivalent formulations in terms of closed sets and intersections. Let us first define
the finite intersection property of a collection of sets.

Definition. A collection of sets has the finite intersection property if and only if
every finite subcollection has a non-empty intersection.

This definition can be used in an alternative characterization of compactness.

Theorem 6.5. A space 𝑋 is compact if and only if every collection of closed sets with the
finite intersection property has a non-empty intersection.

The next theorem shows that compactness is equivalent to the following property:
for every (possibly infinite) collection of closed sets whose intersection lies in an open
set, the intersection of some finite number of those closed sets lies in that open set.
Notice that one direction is simply a corollary of the previous theorem.

Theorem 6.6. A space 𝑋 is compact if and only if for any open set 𝑈 in 𝑋 and any
collection of closed sets {𝐾𝛼}𝛼∈𝜆 such that⋂𝛼∈𝜆 𝐾𝛼 ⊂ 𝑈, there exist a finite number of the
𝐾𝛼’s whose intersection lies in 𝑈.

We have been speaking about compactness of a topological space 𝑋 , but we can
just as easily speak of the compactness of a subspace 𝐴 without confusion, because by
the definition of the subspace topology, a cover of 𝐴 by open sets {𝑈𝛼} in 𝑋 restricts
to a cover of 𝐴 by relative open sets {𝑈𝛼 ∩ 𝐴} in 𝐴. So “every open cover has a finite
subcover” has the same meaning whether we regard 𝐴 as a subspace of 𝑋 or as its own
topological space.

Exercise 6.7. If 𝐴 and 𝐵 are compact subsets of 𝑋 , then 𝐴 ∪ 𝐵 is compact. Suggest and
prove a generalization.

As the next theorems show, there is a tight connection between compact sets and
closed sets, namely, closed subsets of compact spaces are compact and compact subsets
of Hausdorff spaces must be closed.

Theorem 6.8. Let 𝐴 be a closed subspace of a compact space. Then 𝐴 is compact.

You may find an especially pleasing proof of the next theorem.

Theorem 6.9. Let 𝐴 be a compact subspace of a Hausdorff space 𝑋 . Then 𝐴 is closed.

Effective Thinking Principle. Explore Limits of Theorems; Add Hypotheses.
When you discover a theorem, explore its limitations and possible extensions
by systematically weakening the hypotheses and checking to see whether the
theorem is still true and strengthening the conclusion to see whether you can
deduce more than you originally thought.
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The following exercises may be illuminating.

Exercise 6.10. Construct an example of a compact subset of a topological space that is
not closed.

Exercise 6.11. Must the intersection of two compact sets be compact? Add hypotheses, if
necessary. Extend any theorems you discover, if possible.

Covering properties and separation properties of spaces are related. Proofs of the
following theorems use the interplay of covering and separation properties in a delight-
ful way. For instance the next theorem will show that a compact Hausdorff space is
normal. As an intermediate step youmay wish to first show that a compact, Hausdorff
space is regular.

Theorem 6.12. Every compact, Hausdorff space is normal.

We end this introductory section on compactness by making an observation about
compactness in spaces whose topology is generated by a basis. In the definition of com-
pactness, arbitrary open covers appear. Suppose the topology is generated by a basis.
Would it be sufficient to consider only open covers by basic open sets to determine
whether the space is compact?

Theorem 6.13. Let ℬ be a basis for a space 𝑋 . Then 𝑋 is compact if and only if every
cover of 𝑋 by basic open sets inℬ has a finite subcover.

6.2 The Heine-Borel Theorem
Which subsets of the real line ℝ are compact? Recall that when we refer to ℝ and do
not mention a topology, then we are talking about ℝstd.

Let’s look at the first non-trivial example: a closed interval. That a closed interval
is compact is a basic insight in the topology of the real line. To prove it, you will have
to use some axiom about the real numbers such as the axiom that every bounded set
has a least upper bound.

Theorem 6.14. For any 𝑎 ≤ 𝑏 in ℝ, the subspace [𝑎, 𝑏] is compact.

The next theorem completely characterizes the sets inℝstd that are compact. This
theorem, known as the Heine-Borel Theorem, is one of the fundamental theorems
about the topology of the line.

Recall a set 𝐴 in ℝ1 is bounded if and only if there is a number𝑀 such that 𝐴 ⊂
[−𝑀,𝑀].

Theorem 6.15 (Heine-Borel Theorem). Let 𝐴 be a subset of ℝstd. Then 𝐴 is compact if
and only if 𝐴 is closed and bounded.

Effective Thinking Principle. Look at Examples to Understand Theorems.
One of the best ways to make a theorem more meaningful is to see its impli-
cations in specific cases.
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Exercise 6.16. Consider the rationals ℚ with the subspace topology inherited from ℝ.
Find a set 𝐴 inℚ that is closed and bounded but not compact.

Knowing that compact subsets of real numbers are closed allows you to give a
possibly different proof of the fact that compact subsets of ℝ have a maximum.

Theorem 6.17. Every compact subset𝐶 ofℝ contains amaximum in the set𝐶, i.e., there
is an𝑚 ∈ 𝐶 such that for any 𝑥 ∈ 𝐶, 𝑥 ≤ 𝑚.

6.3 Compactness and Products

Effective Thinking Principle. Consider Related Spaces. Once you have
proved a theorem for one space, see whether it is true for related spaces.

Let’s explore whether compactness is preserved when you take products of spaces.
You will get off to a promising start by proving that the product of two compact spaces
is compact. First prove a theorem known as the “tube lemma.”

Theorem 6.18 (The tube lemma). Let 𝑋 × 𝑌 be a product space with 𝑌 compact. If 𝑈
is an open set of 𝑋 × 𝑌 containing the set 𝑥0 × 𝑌 , then there is some open set 𝑊 in 𝑋
containing 𝑥0 such that 𝑈 contains𝑊 × 𝑌 (called a “tube” around 𝑥0 × 𝑌 ).

The tube lemma is a good start toward proving that compactness is preservedwhen
taking products.

Theorem 6.19. Let 𝑋 and 𝑌 be compact spaces. Then 𝑋 × 𝑌 is compact.

Repeated application of this theorem shows that any finite product of compact
spaces is compact.

Knowing that products of compact spaces are compact suggests that some theo-
rems about the line might be true in higher dimensions. The Heine-Borel Theorem
characterizes compact sets in the real line. It is natural to ask what the analogous the-
oremwould be for higher-dimensional Euclidean spaces. Viewingℝ𝑛

std as a product of
copies of ℝstd is one way to generalize the Heine-Borel Theorem to ℝ𝑛

std.

Theorem 6.20 (Heine-Borel Theorem). Let𝐴 be a subset ofℝ𝑛 with the standard topol-
ogy. Then 𝐴 is compact if and only if 𝐴 is closed and bounded.

Theorem 6.13 stated that it was sufficient to consider only basic open covers to
determine compactness; this fact follows rather straightforwardly from the definitions.
In contrast, the Alexander Subbasis Theorem below is not straightforward to prove. It
states that considering subbasic open covers (that is, open covers each element ofwhich
is a set in the subbasis) suffices to determine compactness. Recall that a subbasis for a
topology is a collection of open sets in the topologywith the property that the collection
of all finite intersections of sets in the subbasis forms a basis for the topology.

The proof of the Alexander Subbasis Theorem is difficult. You might consider us-
ing Zorn’s Lemma or theWell-Ordering Theorem (see Chapter 1) as you try to prove it.
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In fact, youwill have to use some axiom like that since theAlexander Subbasis Theorem
is equivalent to Zorn’s Lemma or the Axiom of Choice or the Well-Ordering Theorem,
which are all equivalent to one another.

Theorem 6.21 (Alexander Subbasis Theorem). Let 𝒮 be a subbasis for a space 𝑋 . Then
𝑋 is compact if and only if every subbasic open cover has a finite subcover.

Exercise 6.22. Use the Alexander Subbasis Theorem to prove that the space 2𝑋 is com-
pact for every 𝑋 .

In fact, you can now show that any product of compact spaces is compact, even
infinite products. That assertion is the Tychonoff Theorem, named after the topologist
Andrey Nikolayevich Tychonoff (or Tikhonov) who lived from 1906 until 1993 and
proved this theorem in 1930.

Theorem 6.23 (Tychonoff’s Theorem). Any product of compact spaces is compact.

Exercise 6.24. Show that [0, 1]𝜔 with the box topology is not compact, thus showing
that the Tychonoff Theorem is not true if the box topology is used instead of the product
topology.

6.4 Countably Compact, Lindelöf Spaces
Wenow consider some covering properties related to compactness. The strategy for ex-
ploring these new covering properties is to first define them and then systematically go
through our results from compactness and see how those results manifest themselves
in the context of the new covering properties.

Effective Thinking Principle. Consider Analogies of Previous Results. After
developing variations of previous concepts, look at previous results and see
what analogous results hold.

Definition. A space 𝑋 is countably compact if and only if every countable open cover
of 𝑋 has a finite subcover.

Definition. A space 𝑋 is Lindelöf if and only if every open cover of 𝑋 has a countable
subcover.

It is evident that a compact space is countably compact; and a compact space is
also Lindelöf. In the reverse direction, we have the following result.

Theorem 6.25. Every countably compact and Lindelöf space is compact.

In some sense, the preceding theorem shows that compactness can be broken into
two steps—taking an arbitrary cover andmaking it countable and then taking a count-
able cover and making it finite. This result encourages us to look again at our previ-
ous results where compactness was in the hypothesis with an eye toward investigating
whether both halves of this two-step process were needed in drawing the conclusion.
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Effective Thinking Principle. Weaken Hypotheses if Possible. To under-
stand theorems better and to improve them if possible, identify exactly what
aspects of the hypotheses were actually used in the proof.

One of the early theorems you proved about compactness concerned limit points.
You proved earlier that in a compact space, every infinite set has a limit point. Actually,
only the countable compactness property was needed to draw that conclusion. In fact,
the issue of convergence basically characterizes countably compact spaces.

Theorem 6.26. Let 𝑋 be a 𝑇1 space. Then 𝑋 is countably compact if and only if every
infinite subset of 𝑋 has a limit point.

In a Lindelöf space, it is possible to have an infinite set with no limit point; how-
ever, recall that you proved earlier that every uncountable set in a 2nd countable space
must have a limit point. The following theorem shows that the same must be true in a
Lindelöf space.

Theorem 6.27. If 𝑋 is a Lindelöf space, then every uncountable subset of 𝑋 has a limit
point.

Exercise 6.28. Formulate and prove theorems about Lindelöf and countably compact
spaces analogous to the theorems you proved relating compactness with collections of
closed sets with the finite intersection property.

Closed subsets of compact spaces are compact. The similar statement is true for
Lindelöf and countably compact spaces.

Theorem 6.29. If 𝐴 is a closed subspace of a countably compact (respectively, Lindelöf)
space, then 𝐴 is countably compact (respectively, Lindelöf).

Earlier you proved a connection between compactness and normality. Recall that
in proving that a compact, Hausdorff space is normal, you first proved that a compact,
Hausdorff space is regular. Then you proved that a regular, compact Hausdorff space
is normal. The following theorem observes that after regularity is established, the Lin-
delöf condition of the space is all that is needed to infer the conclusion. You may find
it useful to use the Normality Lemma in your proof.

Theorem 6.30. Every regular, Lindelöf space is normal.

In Theorem 6.13 you proved that only basic open covers need be considered when
determining compactness of spaces. That encourages us to consider the analogous
questions for our new covering properties.

Theorem 6.31. Let ℬ be a basis for a space 𝑋 . Then 𝑋 is Lindelöf if and only if every
cover of 𝑋 by basic open sets inℬ has a countable subcover.

Corollary 6.32. Every 2nd countable space is Lindelöf.
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So in a 2nd countable space (which is Lindelöf), regularity implies normality. We
have also seen that in 2nd countable spaces, uncountable subsets have limit points,
and limit points are reachable by convergent sequences. So we see that 2nd countable
spaces have special properties, which we will explore further when we study metric
spaces in Chapter 9.

You have seen that a natural connection exists between bases and the Lindelöf
property. The following exercise is the next logical question, because it asks whether
considering basic open sets is sufficient to determine countable compactness. Although
counterexamples exist, the authors cannot think of one, but perhaps you can.

Exercise 6.33. Can you think of a topological space in which every countable open cover
by basic open sets has a finite subcover and yet not every countable open cover has a finite
subcover?

You saw that the product of compact spaces is compact. So it is natural to inves-
tigate whether other covering properties are preserved when we take products. The
answers are no.

Exercise 6.34. Show that ℝLL is Lindelöf, but ℝLL × ℝLL is not Lindelöf.

There are countably compact spaces whose product is not countably compact;
however, they are not easy to produce.

Effective Thinking Principle. Look at Examples. After learning new con-
cepts, investigate examples to see how those properties manifest themselves.

The ordinal numbers (Section 1.6) give us some good examples of compact and
countably compact spaces.

Theorem 6.35. The space 𝜔1 of countable ordinals is countably compact but not com-
pact.

Theorem 6.36. The space 𝜔1 + 1, which includes all countable ordinals together with
the ordinal 𝜔1, is compact.

Exercise 6.37. Extend your chart of spaces and properties by adding new rows for the
properties compact, Lindelöf, and countably compact and determining those properties
for each of your spaces.

6.5 Paracompactness
One strategy for developing new mathematics is to take a concept that applies to a
whole space and exploring local versions of it. You saw this strategy at work when you
first investigated spaces with a countable basis and then explored the local version,
namely, 1st countable spaces. Here we will take the idea of compactness, that is, every
open cover having a finite subcover, and asking what kind of a local version of this
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property might be possible. This definition may appear technical-sounding at first,
but it is a natural result of creating a local version of compactness. The concept of
paracompactness, which we define below, is central to the idea of metrizability, which
we consider in a future chapter; however, this section may be skipped for now without
loss of continuity.

Definition. A collection ℬ = {𝐵𝛼}𝛼∈𝜆 of subsets of a space 𝑋 is locally finite if and
only if for each point 𝑝 in 𝑋 there is an open set 𝑈 containing 𝑝 such that 𝑈 intersects
only finitely many elements of ℬ.

Example. Letℬ = {[𝑛, 𝑛+1] ⊂ ℝ ∣ 𝑛 is an integer}. Thenℬ is a locally finite collection
in ℝstd.

Generally, the closure of an infinite union of subsets of a topological space may
be larger than the union of the closures of the individual sets (recall Exercise 2.23).
However, if the sets are locally finite, then the union of the closures is the closure of
the union even for infinite collections.

Theorem 6.38. Let ℬ = {𝐵𝛼}𝛼∈𝜆 be a locally finite collection of subsets of a space 𝑋 .
Then

(⋃
𝛼∈𝜆

𝐵𝛼) = ⋃
𝛼∈𝜆

𝐵𝛼.

The next definition may seem difficult to follow at first; however, the idea is that
we have a cover of a space, and we find a new cover by sets each of which is a subset of
one of our original elements of the cover.

Definition. Let ℬ = {𝐵𝛼}𝛼∈𝜆 be a cover of 𝑋 . Then 𝒞 = {𝐶𝛽}𝛽∈𝜇 is a refinement of ℬ
if and only if (i) 𝒞 is a cover of 𝑋 and (ii) for each 𝛽 ∈ 𝜇 there is an 𝛼 ∈ 𝜆 such that
𝐶𝛽 ⊂ 𝐵𝛼. The collection 𝒞 is an open refinement if and only if each 𝐶𝛽 is an open set.

The ability to create locally finite open refinements of open covers turns out to
allowus to recognize that spaces have useful properties that are not obviously apparent.
So we give a name to spaces with such refinements of covers. It is traditional to include
the Hausdorff property as part of the definition of paracompact spaces.

Definition. A space 𝑋 is paracompact if and only if every open cover of 𝑋 has a locally
finite open refinement and 𝑋 is Hausdorff.

Clearly, every compact, Hausdorff space is paracompact. Paracompact spaces en-
joy some properties that compact spaces do.

Theorem 6.39. Let 𝐴 be a closed subspace of a paracompact space. Then 𝐴 is paracom-
pact.

Previously we saw that compact, Hausdorff spaces are normal. Here we see that
paracompact spaces are normal. (Remember that part of the definition of paracompact
is that the space is Hausdorff.)

Theorem 6.40. Every paracompact space is normal.



80 Chapter 6. Compactness: The Next Best Thing to Being Finite

This next theorem encourages you to find a way to change countable covers into
locally finite covers. As you work on proving this theorem, you will inevitably come to
grips with the fact that the definition of paracompactness automatically involves three
open covers of the space—the open cover you are originally given, the open cover that
is the refinement that you create, and the open cover implicit in the definition of be-
ing locally finite, that is, for each point in the space there is an open set containing it
that intersects only finitely many of the open sets in the refinement. So as you con-
struct a locally finite open refinement of your original open cover, you might want to
think overtly about constructing the open cover of sets that are used in verifying local
finiteness. The following theorem is challenging, but not impossible.

Theorem 6.41. Every regular, 𝑇1, Lindelöf space is paracompact.

We will return to a further discussion of paracompactness in Chapter 9 on metric
spaces.

6.6 Covering Up Reveals Strategies for
Producing Mathematics

This chapter introduced a whole array of concepts that start with open covers of topo-
logical spaces. The first andmost basic conceptwas the idea of a space being compact—
that is, every open cover has a finite subcover. One reason for making that definition
was the realization that frequently arguments were available if we knew our cover was
finite. In some instances, having a finite cover was almost as useful as having a finite
space. The arguments in those two cases were similar.

One great feature of this exploration of compactness is that it illustrated strate-
gies of developing mathematics very well. After the concept of compactness was iso-
lated, the strategy was to see how that concept interacted with previous concepts about
spaces. You connected compactness with limit points, with separation properties, and
with products. You extended the definition of compactness to related covering proper-
ties—Lindelöf and countably compact. You looked for a local version of compactness
and came upwith paracompactness. The systematic exploration of covering properties
was a great model for how to create and develop mathematical ideas.



7
Continuity: When Nearby

Points Stay Together

After defining amathematical object or structure, a next natural challenge is to describe
maps between such objects that respect or preserve the structures we have defined. For
instance, in group theory we study homomorphisms, because a homomorphism is a
function from one group to another group that respects the binary operations that are
the heart of the concept of a group. Whenwe consider functions between vector spaces
in linear algebra, we study linear transformations, because linear transformations re-
spect the linear structure that is the core of a vector space.

So now we want to describe topologically appropriate functions between topologi-
cal spaces. Suppose 𝑓 is a function from one topological space 𝑋 to another topological
space 𝑌 (denoted 𝑓 ∶ 𝑋 → 𝑌 ). What properties should 𝑓 have in order to respect the
topologies on 𝑋 and 𝑌? Perhaps our first attempt would be to insist that 𝑓 take each
open set in 𝑋 to an open set in 𝑌 . However, given our motivation for the whole subject
of topology to generalize ideaswe encountered fromanalysis, wemight look at themost
basic kind of continuous functions from calculus as a guide. The function 𝑓(𝑥) = 𝑥2
does not take open intervals around 0 to open sets in ℝ, so the restriction of taking
open sets to open sets does not seem to be the right definition for continuity of func-
tions between topological spaces. However, our experience with continuous functions
on the real numbers gives us some indication of what features we want continuous
functions between topological spaces to have. The definition of a continuous function
from calculus starts with an open interval in the codomain (remember 𝜀 > 0?). Then it
finds an open interval in the domain (remember 𝛿 > 0?). That definition gives us the
motivation for our definition of continuous functions between topological spaces.

7.1 Continuous Functions
Definition. Let 𝑋 and 𝑌 be topological spaces. A function or map 𝑓 ∶ 𝑋 → 𝑌 is a
continuous function or continuous map if and only if for every open set 𝑈 in 𝑌 ,
𝑓−1(𝑈) is open in 𝑋 .

81
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Figure 7.1. For a continuous function, inverse images of open sets are open.

In other words, a continuous function is one in which inverse images of open sets
are open. This definition does not look like the usual definition of continuous function
you might have encountered in analysis. But perhaps the last of the following equiv-
alent characterizations of continuity looks more like the definition of continuity from
calculus.

Theorem 7.1. Let𝑋 and 𝑌 be topological spaces, and let 𝑓 ∶ 𝑋 → 𝑌 be a function. Then
the following are equivalent:
(1) The function 𝑓 is continuous.
(2) For every closed set 𝐾 in 𝑌 , the inverse image 𝑓−1(𝐾) is closed in 𝑋 .

(3) For every limit point 𝑝 of a set 𝐴 in 𝑋 , the image 𝑓(𝑝) belongs to 𝑓(𝐴).
(4) For every 𝑥 ∈ 𝑋 and open set 𝑉 containing 𝑓(𝑥), there is an open set 𝑈 containing 𝑥

such that 𝑓(𝑈) ⊂ 𝑉 .

Equivalence (2) above says a continuous function is one in which the inverse im-
ages of closed sets are closed. Equivalence (3) essentially asserts that continuous func-
tions preserve limit points. That summary is not quite accurate, because if a point 𝑝 is
a limit point of a set 𝐴 and the whole domain space goes to a single point, for exam-
ple, then that function would be continuous while 𝑓(𝑝) is not actually a limit point of
𝑓(𝐴) since 𝑓(𝐴) is an isolated point. However, 𝑓(𝑝) is in the closure of 𝑓(𝐴). With this
rather trivial caveat excepted, the preservation of limit points characterizes continuous
functions.

Effective Thinking Principle. Bring to Mind All Equivalent Formulations.
After learning that a concept has equivalent formulations, get in the habit of
consciously considering each one in order to select themost convenient option
in a given situation.

In doing the next exercises, consciously consider all the various equivalences of
continuity to find convenient formulations and/or to find alternative proofs.



7.1. Continuous Functions 83

Theorem 7.2. Let 𝑋, 𝑌 be topological spaces and 𝑦0 ∈ 𝑌 . The constant map 𝑓 ∶ 𝑋 → 𝑌
defined by 𝑓(𝑥) = 𝑦0 is continuous.

Theorem 7.3. Let 𝑋 ⊂ 𝑌 be topological spaces. The inclusion map 𝑖 ∶ 𝑋 → 𝑌 defined
by 𝑖(𝑥) = 𝑥 is continuous.

Theorem 7.4. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map between topological spaces, and let
𝐴 be a subset of 𝑋 . Then the restriction map 𝑓|𝐴 ∶ 𝐴 → 𝑌 defined by 𝑓|𝐴(𝑎) = 𝑓(𝑎) is
continuous.

Effective Thinking Principle. Ask About Local Versions of Global Concepts.
After defining a concept for a whole space, investigate whether there is a local
version of that concept.

Both from using good strategies of thinking and from knowing the definition of
continuity from calculus, it is natural to seek a point by point version of continuity. As
usual, looking at the various equivalences of continuity will help in defining what it
means for a function between topological spaces to be continuous at a point.

Definition. Let 𝑓 ∶ 𝑋 → 𝑌 be a function between topological spaces 𝑋 and 𝑌 , and
let 𝑥 ∈ 𝑋 . Then 𝑓 is continuous at the point 𝑥 if and only if for every open set
𝑉 containing 𝑓(𝑥), there is an open set 𝑈 containing 𝑥 such that 𝑓(𝑈) ⊂ 𝑉 . Thus a
function 𝑓 ∶ 𝑋 → 𝑌 is continuous if and only if it is continuous at each point.

Equivalence (4) of Theorem 7.1 is also the most closely related to the calculus 𝜀-𝛿
definition of continuity for functions fromℝstd toℝstd. The topological spaceℝstd has
motivated many of the definitions of topology, so if the familiar concept of continuity
in ℝstd did not correspond to our definition of continuity between topological spaces,
then we would have to question the wisdom of our choice of definitions.

Effective Thinking Principle. Generalizations Should Generalize. After
generalizing a concept, confirm that the generalization behaves properlywhen
applied to the concept from which it sprang.

Theorem 7.5. A function 𝑓 ∶ ℝstd → ℝstd is continuous if and only if for every point
𝑥 in ℝ and 𝜀 > 0, there is a 𝛿 > 0 such that for every 𝑦 ∈ ℝ with 𝑑(𝑥, 𝑦) < 𝛿, then
𝑑(𝑓(𝑥), 𝑓(𝑦)) < 𝜀.

When 1st countable spaces are involved, continuity can be described in terms of
convergence; in particular, continuous functions preserve limits of sequences.

Theorem 7.6. Let 𝑋 be a 1st countable space, and let 𝑌 be a topological space. Then a
function 𝑓 ∶ 𝑋 → 𝑌 is continuous if and only if for each convergent sequence 𝑥𝑛 → 𝑥 in
𝑋 , 𝑓(𝑥𝑛) converges to 𝑓(𝑥) in 𝑌 .
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In many cases a continuous function is determined by its values on a dense set.

Theorem7.7. Let𝑋 be a spacewith a dense set𝐷, and let𝑌 beHausdorff. Let𝑓 ∶ 𝑋 → 𝑌
and 𝑔 ∶ 𝑋 → 𝑌 be continuous functions such that for every 𝑑 in 𝐷, 𝑓(𝑑) = 𝑔(𝑑). Then
for all 𝑥 in 𝑋 , 𝑓(𝑥) = 𝑔(𝑥).

Hearkening back to our discussion of cardinality, you might now enjoy proving
the following fact about the cardinality of continuous functions. This result should be
contrasted with Theorem 1.29.

Theorem 7.8. The cardinality of the set of continuous functions fromℝ toℝ is the same
as the cardinality of ℝ.

Wecan create newcontinuous functions fromold ones inmanyways. For instance,
compositions of continuous functions are continuous.

Theorem 7.9. If 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are continuous, then their composition
𝑔 ∘ 𝑓 ∶ 𝑋 → 𝑍 is continuous.

We can paste two continuous functions together if the pieces are either both closed
or both open.

Theorem 7.10 (Pasting lemma). Let 𝑋 = 𝐴 ∪ 𝐵, where 𝐴, 𝐵 are closed in 𝑋 . Let 𝑓 ∶
𝐴 → 𝑌 and 𝑔 ∶ 𝐵 → 𝑌 be continuous functions that agree on 𝐴 ∩ 𝐵. Then the function
ℎ ∶ 𝐴 ∪ 𝐵 → 𝑌 defined by ℎ = 𝑓 on 𝐴 and ℎ = 𝑔 on 𝐵 is continuous.

Theorem 7.11 (Pasting lemma). Let 𝑋 = 𝐴 ∪ 𝐵, where 𝐴, 𝐵 are open in 𝑋 . Let 𝑓 ∶
𝐴 → 𝑌 and 𝑔 ∶ 𝐵 → 𝑌 be continuous functions which agree on 𝐴∩ 𝐵. Then the function
ℎ ∶ 𝐴 ∪ 𝐵 → 𝑌 defined by ℎ = 𝑓 on 𝐴 and ℎ = 𝑔 on 𝐵 is continuous.

Exercise 7.12. Is the pasting lemma true when 𝐴 and 𝐵 in the preceding theorems are
arbitrary sets?

If 𝑓 ∶ 𝑋 → 𝑌 is a function and 𝑌 has a topology given by a basis or a subbasis,
then it is sufficient to check the preimages of basic or subbasic open sets to determine
whether 𝑓 is continuous.

Theorem 7.13. Let 𝑓 ∶ 𝑋 → 𝑌 be a function and let ℬ be a basis for 𝑌 . Then 𝑓 is
continuous if and only if for every open set 𝐵 inℬ, 𝑓−1(𝐵) is open in 𝑋 .

Theorem 7.14. Let 𝑓 ∶ 𝑋 → 𝑌 be a function and let ℬ be a subbasis for 𝑌 . Then 𝑓 is
continuous if and only if for every open set 𝐵 inℬ, 𝑓−1(𝐵) is open in 𝑋 .

7.2 Properties Preserved by Continuous
Functions

Effective Thinking Principle. Investigate How Properties are Related by
Transformations. After defining structure-respecting transformations, inves-
tigate what properties are preserved by those functions.
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Continuous functions preserve some of the properties of topological spaces that
we have considered, but not others. A great way to develop mathematical ideas is to
systematically consider which properties are preserved by continuous functions and
which are not. The covering properties give us a promising start.

Theorem 7.15. If 𝑋 is compact and 𝑓 ∶ 𝑋 → 𝑌 is continuous and surjective, then 𝑌 is
compact.

Theorem 7.16. If 𝑋 is Lindelöf and 𝑓 ∶ 𝑋 → 𝑌 is continuous and surjective, then 𝑌 is
Lindelöf.

Theorem 7.17. If 𝑋 is countably compact and 𝑓 ∶ 𝑋 → 𝑌 is continuous and surjective,
then 𝑌 is countably compact.

Surjective continuous functions take dense sets to dense sets.

Theorem 7.18. Let 𝐷 be a dense set of a topological space 𝑋 , and let 𝑓 ∶ 𝑋 → 𝑌 be
continuous and surjective. Then 𝑓(𝐷) is dense in 𝑌 .

Corollary 7.19. Let 𝑋 be a separable space, and let 𝑓 ∶ 𝑋 → 𝑌 be continuous and
surjective. Then 𝑌 is separable.

When we turn our attention to the separation properties, we meet with less suc-
cess. In fact, the continuous images of Hausdorff, regular, or normal spaces need not
preserve those separation properties. Since using quotient spaces (defined later in this
chapter) may be the simplest way to generate those counterexamples, we suggest you
defer the construction of those counterexamples until later in this chapter. Instead,
let’s use a strategy of developing mathematics that is often fruitful.

Effective Thinking Principle. Add a Hypothesis. When you can’t prove a
conjecture, create additional hypotheses that would allow you to prove it.

You will construct examples later that show you that the continuous image of a
normal space may not be normal; however, if we follow our original intuition about
how to define continuous functions, we find types of functions that do preserve nor-
mality. Recall that our first (and flawed) attempt at defining a function that respects
the essential features of a topologywas to consider functions that take open sets to open
sets or perhaps closed sets to closed sets. So let’s now consider these properties, and
then see how they interact with continuity.

Definition. A function 𝑓 ∶ 𝑋 → 𝑌 is closed if and only if for every closed set 𝐴 in 𝑋 ,
𝑓(𝐴) is closed in 𝑌 . A function 𝑓 ∶ 𝑋 → 𝑌 is open if and only if for every open set 𝑈
in 𝑋 , 𝑓(𝑈) is open in 𝑌 .

Every combination of continuity, openness, and closedness is possible.

Exercise 7.20. (1) Find an open function that is not continuous.
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(2) Find a closed function that is not continuous.

(3) Find a continuous function that is neither open nor closed.

(4) Find a continuous function that is open but not closed.

(5) Find a continuous function that is closed but not open.

Effective Thinking Principle. Draw a Picture. Draw a picture. Draw a
picture!! DRAWA PICTURE!!! It is impossible to overemphasize the value of
drawing a picture.

Closed continuous functions preserve normality. In proving this theorem and
many of the theorems in this chapter and this book, drawing a picture can be extremely
helpful. A picture is not a proof, but a picture can suggest relationships that you can
then confirm in a proof.

Theorem 7.21. If𝑋 is normal and 𝑓 ∶ 𝑋 → 𝑌 is continuous, surjective, and closed, then
𝑌 is normal.

Bases go to bases under continuous open maps.

Theorem 7.22. If {𝐵𝛼}𝛼∈𝜆 is a basis for 𝑋 and 𝑓 ∶ 𝑋 → 𝑌 is continuous, surjective, and
open, then {𝑓(𝐵𝛼)}𝛼∈𝜆 is a basis for 𝑌 .

Corollary 7.23. If 𝑋 is 2nd countable and 𝑓 ∶ 𝑋 → 𝑌 is continuous, surjective, and
open, then 𝑌 is 2nd countable.

Some continuous functions are automatically closed.

Theorem7.24. Let𝑋 be compact, and let𝑌 beHausdorff. Then any continuous function
𝑓 ∶ 𝑋 → 𝑌 is closed.

The next theorem has as its conclusion that the image space of a function is 2nd
countable. Earlier you saw that the image of a 2nd countable space under an openmap
is 2nd countable. However, the map in the following theorem need not be open. So it
will require more ingenuity to prove it.

Theorem 7.25. Let𝑋 be compact and 2nd countable, and let𝑌 beHausdorff. If 𝑓 ∶ 𝑋 →
𝑌 is continuous and surjective, then 𝑌 is 2nd countable.

7.3 Homeomorphisms
One of themost important reasons for introducing the concept ofmaps between objects
and for requiring that the maps respect the underlying structure is to specify when two
such objects are the “same.” In group theory, we try to classify groups by determining
which groups are actually the “same,” i.e., related by a bijective homomorphism, called
an isomorphism. In topology, the task is analogous.
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Definition. A function 𝑓 ∶ 𝑋 → 𝑌 is a homeomorphism if and only if 𝑓 is a continu-
ous bijection and the inverse map 𝑓−1 ∶ 𝑌 → 𝑋 is also continuous.

Definition. Two topological spaces, 𝑋 and 𝑌 , are homeomorphic or topologically
equivalent if and only if there exists a homeomorphism 𝑓 ∶ 𝑋 → 𝑌 .

Notice that a homeomorphism 𝑓 provides both a bijection between sets and a bi-
jection between the topologies on those sets, since open sets are preserved by 𝑓 and
𝑓−1. So all topological properties—properties that depend only on the topology (e.g.,
Hausdorff, regular, normal, compact, separable, and so on)—are preserved by a home-
omorphism.

Theorem 7.26. Being homeomorphic is an equivalence relation on topological spaces.

When asked to show that two spaces are homeomorphic, the first thing to do is to
find a desired bijection and then show it is continuous in both directions.

Exercise 7.27. Let 𝑎 and 𝑏 be points inℝ1 with 𝑎 < 𝑏. Show that (𝑎, 𝑏)with the subspace
topology from ℝ1

std is homeomorphic to ℝ1
std.

Checking continuity in both directions can be cumbersome, so it is helpful to
find conditions on functions equivalent to being a homeomorphism that don’t require
checking the continuity of the inverse function.

Theorem 7.28. If 𝑓 ∶ 𝑋 → 𝑌 is continuous, the following are equivalent:
(a) 𝑓 is a homeomorphism.
(b) 𝑓 is a closed bijection.
(c) 𝑓 is an open bijection.

Sometimes we can guarantee that a bijective function is a homeomorphism with
apparently weaker conditions.

Theorem 7.29. Suppose 𝑓 ∶ 𝑋 → 𝑌 is a continuous bijection where 𝑋 is compact and
𝑌 is Hausdorff. Then 𝑓 is a homeomorphism.

Effective Thinking Principle. Check the Necessity of Hypotheses. After you
prove a theorem, check that all the hypotheses are necessary.

Exercise 7.30. Construct some examples to show why the compactness and Hausdorff
assumptions in the previous theorem are necessary.

A homeomorphism between a space and a subset of another space is called an
embedding.

Definition. A function 𝑓 ∶ 𝑋 → 𝑌 is an embedding if and only if 𝑓 ∶ 𝑋 → 𝑓(𝑋) is a
homeomorphism from 𝑋 to 𝑓(𝑋), where 𝑓(𝑋) has the subspace topology from 𝑌 .
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The previous theorem has a direct corollary about embeddings.

Corollary 7.31. Let 𝑋 be a compact space, and let 𝑌 be Hausdorff. If 𝑓 ∶ 𝑋 → 𝑌 is a
continuous, injective map, then 𝑓 is an embedding.

7.4 Product Spaces and Continuity
In this section we explore how the concept of continuity interacts with the concept of
product spaces. Product spaces have natural projection functions, and the continuity of
those projection maps, as we shall see, characterizes the topology of the product space.

Definition. The projection maps 𝜋𝑋 ∶ 𝑋 × 𝑌 → 𝑋 and 𝜋𝑌 ∶ 𝑋 × 𝑌 → 𝑌 are defined
by 𝜋𝑋(𝑥, 𝑦) = 𝑥 and 𝜋𝑌 (𝑥, 𝑦) = 𝑦.

Theorem 7.32. Let𝑋 and 𝑌 be topological spaces. The projectionmaps𝜋𝑋 , 𝜋𝑌 on𝑋×𝑌
are continuous, surjective, and open.

In fact, the topology on the product space can be characterized as the coarsest
topology that makes the projection maps continuous.

Theorem 7.33. Let 𝑋 and 𝑌 be topological spaces. The product topology on 𝑋 ×𝑌 is the
coarsest topology on 𝑋 × 𝑌 that makes the projection maps 𝜋𝑋 , 𝜋𝑌 on 𝑋 × 𝑌 continuous.

Exercise 7.34. Find an example of 𝑋 and 𝑌 that shows that the projection map 𝜋𝑋 ∶
𝑋 × 𝑌 → 𝑋 is not necessarily a closed map.

Theorem 7.35. Let 𝑋 and 𝑌 be topological spaces. For every 𝑦 ∈ 𝑌 , the subspace 𝑋 ×{𝑦}
of 𝑋 × 𝑌 is homeomorphic to 𝑋 .

We can describe a criterion for when maps into a product space are continuous.
This criterion is sometimes called the universal mapping property of products.

Theorem 7.36. Let 𝑋 , 𝑌 , and 𝑍 be topological spaces. A function 𝑔 ∶ 𝑍 → 𝑋 × 𝑌 is
continuous if and only if 𝜋𝑋 ∘ 𝑔 and 𝜋𝑌 ∘ 𝑔 are both continuous.

Exercise 7.37. What about maps out of a product space, i.e., 𝑓 ∶ 𝑋 × 𝑌 → 𝑍? Do you
think 𝑓 is continuous if it is continuous in each coordinate?

The theorems above were stated for products of two spaces. Of course, all of those
theorems can be extended to finite products. It turns out that those same theorems
can be extended to infinite products as well. For the product of an arbitrary collection
of spaces {𝑋𝛼}𝛼∈𝜆, the projection functions are defined analogously to how they were
defined for finite products.

Theorem 7.38. Let∏𝛼∈𝜆 𝑋𝛼 be the product of topological spaces {𝑋𝛼}𝛼∈𝜆. The projec-
tion map 𝜋𝛽 ∶ ∏𝛼∈𝜆 𝑋𝛼 → 𝑋𝛽 is a continuous, surjective, and open map.

The projection maps can be used to characterize the infinite product topology just
as they were used to characterize finite products.
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Theorem 7.39. The product topology is the coarsest topology on∏𝛼∈𝜆 𝑋𝛼 that makes
each projection map continuous.

Similarly, the continuity of maps into infinite products can be determined by pro-
jecting onto each coordinate.

Theorem 7.40. Let∏𝛼∈𝜆 𝑋𝛼 be the product of topological spaces {𝑋𝛼}𝛼∈𝜆, and let 𝑍 be
a topological space. A function 𝑔 ∶ 𝑍 → ∏𝛼∈𝜆 𝑋𝛼 is continuous if and only if 𝜋𝛽 ∘ 𝑔 is
continuous for each 𝛽 in 𝜆.

Exercise 7.41. Let ℝ𝜔 be the countably infinite product of ℝ with itself. Let 𝑓 ∶ ℝ →
ℝ𝜔 be defined by 𝑓(𝑥) ∶= (𝑥, 𝑥, 𝑥, …). Then 𝑓 is continuous if ℝ𝜔 is given the product
topology, but not if given the box topology. (This strange result once again shows why the
box topology would be a poor choice as the standard topology for infinite products.)

Definition. Consider the following subsets of ℝ. Let 𝐶0 = [0, 1]. Let 𝐶1 = [0, 1/3] ∪
[2/3, 1], i.e., it is 𝐶0 with its “middle third” removed. Let 𝐶2 = [0, 1/9] ∪ [2/9, 1/3] ∪
[2/3, 7/9] ∪ [8/9, 1], which is obtained from 𝐶1 by removing the middle thirds of each
of its interval. Continue in this fashion, defining 𝐶𝑛 to be 𝐶𝑛−1 with the middle-thirds
of each interval of 𝐶𝑛 removed. Let

𝐶 =
∞

⋂
𝑖=1

𝐶𝑖.

This space is called the Cantor set or the standard Cantor set.

Note that the Cantor set is an answer to Exercise 2.25.

Theorem 7.42. The Cantor set is homeomorphic to the product∏𝑛∈ℕ{0, 1} where {0, 1}
has the discrete topology.

7.5 Quotient Maps and Quotient Spaces
Now we’ll learn another way to construct new topological spaces from old ones, in a
way which corresponds with our intuition that new spaces can be formed by gluing old
spaces together.

A sheet of paper 𝑋 has a natural topology, namely, the subspace topology given by
its embedding as a subset of the plane. This corresponds with our intuition—for any
given point 𝑝 on the sheet, the open sets around 𝑝 describe a set of points “near” 𝑝 on
the sheet. Points in the interior of 𝑋 have basic open sets that are disks. Points in the
boundary of 𝑋 have basic open sets that are half-disks.

Now imagine gluing a pair of parallel sides of 𝑋 together to form a cylinder 𝐶. To
be more formal, imagine 𝑋 = [0, 2] × [0, 1] and for each 𝑥 ∈ [0, 2], identify the pair of
points (𝑥, 0) and (𝑥, 1), meaning we consider these two points to be “identical” when
glued together as a point on 𝐶. This gluing is sometimes notated by drawing arrows on
the parallel sides of 𝑋 that point in the same direction.

Note that after this gluing something has just happened that has changed the char-
acter of this space. For instance, the sequence of points (1/2, 1/𝑛) now converge to the
point 𝑝′ = (1/2, 1) because it is now identified to 𝑝 = (1/2, 0), whereas this sequence
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Figure 7.2. Sheet of paper with two sides identified forms a cylinder.

did not converge to (1/2, 1) before. Thus this new space 𝐶 has a very natural topology
that it derives from the topology of the sheet 𝑋 , and we just need to figure out how to
make this notion precise.

The first thing we can do is carefully describe the space𝐶 and then we can think of
the gluing as a function 𝑔 ∶ 𝑋 → 𝐶. Let’s represent the cylinder 𝐶 as the set of points
(𝑥, sin 𝜃, cos 𝜃) for 𝑥 ∈ [0, 2] and 𝜃 ∈ [0, 2𝜋). Then the gluing can be described as a
function 𝑔 ∶ 𝑋 → 𝐶 given by

𝑔(𝑥, 𝑦) = (𝑥, sin 2𝜋𝑦, cos 2𝜋𝑦)
and it is apparent that (𝑥, 0) and (𝑥, 1) both get mapped to the same point (𝑥, 0, 1).

The second thing we observe is that the gluing function from our intuition is nat-
urally continuous, since we have not torn the piece of paper in any way. So no matter
how we define the topology on 𝐶, the gluing function 𝑔 had better be continuous as
well. The natural way to define the topology on 𝐶 is to define 𝑈 to be open in 𝐶 if and
only if the inverse image 𝑔−1(𝑈) is open in 𝑋 . Then the function 𝑔 is automatically
continuous. What consequence does this definition have on the topology of 𝐶? Well,
we see that any open set around the point 𝑔(𝑝) = (0, 1, 1/2), for example, comes from
open sets around 𝑝 = (0, 1/2) and 𝑝′ = (1, 1/2)—in particular, half-disks around 𝑝
and 𝑝′ in 𝑋 correspond to a full disk around 𝑔(𝑝) in 𝐶. The idea of a quotient space
generalizes this idea beautifully.

Definition. Let 𝑋 be a topological space, and let 𝑋∗ be a partition of 𝑋 into disjoint
subsets whose union is𝑋 . Let 𝑓 ∶ 𝑋 → 𝑋∗ be the surjectivemap that carries each point
of𝑋 to the element of𝑋∗ containing it, and define a topology on𝑋∗ by: a subset𝑈 in𝑋∗

is open if and only if 𝑓−1(𝑈) is open in 𝑋 . The map 𝑓 is called an identificationmap,
because one can think of obtaining𝑋∗ by identifying all the elements in a partition class
to a single point, and the space 𝑋∗ is called an identification space of 𝑋 under the
map 𝑓.

Any equivalence relation∼ on points of a space𝑋 yields a partition of𝑋 into equiv-
alence classes, and the resulting identification space is denoted 𝑋/ ∼.
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Example. If 𝑋 and 𝑌 are topological spaces that may or may not have points in com-
mon, we can topologize their union 𝑋 ∪ 𝑌 as the identification space of the disjoint
union 𝑋 ⊔ 𝑌 . Note that 𝑋 ⊔ 𝑌 has an obvious topology: the open sets are generated as
unions of open sets in 𝑋 and in 𝑌 . The identification map 𝑓 ∶ 𝑋 ⊔ 𝑌 → 𝑋 ∪ 𝑌 takes
each point in 𝑋 ⊔ 𝑌 to the obvious point in 𝑋 ∪ 𝑌 , and produces a natural topology
on 𝑋 ∪ 𝑌 : the open sets are ones whose intersection with 𝑋 is open in 𝑋 and whose
intersection with 𝑌 is open in 𝑌 .

Exercise 7.43. The cylinder 𝐶 from our example above did not need to be embedded in
ℝ3 to be defined; it could have been defined as an identification space of𝑋 = [0, 2]×[0, 1],
using the partition whose sets are either singletons or pairs:

𝐶∗ = {{(𝑥, 𝑦)} ∶ 𝑥 ∈ [0, 2], 𝑦 ∈ (0, 1)} ∪ {{(𝑥, 0), (𝑥, 1)} ∶ 𝑥 ∈ [0, 2]}.

What is the identification map 𝑓 ∶ 𝑋 → 𝐶∗? What is a basis for the topology on 𝐶∗?

Figure 7.3. AMöbius band.

Exercise 7.44. AMöbius band is obtained by taking a strip of paper 𝑋 and gluing two
opposite sides with a “twist.” Sometimes this gluing is notated by drawing 𝑋 with arrows
on two parallel sides that point in opposite directions. Construct aMöbius band explicitly
as an identification space of 𝑋 = [0, 8] × [0, 1].

Figure 7.4. A torus.

Exercise 7.45. A torus is the surface of a doughnut. Construct a torus explicitly as

(1) an identification space of 𝐶, the cylinder;
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Figure 7.5. Gluing diagram for a Klein bottle.

(2) an identification space of 𝑋 = [0, 1] × [0, 1];

(3) an identification space of ℝ2.

Example. Figure 7.5 shows how to construct aKlein bottle as an identification space
of a square 𝑋 = [0, 1] × [0, 1]. If you try to physically glue the edges as shown, you
will find the result can’t be constructed in ℝ3 without self-intersections. Notice how
an advantage of the identification space construction is that it defines the topology on
the Klein bottle without reference to an ambient space in which the Klein bottle must
sit.

Exercise 7.46. Describe the 2-dimensional sphere (the boundary of a 3-dimensional ball
in ℝ3) as an identification space of two discs in ℝ2 by drawing a figure.

We have seen how an identification space can be constructed from a partition of a
topological space. This construction can be generalized.

Definition. Let 𝑓 ∶ 𝑋 → 𝑌 be a surjective map from a topological space 𝑋 onto a set 𝑌 .
The quotient topology on 𝑌 with respect to 𝑓 is the collection of all sets 𝑈 such that
𝑓−1(𝑈) is open in 𝑋 .

Note that in the definition above, 𝑌 is simply a set and we are giving it a topology.

Theorem 7.47. The quotient topology actually defines a topology.

The next theorem characterizes the quotient topology in terms of themap 𝑓. Com-
pare it to Theorem 7.39 about the product topology.

Theorem 7.48. Let 𝑋 be a topological space, let 𝑌 be a set, and let 𝑓 ∶ 𝑋 → 𝑌 be a
surjective map. The quotient topology on 𝑌 is the finest (largest) topology that makes 𝑓
continuous.

Definition. A surjectivemap 𝑓 ∶ 𝑋 → 𝑌 between topological spaces is a quotientmap
and 𝑌 is a quotient space if and only if the topology on 𝑌 is the quotient topology with
respect to 𝑓.
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Note by definition that an identification space is a quotient space.

Theorem 7.49. Let 𝑋 and 𝑌 be topological spaces. A surjective, continuous map 𝑓 ∶
𝑋 → 𝑌 that is an open map is a quotient map.

Theorem 7.50. Let 𝑋 and 𝑌 be topological spaces. A surjective, continuous map 𝑓 ∶
𝑋 → 𝑌 that is a closed map is a quotient map.

Exercise 7.51. Show with examples that not all quotient maps are open maps, and not
all quotient maps are closed maps.

Exercise 7.52. Is 𝜋 ∶ ℝ2 → ℝ defined by 𝜋(𝑥, 𝑦) = 𝑥 a quotient map?

The next theorem is called the universal mapping property of quotient spaces: it
gives a criterion for whether maps out of a quotient space are continuous. Compare it
to Theorem 7.36.

Theorem7.53. Let 𝑓 ∶ 𝑋 → 𝑌 be a quotientmap. Then amap 𝑔 ∶ 𝑌 → 𝑍 is continuous
if and only if 𝑔 ∘ 𝑓 is continuous.

Theorem 7.53 and judicious use of several previous theorems (e.g., Theorems 4.19,
7.15, 7.29, and 7.40) can simplify the proof of the next exercise, since the cylinder 𝐶∗

as an identification space is also a quotient space.

Exercise 7.54. Let the cylinders 𝐶∗ and 𝐶 be defined as at the beginning of this section.
Prove that 𝐶∗ is homeomorphic to 𝐶 by constructing a map ℎ ∶ 𝐶∗ → 𝐶 and showing it
is a continuous bijection from a compact space into a Hausdorff space.

We end this section with ways of building new topological spaces from old ones,
using the quotient topology.

Definition. Let 𝐴 and 𝐵 be two disjoint spaces, with points 𝑝 ∈ 𝐴 and 𝑞 ∈ 𝐵. Then the
wedge sum of 𝐴 and 𝐵 (relative to 𝑝 and 𝑞), denoted 𝐴∨𝐵, is defined as the quotient
space 𝐴 ∪ 𝐵/𝑝 ∼ 𝑞. In other words, we glue 𝑝 to 𝑞.

Notice that the space resulting from the wedge sum is in general dependent on the
points we choose (even up to homeomorphism).

An important example of the wedge sum is the bouquet of 𝑛 circles. This space
results when 𝑛 circles are glued together at one point (so it is 𝑛−1 repeated applications
of the wedge sum). See Figure 7.6 (the space shown is, of course, homeomorphic to a
bouquet of circles). For obvious reasons, the bouquet of two circles is often called the
figure eight.

Definition. Given a topological space𝑋 , consider the quotient space𝑋×[0, 1] such that
all points (𝑥, 0) are identified to a single point 𝑝. This space is called the cone over 𝑋 .

Example. The cone over the circle𝕊1 is shown in Figure 7.7. Of course theword “cone”
is commonly used to mean this object.
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Figure 7.6. The bouquet of 𝑛 circles.

Figure 7.7. A cone.

Exercise 7.55. Suppose 𝑋 is a compact subset of ℝ𝑛 for some 𝑛. View ℝ𝑛 as a subset of
ℝ𝑛+1 in the usual way (that is,ℝ𝑛 is the space of the first 𝑛 coordinates ofℝ𝑛+1 where the
final coordinate is 0). Choose a point 𝑥0 ∈ ℝ𝑛+1 − ℝ𝑛. Let 𝐶 be the subspace of ℝ𝑛+1

consisting of the union of all the line segments from 𝑥0 to points in 𝑋 . Show that 𝐶 is
homeomorphic to the cone over 𝑋 as defined above, thus justifying the name “cone.”

7.6 Urysohn’s Lemma and the Tietze Extension
Theorem

In this section, we will investigate an important relationship between normality of a
space𝑋 and the existence of some continuous functions from𝑋 into [0, 1]with the stan-
dard topology. That relationship is captured in theorems known as Urysohn’s Lemma
and the Tietze Extension Theorem.

The next lemma is used in the proof of Urysohn’s Lemma. It may be useful to
remember that the rationals are countable, so they can be dealt with sequentially.

Lemma 7.56. Let 𝐴 and 𝐵 be disjoint closed sets in a normal space 𝑋 . Then for each
rational 𝑟 ∈ [0, 1], there exists an open set 𝑈𝑟 such that 𝐴 ⊂ 𝑈0, 𝐵 ⊂ (𝑋 − 𝑈1), and for
𝑟 < 𝑠, 𝑈𝑟 ⊂ 𝑈𝑠.
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Figure 7.8. These sets may help you prove Urysohn’s Lemma.

If you are finding this lemma hard to prove, you might restrict yourself to dyadic
rationals which are rationals of the form 𝑞/2𝑘, where 𝑞, 𝑘 are integers.

The next theorem is called Urysohn’s Lemma, although it is actually an important
theorem in its own right. It is called a lemma because it first appeared in a paper in
which Urysohn used it to prove a theorem about the existence of metrics on certain
kinds of spaces. We will discuss such metric spaces and see the theorem for which
Urysohn’s Lemma is a lemma in Chapter 9. Urysohn’s Lemma essentially says that a
space is normal if and only if disjoint closed sets can be “separated” by a continuous
function, i.e., it takes one set to 0 and the other set to 1.

Theorem 7.57 (Urysohn’s Lemma). A topological space 𝑋 is normal if and only if for
each pair of disjoint closed sets 𝐴 and 𝐵 in 𝑋 , there exists a continuous function 𝑓 ∶ 𝑋 →
[0, 1] such that 𝐴 ⊂ 𝑓−1(0) and 𝐵 ⊂ 𝑓−1(1).

The proof of Urysohn’s Lemma provides important insight into the relationship
between continuous functions and nested open sets. In a profound way, it allows you
to understand continuous functions at a deeper level, namely, by thinking about how
the target space of a continuous function reflects its structure back into the domain
space via the inverse images of sets. That statement is a bit ethereal; however, thinking
carefully about it can give you a revealing understanding of continuity. In the case of
continuous functions from a space 𝑋 into [0, 1], continuity is exactly equivalent to the
existence of the nested open sets described in Lemma 7.56. One consequence of that
understanding is that it will allow you to prove the Tietze Extension Theorem.

Here’s a lemma whose proof uses the Normality Lemma 4.29. Remember to draw
a picture.

Lemma 7.58. Let 𝑋 be a normal space, and let 𝐴 be a closed subset of 𝑋 . Let 𝑓 ∶ 𝐴 →
[0, 1] be a continuous function, and let 𝑟 ∈ (0, 1). Then there exist disjoint open sets 𝑈𝑟
and 𝑉𝑟 such that 𝑓−1([0, 𝑟)) ⊂ 𝑈𝑟 and 𝑓−1((𝑟, 1]) ⊂ 𝑉𝑟. Or equivalently, there exists an
open set 𝑈𝑟 such that 𝑓−1([0, 𝑟)) ⊂ 𝑈𝑟 and 𝑈𝑟 ∩ 𝑓−1((𝑟, 1]) = ∅.

Now use the lemma above to produce the nested sequence of open sets such as
those in Lemma 7.56 that then allow you to define a function from a space 𝑋 to [0, 1].
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Theorem 7.59 (Tietze Extension Theorem). A space 𝑋 is normal if and only if for every
closed set 𝐴 ⊂ 𝑋 and continuous function 𝑓 ∶ 𝐴 → [0, 1], there exists a continuous
function 𝐹 ∶ 𝑋 → [0, 1] such that 𝐹(𝑥) = 𝑓(𝑥) for every 𝑥 ∈ 𝐴.

A function such as𝐹 in the Tietze Extension Theorem is said to extend𝑓, meaning
that 𝐹 is defined on a larger set than 𝑓 is defined on and they agree on the points on
which 𝑓 is defined.

Effective Thinking Principle. Understand Proofs, Not Just Statements, of
Theorems. Understanding the proofs of theorems rather than just the state-
ments of theorems gives you power.

Your proof of the Tietze Extension Theorem may have used Lemma 7.56. How-
ever, alternative proofs can be created by applying the statement of Urysohn’s Lemma
repeatedly (rather than the proof of Urysohn’s Lemma) to get a sequence of functions
that converge to the desired function. As a hint to an alternative proof of the Tietze
Extension Theorem, you might consider having the initial target interval be the in-
terval [−1, 1] (instead of [0, 1]), and think about applying Urysohn’s Lemma to pro-
duce a function 𝑔1 ∶ 𝑋 → [−1/3, 1/3] where the closed set 𝑓−1([−1, −1/3]) goes
to −1/3 and the closed set 𝑓−1([1/3, 1]) goes to 1/3. Notice that for each 𝑥 ∈ 𝐴,
|𝑓(𝑥) − 𝑔1(𝑥)| < 2/3. So the function 𝑓(𝑥) − 𝑔1(𝑥) ∶ 𝐴 → [−2/3, 2/3] is now a new
function into an interval. You can now apply Urysohn’s Lemma again in a similar way
to produce a function 𝑔2 ∶ 𝑋 → [−2/3(1/3), 2/3(1/3)] such that for each point 𝑥 ∈ 𝐴,
|𝑓(𝑥) − (𝑔1(𝑥) + 𝑔2(𝑥))| < (2/3)2. The 𝑔𝑖 functions are functions on all of 𝑋 and the
sum of the 𝑔𝑖 functions becomes increasingly close to the function 𝑓 on points of 𝐴.
This strategy of proof uses insights about convergence. This approach to the Tietze
Extension Theorem is nicknamed the “Tricky 1/3’s Proof.”

In some sense, the proof of the Tietze Extension Theorem developed by construct-
ing appropriately nested open sets takes advantage of an understanding of continuity
and an understanding of a proof of Urysohn’s Lemma, specifically, of how the existence
of a collection of nested open sets indexed by the rational numbers in [0, 1] creates a
continuous function from 𝑋 into [0, 1]. The Tricky 1/3’s Proof relies on a very clever
way to repeatedly apply the statement of Urysohn’s Lemma to produce a sequence of
continuous functions that converge to the desired extension.

Effective Thinking Principle. Extend Results. After proving a theorem, see
if it can be improved or modified.

The Tietze Extension Theorem above talks about extending maps from a closed
subset of a space into a closed interval. A natural series of questions to ask is what
other target spaces might have similar results. Here are some.

Theorem 7.60. A space 𝑋 is normal if and only if for every closed set 𝐴 ⊂ 𝑋 and con-
tinuous function 𝑓 ∶ 𝐴 → (0, 1), there exists a continuous function 𝐹 ∶ 𝑋 → (0, 1) such
that 𝐹(𝑥) = 𝑓(𝑥) for every 𝑥 ∈ 𝐴.
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Theorem 7.61. A space 𝑋 is normal if and only if for every closed set 𝐴 ⊂ 𝑋 and con-
tinuous function 𝑓 ∶ 𝐴 → [0, 1), there exists a continuous function 𝐹 ∶ 𝑋 → [0, 1) such
that 𝐹(𝑥) = 𝑓(𝑥) for every 𝑥 ∈ 𝐴.

Theorem 7.62. A space 𝑋 is normal if and only if for every closed set 𝐴 ⊂ 𝑋 and con-
tinuous function 𝑓 ∶ 𝐴 → [0, 1] × [0, 1], there exists a continuous function 𝐹 ∶ 𝑋 →
[0, 1] × [0, 1] such that 𝐹(𝑥) = 𝑓(𝑥) for every 𝑥 ∈ 𝐴.

Theorem 7.63. A space 𝑋 is normal if and only if for every closed set 𝐴 ⊂ 𝑋 and con-
tinuous function 𝑓 ∶ 𝐴 →∏𝛼∈𝜆[0, 1]𝛼, where each [0, 1]𝛼 is a copy of [0, 1] in the usual
topology, there exists a continuous function 𝐹 ∶ 𝑋 →∏𝛼∈𝜆[0, 1]𝛼 such that 𝐹(𝑥) = 𝑓(𝑥)
for every 𝑥 ∈ 𝐴.

The Tietze Extension Theorem has some interesting consequences.

Theorem 7.64. Let 𝑋 be a normal space, and let𝐴 be a closed subspace of 𝑋 homeomor-
phic to [0, 1] with the usual topology. Then there exists a continuous function 𝑟 ∶ 𝑋 → 𝐴
such that for every 𝑥 ∈ 𝐴, 𝑟(𝑥) = 𝑥.

A continuous map such as 𝑟 above that takes a whole space to a subset leaving the
points of the subset fixed is called a retraction.

Of course, the theorem is also true if the closed set 𝐴 is homeomorphic to any of
the other target spaces in the variations of the Tietze Extension Theorem.

With a little bit of cleverness you can prove the following.

Theorem 7.65. Let 𝑋 be a normal space, and let𝐴 be a closed subspace of 𝑋 homeomor-
phic to the circle 𝕊1 with the usual topology (inherited as a subspace of ℝ2). Then there
exists an open set 𝑈 containing 𝐴 and a continuous function 𝑟 ∶ 𝑈 → 𝐴 such that for
every 𝑥 ∈ 𝐴, 𝑟(𝑥) = 𝑥.

Exercise 7.66. Think of (many) other possible alternatives to𝕊1 in the preceding theorem
that would allow you to draw the same conclusion.

Now let’s turn our attention toward some features of closed sets that arise during
our investigation of these maps from spaces into [0, 1]. If you have a continuous func-
tion 𝑓 ∶ 𝑋 → [0, 1], then the inverse image of an interval, such as 𝑓−1([0, 1/2]), is the
intersection of a countable number of open sets. In that case, the intersection of the
open sets 𝑓−1([0, 1/2 + 1/𝑛)) for 𝑛 ∈ ℕ would equal 𝑓−1([0, 1/2]). That suggests the
following definition.

Definition. A subset 𝐴 of a space 𝑋 is an 𝐅𝝈 set if and only if 𝐴 = ⋂∞
𝑖=1𝑈𝑖, where 𝑖 ∈ ℕ

and each𝑈𝑖 is open. In other words, 𝐴 is the intersection of countably many open sets.

You may recall the following stronger version of normality from Theorem 4.33.

Definition. A space 𝑋 is perfectly normal if and only if 𝑋 is normal and every closed
subset of 𝑋 is an 𝐹𝜍.

In perfectly normal spaces, the conclusion of Urysohn’s Lemma can be strength-
ened to replace containment by equality.



98 Chapter 7. Continuity: When Nearby Points Stay Together

Theorem 7.67. Suppose 𝑋 is perfectly normal. Then for each pair of disjoint closed sets
𝐴 and 𝐵 in 𝑋 , there exists a continuous function 𝑓 ∶ 𝑋 → [0, 1] such that 𝐴 = 𝑓−1(0)
and 𝐵 = 𝑓−1(1).

Aswe saw in Chapter 4, in perfectly normal spaces, separated sets can be separated
by disjoint open sets.

Theorem 7.68. Every perfectly normal space is completely normal.

We conclude this section on Urysohn’s Lemma and the Tietze Extension Theorem
by seeing that many topological spaces are homeomorphic to subsets of products of
intervals. The following theorem says that every normal, 𝑇1 space can be embedded in
a product of intervals, i.e., a cube of sufficiently high (possibly uncountable) dimension.
Urysohn’s Lemma will be useful.

Theorem 7.69. Let 𝑋 be a normal, 𝑇1 space. Then 𝑋 is homeomorphic to a subspace of
∏𝛼∈𝜆[0, 1]𝛼 for some 𝜆, where each factor is the unit interval with the standard topology.

In the proof of the above theorem you probably used Urysohn’s Lemma, but you
really only needed a special case where one of the closed sets was a point. This insight
suggests we could get by with a weaker condition than normality.

Definition. A space 𝑋 is completely regular if and only if for each point 𝑝 and closed
set 𝐴with 𝑝 ∉ 𝐴, there is a continuous function 𝑓 ∶ 𝑋 → [0, 1] such that 𝑓(𝑝) = 0 and
for every point 𝑦 ∈ 𝐴, 𝑓(𝑦) = 1.

Scholium 7.70. A space 𝑋 is completely regular and 𝑇1 if and only if 𝑋 can be embed-
ded in∏𝛼∈𝜆[0, 1]𝛼 for some 𝜆, where each factor is the unit interval with the standard
topology.

Note. A scholium is a theorem whose truth is an immediate consequence of the proof
of a preceding theorem, but it does not follow from the statement of that preceding
theorem. By contrast, a corollary is a consequence of the statement of a preceding
theorem.

You may wonder whether there is a difference between completely regular and
regular. It is not hard to see that completely regular spaces are regular, but not all
regular spaces are completely regular (this fact stands in contrast to normality which
was equivalent to the fact that disjoint closed sets can be separated by a continuous
function). However, counterexamples are difficult to construct.

We conclude this section by seeing an example where open covers of spaces in-
teract with themes involving the Tietze Extension Theorem. Many important spaces
have desirable local properties. For example, in the second part of the book, we will
discuss at length surfaces, or 2-manifolds, which are locally homeomorphic to a plane.
The next theorem about the existence of partitions of unity is an important tool in other
areas of mathematics for taking objects defined over some space 𝑋 and breaking them
into pieces defined locally in each set of a cover. You may find the Tietze Extension
Theorem and the Incredible Shrinking Theorem 4.11 helpful to prove the following
result.
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Recall from the section on paracompactness that locally finite means that every
point of 𝑋 has a neighborhood that intersects only finitely many of the covering sets.

Theorem 7.71. Given a locally finite open cover {𝑈𝛼}𝛼∈𝜆 of a normal, 𝑇1 space 𝑋 , there
is a collection of corresponding continuous functions 𝜙𝛼 ∶ 𝑋 → [0, 1] such that (i) each
𝜙𝛼 is zero outside 𝑈𝛼, and (ii) the 𝜙𝛼 pointwise add to 1.

The collection {𝜙𝛼}𝛼∈𝜆 is called a partition of unity. For example, suppose you
have a surface 𝑋 and you want to define integration of a function 𝑓 ∶ 𝑋 → ℝ. You can
take a locally finite open cover of 𝑋 by sets homeomorphic to subsets of ℝ2, and use a
partition of unity {𝜙𝛼} to produce functions 𝑓(𝑥)𝜙𝛼(𝑥), each defined on one set of the
cover, then integrate each 𝑓(𝑥)𝜙𝛼(𝑥) as a function over a piece of a plane.

7.7 Continuity—Functions that Know Topology
After defining anymathematical structure, a natural impulse is tomap one such object
to another in an appropriateway. In the case of topology, “appropriate”was not the first
thing you thought of, but it was the second. At first, considering inverse images of open
sets to be open rather than making images of open sets to be open seemed backwards,
but by now it is second nature.

Exploring continuity was a model of how mathematics is created. In previous
chapters various properties of topological spaces were developed. So in this chapter
it was natural to investigate how the properties of spaces played with maps from space
to space. Many natural questionswere of the form: “If I have a spacewith this property,
will its image under a continuous function have that property too?” Other connections
between properties and continuous functions led to defining new spaces via quotient
maps and to discovering Urysohn’s Lemma and the Tietze Extension Theorem, all of
which we will see much more in the chapters to come.

This creation and development of the concept of continuity demonstrates why
mathematics has such rich and boundless potential for unlimited growth.





8
Connectedness: When Things

Don’t Fall into Pieces

The idea of a space being connected is one of the most readily apparent topological
properties a space can have. Does Los Angeles connect to Anchorage by a set of free-
ways? That is a topological question. We may not be able to tell right away if a space
is compact or Hausdorff, but we have an intuitive idea whether it is connected or not.
In this chapter we will study how to capture this intuition. Before you continue, try to
formulate a definition of what it means for a space to be connected. Do not read ahead
until you have written down at least one attempt at a definition.

Now let’s look at some examples of spaces that might motivate definitions of con-
nectedness and highlight potential issues.

Consider the space (0, 1) and the space (0, 1) ∪ (2, 3) in the subspace topology of
ℝstd. Intuitively (0, 1) looks connected and (0, 1) ∪ (2, 3) looks to be not connected, so
we want our definition to agree with that intuition.

Less clear is the space (4, 5) ∪ (5, 6) ⊂ ℝstd. This space also seems to be in two
pieces, so wewant the definition of connected to declare this space to be not connected.

The next example may be more difficult to decide. Consider the closure of the
topologist’s sine curve in ℝ2

std. The topologist’s sine curve is defined as this set:

𝑆 = {(𝑥, sin ( 1𝑥)) |𝑥 ∈ (0, 1)} .

According to your definition, is the closure of 𝑆 connected or not?
A related space we will refer to for future examples is the topologist’s comb:

𝐶 = {(𝑥, 0)|𝑥 ∈ [0, 1]} ∪
∞

⋃
𝑛=1

{( 1𝑛 , 𝑦) | 𝑦 ∈ [0, 1]} .

According to your definition, is 𝐶 ∪ {(0, 1)} connected or not?
It turns out that there are several reasonable definitions that capture different con-

cepts associated with the intuitive idea of connectedness. One natural view of being
connected is the idea of being able to “walk,” so to speak, from any point to any other
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Figure 8.1. The topologist’s comb.

point without leaving the space. The closure of the topologist’s sine curve fails this
notion of connectedness since it is impossible to continuously move from a point on
the wiggly side of the topologist’s sine curve to a point on the limiting vertical line
segment. This concept of “walkability” captures the idea of being path connected or
arcwise connected, and we will study it in a later section.

However, there is a more basic idea of connectedness captured by the question
of whether the space is in two disjoint pieces, where the pieces are open sets. This
perspective gives the basic definition of connectedness for topological spaces.

8.1 Connectedness
Definition. Let 𝑋 be a topological space. Then 𝑋 is connected if and only if 𝑋 is not
the union of two disjoint non-empty open sets.

We defined the notion of separated sets earlier but we will remind you of the defi-
nition here.

Figure 8.2. Separated sets 𝐴 and 𝐵.

Definition. Let 𝑋 be a topological space. Subsets 𝐴, 𝐵 in 𝑋 are separated if and only
if 𝐴 ∩ 𝐵 = 𝐴 ∩ 𝐵 = ∅. Thus 𝐵 does not contain any limit points of 𝐴, and 𝐴 does not
contain any limit points of 𝐵. The notation 𝑋 = 𝐴 ∣ 𝐵 means 𝑋 = 𝐴 ∪ 𝐵 and 𝐴 and 𝐵
are separated sets.



8.1. Connectedness 103

Effective Thinking Principle. Seek Equivalences. After isolating a concept
or a definition, seek equivalenceswith the goal of understanding the idea from
different perspectives.

Theorem 8.1. The following are equivalent:
(1) 𝑋 is connected.

(2) There is no continuous function 𝑓 ∶ 𝑋 → ℝstd such that 𝑓(𝑋) = {0, 1}.

(3) 𝑋 is not the union of two disjoint non-empty separated sets.

(4) 𝑋 is not the union of two disjoint non-empty closed sets.

(5) The only subsets of𝑋 that are both closed and open in𝑋 are the empty set and𝑋 itself.

(6) For every pair of points 𝑝 and 𝑞 and every open cover {𝑈𝛼}𝛼∈𝜆 of 𝑋 there exist a finite
number of the𝑈𝛼’s, {𝑈𝛼1 , 𝑈𝛼2 , 𝑈𝛼3 , … , 𝑈𝛼𝑛 } such that 𝑝 ∈ 𝑈𝛼1 , 𝑞 ∈ 𝑈𝛼𝑛 , and for each
𝑖 < 𝑛, 𝑈𝛼𝑖 ∩ 𝑈𝛼𝑖+1 ≠ ∅.

Effective Thinking Principle. Look at Examples to Make Definitions Mean-
ingful. After creating or encountering a definition, look at a range of specific
examples to help you understand the definition more deeply.

Let’s look at some examples to understand some features of the definition of con-
nectedness and to start to develop an intuition about it.

Exercise 8.2. Which of the following spaces are connected?

(1) ℝ with the discrete topology?

(2) ℝ with the indiscrete topology?

(3) ℝ with the finite complement topology?

(4) ℝLL?

(5) ℚ as a subspace of ℝstd?

(6) ℝ − ℚ as a subspace of ℝstd?

Since ℝstd is our paradigm for a connected space, our definition of connectedness
had better make ℝstd connected. Although this fact appears intuitively obvious, to
prove it you will need to use the least upper bound property of the reals, or something
equivalent.

Theorem 8.3. The space ℝstd is connected.
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Effective Thinking Principle. Connect New Ideas with Old Ideas. After iso-
lating a new idea, consider previous concepts and constructions and explore
how the new idea relates to them.

We have now defined connectedness. Let’s first see how connectedness relates to
basic set-theoretic ideas such as subsets and unions, basic topological ideas such as clo-
sure, and familiar topological relationships such as products and continuous functions.
The next several theorems begin that exploration.

Theorem 8.4. Let 𝐴, 𝐵 be separated subsets of a space 𝑋 . If 𝐶 is a connected subset of
𝐴 ∪ 𝐵, then either 𝐶 ⊂ 𝐴 or 𝐶 ⊂ 𝐵.

The union of a collection of connected sets that have a point in common is con-
nected. In fact, more generally:

Theorem 8.5. Let {𝐶𝛼}𝛼∈𝜆 be a collection of connected subsets of 𝑋 , and let 𝐸 be another
connected subset of 𝑋 such that for each 𝛼 in 𝜆, 𝐸 ∩ 𝐶𝛼 ≠ ∅. Then 𝐸 ∪ (⋃𝛼∈𝜆 𝐶𝛼) is
connected.

If you start with a connected subspace of a topological space and add limit points,
the resulting subspace is connected.

Theorem 8.6. Let 𝐶 be a connected subset of the topological space 𝑋 . If 𝐷 is a subset of
𝑋 such that 𝐶 ⊂ 𝐷 ⊂ 𝐶, then 𝐷 is connected.

This theorem allows us to settle the question of the connectedness of the closure
of the topologist’s sine curve.

Exercise 8.7. Show that the closure of the topologist’s sine curve in ℝ2
std is connected.

The following theorem can be used to produce connected subsets of a space.

Theorem 8.8. Let𝑋 be a connected space,𝐶 a connected subset of𝑋 , and𝑋−𝐶 = 𝐴 ∣ 𝐵.
Then 𝐴 ∪ 𝐶 and 𝐵 ∪ 𝐶 are each connected.

Next we consider how connectedness interacts with continuous functions and
products. Connectedness is preserved by continuous functions.

Theorem 8.9. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous, surjective function. If 𝑋 is connected,
then 𝑌 is connected.

Here’s a theorem you may have proved before, but now you can prove it using
connectedness.

Theorem 8.10 (Intermediate Value Theorem). Let 𝑓 ∶ ℝstd → ℝstd be a continuous
map. If 𝑎, 𝑏 ∈ ℝ and 𝑟 is a point ofℝ such that 𝑓(𝑎) < 𝑟 < 𝑓(𝑏), then there exists a point
𝑐 in (𝑎, 𝑏) such that 𝑓(𝑐) = 𝑟.
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Products of connected spaces are connected.

Theorem 8.11. For topological spaces 𝑋 and 𝑌 , 𝑋 ×𝑌 is connected if and only if each of
𝑋 and 𝑌 is connected.

Theorem 8.12. For spaces {𝑋𝛼}𝛼∈𝜆,∏𝛼∈𝜆 𝑋𝛼 is connected if and only if for each 𝛼 in 𝜆,
𝑋𝛼 is connected.

Of course, this theorem confirms that the standard Euclidean spaces ℝ𝑛 are con-
nected.

We have seen several reasons why the box topology is not the most useful con-
cept to use in giving a topology to infinite products. Yet another reason is that the box
topology of infinitely many connected spaces need not be connected.

Exercise 8.13. Show that the box product of countably infinitely many copies of ℝstd is
not connected.

8.2 Cardinality, Separation Properties, and
Connectedness

Nowwe explore which spaces with relatively few points might be connected. This next
theoremmay be a challenge. It states that if you have only countably many points and
you have enough separation properties, then the spacemust be expressible as the union
of two disjoint open sets.

Theorem 8.14. Let 𝑋 be a countable, regular, 𝑇1 space with more than one point. Then
𝑋 is not connected.

Effective Thinking Principle. Weaken Hypotheses and See What Happens.
One good habit for a mathematician is to see whether the hypotheses of a the-
orem can be weakened. Either a better theorem or an illuminating counterex-
ample might result.

In the case of our theorem that countable, regular, 𝑇1 spaces are not connected,
trying to weaken the regularity hypothesis leads to the difficult challenge of construct-
ing a countable, Hausdorff space that is connected. One such example is called Bing’s
Sticky Foot Topology. We will describe it here and ask you to verify that it is indeed
connected and Hausdorff.

Example. Bing’s Sticky Foot Topology: The points of this space consist of the points
in the upper half-plane (including the 𝑥-axis) with rational-rational coordinates. Basic
open sets for this topology come in two types:
(1) Subsets of the 𝑥-axis that are relatively open in ℝ1

std are basic open sets.

(2) To construct a basic open set containing the point (𝑟, 𝑠) where 0 < 𝑠, first find the
two points on the 𝑥-axis (𝑎, 0) and (𝑏, 0) such that the three points (𝑟, 𝑠), (𝑎, 0), and
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Figure 8.3. Basic open sets in Bing’s Sticky Foot Topology.

(𝑏, 0) are the vertices of an equilateral triangle. A basic open set containing the
point (𝑟, 𝑠) where 0 < 𝑠 consists of (𝑟, 𝑠) together with the rational points in open
intervals in the 𝑥-axis about the points (𝑎, 0) and (𝑏, 0). If you draw the lines from
(𝑟, 𝑠) down to (𝑎, 0) and (𝑏, 0) and draw open intervals around (𝑎, 0) and (𝑏, 0) on
the 𝑥-axis, you can see where the Sticky Foot name comes from.

Exercise 8.15. Show that Bing’s Sticky Foot Topology is a countable connectedHausdorff
space.

Bing’s Sticky Foot Topology shows that the regularity hypothesis in Theorem 8.14
cannot be weakened. If we strengthen the regularity hypothesis to normality, then
connected, 𝑇1 spaces must have at least as many points as does ℝ. Urysohn’s Lemma
may be helpful in proving this result.

Theorem 8.16. If 𝑋 is a normal, 𝑇1 space with more than one point and |𝑋| < |ℝ|, then
𝑋 is not connected.

Feel free to skip the next exercise. It is not particularly important, but you might
enjoy it. It points out that in fact, for 𝑛 ≥ 2, the spaceℝ𝑛 remains connected evenwhen
some points are removed.

Exercise 8.17. Let𝐴 be a countable subset ofℝ𝑛 for𝑛 ≥ 2. Show thatℝ𝑛−𝐴 is connected.
In fact, if the cardinality of𝐴 is any cardinality less than the cardinality ofℝ, thenℝ𝑛−𝐴
will still be connected. Actually, for any two points 𝑝 and 𝑞 inℝ𝑛−𝐴, 𝑝 can be connected
to 𝑞 by two intersecting straight line segments in ℝ𝑛 − 𝐴.

8.3 Components and Continua
If a space is not connected, it is natural to think about the connected pieces that make
it up. That impulse leads to the definition of a component of a space.

Definition. Let 𝑋 be a space and 𝑝 ∈ 𝑋 . The component or connected component
of 𝑝 in 𝑋 is the union of all connected subsets of 𝑋 that contain 𝑝.
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The basic facts about components are that they are connected, closed, maximal,
and disjoint.

Theorem 8.18. Each component of 𝑋 is connected, closed, and not contained in any
strictly larger connected subset of 𝑋 .

Theorem 8.19. The set of components of a space 𝑋 is a partition of 𝑋 .

Effective Thinking Principle. Consider Opposite Questions. When study-
ing a topic, it is often illuminating to consider the opposite questions.

We are undertaking an investigation of connected spaces, so for a moment let’s
think about the opposite question, namely, in how many ways can a space that is not
connected be shown to be not connected. The investigation of connectedness is partic-
ularly rich and interesting in compact Hausdorff spaces. So we turn our attention now
to consideringways inwhich disconnected compact Hausdorff spaces can be expressed
as disjoint open sets. It turns out that compact Hausdorff spaces can often be written
as the union of two disjoint open sets in many ways. Theorem 8.24 below states that if
a compact Hausdorff space is not connected and no component of the space intersects
two given disjoint closed sets in the space, then the space can be written as the union
of two disjoint open (and closed) subsets where one of the closed sets is in one half and
the other closed set is in the other. In other words, in compact Hausdorff spaces, basi-
cally unless a single component prevents such a separation, then such a separation is
possible. The lemmas that precede the theoremmay be useful in proving this theorem.

Effective Thinking Principle. Start with Simple Cases. George Polya said,
“If you can’t solve a problem, then there is an easier problem you can’t solve.
Find it.”

We begin by aiming to prove if there is a compact Hausdorff space with compo-
nents 𝐴 and 𝐵, then there is a separation of 𝑋 into two disjoint closed subsets where 𝐴
is in one and 𝐵 is in the other. As a start, we notice an equivalent statement that may
be easier to prove.

Lemma 8.20. Let 𝑋 be a topological space, and let {𝐻𝛼}𝛼∈𝜆 be the set of subsets of 𝑋 that
are both open and closed. Then the following are equivalent:
(1) For every two components𝐴 and𝐵 of𝑋 , there exists a separation of𝑋 into two disjoint

closed sets such that 𝐴 is in one and 𝐵 is in the other.
(2) For every component 𝐴 of 𝑋 ,

⋂
𝛼∈𝜆

{𝐻𝛼 ∣ 𝐴 ⊂ 𝐻𝛼} = 𝐴.

The reason that the second equivalencemay be easier in the case of compact Haus-
dorff spaces 𝑋 is that we know that⋂𝛼∈𝜆{𝐻𝛼 ∣ 𝐴 ⊂ 𝐻𝛼} is definitely a closed set that
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contains 𝐴. If that intersection were not just equal to 𝐴, then that intersection would
be a closed subset that is not connected. So that intersection could be written as the
union of two disjoint, non-empty closed sets, whichwould be closed in all of𝑋 . Since𝑋
is compact and Hausdorff, we know 𝑋 is normal. When two disjoint closed subsets of
a normal space arise, we certainly cannot resist the temptation to put them in disjoint
open sets. Succumbing to that temptation is a great idea.

It is also a great idea to remember the following fact about compact spaces that
was one of the early theorems in the chapter on compactness.

Lemma 8.21. Let 𝑋 be a compact space and let 𝑈 be an open set in 𝑋 . Let {𝐻𝛼}𝛼∈𝜆 be
closed subsets of 𝑋 such that⋂𝛼∈𝜆𝐻𝛼 ⊂ 𝑈. Then there exist a finite number of the 𝐻𝛼’s
whose intersection lies in 𝑈.

Perhaps these lemmas will allow you to prove that disjoint components of a com-
pact Hausdorff space can be put in different halves of a separation.

Lemma 8.22. Let 𝐴 and 𝐵 be components of a compact, Hausdorff space 𝑋 . Then 𝑋 =
𝐻 ∣ 𝐾, where 𝐴 ⊂ 𝐻 and 𝐵 ⊂ 𝐾.

In some sense, proving this case is a bit like establishing aHausdorff-like condition
where the components of 𝑋 are viewed as points. That intuition could be formulated
precisely as follows using the idea of identification spaces.

Theorem 8.23. Let 𝑋 be a compact Hausdorff space. Let 𝑋∗ be the partition of 𝑋 into its
components. Then the identification space 𝑋∗ is a compact Hausdorff space.

Theorem 8.24. Let𝐴 and 𝐵 be closed subsets of a compact, Hausdorff space 𝑋 such that
no component intersects both 𝐴 and 𝐵. Then 𝑋 = 𝐻 ∣ 𝐾, where 𝐴 ⊂ 𝐻 and 𝐵 ⊂ 𝐾.

As usual, after proving a theorem, we investigate whether all the hypotheses are
necessary. The following example will demonstrate the necessity of the “compactness”
hypothesis of Theorem 8.24.

Example. Let𝑋 be the subset ofℝ2 equal to ([0, 1]×⋃𝑖∈𝜔0
{1/𝑖})∪{(0, 0), (1, 0)}with the

subspace topology. Show that the conclusion to Theorem 8.24 fails when 𝐴 = {(0, 0)}
and 𝐵 = {(1, 0)}.

We next turn our attention toward compact Hausdorff spaces that are connected.
Since such spaces are in some sense generalizations of a closed interval in ℝ, they are
called continua.

Definition. A continuum is a connected, compact, Hausdorff space.

We find that our investigation of non-connected compact Hausdorff spaces will be
useful in understanding some of the structure of continua. First we prove that each
component of an open subset of a continuummust extend out to the boundary of that
open set.

Theorem 8.25. Let𝑈 be a proper, open subset of a continuum 𝑋 . Then each component
of 𝑈 contains a point of 𝜕𝑈, the boundary of 𝑈.
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The next, similar, theorem is often referred to as the “to the boundary” theorem.

Theorem 8.26. Let𝑈 be a proper, open subset of a continuum 𝑋 . Then each component
of 𝑈 has a limit point on 𝜕𝑈.

We saw earlier that no regular, 𝑇1 space with only a countable number of points
could be connected. In the same spirit, the following theorem states that no continuum
is the union of countably many disjoint closed sets.

Theorem 8.27. No continuum 𝑋 is the union of a countable number (> 1) of disjoint,
non-empty closed subsets.

As usual, we investigate the necessity of the hypotheses. In this case, we construct
an example to demonstrate the necessity of the compactness hypothesis on 𝑋 .

Figure 8.4. A connected space, the union of a countable number of
disjoint sets.

Exercise 8.28. Show that in Figure 8.4, 𝑋 is connected and is the union of a countable
number of disjoint closed sets.

The nested intersection of continua is a continuum. This innocuous-sounding re-
sult will allow us to construct some truly strange continua.

Theorem 8.29. Let {𝐶𝑖}𝑖∈𝜔 be a countable collection of continua such that for each 𝑖,
𝐶𝑖+1 ⊂ 𝐶𝑖. Then⋂𝑖∈𝜔 𝐶𝑖 is a continuum.

Theorem 8.30. Let {𝐶𝛼}𝛼∈𝜆 be a collection of continua indexed by a well-ordered set 𝜆
such that if 𝛼 < 𝛽, then 𝐶𝛽 ⊂ 𝐶𝛼. Then⋂𝛼∈𝜆 𝐶𝛼 is a continuum.

Closed intervals suggested the name of continua, so it is reasonable to see whether
every continuum has some features in common with a closed interval. The endpoints
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of a closed interval suggest an interesting theorem. If you delete an endpoint from a
closed interval, the remainder of the interval remains connected. It turns out that every
continuum has non-separating points.

Definition. Let 𝑋 be a connected set. A point 𝑝 in 𝑋 is a non-separating point if and
only if 𝑋 − {𝑝} is connected. Otherwise 𝑝 is a separating point.

Lemma8.31. Let𝑋 be a continuum,𝑝 a point of𝑋 , and𝑋 − {𝑝} = 𝐻 ∣ 𝐾. Then𝐻∪{𝑝} is
a continuum and if 𝑞 ≠ 𝑝 is a non-separating point of𝐻∪{𝑝}, then 𝑞 is a non-separating
point of 𝑋 .

This lemma will help you to prove the following theorem about the existence of
non-separating points. Delightfully, the coming theorem confusingly involves four dif-
ferent kinds of “separation,” as if our topology colleagues could not get enough usage
out of the Latin root separat. We have a separable space (having a countable dense sub-
set) which is Hausdorff (which is a separation property) and connected (that is, having
no separation), and we wish to show it has non-separating points. What fun!

Theorem 8.32. Let 𝑋 be a separable continuum with more than one point. Then 𝑋 has
at least two non-separating points.

The following theorem is a strict generalization of the preceding one, namely, it
omits the separable hypothesis. To prove it, you can follow the same strategy as you
probably used to prove the preceding theorem, but in this case, you may need to use
transfinite induction.

Theorem 8.33. Let 𝑋 be a continuum with more than one point. Then 𝑋 has at least
two non-separating points.

We must not abandon our investigation of continua without introducing you to a
few of the exotic delights of this realm. The first one we will describe starts with the
totally disconnected Cantor set (see Section 7.4 for the definition). We then produce a
connected set by joining pairs of points in the Cantor set with semicircles to create a
fascinating example called the Knaster continuum or bucket handle continuum.

Figure 8.5. The Knaster bucket handle continuum.
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Example. TheKnaster continuum or bucket handle continuum is a closed subset
of ℝ described as follows:
(1) Begin with the standard Cantor in [0, 1]. In the upper half-plane add all the semi-

circles centered at the point (1/2, 0) that contain a point of the Cantor set. So each
of these semicircles connects a pair of points of the Cantor set, namely, every point
of the Cantor set in the interval [0, 1/3] is paired with a point in the Cantor set in
the interval [2/3, 1].

(2) Next we addmore collections of semicircles in the lower half-plane, but centered at
different points. The first collection of cup-shaped semicircles are each centered at
the point (5/6, 0). These semicircles pair points in the Cantor set from the interval
[2/3, 7/9] with points in the Cantor set in the interval [8/9, 1].

(3) Now we proceed to the left. The second collection of cup-shaped semicircles are
each centered at the point (5/18, 0), which is themidpoint of the interval [2/9, 1/3].
These semicircles pair points in the Cantor set from the interval [2/9, 7/27] with
points in the Cantor set in the interval [8/27, 1/3].

(4) We proceed in this manner creating collections of cup-shaped semicircles that pair
points of the Cantor set. Just to show that we can do the arithmetic, in general, for
each 𝑛 ∈ ℕ, we take all the cup-shaped semicircles in the lower half-plane centered
at the point (5/(2 × 3𝑛), 0) that connect points in the Cantor set in the interval
[6/3𝑛+1, 7/3𝑛+1] to the points in the Cantor set in the interval [8/3𝑛+1, 9/3𝑛+1].

(5) Theunion of all the semicircles described above is theKnaster continuumor bucket
handle continuum.

One of the interesting properties about the bucket handle continuum is that it is
impossible to write it as the union of two proper subcontinua. That property is suffi-
ciently interesting to deserve a name.

Definition. A continuum 𝑋 is indecomposable if and only if 𝑋 cannot be written as
the union of two proper subcontinua.

Theorem 8.34. The bucket handle continuum is indecomposable.

It is with sadness that we move on from a further discussion of indecomposable
continua. We would love to cheerfully marvel at the homogeneity of the pseudo-arc
or joyfully frolic in the Lakes of Wada. However, life is stern and life is earnest, so we
must leave this verdant field for other equally rich delights.

We leave this section with a question that has been called the most interesting
unsolved problem in plane topology. Suppose you have a continuum 𝐶 inℝ2 that does
not separateℝ2. Then does𝐶 have the fixed point property, that is, for every continuous
function 𝑓 ∶ 𝐶 → 𝐶 is there a point 𝑥 ∈ 𝐶 such that 𝑓(𝑥) = 𝑥? This question has
remained unanswered for nearly a century. Please solve it.

8.4 Path or Arcwise Connectedness
Perhaps one of the ways you thought of defining connectedness at the beginning of the
chapter was the idea of being able to “walk” from any point of the set to any other point
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without leaving the set. This intuitive idea leads to the property called path connected-
ness or arcwise connectedness.

Definition. Apath from𝑥 to 𝑦 in a space𝑋 is a continuousmap𝑓 ∶ [0, 1] → 𝑋 such that
𝑓(0) = 𝑥 and 𝑓(1) = 𝑦. A path is also called an arc. A space 𝑋 is arcwise connected
or path connected if and only if every pair of points in 𝑋 can be joined by a path in 𝑋 .

The first thing to notice is that spaces that connect points by paths are definitely
connected.

Theorem 8.35. A path connected space is connected.

However, not every space that is connected is path connected.

Example. The flea and comb space is the union of the topologist’s comb with the
point (0, 1).

Exercise 8.36. The flea and comb space is connected but not path connected.

Exercise 8.37. The closure of the topologist’s sine curve is connected but not path con-
nected.

Path connectivity behaves well with respect to products.

Theorem 8.38. The product of path connected spaces is path connected.

Definition. Given a topological space 𝑋 , define an equivalence relation on 𝑋 by letting
𝑥 ∼ 𝑦 if there is a path connected subset of 𝑋 containing both 𝑥 and 𝑦. The equivalence
classes are called the path components of 𝑋 .

Exercise 8.39. (1) What are the path components of the closure of the topologist’s sine
curve?

(2) What are the path components of the closure of the topologist’s comb?

Exercise 8.40. Must every non-empty open connected subset𝑈 ofℝ𝑛 be path connected?

Connecting two points by a path just requires the existence of a continuous func-
tion, but you might prefer an embedded arc. For Hausdorff spaces, the existence of a
path implies the existence of an embedded arc.

Theorem 8.41. Let 𝑝 and 𝑞 be two points in a Hausdorff space 𝑋 such that there exists
a continuous function 𝑓 ∶ [0, 1] → 𝑋 with 𝑓(0) = 𝑝 and 𝑓(1) = 𝑞. Then there exists an
embedding ℎ ∶ [0, 1] → 𝑋 with ℎ(0) = 𝑝 and ℎ(1) = 𝑞.

8.5 Local Connectedness
Although the closure of the topologist’s comb 𝐶 is connected and path connected, if
we look at a small neighborhood of the point (0, 1), its intersection with 𝐶 is neither
connected nor path connected.
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Definition. A space 𝑋 is locally connected at the point 𝑝 of 𝑋 if and only if for each
open set𝑈 containing 𝑝, there is a connected open set 𝑉 such that 𝑝 ∈ 𝑉 ⊂ 𝑈. A space
𝑋 is locally connected if and only if it is locally connected at each point.

Theorem 8.42. The following are equivalent:

(1) 𝑋 is locally connected.

(2) 𝑋 has a basis of connected open sets.

(3) For each 𝑥 ∈ 𝑋 and open set 𝑈 with 𝑥 ∈ 𝑈, the component of 𝑥 in 𝑈 is open.

(4) For each 𝑥 ∈ 𝑋 and open set 𝑈 with 𝑥 ∈ 𝑈, there is a connected set 𝐶 such that
𝑥 ∈ Int 𝐶 ⊂ 𝐶 ⊂ 𝑈.

(5) For each 𝑥 ∈ 𝑋 and open set 𝑈 with 𝑥 ∈ 𝑈, there is an open set 𝑉 containing 𝑥 and
𝑉 ⊂ (the component of 𝑥 in 𝑈).

Notice that a connected space need not be locally connected and a locally con-
nected space need not be connected.

Exercise 8.43. (1) Show that the closure of the topologist’s comb is not locally connected.

(2) Construct a space that is connected but not locally connected at any point.

(3) Find an example of a space that is locally connected but not connected.

As usual, one of the features we look for with a new property is how it behaves
with respect to products.

Theorem 8.44. The product of two locally connected spaces is locally connected.

Local connectivity is about the only property where the box product behaves better
than the standard product topology.

Exercise 8.45. (1) Find an example of an infinite number of locally connected spaces
where the infinite product space is not locally connected.

(2) Prove that an arbitrary box product of locally connected spaces is locally connected.

One of the standard questions we ask after defining a new property is whether it
is preserved under continuous functions.

Theorem 8.46. Let 𝑋 be a locally connected space, and let 𝑓 ∶ 𝑋 → 𝑌 be a continuous,
surjective, closed or open map. Then 𝑌 is locally connected.

Exercise 8.47. Construct an example of a locally connected space 𝑋 and a continuous,
surjective function 𝑓 ∶ 𝑋 → 𝑌 such that 𝑌 is not locally connected.

We first defined connected spaces and then we considered path connected spaces.
So it is natural to consider the local version of path connectivity.
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Definition. Let 𝑋 be a topological space.
(1) 𝑋 is locally path connected or locally arcwise connected at 𝑝 if and only if for

each open set𝑈 containing 𝑝 there is an open set 𝑉 such that 𝑝 ∈ 𝑉 ⊂ 𝑈 such that
each pair of points 𝑥, 𝑦 ∈ 𝑉 can be joined by a path in 𝑈.

(2) A space is locally path connected or locally arcwise connected if and only if
it is locally path connected at each point.

Theorem 8.48. A locally path connected space is locally connected.

Notice in the definition of locally path connected that the points in the open set 𝑉
are connected by a path in 𝑈, but not by a path in 𝑉 . That raises the question of why
the definition did not insist that those paths must lie in 𝑉 . The answer is that we could
have made that definition.

Theorem 8.49. The following are equivalent:
(1) 𝑋 is locally path connected.

(2) For each 𝑥 ∈ 𝑋 and open set𝑈 with 𝑥 ∈ 𝑈, there is a path connected open set 𝑉 such
that 𝑥 ∈ 𝑉 ⊂ 𝑈.

(3) 𝑋 has a basis of connected, path connected open sets.

The closed interval is 2nd countable, compact, Hausdorff, connected, and locally
connected. That collection of properties defines spaces known as Peano continua.

Definition. A topological space 𝑋 is a Peano continuum if and only if 𝑋 is compact,
Hausdorff, 2nd countable, connected, and locally connected.

Notice that we could have saved some words in the definition of a Peano contin-
uum by defining it as a 2nd countable, locally connected continuum. Then you could
have practiced remembering that a continuum is a compact, connected, Hausdorff
space.

To prove the following characterization of Peano continua, youwill have an oppor-
tunity to remember and apply several previous theorems about what features of spaces
are preserved by continuous functions. Enjoy.

Theorem 8.50. A Hausdorff space 𝑋 is a Peano continuum if and only if it is the image
of [0, 1] under a continuous map.

Youmay have noticed that we defined locally path connected and it seems to have
disappeared in the subsequent discussion, but it was hiding in the background the
whole time.

Theorem 8.51. Let 𝑓 ∶ [0, 1] → 𝑋 be a continuous surjective mapwhere𝑋 is Hausdorff.
Then 𝑋 is locally path connected. Equivalently, every Peano continuum is locally path
connected.

If you look up the phrase Peano continuum, you will probably read that a Peano
continuum is a locally connected metric continuum. But have no fears, by the end of
the next chapter on metric spaces, you will see that the two definitions are equivalent.
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Mathematics is an ever-growing enterprise. One famous unsolved problem in
mathematics involves Peano continua—or not. The question is whether the famous
fractal known as the Mandelbrot set is locally connected, that is, whether the Mandel-
brot set is a Peano continuum.

8.6 Totally Disconnected Spaces and the
Cantor Set

Effective Thinking Principle. Opposite Extremes. After creating a concept,
explore its opposite as well.

This chapter is about connected spaces. So it is fitting that we also explore the
opposite kinds of spaces, namely those that are the opposite of connected. As usual
when we turn our minds toward an idea, several possibilities arise. One idea is the
idea of a totally disconnected space.

Definition. A space 𝑋 is totally disconnected if and only if every component of 𝑋 is
a single point.

Another concept of extreme disconnectedness is the idea of having a basis of sets
that are both open and closed.

Definition. A space𝑋 is 0-dimensional if and only if𝑋 has a basis of sets each ofwhich
is both open and closed.

We have two possible definitions for being the opposite of connected. It is natural
to ask whether those two definitions are the same. The first thing to notice is that
0-dimensional, 𝑇1 spaces are definitely totally disconnected.

Theorem 8.52. Let 𝑋 be a 0-dimensional, 𝑇1 space. Then 𝑋 is totally disconnected.

However, it is possible to have spaces that are totally disconnected, but that are not
0-dimensional.

Exercise 8.53. Create a Hausdorff space that is totally disconnected but is not 0-dimen-
sional.

The Cantor set is a famous 0-dimensional space with many interesting properties
(see Section 7.4 for the definition).

Theorem 8.54. The standard Cantor set is precisely those real numbers in [0, 1] that can
be written using only 0’s or 2’s in their ternary (that is, base 3) expansion.

Here are some fun facts about the Cantor set that you may enjoy exploring.

Exercise 8.55. Show that every real number in [0, 2] is the sum of two numbers in the
standard Cantor set.
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Exercise 8.56. Let𝐶 be the Cantor set. Create a continuous function 𝑓 ∶ 𝐶 → [0, 1] that
is surjective.

Some of the interesting facts about the Cantor set relate to how it can be embedded
inEuclidean spaces. Here are some examples. Thefirst one shows that you could create
an umbrella with a Cantor set.

Exercise 8.57. Let 𝐶 be the Cantor set. Create an embedding ℎ ∶ 𝐶 → [0, 1] × [0, 1]
such that for every 𝑥 ∈ [0, 1], ({𝑥} × [0, 1]) ∩ ℎ(𝐶) ≠ ∅.

In fact, you could use the Cantor set to hide from spying eyes.

Exercise 8.58. Let𝐶 be the Cantor set. Create an embedding ℎ ∶ 𝐶 → [−1, 1]×[−1, 1]−
{(0, 0)} such that every ray from (0, 0) straight out to infinity intersects ℎ(𝐶).

A Cantor set can get in the way of every continuous function.

Exercise 8.59. Let 𝐶 be the Cantor set. Create an embedding ℎ ∶ 𝐶 → [0, 1] × [0, 1]
such that for every continuous function 𝑓 ∶ [0, 1] → [0, 1], 𝐺𝑓 ∩ ℎ(𝐶) ≠ ∅, where 𝐺𝑓 is
the graph of 𝑓.

As we might expect, a Cantor set cannot separate points.

Exercise 8.60. Let𝐶 be the Cantor set, let ℎ ∶ 𝐶 → ℝ2 be an embedding, and let 𝑝 and 𝑞
be points inℝ2−ℎ(𝐶). Show that you can find a polygonal path from 𝑝 to 𝑞 inℝ2−ℎ(𝐶).

Again on the intuitive side, every embedding of the Cantor set into ℝ2 is the same
up to a homeomorphism of the plane.

Theorem8.61. Let𝐶 be the standard Cantor set on the 𝑥-axis inℝ2, and let ℎ ∶ 𝐶 → ℝ2

be an embedding. Then there exists a homeomorphism 𝐻 ∶ ℝ2 → ℝ2 such that for every
𝑥 ∈ 𝐶,𝐻(ℎ(𝑥)) = 𝑥.

Interestingly, the preceding theorem is not true for embeddings into higher-dimen-
sional Euclidean spaces. You may want to wait until you have learned some of the
techniques from the last half of this book before you prove the following theorem.

Theorem 8.62. Let 𝐶 be the standard Cantor set on the 𝑥-axis in ℝ2. There exists an
embedding ℎ ∶ 𝐶 → ℝ3 such that no homeomorphism 𝐻 ∶ ℝ3 → ℝ3 exists where
𝐻(ℎ(𝐶)) = 𝐶.

You saw earlier that the Cantor set can be mapped onto [0, 1]. In fact, the Cantor
set can be mapped onto every 2nd countable, compact, Hausdorff space.

Theorem 8.63. Let𝐶 be the standard Cantor set, and let 𝑋 be a 2nd countable, compact,
Hausdorff space. Then there exists a continuous, surjective function 𝑓 ∶ 𝐶 → 𝑋 .

The Cantor set is a fascinating space that illustrates the value of exploring oppo-
sites, in this case, the opposite of being connected.
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8.7 Hanging Together—Staying Connected
One of the most productive strategies for creating mathematics and for understanding
the world better is to start with some intuitive idea and then to create mathematical
reflections, refinements, and extensions of that idea.

Connectedness is an idea with clear real-world meaning. Pinning it down topo-
logically started with capturing the most basic topological reflection of connectivity,
namely, not falling into two parts. Then the intuition about being able to travel from
one place to another led to the idea of path connected spaces. Then we generated addi-
tional extensions and refinements by employing the usual strategy of considering local
versions of ideas.

The study of connectedness is an excellent example of how mathematical ideas
can be created, refined, and extended.





9
Metric Spaces: Getting

Some Distance

As we mentioned early in this book, topology views the world flexibly—as if made of
rubber—and asks: what features are preserved? We developed the ideas of open sets
and topologies to capture in a flexible way the idea of points in a space being “close.”
And we did not need to refer to a notion of “distance” to specify this closeness! Using
open sets, we have seen that we can formalize the ideas of convergence, connectedness,
and continuity in a flexible way.

However, many of the spaces that we care about in this world do have a precise
notion of distance attached to them. Scientists measure how close two points are.
Astronomers talk about distance between stars. Genealogists ask how many genera-
tions separate two individuals. Biologists can say that two species are genetically close.
While distances like these arise naturally from context, a distance is sometimes cho-
sen for convenience: a mathematician can use many different measures of closeness
for two objects. Topology can help us understand the relationships among various dis-
tance notions.

Wewillmake precise this idea of a distance between points, and call it ametric, and
then ask how our topological developments relate to a metric, when it exists. Spaces
that have a metric are calledmetric spaces.

9.1 Metric Spaces
Metric spaces arise by generalizing the notion of the distance between two points in the
familiar Euclidean spaces ℝ𝑛. The strategy is to look at that familiar idea of distance
and cull from it central features, which then become the definition of a metric.

Definition. A metric on a set 𝑀 is a function 𝑑 ∶ 𝑀 × 𝑀 → ℝ+ (where ℝ+ is the
non-negative real numbers) such that for all 𝑎, 𝑏, 𝑐 ∈ 𝑀, these properties hold:

(1) 𝑑(𝑎, 𝑏) ≥ 0, with 𝑑(𝑎, 𝑏) = 0 if and only if 𝑎 = 𝑏;
119
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(2) 𝑑(𝑎, 𝑏) = 𝑑(𝑏, 𝑎);

(3) 𝑑(𝑎, 𝑐) ≤ 𝑑(𝑎, 𝑏) + 𝑑(𝑏, 𝑐).
These three properties are often summarized by saying that a metric is positive defi-
nite, symmetric, and satisfies the triangle inequality.

Ametric space (𝑀, 𝑑) is a set𝑀 with a metric 𝑑.

Example. The function 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| is a metric on ℝ. This measure of distance is
the standard metric on ℝ.

This metric can be generalized to ℝ𝑛 in many different ways, as the following ex-
amples show.

Exercise 9.1. Verify that the following are all metrics on ℝ𝑛:

(1) The Euclidean metric on ℝ𝑛 is defined by 𝑑(𝐱, 𝐲) = √∑𝑛
𝑖=1(𝑥𝑖 − 𝑦𝑖)2.

(2) The box metric on ℝ𝑛 is defined by 𝑑(𝐱, 𝐲) = max{|𝑥𝑖 − 𝑦𝑖| ∶ 𝑖 = 1, … , 𝑛}.

(3) The taxi-cab metric on ℝ𝑛 is defined by 𝑑(𝐱, 𝐲) = ∑𝑛
𝑖=1 |𝑥𝑖 − 𝑦𝑖|.

Show that when 𝑛 ≥ 2, these metrics are different.

EffectiveThinkingPrinciple. Explore Extremes. Aftermaking a definition,
explore extreme or unusual cases.

Example. On any set𝑀, we can define the discrete metric as follows: for any 𝑎, 𝑏 ∈
𝑀, 𝑑(𝑎, 𝑏) = 1 if 𝑎 ≠ 𝑏 and 𝑑(𝑎, 𝑎) = 0. This metric basically tells us whether two
points are the same or different.

Example. Here’s a strange metric on ℚ: for reduced fractions, let 𝑑(𝑎
𝑏
, 𝑚
𝑛
) = max(|𝑎 −

𝑚|, |𝑏 − 𝑛|). Which rationals are “close” to one another under this metric?

The idea of a metric space is powerful, because it applies to more than just subsets
of ℝ𝑛. For instance, function spaces are sets in which every point is a function.

Exercise 9.2. Let𝑋 be a compact topological space. Let𝒞(𝑋) denote the set of continuous
functions 𝑓 ∶ 𝑋 → ℝ. We can endow 𝒞(𝑋) with a metric:

𝑑(𝑓, 𝑔) = sup
𝑥∈𝑋

|𝑓(𝑥) − 𝑔(𝑥)|

and this distance is also sometimes denoted ‖𝑓−𝑔‖. Check that 𝑑 is a well-definedmetric
on 𝒞(𝑋).

Aspacewith a givenmetric has a natural topology induced by themetric. The stan-
dard metric on ℝ and the Euclidean metric on ℝ𝑛 give rise to the standard topologies
on these spaces in the following way.
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Theorem 9.3. Let 𝑑 be a metric on the set 𝑋 . Then the collection of all open balls
ℬ = {𝐵(𝑝, 𝜖) = {𝑦 ∈ 𝑋|𝑑(𝑝, 𝑦) < 𝜖} for every 𝑝 ∈ 𝑋 and every 𝜖 > 0}

forms a basis for a topology on X.

The topology generated by a metric 𝑑 on 𝑋 is called the 𝑑-metric topology for 𝑋 .

Definition. A topological space (𝑋,𝒯) is ametric space or ismetrizable if and only
if there is a metric 𝑑 on 𝑋 such that 𝒯 is the 𝑑-metric topology. We sometimes write a
metric space as (𝑋, 𝑑) to denote 𝑋 with the 𝑑-metric topology.

Note that previously we defined a metric space to be a set with a metric while
here we are defining a topological space to be a metric space under certain conditions.
You may be worried about this variety of definitions for the same term, but do not be
concerned. Since any set with a metric gives rise to a topology on that set induced by
the metric, these two definitions are not in danger of conflicting. The idea of a metric
on a set emphasizes a given metric, while the topological definition emphasizes the
topology (for which the related metric may or may not be stated explicitly). This book
concerns topology, so in what follows, when you read “𝑋 is a metric space,” you should
think of 𝑋 as a topological space induced by some metric.

Effective Thinking Principle. What’s the Same; What’s Different. When
two mathematical concepts are related, explore the extent to which they cor-
respond.

Any metric generates a topology, but different metrics can generate the same
topology.

Exercise 9.4. On ℝ𝑛, show that the Euclidean metric, box metric, and taxi-cab metric
generate the same topology as the product topology on 𝑛 copies of ℝstd.

Exercise 9.5. Now find a metric on ℝ𝑛 that does not induce the product topology on 𝑛
copies of ℝstd.

It is natural to ask what features of a metric can be altered while still generating
the same topology.

Theorem 9.6. For any metric space (𝑋, 𝑑), there exists a metric ̄𝑑 such that 𝑑 and ̄𝑑
generate the same topology, yet for each 𝑥, 𝑦 ∈ 𝑋 , ̄𝑑(𝑥, 𝑦) < 1.

Thus every set is bounded under ̄𝑑 even if not all sets are bounded under 𝑑. So
boundedness of the metric is not a topological property.

Effective Thinking Principle. Explore How New Ideas Relate to Old Ideas.
A standard and fruitful method for creating and learning mathematics is to
explore how a new concept interacts with previous concepts.
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Many of the coming theorems in this chapter arise as a natural exploration of how
metric spaces are related to topological ideas developed in the previous chapters. We
start by looking at subsets of metric spaces and learn that subspaces of a metric space
are also metric spaces.

Theorem 9.7. If 𝑋 is a metric space and 𝑌 ⊂ 𝑋 , then 𝑌 is a metric space.

Metric spaces have every separation propertywe have introduced. A caution: there
is a rather natural idea for how to prove the normality of a metric space that does not
work. So it may be useful to consider the graphs of 𝑦 = 1/𝑥 (for 𝑥 > 0) and 𝑦 = 0 in the
plane, which are disjoint closed sets, to make sure your proof would work in that case.

Theorem 9.8. Ametric space is Hausdorff, regular, and normal.

In fact, metric spaces enjoy the stronger concepts of normality that were intro-
duced earlier.

Theorem 9.9. Ametric space is completely normal and perfectly normal.

In exploring the relationships of metric spaces to countability properties, we find
many interesting connections.

Theorem 9.10. Ametric space is a 1st countable space.

The next theorem shows that in ametric space, many of the countability properties
we learned earlier are equivalent.

Theorem 9.11. In a metric space 𝑋 , the following are equivalent:
(1) 𝑋 is separable.

(2) 𝑋 is 2nd countable.
(3) 𝑋 is Lindelöf.

(4) Every uncountable set in 𝑋 has a limit point.

One route to proving this theorem is to show (1) implies (2) implies (3) implies (4)
implies (1). The last implication may be the hardest. After you prove the theorem, ask
yourself which of the implications relies on 𝑋 being a metric space.

Theorem 9.11 can be used to infer that some spaces are not metrizable. For ex-
ample, there is no metric on the upper half-plane that will generate the Sticky Bubble
Topology ℍbub, because ℍbub is separable but not 2nd countable (Exercise 5.10). Of
course, ℍbub is not normal either. So there are many reasons why ℍbub is not a metric
space.

Exercise 9.12. If you’ve read about the Souslin property in Section 5.4, then a fifth prop-
erty can be added to the above theorem: a metric space 𝑋 has the Souslin property if and
only if it has the other properties mentioned in Theorem 9.11. Show this.

Next we consider products of metric spaces and get off to a promising start. To
prove the next result, your challenge is to define a metric on the product such that the
metric topology on the product is the same as the product topology.
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Theorem 9.13. Let (𝑋, 𝑑) and (𝑌, 𝑒) be metric spaces. Then 𝑋 × 𝑌 is a metric space.

In fact the countable product of metric spaces is a metric space.

Theorem 9.14. Let {(𝑋𝑖, 𝑑𝑖)}𝑖∈𝜔0 be a countable collection of metric spaces. Then
∏𝑖∈𝜔0

𝑋𝑖 is metrizable.

But uncountable products of spaces are never metrizable.

Exercise 9.15. Show that if {𝑋𝛼}𝛼∈𝜆 is an uncountable collection of non-degenerate
spaces, then∏𝛼∈𝜆 𝑋𝛼 is not metrizable.

As usual, the box product does not behave well with respect to metrizability.

Exercise 9.16. Consider the setℝ𝜔 with the box topology, and show that it is not metriz-
able.

When we turn our attention to the covering properties that involve finite subcov-
ers, we see that in metric spaces, matters are simplified. In metric spaces, countable
compactness and compactness are the same.

Theorem 9.17. Ametric space is compact if and only if it is countably compact.

Recall that in a 𝑇1 space, being countably compact is equivalent to every infinite
subset having a limit point. Therefore, the previous theorem can be rephrased as fol-
lows.

Theorem 9.18. A metric space is compact if and only if every infinite subset of 𝑋 has a
limit point.

In this first section of our exploration of metric spaces we simplymarched through
themes of topological spaces and saw how each one interacted with the metrizability.
We considered subsets, separation properties, countability properties, products, and
covering properties. Next we turn our attention to functions between metric spaces.

9.2 Continuous Functions between Metric
Spaces

For maps between metric spaces, the topological definition of continuity is equivalent
to the 𝜀-𝛿 description of continuity that appeared in your calculus book. You’ll want to
use our earlier definition of continuous functions between topological spaces to prove
this theorem.

Theorem 9.19. A function 𝑓 from a metric space (𝑋, 𝑑𝑋) to a metric space (𝑌, 𝑑𝑌 ) is
continuous at the point 𝑥 (in the topological sense) if and only if for every 𝜀 > 0 there
exists a 𝛿 > 0 such that for every 𝑦 ∈ 𝑋 , if 𝑑𝑋(𝑥, 𝑦) < 𝛿, then 𝑑𝑌 (𝑓(𝑥), 𝑓(𝑦)) < 𝜀. The
function 𝑓 is continuous if and only if it is continuous at every point 𝑥 ∈ 𝑋 .

Notice that in the characterization of continuity above, for a fixed 𝜀 > 0, wemay be
required to select different 𝛿’s at different points in the space. If we have a continuous
function such that for each 𝜀 > 0 a fixed 𝛿 > 0 works for every point in the space, then
such a function has a stronger type of continuity called uniform continuity.
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Definition. A function 𝑓 from a metric space (𝑋, 𝑑𝑋) to a metric space (𝑌, 𝑑𝑌 ) is uni-
formly continuous if and only if for each 𝜀 > 0 there exists a 𝛿 > 0 such that for every
𝑥, 𝑦 ∈ 𝑋 , if 𝑑𝑋(𝑥, 𝑦) < 𝛿, then 𝑑𝑌 (𝑓(𝑥), 𝑓(𝑦)) < 𝜀.

Exercise 9.20. Give an example of a continuous function fromℝ1 toℝ1with the standard
topology that is not uniformly continuous.

Theorem 9.21. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous function from a compact metric space
to a metric space 𝑌 . Then 𝑓 is uniformly continuous.

Sometimes we create a sequence of continuous functions from one metric space
to another with the goal of having those functions converge to a limiting continuous
function. Converging pointwise is frequently not sufficient to guarantee convergence
of the functions.

Exercise 9.22. Find a sequence of continuous functions 𝑓𝑖 ∶ [0, 1] → [0, 1] (𝑖 ∈ ℕ) such
that for each point 𝑥 ∈ [0, 1], the points 𝑓𝑖(𝑥) converge to a point 𝑝𝑥 in [0, 1] and yet the
function 𝐿 ∶ [0, 1] → [0, 1] defined by 𝐿(𝑥) = 𝑝𝑥 is not continuous.

With examples like those you created in the previous exercise in mind, we define
a type of convergence of a sequence of functions that requires more than merely point-
wise convergence.

Definition. Let 𝑋 be a topological space, and let (𝑌, 𝑑) be ametric space. A sequence of
continuous functions 𝑓𝑖 ∶ 𝑋 → 𝑌 converges uniformly if and only if for every 𝜖 > 0,
there is an integer𝑀 such that for every 𝑥 ∈ 𝑋 and𝑚, 𝑛 > 𝑀, 𝑑(𝑓𝑚(𝑥), 𝑓𝑛(𝑥)) < 𝜖.

Uniformly convergent continuous functions into a compact metric space will con-
verge to a continuous function.

Theorem 9.23. Let 𝑋 be a topological space, and let 𝑌 be a compact metric space. If a
sequence of continuous functions 𝑓𝑖 ∶ 𝑋 → 𝑌 converges uniformly, then 𝑓 ∶ 𝑋 → 𝑌
defined by 𝑓(𝑥) = lim𝑓𝑖(𝑥) for each 𝑥 ∈ 𝑋 exists and is continuous.

9.3 Lebesgue Number Theorem
The next theorem basically says that open covers of compact sets in ametric space can’t
just barely overlap. There must be some size larger than zero such that every point in
the compact set is cushioned by at least that metric distance inside at least one of the
elements of the open cover.

Theorem9.24 (LebesgueNumberTheorem). Let {𝑈𝛼}𝛼∈𝜆 be anopen cover of a compact
set 𝐴 in a metric space 𝑋 . Then there exists a 𝛿 > 0 such that for every point 𝑝 in 𝐴, the
ball 𝐵(𝑝, 𝛿) ⊂ 𝑈𝛼 for some 𝛼.

This number 𝛿 is called a Lebesgue number of the cover.
One natural way to prove the Lebesgue Number Theorem is by contradiction.

Among the proofs you discover, that approach should be one. However, we cannot
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resist suggesting two alternative methods as well. One method is to define a contin-
uous function from 𝐴 to the positive reals that basically measures the maximum size
of an open ball around each point that lies in a single open set of the cover. Then re-
member that a continuous function of a compact set into the reals attains itsminimum.
Another approach is to realize that proving the theorem for open covers consisting of
finitely many open balls is sufficient. Now consider replacing each open ball by an
expanding union of slightly smaller open balls, thus replacing a finite cover by a re-
lated infinite cover. By compactness that new cover has a finite subcover that basically
shrinks each ball in the original cover. Use that fact to get your Lebesgue number.

The Lebesgue Number Theorem has many applications. Here are several.

Corollary 9.25. Let 𝐴 be a compact subset of an open set 𝑈 in a metric space 𝑋 . Then
there exists a 𝛿 > 0 such that for every point 𝑎 in 𝐴, the ball 𝐵(𝑝, 𝛿) is contained in 𝑈.

Corollary 9.26. Let 𝐴 be a compact subset of a metric space (𝑋, 𝑑), and let 𝐵 be a closed
subset of 𝑋 disjoint from 𝐴. Then there exists a 𝛿 > 0 such that for any points 𝑎 ∈ 𝐴 and
𝑏 ∈ 𝐵, the distance 𝑑(𝑎, 𝑏) > 𝛿.

Exercise 9.27. Prove Theorem 9.21 as a consequence of the Lebesgue Number Theorem.

The following technical result is used in the theory of fundamental groups (see
Lemma 12.17)—if you have a path that runs through several open sets in a space 𝑋 , it
can be helpful to break it up into a finite number of pieces, each of which lives com-
pletely in one of the open sets. Note here that the space 𝑋 need not be a metric space.

Lemma 9.28. Let 𝛾 ∶ [0, 1] → 𝑋 be a path in 𝑋 , that is, a continuous function from
[0, 1] to 𝑋 . Given an open cover {𝑈𝛼} of 𝑋 , show that [0, 1] can be divided into𝑁 intervals
of the form 𝐼𝑖 = [ 𝑖−1

𝑁
, 𝑖
𝑁
] such that each 𝛾(𝐼𝑖) lies completely in one set of the cover.

9.4 Complete Spaces
In compact spaces, every infinite set has a limit point. Although not every infinite
subset of the real line with the standard topology has a limit point, Cauchy sequences
(defined below) do converge, which observation gives rise to the concept of a complete
metric and a complete metric space.

Definition. (1) Let 𝑋 be a metric space with metric 𝑑. A sequence {𝑥𝑖}𝑖∈ℕ of points in
𝑋 is a Cauchy sequence if and only if for each 𝜖 > 0, there is an integer 𝑀 such
that for all𝑚, 𝑛 > 𝑀, 𝑑(𝑥𝑚, 𝑥𝑛) < 𝜖.

(2) Let 𝑑 be a metric for the metric space 𝑋 . Then 𝑑 is a completemetric for 𝑋 if and
only if every 𝑑-Cauchy sequence in 𝑋 converges.

(3) A metric space (𝑋, 𝑑) is complete if and only 𝑑 is a complete metric for 𝑋 .

(4) A topological space (𝑋,𝒯) is topologically complete if and only if there is a com-
plete metric 𝑑 on 𝑋 that generates the topology of 𝑋 .

A primary example of a complete metric space is ℝ𝑛 with the usual metric.



126 Chapter 9. Metric Spaces: Getting Some Distance

Exercise 9.29. (1) The space ℝ𝑛 is complete.

(2) There is a metric that generates the standard topology on ℝ1 that is not a complete
metric.

You saw in the exercise above that some metrics that generate the standard topol-
ogy onℝ are complete and somemetrics that generate that same topology are not com-
plete. For compact metric spaces, the situation is different. All metrics on compact
spaces are complete.

Theorem 9.30. Let 𝑋 be a compact metric space. Then every metric for 𝑋 is a complete
metric.

One of the basic theorems about complete metric spaces can be described in two
different ways—oneway is to talk about the intersection of dense open sets and the sec-
ond is to talk about the union of nowhere dense sets. Each one of these two equivalent
statements is called the Baire Category Theorem.

Theorem 9.31 (The Baire Category Theorem). Let 𝑋 be a complete metric space, and
let {𝑈𝑖}𝑖∈ℕ be a collection of dense open sets. Then⋂𝑖∈ℕ𝑈𝑖 is a dense set.

Definition. A subset 𝑌 of a space 𝑋 is nowhere dense if and only if Int(Cl(𝑌)) = ∅.

Theorem 9.32 (The Baire Category Theorem). Let 𝑋 be a complete metric space. Then
𝑋 is not the union of countably many nowhere dense sets.

Effective Thinking Principle. Find the Essence. Seek the essential ingredi-
ents in a proof.

We saw that uniformly convergent continuous functions into a compact metric
space converge to a continuous function. Only the completeness of the target space
was necessary to draw that conclusion.

Theorem 9.33. Let 𝑋 be a topological space, and let 𝑌 be a complete metric space. If
a sequence of continuous functions 𝑓𝑖 ∶ 𝑋 → 𝑌 converges uniformly, then 𝑓 ∶ 𝑋 → 𝑌
defined by 𝑓(𝑥) = lim𝑓𝑖(𝑥) for each 𝑥 ∈ 𝑋 exists and is continuous.

After defining a property, it is natural to ask which related spaces also have this
property. Let’s pursue that strategy for complete metric spaces.

Theorem 9.34. If 𝑋 and 𝑌 are complete metric spaces, then 𝑋 × 𝑌 is complete.

When we investigate subsets, we find some interesting results.

Theorem 9.35. Every closed subset of a complete metric space is complete.

Consider (0,∞), an open subset of ℝ. Notice that even though ℝ is a complete
metric space, (0,∞) is not complete under the standard metric, because the Cauchy
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sequence 1/2, 1/3, 1/4, … does not converge to a point in this space. However, there is a
completemetric for (0,∞) that generates the subspace topology on (0,∞), for instance,

𝑑(𝑎, 𝑏) = √(𝑏 − 𝑎)2 + (1𝑏 −
1
𝑎)

2
.

Thismetric is obtained by embedding (0,∞) as the graph of 𝑓(𝑥) = 1/𝑥 on (0,∞) inℝ2,
which is a closed subset of ℝ2, and using the standard Euclidean metric on ℝ2. Thus
(0,∞) is topologically complete using a metric that is not the same as the complete
metric it inherited from ℝ. The next theorem generalizes this idea.

Theorem 9.36. Let𝑈 be an open subset of a complete metric space𝑋 . Then𝑈 is topolog-
ically complete, that is, there is a complete metric on𝑈 that generates the relative topology
of 𝑈.

Hint: Just as with the example of (0,∞) ⊂ ℝ, embed𝑈 as a closed subset of 𝑋 ×ℝ.
The countable product of complete metric spaces admits a complete metric.

Theorem 9.37. If {𝑋𝑖}𝑖∈ℕ is a collection of complete metric spaces, then∏𝑖∈ℕ 𝑋𝑖 is com-
plete.

The preceding ideas may help if you are in the mood for the following two chal-
lenging theorems.

Theorem 9.38. Let {𝑈𝑖}𝑖∈ℕ be a countable collection of open sets in a complete space 𝑋 .
Then 𝑌 = ⋂𝑖∈ℕ𝑈𝑖 is complete.

Hint: Try to embed 𝑌 as a closed subset of the product of 𝑋 with a countable num-
ber of copies of ℝ.

The converse of this theorem is also true, so we can present a characterization of
which subsets of complete spaces are complete.

Theorem 9.39. Let 𝑋 be a complete space. Then 𝑌 ⊂ 𝑋 is complete if and only if there
exists a countable collection of open sets {𝑈𝑖}𝑖∈ℕ such that 𝑌 = ⋂𝑖∈ℕ𝑈𝑖.

9.5 Metric Continua
Definition. Ametric continuum is a metric space that is also a continuum, that is, a
metric continuum is a connected, compact metric space.

Definition. A Peano continuum is a locally connected metric continuum.

Theorem 9.40. A Hausdorff space 𝑋 is a Peano continuum if and only if 𝑋 is the image
of [0, 1] under a continuous, surjective function.

Theorem 9.41. A Peano continuum is path connected and locally path connected.

Theorem 9.42. An open, connected subset of a Peano continuum is path connected.

One of the goals of topology is to describe the essential features of familiar spaces
that characterize those spaces. You may recall that every non-degenerate continuum
has at least two non-separating points. The following theorem shows us that the unit
interval is the only metric continuum with exactly two non-separating points.
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Theorem 9.43. Let 𝑋 be a metric continuum with exactly two non-separating points.
Then 𝑋 is homeomorphic to [0, 1].

The next theorem characterizes the circle 𝕊1 as the only metric continuum where
no point separates it, but every pair of points separates it.

Theorem 9.44. Let 𝑋 be a non-degenerate metric continuum where no point separates
𝑋 but every pair of points separates 𝑋 . Then 𝑋 is homeomorphic to 𝕊1.

The following theorem is known as the Kline Sphere Characterization Theorem.
Don’t work too hard on it, because it is very difficult.

Theorem 9.45. Let 𝑋 be a metric continuum with more than one point where no pair
of points separates 𝑋 , but every subset of 𝑋 homeomorphic to 𝕊1 separates 𝑋 . Then 𝑋 is
homeomorphic to 𝕊2.

9.6 Metrizability
We saw above that a metric on a set gives rise to a topology. Then we saw some conse-
quences of knowing that the topology on a space is generated by a metric. Now we ask
a sort of reverse question: if (𝑋,𝒯) is a topological space, when is it possible to find a
metric on the set 𝑋 such that the metric space topology is the same as the topology 𝑋
already has?

Put more succinctly, when is a topological space metrizable? To show a space is
notmetrizable, wemight show that one of the properties that everymetric space enjoys
does not hold for that space. At this point in our discussion, the only way to show that
a space is metrizable is to produce a metric that generates the topology.

Exercise 9.46. (1) Is the space ℝ with the discrete topology metrizable?

(2) Is the space ℝLL metrizable?

Since being a metric space is both a category of spaces and being metrizable is a
property that a topological space may or not possess, you can now add a new row and
a new column to your chart of properties and examples.

Exercise 9.47. Take your chart of examples and properties and add metric space as an
example and add metrizable as a property and fill in the chart.

One of the basic questions about metrizability is to characterize metrizable spaces
in terms of the topological features they have. Urysohn’s Lemma is called a lemma,
because it first appeared as a lemma to the following metrization theorem. The chal-
lenge to proving this theorem, or any metrization theorem, is to use the hypothesized
topological features to define a metric on the space, that is, a distance between points,
in such a way that the metric induces the given topology.

Theorem9.48 (Urysohn’sMetrizationTheorem). Every regular,𝑇1, 2nd countable space
is metrizable.
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Hint: First recall thatwe proved earlier that such a space is normal. Nowfind away
to use Urysohn’s Lemma to embed the space in ℝ𝜔, which we know to be metrizable.

Urysohn’s Metrization Theorem implies some facts about compact spaces.

Theorem 9.49. Let 𝑋 be a compact Hausdorff space that is 2nd countable. Then 𝑋 is
metrizable.

And putting together some insights about continuous functions, we can conclude
that the images of compact metric spaces must be metrizable if the image is Hausdorff.

Theorem 9.50. Let 𝑋 be a compact metric space, let 𝑌 be a Hausdorff space, and let
𝑓 ∶ 𝑋 → 𝑌 be a continuous, surjective function. Then 𝑌 is a compact metric space.

One way to characterize compact metric spaces is as the continuous image of the
Cantor set.

Theorem 9.51. Let 𝑋 be a Hausdorff space, and let 𝐶 be the standard Cantor set. Then
𝑋 is a compact metric space if and only if there exists a continuous surjective function
𝑓 ∶ 𝐶 → 𝑋 .

Urysohn’s Metrization Theorem gives a good characterization of the metrizability
of 2nd countable spaces. You may recall that, using Urysohn’s Lemma, every normal,
𝑇1 topological space can be embedded in a product of [0, 1]’s. The following theorem
has a similar flavor of embedding a space in a product of intervals. In this case the
space is a separable metric space and the product is a countable product.

Theorem 9.52. Every separable metric space can be embedded in a countable product
of [0, 1]’s.

If a metric space is not separable, then it cannot be embedded in a countable prod-
uct of intervals. However, in the next section we will see that any metric space can be
embedded in a countable product of hedgehogs!

9.7 Advanced Metrization Theorems
Metric spaces do not necessarily have a countable basis; however, they have bases that
are the unions of countably many collections of appealing sets. The theorems in this
section describe assumptions on bases for a topological space that imply that there ex-
ists a metric on the space that generates its topology. These metrization theorems were
proved independently in the early 1950s by Bing, Nagata, and Smirnov. These theo-
rems are similar, so they are often collectively referred to as the Bing-Nagata-Smirnov
Metrization Theorem. Since their statements involve some technical terms, we explore
a few ideas before stating the theorems in full.

We begin by defining a metric space called a hedgehog—named in reference to the
many spines that stick out of that bristly beast.

Definition. Let 𝑋 = ⋃𝛼∈𝜆 𝐼𝛼 be the space created by taking a potentially uncountable
disjoint union of unit intervals with the standard topology. Let𝐻 be the quotient space
obtained from 𝑋 by identifying all the 0 endpoints in all the intervals to a single point.
The space 𝐻 is called a hedgehog.
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Exercise 9.53. Show that a hedgehog is a metric space where the distance between two
points can be described as taking the distance from one point to the 0 on its spine and then
adding the distance out to the second point on the other point’s spine.

Theorem 9.54. The countable product of hedgehogs is metrizable.

Onemethod to prove one direction of the Bing-Nagata-SmirnovMetrization Theo-
rem below is to show that the hypotheses allow us to embed the space into a countable
product of hedgehogs in a manner similar to how normal, 𝑇1 spaces with a countable
basis can be embedded in a countable product of intervals. Indeed our hypothesis about
the basis is designed to allow us to produce such an embedding.

Definition. A collection of subsets {𝐸𝛼}𝛼∈𝜆 of a topological space 𝑋 is a discrete col-
lection if and only if for every point 𝑥 ∈ 𝑋 , there exists an open set𝑈 with 𝑥 ∈ 𝑈 ⊂ 𝑋
such that 𝑈 intersects at most one 𝐸𝛼. A basis ℬ of a space 𝑋 is a 𝜎-discrete basis if
and only if ℬ = ⋃𝑖∈ℕℬ𝑖, where each ℬ𝑖 = {𝐵𝑖,𝛼}𝛼∈𝜆𝑖 is a discrete collection of open
sets.

This first theorem uses the Normality Lemma to establish the normality of a reg-
ular, 𝑇1 space with a 𝜎-discrete basis.

Theorem9.55. A regular space with a 𝜎-discrete basis is normal. In fact, given a discrete
collection of closed sets {𝐶𝛼}𝛼∈𝜆, there exists a discrete collection of open sets {𝑈𝛼}𝛼∈𝜆 such
that for each 𝛼, 𝐶𝛼 ⊂ 𝑈𝛼.

R. H. Bing proved his Metrization Theorem in 1951. It is an “if and only if” state-
ment. Both directions are difficult. The following theorem is one of those directions.
Try to prove that the existence of a 𝜎-discrete basis implies that the space can be em-
bedded in a countable product of hedgehogs. We will give some guidance about how
you might approach the other direction later.

Theorem 9.56. A regular, 𝑇1 space 𝑋 with a 𝜎-discrete basis is metrizable.

To show that a metric space 𝑋 has a 𝜎-discrete basis, a good strategy is to fix a
natural number 𝑛 and to consider the open cover of 𝑋 by 1

𝑛
-balls and show that we

can produce a countable number of discrete collections of open sets each of which is a
refinement of the cover and such that the union of all the sets in all of the countable
collection of sets covers 𝑋 . Repeating this process for each natural number 𝑛 generates
our desired 𝜎-discrete basis. This approach has an intermediate step of producing a
countable number of collections of discrete closed sets that are refinements and whose
union is the whole space.

To deal with the general case of any metric space, the cover of 𝑋 by 1
𝑛
-balls could

well have an uncountable number of open sets in the cover. Let’s learn a useful tech-
nique by considering a simpler case where we start with a countable open cover. So
here is a practice lemma.

Lemma 9.57. Let {𝑈𝑖}𝑖∈ℕ be a countable open cover of a metric space 𝑋 . For each point
𝑥 ∈ 𝑋 let𝑚(𝑥) be the natural number 𝑖 such that 𝑥 ∈ 𝑈𝑖 but 𝑥 ∉ 𝑈𝑗 for 𝑗 < 𝑖. Then for
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every 𝑛 ∈ ℕ there exists a discrete collection of closed sets {𝐶𝑖,𝑛} such that
(1) for each 𝑖, 𝐶𝑖,𝑛 ⊂ 𝑈𝑖;

(2) for each 𝑥 ∈ 𝐶𝑖,𝑛, 𝐵(𝑥,
1
𝑛
) ⊂ 𝑈𝑖;

(3) for each 𝑖, 𝐶𝑖,𝑛 does not intersect 𝑈𝑗 for 𝑗 < 𝑖; and
(4) for each 𝑖, 𝐶𝑖,𝑛 contains every point 𝑥 ∈ 𝑈𝑖 for which 𝑚(𝑥) = 𝑖 and for which

𝑑(𝑥, 𝑋 − 𝑈𝑖) >
1
𝑛
.

Then ⋃𝐶𝑖,𝑛 = 𝑋 and for each 𝑛, the collection of 1
3𝑛

neighborhoods of the 𝐶𝑖,𝑛’s,
that is,

{ ⋃
𝑥∈𝐶𝑖,𝑛

𝐵(𝑥, 13𝑛)}
𝑖∈ℕ

,

is a discrete collection of open sets.

The above lemma demonstrates a construction that also works for collections that
are not countable. To deal with uncountable covers, we can use well-ordering. Recall
that a set is well-ordered if and only if it is totally ordered and every non-empty subset
has a least element. The proof of the following lemma is basically the same as the proof
of the lemma above. Notice that the function𝑚(𝑥) in the statement below relies on the
index set being well-ordered.

Lemma 9.58. Let {𝑈𝛼}𝛼∈𝜆 be an open cover of a metric space 𝑋 where the index set 𝜆 is
well-ordered. For each point 𝑥 ∈ 𝑋 let 𝑚(𝑥) be the ordinal number 𝛼 such that 𝑥 ∈ 𝑈𝛼
but 𝑥 ∉ 𝑈𝛽 for 𝛽 < 𝛼. Then for every 𝑛 ∈ ℕ there exists a discrete collection of closed sets
{𝐶𝛼,𝑛} such that
(1) for each 𝛼, 𝐶𝛼,𝑛 ⊂ 𝑈𝛼;

(2) for each 𝑥 ∈ 𝐶𝛼,𝑛, 𝐵(𝑥,
1
𝑛
) ⊂ 𝑈𝛼;

(3) for each 𝛼, 𝐶𝛼,𝑛 does not intersect 𝑈𝛽 for 𝛽 < 𝛼; and
(4) for each 𝛼, 𝐶𝛼,𝑛 contains every point 𝑥 ∈ 𝑈𝛼 for which 𝑚(𝑥) = 𝛼 and for which

𝑑(𝑥, 𝑋 − 𝑈𝛼) >
1
𝑛
.

Then⋃𝐶𝛼,𝑛 = 𝑋 and for each 𝑛, the collection of 1
3𝑛

neighborhoods of the 𝐶𝛼,𝑛’s,
that is,

{ ⋃
𝑥∈𝐶𝛼,𝑛

𝐵(𝑥, 13𝑛)}
𝛼∈𝜆

,

is a discrete collection of open sets.

Youare now in a positionwhere you canprove the other direction of Bing’sMetriza-
tion Theorem, namely, proving that a metric space has a 𝜎-discrete basis, thereby com-
pleting the proof of Bing’s Metrization Theorem.

Theorem 9.59 (Bing Metrization Theorem). A regular, 𝑇1 space 𝑋 is metrizable if and
only if 𝑋 has a 𝜎-discrete basis.
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The similar metrization theorem by Nagata and Smirnov characterizes a metric
space as having a 𝜎-locally finite basis rather than a 𝜎-discrete basis. We will recall the
definition of a collection of subsets of a space being locally finite, and define what it
means for a collection to be 𝜎-locally finite.

Definition. (1) A collection of subsets {𝐸𝛼}𝛼∈𝜆 of a topological space 𝑋 is a locally fi-
nite collection if and only if for every point 𝑥 ∈ 𝑋 , there exists an open set𝑈 with
𝑥 ∈ 𝑈 ⊂ 𝑋 such that 𝑈 intersects at most a finite number of the 𝐸𝛼.

(2) A basis ℬ of a space 𝑋 is 𝜎-locally finite if and only if ℬ = ⋃𝑖∈ℕ 𝐵𝑖, where each
ℬ𝑖 = {𝐵𝑖,𝛼}𝛼∈𝜆𝑖 is a locally finite collection of open sets.

Once again, we begin by asserting that a regular space with a 𝜎-locally finite basis
is normal.

Theorem 9.60. A regular space with a 𝜎-locally finite basis is normal. In fact, given
a discrete collection of closed sets {𝐶𝛼}𝛼∈𝜆, there exists a discrete collection of open sets
{𝑈𝛼}𝛼∈𝜆 such that for each 𝛼, 𝐶𝛼 ⊂ 𝑈𝛼.

Theorem9.61 (Nagata-SmirnovMetrization Theorem). Aregular,𝑇1 space𝑋 ismetriz-
able if and only if 𝑋 has a 𝜎-locally finite basis.

Since a 𝜎-discrete basis is a 𝜎-locally finite basis, Bing’s Metrization Theorem
proves one direction of this theorem already, namely, that ametric space has a 𝜎-locally
finite basis. So the only remaining challenge is to prove that a normal, 𝑇1 space 𝑋 with
a 𝜎-locally finite basis has a 𝜎-discrete basis. Several steps are useful. The first follows
the strategy of the lemma above.

Lemma 9.62. Let 𝑋 be a space with a 𝜎-locally finite basis {{𝐵𝛼,𝑛}𝛼∈𝜆𝑖 }𝑛∈ℕ. Let {𝑈𝛼}𝛼∈𝜆
be a locally finite collection of open sets in a space 𝑋 where the index set 𝜆 is well-ordered.
(In the application, this collection of 𝑈𝛼’s will be one of the locally finite collections of
basis elements.) For each point 𝑥 ∈ ⋃𝛼∈𝜆𝑈𝛼 let𝑚(𝑥) be the ordinal number 𝛼 such that
𝑥 ∈ 𝑈𝛼 but 𝑥 ∉ 𝑈𝛽 for 𝛽 < 𝛼. Then for every 𝑛 ∈ 𝑁 there exists a discrete collection of
closed sets {𝐶𝛼,𝑛} such that

(1) for each 𝛼, 𝐶𝛼,𝑛 ⊂ 𝑈𝛼;

(2) for each 𝛼, 𝐶𝛼,𝑛 does not intersect 𝑈𝛽 for 𝛽 < 𝛼; and

(3) for each 𝛼, 𝐶𝛼,𝑛 contains every point 𝑥 ∈ 𝑈𝛼 for which 𝑚(𝑥) = 𝛼 and for which
𝑥 ∈ {𝐵𝛼,𝑛}.

Then

(1) for each 𝑛, {𝐶𝛼,𝑛}𝛼∈𝜆 is a discrete collection of closed sets;

(2) ⋃𝛼∈𝜆;𝑛∈ℕ 𝐶𝛼,𝑛 = ⋃𝛼∈𝜆𝑈𝛼; and

(3) for each 𝑛, there exists a discrete collection of open sets {𝑉𝛼,𝑛}𝛼∈𝜆 such that for each
𝛼 ∈ 𝜆, 𝐶𝛼,𝑛 ⊂ 𝑉𝛼,𝑛 ⊂ 𝑉𝛼,𝑛 ⊂ 𝑈𝛼.
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This lemma can be used to prove that a normal, 𝑇1 space with a 𝜎-locally finite
basis has a 𝜎-discrete basis. From this fact, the Nagata-Smirnov Metrization Theorem
follows from Bing’s Metrization Theorem above. As an historical note, originally Na-
gata and Smirnov independently constructed proofs of their theorem without going
through Bing’s Theorem.

9.8 Paracompactness of Metric Spaces
Recall that a space is paracompact if and only if it is Hausdorff and every open cover
of 𝑋 has a locally finite refinement. The challenge of proving paracompactness of a
space is to keep in mind that there are three open covers involved: the given open
cover, the locally finite refinement, and the set of open sets that demonstrate that the
refinement is locally finite. So the key to proving paracompactness is often to produce
the collection of sets that demonstrate the local finiteness at the same time you are
producing the refinement itself.

The fact that everymetric space has a 𝜎-discrete basis makes proving the paracom-
pactness of a general metric space quite similar to proving the paracompactness of a
2nd countable space. So let’s begin by dealing with a 2nd countable space. This lemma
statement is really designed to outline an approach to constructing a locally finite re-
finement. You may have developed these ideas back in Section 6.5.

Lemma 9.63. Let {𝐵𝑖}𝑖∈ℕ be a countable basis of a regular space 𝑋 . Let {𝑈𝛼}𝛼∈𝜆 be an
open cover of 𝑋 . Let {𝐶𝑖}𝑖∈ℕ be the set of all 𝐵𝑖’s such that each 𝐶𝑖 lies in some 𝑈𝛼 in the
open cover. Then {𝐶𝑖}𝑖∈ℕ is an open refinement of the open cover {𝑈𝛼}𝛼∈𝜆; however, it is
not locally finite. Let {𝐷𝑖}𝑖∈ℕ be the set of all 𝐵𝑖’s such that each 𝐷𝑖 is a subset of some 𝐶𝑘.
For each 𝑖 ∈ ℕ let 𝐸𝑖 = 𝐶𝑖 −⋃{𝐷𝑗|𝑗 < 𝑖 and 𝐷𝑗 ⊂ 𝐶𝑘 for some 𝑘 < 𝑖}. Then {𝐸𝑖}𝑖∈ℕ is a
locally finite refinement of {𝑈𝛼}𝛼∈𝜆.

Nowyou are ready to use the fact thatmetric spaces have a 𝜎-discrete basis to prove
that metric spaces are paracompact.

Theorem 9.64. Metric spaces are paracompact.

9.9 Going the Distance
The concept of a metric in a sense closed the circle on our exploration of point-set
topology. We set out to take familiar spaces like ℝ and describe essential features just
using ideas about points and sets. In this chapter, we returned to the idea of distance
that seems so basic to the concept of ℝ, and created the idea of a general metric space.

The impulse that guidedmost of our exploration ofmetric spaceswas to take all the
constructions and properties that we had developed for topological spaces in general
and to investigate how those constructions and properties related to metric spaces. We
then sought to understand which topological properties were the essential ingredients
in deciding whether a given topological space actually could be generated by a metric.

Sadly, some people regard metric spaces as the only interesting topological spaces.
Those people miss out onmany joys that you experienced over the first chapters of this
book. Please feel sorry for them—it’s probably not their fault.
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10
Transition From Point-Set
Topology to Algebraic and

Geometric Topology: Similar
Strategies, Different Domains

We view this book as partly about mathematics and partly about the practices of mind
that lead us to create mathematics. The book is divided into two parts. The intro-
duction to point-set topology in the preceding chapters illustrated the effectiveness of
various ways of exploring the unknown.

One of the intriguing questions that you can ask about mathematics is whether
mathematics is discovered or created. Perhaps the experience of developing point-set
topology can give some nuance to that question. In some sense, every step of the pro-
cess of creating concepts was laid bare. One could argue that the strategies that were
employed to create each idea were rather straightforward and the results of pursuing
the ideas that emerged were quite inevitable from the process.

That is, we started the whole exploration by taking concepts that were already fa-
miliar to us and then we set out to find the most fundamental essence that made the
familiar concepts work. We thought about the real line and continuous functions and
then we embarked on a journey of abstraction that included our investigating basic no-
tions about sets. Thinking of size led us to develop the concept of cardinality. Thinking
about essential requirements for capturing ideas of closeness in the real line—from a
set-theoretic point of view rather than a distance point of view—led us to create the
idea of a topology.

Once we had isolated the idea of a topological space, many investigations naturally
followed. The impulse to look at elemental features encouraged us to create the idea
of a basis. The strategy of taking an idea and applying it to related objects led us to the
notions of subspaces and product spaces.

137
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We asked ourselves what features of spaces distinguish one topological space from
another. These questions led to a whole range of concepts such as the separation and
covering properties. And then our impulse to consider size led us to describe ideas
such as first and second countability.

One of the basic strategies for creating ideas inmathematics is to consider relation-
ships between objects that we have created. That strategy led to the idea of continuity.
Looking at intuitive concepts such as being connected led us to capture that notionwith
several variations of connectedness in topological spaces. Finally, we looked at the fa-
miliar idea of distance in the real numbers and circled back to see how the topological
concepts we created are related to the intuitive idea of closeness created by distances.
That led to the exploration of metric spaces.

10.1 Effective Thinking Principles—Strategies
for Creating Concepts

The entirety of the mathematical developments we have seen so far are illustrations of
the process of doing and creating mathematics. Along the way we recorded instances
of these practices of discovery and exploration and listed them as Effective Thinking
Principles. These methods of effective thinking and creation of ideas served us well in
the first part of this book and will be employed again in the second part.

Here we gather and organize some of the themes captured in the Effective Think-
ing Principles to help us reflect on practices of mind that led to the mathematical cre-
ations in the first part of this book. Those same practices of mindwill lead us on to new
ideas as we turn our attention to the algebraic and geometric themes of the second part
of this book.

Principles of Effective Thinking—How to Create Ideas
(1) Find theEssence. Seek essential ingredients in a proof or concept. Often isolating

essential features opens up new worlds of insight.

(2) Start With Simple Cases. George Polya said, “If you can’t solve a problem, then
there is an easier problem you can’t solve. Find it.”

(3) Create Examples.
(a) When learning any definition or concept in mathematics, one helpful step is

to construct several examples that illustrate the meaning of the definition or
concept. Specifically, find or create examples that manifest the differences
among related concepts or definitions.

(b) To understand theorems more deeply, look at or create examples that reveal
the implications of the theorem in specific cases.

(c) Explore Extremes. After making a definition, explore extreme or unusual
cases.

(4) Draw a Picture. Draw a picture. Draw a picture!! DRAW A PICTURE!!! It is
impossible to overemphasize the value of drawing a picture.
Part of the value of drawing a picture is to see features in your picture that you
did not intentionally put there. For example, if you draw a triangle, the sum of
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the angles will equal 180 degrees. When you drew the triangle, you did not make
sure it had 180 degrees. A picture can suggest insights that will help with your
argument. Get in the habit of drawing pictures!

(5) Extend Insights and Theorems. The best source of new ideas is old ideas. One
of the most effective strategies for helping to understand and create mathematics
is to look systematically for the extent to which an insight or a theorem can be
extended or not.

(a) Explore Limits of Theorems. When you discover a theorem, explore its lim-
itations and possible extensions by systematically weakening the hypotheses
and checking to see whether the theorem is still true, and strengthening the
conclusion to see whether you can deduce more than you originally thought.
In each case, create examples that demonstrate the necessity of hypotheses
and the limits of conclusions.

(b) Add Hypotheses—Strengthen Conclusions. Given a theorem, see if strength-
ening the hypotheses in variousways allows you to draw stronger conclusions.

(c) Weaken Hypotheses and SeeWhat Can Still Be Deduced. The hypotheses of a
theoremmay all be necessary to draw the stated conclusion; however, perhaps
an interesting weaker conclusion can be drawn with weakened hypotheses.

(d) Identify the Essence of Hypotheses. To understand theorems better and to
improve them if possible, identify exactly what aspects of the hypotheses were
actually used in the proof.

(e) Consider Analogies of Previous Results. After developing variations of previ-
ous concepts, look at previous results and see what analogous results hold.

(f) Explore How New Ideas Relate to Old Ideas. A standard and fruitful method
for creating and learning mathematics is to explore how a new concept inter-
acts with previous concepts.

(6) Understand Proofs, Not Just Statements, of Theorems. Understanding the
proofs of theorems rather than just the statements of theorems gives you power.

These are just a few strategies for learning and creating ideas that we encountered
so far. We hope that one outcome of your experience with this book is that you come
to see that solving problems, proving theorems, and creating insights is more method
than magic. Employing systematic methods of inquiry reliably leads to new ideas.

10.2 Onward: To Algebraic and Geometric
Topology

In the first part of this book, we pursued the set-theoretic essence of topological spaces
and continuous functions between them. We saw howwe can distinguish among topo-
logical spaces by seeing whether they have different topological properties, such as
separation properties.

However, we live in what appears to be a Euclidean space. So it is natural for us
to want to distinguish differences among objects that we see around us—objects such
as a sphere and a torus. The question becomes: how would we capture the difference
between such objects? These spaces both have the nicest general topological features,
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such as having a countable basis and having all the separation properties we could
desire. So when we seek to make distinctions among such objects, we must develop a
new collection of techniques that allow us to distinguish one object from another.

The second part of this book leads us to discover techniques by which we will be
able to tell the topological difference between a torus and a Klein bottle, or the differ-
ence between Euclidean spaces of dimension 15 and dimension 16.

Youmight wonder why we need such techniques—after all, maybe you intuitively
understand why these spaces are different. However, as you have seen and shall con-
tinue to see, the truth sometimes surprises us. Things we thought were different turn
out to be topologically identical—and vice versa—some pairs of spaces may seem the
same, but turn out to be subtly different.

Another motivation for developing more nuanced methods of distinguishing
spaces arises when spaces may be presented to us in a manner that challenges our
ability to understand them totally—for example, our universe. We may imagine that
every point in the universe has a neighborhood much like the neighborhoods we in-
habit, but even if that were true, we would still be left with the challenge of describing
the global structure of the universe. For instance, suppose someone handed you amap
of a space broken up into pieces, much like an atlas of the globe might present us with
a lot of maps of small parts of the world without any one map showing the whole. We
might be instructed about how the local maps fit together piece by piece, but we might
not be told what the overall space looks like. For example, suppose our atlas were an
atlas of parts of a torus rather than parts of the surface of the Earth. Could we use the
combinatorial information about overlapping patches to understand the overall space
in some way?

Or suppose someone handed us a graph of dots and edges describing some complex
network of relationships. Can we use topology to try to understand the “shape” of that
network? Much recent work in data science has been devoted to understanding “the
shape of data” using methods from algebraic topology: by putting balls of increasing
radii around the data points and watching how the homology of the resulting space
changes over time.

The idea of viewing spaces as being made up of a finite number of simple building
blocks is a big theme in topology, and this reduction to a finite number of pieces often
leads us to categorize the topology we will explore with an adjective: combinatorial
or algebraic or geometric, depending on what techniques are brought to the fore. For
instance, in algebraic topology, we develop techniques for associating algebraic objects,
such as groups, with topological spaces. In combinatorial topology, we consider how
combinatorial properties of a space that is broken into pieces shed light on its topology.
And geometric topology emphasizes the detailed visual characteristics of the objects
we are studying.

10.3 Manifolds and Complexes: Building
Locally, Studying Globally

In this section, we will not formally define anything, but instead will give you an intu-
itive sense of some of the spaces that we will study in the second part of this book.

Euclidean spaces are abstractions and extensions of geometric features that arise
fromour common experience of theworld. Whenwe look at a tabletop, we can imagine
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a perfectly smooth surface that extends forever in every direction. That abstraction
is the Euclidean plane. If we imagine the space in a room extended indefinitely in
all directions, we are envisioning Euclidean 3-space. Higher-dimensional Euclidean
spaces are natural generalizations and extensions of those common spaces. Since we
appear to inhabit these Euclidean spaces, we naturally raise questions about them or
spaces inside them or spaces related to them.

Spaces that are locally Euclidean are probably the most frequently studied spaces
in all of topology. A space that is locally the same as Euclidean space is called a man-
ifold. Manifolds are extremely important in many branches of mathematics as well as
inmany sciences. Here are a couple of examples. A 2-sphere, 𝕊2, is the surface of a ball
in 3-space. Every point on a 2-sphere has an open set around it that is homeomorphic
to an open disk in the plane. Likewise, a torus, the boundary of a doughnut, has the
property that every point has an open set around it homeomorphic to an open disk in
the plane. So a 2-sphere and a torus are examples of 2-manifolds.

We are comfortable with the idea of a 3-manifold since we seem to live in one.
Indeed, naively speaking, our universe appears to be a 3-manifold (or a 4-manifold if
one wants to consider time); that is, we can imagine that every point in the universe
locally looks like a room. However, we don’t know whether the totality of the universe
might look more like an abstraction of a tabletop or a sphere or a 3-dimensional torus
or something else. Perhaps we will be able to deduce the global topological type of the
universe as we gain knowledge in cosmology and mathematics.

One of the big impulses in studying manifolds is to attempt to classify them, that
is, to present an organized list of manifolds of a given dimension that identifies every
manifold of that dimension as a specific member of that list based on recognizable
criteria. We will classify 2-manifolds in that way in the next chapter. The success and
clarity with which compact, connected 2-manifolds are classified is, unfortunately, not
available in higher dimensions.

Another class of spaces we could think about studying are the ones created by
assembling simple pieces from Euclidean geometry to create almost any object you
can imagine. The simple pieces are called simplexes or simplices. A single point is a
0-simplex; a line segment is a 1-simplex; a triangle is a 2-simplex; a tetrahedron is a
3-simplex; and the pattern continues. A simplex is a rectilinear subset of ℝ𝑛 that can
be described in a simple way using linear algebra. These simplices can be put together
to create simplicial complexes. Finite complexes are simply finite unions of simplices
in ℝ𝑛.

The advantage to working with finite complexes is that they are made of a finite
number of simple pieces that fit together neatly. So they can often be analyzed using
combinatorial methods such as counting vertices and edges and so on, or by using
inductive methods.

10.4 The Homeomorphism Problem
Perhaps the most basic question in topology is, “Given two topological spaces, how
can we tell whether or not they are homeomorphic?” For instance, if you look at a
square, with parallel edges glued pairwise in the same direction, is that the same as a
hexagon with parallel edges glued pairwise in the same direction? (Surprisingly they
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are.) If you take a 2-dimensional sphere and cross it with an interval, do you get a 3-
dimensional sphere? (You do not.) In the chapters to come, we will develop tools that
help to distinguish one space from another.

A property of a space that is preserved under homeomorphisms is called an in-
variant. For example, normality is an invariant: if one space is normal and another is
not normal, then the spaces are definitely not homeomorphic. One of the fundamental
strategies for proving that two spaces are not homeomorphic is to identify an invariant
on which the two spaces differ. The problem with the invariant properties that were
introduced in the first part of this book is that they tend not to be refined enough to
distinguish spaces that are nice subsets of Euclidean spaces, such as a torus versus a
sphere.

So we seek distinguishing characteristics of spaces that capture various appealing
geometrical differences, such as holes. Intuitively, we have a sense of what a hole is.
It appears that a torus has a different number of holes than a sort of double doughnut
has. The problem is that we need a definition of “hole” such that the number or type
of “holes” becomes an invariant under homeomorphisms.

Several different strategies arise for capturing the intuition of “holes” and their
analogues in higher dimensions. Some strategies involve associating a group or groups
with a space, where the group becomesmore complicated depending on how holey the
space is.

Developing these tools allows us to answermany appealing questions and to prove
some of the most satisfying, fundamental theorems in topology. For example, in the
next chapter we will classify all compact, connected 2-manifolds in such a way that we
can look at such an object, compute a couple of invariants, and determine exactly what
2-manifold we are looking at up to homeomorphism.

Fixed point theorems are also quite satisfying and beautiful. If you take any con-
tinuous function of a ball to itself, there will be some point that gets mapped to itself.
A similar theorem states that if you squash a beach ball on the ground, then two points
that started as antipodal will be squashed onto the same point. This type of theorem
can be proved by employing the invariants that we will use to distinguish spaces and
investigating how they interact with continuous functions.

Then there are theorems about geometric separation. It is intuitively obvious that
any embedded simple closed curve in the plane separates the plane into two pieces;
however, that theorem, known as the Jordan Curve Theorem, is surprisingly challeng-
ing to prove. However, the tools we create will allow us to prove not only that theorem
but also analogous theorems in all dimensions.

10.5 Same Strategies, Different Flavors
The first part of this book explored set-theoretic topology. That exploration was driven
by strategies of thinking that led to the creation of new ideas and increasingly refined
insights. Those same strategies of concept creation can equally well be turned toward
challenges of understanding the topology of geometric objects that we see around us
every day or abstractions of them.

The chapters ahead have a different flavor to them compared with the flavor of the
ideas presented in the first part of this book. Now you will be asked to use geometric
insights with confidence.
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Here is an example that has no special significance in itself; it is intended to illus-
trate the kind of geometric thinking we will encourage in the chapters ahead, a type
of thinking that will force you to think very concretely about simple objects (namely
triangles) in ℝ𝑛.

Suppose you have a triangle𝜎1 inℝ𝑛 and you connect each vertex of𝜎1 to the center
of the opposite side. Then you will divide 𝜎1 into exactly six subtriangles. If you did
that same process for each of those six subtriangles, you would divide 𝜎1 into exactly
36 subtriangles. Suppose now you have two triangles, 𝜎1 and 𝜎2, in ℝ𝑛 that share an
edge, but are otherwise disjoint. Suppose you now divide each of 𝜎1 and 𝜎2 into 36
subtriangles as described before. Then the center point of the common edge is a vertex
of exactly eight triangles whose union is homeomorphic to a disk.

The reasoning involved in the above example has a concrete, geometrical flavor,
in contrast to the far more abstract reasoning about sets that is involved in the set-
theoretical theorems in the first part of this book. In addition to this concrete, geo-
metrical reasoning, the second part of the book will also include making connections
between topological spaces and algebraic entities such as groups. That algebraic rea-
soning is yet another flavor ofmathematical analysis. We hope you embrace the variety
of methods of thinking that lie ahead.

You will soon be proving some of the most famous theorems in topology—classifi-
cation theorems, fixed point theorems, and theorems describing the geometry of our
world and its beautiful abstractions and extensions.





11
Classification of 2-Manifolds:

Organizing Surfaces

One of the disparaging insults you can lob at someone who does not know topology is
that they can tell the difference between a coffee cup and a doughnut. But we topolo-
gists know they are the same. The fact that a doughnut (if sufficiently elastic) can be
stretched and deformed until it looks like a coffee cup is an insight that some people do
not instantly see. But knowing the material in this chapter would help them see why
their boundary surfaces are homeomorphic.

Definition. A topological space is an n-manifold if and only if it is a separable metriz-
able space where every point has a neighborhood homeomorphic to an open ball in
ℝ𝑛. A 2-manifold is often called a surface.

Thus a surface is locally 2-dimensional. A basic question of this chapter is a clas-
sification question. The first step we take is to focus our attention on a subcollection of
2-manifolds, namely, those that are compact and connected. The classification ques-
tion is the following challenge: can we create a list that contains all the possible com-
pact, connected surfaces? How can we tell when two such surfaces are the same or
different topologically? In this chapter, we will successfully discover a satisfying way
to categorize all compact, connected, 2-manifolds.

11.1 Examples of 2-Manifolds

Effective Thinking Principle. Look at Examples. Looking at specific ex-
amples helps to develop intuition and understanding.

Before classifying them, it will be instructive to look at some examples of
2-manifolds.

145
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Figure 11.1. A 2-sphere is the boundary of a ball.

The 2-sphere is the simplest example of a compact 2-manifold. A 2-sphere, denoted
𝕊2, is any space homeomorphic to the set of all points inℝ3 that are a unit distance from
the origin. That is, a 2-sphere is homeomorphic to the boundary of a ball. Similarly, a
1-sphere, denoted 𝕊1, is any space homeomorphic to the set of all points in ℝ2 that are
a unit distance from the origin, that is, a circle.

The next simplest compact 2-manifold is the boundary of a doughnut, called a
torus. The torus is denoted 𝕋2 and, being the surface of a doughnut, it is a delicious
example of a 2-manifold. See Figure 11.2.

Figure 11.2. A torus.

Exercise 11.1. Show that the torus 𝕋2 is homeomorphic to 𝕊1 × 𝕊1.

Are the torus and sphere homeomorphic? While your intuition may tell you no,
without some kind of proof you can’t be sure there isn’t some secret homeomorphism
that you haven’t thought of that magically turns one into the other.

Consider another pair of examples. Take a rectangular sheet of infinitely thin rub-
ber and glue one pair of parallel edges together (forming a tube), then glue the other
pair of parallel edges together. With a little effort, you can visualize this object and see
that it is a torus. Now consider a hexagonal sheet of rubber, and successively glue the
three pairs of parallel edges together. It is far less obvious that the space you get from
this construction is also a torus—it’s not even obvious the space is a 2-manifold. Thus
in this instance, two spaces that look quite different or are described quite differently
are actually homeomorphic.

In spite of such difficulties, we will see in this chapter how to classify all compact,
connected 2-manifolds. This classification entails the challenge of distinguishing vari-
ous spaces that are identical locally but differ globally. A preliminary step in that chal-
lenge is to recognize that any compact 2-manifold is homeomorphic to an object that



11.1. Examples of 2-Manifolds 147

Figure 11.3. Glue the pairs of opposite sides together as indicated,
and you will get a torus.

is constructed from finitely many flat triangles. Objects made of finitely many simple
pieces allow us to use combinatorial techniques to understand their global properties.

The major visual difference between the 2-sphere and the 2-torus is that the latter
has a “hole.” This observation leads us to consider 2-manifolds constructed in the same
way as the torus, but with more holes. For example, the double torus is shown in
Figure 11.4.

Figure 11.4. The double torus or surface of genus 2.

You can similarly construct surfaces with arbitrarily many holes. Some examples
are shown in Figures 11.5 and 11.6. Notice that with the triple torus, all the holes are
shown “in a line” whereas for the quadruple torus, the holes are arranged in a circle.

Exercise 11.2. For a given number of holes, demonstrate that the 𝑛-holed torus where
the holes are lined up is homeomorphic to an 𝑛-holed torus where the holes are arranged
in a circle.

For exercises like this that ask you to demonstrate a geometric homeomorphism,
we are not asking you to define a formal homeomorphism—no equations are expected.
Rather, it suffices to describe a process by which you would systematically distort one
figure to look like the other figure—something like drawing the frames that make up
an animated cartoon. Or perhaps you will think of some way to describe a visual one-
to-one correspondence that is continuous in both directions.

So far all the 2-manifolds we have seen can be embedded inℝ3 (which is certainly
advantageous for visualization). The 2-manifold shown in Figure 11.7, known as the
Klein bottle and denoted 𝕂2, suggests that embeddability in ℝ3 may not be possible
for every 2-manifold. While the Klein bottle cannot be embedded in ℝ3 (we will prove
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Figure 11.5. The triple torus or surface of genus 3.

Figure 11.6. The quadruple torus or surface of genus 4.

this fact in Theorem 16.39), it can be embedded in ℝ4. This embedding into ℝ4 can be
visualized from the figure by using the fourth dimension to avoid the self-intersection.

Figure 11.7. The Klein bottle.

Another 2-manifold that cannot be embedded in ℝ3 is known as the projective
plane (or real projective 2-space) and denoted ℝP2. It is the space of all the lines in
ℝ3 that pass through the origin. That is, each straight line through the origin in ℝ3 is
a point of ℝP2. The basis for the topology is the collection of subsets of lines specified
by open double cones with the cone point at the origin.

Exercise 11.3. (1) Show that ℝP2 ≅ 𝕊2/⟨𝑥 ∼ −𝑥⟩, that is, the projective plane is home-
omorphic to the 2-sphere with diametrically opposite points identified.
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(2) Show thatℝP2 is also homeomorphic to a disk with two edges on its boundary (called
a bigon), identified as indicated in Figure 11.8.

aa

Figure 11.8. ℝP2.

(3) Show that the Klein bottle can be realized as a square with certain edges identified.

11.2 The Classification of 1-Manifolds

Effective Thinking Principle. Start with an Easier Question. When faced
with a difficult challenge, don’t do it. Instead, find and do a related, easier
challenge.

The central theorem for this chapter is a classification theorem for 2-manifolds.
As a warm up to that result, we will ask you to state and prove a classification theorem
for compact, connected 1-manifolds.

Definition. A topological space is a 1-manifold if and only if it is a separablemetrizable
space where every point is in an open set homeomorphic to an open interval in ℝ1.

Theorem 11.4. Suppose𝑀 is a compact, connected 1-manifold. Then𝑀 is triangulable.
That is,𝑀 is homeomorphic to a subset 𝐶 ofℝ𝑛 consisting of a finite collection of straight
line segments where any two segments of 𝐶 are either disjoint or meet at an endpoint of
each.

Exercise 11.5. Provide a complete classification of compact, connected 1-manifolds. That
is, describe a collection of topological spaces such that every compact, connected 1-mani-
fold is homeomorphic to one member of the collection.

The next exercise allows disconnected 1-manifolds.

Exercise 11.6. Provide a complete classification of compact 1-manifolds.

11.3 Triangulability of 2-Manifolds
The totality of this short section merely asserts that for now we will be accepting with-
out proof the following fact. This theorem is difficult to prove, so we defer a discussion
of its proof until Chapter 14.
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Theorem 11.7. Every compact 2-manifold is triangulable, that is, it is homeomorphic
to a subset 𝐶 of ℝ𝑛 consisting of a finite collection 𝑇 = {𝜎𝑖}𝑘𝑖=1 of rectilinear triangles
where each pair of triangles are disjoint or they meet in one vertex of each or they share
a single edge. Since the space 𝐶 is homeomorphic to a 2-manifold, each edge of each
triangle making up𝐶 is shared by exactly two triangles, and around each vertex is a circle
of triangles whose union is a disk.

A fancy word for a rectilinear triangle is a 2-simplex. The plural of simplex is sim-
plices. We call the finite collection 𝑇 of rectilinear triangles a triangulation. Later,
when we study simplicial complexes—in which we allow pasting together triangles of
different dimensions—our notion of triangulation will include triangles of all dimen-
sions as well as their faces, but since we are only speaking of surfaces here, it suffices
to specify a triangulation by the triangles.

In the sequel, we will sometimes refer to sets of the edges of triangles that make
up 𝐶, so we have a name for them. If 𝑇 = {𝜎𝑖}𝑛𝑖=1 is the collection of 2-simplices that
make up a 2-manifold 𝐶 in ℝ𝑛, then the 1-skeleton of 𝑇 is the set of all the edges of
the triangles in 𝑇.

11.4 The Classification of 2-Manifolds
This section presents a proof of the classification theorem for compact, connected, tri-
angulated 2-manifolds. The basic strategy of this proof is to show that removing an
open disk from a compact, connected, triangulated 2-manifold gives us a space home-
omorphic to a (closed) disk with some number of bands attached to its boundary in a
specified way. The number of bands, and how they are attached then gives us a classi-
fication of the surface.

The disk wewill remove is a “nice” neighborhood of some of the edges of the trian-
gles that make up the 2-manifold. In order to create an appropriately small neighbor-
hood that captures the intuitive idea of just taking a little neighborhood around those
edges, we define a barycentric subdivision.

For the entirety of the proof of the classification theorem, we encourage you to
think very concretely about these 2-manifolds. Think of them as physical objects that
you could hold and touch. The 2-manifold is made of flat triangles. You know what a
triangle is. A barycentric subdivision just divides each single triangle into exactly six
pieces.

Definition. Let 𝑀 be a 2-manifold with triangulation 𝑇 = {𝜎𝑖}𝑘𝑖=1. The barycentric
subdivision 𝑇 ′ of 𝑇 is the collection 𝑇 ′ = {𝜎′𝑖 }6𝑘𝑖=1 of triangles obtained by taking each
2-simplex (that is, triangle) in the collection of triangles 𝑇 and dividing it into exactly
six subtriangles by drawing straight line segments from the center of each side to the
opposite vertex.

Notice that the union of the triangles in 𝑇 ′ is exactly the same as the union of
triangles in 𝑇; there are just six times as many of them. Often we do this barycentric
subdivision process twice. That process creates the second barycentric subdivision of
𝑇, denoted 𝑇″. Notice that there are 36 times as many triangles in 𝑇″ as there are in 𝑇,
but the underlying subset of ℝ𝑛 is exactly the same.
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Figure 11.9. Barycentric subdivision of a 2-simplex.

Figure 11.10. Second barycentric subdivision of a 2-simplex.

Now we can specify what we mean by a nice neighborhood of some collection of
edges of 𝑇.

Definition. Let 𝑀 be a 2-manifold in ℝ𝑛 with triangulation 𝑇 = {𝜎𝑖}𝑘𝑖=1. Let 𝐴 be the
union of some of the vertices and edges of the triangles in 𝑇. The regular neighbor-
hood of 𝐴, denoted𝑁(𝐴), equals⋃{𝜎″𝑗 ∣ 𝜎″𝑗 ∈ 𝑇″ and 𝜎″𝑗 ∩𝐴 ≠ ∅} (recall that 𝑇″ is the
second barycentric subdivision of 𝑇).

Exercise 11.8. The boundary of a tetrahedron is naturally triangulated with a triangu-
lation 𝑇 consisting of four 2-simplices, having six edges and four vertices.
(1) On the boundary of a tetrahedron draw the first and second barycentric subdivisions

of 𝑇.

(2) Locate the edges of the four triangles in 𝑇.

(3) Draw the regular neighborhood of the union of all the edges of 𝑇.

(4) Draw the regular neighborhood of a single edge of a triangle in 𝑇.

We can create a torus by taking a square and identifying the top edge to the bottom
edge and the right side to the left side. We can triangulate the torus with 18 triangles
as shown in Figure 11.11, and you could literally create a physical model of such a
triangulated torus that you could hold in your hand.

Similarly, we can create a Klein bottle by taking a square and identifying the top
edge to the bottom edge without a twist and then identifying the right side to the left
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Figure 11.11. The torus triangulated.
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Figure 11.12. A Klein bottle is obtained by gluing the edges as indicated.

sidewith a half twist, that is, the top of the right edge is identifiedwith the bottomof the
left edge and vice versa. Again the Klein bottle can be triangulated using 18 triangles.
In the case of the Klein bottle, you cannot create a triangulated Klein bottle that lives
in Euclidean 3-space; however, you can create such a Klein bottle in ℝ4. Regardless of
its inability to be created in 3-space, the preidentification diagram for the Klein bottle
can be drawn on a piece of paper, as you see in Figure 11.12.

Exercise 11.9. In the second barycentric subdivisions of a triangulation of the torus (Fig-
ure 11.13), find regular neighborhoods of various subsets of the edges.

It may be useful to remember two definitions from graph theory: the definition of
a graph and the definition of a tree. Recall that a graph (𝑉, 𝐸) is a set of vertices 𝑉 and
a set 𝐸 of pairs of those vertices, which are the edges of the graph. A tree is a graph
(𝑉, 𝐸) that has no circuits, that is, the graph has no sequence of edges {𝑣1, 𝑣2}, {𝑣2, 𝑣3},
{𝑣3, 𝑣4}, … , {𝑣𝑘−1, 𝑣𝑘}, {𝑣𝑘, 𝑣1} where no two edges in the sequence are the same edge.

Exercise 11.10. Consider the triangulation 𝑇 of the torus in Figure 11.11. Describe those
graphs created from edges in the 1-skeleton of 𝑇 that have regular neighborhoods homeo-
morphic to a disk.
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Figure 11.13. The torus triangulated by its second barycentric subdivision.

Effective Thinking Principle. Generalize Insights. After noticing some-
thing in an individual instance, see whether that same insight applies to more
general cases.

Your observation in the exercise above can be generalized.

Theorem 11.11. Let 𝑀 be a compact, triangulated 2-manifold with triangulation 𝑇.
Let 𝑆 be a tree whose edges are 1-simplices in the 1-skeleton of 𝑇. Then 𝑁(𝑆), the regular
neighborhood of 𝑆, is homeomorphic to a disk (𝐵2, the 2-dimensional ball).

When we look at a triangulated 2-manifold it is natural to connect the centers of
adjacent 2-simplices. That naturally leads to the concept of the dual 1-skeleton.

Definition. Let 𝑇 be a triangulation of a 2-manifold 𝑀. Consider two adjacent 2-sim-
plices 𝜎1 and 𝜎2 in 𝑇. There are two edges of 2-simplices in the first barycentric subdivi-
sion of 𝑇 that create a path from the barycenter of 𝜎1 to the barycenter of 𝜎2. One edge
goes from the barycenter of 𝜎1 to the midpoint of the common edge of 𝜎1 and 𝜎2, and
the second edge goes from that midpoint to the barycenter of 𝜎2. The union of those
two edges is viewed as a single “edge” in the dual 1-skeleton of 𝑇. The dual 1-skeleton
of 𝑇 consists of the set of all such “edges” between adjacent 2-simplices of 𝑇.

The next theorem encourages you to do some drawing and observing. Draw a pic-
ture of a few triangles that might be part of the triangulation of a 2-manifold. Then
draw the second barycentric subdivision of them and highlight a tree consisting of a
few “edges” in the dual 1-skeleton of the original triangulation. Now shade in all the 2-
simplices in the second barycentric subdivision that touch your tree and see why their
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union must be a disk. That look at the local geometry of your triangulated 2-manifold
will allow you to see why the following theorem is true.

Theorem 11.12. Let𝑀 be a compact, triangulated 2-manifold with triangulation 𝑇. Let
𝑆 be a tree equal to a union of “edges” in the dual 1-skeleton of 𝑇. Then⋃{𝜎″𝑗 ∣ 𝜎″𝑗 ∈ 𝑇″

and 𝜎″𝑗 ∩ 𝑆 ≠ ∅} is homeomorphic to 𝔻2.

In the next theorem you will show that a tree in the 1-skeleton of a triangulated
2-manifold cannot disconnect the dual 1-skeleton.

Theorem 11.13. Let𝑀 be a connected, compact, triangulated 2-manifold with triangu-
lation𝑇. Let 𝑆 be a tree in the 1-skeleton of𝑇. Let 𝑆′ be the subgraph of the dual 1-skeleton
of 𝑇 whose “edges” do not intersect 𝑆. Then 𝑆′ is connected.

The following two theorems state that𝑀 can be divided into two pieces, one a disk
𝐷0 and the other a disk 𝐷1 with bands (the 𝐻𝑖’s) attached to it. You might think about
creating 𝐷0 by fattening up a maximal tree in the 1-skeleton of the triangulation of𝑀
and then creating𝐷1 by finding an appropriate tree in the dual 1-skeleton and fattening
it up. Just observe that the only things that could be left over must be disjoint disks,
the 𝐻𝑖’s.

Theorem 11.14. Let 𝑀 be a connected, compact, triangulated 2-manifold. Then 𝑀 =
𝐷0 ∪𝐷1 ∪ (⋃

𝑘
𝑖=1𝐻𝑖), where𝐷0,𝐷1, and each𝐻𝑖 is homeomorphic to𝔻2, Int 𝐷0 ∩𝐷1 = ∅,

the 𝐻𝑖’s are disjoint, ⋃
𝑘
𝑖=1 Int𝐻𝑖 ∩ (𝐷0 ∪ 𝐷1) = ∅, and for each 𝑖, 𝐻𝑖 ∩ 𝐷1 equals two

disjoint arcs with each arc on the boundary of each of𝐻𝑖 and 𝐷1.

Theorem 11.15. Let𝑀 be a connected, compact, triangulated 2-manifold. Then:
(1) There is a disk 𝐷0 in 𝑀 such that 𝑀 − (Int𝐷0) is homeomorphic to the following

subset of ℝ3: a disk 𝐷1 with a finite number of disjoint strips, 𝐻𝑖 for 𝑖 ∈ {1, … , 𝑛},
each attached to the boundary of𝐷1 along a pair of disjoint arcs where each strip has
no twist or a 1/2 twist. (See Figure 11.14.)

(2) Furthermore, the boundary of the disk with strips, 𝐷1 ∪ (⋃
𝑘
𝑖=1𝐻𝑖), is connected.

As youwork on the following exercise, remember that the boundary of𝐷0 (a simple
closed curve) is also the boundary of 𝐷1 ∪ (⋃

𝑘
𝑖=1𝐻𝑖).

Exercise 11.16. In the conclusion of the previous theorem, any strip𝐻𝑖 divides the bound-
ary of𝐷1 into two arcs, 𝑒1𝑖 and 𝑒2𝑖 , where𝐻𝑖 is not attached, that is, the two arcs that make
up (𝐷1 ∩𝐻𝑖) are disjoint from the two arcs 𝑒1𝑖 and 𝑒2𝑖 except at their endpoints. Show that
if a strip𝐻𝑗 is attached to 𝐷1 with no twists, then there must be a strip𝐻𝑘 that is attached
to both 𝑒1𝑗 and 𝑒2𝑗 .

Here is a little geometry. Suppose you have a rectangle with another rectangle
hanging down as pictured in Figure 11.15. Then that T shaped object is homeomorphic
to a distorted T where the stem of the T is moved to appear to be attached a bit to one
side. This type of distortion can be used to slide strips over strips to put our disk with
strips into a more orderly arrangement.



11.4. The Classification of 2-Manifolds 155

Figure 11.14. A disk with four handles attached.

Figure 11.15. Distorting a T-shaped object by a homeomorphism.

Theorem 11.17. Let𝑀 be a connected, compact, triangulated 2-manifold. Then there is
a disk𝐷0 in𝑀 such that𝑀−Int𝐷0 is homeomorphic to a disk𝐷1 with strips attached as
follows: first come a finite number of strips with 1/2 twists each of whose attaching arcs
are consecutive along 𝜕𝐷1, and next come a finite number of pairs of untwisted strips, each
pair with attaching arcs entwined as pictured in Figure 11.16with the four arcs from each
pair consecutive along 𝜕𝐷1.

Figure 11.16. Twisted strips and entwined strips.
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The next theorem abandons general cases for a moment, and, instead, asks you to
show the topological equivalence of two specific sets, 𝑋 and 𝑌 : each set is a disk with
three strips attached. You could physically make 𝑋 and 𝑌 if you wished to.

Theorem 11.18. Let 𝑋 be the union of a disk with three strips attached as follows: a disk
𝐸0 with one strip attached with a 1/2 twist with its attaching arcs consecutive along Bd𝐸0
and one pair of untwisted strips with attaching arcs entwined as pictured in Figure 11.17
with the four arcs consecutive along Bd𝐸0. Let 𝑌 be a union of a disk with three strips
attached, but the three are attached differently. The set 𝑌 consists of a disk 𝐸1 with three
strips with a 1/2 twist each whose attaching arcs are consecutive along Bd𝐸1. Then 𝑋 is
homeomorphic to 𝑌 .

X Y
Figure 11.17. These spaces are homeomorphic.

Effective Thinking Principle. SimplifyWhen Possible. If a potentially com-
plicated situation can be made simpler or more orderly, do so.

Our drive toward organization leads us to create neater arrangements of our strips.
The following result demonstrates that upon the removal of a single disk, the remainder
of a compact, connected, 2-manifold is an easily described subset of ℝ3.

Theorem 11.19. Let 𝑀 be a connected, compact, triangulated 2-manifold. Then there
is a disk 𝐷0 in𝑀 such that𝑀 − Int𝐷0 is homeomorphic to one of the following:
(a) a disk 𝐷1,
(b) a disk 𝐷1 with 𝑘 half-twisted strips with consecutive attaching arcs, or
(c) a disk 𝐷1 with 𝑘 pairs of untwisted strips, each pair in entwining position with the

four attaching arcs from each pair consecutive.

It will turn out that the patterns of strips that arise in this classification result cor-
respond in a natural way to tori and projective planes. To capture that connection,
we can rephrase this classification theoremmore memorably by defining a method for
combining two 2-manifolds to produce a third 2-manifold.
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Figure 11.18. Entwining pair of strips.

11.5 The Connected Sum
In this section we will develop the concept of a connected sum, an important method
for creating a newmanifold out of others. The connected sumwill allow us to state the
classification theorem of compact 2-manifolds more succinctly.

Definition. Let𝑀1 and𝑀2 be two connected, compact, triangulated 2-manifolds inℝ𝑛.
Choose a 2-simplex 𝜎1 in the triangulation of𝑀1 and a 2-simplex 𝜎2 in the triangulation
of𝑀2. Select a homeomorphism ℎ from the boundary of 𝜎1 to the boundary of 𝜎2 that is
linear on each of the three edges. Consider the topological space created by considering
the union (𝑀1−Int 𝜎1)∪(𝑀2−Int 𝜎2) and identifying their boundaries via ℎ (where the
interior of a 2-simplex is defined to be the 2-simplex except for its edges and vertices).
The resulting surface is the connected sum of𝑀1 and𝑀2, denoted𝑀1 #𝑀2.

Theorem 11.20. Suppose𝑀1 and𝑀2 are compact, triangulated, connected 2-manifolds
and𝑀 is a connected sum of𝑀1 and𝑀2. Then𝑀 is a compact, connected, triangulable
2-manifold.

Notice that, given two 2-manifolds, the definition of connected sum depends on
several choices: we have to select a triangulation of each manifold, a 2-simplex from
each, and a homeomorphism between their boundaries. In fact (up to homeomor-
phism, of course), the resulting surface does not depend on our choices (as long as we
assume each manifold is connected, which we have). For now, we will just accept the
well-definedness of connected sum as fact.

You should note that “#” is commutative and associative.

Exercise 11.21. Suppose𝑀 is a compact, connected, triangulated 2-manifold. What is
𝕊2 #𝑀?

Exercise 11.22. Sketch #𝑛
𝑖=1 𝕋2.

We can now restate our classification result in terms of connected sums. Your
challenge in proving the next theorem is to explain the geometry of how the connected
sum construction relates to the adding of more strips to a disk.

Theorem 11.23 (Classification of compact, connected 2-manifolds). Any connected,
compact, triangulated 2-manifold is homeomorphic to the 2-sphere 𝕊2, a connected sum
of tori, or a connected sum of projective planes.
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At this juncture, youhave demonstrated that any compact, connected, triangulated
2-manifold is homeomorphic to one of the connected sums listed above; however, you
have not yet shown that these connected sums are all different from one another. We
will undertake that challenge later in this chapter, but before doing so, wewish to guide
you to discover an alternative method for demonstrating that any compact, connected,
triangulated 2-manifold is homeomorphic to a sphere, a connected sum of tori, or a
connected sum of projective planes.

11.6 Polygonal Presentations of 2-Manifolds
In the previous sections we noticed that it was convenient to look at a torus as a square
with the right- and left-hand sides identified and with the top and bottom sides identi-
fied. Likewise, a Klein bottle was similarly described as a rectangle with various points
on the boundary identified. Viewing 2-manifolds as quotient spaces of polygons is a
useful way to visualize and analyze 2-manifolds.

Let’s consider the process by which a torus can be shown to be homeomorphic
to a polygon with edges identified in pairs. See Figure 11.19. By cutting along two
particular curves in the torus, we can “unroll” the torus to get a square in the plane
with the property that if we identify pairs of edges, we see that the quotient space after
that identification is the torus we started with—the identification simply repairs the
cuts we made in the first place.

We can carry out a similar process in Figure 11.20 on the double torus to get an
octagon such that if appropriate pairs of its edges are identified in pairs, we reconstruct
the double torus. These presentations have the major advantage that they lie in the
plane, which in some cases make them easier to work with visually.

Exercise 11.24. Identify the spaces in Figure 11.21 and give justification.

All the spaces above have their edges identified in pairs. In fact, you will prove
next that if you start with a polygon and identify its edges in pairs, the quotient space
will always be a 2-manifold. We will reserve the term polygonal presentation for
the quotient space obtained by starting with a polygon in the plane and identifying the
edges in pairs. For simplicity, we will assume all our identifications are linear on each
edge.

Theorem 11.25. Let 𝑃 be a polygonal presentation. Then 𝑃 is a 2-manifold.

We end this section with a simple notation for polygonal presentations. Suppose
we have a polygonal presentation. If we assign a unique letter to each pair of edges
that are glued together (as was done in our figures) and we read the letters as we follow
the edges along the boundary of the disk (starting at a certain edge) going clockwise,
we get a “word” made up of these letters. However, to completely specify the gluing,
we need to know not only which edges are glued together, but in which orientation.
To keep track of orientations, we will write the letter alone if the orientation of the
corresponding arrowpoints clockwise andwewill write the letterwith a−1 superscript
if the arrow points counterclockwise. For example, by the process in Figure 11.19, the
word

𝑎𝑏𝑎−1𝑏−1
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step 1 step 2

step 3 step 4

step 5

Figure 11.19. Finding a polygonal presentation for the torus.

corresponds to a torus. Exercise 11.24 demonstrates that different words can generate
the same 2-manifold.

Theorem 11.26. Suppose𝑀 is a compact, connected, triangulable 2-manifold. Then𝑀
is homeomorphic to a polygonal presentation.

The converse of the last theorem also holds. In the next theorem the compact-
ness and connectedness are rather easy, and you have already proved that a polygonal
presentation is a 2-manifold. Please show the triangulability directly, that is, without
appealing to the fact that every 2-manifold is triangulable.

Theorem 11.27. Let 𝑃 be a polygonal presentation. Then 𝑃 is a compact, connected,
triangulable 2-manifold.

We will now proceed to discover an alternative proof that every compact, con-
nected, triangulated 2-manifold is homeomorphic to a sphere, a connected sum of tori,
or a connected sum of projective planes.

11.7 Another Classification of Compact
2-Manifolds

You have now shown that every compact, connected, triangulated 2-manifold is home-
omorphic to a polygon with edges identified pairwise. Hence, one way to classify these
manifolds is to classify polygonal presentations. The strategy is to begin with a given
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step 1 step 2

step 3 step 4

step 5 step 6

step 7

Figure 11.20. Finding a polygonal presentation for the double torus.

b

b

aa

(a) (b) (c)

Figure 11.21

polygonal presentation and show that it yields the same 2-manifold as increasingly
neater polygonal presentations.

In the next sequence of theorems you will prove that any polygonal presentation
is homeomorphic either to 𝕊2 or to a canonical polygonal presentation for #𝑛

𝑖=1 𝕋2 or
#𝑛
𝑖=1ℝP2.
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The first theorem shows that an edge identified to an adjacent edge in the opposite
direction can be erased.

Theorem 11.28. Let 𝐴 and 𝐶 be (possibly empty) words, and let 𝐴𝑏𝑏−1𝐶 represent a
string of 2𝑛 letters where each letter occurs twice, neglecting superscripts (and there is
at least one pair other than 𝑏 and 𝑏−1). Then the 2-manifold obtained from the word
𝐴𝑏𝑏−1𝐶 is homeomorphic to that obtained from the word 𝐴𝐶.

The next theoremwill require your using a strategy of proof that youmay find use-
ful in many of the theorems to come. Namely, think about taking a given polygonal
presentation simply cutting the polygon into two polygons by a straight cut from one
vertex to another. Now suppose one of the edge pairs in the original presentation has
one of them on one of the two pieces and the other one on the other piece. Then you
could pick up one piece and make the identification of those two edges. Understand
why you now have a new polygonal presentation of the same 2-manifold. By judicious
choices about where to cut and glue, you can successfully prove the following theo-
rems.

Theorem 11.29. Suppose 𝑃 is a polygonal presentation not homeomorphic to 𝕊2. Then
there is a homeomorphic polygonal presentation where all the vertices are in the same
equivalence class, that is, all the vertices are identified to each other.

The theorems that follow are sequential in that you incrementally add virtues to
the polygonal presentation as you proceed.

Theorem 11.30. Suppose 𝑃 is a polygonal presentation not homeomorphic to 𝕊2. Then
𝑃 is homeomorphic to a polygonal presentation where all the vertices are identified and
for every pair of edges with the same orientation, the two edges of that pair are consecutive.

Theorem 11.31. Suppose 𝑃 is a polygonal presentation not homeomorphic to 𝕊2. Then
𝑃 is homeomorphic to a polygonal presentation where all the vertices are identified, every
pair of edges with the same orientation are consecutive, and all other edges are grouped
in disjoint sets of two intertwined pairs following the pattern 𝑎𝑏𝑎−1𝑏−1.

The following theorem is very concrete. It says if a particular pattern occurs in the
word, that pattern can be replaced with another pattern.

Theorem 11.32. If𝐴 and 𝐶 are (possibly empty) words, then the polygonal presentation
𝐴𝑎𝑏𝑎−1𝑏−1𝑐𝑐𝐶 is homeomorphic to that represented by 𝐴𝑑𝑑𝑒𝑒𝑓𝑓𝐶.

We can now put every polygonal presentation into one of three categories.

Theorem 11.33. Any compact, connected, triangulated 2-manifold𝑀 is homeomorphic
to the polygonal presentation given by one of the following words: 𝑎𝑎−1, 𝑎1𝑎1⋯𝑎𝑛𝑎𝑛
(where 𝑛 ≥ 1) or 𝑎1𝑎2𝑎−11 𝑎−12 ⋯𝑎𝑛−1𝑎𝑛𝑎−1𝑛−1𝑎−1𝑛 (where 𝑛 ≥ 2 is even).

Exercise 11.34. Express the polygonal presentation inFigure 11.3as aword in a selection
of letters. Then by manipulating words, demonstrate that this figure is homeomorphic to
a torus.
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This classification result talks about words in polygonal presentations. It would be
nice to see the relationship between these words and themore geometrically appealing
idea of connected sum. That is the connection explored in the next exercise. To answer
the next exercise, you may want to recall that the word 𝑎𝑏𝑎−1𝑏−1 corresponds to the
torus and the word 𝑎𝑏𝑎−1𝑏−1𝑐𝑑𝑐−1𝑑−1 corresponds to the double torus.

Exercise 11.35. Suppose that we have two compact, connected 2-manifolds represented
by the words 𝑤1 and 𝑤2, respectively. Suppose in addition that 𝑤1 and 𝑤2 have no letters
in common. What can you say about the 2-manifold corresponding to the concatenated
word 𝑤1𝑤2 in terms of the connected sum?

Recall that the word 𝑎𝑏𝑎−1𝑏−1 is a polygonal presentation for the torus and the
word 𝑐𝑐 is a polygonal presentation for the projective plane.

Exercise 11.36. Restate Theorem 11.32 above in the case that 𝐴 and 𝐶 are empty, in
terms of connected sum.

Wecannow rephrase our classification scheme of polygonal presentations in terms
of connected sum. Fortunately, we get the same result as we arrived at with our previ-
ous approach to the classification question.

Theorem11.37 (Classification of compact, connected 2-manifolds). Any compact, con-
nected, triangulated 2-manifold is homeomorphic to one of the following:
(1) 𝕊2,
(2) a connected sum of 𝑛 tori, or
(3) a connected sum of 𝑛 projective planes.

Once again, we have not yet shown that a given compact, connected 2-manifold
appears only once on this list. Pinning that down requires a few more steps.

11.8 Orientability
One of the challenges with the classification of 2-manifolds is to show why similar 2-
manifolds such as the Klein bottle and the torus are different topologically. Indeed,
perhaps you have a sense about the twisted nature of the Klein bottle that suggests
that the Klein bottle is different from the torus in a way that the 2-sphere is not differ-
ent from the torus. The purpose of this section is to formulate this twisted difference
precisely by way of an invariant known as orientability.

Orientability is one of the many concepts in topology (or in mathematics in gen-
eral) that is easy to understand on an intuitive level but somewhat difficult to pin down
rigorously. Loosely speaking, a connected surface is orientable if we can, near each
point, assign a “clockwise” direction so that this direction varies continuously and con-
sistently as we move along the surface. Such a choice of direction is called an orienta-
tion of the manifold.

Exercise 11.38. Describe heuristically a strategy by which you would define a consistent
clockwise direction at each point of the standard embedding of the 2-sphere in ℝ3. What
is the relevant property?
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We will use the vertices of a 2-simplex to make this definition precise. We begin
by describing what we mean by an orientation of an edge and a 2-simplex.

Definition. Two orderings of the vertices 𝑣0, 𝑣1, 𝑣2 of a 2-simplex are said to be equiva-
lent if they differ by an evenpermutation (e.g., {𝑣0, 𝑣1, 𝑣2} ∼ {𝑣1, 𝑣2, 𝑣0} and {𝑣0, 𝑣1, 𝑣2} ≁
{𝑣1, 𝑣0, 𝑣2}). This equivalence relation produces precisely two equivalence classes of or-
derings of vertices of a 2-simplex. The equivalence class of an ordering {𝑣0, 𝑣1, 𝑣2} will
be denoted [𝑣0𝑣1𝑣2].

In the case of an edge with vertices 𝑣0 and 𝑣1, there are two orderings of the two
vertices.

Definition. An orientation of an edge or a 2-simplex is a choice of one of the two
equivalence classes of orderings of its vertices. Then the chosen one is called positive
and the other one is called negative, and if 𝜎 is an oriented simplex, its negatively
oriented counterpart is denoted −𝜎.

Note that an orientation of a 1-simplex can be represented by drawing an arrow
along the edge in one of two directions. Likewise an orientation of a 2-simplex can be
represented by drawing either a clockwise arrow or a counterclockwise arrow on it and
declaring that to be the positive direction.

If we choose an orientation of a 2-simplex, then there are associated orientations
on each of its edges.

Definition. If [𝑣0𝑣1𝑣2] is the positive orientation of a 2-simplex, then the induced ori-
entation on its three edges is what you expect by going around the boundary of the
triangle, namely: [𝑣0𝑣1], [𝑣1𝑣2], and [𝑣2𝑣0] are positive.

Exercise 11.39. Show that the induced orientation is well-defined; in other words, that
it is independent of the choice of positive equivalence class representative for the original
2-simplex.

Figure 11.22. Neighboring simplices, compatibly oriented. Note
how the oriented triangles [𝑢𝑣𝑤] and [𝑤𝑣𝑧] induce opposite orien-
tations along their common edge.

We can now define what we mean by an orientable, triangulated 2-manifold. A
triangulated 2-manifold is orientable if it is possible to select orientations for each 2-
simplex in such a way that neighboring 2-simplices have compatible orientations. The
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concept of “compatible” comes from the following observation. If you draw two tri-
angles in the plane that share an edge and orient them both in a counterclockwise
ordering (for example), then the shared edge has induced orientations from the two
triangles that are opposite. In other words, when the orientations on both triangles are
the same, the induced orientations on a shared edge are opposite. See Figure 11.22.
This realization gives rise to the following definition.

Definition. A triangulated 2-manifold𝑀 with triangulation 𝑇 is said to be orientable
if an orientation can be assigned to each 2-simplex in 𝑇 in such a way that given any 1-
simplex in the triangulation, the two 2-simplices that share it as a face induce opposite
orientations. Otherwise the manifold is said to be non-orientable. Such a choice
of orientations for each 2-simplex in 𝑇 that are compatible in this way is called an
orientation of𝑀.

Since our definition of orientability depends heavily on a triangulation, it is a little
bit tricky to show that orientability is a topological invariant. What really needs to
be shown are two things: (1) if you subdivide the triangles in a triangulation, you get
the same answer about orientability; and (2) for any two triangulations of the same
2-manifold, there are subdivisions of each that make the two subdivisions isomorphic.
We will not undertake that challenge until Chapter 14. For now, please assume those
facts and prove the following equivalences of orientability.

Theorem 11.40. Show that the following are equivalent for a 2-manifold𝑀:

(1) Every triangulation of𝑀 is not orientable.

(2) 𝑀 admits a triangulation that is not orientable.

(3) 𝑀 admits a triangulation that contains a collection of simplices whose union is home-
omorphic to the Möbius band. (See Figure 11.27.)

(4) 𝑀 admits an embedding of a Möbius band.

Either the third or the fourth statement above will allow us to conclude that ori-
entability is a topological invariant after we have proved that 2-manifolds can be trian-
gulated.

Theorem 11.41. Let 𝑀1, … ,𝑀𝑛 be connected, compact, triangulated 2-manifolds. Let
𝑀 be a connected sum of𝑀1, … ,𝑀𝑛. Then𝑀 is orientable if and only if𝑀𝑖 is orientable
for each 𝑖 ∈ {1, … , 𝑛}.

Exercise 11.42. State and prove which compact, connected, triangulated 2-manifolds
are orientable and which are not.

11.9 The Euler Characteristic
In this section, wewill define theEuler characteristic. This number, which is associated
with a triangulation of a 2-manifold, is vastly important in many applications (which
should be clear after this section). In particular, it will allow us to deepen significantly
our understanding of compact 2-manifolds. The formulation is surprisingly simple.
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Definition. Suppose 𝑀𝑇 is a compact, triangulated 2-manifold with triangulation 𝑇.
Let 𝑉 be the number of vertices, 𝐸 the number of edges, and 𝐹 the number of 2-
simplices in 𝑇. Then the Euler characteristic of𝑀𝑇 is

𝜒(𝑀𝑇) = 𝑉 − 𝐸 + 𝐹.

Notice that the sum defining Euler characteristic is always well-defined since a
triangulation must have finitely many simplices.

The Euler characteristic is a topological invariant. The work needed to show this
fact is of similar character to showing that 2-manifolds are triangulable, sowewill defer
a discussion of its being an invariant until Chapter 14 when we discuss triangulability
of compact 2-manifolds. For now please just assume that the Euler characteristic is a
topological invariant.

In any case, the computation of the Euler characteristic of a 2-manifold does not
depend on its particular triangulation. For this reason, we will typically use the nota-
tion 𝜒(𝑀) rather then 𝜒(𝑀𝑇). Of course to calculate the Euler characteristic, a trian-
gulation must be chosen.

Exercise 11.43. Calculate the Euler characteristic of the following spaces:
(1) 𝕊2.
(2) 𝕋2.
(3) 𝕂2.

(4) ℝP2.

We will now demonstrate the usefulness of the Euler characteristic.

Lemma 11.44. Suppose𝑀1 and𝑀2 are compact 2-manifolds. If𝑀1 #𝑀2 is any choice
for the connected sum of𝑀1 and𝑀2, then 𝜒(𝑀1 #𝑀2) = 𝜒(𝑀1) + 𝜒(𝑀2) − 2.

Exercise 11.45. (1) Calculate the Euler characteristic of #𝑛
𝑖=1ℝP2.

(2) Calculate the Euler characteristic of #𝑛
𝑖=1 𝕋2.

Theorem 11.46. The combination of Euler characteristic and orientability is an invari-
ant that distinguishes all compact, connected 2-manifolds.

The Euler characteristic and orientability makes the identification of 2-manifolds
almost trivial in many instances.

Exercise 11.47. Identify the following 2-manifolds as a sphere, a connected sum of 𝑛 tori
(specifying 𝑛), or a connected sum of 𝑛 projective planes (specifying 𝑛):
(a) 𝕋#ℝP.
(b) 𝕂#ℝP.
(c) ℝP#𝕋#𝕂#ℝP.
(d) 𝕂#𝕋#𝕋#ℝP#𝕂#𝕋.

Exercise 11.48. Identify the surface obtained by identifying the edges of the decagon as
indicated in Figure 11.23.
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Figure 11.23. The decagon with edges identified in pairs.

11.10 Manifolds with Boundary
An important generalization of the concept of a 2-manifold is a type of space called a
manifold with boundary. We first give several important examples of 2-manifolds
with boundary.

The first example is a space we have alreadymet: the disk. The next is the annulus,
which is a disk with a smaller (concentric) open disk removed (see Figure 11.24).

Figure 11.24. The annulus.

Another 2-manifold with boundary, appropriately named the “pair of pants,” is
shown in Figure 11.25.

Figure 11.25. The pair of pants.

A disk with handles attached also qualifies. A disk with two intertwined handles
attached is shown in Figure 11.26.
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Figure 11.26. Disk with intertwined handles.

A famous example of a 2-manifold with boundary is a space known as theMöbius
band. This space can be constructed by taking a strip of paper, putting a half twist in,
and taping the ends together. It is shown in Figure 11.27.

Figure 11.27. The Möbius band.

Exercise 11.49. Notice that the edge (or boundary) of a Möbius band is a simple closed
curve. Construct a space by gluing a disk to theMöbius band along their respective bound-
aries. Show that this space is homeomorphic to the projective plane.

We will now give the precise definition of a manifold with boundary.

Definition. The set

{(𝑥1, 𝑥2) ∈ ℝ2|𝑥2 ≥ 0}

in ℝ2 is called a 2-dimensional upper half-space and is denoted ℝ2
+.

Definition. A 2-dimensionalmanifoldwith boundary or 2-manifoldwith bound-
ary is a 2nd countable Hausdorff space 𝑀 such that for each 𝑝 ∈ 𝑀, there is a neigh-
borhood 𝑈 of 𝑝 that is homeomorphic to an open set in ℝ2

+.

Notice that this definition is indeed a generalization since an (appropriate) open
2-ball is still an open subset of ℝ2

+.
Any number of 2-manifolds with boundary can be created by starting with a 2-

manifold and making it holey by punching some holes (interiors of disks) in it.
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11.11 Classifying 2-Manifolds: Going Below the
Surface of Surfaces

In this chapter we took on the challenge of analyzing surfaces, that is, topological
spaces that locally look like the plane. These surfaces are appealing objects including
the sphere, the torus, double and triple tori, the sensuous Klein bottle, and infinitely
many more.

One of the basic impulses of mathematics and perhaps of life in general is to orga-
nize related objects in satisfying ways. In the case of compact, connected 2-manifolds,
we saw that every such surface actually was constructed from just three basic building
blocks—the sphere, the torus, and the projective plane. At first, we might well have
guessed that putting together a torus and a projective plane via the connected sum,
for example, might have produced a 2-manifold that could not be created by just using
projective planes alone; however, we saw that every connected, compact 2-manifold
was in fact either a sphere or it could be created by taking the connected sum of only
tori or only projective planes. It is quite satisfying to find that this whole category of
surfaces is generated by such a short list of elemental building blocks.

One feature of surfaces that we just barely saw small glimpses of was the aesthetic
richness of artistic renderings of these beautiful ideas. We leave it to you to open your
eyes to finding graceful and elegant visions of surfaces in nature and in art.
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Fundamental Group:

Capturing Holes

In the last chapter, we considered how to distinguish surfaces by manipulating the
spaces and putting them in some canonical form to compare them. In this chapter,
we’ll consider how to distinguish spaces by observing how features inside them can be
deformed, such as paths and loops. This focus will lead naturally to the question of
whether a space has a “hole” in it.

Whether a space has an obvious hole in it is an important idea that pops up in
unexpected places. For instance, consider the following famous theorem about poly-
nomials.

Theorem (Fundamental Theorem of Algebra). Apolynomial𝑝(𝑧) = 𝑎𝑛𝑧𝑛+⋯+𝑎1𝑧+
𝑎0 with complex coefficients and degree 𝑛 ≥ 1 has at least one root.

This theorem does not seem at first to be a topological theorem! However, we can
get our first hint that topology plays a role by looking at a special case.

Exercise 12.1. A polynomial 𝑝(𝑥) = 𝑎𝑛𝑥𝑛 +⋯+ 𝑎1𝑥 + 𝑎0 with real coefficients where
𝑎𝑛 ≠ 0 and 𝑛 is odd has at least one real root.

One strategy for showing the existence of a root is to ask whether the graph of 𝑝
crosses the 𝑥-axis. By observing the values of the polynomial on the endpoints of an
interval [−𝐾, 𝐾] when 𝐾 is sufficiently large, you can see that the existence of a root
follows from the Intermediate Value Theorem.

Now let’s ask what happens when you consider an arbitrary polynomial with com-
plex coefficients. We can proceed by analogy. The polynomial 𝑝 is now a function from
the complex plane to the complex plane, so instead of considering what 𝑝 does to a
very large interval on the real line, consider what 𝑝 does to the circular curve 𝐶 on the
boundary of a large disk around the origin in the complex plane.

169
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If you know a little complex arithmetic, you’ll recall that to multiply two complex
numbers, you multiply the distances from the origin and add the angles. So the poly-
nomial 𝑧𝑛 takes the circle 𝐶 centered at the origin to a circle that wraps around the
origin 𝑛 times. For a sufficiently large 𝑧, the leading term 𝑎𝑛𝑧𝑛 dominates all the lower
degree terms, so the image of 𝐶 under 𝑝 will be a really large curve that wraps around
the origin 𝑛 times. What does this fact imply about the image of the disk that𝐶 bounds?
Can the image of the disk avoid the origin if its boundary wraps around the origin a
non-zero number of times?

Consider the disk as the union of concentric circles together with a center point.
If the center point does not itself map to zero, the continuous image of a tiny circle
will map to a tiny loop that does not wind around the origin. By following the image of
circles of increasing radius under themap 𝑝, we see a continuous deformation between
a loop that does not wind around the origin to the image of 𝐶 which winds around the
origin 𝑛 times. Must this deformation cross the origin eventually? We now see how
this question about algebra has turned into a topological question about deformations
of loops in the complex plane.

12.1 Invariants and Homotopy
Given two topological spaces, how can we tell whether they are homeomorphic? To
prove they are homeomorphic, we would need to prove that there is a specificmap that
witnesses the homeomorphism. To prove they are not homeomorphic, wemight seek a
property preserved by homeomorphism (an invariant) that one space possesses but the
other does not. For instance, properties from point-set topology such as compactness,
connectedness,metrizability, countability, separability, etc. can be useful in this regard.

However, consider the 2-dimensional sphere and the torus (the surface of a dough-
nut). Both spaces are metrizable, connected, compact, 2nd countable, etc., so they are
“nice” from the point of view of point-set topology. Nevertheless, it is intuitively clear
that they are not topologically equivalent. To distinguish spaces like these, wewill need
to construct different invariants. We saw that orientability and the Euler characteristic
were useful invariants for distinguishing surfaces. But now we turn our attention to
the idea of associating a group with a space.

Effective Thinking Principle. Make Intuition Precise. One of the best
methods for creating ideas is to take an intuitive idea and make it precise.

Consider the most apparent difference between the sphere and the torus. Intu-
itively, we would say the torus contains something we would describe as a “hole,”
whereas the sphere does not. The fundamental group, first developed by Henri
Poincaré at the turn of the 20th century, is oneway tomake our intuitive notion precise.

Unlike the invariants of point-set topology, which are typically properties that a
space may or may not possess (like compactness, metrizability, separability, etc.) or a
number (like the number of connected components), the fundamental group is an alge-
braic group. One would expect this more complex invariant to carry more information
about a space, and it often does.
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An annulus, that is, the region between two concentric circles, captures some of
the basic ideas of the fundamental group. An annulus has the shape of a race track.
Consider a path on the annulus that begins and ends at the same point (which we later
call the base point). A path that goes halfway and comes back should somehow be
different from a path that goes around the annulus. One of those paths goes around
the hole and the other doesn’t. A path that goes halfway around, comes back, and
then goes half around the other way before coming back is qualitatively different from
the path that goes all the way around. If you were racing in a car, going around the
path is a good way to try to win the race, whereas just going back and forth near the
starting line will probably not lead to victory. A path that goes twice around should
be different from going around once, as should a path that goes all the way around in
the opposite direction. The fundamental group is a structure that effectively measures
these differences (and similarities) and in this way the fundamental group captures the
intuitive idea that an annulus has a hole.

To construct the fundamental group, we must first study the concept of homotopy.
Suppose that 𝑓, 𝑔 ∶ 𝑋 → 𝑌 are (continuous) maps from one topological space to an-
other. Loosely speaking, we say that these maps are homotopic if we can continuously
deform the image of 𝑓 to the image of 𝑔, all the while remaining inside 𝑌 .

Figure 12.1. A homotopy maps 𝑋 × [0, 1] into another space 𝑌 . In
this case 𝑋 is a disk, so 𝑋 × [0, 1] is a solid cylinder. Notice how the
image of the homotopy shows the stages of deformation between 𝑓
and 𝑔 as the time parameter varies from 𝑡 = 0 to 𝑡 = 1.

Definition. Let 𝑋 and 𝑌 be topological spaces, and let 𝑓, 𝑔 ∶ 𝑋 → 𝑌 be continuous
functions. Then 𝑓 ishomotopic to 𝑔 (written 𝑓 ≃ 𝑔) if and only if there is a continuous
map 𝐹 ∶ 𝑋 × [0, 1] → 𝑌 such that the equations

𝐹(𝑥, 0) = 𝑓(𝑥)
𝐹(𝑥, 1) = 𝑔(𝑥)

hold for all 𝑥 ∈ 𝑋 . The map 𝐹 is called a homotopy between 𝑓 and 𝑔.

We often denote the second argument of a homotopy 𝐹(𝑥, 𝑡) by the letter 𝑡 and we
can think of 𝑡 as a time parameter. Then the homotopy 𝐹 ∶ 𝑋×[0, 1] → 𝑌 between two
maps 𝑓 and 𝑔 can be viewed as a continuous 1-parameter family of maps 𝐹𝑡 ∶ 𝑋 → 𝑌
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that deforms 𝐹0 = 𝑓 at time 𝑡 = 0 into 𝐹1 = 𝑔 at time 𝑡 = 1. The 𝐹𝑡 demonstrate all the
intermediate stages of the deformation.

For a given space 𝑋 , any two continuous functions 𝑓, 𝑔 ∶ 𝑋 → ℝ𝑛 are homotopic
using the straight line homotopy in ℝ𝑛:

𝐹(𝑥, 𝑡) = (1 − 𝑡)𝑓(𝑥) + 𝑡𝑔(𝑥).
Note that 𝐹 is continuous, equal to 𝑓 at time 0, and equal to 𝑔 at time 1. It is called a
straight line homotopy because for a fixed 𝑥, the image 𝐹(𝑥, 𝑡)moves in a straight line
from 𝑓(𝑥) to 𝑔(𝑥). The straight line homotopy is available to us because any two points
in ℝ𝑛 can be connected by a straight line.

In contrast, supposewe consider two continuous functions 𝑓 and 𝑔 from a circle𝕊1
into the punctured plane ℝ2 − {(0, 0)}. Suppose 𝑓 takes 𝕊1 to a circle that goes around
(0, 0)—for example, 𝑓 could be the identity map. And suppose 𝑔 takes 𝕊1 to a circle
that does not go around (0, 0), for example, suppose 𝑔(𝕊1) is a unit circle centered at
the point (1, 1). Then there is no homotopy between 𝑓 and 𝑔 in ℝ2 − {(0, 0)}. The
straight line homotopy does not work, because for some point 𝑥 ∈ 𝕊1, the straight line
between 𝑓(𝑥) and 𝑔(𝑥)will cross (0, 0). Proving that there is such a point is not obvious,
but you will be able to prove it soon enough.

Figure 12.2. These circles are images of two maps from 𝕊1 into the
punctured plane that are not homotopic.

Definition. A function 𝑓 ∶ 𝑋 → 𝑌 whose image is a single point is called a constant
map. A map is said to be null homotopic if and only if it is homotopic to the constant
map.

A null homotopic map is one in which the image 𝑓(𝑋) in 𝑌 can be gradually de-
formed within 𝑌 to a map that takes all of 𝑋 to a single point in 𝑌 .

Exercise 12.2. For any space 𝑋 , every continuous map 𝑓 ∶ 𝑋 → ℝ𝑛 is null-homotopic.

Effective Thinking Principle. Seek Refinements. Once you have created an
idea, seek refinements and variations.
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Often we will want our maps to be homotopic in such a way that during the tran-
sition from one map into the other, certain function values remain fixed throughout.
This idea is captured in the next definition.

Definition. Given topological spaces 𝑋 and 𝑌 with 𝐴 ⊂ 𝑋 , two continuous functions
𝑓, 𝑔 ∶ 𝑋 → 𝑌 arehomotopic relative to𝐴 if and only if there is a continuous function
𝐻 ∶ 𝑋 × [0, 1] → 𝑌 such that

𝐻(𝑥, 0) = 𝑓(𝑥) for all 𝑥 ∈ 𝑋,
𝐻(𝑥, 1) = 𝑔(𝑥) for all 𝑥 ∈ 𝑋,
𝐻(𝑎, 𝑡) = 𝑓(𝑎) = 𝑔(𝑎) for all 𝑎 ∈ 𝐴 and 𝑡 ∈ [0, 1].

We say 𝐻 is a homotopy between 𝑓 and 𝑔 relative to 𝐴, and denote this by 𝑓 ≃𝐴 𝑔.

In other words, 𝐻 is a homotopy that leaves the image of every point in 𝐴 fixed
throughout the entire process.

Theorem 12.3. Given topological spaces 𝑋 and 𝑌 with 𝐴 ⊂ 𝑋 , homotopy relative to 𝐴 is
an equivalence relation on the set of all continuous functions from 𝑋 to 𝑌 . In particular,
if 𝐴 = ∅ (the empty set), homotopy is an equivalence relation on the set of all continuous
functions from 𝑋 to 𝑌 .

To establish the conditions for an equivalence relation in this theorem, you’ll need
to use given homotopies to construct other homotopies. You may find the Pasting
Lemma (from Chapter 7) useful.

We will be most interested in homotopies between paths. Recall that a path in
a space 𝑋 is a continuous function from [0, 1] into 𝑋 . We will use the letter 𝑠 as a
path parameter (rather than 𝑥 as we have been doing up to now) to avoid confusion
with points in 𝑋 , the space in which the path’s image resides. We will also avoid the
letter 𝑡 for the path parameter, because wewant to use 𝑡 to represent a homotopy’s time
parameter.

So if 𝛼 is a path in 𝑋 , then 𝛼 takes a point 𝑠 ∈ [0, 1] to a point 𝛼(𝑠) in 𝑋 . As 𝑠 varies
from 0 to 1, the path 𝛼 traces out an image in 𝑋 , which is the set we normally think
of when we say “path.” When drawing pictures of paths, we sometimes just draw this
image, even though we should bear in mind that a path is a function.

The special points 𝛼(0) and 𝛼(1) are called the endpoints of a path. If 𝛼(0) = 𝑥0
and 𝛼(0) = 𝑥1, we can also indicate the endpoints by saying 𝛼 is a path from 𝑥0 to 𝑥1.
Note that the direction matters.

Two paths will be considered equivalent if we can deform one into the other with-
out moving the endpoints. In particular, equivalent paths must have the same starting
point and the same ending point.

Definition. Two paths 𝛼, 𝛽 in 𝑋 are equivalent, denoted 𝛼 ∼ 𝛽, if and only if 𝛼 and 𝛽
are homotopic relative to {0, 1}. The equivalence class of paths containing 𝛼 is denoted
by [𝛼].
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Figure 12.3. Path equivalence.
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Figure 12.4. Path product.

Thus for two paths𝛼, 𝛽 to be equivalentmeans that there is a homotopy𝐻 ∶ [0, 1]×
[0, 1] → 𝑋 such that

𝐻(𝑠, 0) = 𝛼(𝑠) for all 𝑠 ∈ [0, 1],
𝐻(𝑠, 1) = 𝛽(𝑠) for all 𝑠 ∈ [0, 1],
𝐻(0, 𝑡) = 𝛼(0) = 𝛽(0) for all 𝑡 ∈ [0, 1],
𝐻(1, 𝑡) = 𝛼(1) = 𝛽(1) for all 𝑡 ∈ [0, 1].

A homotopy between two paths in 𝑋 is therefore a map of a square into 𝑋 , which
pinches two opposite sides of the square at the points 𝛼(0) = 𝛽(0) and 𝛼(1) = 𝛽(1)
and for which the other two sides represent the maps 𝛼 and 𝛽. See Figure 12.3.

Exercise 12.4. Let 𝛼 and 𝛽 be two paths in ℝ such that 𝛼(0) = 𝛽(0) and 𝛼(1) = 𝛽(1).
Show that 𝛼 and 𝛽 are equivalent paths.

We can define a product of paths that, in fact, extends to a definition of a product
of path classes. The physical idea of walking from point 𝑎 to point 𝑏 to point 𝑐 yields
the natural idea of how to combine paths.

Definition. Let 𝛼, 𝛽 be paths with 𝛼(1) = 𝛽(0). Then their product, denoted 𝛼 ⋅ 𝛽, is
the path that first moves along 𝛼, followed by moving along 𝛽, defined explicitly by:

𝛼 ⋅ 𝛽(𝑠) = {
𝛼(2𝑠), 0 ≤ 𝑠 ≤ 1

2
,

𝛽(2𝑠 − 1), 1
2
< 𝑠 ≤ 1.

Notice that the product path needs to speed up (relative to the parameter 𝑠) in order
to trace out both the paths 𝛼 and 𝛽 during the one unit of time allotted for a path.

Products of paths can be extended to products of path classes by defining

[𝛼] ⋅ [𝛽] ∶= [𝛼 ⋅ 𝛽].
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You can show this notion of product is well-defined on equivalence classes by showing
that the product of two path classes doesn’t depend on which representative you pick.

Theorem 12.5. If 𝛼, 𝛼′, 𝛽, and 𝛽′ are paths in a space 𝑋 such that 𝛼 ∼ 𝛼′, 𝛽 ∼ 𝛽′, and
𝛼(1) = 𝛽(0), then 𝛼 ⋅ 𝛽 ∼ 𝛼′ ⋅ 𝛽′.

To prove the theorem, you will need to construct a homotopy between 𝛼 ⋅ 𝛽 and
𝛼′ ⋅ 𝛽′, given ones that show 𝛼 ∼ 𝛼′ and 𝛽 ∼ 𝛽′. You may find it helpful to draw
a diagram of the domain of the homotopy [0, 1] × [0, 1] and to mark on the domain
where the various points go.

Effective Thinking Principle. Details Bring Understanding. Personally
going through the details of fundamentals brings a clarity of understanding
that merely nodding at expected results can never bring.

Next, we can show that this product has the associative property. Once again, you
will need to construct an explicit homotopy. Figure 12.5 may be helpful to imagine the
domain of such a homotopy.

Theorem 12.6. Given paths 𝛼, 𝛽, and 𝛾 where the following products are defined, then
(𝛼 ⋅ 𝛽) ⋅ 𝛾 ∼ 𝛼 ⋅ (𝛽 ⋅ 𝛾) and ([𝛼] ⋅ [𝛽]) ⋅ [𝛾] = [𝛼] ⋅ ([𝛽] ⋅ [𝛾]).

Figure 12.5. Domain of a homotopy that shows associativity of path
products.

The path that doesn’t move has a special name.

Definition. Let 𝑋 be a topological space and suppose 𝑥0 is a point in 𝑋 . A map 𝑒𝑥0 ∶
[0, 1] → 𝑋 that sends every point of [0, 1] to the single point 𝑥0 is called a constant
path.
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Theorem 12.7. Let 𝛼 be a path from 𝑥0 to 𝑥1. Then 𝑒𝑥0 ⋅ 𝛼 ∼ 𝛼 and 𝛼 ⋅ 𝑒𝑥1 ∼ 𝛼.

To prove the above theorem, you will want to construct homotopies that demon-
strate the equivalences. Recalling the definition of the product, notice that 𝑒𝑥0 ⋅ 𝛼 is
a path that sits still at 𝑥0 while 𝑠 runs from 0 to 1/2 and then moves along 𝛼 (twice
as fast as usual) while 𝑠 runs from 1/2 to 1. To write down a homotopy, it may help
to think about what the intermediate paths might look like between this and 𝛼. You’ll
havemany choices, so youmight as well choose a homotopy that is easy to write down.

If we think of 𝛼 as tracing out a path, then tracing out that same image in reverse
yields a natural inverse.

Definition. Let 𝛼 be a path. Then its path inverse 𝛼−1 is the path defined by 𝛼−1(𝑠) =
𝛼(1 − 𝑠).

If we take a path and then take its inverse, the combined path is equivalent to the
path that doesn’t move at all. As you prove this fact in the next theorem, remember
that the path homotopy you construct needs to be continuous. One way to do this is
suggested by Figure 12.6, which is a diagram of the domain of one possible homotopy.
You may enjoy figuring out what it might be suggesting.

Figure 12.6. Domain of a homotopy that shows the product of 𝛼 and
its inverse is equivalent to the constant path.

Theorem 12.8. Let 𝛼 be a path with 𝛼(0) = 𝑥0. Then 𝛼 ⋅ 𝛼−1 ∼ 𝑒𝑥0 , where 𝑒𝑥0 is the
constant path at 𝑥0.

Paths that begin and end at the same point will be of special interest, because they
will capture the idea of finding “holes” in the space.

Definition. Let 𝑋 be a topological space. A path 𝛼 ∶ [0, 1] → 𝑋 is called a loop or a
closed path based at 𝑥0 if and only if 𝛼(0) = 𝛼(1) = 𝑥0.
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The concept of path equivalence applies to loops as well, since loops are paths
that begin and end at the same point. Thus two loops 𝛼 and 𝛽 based at a point 𝑥0 are
equivalent if there is a homotopy between 𝛼 and 𝛽 holding the endpoints fixed at 𝑥0.

Definition. Let𝑋 be a topological space. A loop 𝛼 based at 𝑥0 ishomotopically trivial
or is a trivial loop if and only if 𝛼 is equivalent to the constant path at 𝑥0.

We now have the ingredients to associate a group with a topological space 𝑋 . This
group has been designed to capture the idea of holes in the space by looking at the space
of all loops in 𝑋 and regarding as equivalent loops that are homotopic to one another.

Definition. Let 𝑥0 ∈ 𝑋 , a topological space. Then the set of equivalence classes of loops
based at 𝑥0 with binary operation [𝛼] ⋅ [𝛽] = [𝛼 ⋅ 𝛽] is called the fundamental group
of 𝑋 based at 𝑥0 and is denoted 𝜋1(𝑋, 𝑥0). The point 𝑥0 is called the base point of the
fundamental group.

Theorem 12.9. The fundamental group 𝜋1(𝑋, 𝑥0) is a group. The identity element is the
class of homotopically trivial loops based at 𝑥0.

The fundamental group is defined for a space𝑋 with a specified base point selected.
However, formany spaces the choice of base point is not significant, because the funda-
mental group computed using one base point is isomorphic to the fundamental group
using any other point. In particular, path connected spaces exhibit this independence
of base points.

Theorem 12.10. Suppose 𝑋 is a topological space and there is a path between points 𝑝
and 𝑞 in 𝑋 . Then 𝜋1(𝑋, 𝑝) is isomorphic to 𝜋1(𝑋, 𝑞). In particular, if 𝑋 is path connected,
then 𝜋1(𝑋, 𝑝) ≅ 𝜋1(𝑋, 𝑞) for any points 𝑝, 𝑞 ∈ 𝑋 .

Because of this isomorphism, we sometimes just write 𝜋1(𝑋) for the fundamen-
tal group of a path connected space 𝑋 . However, to actually exhibit elements of this
group, wemust choose a base point. Also, the proof shows that this isomorphism is not
canonical, meaning that there is not one obvious choice of isomorphism. There could
be different isomorphisms depending on which path is chosen from 𝑝 to 𝑞.

Technically, a loop is a path whose endpoints are mapped to the same place, but
intuitively, a loop is a map from the unit circle 𝕊1 into the space. That intuition is
formalized using the following wrapping map.

Definition. The map 𝜔 ∶ ℝ1 → 𝕊1 defined by 𝑡 ↦ (cos 2𝜋𝑡, sin 2𝜋𝑡) is called the
standard wrapping map of ℝ1 to 𝕊1.

Exercise 12.11. Let 𝛼 be a loop in a topological space 𝑋 . Then 𝛼 = 𝛽 ∘ 𝜔|[0,1], where 𝜔
is the standard wrapping map and 𝛽 is some continuous function from 𝕊1 into 𝑋 . This
relationship gives a correspondence between loops in 𝑋 and continuous maps from 𝕊1
into 𝑋 .

So we may think of a loop as a map from a circle when it is useful for us to do so.
This description also allows us to state a useful characterization of triviality of a loop.

Theorem 12.12. Let 𝑋 be a topological space and let 𝑝 be a point in 𝑋 . Then a loop
𝛼 = 𝛽 ∘ 𝜔|[0,1] (where 𝜔 is the standard wrapping map and 𝛽 is a continuous function
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from 𝕊1 into 𝑋) is homotopically trivial if and only if 𝛽 can be extended to a continuous
function from the unit disk 𝐵2 to 𝑋 .

Effective Thinking Principle. Look at Examples. Specific examples often
give understanding and insight that general theorems do not convey.

Let’s compute some fundamental groups. We begin with some spaces that have
trivial fundamental groups. We shall denote the trivial group by the symbol 1.

Definition. A subset 𝑋 of ℝ𝑛 is called star-like if there is a point 𝑥0 ∈ 𝑋 such that for
any 𝑦 ∈ 𝑋 , the line segment between 𝑥0 and 𝑦 lies in 𝑋 .

A five-pointed star is an example of a star-like space that is not convex.

Theorem 12.13. Show the following:

(1) 𝜋1([0, 1]) ≅ 1.

(2) 𝜋1(ℝ𝑛) ≅ 1 for 𝑛 ≥ 1.

(3) 𝜋1(𝑋) ≅ 1 if 𝑋 is a convex set in ℝ𝑛.

(4) 𝜋1(𝑋) ≅ 1 if 𝑋 is a cone.

(5) 𝜋1(𝑋) ≅ 1 if 𝑋 is a star-like space in ℝ𝑛.

The next exercise builds on the previous theorem. Recall that 𝕊2 is a 2-sphere, the
set of all points (𝑥, 𝑦, 𝑧) at distance 1 from the origin in ℝ3. One point on this sphere
is the “north pole” (0, 0, 1). Remove this point, and what’s left is homeomorphic to ℝ2

via the stereographic projection: 𝜙 ∶ 𝕊2 ⧵ {(0, 0, 1)} → ℝ2, defined by

𝜙(𝑥, 𝑦, 𝑧) = ( 𝑥
1 − 𝑧 ,

𝑦
1 − 𝑧).

This map can be geometrically described in the following way. Imagine ℝ2 embedded
in ℝ3 as the plane where 𝑧 = 0. Then draw a straight line through the north pole to
the point (𝑥, 𝑦, 𝑧). This line intersects the plane 𝑧 = 0 at exactly one point, which is
𝜙(𝑥, 𝑦, 𝑧). You can check that 𝜙 is a homeomorphism.

Exercise 12.14. Show that 𝜋1(𝕊2 ⧵ {(0, 0, 1)}) ≅ 1.

Now use the above exercise to prove the next theorem. It may be a little challeng-
ing, because there are loops that pass through every point on 𝕊2 (so-called space-filling
curves). Wrestling with how to address this possibility will force you to develop some
new ideas.

Theorem 12.15. Show that 𝜋1(𝕊2) ≅ 1.

Definition. A path connected topological space with trivial fundamental group is said
to be simply connected.
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Figure 12.7. The Hawaiian earring.

The next space, shown in Figure 12.7, is called theHawaiian earring. It consists
of an infinite sequence of circles inℝ2, each of radius half the last, that all intersect and
are tangent at a single point.

Exercise 12.16. Show that the cone over the Hawaiian earring is simply connected. Can
you generalize your insight?

Of course, the fundamental group would not serve a useful purpose if all spaces
were simply connected. Our first example of a space with a non-trivial fundamental
group is the circle𝕊1. This will take some significant work to prove, but then this result
will help us compute the fundamental group of many other spaces.

What are the non-trivial loops in the circle? A moments’s thought suggests that
a loop that winds once around the circle is non-trivial. Suppose we have a slightly
different loop that wiggles back and forth a little bit as it goes once around the circle. Is
it equivalent to the first loop? What about a loop that goes twice around? Is that loop
non-trivial? Is that different from a loop that goes once around?

After dwelling on these questions for awhile, you’ll realize that the number of
times a loop winds around the circle is somehow an important quantity. How can
we define that carefully? The key idea is to use the wrapping map 𝜔, which winds the
real lineℝ onto the circle 𝕊1. To define the winding number of a loop 𝛼 in 𝕊1, we could
try to “unroll” the loop by “lifting” it to loop 𝛼 inℝ1 using the “inverse” of the wrapping
map, but alas, the wrapping map does not have an inverse. However, it does have local
inverses in this sense: for any small interval 𝑈 around a point 𝑥 in 𝕊1, the set 𝜔−1(𝑈)
has many path components, and when restricted to just one of these components 𝜔 is
a homeomorphism. So one strategy is to use local homeomorphisms to lift the path
piece by piece.

The following technical lemmamay be useful. Youmayfind the LebesgueNumber
Theorem (Theorem 9.24) helpful in proving this theorem.

Lemma 12.17. (1) Let 𝛾 ∶ [0, 1] → 𝑋 be a path in 𝑋 . Given an open cover {𝑈𝛼} of 𝑋 ,
show that [0, 1] can be divided into 𝑁 intervals of the form 𝐼𝑖 = [ 𝑖−1

𝑁
, 𝑖
𝑁
], for 𝑖 =

1, … , 𝑁, such that each 𝛾(𝐼𝑖) lies completely in one set of the cover.
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(2) Let 𝐻 ∶ [0, 1] × [0, 1] → 𝑋 be a continuous function in 𝑋 . Given an open cover {𝑈𝛼}
of 𝑋 , show that [0, 1] × [0, 1] can be divided into squares of sidelength 1/𝑁 such that
the image of each square under𝐻 lies completely in one set of the cover.

Theorem 12.18. Any loop 𝛼 ∶ [0, 1] → 𝕊1 with 𝛼(0) = (1, 0) can be written 𝛼 = 𝜔 ∘ 𝛼,
where 𝛼 ∶ [0, 1] → ℝ1 satisfies 𝛼(0) = 0 and 𝜔 is the standard wrapping map. The
number 𝛼(1) is an integer.

For a loop 𝛼 in 𝕊1, the integer 𝛼(1) is called thewinding number of 𝛼.

Theorem 12.19. Loops 𝛼1 and 𝛼2 are equivalent in 𝕊1 if and only if 𝛼1(1) = 𝛼2(1). It
follows that 𝜋1(𝕊1) ≅ ℤ.

To add to the spaceswhose fundamental groupswe can compute, let us now look at
the Cartesian products of spaces and observe that the fundamental group of a product
of topological spaces is just the product of the fundamental groups of the factors. (The
group structure on a product of groups does the obvious thing, performing products in
each factor.)

Theorem 12.20. Let (𝑋, 𝑥0), (𝑌, 𝑦0) be path connected spaces. Then
𝜋1(𝑋 × 𝑌, (𝑥0, 𝑦0)) ≅ 𝜋1(𝑋, 𝑥0) × 𝜋1(𝑌, 𝑦0)

via the canonical map that takes a loop 𝛾 in 𝑋 × 𝑌 to (𝑝 ∘ 𝛾, 𝑞 ∘ 𝛾), where 𝑝 ∶ 𝑋 × 𝑌 → 𝑋
and 𝑞 ∶ 𝑋 × 𝑌 → 𝑌 are the projection maps.

Exercise 12.21. Find:
(1) 𝜋1(𝑋), where 𝑋 is a solid torus.

(2) 𝜋1(𝕊2 × 𝕊1).
(3) 𝜋1(𝕊2 × 𝕊2 × 𝕊2).

Wecanunderstand the fundamental group of a torusmore precisely than the above
exercise indicates.

Exercise 12.22. Show that the fundamental group of the torus 𝜋1(𝕋2) is ℤ2, in which
the group operation is viewed as addition. Find two loops 𝜇 and 𝜆 such that {[𝜇], [𝜆]} is a
ℤ-basis for 𝜋1(𝕋2).

12.2 Induced Homomorphisms and Invariance

Effective Thinking Principle. Structures, Then Maps. After defining a
mathematical concept, investigate how the concept behaves under transfor-
mations.

A standard technique in mathematics is to explore how the structure of one math-
ematical object is transported to another object via a map. Since topological spaces are
mapped to each other via continuous functions, wewill study the effect of a continuous
function on the fundamental group.
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Definition. Let𝑓 ∶ 𝑋→𝑌 be a continuous function. Then𝑓∗ ∶ 𝜋1(𝑋, 𝑥0)→𝜋1(𝑌, 𝑓(𝑥0))
defined by 𝑓∗([𝛼]) = [𝑓 ∘𝛼] is called the induced homomorphism on fundamental
groups.

Exercise 12.23. Check that for a continuous function 𝑓 ∶ 𝑋 → 𝑌 , the induced homo-
morphism 𝑓∗ is well-defined (that is, the image of an equivalence class is independent of
the chosen representative). Show that it is indeed a group homomorphism.

Our next theorem shows that the induced homomorphisms obey the so-called
functorial properties. The notation 𝑓 ∶ (𝑋, 𝑥0) → (𝑌, 𝑦0) means 𝑓 ∶ 𝑋 → 𝑌 is a
function that satisfies 𝑓(𝑥0) = 𝑦0.

Theorem 12.24. The following are true:

(1) If 𝑓 ∶ (𝑋, 𝑥0) → (𝑌, 𝑦0) and 𝑔 ∶ (𝑌, 𝑦0) → (𝑍, 𝑧0) are continuous maps, then
(𝑔 ∘ 𝑓)∗ = 𝑔∗ ∘ 𝑓∗.

(2) If 𝗂𝖽 ∶ (𝑋, 𝑥0) → (𝑋, 𝑥0) is the identity map, then 𝗂𝖽∗ ∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑋, 𝑥0) is the
identity homomorphism.

The fundamental groupwould have almost no use from a topological point of view
if different manifestations of the same space could have distinct fundamental groups.
Fortunately, topologically equivalent spaces have isomorphic fundamental groups.

Theorem 12.25. If ℎ ∶ 𝑋 → 𝑌 is a homeomorphism, then

ℎ∗ ∶ 𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌, ℎ(𝑥0))

is a group isomorphism. Thus homeomorphic path connected spaces have isomorphic
fundamental groups.

In other words, the fundamental group of a path connected space is a topological
invariant, and hence we can establish that two path connected spaces are not homeo-
morphic ifwe can show that they have different (non-isomorphic) fundamental groups.
Thus, the fundamental group helps to distinguish among spaces, but it is not a complete
invariant, meaning there are spaces that are not homeomorphic that have isomorphic
fundamental groups, as you have already seen.

Exercise 12.26. Using fundamental groups, prove that the torus is not homeomorphic
to a sphere.

Our association of an algebraic group to a topological space is extremely useful,
because we can use algebra to answer certain topological questions and, as we shall
see later, we can also use topology to answer algebraic questions.

12.3 Homotopy Equivalence and Retractions
Theorem12.27. If𝑓, 𝑔 ∶ (𝑋, 𝑥0) → (𝑌, 𝑦0) are continuous functions and𝑓 is homotopic
to 𝑔 relative to 𝑥0, then 𝑓∗ = 𝑔∗.



182 Chapter 12. Fundamental Group: Capturing Holes

Definition. Two spaces 𝑋 and 𝑌 are homotopy equivalent or have the same homo-
topy type if there exist continuous maps 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑋 such that

𝑔 ∘ 𝑓 ≃ 𝗂𝖽𝑋 and 𝑓 ∘ 𝑔 ≃ 𝗂𝖽𝑌 ,
where 𝗂𝖽𝑋 denotes the identity on 𝑋 and 𝗂𝖽𝑌 denotes the identity on 𝑌 . The function
𝑔 is a homotopy inverse of 𝑓. Spaces 𝑋 and 𝑌 being homotopy equivalent is denoted
𝑋 ∼ 𝑌 . The functions 𝑓 and 𝑔 are called homotopy equivalences.

Lemma 12.28. Homotopy equivalence of spaces is an equivalence relation.

Homotopy equivalent spaces have isomorphic fundamental groups. One of the
challenges of the proof is to deal with the base points.

Theorem 12.29. If 𝑓 ∶ 𝑋 → 𝑌 is a homotopy equivalence and 𝑦0 = 𝑓(𝑥0), then 𝑓∗ ∶
𝜋1(𝑋, 𝑥0) → 𝜋1(𝑌, 𝑦0) is an isomorphism. In particular, if 𝑋 ∼ 𝑌 , then 𝜋1(𝑋) ≅ 𝜋1(𝑌).

An important special type of homotopy equivalence is the following.

Definition. Let 𝐴 ⊂ 𝑋 . A continuous function 𝑟 ∶ 𝑋 → 𝐴 is a strong deformation
retraction if and only if there is a homotopy 𝑅 ∶ 𝑋 × [0, 1] → 𝑋 such that

𝑅(𝑥, 0) = 𝑥 for all 𝑥 ∈ 𝑋,
𝑅(𝑥, 1) = 𝑟(𝑥) for all 𝑥 ∈ 𝑋,
𝑅(𝑎, 𝑡) = 𝑎 for all 𝑎 ∈ 𝐴 and 𝑡 ∈ [0, 1].

If 𝑟 ∶ 𝑋 → 𝐴 is a strong deformation retraction, then 𝐴 is a strong deformation
retract of 𝑋 .

Thus a strong deformation retraction is homotopic to the identity map and leaves
points of 𝐴 fixed throughout the homotopy.

Exercise 12.30. Show that for 𝑛 ≥ 0, ℝ𝑛+1 − {0} can be strong deformation retracted
onto 𝕊𝑛.

Lemma 12.31. If 𝐴 is a strong deformation retract of 𝑋 , then 𝐴 and 𝑋 are homotopy
equivalent.

Theorem 12.32. If 𝑟 ∶ 𝑋 → 𝐴 is a strong deformation retraction and 𝑎 ∈ 𝐴, then
𝜋1(𝑋, 𝑎) ≅ 𝜋1(𝐴, 𝑎).

The theta space, as its name reflects, is a space shaped like the Greek letter theta.
It is shown in Figure 12.8.

Exercise 12.33. Let𝑥 and 𝑦 be two points inℝ2. Show thatℝ2−{𝑥, 𝑦} strong deformation
retracts onto the figure eight. In addition, show thatℝ2−{𝑥, 𝑦} strong deformation retracts
onto a theta space.

We can use these insights to prove one special case of the Invariance of Domain
Theorem.

Theorem 12.34. ℝ2 is not homeomorphic to ℝ𝑛 for any 𝑛 ≠ 2.
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Figure 12.8. The theta space.

Exercise 12.35. Calculate the fundamental group of the following spaces:

(1) An annulus.

(2) A cylinder.

(3) The Möbius band.

(4) An open 3-ball with a diameter removed.

The fundamental group of a subspace does not necessarily inject into the funda-
mental group of the ambient space.

Exercise 12.36. Find an example of a space 𝑋 with a subspace 𝐴 such that if 𝑖 ∶ 𝐴 → 𝑋
is the inclusion map, then 𝑖∗ ∶ 𝜋1(𝐴) → 𝜋1(𝑋) is not injective.

Nevertheless, a relaxation of the strong deformation retract condition gives us a
situation under which we can conclude that 𝑖∗ is injective.

Definition. Let 𝐴 ⊂ 𝑋 . A continuous function 𝑟 ∶ 𝑋 → 𝐴 is a retraction if and only if
for every 𝑎 ∈ 𝐴, we have 𝑟(𝑎) = 𝑎. If 𝑟 ∶ 𝑋 → 𝐴 is a retraction, then 𝐴 is a retract of
𝑋 .

Theorem 12.37. Let 𝐴 be a retract of 𝑋 with retraction 𝑟 ∶ 𝑋 → 𝐴, and let 𝑖 ∶ 𝑋 → 𝐴
be the inclusion map. Then for 𝑎 ∈ 𝐴, the homomorphism 𝑖∗ ∶ 𝜋1(𝐴, 𝑎) → 𝜋1(𝑋, 𝑎) is
injective and 𝑟∗ ∶ 𝜋1(𝑋, 𝑎) → 𝜋1(𝐴, 𝑎) is surjective.

As a consequence, we can use the fundamental group to prove an intuitively plau-
sible fact.

Theorem 12.38 (No Retraction Theorem for 𝐵2). There is no retraction from the 2-
dimensional ball 𝐵2 to its boundary.

The No Retraction Theorem for 𝐵2 can be used to produce another proof of the
Brouwer Fixed Point Theorem for 𝐵2.

Theorem 12.39 (Brouwer Fixed Point Theorem for 𝐵2). Let 𝑓 ∶ 𝐵2 → 𝐵2 be a contin-
uous map. Then there is some 𝑥 ∈ 𝐵2 for which 𝑓(𝑥) = 𝑥.
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Definition. A topological space 𝑋 is contractible if and only if the identity map on 𝑋
is null homotopic (that is, if the identity map is homotopic to a constant map).

Lemma 12.40. A space is contractible if and only if it is homotopy equivalent to a point.

Theorem 12.41. A contractible space is simply connected.

Theorem 12.42. A retract of a contractible space is contractible.

Consider the house with two rooms, as shown in Figure 12.9. In words, this space
resembles two hollow cubes, one stacked on the other (so that the top of the lower one
is the bottom of the other). There is a tube running from the “roof” of the complex
into the lower cube and running from the “floor” into the higher cube. To each tube is
attached a flange which connects it to the side, top, and bottom of the cube which it is
inside (these are shown in grey).

Figure 12.9. The house with two rooms.

Figure 12.10. The Dunce’s Hat.
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Corollary 12.43. The house with two rooms is contractible.

Another iconic topological creation is the Dunce’s Hat. This space is a quotient
space constructed by taking a triangle and identifying each side to the other two by
first gluing two sides together to formwhat would look like a real dunce’s hat and then
identifying the seam to the circle that is on the base of the hat by rolling it around the
base. Figure 12.10 shows the identification. The Dunce’s Hat is contractible, but it is
very hard to see how the contraction actually works.

Corollary 12.44. The Dunce’s Hat is contractible.

12.4 Van Kampen’s Theorem
At this stage, we have few tools for computing fundamental groups. So the question
now becomes: How can we compute the fundamental group of spaces that are more
complex than 𝕊1, such as many of the spaces we met in the previous chapters? So far,
we can compute the fundamental group of a space in essentially three ways:
(1) directly, that is, by using an argument based on the specific geometry of the space

(such as we did for 𝕊1 and many simply connected spaces);
(2) by writing the space as a Cartesian product of spaces whose fundamental groups

we know; and

(3) by showing the space is homotopy equivalent to a space whose fundamental group
we know.

Effective Thinking Principle. Complexity from Pieces. Frequently, viewing
objects as constructed from simpler pieces allows us to deal with far greater
complexity than we could otherwise fathom.

To expand the number of spaces whose fundamental groups we can effectively
compute, we will think of a space as the union of two subspaces and investigate how
we can use knowledge about the fundamental groups of the two subspaces in order
to deduce the fundamental group of the whole space. The result that describes that
relationship among fundamental groups of subsets and the fundamental group of the
whole space is called Van Kampen’s Theorem.

Effective Thinking Principle. Start with Simple Cases. Simple cases often
exhibit essential ideas that unlock complex cases.

We’ll begin with a special case that brings up several issues that will be important
in deducing both the statement and the proof of the general case.

First you’ll want to notice that when a space is written as the union of two open
sets that overlap in a path connected way, each loop in the whole space is homotopic
to a finite product of loops, each of which lies entirely in one of the two open sets. Let’s
formalize that observation in the following lemma.
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Lemma 12.45. Let 𝑋 = 𝑈 ∪ 𝑉 , where 𝑈 and 𝑉 are open and 𝑈 ∩ 𝑉 is path connected,
and let 𝑝 ∈ 𝑈 ∩𝑉 . Then any element of 𝜋1(𝑋, 𝑝) has a representative 𝛼1𝛽1𝛼2𝛽2⋯𝛼𝑛𝛽𝑛,
where each 𝛼𝑖 is a loop in 𝑈 based at 𝑝 and each 𝛽𝑖 is a loop in 𝑉 based at 𝑝.

Now use this lemma to prove the special case of Van Kampen’s Theoremwhen the
space 𝑋 is the union of two open sets 𝑈 and 𝑉 and 𝑈 ∩ 𝑉 is simply connected.

Theorem 12.46. Let𝑋 = 𝑈∪𝑉 , where𝑈 and𝑉 are open and path connected and𝑈∩𝑉
is path connected, simply connected, and non-empty. Then𝜋1(𝑋) is isomorphic to the free
product of 𝜋1(𝑈) and 𝜋1(𝑉), that is, 𝜋1(𝑋) ≅ 𝜋1(𝑈) ∗ 𝜋1(𝑉).

You can think of the free product of two groups 𝐺 and 𝐻 as the set of all words in
elements from the groups, with no relationships between the non-trivial elements of𝐺
and the non-trivial elements in 𝐻. (See the appendix on group theory.)

Question 12.47. Let 𝑋 be the bouquet of 𝑛 circles. What is 𝜋1(𝑋)?

As usual, whenever we prove a theorem, we explore the necessity of the various
hypotheses.

Exercise 12.48. Find a path connected space𝑋 with open, path connected subsets𝑈 and
𝑉 of 𝑋 such that 𝑋 = 𝑈 ∪ 𝑉 such that 𝑈 and 𝑉 are both simply connected, but 𝑋 is not
simply connected. Conclude that the hypothesis that𝑈∩𝑉 is path connected is necessary.

One of the hypotheses in the special case of Van Kampen’s Theorem above is that
two subsets whose union is 𝑋 are open sets. The following example demonstrates the
necessity of the hypothesis that𝑈 and 𝑉 be open. Recall that the cone over a Hawaiian
earring has trivial fundamental group.

Theorem 12.49. Let 𝑋 be a wedge of two cones over two Hawaiian earrings, where they
are identified at the points of tangency of the circles of eachHawaiian earring, as in Figure
12.11. Then 𝜋1(𝑋) ≇ 1.

Figure 12.11. A wedge of two cones over Hawaiian earrings.

Van Kampen’s Theorem takes a situation where a space is the union of two open
subsets and shows how the fundamental groups of the two open subsets are combined
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to create the fundamental group of thewhole space. The difference between the special
case of Van Kampen’s Theorem above and the general case is that in the general case
the intersection of the two open sets need not be simply connected. How do non-trivial
loops in the intersection influence the fundamental group of the whole space? Let’s
consider another special case of Van Kampen’s Theorem where both of the open sets
that make up the space are simply connected, but the intersection of the two open sets
need not be simply connected. Think of an example of this phenomenon.

Theorem 12.50. Let 𝑋 = 𝑈 ∪ 𝑉 , where 𝑈,𝑉 are open, path connected, and simply
connected and 𝑈 ∩ 𝑉 is non-empty and path connected. Then 𝑋 is simply connected.

Let’s consider another special case of Van Kampen’s Theorem where only one of
the two open sets thatmakeup the space is simply connected, but the intersection of the
two open sets is not simply connected. This case will help us understandwhat happens
to loops in the intersection when viewed as elements of the fundamental group of the
whole space.

Theorem 12.51. Let 𝑋 = 𝑈 ∪𝑉 , where𝑈,𝑉 are open and path connected and𝑈 ∩𝑉 is
path connected, 𝑥 ∈ 𝑈 ∩ 𝑉 , and 𝜋1(𝑈, 𝑥) ≅ 1. Let 𝑖 ∶ 𝑈 ∩ 𝑉 → 𝑉 be the inclusion map.
Then

𝜋1(𝑋, 𝑥) ≅
𝜋1(𝑉, 𝑥)

𝑁 ,
where 𝑁 is the smallest normal subgroup of 𝜋1(𝑉, 𝑥) containing the subgroup
𝑖∗(𝜋1(𝑈 ∩ 𝑉, 𝑥)).

The above theorem captures the idea that loops in𝑉 that lie in𝑈∩𝑉 become trivial,
because loops in the intersection shrink in 𝑈. When 𝑈 ∩ 𝑉 had trivial fundamental
group, the fundamental group of 𝑋 was the free product of the fundamental groups of
𝑈 and 𝑉 . But when the fundamental group of 𝑈 ∩ 𝑉 is not trivial, the loops in the
intersection of 𝑈 and 𝑉 can be considered to be elements of either the fundamental
group of𝑈 or the fundamental group of 𝑉 and so those two views of those loops in the
intersection are the same in the fundamental group of the whole space. That insight is
what Van Kampen’s Theorem captures.

We are now ready to state Van Kampen’s Theorem in its full generality.

Theorem 12.52 (Van Kampen’s Theorem). Let 𝑋 = 𝑈 ∪ 𝑉 , where 𝑈,𝑉 are open and
path connected and 𝑈 ∩ 𝑉 is path connected and 𝑥 ∈ 𝑈 ∩ 𝑉 . Let 𝑖 ∶ 𝑈 ∩ 𝑉 → 𝑈 and
𝑗 ∶ 𝑈 ∩ 𝑉 → 𝑉 be the inclusion maps. Then

𝜋1(𝑋, 𝑥) ≅
𝜋1(𝑈, 𝑥) ∗ 𝜋1(𝑉, 𝑥)

𝑁 ,

where𝑁 is the smallest normal subgroup containing {𝑖∗(𝛼)𝑗∗(𝛼−1)}𝛼∈𝜋1(𝑈∩𝑉,𝑥) (so𝑁 con-
tains elements created by taking a finite sequence of products and conjugates starting with
elements of the form 𝑖∗(𝛼)𝑗∗(𝛼−1)).

The proof of VanKampen’s Theorem is challenging; however, it is straightforward,
meaning that if you follow clearly what needs to be proved, those steps lead to a proof.
The strategy is to first notice that there is a natural map from the free product of 𝜋1(𝑈)
and 𝜋1(𝑉) onto 𝜋1(𝑋). What needs to be proved is that the kernel of that map is exactly
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the subgroup𝑁 of the free product that is described in the theorem. So two things need
to be shown: an element in 𝑁 is in the kernel and an element in the kernel is in 𝑁.

In proving Van Kampen’s Theorem you will find yourself analyzing a homotopy
between a loop and the constant loop. Figures 12.12 and 12.13 may be helpful as you
create a proof.

Figure 12.12. A covering of the regions mapped to 𝑋\𝑈 and those
mapped to 𝑋\𝑉 .

Figure 12.13. A possibly suggestive close up of a portion of a homotopy.

Van Kampen’s Theorem can also be stated in the language of group presentations.
Group presentations are useful, concrete ways to represent 𝜋1(𝑋) (and any group), but
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they are not without problems as it is often extremely difficult to decide whether two
different presentations describe the same group.

Theorem 12.53 (Van Kampen’s Theorem; group presentations version). Let 𝑋 = 𝑈 ∪
𝑉 , where 𝑈,𝑉 are open and path connected and 𝑈 ∩ 𝑉 is path connected and 𝑥 ∈
𝑈 ∩ 𝑉 . Let 𝑖 ∶ 𝑈 ∩ 𝑉 → 𝑈 and 𝑗 ∶ 𝑈 ∩ 𝑉 → 𝑉 be the inclusion maps. Suppose
𝜋1(𝑈, 𝑥) = ⟨𝑔1, … , 𝑔𝑛|𝑟1, … , 𝑟𝑚⟩, 𝜋1(𝑉, 𝑥) = ⟨ℎ1, … , ℎ𝑡|𝑠1, … , 𝑠ᵆ⟩, and 𝜋1(𝑈 ∩ 𝑉, 𝑥) =
⟨𝑘1, … , 𝑘𝑣|𝑡1, … , 𝑡𝑤⟩. Then

𝜋1(𝑋, 𝑥) = ⟨𝑔1, … , 𝑔𝑛, ℎ1, … , ℎ𝑡 |𝑟1, … , 𝑟𝑚, 𝑠1, … , 𝑠ᵆ,
𝑖∗(𝑘1)𝑗∗(𝑘−11 ), … , 𝑖∗(𝑘𝑣)𝑗∗(𝑘−1𝑣 )⟩ .

Amongmany other things, Van Kampen’s Theorem allows us to calculate the fun-
damental group of a polygonal presentation of a compact, connected 2-manifold (as
long as we assume the vertices are all identified).

Exercise 12.54. Let 𝑃 be a polygonal representation of a compact, connected 2-manifold
such that all the vertices of 𝑃 are identified in the corresponding quotient. Give a presen-
tation for 𝜋1(𝑃).

In particular, we can now calculate the fundamental groups of all the connected,
compact, triangulated 2-manifolds we saw in the previous chapter.

Exercise 12.55. Give presentations of the fundamental groups for our canonical polyg-
onal presentations of #𝑛

𝑖=1 𝕋2 and #𝑛
𝑖=1ℝP2.

By showing that the groups described above are all different, we can give a proof of
the classification of 2-manifolds that does not use the Euler characteristic or orientabil-
ity. It may help to remember that if the abelianizations of two groups are different, then
the groups must be different.

Theorem 12.56. Each 2-manifold in the following infinite list is topologically different
from all the others on the list: 𝕊2, #𝑛

𝑖=1ℝP2, and #𝑛
𝑖=1 𝕋2.

Theorem 12.57. Suppose 𝐺 is a finitely presented group. Then there exists a 2-dimen-
sional simplicial complex 𝐾 such that 𝜋1(𝐾) ≅ 𝐺.

In particular, every finite group is the fundamental group of a 2-dimensional sim-
plicial complex. Hence if one could understand complexes sufficiently (in dimension
2 even), one could classify all finite groups, a major result (and instant Fields Medal).

The fundamental group of any finite complex is finitely generated, but there are
topological spaces whose fundament groups aremore elaborate. TheHawaiian earring
is one.

Theorem 12.58. The fundamental group of the Hawaiian earring is not finitely gener-
ated. In fact, it is not countably generated.

12.5 Lens Spaces
As you have seen, the topology of 2-manifolds is very well-understood. On the other
hand, the study of 3-manifolds is still a very active field. In this section we will study a
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Figure 12.14. A lens space as a quotient of a lens.

relatively simple (and yet still interesting) class of 3-manifolds called lens spaces. These
3-manifolds are well-understood and completely classified.

Let 𝑝 and 𝑞 be relatively prime integers. A (𝑝, 𝑞)-lens space, denoted 𝐿(𝑝, 𝑞), can
be defined in several different ways. It was first defined as an identification space that
startedwith a 3-ball drawn in the shape of a lens (hence the name). The top and bottom
hemispheres of this lens are each divided into 𝑝 triangle-like wedges. Each triangle
from the top hemisphere is identified with a triangle in the bottom hemisphere that is
a certain specified number (relatively prime to 𝑝) of triangles around the equator. (See
Figure 12.14.)

We, however, will give a different formulation which will take a few steps to de-
velop. Recall now that we have three ways of viewing the torus. The torus is 𝕊1 × 𝕊1,
it is the surface of a doughnut, and, via the process we carried out in Figure 11.19, it
is a rectangle in the plane with parallel edges identified. Notice, however, the “surface
of a doughnut” could also be described in the following way. Imagine a unit circle in
3-space that lies in the 𝑦𝑧-plane and whose center lies at the point (0, 2, 0) (so that a
portion of the 𝑦-axis forms a diameter of the circle and so that the origin is not con-
tained on the circle or on the flat disk it would bound). We could form the surface of
a doughnut by rotating this circle around another circle that lies in the 𝑥𝑦-plane, is
centered at the origin, and contains the center of our first circle. Notice that if we had
imagined our original circle to be “filled in,” we would instead get a solid torus.

In this way, we can view the torus as a product of our original circle with a larger
circle. We will now use this viewpoint to pick out two very important types of curves
on the torus. Suppose that we pick a point on our original circle and trace its path as
the circle was rotated. We see that we get a circle on the torus. This type of curve is
called a longitude or longitudinal curve. Likewise, a curve that is a rotated copy of
the original circle across a point of the larger circle is called ameridian. Notice that
if our torus were a solid torus, a meridian would form the boundary of a disk in the
“inside” of the torus.

Both a longitude and a meridian go “around” the torus, but they go around in very
different ways (this distinction will be made more precise when we study the funda-
mental group, particularly that of a solid torus). It is also important to realize that
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neither curve is a homeomorphic invariant of the torus. In fact, we will see that there
is a homeomorphism of the torus that takes one curve to the other (as well as homeo-
morphisms that take them to many different curves). Hence we need to always have a
particular manifestation of the torus in mind when we discuss one of these curves.

Now, ifwe consider Figure 11.19, we can get yet another description of these curves.
Notice that under the process shown, a straight line path that goes vertically up the
rectangle corresponds to a meridian. A path that goes down the rectangle also cor-
responds to a meridian, but traverses in the opposite direction. Likewise, a path that
goes horizontally across the rectangle corresponds to a longitude. Given this rectan-
gle, we’ll take the path given by traversing the top (and so bottom) edge rightward to
be the canonical choice for a longitude and the path given by traversing the right edge
upwards as our choice for a meridian. Notice that the path we get on the surface of
the doughnut depends on the process used to create it from the rectangle. Hence, we
should always have a fixed process in mind (such as the one in Figure 11.19).

a

a

bb 1

2

3
4

Figure 12.15. This path goes up and to the right and traverses the
diagram in the order of the numbers indicated. It travels around three
times vertically (in themeridian direction on the torus) and two times
horizontally (in the longitudinal direction on the torus).

Now suppose that 𝑝, 𝑞 ∈ ℕ are relatively prime. We can use our second interpre-
tation to define a curve on this torus that “goes around” the torus 𝑝 times meridianally
and 𝑞 times longitudinally. To accomplish this and to keep things simple, consider the
torus as a square with edges identified (rather than the rectangle we were picturing be-
fore: apply the same cutting process as in Figure 11.19, but “stretch” the end rectangle
vertically until it is a square). Imagine a path that begins at the lower left-hand vertex
of the square. From this point, draw a line segment of slope 𝑞

𝑝
until it hits an edge of

the square. If the line segment hits the top edge of the square, move down to the point
that corresponds on the bottom edge of the square and draw a line of the same slope
until it again hits an edge. Likewise if the line segment hits the right-hand side move
to the left. Proceed with this process until the line hits the upper-right vertex.

This process will give a curve on the torus which essentially goes around 𝑞 times
in the meridian direction and 𝑝 times longitudinally. The “line” we get for 𝑝 = 2 and
𝑞 = 3 is shown in Figure 12.15.
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Lemma 12.59. If 𝑝, 𝑞 ∈ ℕ are relatively prime, the line described in the above process
will eventually intersect the upper-right vertex of the square. Moreover, the line will not
intersect itself until it does.

We can allow 𝑝 or 𝑞 to be negative by again taking our slope to be 𝑞
𝑝
but moving

up along it if 𝑝 is positive and down along it if 𝑞 is negative. If we are, for example,
moving down and to the right, we will need to begin at the upper-left vertex. Since all
the vertices are really identified on the torus, this is not a problem. We can also allow
one of 𝑝 or 𝑞 to be zero by stipulating that the other must be one (i.e., 0 is not relatively
prime to any integer other than ±1) and taking the appropriately traversed vertical or
horizontal line on an edge.

Lemma 12.60. Let 𝑝 and 𝑞 be relatively prime integers and let 𝜌𝑝,𝑞 be the simple closed
curve constructed above. Then there is a homeomorphismof the square (with the standard
identifications made for the torus) that takes 𝜌𝑝,𝑞 to our canonical meridian.

We can now give the definition of a lens space.

Definition. Fix relatively prime integers 𝑝 and 𝑞. Let 𝑉1 be a solid torus (manifested
as a solid doughnut to be precise) and let 𝑉2 be an additional (disjoint) copy. Let ℎ ∶
Bd(𝑉1) → Bd(𝑉2) be the homeomorphism defined in the previous lemma. Then the
quotient space 𝑉1 ∪ℎ 𝑉2 is the (𝑝, 𝑞)-lens space, denoted 𝐿(𝑝, 𝑞).

In addition to the two we have mentioned, lens spaces can be defined other ways.
For example, they can be viewed as quotient spaces of 𝕊3 under certain group actions.
Beware that some authors use 𝐿(𝑝, 𝑞) to mean 𝐿(𝑞, 𝑝).

Exercise 12.61. Let 𝑝, 𝑞 ∈ ℤ be relatively prime. Calculate the fundamental group of
the lens space 𝐿(𝑝, 𝑞).

12.6 Knot Complements
To introduce knot theory, we begin with a special type of homotopy called isotopy.

Definition. Suppose that 𝑋 and 𝑌 are topological spaces and 𝑓, 𝑔 ∶ 𝑋 → 𝑌 are topo-
logical embeddings. An isotopy from 𝑓 to 𝑔 is a function 𝐻 ∶ 𝑋 × [0, 1] → 𝑌 such
that 𝐻(⋅, 0) = 𝑓, 𝐻(⋅, 1) = 𝑔, and 𝐻(⋅, 𝑡) is a topological embedding for each 𝑡. If such
a function exists, we say that 𝑓 and 𝑔 are isotopic.

An embedding of 𝕊1 in 𝕊3 is called a knot. If we ignore the point at infinity, such
an embedding corresponds to the intuitive idea of a closed knot made of string or rope.
We will also assume that our knots are “tame” in the sense that they can be thickened
to an embedding of a solid torus (which we will assume is PL for regularity). The study
of these types of knots is an active branch of mathematics. It has major applications to
physics and to the study of 3-manifolds.

Definition. Let 𝑖 ∶ 𝐵2 × 𝕊1 → 𝕊3 be a PL embedding, that is, an embedding that is
simplicial with respect to some triangulation of 𝐵2 × 𝕊1 and some triangulation of 𝕊3.
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Figure 12.16. The trefoil knot.

Then𝐾 = 𝑖|{0}×𝕊1 is a knot in𝕊3. Let𝑁(𝐾) be the image of the interior (in themanifold
with boundary sense) of 𝐵2×𝕊1, a neighborhood of 𝑖({0}×𝕊1). The knot complement
or knot exterior of𝐾 is𝑀𝐾 = 𝕊3−𝑁(𝐾). Note that𝑀𝐾 is a 3-manifold with boundary
whose boundary is homeomorphic to the 2-torus.

The knot complement is an important characteristic of the knot. CameronGordon
and John Luecke proved that at most two knots (a knot and its mirror image) can have
the same knot complement up to homeomorphism. Furthermore, knot complements
give an important method for generating compact connected 3-manifolds: namely glu-
ing together knot complements along their boundary.

In this section we will study the fundamental groups of knot complements. If we
look at a knot from above, we see a curve with crossings where it goes over or under
itself. For example, Figure 12.16 shows the trefoil knot.

If we are given a picture of a projection of a knot 𝐾 into ℝ2 where gaps indicate
where crossings occur andwhere all crossings are transverse crossings of two arcs, then
we can use Figures 12.17 and 12.18, along with Van Kampen’s Theorem, to produce a
presentation of 𝜋1(𝑀𝐾). This group is often called the fundamental group of the knot,
even though it is actually the fundamental group of the complement of the knot.

Roughly speaking, each arc in Figure 12.17 gives a generator and each crossing
represents a relation. For each arc in a knot projection, draw a labeled perpendicular
arrow as shown in Figure 12.18.

The arrow 𝑎𝑖, for example, represents the loop in 𝑀𝐾 obtained by starting high
above the knot (at the base point chosen for 𝜋1(𝑀𝐾)), going straight down to the tail of
𝑎𝑖, then going along 𝑎𝑖 under the knot, and finally returning to the base point along a
straight line from the head of 𝑎𝑖.

Lemma 12.62. Every loop in𝑀𝐾 is homotopic in𝑀𝐾 to a product of 𝑎𝑖’s. In other words,
the loops {𝑎𝑖} generate 𝜋1(𝑀𝐾).

Lemma 12.63. At every crossing, such as that illustrated in Figure 12.18, the following
relation holds: 𝑎𝑐𝑏−1 = 𝑐 or 𝑎𝑐𝑏−1𝑐−1 = 1.
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aaa1 2
3

Figure 12.17. The arrows for the arcs of a trefoil knot.

Figure 12.18. The arrows around a crossing.

Figure 12.19. The unknot.

Theorem12.64. Let𝐾 be a knot in𝕊3 and let {𝑎𝑖} be the set of loops consisting of one loop
for each arc in a knot projection of 𝐾 as described above. Then 𝜋1(𝑀𝐾) = {𝑎1, 𝑎2, … , 𝑎𝑛|
𝑎𝑖𝑎𝑗𝑎−1𝑘 𝑎−1𝑗 , where there is one relation of the form 𝑎𝑖𝑎𝑗𝑎−1𝑘 𝑎−1𝑗 for each crossing in the
knot projection}.

Exercise 12.65. Find the fundamental group of the complement of the unknot (see Figure
12.19).

Exercise 12.66. Find the fundamental group of the complement of the trefoil knot.
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Figure 12.20. The figure-8 knot.

Exercise 12.67. Find the fundamental group of the complement of the figure-8 knot,
shown in Figure 12.20.

12.7 Higher Homotopy Groups
In this section, we will briefly describe a way to generalize the fundamental group by
constructing the higher homotopy groups. Recall that a loop in 𝑋 based at 𝑥0 ∈ 𝑋 is a
map [0, 1] → 𝑋 where both 0 and 1 are sent to 𝑥0 ∈ 𝑋 . In other words, it is a map from
𝐼 = [0, 1] which maps the boundary of 𝐼 to 𝑥0 ∈ 𝑋 . This leads to the following natural
generalization. Let 𝐼𝑛 denote the 𝑛-fold Cartesian product [0, 1]𝑛, and let 𝜕𝐼𝑛 denote
the boundary of 𝐼𝑛 in ℝ𝑛.

Definition. Let 𝑋 be a topological space and 𝑥0 ∈ 𝑋 . Let 𝑓, 𝑔 ∶ (𝐼𝑛, 𝜕𝐼𝑛) → (𝑋, 𝑥0) be
continuous (that is, let 𝑓, 𝑔 ∶ 𝐼𝑛 → 𝑋 be continuous maps that take 𝜕𝐼𝑛 to 𝑥0). If [𝑓]
and [𝑔] denote the homotopy classes of these maps relative to 𝜕𝐼𝑛, then we define the
product [𝑓] ⋅ [𝑔] to be the homotopy class of:

𝑓 ⋅ 𝑔(𝑥1, 𝑥2, … , 𝑥𝑛) = {
𝛼(2𝑥1, 𝑥2, … , 𝑥𝑛), 0 ≤ 𝑥1 ≤

1
2
,

𝛽(2𝑥1 − 1, 𝑥2, … , 𝑥𝑛),
1
2
< 𝑥1 ≤ 1,

where (𝑥1, 𝑥2, … , 𝑥𝑛) ∈ 𝐼𝑛.

Maps of this type can be considered to be the higher dimension analogues of loops.
They can also be viewed as maps from 𝕊𝑛 which map a certain base point in 𝕊𝑛 to 𝑥0.

Exercise 12.68. The collection of homotopy classes of continuous maps of the type 𝑓 ∶
(𝐼𝑛, 𝜕𝐼𝑛) → (𝑋, 𝑥0), with the product defined above, forms a group.

Definition. The abovementioned group is called the𝑛-thhomotopygroupof 𝑋 based
at 𝑥0 and is denoted 𝜋𝑛(𝑋, 𝑥0). The point 𝑥0 is called the base point of the homotopy
group.

Theorem 12.69. Homotopy equivalent spaces have the same homotopy groups.

Homotopy groups are generally hard to compute (even for 𝕊𝑛). In later chapters
wewill develop the study of homology groups, which are easier to compute. Homology
groups are generally more useful than the higher homotopy groups in distinguishing
higher-dimensional topological spaces from one another.
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12.8 The Fundamental Group—Not Such a
Loopy, Loopy Idea

Holes in spaces are often easy to see intuitively. When we are confronted with an ob-
vious piece of reality, one of the great ways to create ideas is to take the trouble to pin
down that intuition and turn an impression into a concrete concept. The fundamental
group arose from specifying what we mean by a hole in a space.

In order to pin down the intuition of surrounding a hole with a loop, we were
required to come up with the idea of a homotopy in order to clarify what it means
for two loops to go around these holes in the “same” manner. We have seen already
and will see much more in the chapters ahead how valuable the concept of homotopy
really is.

Surely one of the great satisfactions inmathematics is to follow the thread ofmath-
ematical creation from an intuitive impression to a whole edifice of mathematical rich-
ness and insight. The fundamental group presents us with a great example of that jour-
ney.



13
Covering Spaces:

Layering It On

Suppose you are given an open set𝑈 in the plane whose total area is strictly more than
1. It can even be disconnected, maybe in a million little pieces. Here’s a puzzle: show
that 𝑈 can be translated, without rotation, so that two different lattice points of ℝ2 lie
in the translated set. (Lattice points are points (𝑎, 𝑏) in ℝ2 in which both coordinates
are integers.)

This puzzle has a clever resolution. Think about rolling the plane in the horizontal
direction onto a cylinder, and then taking the tube-like cylinder and wrapping it along
its infinite length onto a torus. This produces a map of the plane onto the torus, and
it can be done so that when completed, lattice points will all be on top of each other.
Since the area of the open set 𝑈 is greater than 1, its image on the torus must overlap
using some pair of points in the plane. Can you see how to use this pair to produce a
translation that moves both points of the pair to lattice points?

This technique of finding a “covering” map from the plane onto the torus that
wraps nicely many times (in this case, infinitely many times) highlights a relationship
between the plane and the torus that leads to the concept of a covering space. Certain
paths in the plane correspond to loops in the torus. So there is a strong connection be-
tween a covering space and the fundamental group of a given space. Recall our proof
that 𝜋1(𝕊1) ≅ ℤ. We “covered” 𝕊1 with the real line using various wrapping maps. In
this chapter, wewill generalize that idea. Just as the wrappingmapwas useful for com-
puting the fundamental group of the circle, more general covering spaces are useful for
understanding the fundamental groups of other spaces.

We have seen a couple of ways in which the fundamental group allows us to use
group-theoretic results to answer important questions about topology. Covering spaces
help us understand topological spaces, but they also can help us to prove results about
the structure of certain groups.

197
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13.1 Basic Results and Examples

Effective Thinking Principle. Think Backwards. Think about where
things come from or could be constructed from.

Definition. Let𝑋 and𝑋 be connected, locally path connected spaces, and let𝑝 ∶ 𝑋 → 𝑋
be a continuous function. The pair (𝑋, 𝑝) is a covering space of 𝑋 if and only if for
each 𝑥 ∈ 𝑋 there exists a neighborhood𝑈 of 𝑥 such that𝑝 restricted to each component
of 𝑝−1(𝑈) is a homeomorphism onto𝑈. When (𝑋, 𝑝) is a covering space of𝑋 , the space
𝑋 is a cover of 𝑋 and 𝑝 is a covering map. The space 𝑋 is called the base space.

Example. Let 𝑋 = 𝕊1, 𝑋 = ℝ1, and 𝑝 ∶ ℝ1 → 𝕊1 be defined by 𝑝(𝑡) = (cos 𝑡, sin 𝑡).
Then (ℝ1, 𝑝) is a covering space of 𝕊1.

Example. Let 𝑋 = 𝕊1, 𝑋 = 𝕊1, and 𝑝 ∶ 𝕊1 → 𝕊1 be defined by 𝑝(𝑧) = 𝑧𝑛, where we
view 𝕊1 as a subset ofℂ in the usual way and use complex multiplication. Then (𝕊1, 𝑝)
is a covering space of 𝕊1.

Example. If 𝑋 is the figure eight, and 𝑋 is any of the spaces shown in Figure 13.1, with
the corresponding map 𝑝 ∶ 𝑋 → 𝑋 , then (𝑋, 𝑝) is a covering space of 𝑋 . Note that the
third choice for 𝑋 in the figure continues the pattern infinitely in the obvious way; that
is, the picture just shows part of the actual covering space, which has infinitely many
segments that map around each of the two circles in the figure eight.

Recall that |𝐴| denotes the cardinality of set 𝐴.

Theorem 13.1. Let (𝑋, 𝑝) be a covering space of𝑋 . If 𝑥, 𝑦 ∈ 𝑋 , then |𝑝−1(𝑥)| = |𝑝−1(𝑦)|.

Definition. If (𝑋, 𝑝) is a covering space of a space 𝑋 and 𝑛 = |𝑝−1(𝑥)| for some 𝑥 ∈ 𝑋 ,
then (𝑋, 𝑝) is called an 𝑛-fold covering of 𝑋 and 𝑋 is a cover of degree 𝑛. Note that 𝑛
is allowed to be an infinite cardinal number.

Example. 𝑝 ∶ 𝕊1 → 𝕊1 defined by 𝑝(𝑧) = 𝑧𝑛 (as above) gives an 𝑛-fold covering of 𝕊1
by 𝕊1.

Exercise 13.2.
(1) Describe two non-homeomorphic 2-fold covers of the Klein bottle.
(2) Describe all non-homeomorphic 2-fold covers of the figure eight.
(3) Describe all non-homeomorphic 3-fold covers of the figure eight.

13.2 Lifts
Now that we have established the basic properties of covering spaces, we consider their
interactions with continuous functions. Specifically, we want to study the correspon-
dence between continuous functions into the base space and continuous functions into
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Figure 13.1. Several coverings of the figure eight. The single arrow
segments or loops in 𝑋 are mapped to the single arrow loop in 𝑋 .
Similarly for the double arrow segments or loops.

the covering space. Certainly, if we have a map into the covering space, we can com-
pose with the covering map to get a map into the base space, but when can we go in
the other direction?

Definition. Given a covering space (𝑋, 𝑝) of 𝑋 and a continuous function 𝑓 ∶ 𝑌 → 𝑋 ,
then a continuous function 𝑓 ∶ 𝑌 → 𝑋 is called a lift of 𝑓 if and only if 𝑝 ∘ 𝑓 = 𝑓, that
is, if the following diagram commutes:

𝑋
𝑝
��

𝑌

̃𝑓
??��������

𝑓
// 𝑋

Theorem13.3. Let (ℝ1, 𝜔) be the standardwrappingmap covering of𝕊1. Then any path
𝑓 ∶ [0, 1] → 𝕊1 has a lift 𝑓 ∶ [0, 1] → ℝ1.

The next result shows that lifts satisfy a certain type of uniqueness.

Theorem13.4. If (𝑋, 𝑝) is a cover of𝑋 ,𝑌 is connected, and𝑓, 𝑔 ∶ 𝑌 → 𝑋 are continuous
functions such that 𝑝 ∘ 𝑓 = 𝑝 ∘ 𝑔, then {𝑦 ∣ 𝑓(𝑦) = 𝑔(𝑦)} is empty or all of 𝑌 .

We will often study lifts of paths.

Theorem 13.5. Let (𝑋, 𝑝) be a cover of𝑋 , and let 𝑓 be a path in𝑋 . Then for each 𝑥0 ∈ 𝑋
such that 𝑝(𝑥0) = 𝑓(0), there exists a unique lift 𝑓 of 𝑓 satisfying 𝑓(0) = 𝑥0.
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Effective Thinking Principle. Explore Simple Cases. Simple cases often
lead to the most important insights.

Exercise 13.6. Let 𝑝 be a 𝑘-fold covering of 𝕊1 by itself and 𝛼 a loop in 𝕊1 which when
lifted to ℝ1 by the standard lift satisfies 𝛼(0) = 0 and 𝛼(1) = 𝑛. What are the conditions
on 𝑛 under which 𝛼 will lift to a loop?

The next result will provide the machinery we need to study the relationship be-
tween the fundamental group of the base space and the fundamental group of the cover.

Theorem 13.7 (Homotopy Lifting Lemma). Let (𝑋, 𝑝) be a cover of 𝑋 , and let 𝛼, 𝛽 be
two paths in 𝑋 . If 𝛼, 𝛽 are lifts of 𝛼, 𝛽 satisfying 𝛼(0) = 𝛽(0), then 𝛼 ∼ 𝛽 if and only if
𝛼 ∼ 𝛽.

Theorem 13.8. If (𝑋, 𝑝) is a cover of 𝑋 , then 𝑝∗ is a monomorphism (i.e., an injective
homomorphism) from 𝜋1(𝑋) into 𝜋1(𝑋).

The previous theorem implies that the fundamental group of a cover of 𝑋 is iso-
morphic to a subgroup of the fundamental group of the space 𝑋 .

Theorem 13.9. Let (𝑋, 𝑝) be a cover of 𝑋 , 𝛼 a loop in 𝑋 , and ̃𝑥0 ∈ 𝑋 such that 𝑝( ̃𝑥0) =
𝛼(0). Then 𝛼 lifts to a loop based at ̃𝑥0 if and only if [𝛼] ∈ 𝑝∗(𝜋1(𝑋, ̃𝑥0)).

Exercise 13.10. Recast a proof of the fact that𝜋1(𝕊1) ≅ ℤ using the language of covering
spaces.

Suppose 𝑝 is a 𝑘-fold cover of 𝕊1 by 𝕊1. We can figure out what maps from 𝕊1 into
the base space would lift. Looking at the specific example suggests criteria for deciding
when a map will lift.

Effective Thinking Principle. Iconic Cases Suggest General Truths.
Examples with the clearest salient features of a phenomenon or concept of-
ten expose general truths.

Theorem 13.11. Let (𝑋, 𝑝) be a covering space of 𝑋 and let 𝑥0 ∈ 𝑋 . Fix ̃𝑥0 ∈ 𝑝−1(𝑥0).
Then a subgroup𝐻 of 𝜋1(𝑋, 𝑥0) is in {𝑝∗(𝜋1(𝑋, ̃𝑥))}𝑝(𝑥)=𝑥0 if and only if𝐻 is a conjugate
of 𝑝∗(𝜋1(𝑋, ̃𝑥0)).

Theorem 13.12. Let (𝑋, 𝑝) be a covering space of 𝑋 and choose 𝑥 ∈ 𝑋 . Then |𝑝−1(𝑥)| =
[𝜋1(𝑋) ∶ 𝑝∗(𝜋1(𝑋))], where the equation has the obvious interpretation if either side is
infinite.

In particular, the theorem says the index of the subgroup of 𝜋1(𝑋) corresponding
to a finite covering (𝑋, 𝑝) equals the degree of the covering.
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Exercise 13.13. Give a covering space of 𝕊1 that corresponds to a subgroup of index 3. If
𝑝 is the covering map, describe 𝑝∗.

Theorem 13.14. Let (𝑋, 𝑝) be a covering space of 𝑋 , and let ̃𝑥0 ∈ 𝑋 and 𝑥0 ∈ 𝑋 with
𝑝( ̃𝑥0) = 𝑥0. Also let 𝑓 ∶ 𝑌 → 𝑋 be continuous, where 𝑌 is connected and locally path
connected and 𝑦0 ∈ 𝑌 such that 𝑓(𝑦0) = 𝑥0. Then there is a lift 𝑓 ∶ 𝑌 → 𝑋 such that
𝑝 ∘ 𝑓 = 𝑓 and 𝑓(𝑦0) = ̃𝑥0 if and only if 𝑓∗(𝜋1(𝑌, 𝑦0)) ⊆ 𝑝∗(𝜋1(𝑋, ̃𝑥0)). Furthermore, 𝑓 is
unique.

Exercise 13.15. Let 𝑋 = 𝕊1, let 𝑋 = ℝ, let (𝑋, 𝜔) be the covering space of 𝑋 given by the
standard wrapping map, and let 𝑌 be as in Figure 13.2. When does a map 𝑓 ∶ 𝑌 → 𝑋
not have a lift? Why is this example here?

Figure 13.2. Consider this picture.

Exercise 13.16. Show that 𝜋2(𝕋2) = 0, i.e., every map of a sphere 𝕊2 into 𝕋2 is null
homotopic.

13.3 Regular Covers and Cover Isomorphism

Effective Thinking Principle. Define Equivalence. After creating a con-
cept, investigate equivalence with respect to that concept.

Aswith almost any structure inmathematics, wewillwant a notion of two covering
spaces being equivalent. Certainly we will want the covers to be homeomorphic as
topological spaces. In addition, this homeomorphism should respect the coveringmap.

Definition. Let (𝑋1, 𝑝1) and (𝑋2, 𝑝2) be covering spaces of 𝑋 . Then a map 𝑓 ∶ 𝑋1 →
𝑋2 such that 𝑓 is a homeomorphism and 𝑝2 ∘ 𝑓 = 𝑝1 is called a cover isomorphism.

As we might expect, our notion of equivalence behaves well with respect to the
relationship we have established between covering spaces and subgroups of the funda-
mental group.
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Figure 13.3. A covering of the figure eight.

Theorem 13.17. Let (𝑋1, 𝑝1) and (𝑋2, 𝑝2) be covering spaces of 𝑋 . Let ̃𝑥1 ∈ 𝑋1 and
̃𝑥2 ∈ 𝑋2 such that 𝑝1( ̃𝑥1) = 𝑝2( ̃𝑥2). Then there is a cover isomorphism 𝑓 ∶ 𝑋1 → 𝑋2 with
𝑓( ̃𝑥1) = ̃𝑥2 if and only if 𝑝1∗(𝜋1(𝑋1, ̃𝑥1)) = 𝑝2∗(𝜋1(𝑋2, ̃𝑥2)).

Definition. Let (𝑋, 𝑝) be a covering space. Then a cover isomorphism from 𝑋 to itself
is called a covering transformation or a deck transformation. The set of covering
transformations, denoted 𝒞(𝑋, 𝑝), is a group under composition.

Exercise 13.18. What is𝒞(𝑋, 𝑝) for the covering space of the figure eight shown in Figure
13.3?

Theorem 13.19. If (𝑋, 𝑝) is a covering space of 𝑋 and 𝑓 ∈ 𝒞(𝑋, 𝑝), then 𝑓 = Id𝑋 if and
only if 𝑓 has a fixed point.

As far as group structure is concerned, we know that normal subgroups are an
important type of subgroup. We will therefore want to give special attention to the
covering spaces whose fundamental groups correspond to normal subgroups of the
fundamental group of the base space.

Definition. Let (𝑋, 𝑝) be a covering space of 𝑋 . If 𝑝∗(𝜋1(𝑋)) ◁ 𝜋1(𝑋), then (𝑋, 𝑝) is a
regular covering space. A covering space that is not regular is irregular.

Exercise 13.20. Consider the second three-fold covering space of the figure eight dis-
cussed in Exercise 13.18. Find an element of 𝑝∗(𝜋1(𝑋))which, when conjugated, is not in
𝑝∗(𝜋1(𝑋)). Conclude that the covering space is not regular.

Theorem 13.21. If (𝑋, 𝑝) is a regular covering space of 𝑋 and 𝑥1, 𝑥2 ∈ 𝑋 such that
𝑝(𝑥1) = 𝑝(𝑥2), then there exists a unique ℎ ∈ 𝒞(𝑋, 𝑝) such that ℎ(𝑥1) = 𝑥2.
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The preceding theorem tells us that for a regular covering space, there is a (unique)
covering transformation carrying any point in the set 𝑝−1(𝑥) to any other point in the
same set.

Exercise 13.22. Do such covering transformations necessarily exist in irregular covering
spaces?

Theorem 13.23. A covering space is regular if and only if for every loop in the base space
either all its lifts are loops or all its lifts are paths that are not loops.

Exercise 13.24. Find a covering space𝑝 ∶ 𝑋 → 𝑋 and generators 𝑒1, … , 𝑒𝑛 of𝜋1(𝑋) such
that each 𝑒𝑖 satisfies the criteria of the previous theorem but the cover is not regular.

Exercise 13.25.
(1) Describe all regular 3-fold covering spaces of the figure eight.
(2) Describe all irregular 3-fold covering spaces of the figure eight.
(3) Describe all regular 3-fold covering spaces of the bouquet of three circles.

There is an important correspondence between the covering transformations of
regular covers of 𝑋 and the normal subgroups of 𝜋1(𝑋).

Theorem 13.26. Let (𝑋, 𝑝) be a regular covering space of 𝑋 . Then 𝒞(𝑋, 𝑝) ≅
𝜋1(𝑋)/𝑝∗(𝜋1(𝑋)). In particular, 𝒞(𝑋, 𝑝) ≅ 𝜋1(𝑋) if 𝑋 is simply connected.

Exercise 13.27. Observe that the standard wrapping map is a regular covering map of
𝕊1 by ℝ1. Describe the covering transformations for this covering space. Describe the
covering map that maps ℝ2 to the torus 𝕋2 and describe the covering transformations for
this covering space.

13.4 The Subgroup Correspondence
In this section, we prove a substantial and beautiful result about the relationship be-
tween covering spaces and the fundamental group of a space. The following strange-
looking, but relatively mild criterion is involved in the theorem statement.

Definition. A space 𝑋 is called semilocally simply connected if and only if every 𝑥 ∈
𝑋 is contained in an open set 𝑈 such that every loop in 𝑈 based at 𝑥 is homotopically
trivial in 𝑋 .

Note that the open set 𝑈 in the previous definition need not be simply connected
itself (though being simply connected would certainly suffice). We require every loop
in 𝑈 to be homotopic to a constant, but the homotopy is allowed to go outside of 𝑈
(and into 𝑋).

Theorem 13.28 (Existence of covering spaces). Let 𝑋 be connected, locally path con-
nected, and semilocally simply connected. Then for every𝐺 < 𝜋1(𝑋, 𝑥0) there is a covering
space (𝑋, 𝑝) of𝑋 and ̃𝑥0 ∈ 𝑋 such that 𝑝∗(𝜋1(𝑋, ̃𝑥0)) = 𝐺. Furthermore, (𝑋, 𝑝) is unique
up to isomorphism.
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In summary, we have proved the following.

Corollary 13.29. Let 𝑋 be connected, locally path connected, and semilocally simply
connected. Then there is a one-to-one correspondence between the subgroups of 𝜋1(𝑋)
and the collection of isomorphism classes of covering spaces of 𝑋 where the covering space
𝑝 ∶ ̃𝑋 → 𝑋 corresponds to 𝑝∗(𝜋1(𝑋)).

Definition. A connected, locally path connected cover is called universal if and only
if its fundamental group is trivial.

Corollary 13.30. Every connected, locally path connected, semilocally simply connected
space admits a unique universal covering space.

Effective Thinking Principle. Apply Insights to Familiar Objects. Seeing
implications of new insights to familiar objects enriches understanding of both
the insight and the familiar world.

Exercise 13.31. Find a universal cover 𝑋 for each of the Klein bottle, the torus, and the
projective plane. In each case, show explicitly that 𝒞(𝑋, 𝑝) ≅ 𝜋1(𝑋).

13.5 Theorems about Free Groups
Wehave pointed out previously that the topology of a space can be used to prove results
about the structure of its fundamental group. Later in this section, we will give an
important example of this technique.

Theorem 13.32. A finite tree is contractible.

Theorem 13.33. Let 𝐺 be a finite graph, and let 𝑇 be a maximal tree in 𝐺. Then if
{𝑒1, … , 𝑒𝑛} is the set of edges that are not in 𝑇, 𝜋1(𝐺) = 𝐹𝑛, the free group on 𝑛 generators;
and there is a system of generators that are in one-to-one correspondence with the edges
{𝑒1, … , 𝑒𝑛}.

Lemma 13.34. Let𝑋 be the bouquet of 𝑛 circles. Every finite cover of 𝑋 is homeomorphic
to a finite graph.

Theorem 13.35. Let 𝐹𝑛 be the free group on 𝑛 letters. Then every subgroup of 𝐹𝑛 of finite
index is isomorphic to a free group on finitely many letters.

By allowing ourselves to use graphs thatmay not be finite, we can substantially im-
prove the previous result. The next result shows thatmuch of ourwork can be assumed
to take place in a finite graph.

Lemma 13.36. Suppose that 𝐺 is a graph and that 𝐾 ⊂ 𝐺 is compact. Then 𝐾 is con-
tained in a finite subgraph of 𝐺.
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Theorem 13.37. Every tree is simply connected.

Theorem 13.38. Let 𝐺 be a graph. Then 𝜋1(𝐺) is free.

Exercise 13.39. Show that the free group of rank 2 has finite index subgroups that are
isomorphic to free groups of arbitrarily large rank.

Lemma 13.40. Let 𝑋 be the bouquet of 𝑛 circles. Then every cover of 𝑋 is homeomorphic
to a graph.

The following improvement is a substantial result in group theory. There are proofs
which do not rely on topology, but they are considerably longer and more difficult.

Corollary 13.41 (Nielsen-Schreier Theorem). Let 𝐹𝑛 be the free group on 𝑛 letters. A
subgroup of 𝐹𝑛 is always free.

The Nielsen-Schreier Theorem is not as trivial as it might appear. For example,
consider 𝐹2 = ⟨𝑥, 𝑦⟩ and set

𝑎 = 𝑥2𝑦3, 𝑏 = 𝑦−3𝑥2𝑦−1𝑥−1𝑦−3𝑥−2𝑦−1𝑥−1, and 𝑐 = 𝑥𝑦.
Let𝐻 be the subgroup generated by 𝑎, 𝑏, 𝑐. Then𝐻 is not isomorphic to the free group
on {𝑎, 𝑏, 𝑐} because we have the relation 𝑎𝑏𝑐𝑎𝑐 = 1. The theorem says that there ex-
ists some subset of 𝐻 that generates 𝐻 and such that the elements have no non-trivial
relations among them.

To avoid (even more) technicalities, we have restricted ourselves to free groups on
finitelymany letters, but the same techniques can be used to prove the result for amore
general free group.

Exercise 13.42. Describe a regular 𝑘-fold cover 𝑋 of a bouquet of 𝑛 circles. What (in
terms of 𝑘 and 𝑛) is the rank of the free group 𝜋1(𝑋)? What does this insight tell us about
the normal subgroups of finite index of the free group on 𝑛 letters?

Exercise 13.43.
(1) Let 𝐹 be a free group on 𝑛 letters. Let𝐺 < 𝐹 be of finite index 𝑘 and contain seven free

generators. What can the value of 𝑛 be?
(2) Let 𝐹 be a free group on 𝑛 letters. Let 𝐺 < 𝐹 be of finite index 𝑘 and contain four free

generators. What can the value of 𝑛 be?
(3) Let 𝐹 be a free group on 𝑛 letters. Let 𝐺 < 𝐹 be of finite index 𝑘 and contain 24 free

generators. What can the value of 𝑛 be?

13.6 Covering Spaces and 2-Manifolds
Since covering spaces are locally homeomorphic to the spaces they cover, the cover-
ing spaces of 2-manifolds are 2-manifolds. Investigating the relationships between 2-
manifolds and covering spaces is especially satisfying.

Theorem 13.44. Let 𝐹 be a 2-manifold, and let (𝐹, 𝑝) be a covering space of 𝐹. Then 𝐹
is a 2-manifold.
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The properties of being an 𝑛-fold cover allow us to describe the relationship be-
tween the Euler characteristics of a covering space and its base space. And orientability
of the base space implies orientability of the covering space.

Theorem 13.45. Let 𝐹 be a compact connected surface, and let 𝑝𝑛 ∶ 𝐹 → 𝐹 be an 𝑛-fold
covering of 𝐹 ( for 𝑛 < ∞). Then 𝐹 is a compact surface and 𝜒(𝐹) = 𝑛𝜒(𝐹). Moreover, if
𝐹 is orientable, then 𝐹 is as well.

Exercise 13.46.
(1) Describe all non-homeomorphic 3-fold covers of the Klein bottle.

(2) Describe all non-homeomorphic 2-fold covers of 𝕋2 #𝕋2.

(3) Describe all non-homeomorphic 3-fold covers of 𝕋2 #𝕋2 #𝕋2.

(4) Describe all non-homeomorphic 3-fold covers of ℝP2.

Exercise 13.47. Given a compact, connected 2-manifold and a natural number 𝑛, de-
scribe all non-homeomorphic 𝑛-fold covers of that surface.

13.7 Covers are Cool
The idea of a covering space arises from the idea of gracefully layering one space over
another one. Rolling a line around and around a circle or cleverly wrapping a torus
over a Klein bottle invites us to find relationships between the wrapping space and the
wrapped space. Those relationships were rich indeed. Many involved the fundamental
group—capturing the intuition that following a wrapping of one space over another
somehow corresponds to loops.

Much of the development of the idea of covering spaces proceeded by looking at
some simple examples, such as circles covering circles, and seeing how much the in-
sights there could be extended. In the case of covering spaces, the extensionswerewide
and deep.

Applying the insights of covering spaces to graphs and to 2-manifolds lets us see
connections among familiar objects that revealed insights not only about those objects
themselves, but related mathematical constructs such as free groups and collections of
homeomorphisms. Covering spaces are both geometrically and algebraically appeal-
ing.
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Manifolds, Simplices,

Complexes, and Triangulability:
Building Blocks

Our entire journey through topology has been based on the idea of taking familiar con-
cepts and objects and then generalizing or abstracting them in one way or another.
Ancient Greek mathematicians defined axioms of geometry with the idea that those
features of geometry were the Platonic ideals on which our actual universe was built.
So Euclidean geometry and Euclidean spaces still feel like home. Euclidean spaces also
still hold a central place inmathematics, especially in themotivation and development
of ideas of topology.

There are many methods for taking a familiar concept and letting it lead to math-
ematical ideas. In the first part of the book, we followed the strategy of looking for
basic set-theoretic essences of our familiar surroundings. But a more direct way to use
Euclidean spaces is to think of ways to construct spaces that are built using Euclidean
pieces. In this chapter we will explore two methods for creating spaces built from Eu-
clidean pieces—𝑛-manifolds, inwhich every point lies in an open set homeomorphic to
ℝ𝑛; and simplicial complexes, which are constructed from simple, rectilinear building
blocks in ℝ𝑛.

14.1 Manifolds

Effective Thinking Principle. Extend Ideas. Perhaps the richest source of
new ideas comes from taking existing ideas and seeking extensions and gen-
eralizations.

207
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We have already explored 2-manifolds such as the 2-sphere and torus—that is,
spaces that are locally like the plane. Of course, there is no reason to restrict our-
selves to 2-dimensionality when we are thinking of locally Euclidean spaces. Intu-
itively speaking, an 𝑛-manifold is a space that is locally the same as Euclidean 𝑛-space.
These spaces are extremely important in many branches of mathematics as well as
in many sciences. Manifolds are probably the most frequently studied spaces in all of
topology. This section contains definitions, several examples, and a few basic theorems
about manifolds.

Let’s start by agreeing on the definitions of some basic subsets of Euclidean spaces
such as balls and spheres.

Definition. The standard 𝑛-ball, denoted by 𝐵𝑛, is
𝐵𝑛 = {(𝑥1, … , 𝑥𝑛) ∈ ℝ𝑛 ∶ 𝑥21 +⋯+ 𝑥2𝑛 ≤ 1}.

We will often refer to 𝐵2 as the unit disk, or just the disk.

Definition. The standard 𝑛-sphere, denoted by 𝕊𝑛, is
𝕊𝑛 = {(𝑥1, … , 𝑥𝑛+1) ∈ ℝ𝑛+1 ∶ 𝑥21 +⋯+ 𝑥2𝑛+1 = 1}.

𝕊1 is called the unit circle.

Figure 14.1. The 2-sphere.

Note. Bd𝐵𝑛+1 = 𝕊𝑛. Here we are referring to the topological boundary when 𝐵𝑛+1 is
embedded inℝ𝑛+1 (as we defined it above). Whenwemention the interior of an 𝑛-ball,
we mean its interior as a subset of ℝ𝑛.

As usual, the terms 𝑛-ball and 𝑛-sphere will apply to any space homeomorphic to
the standard 𝑛-ball and standard 𝑛-sphere, respectively.

Exercise 14.1. Show that for 𝑛 ≥ 1, the 𝑛-sphere is compact and connected.

Exercise 14.2. Consider 𝕊0, 𝕊1, and 𝕊2. Is any pair of them homeomorphic? If not, are
there properties that allow you to distinguish them?

While point-set topology provides tools to answer the previous question for these
low-dimensional spheres, it does not provide apparent means for answering this ques-
tion in higher dimensions. Why are spaces of different dimensions different topologi-
cally? That question is one of the motivations for developing some of the concepts of
algebraic topology in the chapters ahead.



14.1. Manifolds 209

Definition. An 𝑛-dimensional manifold or 𝑛-manifold is a separable metric space,
𝑀, such that for each 𝑝 ∈ 𝑀, there is a neighborhood 𝑈 of 𝑝 that is homeomorphic to
an open set 𝑉 in ℝ𝑛. Often an 𝑛-dimensional manifold is denoted 𝑀𝑛. A curve is a
synonym for a 1-manifold and surface is a synonym for a 2-manifold.

Hence a manifold is a topological space that is locally Euclidean.

Effective Thinking Principle. Find Equivalences of Definitions. After mak-
ing a definition, see whether alternative definitions are equivalent.

Theorem 14.3. For a separable metric space𝑀𝑛, the following are equivalent:
(1) 𝑀𝑛 is an 𝑛-manifold.
(2) For each point 𝑝 ∈ 𝑀𝑛, 𝑝 has a neighborhood basis of open sets each homeomorphic

to the interior of an 𝑛-ball.
(3) For every point 𝑝 ∈ 𝑀𝑛, 𝑝 ∈ 𝑈 where 𝑈 is an open set homeomorphic to ℝ𝑛.

Most people who study manifolds are not interested in topologically exotic spaces
such as non-metric spaces. But as a matter of good mathematical practice, it is healthy
to explore the consequences of removing technical assumptions. In the definition of
an 𝑛-manifold, the technical assumptions of being separable and metric are important
because otherwise the definition would admit strange spaces that do not behave in the
spirit of Euclidean spaces and their subsets.

Exercise 14.4. If you are comfortable with ordinal numbers, construct a topological
space where every point has an open set containing it that is homeomorphic to ℝ1, and
yet the space is not metrizable. You might call your space the long line.

The following exercise shows that in the definition ofmanifolds, the technical con-
ditions of being separable and metrizable could be replaced by alternative conditions.
You might enjoy this exercise if you enjoyed the theorems about metrizability.

Exercise 14.5. Show that a locally Euclidean space is Hausdorff and 2nd countable if
and only if it is separable and metrizable.

Let’s look at a basic example of an 𝑛-manifold.

Exercise 14.6. Show that 𝕊𝑛 is an 𝑛-manifold.

We conclude this section by listing two easy ways to produce new manifolds from
others.

Theorem 14.7. If𝑀 is an 𝑛-manifold and 𝑈 is an open subset of𝑀, then 𝑈 is also an
𝑛-manifold.

Theorem14.8. If𝑀 is an𝑚-manifold and𝑁 is an 𝑛-manifold, then𝑀×𝑁 is an (𝑚+𝑛)-
manifold.
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EffectiveThinkingPrinciple. Explore Variations. After defining a concept,
seek variations and extensions.

Many familiar objects look likemanifolds atmost points except they have a bound-
ary to them. For example, in the closed disk 𝐵2, every point in the interior has a
neighborhood homeomorphic toℝ2 while points on the boundary have neighborhoods
homeomorphic to ℝ2

+. So a category of spaces similar to manifolds are manifolds with
boundary.

Definition. An 𝑛-dimensional manifold with boundary or 𝑛-manifold with
boundary is a separable metric space, 𝑀𝑛, such that for each 𝑝 ∈ 𝑀𝑛, there is a
neighborhood 𝑈 of 𝑝 that is homeomorphic either to ℝ𝑛 or to ℝ𝑛

+. Let 𝑀𝑛 be an 𝑛-
dimensional manifold with boundary. Then points of 𝑀𝑛 that have neighborhoods
homeomorphic to ℝ𝑛

+ are boundary points and the union of all boundary points of
𝑀𝑛 is the boundary of𝑀𝑛, denoted 𝜕𝑀𝑛.

Theorem 14.9. Let𝑀𝑛 be an 𝑛-dimensional manifold with boundary. Then 𝜕𝑀𝑛 is an
(𝑛 − 1)-manifold.

14.2 Simplicial Complexes
Another strategy for using Euclidean pieces to construct objects is to start with recti-
linear, simple building blocks and assemble them like you would assemble a bookshelf
from a kit where each piece fits neatly with the others.

Effective Thinking Principle. Identify Simple Building Blocks. One of the
most potent strategies for dealing with complexity is to identify a collection of
elemental building blocks from which complex objects are made.

The first axiom of classical Euclidean geometry basically says that two points can
be connected with a straight line segment. Straight lines are in some sense the most
basic objects in Euclidean geometry. When we move to Cartesian coordinates, each
straight line can be describedusing linear combinations of the coordinates of twopoints.
Linear combinations of three non-collinear points in Euclidean space determine a flat
plane; and if we restrict ourselves to linear combinations where the scalars add to 1, the
linear combinations determine a triangle. This pattern leads us to define basic, rectilin-
ear building blocks in each dimension: points, line segments, triangles, tetrahedra, and
so on. These are the simple pieces, appropriately called simplices, fromwhich complex
objects, appropriated called complexes, are built.

After defining the building blocks more formally, we will consider those spaces
that are created by putting together a finite number of these geometrically appealing
simplices. Since such spaces are built from a finite number of neatly assembled pieces,
we can use our knowledge of the local geometry of these objects to help us analyze
them. Also, when we have only a finite number of building blocks, induction becomes
a very useful tool.
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Effective Thinking Principle. Start Concretely; Abstract Later. Concrete
ideas are the foundations for more abstract generalizations. Explore the con-
crete settings first to gain experience and intuition.

As is frequently the case in mathematics, when we define ideas, we need to make
choices about the level of generality and abstraction with which to start. For example,
if we were introducing the idea of the natural numbers, we could talk about equiva-
lence classes of finite sets, or we could introduce the idea by talking about cows in a
field. Most people understand ideas more meaningfully if they are first introduced in
a concrete setting with more abstract versions reserved for later. We will take that con-
crete approach here by introducing simplices and complexes as subsets ofℝ𝑛. Later we
will discuss how the ideas of simplices and complexes can be viewed more abstractly.

Let’s begin by defining these fundamental objects. The basic building block is the
simplex. The plural of simplex is simplices. A 0-simplex is simply a point in ℝ𝑛. A
1-simplex is a line segment, a 2-simplex is a triangle, and a 3-simplex is a tetrahedron.
To define a simplex more generally, recall that a set of points 𝑣0, … , 𝑣𝑘 inℝ𝑛 is affinely
independent if {𝑣1−𝑣0, … , 𝑣𝑘−𝑣0} is a linearly independent set; informally speaking,
no three points are collinear, no four points lie on a plane, etc. A convex combination
of 𝑣0, … , 𝑣𝑘 is a linear combination of those points whose coefficients sum to 1 and are
non-negative. You can think of a convex combination of points as a weighted average
of those points. The collection of all convex combinations of points fills in the convex
hull of those points—producing a generalization of a triangle or tetrahedron.

Definition. A 𝑘-simplex is the set of all convex combinations of 𝑘+1 affinely indepen-
dent points in ℝ𝑛. For affinely independent points 𝑣0, … , 𝑣𝑘 in ℝ𝑛, {𝑣0⋯𝑣𝑘} denotes
the 𝑘-simplex

{𝜆0𝑣0 + 𝜆1𝑣1 +⋯+ 𝜆𝑘𝑣𝑘 | 0 ≤ 𝜆𝑖 ≤ 1 and
𝑘
∑
𝑖=0

𝜆𝑖 = 1} .

Each 𝑣𝑖 is called a vertex of {𝑣0⋯𝑣𝑘}. (The plural of vertex is vertices.) Any point 𝑥
in the 𝑘-simplex is specified uniquely by the 𝑘 + 1 coefficients (𝜆𝑖); these coefficients
are called the barycentric coordinates of 𝑥. The barycentric coordinate of 𝑥with
respect to vertex 𝑣𝑖 is the coefficient 𝜆𝑖.

In this notation, order does notmatter: the 2-simplex {𝑣0𝑣1𝑣2} is the same 2-simplex
as {𝑣2𝑣1𝑣0}.

Definition. Any simplex 𝜏whose vertices are a non-empty subset of the vertices of a 𝑘-
simplex 𝜎 is called a face of 𝜎. If the number of vertices is 𝑖 + 1, then 𝜏 has dimension
𝑖 and is called an 𝑖-face of 𝜎 and 𝜏 has codimension 𝑘 − 𝑖, the number of dimensions
below the top dimension.

If 𝜎 = {𝑣0⋯𝑣𝑘}, the (𝑘 − 1)-dimensional face of 𝜎 obtained by deleting the vertex
𝑣𝑗 from the list of vertices of 𝜎 is denoted by {𝑣0⋯𝑣𝑗⋯𝑣𝑘}, where the carat symbol
means “omit.”

Notice that our definition says that a simplex is a face of itself.
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Exercise 14.10. Show that if 𝜎 is a simplex and 𝜏 is one of its faces, then 𝜏 ⊂ 𝜎.

Exercise 14.11. Show that an 𝑛-simplex is homeomorphic to a closed 𝑛-dimensional
ball.

Although the𝑛-simplex is homeomorphic to the closed𝑛-dimensional ball, wewill
typically reserve the term 𝑛-simplex to refer to a subset ofℝ𝑛 like {𝑣0⋯𝑣𝑛} as described
above.

Definition. A simplicial complex𝐾 (inℝ𝑛) is a collection of simplices inℝ𝑛 satisfying
the following conditions:
(1) If a simplex 𝜎 is in 𝐾, then each face of 𝜎 is also in 𝐾.
(2) Any two simplices in 𝐾 are either disjoint or their intersection is a face of each.
The vertices of 𝐾 are the 0-simplices of 𝐾. The dimension of 𝐾 is the maximum
dimension of all the simplices in 𝐾.

In this book, we will restrict attention to finite simplicial complexes. However,
topologists do study simplicial complexes containing infinitelymany simplices. In that
case, a condition of local finiteness of the simplices making up the complex is imposed
to avoid pathologies.

Exercise 14.12. Exhibit a collection of simplices that satisfies condition (1) but not (2) in
the definition of a simplicial complex.

A simplicial complex is a collection of simplices, but sometimes we want to refer
to the topological space formed by these simplices.

Definition. The underlying space |𝐾| of a simplicial complex 𝐾 is the space⋃𝜍∈𝐾 𝜎,
the union of all simplices in 𝐾, with a topology consisting of sets whose intersection
with each simplex 𝜎 in 𝐾 is open in 𝜎.

For finite simplicial complexes, this topology is the topology inherited as a sub-
space of ℝ𝑛.

Exercise 14.13. Let 𝐾 be the simplicial complex in ℝ2:
𝐾 = {𝜎, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑣1, 𝑣2, 𝑣3, 𝑣4},

where 𝜎 = {(0, 0)(0, 1)(1, 0)}, 𝑒1 = {(0, 0)(0, −1)}, 𝑒2 = {(0, −1)(1, 0)}, 𝑒3 = {(0, 0)(0, 1)},
𝑒4 = {(0, 1)(1, 0)}, 𝑒5 = {(1, 0)(0, 0)}, 𝑣1 = {(0, 0)}, 𝑣2 = {(0, 1)}, 𝑣3 = {(1, 0)}, and
𝑣4 = {(0, −1)}. Draw 𝐾 and its underlying space.

Definition. A topological space 𝑋 is triangulable if it is homeomorphic to the under-
lying space of a simplicial complex 𝐾. In that case, we say 𝐾 is a triangulation of
𝑋 .

Note that a given topological space may have many triangulations.

Exercise 14.14. Show that the space shown in Figure 14.2 is triangulable by exhibiting
a simplicial complex whose underlying space it is homeomorphic to.
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Figure 14.2. A triangulable space.

V1

V2

3V

V0

Figure 14.3. Tetrahedral surface.

Example. Suppose 𝑣0, 𝑣1, 𝑣2, and 𝑣3 are affinely independent points. The simplicial
complex 𝐾 (shown in Figure 14.3) is

{
{𝑣0𝑣1𝑣2}, {𝑣0𝑣1𝑣3}, {𝑣0𝑣2𝑣3}, {𝑣1𝑣2𝑣3},

{𝑣0𝑣1}, {𝑣0𝑣2}, {𝑣0𝑣3}, {𝑣1𝑣2}, {𝑣1𝑣3}, {𝑣2𝑣3},
{𝑣0}, {𝑣1}, {𝑣2}, {𝑣3}

} .

Its underlying space is a triangulated 2-manifold homeomorphic to 𝕊2.

Exercise 14.15. For each 𝑛, 𝕊𝑛 is triangulable.

14.3 Simplicial Maps and PL Homeomorphisms

Effective Thinking Principle. After Objects, Transformations. After defin-
ing a category of mathematical entities, a natural step is to investigate trans-
formations between them.

We now define maps between simplicial complexes that respect their triangula-
tions.

Definition. Suppose 𝑋 and 𝑌 are topological spaces. A function 𝑓 ∶ 𝑋 → 𝑌 is a sim-
plicial map if and only if there exist simplicial complexes 𝐾 and 𝐿 such that |𝐾| = 𝑋
and |𝐿| = 𝑌 and 𝑓maps each simplex of𝐾 linearly onto a (possibly lower-dimensional)
simplex in 𝐿. We use the notation

𝑓 ∶ 𝐾 → 𝐿,
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where𝐾 and𝐿 are complexes (rather than topological spaces), to signify𝑓 is a simplicial
map. Every such simplicial map gives rise to an underlying continuous function 𝑓 ∶
|𝐾| → |𝐿| on the underlying topological spaces. (We’ll use the same name to indicate
the simplicial map and the underlying continuous function, and context will make
clear which one we mean.)

Definition. A simplicial map 𝑓 is a simplicial homeomorphism if and only if it is a
bijection; in that case, the two complexes are simplicially homeomorphic.

The linearity of 𝑓 on simplices means the following. Suppose 𝑥 is in the 𝑘-simplex
𝜎 spanned by the vertices {𝑣𝑖}𝑘𝑖=0. Then 𝑥 is a convex combination of the vertices {𝑣𝑖}𝑘𝑖=0.
Being a convex combination means 𝑥 = 𝜆0𝑣0 + 𝜆1𝑣1 +⋯+𝜆𝑘𝑣𝑘, where 0 ≤ 𝜆𝑖 ≤ 1 for
each 𝑖 = 0, 1, … , 𝑘, and∑𝑘

𝑖=0 𝜆𝑖 = 1. The linearity of 𝑓means that 𝑓(𝑥)will be the same
convex combination of the vertex images {𝑓(𝑣𝑖)}𝑘𝑖=0, that is, 𝑓(𝑥) = 𝜆0𝑓(𝑣0)+𝜆1𝑓(𝑣1)+
⋯+ 𝜆𝑘𝑓(𝑣𝑘).

Note that a simplicialmap sends vertices to vertices, but not necessarily injectively.
If the {𝑓(𝑣𝑖)}𝑘𝑖=0 are not distinct, the simplex spanned by those points will be of lower
dimension than the simplex spanned by {𝑣𝑖}𝑘𝑖=0.

Theorem 14.16. A simplicial map from𝐾 to 𝐿 is determined by the images of the vertices
of 𝐾.

Theorem 14.17. A composition of simplicial maps is a simplicial map.

Theorem 14.18. If two complexes are simplicially homeomorphic, then there are one-to-
one correspondences between their 𝑘-simplices for each 𝑘 ≥ 0.

Theorem 14.19. A simplicial map 𝑓 ∶ 𝐾 → 𝐿 is continuous as a map on the under-
lying spaces. In particular, simplicially homeomorphic complexes have homeomorphic
underlying spaces.

Effective Thinking Principle. Ask What Things are Equal. After defining
a concept, a natural question to ask is when two items are equivalent.

The problem with the concept of simplicial homeomorphism as defined above is
that the very same physical objectmight not be equivalent to itself if it had two different
triangulations. So we need an expanded idea of equivalence of simplicial complexes.
For that purpose, we introduce the idea of a subdivision of a complex.

Definition. Let 𝐾 be a simplicial complex. Then a simplicial complex 𝐾′ is a subdivi-
sion of𝐾 if and only if each simplex of𝐾′ is a subset of a simplex of𝐾 and each simplex
of 𝐾 is the union of finitely many simplices of 𝐾′.

Figure 14.4 illustrates a finite simplicial complex and a subdivision of it.

Definition. If 𝐾 and 𝐿 are complexes, a continuous map 𝑓 ∶ |𝐾| → |𝐿| is called piece-
wise linear or PL if and only if there are subdivisions 𝐾′ of 𝐾 and 𝐿′ of 𝐿 such that 𝑓
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Figure 14.4. A simplicial complex and a subdivision.

is a simplicial map from 𝐾′ to 𝐿′. If there exist subdivisions such that 𝑓 is a simplicial
homeomorphism, then 𝑓 is a PL homeomorphism and the spaces are PL homeo-
morphic.

The letters “PL” are used interchangeably with piecewise linear.

Theorem 14.20. A composition of PL maps is PL. A PL homeomorphism is an equiva-
lence relation.

Theorem 14.21. PL homeomorphic complexes are homeomorphic as topological spaces.

14.4 Simplicial Approximation
One of themost useful and important facts about simplicial maps is that every continu-
ous function between simplicial complexes can be approximated arbitrarily closely by
a simplicial map. Tomake this statement true, we cannot necessarily use the originally
given triangulations—we will have to take subdivisions first.

Exercise 14.22. Let𝐾 be a complex consisting of the boundary of a triangle (three vertices
and three edges), and let 𝐿 be a simplicially homeomorphic complex. Both |𝐾| are |𝐿| are
topologically circles. There is a continuousmap that takes the circle |𝐾| andwinds it twice
around the circle |𝐿|; however, show that there is no simplicial map from𝐾 to 𝐿 that winds
the circle |𝐾| twice around the circle |𝐿|.

Our goal is to take a continuous function 𝑓 between the underlying spaces of
simplicial complexes and find another continuous function 𝑔 that has two additional
virtues, namely, (1) being a simplicial map, and (2) for every point 𝑥 in the domain, we
want 𝑑(𝑓(𝑥), 𝑔(𝑥)) to be small.

Given the previous exercise, we see that it is impossible to accomplish our task of
finding simplicial approximations if we stickwith the triangulations of the domain and
codomain that we are given. So obtaining a simplicial approximation of a continuous
function may require us to pass to finer and finer triangulations.

A systematic method for finding appropriate subdivisions is to use a technique
called barycentric subdivision. We were introduced to barycentric subdivisions for tri-
angles in Chapter 11. Here we extend that idea to arbitrary dimensions.

Definition. The barycenter of a 𝑘-simplex {𝑣0𝑣1⋯𝑣𝑘} in ℝ𝑛 is the point
1

𝑘+1
(𝑣0 +⋯+ 𝑣𝑘).
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The barycenter is at the very center of the simplex. For example, the barycenter of
the 2-simplex {𝑣0𝑣1𝑣2} is

1
3
𝑣0+

1
3
𝑣1+

1
3
𝑣2. The barycentric coordinates of the barycenter

of a 2-simplex are ( 1
3
, 1
3
, 1
3
). The barycenter of a 0-simplex {𝑣0} is just 𝑣0.

The definition below of a barycentric subdivision is hard to parse, but after you see
what it means in the case of a 2-simplex as pictured and described after the definition,
the definition will make sense.

Definitions. (1) Let 𝜎 be an 𝑛-simplex. The first barycentric subdivision of 𝜎, de-
noted 𝗌𝖽 𝜎, is the complex of all simplices of the form {𝑏0⋯𝑏𝑘}, where 𝑏𝑖 is the
barycenter of a face 𝜎𝑖 of 𝜎 from a chain of faces 𝜎0 ⊂ 𝜎1 ⊂ ⋯ ⊂ 𝜎𝑘 of increasing
(not necessarily consecutive) dimensions. The maximal simplices, that is, the 𝑛-
simplices of 𝗌𝖽 𝜎, each arise from a maximal sequence of faces, that is, from faces
of consecutive dimensions starting with a vertex of 𝜎. Thus an 𝑛-simplex of 𝗌𝖽 𝜎
corresponds exactly to a permutation of the vertices of 𝜎.

(2) Let 𝐾 be a simplicial complex. The first barycentric subdivision of 𝐾, denoted
𝗌𝖽𝐾, is the complex consisting of all the simplices in the barycentric subdivision
of each simplex of 𝐾.

(3) The second barycentric subdivision, denoted 𝗌𝖽2 𝐾, is the first barycentric sub-
division of 𝗌𝖽𝐾. Proceeding in this way, the 𝑚-th barycentric subdivision is
denoted 𝗌𝖽𝑚 𝐾.

Thus in the first barycentric subdivision of a 2-simplex there are six maximal sim-
plices (triangles), each of which has one corner at the barycenter of a vertex, another
at the barycenter of an edge, and the third at the barycenter of the given 2-simplex.

Exercise 14.23. How many 𝑛-simplices are there in the first barycentric subdivision of
an 𝑛-simplex?

Exercise 14.24. Convince yourself that the barycentric subdivision of a complex 𝐾 is, in
fact, a subdivision of 𝐾.

One of the important necessities when making approximations of maps is to be
able to deal with pieces of increasingly small sizes. So one good feature of barycentric
subdivisions is that the simplices become smaller.

Theorem 14.25. Let𝐾 be a finite simplicial complex, and let 𝑎𝑛 be themaximumamong
the diameters of simplices in 𝗌𝖽𝑛 𝐾. Then lim𝑛→∞ 𝑎𝑛 = 0.

Now we are ready to construct a simplicial “approximation” 𝑔 to a given continu-
ousmap𝑓 ∶ |𝐾| → |𝐿|. Our first challenge is to decide inwhat sense the approximation
should approximate 𝑓. The natural choice would be tomake the simplicial approxima-
tion 𝑔 pointwise close to the given𝑓. In order to produce such a function 𝑔, subdivisions
of both 𝐾 and 𝐿 would be required. So we will first find an approximation to 𝑓 that is
a sort of halfway step that will involve subdividing only 𝐾.

Effective Thinking Principle. Halfway Steps. Break a difficult challenge
into smaller steps.
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Figure 14.5. The first four barycentric subdivisions of a 2-simplex.

It would be useful to develop a concept of a local neighborhood in a simplicial
complex that reflects the simplicial structure of the complex. Simplicial complexes
are naturally broken into their simplicial pieces, each of which is determined by its
vertices. So one way to think about closeness of two points 𝑥 and 𝑦 in a simplicial
complex is to think about whether 𝑥 and 𝑦 lie in the same or nearby simplices. The set
of all the simplices that share a given vertex is a natural neighborhood to think about
in a simplicial complex. That perspective leads to the following definitions.

Definitions. (1) Let 𝐾 be a simplicial complex. The minimal face of 𝑥 ∈ |𝐾| is the
simplex of 𝐾 of smallest dimension that contains 𝑥.

(2) The star of a vertex 𝑣 in 𝐾, denoted St(𝑣), is the set of all points whose minimal
face contains 𝑣.

So the star of a vertex is a natural notion of a neighborhood in a simplicial complex.
Notice that the definition of the star of a vertex is basically the interior of the union of
all simplices that contain 𝑣. Making the definition of star refer to minimal faces allows
us to conclude that the star of a vertex is an open set, which fact is the content of the
next exercise.

Exercise 14.26. The star of a vertex 𝑣 in a complex 𝐾 is an open set of |𝐾|, and the col-
lection of all vertex stars covers |𝐾|.
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Exercise 14.27. If the simplex 𝜎 = {𝑣0⋯𝑣𝑘} in 𝐾 is the minimal face of a point 𝑥 ∈ |𝐾|,
then 𝑥 ∈ St(𝑣0) ∩⋯ ∩ St(𝑣𝑘).

Simplicial maps take simplices in the domain to simplices in the codomian. A
partial step in that direction is a map that takes simplices in the domain into the star
of a vertex in the range.

Definition. Suppose 𝐾 and 𝐿 are simplicial complexes. A continuous function
𝑓 ∶ |𝐾| → |𝐿| satisfies the star condition with respect to 𝐾 and 𝐿 if and only if
for each vertex 𝑣 ∈ 𝐾, there is a vertex 𝑤 ∈ 𝐿 such that

𝑓(St(𝑣)) ⊂ St(𝑤).

So now we are in a position to develop a notion of approximation of maps that
refers to the simplicial structure of simplicial complexes rather than distances.

Definition. Let 𝑋 and 𝑌 be the underlying spaces of simplicial complexes, and let
𝑓 ∶ 𝑋 → 𝑌 be a continuous map. A simplicial approximation of 𝑓 is a simpli-
cial map 𝑔 ∶ 𝐾 → 𝐿, where 𝐾 is a simplicial complex with |𝐾| = 𝑋 and 𝐿 is a simplicial
complex with |𝐿| = 𝑌 , such that for each vertex 𝑣 of 𝐾,

𝑓(St(𝑣)) ⊂ St(𝑔(𝑣)).

Suppose 𝑓 is a continuous function satisfying the star condition with respect to
some 𝐾 and 𝐿, and we want to construct a simplicial approximation 𝑔 of 𝑓. There
really is only one thing to try. Namely, let’s define a function 𝑔 on the vertices of 𝐾 by
setting 𝑔(𝑣) = 𝑤 for any 𝑤 that satisfies 𝑓(St(𝑣)) ⊂ St(𝑤). Can such a map 𝑔 on the
vertices of 𝐾 always be extended to a simplicial map from 𝐾 to 𝐿 so that simplices map
to simplices? The next theorem answers that question in the affirmative.

Theorem14.28. Suppose𝐾 and 𝐿 are simplicial complexes. Then a continuous function
𝑓 ∶ |𝐾| → |𝐿| satisfies the star condition with respect to 𝐾 and 𝐿 if and only if 𝑓 has a
simplicial approximation 𝑔 ∶ 𝐾 → 𝐿.

Theorem 14.29. If 𝑔, 𝑔′ ∶ 𝐾 → 𝐿 are both simplicial approximations to a continuous
function 𝑓 ∶ |𝐾| → |𝐿|, then for any point 𝑥 ∈ |𝐾|, if 𝜎 is the minimal face of 𝑥 in 𝐾, the
point 𝑓(𝑥) and the simplices 𝑔(𝜎) and 𝑔′(𝜎) all lie in a single simplex of 𝐿.

When two points are in the same simplex, the straight line segment between them
is also in that simplex. Such straight lines can help us construct a homotopy between
a function and a simplicial approximation of it.

Recall that two maps 𝑓, 𝑔 ∶ 𝑋 → 𝑌 are homotopic if there is a continuous map
𝐹 ∶ 𝑋 × [0, 1] → 𝑌 such that for all 𝑥 ∈ 𝑋 , 𝐹(𝑥, 0) = 𝑓(𝑥) and 𝐹(𝑥, 1) = 𝑔(𝑥). The
previous theorem will allow you to construct a homotopy between 𝑓 and 𝑔.

Theorem 14.30. Let 𝐾 and 𝐿 be simplicial complexes. If 𝑓 ∶ |𝐾| → |𝐿| has a simplicial
approximation 𝑔 ∶ 𝐾 → 𝐿, then 𝑓 is homotopic to 𝑔 ∶ |𝐾| → |𝐿|.

Intuitively, if 𝐾 has very small simplices, then a continuous function 𝑓 is likely to
satisfy the star condition. Barycentric coordinates will help us break the domain into
small enough pieces.
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Theorem 14.31. Suppose 𝐾 and 𝐿 are finite simplicial complexes and 𝑓 ∶ |𝐾| → |𝐿| is a
continuous function between their underlying spaces. Then there exists 𝑚 ≥ 1 such that
the function 𝑓 ∶ | 𝗌𝖽𝑚 𝐾| → |𝐿| satisfies the star condition with respect to 𝗌𝖽𝑚 𝐾 and 𝐿.

Putting all these theorems together, we can show that every continuous function
between simplicial complexes can be approximated by a homotopic simplicial map.

Theorem 14.32. Suppose 𝐾 and 𝐿 are simplicial complexes and 𝑓 ∶ |𝐾| → |𝐿| is a
continuous function between their underlying spaces. Then there exists 𝑚 ≥ 1 such that
𝑓 has a simplicial approximation 𝑔 ∶ 𝗌𝖽𝑚 𝐾 → 𝐿.

Note that the simplicial approximation 𝑔 uses a subdivision of 𝐾 but not 𝐿, and
note that 𝑔may not be pointwise close to 𝑓. However, if we allow subdivisions of 𝐿 as
well as 𝐾, we can choose our simplicial approximations to be pointwise as close as we
like.

Theorem 14.33 (Simplicial Approximation Theorem). Let 𝐾 and 𝐿 be simplicial com-
plexes, let 𝑓 ∶ |𝐾| → |𝐿| be a continuous function between their underlying spaces, and
let 𝜖 > 0. Then there exist𝑚, 𝑛 ≥ 1 and a simplicial map 𝑔 ∶ 𝗌𝖽𝑛 𝐾 → 𝗌𝖽𝑚 𝐿 such that 𝑓
is homotopic to 𝑔 and for every 𝑥 ∈ |𝐾|, 𝑑(𝑓(𝑥), 𝑔(𝑥)) < 𝜖.

This theorem tells us that whenever we are dealing with continuous functions be-
tween spaces that are triangulable and when close approximations are satisfactory for
our purposes, then we can use simplicial maps. Simplicial maps are often very helpful.

14.5 Sperner’s Lemma and the Brouwer Fixed
Point Theorem

In the chapters ahead we will see the value of simplices and complexes in their rela-
tionship to homology. But the ideas of simplices and complexes can be used to prove
some of the most interesting theorems of topology directly. In this section, we will
prove the famous Brouwer Fixed Point Theorem, which states that every continuous
function from a closed 𝑛-ball to itself leaves some point fixed. The Brouwer Fixed Point
Theoremhas important applications inmanyfields. Somenotable applications include
the existence of solutions to differential equations and the existence of mixed strategy
Nash equilibria in game theory.

The adventure begins with a combinatorial insight called Sperner’s Lemma. We
will start with dimension one and work our way up.

Theorem 14.34. Let 𝐾 be a subdivision of a 1-simplex 𝜎. Label every vertex of 𝐾 with a 0
or a 1 such that one of the two vertices of 𝜎 is labeled with a 0 and the other is labeled with
a 1. Then there are an odd number of edges in 𝐾 such that one vertex is labeled 0 and the
other vertex is labeled 1.

The preceding theorem can be thought of as a combinatorial version of the Inter-
mediate Value Theorem.

Effective Thinking Principle. Seek Extensions. After seeing an insight,
seek ways to extend it.
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In a way, the above theorem seems rather simple—and perhaps does not seem too
thrilling. But it gives us a chance to think about what the analogous version might be
in dimension two. Here is a possible 2-dimensional extension.

Theorem 14.35. Let 𝐾 be a subdivision of a 2-simplex 𝜎. Label every vertex of 𝐾 with 0,
1, or 2 such that the three vertices of 𝜎 are labeled with different numbers, and the vertices
of 𝐾 an edge of 𝜎 can only receive a label that agrees with the label of one of the endpoints
of that edge. Then there is a triangle in𝐾 such that its vertices are labeled with all different
numbers. In fact, there are an odd number of such triangles.

Figure 14.6. A Sperner labeling. Do you see a simplex in the trian-
gulation with all different labels?

Surely, we cannot resist extending this result to arbitrary dimensions. Given a sub-
division 𝐾 of an 𝑛-simplex 𝜎, consider a labeling in which every vertex of 𝐾 is labeled
with one of {0, 1, … , 𝑛} such that the (𝑛+1) vertices of 𝜎 are labeled with different num-
bers, and every other vertex 𝑣 of 𝐾 is labelled with the label of one of the vertices of 𝜎
that spans the minimal face of 𝑣. Such a labeling is called a Sperner labeling. The
following theorem is known as Sperner’s Lemma.

Theorem 14.36 (Sperner’s Lemma). Let 𝐾 be a subdivision of an 𝑛-simplex 𝜎 with a
Sperner labeling. Then there is an 𝑛-simplex 𝜏 in 𝐾 such that its vertices are labeled with
all different numbers. In fact, there are an odd number of such 𝑛-simplices.

Sperner’s Lemma and knowledge about uniform continuity of continuous maps
between compact spaces will allow you to prove the No Retraction Theorem.

Theorem 14.37 (No Retraction Theorem). Let 𝜎 be an 𝑛-simplex with boundary 𝜕𝜎.
There does not exist a continuous function 𝑟 ∶ 𝜎 → 𝜕𝜎 such that for every 𝑥 ∈ 𝜕𝜎,
𝑟(𝑥) = 𝑥.

Next you will use the No Retraction Theorem to prove themost famous fixed point
theorem—the Brouwer Fixed Point Theorem.
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Theorem14.38 (𝑛-dimensional BrouwerFixedPoint Theorem). Let𝜎𝑛 be an𝑛-simplex.
For every continuous function 𝑓 ∶ 𝜎𝑛 → 𝜎𝑛 there exists a point 𝑥 ∈ 𝜎𝑛 such that
𝑓(𝑥) = 𝑥.

Perhaps the easiest way to prove the Brouwer Fixed Point Theorem is to prove that
it is equivalent to the No Retraction Theorem. So instead of proving the Brouwer Fixed
Point Theorem directly, prove that it is equivalent to the No Retraction Theorem. To
prove the equivalence of those two statements, you need to answer the two questions
below. It might be convenient to think of the 𝑛-simplex as an 𝑛-ball (to which it is
homeomorphic), because an 𝑛-ball is rounder.
(1) Suppose you were given a retraction from an 𝑛-simplex to its boundary. Then how

could you use that map to construct a fixed point free map from the 𝑛-simplex to
itself?

(2) Suppose you were given a fixed point free map from the 𝑛-simplex to itself. Then
how could you use that map to produce a retraction from the 𝑛-simplex to its
boundary?

Convince yourself that answering these two questions would in fact prove the
equivalence of the No Retraction Theorem and the Brouwer Fixed Point Theorem.
Since you have already proved the No Retraction Theorem, then after proving the
equivalence, you will have proved the Brouwer Fixed Point Theorem as well.

14.6 The Jordan Curve Theorem,
the Schoenflies Theorem,
and the Triangulability of 2-Manifolds

In dimensions one, two, and three, every manifold is triangulable. Hence, to study
these low-dimensional manifolds, it suffices to study simplicial complexes. The proofs
of these triangulability theorems are quite involved for dimensions two and three, but
the hardy reader might enjoy the adventure in dimension two. The 3-dimensional ver-
sions would take us too far astray, so, alas, we are forced to omit those delights here,
but hope you will meet them sometime during your lifetime of learning.

In this section, we guide you through a possible approach to proving several fun-
damental theorems in plane topology: the Jordan Curve Theorem, the Schoenflies
Theorem, the triangulability of 2-manifolds, and the fact that orientability and the Eu-
ler characteristic of compact 2-manifolds are well-defined features. These theorems
are difficult because they involve grappling with detailed plane geometry and taking
limits of sequences of homeomorphisms. Wewill start with a sort of heuristic overview
of the strategy and then afterward dive into the deep end. Feel free to skip this whole
section.

A surface, or 2-manifold, is locally homeomorphic to the plane. Analyzing the
global structure of a compact, connected surface in the chapter about the classification
of 2-manifolds required us to look at thewhole object. Aswe saw in that chapter, one of
the most important steps we took to simplify our task was to accept the fact that every
compact surface is triangulable. After accepting that 2-manifolds are triangulable, we
knew how the triangles fit together locally and we knew there are only finitely many
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of them, so we were able to analyze our surfaces by moving from triangle to adjacent
triangle or seeing why that implied that compact, connected, 2-manifolds were actu-
ally homeomorphic to polygonal disks with edges identified in pairs. The geometric
simplicity of triangles was greatly helpful to our analysis, so proving that every com-
pact 2-manifold is homeomorphic to a simplicial complex in ℝ𝑛 is worth considerable
effort.

Outline of the proof of the triangulability of 2-manifolds: We know that a compact
2-manifold has a finite cover of open sets each of which is homeomorphic to an open
disk. You can show that the 2-manifold can, in fact, be covered by a finite number of
closed disks. Suppose those topological disks in the 2-manifold intersected one another
neatly. Then overlaps could be removed to create a cover of the 2-manifold by subsets
each homeomorphic to a closed disk where the interiors of the closed disks were dis-
joint and every two of those closed disks either were disjoint or met at a single point or
met along a common arc on the boundary of each. From there, each disk could be bro-
ken up into topological triangles where each pair of those triangles met with the same
constraints as the disk intersections had. Then it would be easy to create a homeomor-
phism to a desired subset of ℝ5 by choosing points in ℝ5 more or less randomly and
taking the vertices of the topological triangles to those points in ℝ5, creating triangles
from every triple of points that corresponded to a topological triangle in the 2-manifold,
and creating the homeomorphism from each topological triangle in the 2-manifold to
each rectilinear triangle in ℝ5 appropriately.

To fill in the details of the argument above, the difficult part occurs when we try
to come to grips with the sentence: “Suppose those topological disks in the 2-manifold
intersected one another neatly.” First we will have to decide what “neatly” means.
Then we will need to deal with the challenge of getting topological arcs in the plane
to intersect one another in reasonable ways. Also, we will need to prove the Jordan
Curve Theorem, which basically says that a simple closed curve in the plane separates
the plane into two pieces. We will also need to prove the Schoenflies Theorem, which
shows that for any simple closed curve in the plane, there is a homeomorphism of
the plane taking it to a round circle. The heart of the challenges in the triangulability
question lies in the details of the proof of the Schoenflies Theorem.

Fair warning: many of the following theorems are challenging; however, they are
not impossibly difficult.

We can start with a polygonal version of the Jordan Curve Theorem. Do not hes-
itate to use simple facts about ℝ2 such as the local geometry of a line segment or an
angle. There are several approaches to proving the next two theorems, but one way to
take advantage of the polygon hypothesis is to induct on the number of segments that
make up the polygon.

Theorem 14.39. Let ℎ ∶ 𝕊1 → ℝ2 be an embedding that is a polygon, that is, ℎ(𝕊1)
consists of a finite number of straight line intervals. Then ℎ(𝕊1) separates ℝ2 into two
components and each point of ℎ(𝕊1) is a limit point of each component.

Next we can prove a polygonal version of the Schoenflies Theorem.

Theorem 14.40. Let ℎ ∶ 𝕊1 → ℝ2 be an embedding that is a polygon, that is, ℎ(𝕊1)
consists of a finite number of straight line intervals. Then there is a homeomorphism
𝐻 ∶ ℝ2 → ℝ2 such that𝐻(ℎ(𝑆1)) is the unit circle.
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To prove the next theorem, you might think of covering up the square with bricks,
like a brick wall, that are so small that no brick touches both 𝐴 and 𝐵. One good thing
about bricks is that if you take any collection of bricks, such as those that touch 𝐴, the
boundary of any such collection of bricks is either a polygonal arc or a polygonal simple
closed curve.

Theorem 14.41. Let 𝐴 and 𝐵 be disjoint closed subsets of [0, 1] × [0, 1] such that 𝐴 ∩
([0, 1] × {0, 1} ∪ {1} × [0, 1]) = ∅ and 𝐵 ∩ ([0, 1] × {0, 1} ∪ {0} × [0, 1]) = ∅. Then there
exists a path in [0, 1] × [0, 1] from (1/2, 0) to (1/2, 1) that does not intersect 𝐴 ∪ 𝐵.

The next theorem states that no embedding of a closed interval in the plane sepa-
rates the plane. In proving that theorem, you might want to first prove the case where
you can find a polygonal arc𝐴 (that is, onemade of a finite number of straight line seg-
ments) from 𝑝 to 𝑞 that misses the first half of the embedding and another polygonal
arc 𝐵 from 𝑝 to 𝑞 that misses the second half of the embedding such that 𝐴∩𝐵 = {𝑝, 𝑞}
and the midpoint of the embedded arc is outside the simple closed curve 𝐴 ∪ 𝐵.

Theorem 14.42. Suppose ℎ ∶ [0, 1] → ℝ2 is an embedding and suppose 𝑝 and 𝑞 are
points inℝ2 not contained in ℎ([0, 1]). Then there exists a path 𝑓 ∶ [0, 1] → ℝ2 such that
𝑓(0) = 𝑝, 𝑓(1) = 𝑞, and 𝑓([0, 1]) ∩ ℎ([0, 1]) = ∅.

The preceding theorem can be summarized by saying that no arc separates the
plane. Knowing that no arc separates the plane, you can prove the Jordan Curve The-
orem for simple closed curves that have a flat spot.

Theorem 14.43. Suppose 𝑔, ℎ ∶ [0, 1] → ℝ2 are embeddings such that 𝑔([0, 1]) is a
straight line segment, 𝑔(0) = ℎ(0), 𝑔(1) = ℎ(1), and 𝑔((0, 1)) ∩ ℎ((0, 1)) = ∅. Then
𝑔([0, 1])∪ℎ([0, 1]) separatesℝ2 into two components and each point of 𝑔([0, 1])∪ℎ([0, 1])
is a limit point of each component.

This special case of the Jordan Curve Theorem allows you to prove the general
case.

Theorem 14.44 (Jordan Curve Theorem). Let ℎ ∶ 𝕊1 → ℝ2 be an embedding. Then
ℎ(𝕊1) separates ℝ2 into two components and each point of ℎ(𝕊1) is a limit point of each
component.

Effective Thinking Principle. Explore Extensions. After proving a theo-
rem, investigate whether a more general statement would be true.

The Jordan Curve Theorem tells us that the complement of an embedded circle
has two components and is the boundary of each. A natural question is whether it
would be possible to construct any continuum 𝐶 ⊂ ℝ2 such thatℝ2−𝐶 has more than
two components and yet every point of 𝐶 is a limit point of each of the three or more
components of its complement. Surprisingly, creating such a continuum 𝐶 is possible.
We will use the fact that if 𝐶0 ⊃ 𝐶1 ⊃ 𝐶2 ⊃ ⋯ ⊃ 𝐶𝑖 ⊃ ⋯ are a nested sequence of
continua, then 𝐶 = ⋂𝑖=0,1,2,… 𝐶𝑖 is a continuum.
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Exercise 14.45. (1) Let𝐶0 be a diskwith two holes. Construct a subset𝐶1 of𝐶0 such that
𝐶1 is also homeomorphic to a disk with two holes, and for which each point 𝑥 ∈ 𝐶1 is
within distance 1 of points in each of the three components of ℝ2 − 𝐶1.

(2) Construct a continuum 𝐶 ⊂ ℝ2 such that ℝ2 − 𝐶 has three components and each
point 𝑥 ∈ 𝐶 is a limit point of each component of ℝ2 − 𝐶.

(3) Construct a continuum 𝐶 ⊂ ℝ2 such that ℝ2 − 𝐶 has infinitely many components
and each point 𝑥 ∈ 𝐶 is a limit point of each component of ℝ2 − 𝐶.

The examples you constructed in the previous exercise are called the Lakes of
Wada.

Now that we know the Jordan Curve Theorem, we know what we mean by the
inside of a simple closed curve in the plane. We will now proceed to prove the Schoen-
flies Theorem by proving that any simple closed curve in the plane can be filled upwith
a sort of expanding bull’s eye where the outer rings are getting increasingly closer to
the simple closed curve. To construct such rings, let’s start by finding some polygonal
simple closed curves that are close to the embedded simple closed curve. You might
consider using small bricks again. Notice that the polygonal simple closed curve you
will construct in the theorem below is close to the topological embedding as a set, but
it is not necessarily close to the embedding as a map.

Theorem 14.46. Let ℎ ∶ 𝕊1 → ℝ2 be an embedding. Let 𝑝 be a point in the bounded
component of ℝ2 − ℎ(𝕊1), and let 𝜖 > 0. Then there exists an embedding 𝑔 ∶ 𝕊1 → ℝ2

such that 𝑔(𝕊1) is a polygonal simple closed curve in the bounded component of ℝ2 −
ℎ(𝕊1), 𝑔(𝕊1) lies in the 𝜖-neighborhood of ℎ(𝕊1), and 𝑝 is in the bounded component of
ℝ2 − 𝑔(𝕊1).

Since 𝑔(𝕊1) is in the bounded component of ℝ2 − ℎ(𝕊1), it follows that ℎ(𝕊1) is in
the unbounded component of ℝ2 − 𝑔(𝕊1).

The problem with our polygonal simple closed curve 𝑔(𝕊1) is that it is not close as
a map to the simple closed curve ℎ(𝕊1). We will start to remedy that defect by creating
a map 𝑔 that is somewhat close to the map ℎ on part of 𝕊1. In the following theorem
you are given an arc 𝐴 on 𝕊1 with endpoints 𝑎 and 𝑏. In proving the theorem, you
might consider taking a point 𝑝𝑎 in the bounded component of ℝ2 −ℎ(𝕊1) that is very
close to ℎ(𝑎) and drawing a straight line from 𝑝𝑎 toward ℎ(𝑎) and finding the first point
𝑞𝑎 where that straight line hits ℎ(𝕊1). By choosing 𝑝𝑎 very close to ℎ(𝑎), you can be
assured that 𝑞𝑎 is as close to ℎ(𝑎) as you wish. The segment from 𝑝𝑎 to 𝑞𝑎 is an interval
coming off the topological simple closed curve heading into the interior of it. Perhaps
you can prove that any polygonal simple closed curve such as you found in the previous
theoremwouldhave to cross through that segment. In any case, erecting those intervals
might be useful. The statement of the following theorem is perhapsmore difficult than
its proof.

Theorem 14.47. Let ℎ ∶ 𝕊1 → ℝ2 be an embedding. Let 𝜖 > 0, let𝐴 be an arc on𝕊1 with
endpoints 𝑎 and 𝑏 such that the diameter of ℎ(𝐴) is less than 𝜖, and let 𝑝 be a point in the
bounded component of ℝ2 − ℎ(𝕊1). Then there exists an embedding 𝑔 ∶ 𝕊1 → ℝ2 such
that 𝑔(𝕊1) is a polygonal simple closed curve in the bounded component ofℝ2 − ℎ(𝕊1), 𝑝
is in the bounded component of ℝ2 − 𝑔(𝕊1), and for every 𝑥 ∈ 𝐴, 𝑑(𝑔(𝑥), ℎ(𝑥)) < 𝜖.
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Putting inmore intervals at each stage will allow you to create a sequence of polyg-
onal simple closed curves that become increasingly close as maps to ℎ and that create
a whole constellation of ever finer polygonal simple closed curves nearer and nearer
to ℎ(𝕊1). Using the polygonal Schoenflies Theorem in each of those pockets will allow
you to prove that the closure of the interior of ℎ(𝕊1) is homeomorphic to a disk.

Theorem 14.48. Let ℎ ∶ 𝕊1 → ℝ2 be an embedding, let 𝑈 be the bounded component
of ℝ2 − ℎ(𝕊1), and let 𝐷 be the closed unit ball in ℝ2. Then there is a homeomorphism
𝐻 ∶ (𝑈 ∪ ℎ(𝕊1)) → 𝐷.

Realizing that adding a point at infinity to ℝ2 gives 𝕊2 is one way to see that deal-
ing with the unbounded component is not a huge challenge. Alternatively, you could
repeat the arguments above on the unbounded component. Either way, you have suc-
cessfully proved the Schoenflies Theorem.

Theorem 14.49 (Schoenflies Theorem). Let ℎ ∶ 𝕊1 → ℝ2 be an embedding. Then there
is a homeomorphism𝐻 ∶ ℝ2 → ℝ2 such that𝐻(ℎ(𝕊1)) is the unit circle.

During the course of the proof of the Schoenflies Theorem, you have actually
learned that any embedding of a simple closed curve or an arc in the plane is arbitrarily
close to a polyhedral embedding.

Theorem 14.50. Let ℎ ∶ [0, 1] → ℝ2 be an embedding of [0, 1] in the plane, and let
𝜖 > 0. Then there exists a polygonal embedding 𝑔 ∶ [0, 1] → ℝ2 such that ℎ(0) = 𝑔(0),
ℎ(1) = 𝑔(1), and for every 𝑥 ∈ [0, 1], 𝑑(ℎ(𝑥), 𝑔(𝑥)) < 𝜖.

We can use our insights from the proofs to show that for any two pointwise close
embeddings of an arc into the plane, we can find a homeomorphism of the plane that
takes one embedding to the other. This next theorem says that two close embeddings
of an arc into the plane are morally the same.

Theorem14.51. Let𝑓, 𝑔 ∶ [0, 1] → ℝ2 be two embeddings of [0, 1] in the plane such that
𝑓(0) = 𝑔(0) and 𝑓(1) = 𝑔(1). Let 𝜖 > 0. Suppose for every 𝑥 ∈ [0, 1], 𝑑(𝑓(𝑥), 𝑔(𝑥)) < 𝜖.
Then there exists a homeomorphism ℎ ∶ ℝ2 → ℝ2 such that ℎ(𝑓(𝑡)) = 𝑔(𝑡) for every
𝑡 ∈ [0, 1], and 𝑑(𝑥, ℎ(𝑥)) < 𝜖 for every 𝑥 ∈ ℝ2.

The insight that one embedded arc is the same as another via a homeomorphism
of the plane will allow you to triangulate 2-manifolds. The fundamental problem that
arises when trying to triangulate 2-manifolds is that overlapping patches that are each
homeomorphic to a disk do not agree on what should be viewed as “straight.” So it is
not easy to match up something that looks like a rectilinear triangle in one patch with
something that looks like a rectilinear triangle from the point of view of an overlapping
patch, but from the point of view of the first patch just looks like a topological trian-
gle. You can now match up topological embeddings neatly and successfully prove the
triangulability of compact 2-manifolds.

Theorem 14.52. Every compact 2-manifold is triangulable, that is, it is homeomorphic
to a subset 𝐶 of ℝ𝑛 consisting of a finite collection 𝑇 = {𝜎𝑖}𝑘𝑖=1 of (rectilinear) 2-simplices
where each pair of 2-simplices are disjoint or they meet in one vertex of each or they share
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a single edge. Since the space 𝐶 is homeomorphic to a 2-manifold, each edge of each 2-
simplex making up 𝐶 is shared by exactly two triangles, and around each vertex is a circle
of triangles whose union is a disk.

In fact, since we know that every metric space is paracompact, we can actually
prove the more general theorem that every 2-manifold is triangulable. For a non-
compact 2-manifold, being triangulable means that it is the union of a locally finite
collection of subsets each of which is homeomorphic to a 2-simplex such that those
embeddings of 2-simplices fit together like the rectilinear ones did in the case of com-
pact 2-manifolds.

Theorem 14.53. Every 2-manifold is triangulable.

The remaining detail to be considered regarding triangulations is to show that for
compact 2-manifolds, any two triangulations are equivalent, meaning that given any
two rectilinear triangulations of the same 2-manifold, it is possible to subdivide all the
triangles in each triangulation to arrive at a common triangulation. That is, the sub-
divisions of the two given triangulations produce two triangulations that are combina-
torically identical, that is, there is a one-to-one correspondence between the vertices of
one triangulation to the vertices of the other such that that correspondence induces a
one-to-one correspondence between the edges and the 2-simplices as well.

As a first step toward that end, we need to showhow to change a topological home-
omorphism that goes from one rectilinearly triangulated 2-manifold into another recti-
linearly triangulated 2-manifold and show that the homeomorphism can be adjusted so
that the images of edges are polygonal arcs in the image 2-manifold. This step amounts
to showing that topological arcs can be adjusted to become polygonal via a homeomor-
phism.

Lemma 14.54. Let𝑀1 and𝑀2 be two rectilinearly triangulated 2-manifolds in ℝ𝑛. Let
ℎ ∶ 𝑀1 → 𝑀2 be a topological homeomorphism. Then there exists a homeomorphism
𝑔 ∶ 𝑀1 → 𝑀2 such that the image of every edge in the triangulation of𝑀1 is a polyhedral
arc in𝑀2.

Taking edges to polygonal arcs is a step toward making our homeomorphism take
triangles to triangles. In the next theorem, the originally given triangles that make
up𝑀1 will probably be subdivided into smaller triangles in the process of proving this
theorem. In otherwords, the conclusion of the theoremdoes not assert that the original
triangles of𝑀1 go to triangles, only that the subtriangles go to triangles.

Theorem 14.55. Let𝑀1 and𝑀2 be two rectilinearly triangulated 2-manifolds inℝ𝑛. Let
ℎ ∶ 𝑀1 → 𝑀2 be a topological homeomorphism. Then there exists a homeomorphism
𝑔 ∶ 𝑀1 → 𝑀2 such that the image of every triangle in a triangulation of𝑀1 is a rectilinear
triangle in𝑀2.

Nowwe are in a position to prove that different triangulations of the same compact
2-manifold are equivalent in the sense that subdivisions of each are combinatorially
identical.

Theorem 14.56. Any two triangulations of a compact 2-manifold are equivalent.
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After you prove that a subdivision of a triangulation will yield the same answer
when you compute the Euler characteristic, you can prove that the Euler characteristic
of a compact 2-manifold is well-defined. (See Chapter 11 for the definition of the Euler
characteristic.)

Theorem 14.57. The Euler characteristic is well-defined for compact 2-manifolds.

The same insights about subdivisions and equivalence of triangulations also shows
that orientability is a well-defined concept.

Theorem 14.58. Orientability is well-defined for compact 2-manifolds.

The long sequence of technicalities in this section finally have filled in the details
in the proofs of the classification of 2-manifolds. The geometric intricacies entailed
in the proofs of the above theorems show us some of the rich structure that exists in
something as mundane as the plane. A few people on the planet find these details to
provide a certain delight. The authors happen to be among them, but we arewell aware
that they are not everyone’s cup of tea.

14.7 Simple Simplices; Complex Complexes;
Manifold Manifolds

In this chapter we defined topological objects whose names appropriately suggest their
meaning. Simplices are the simple building blocks that arise fromconstructing the sim-
plest objects we can think of that aremade of straight line combinations of a few points
in ℝ𝑛. Complexes can become complex because we can use any number of simplices
to create a complex. Any physical object we can envision is likely to be constructible
as a complex. And our classification of 2-manifolds and our existence in what appears
to be a 3-manifold suggests that manifolds are many and varied.

The creation of these ideas and our exploration of them followed the strategies we
have come to expect. We started by thinking of simple objects and explored how they
could be put together to create more complex objects. The whole of this study was mo-
tivated by looking at simple spaces with an eye toward dealing later with more compli-
cated spaces. Complexes andmanifolds are both examples of objects that we imagined
because they are built from spaces that we view as natural—namely, Euclidean spaces.
After defining them, we followed the usual methods of seeing their relationships and
seeing how transformations behaved that respected their structure.

Complexes can be thought of as things we can build with simple pieces. We can
now explore them further by taking advantage of their combinatorial virtues as we
develop ideas of homology to come.





15
Simplicial ℤ2-Homology:

Physical Algebra

The fundamental group, as we have seen, is a valuable tool for understanding a topo-
logical space. The central idea of the fundamental group is to understand a space by
the nature of its non-trivial loops, i.e., loops that cannot be contracted to a point. Such
loops reflect the presence of a certain kind of “hole,” such as the tunnel-like hole inside
a torus. Loops on the torus that wind around the tunnel are non-trivial. By contrast,
the sphere 𝕊2 has no non-trivial loops, and therefore has a trivial fundamental group.
And yet it too has a “hole,” though not the kind the doughnut has. The higher homo-
topy groups, which appear to be the natural generalizations of the fundamental group,
do detect spherical holes. Unfortunately, these groups have major drawbacks: they are
difficult to compute even in simple situations, and they can be bizarre—giving results
that do not reflect the apparent geometry we are trying to capture. For example, unbe-
lievably there is a homotopically non-trivial map of 𝕊3 into 𝕊2, which would seem to
suggest 𝕊2 has a 3-dimensional “hole” even though it is patently 2-dimensional.

In this chapter, we introduce the concept of homology, which associates to a space a
sequence of abelian groups (one for every dimension) that detect features of spaces that
can be regarded as variations of “holes.” Homology groups lack the bizarre behavior of
higher homotopy groups and are typically much easier to compute. For these reasons,
homology gives us an attractive, intuitively meaningful strategy to capture geometrical
differences among topological spaces.

In the preceding chapter we saw a combinatorial proof of the No Retraction The-
orem, which states that there is no continuous map of a ball to its boundary that fixes
the boundary. The intuition behind the No Retraction Theorem is that the boundary
of a ball has a hole, while the filled in ball does not. Homology theory is especially de-
signed to measure such distinctions, so you will see that using homology to provide an
alternative proof of the No Retraction Theorem is an iconic example of an application
of homology.

229
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The applications of homology are vast. In the next chapter you will see that the
ideas of homology that you develop in this chapter will enable you to prove many the-
orems that can rightly be viewed as among the highlights of topology.

15.1 Motivation for Homology

Effective Thinking Principle. Start with Simple Cases. Understanding
simple cases deeply is a great step toward understanding more abstract ver-
sions later.

There are many homology theories. We will begin by describing the most con-
crete version, which holds for simplicial complexes and in which each element of the
homology groups has a clear geometric manifestation as a representative that is a sub-
complex.

The motivating insight for homology theory for a space 𝑋 is this: a way to detect
the presence of a “hole” in𝑋 is to find an object that surrounds it. For instance, suppose
you triangulate the region between a bigger cube and a smaller cube to create a finite
simplicial complex𝐾, where |𝐾| = [−3, 3]×[−3, 3]×[−3, 3]−(−1, 1)×(−1, 1)×(−1, 1).
The “hole” in 𝐾 can be detected by a sphere—for example, the boundary of [−2, 2] ×
[−2, 2]×[−2, 2]—which is not filled in, that is, it is not the boundary of any 3-manifold
with boundary in |𝐾|. So in this case, a 2-dimensional manifold detects the hole in |𝐾|.

Although not exactly accurate (as you will soon see), a good way to start to un-
derstand homology for a space 𝑋 is to consider an 𝑛-manifold𝑀 inside 𝑋 . If𝑀 is not
the boundary of an (𝑛 + 1)-manifold with boundary, then𝑀 can capture some geom-
etry of 𝑋 , while if 𝑀 is the boundary of an (𝑛 + 1)-manifold with boundary, then 𝑀
doesn’t detect any hole or structure. The key here is to notice that boundary relation-
ships between 𝑛-manifolds and (𝑛+1)-manifolds in 𝑋 can carry information about the
presence of “hollowness” or “holes” in 𝑋 .

In the example above, the boundary of [−2, 2]×[−2, 2]×[−2, 2] is not the boundary
of a ball in |𝐾|, so it was identifying something important in the space, in this case, the
hollowness of |𝐾|.

So 𝑛-manifolds that are not the boundaries of (𝑛 + 1)-manifolds can be viewed as
detecting geometrical features analogous to “holes” in the space. The next step is to
realize that a smaller sphere around the hole in 𝐾 (such as the boundary of [−1, 1] ×
[−1, 1] × [−1, 1]) and a larger sphere around the hole in 𝐾 (such as the boundary of
[−2, 2]×[−2, 2]×[−2, 2]) are both detecting the samehole, so they should be considered
the same. In this case, the smaller sphere and the larger sphere together create the
boundary of the region between the two spheres. So this example suggests the idea
that two 𝑛-manifolds that together form the boundary of an (𝑛+1)-manifold in a space
𝑋 should be viewed as equivalent 𝑛-manifolds in 𝑋 from the point of view of detecting
“holes.”

Effective Thinking Principle. Turn Intuition into Precision. After gaining
an intuitive idea for a concept, make the ideas precise.
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Our example gives an intuitive idea that actually contains all the main features of
homology; however, the example is neither precise nor complete. We must now try to
turn this intuition into precise definitions.

Effective Thinking Principle. Turn Examples into General Statements. Ex-
amples constructed to illustrate salient issues provide great lessons for creating
general definitions or theorems.

Our intuition can be made clearer by examining another example. We will again
see these emerging concepts physically and combinatorially, but this time we will look
at the specific triangulation involved. Let’s consider the concrete simplicial complex
shown in Figure 15.1. It comprises two triangles (that is, two 2-simplices) {𝜎1, 𝜎2}, seven
edges (that is, seven 1-simplices) {𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7}, and five vertices (that is, five
0-simplices) {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}.

Figure 15.1. A small example of a simplicial complex.

This example is simple enough that we can look at all the 1-dimensional loops that
may or may not encircle the hole. We write each of these loops as a sum rather than a
union because we will soon be viewing each simplex as an element of a group, but you
should think of each sum simply as a physical collection of edges. There are several
loops in this example; for instance, 𝑒1 + 𝑒2 + 𝑒4 + 𝑒5 is one loop, 𝑒1 + 𝑒2 + 𝑒6 + 𝑒7 + 𝑒5 is
another loop, and 𝑒6 + 𝑒7 + 𝑒4 is another loop.

Which ones surround “holes” in our space? Well, 𝑒1 + 𝑒2 + 𝑒4 + 𝑒5 bounds a solid
piece of our space, namely 𝜎1 + 𝜎2. Hence it doesn’t encircle a hole, and it will be
considered trivial, that is, equivalent to 0 in the homology group we want to define.
The two loops 𝑒1 + 𝑒2 + 𝑒6 + 𝑒7 + 𝑒5 and 𝑒6 + 𝑒7 + 𝑒4 both surround the same hole, so
they should be considered “equal” in our group.

Another way to see that they surround the same hole is to look at the set of all
edges that are in one loop but not the other. This may be thought of as a “difference”
between the two loops, and if that difference does not contain another hole, we may
intuitively say that the two loops capture the same essential “holeyness” within them.

In our case, the difference between the loops 𝑒1+𝑒2+𝑒6+𝑒7+𝑒5 and 𝑒6+𝑒7+𝑒4 is
𝑒1+𝑒2+𝑒4+𝑒5. We have already decided that this difference should be 0 in homology,
because it bounds 𝜎1 + 𝜎2, a 2-dimensional object. So we should declare two cycles to
be equivalent if their difference is a loop that is the boundary of a set of 2-simplices
in the space. The arithmetic of these combinatorial objects and the desire to simplify
them by considering equivalence classes capture the core ideas of a homology group.
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Let’s look at one more loop in this example, namely, 𝑒1+𝑒2+𝑒3+𝑒6+𝑒7+𝑒4. That
set of edges is not a 1-manifold, yet it is a loop in the sense that it has no boundary.
So this figure-eight shaped loop suggests that the natural objects to consider are not
necessarily 1-manifolds, but instead are collections of edges that have no boundary
whether they are 1-manifolds or not.

Since we are expanding our notion of what objects to view as the elements of our
emerging idea of a homology group, we will use a different name for boundaryless
objects—we will call them cycles and define them precisely below.

15.2 Chains, Cycles, Boundaries, and the
Homology Groups

We can now give the exact definition of simplicial ℤ2-homology for a simplicial com-
plex𝐾. Actually, we define for every non-negative integer𝑛 the𝑛thℤ2-homology group
of 𝐾.

Let’s start with a simplicial complex 𝐾 with a fixed triangulation. We will call any
collection of 𝑛-simplices in 𝐾 an 𝑛-chain and we will denote such an 𝑛-chain using
plus signs rather than commas or union symbols. By doing so we are creating what’s
called a formal sum of the simplices, which associates to each 𝑛-simplex a coefficient
which comes from some group. In this case, the coefficient group will be ℤ2 = {0, 1},
the group of two elements where 0 is an additive identity and 1+1 = 0. So if a simplex
has coefficient 1, then the simplex appears in the sum, and otherwise it does not.

Definition. An 𝑛-chain of 𝐾 is a finite formal sum ∑𝑘
𝑖=1 𝜎𝑖 of distinct 𝑛-simplices in

𝐾. Note that the dimensions of the simplices must be the same. So chain will mean
𝑛-chain whenever the dimension is either unimportant or understood.

On one hand, you can think of a chain as a collection of simplices (an expression
like 𝜎1 +𝜎3 tells you which ones are in it), but on the other hand, you can also think of
a chain as a function that is 1 on the simplices that are part of the chain and 0 on the
simplices that are not. So the empty chain, which contains no simplices, is the zero
function on all simplices. We usually denote it by 0. Formal sums may be combined
by the usual rules of addition of functions (by adding the coefficient values simplex by
simplex), so that they form an abelian group under this operation.

Because 1 + 1 = 0 in ℤ2 = {0, 1}, the sum of a simplex 𝜎 with itself is going to be 0
(the empty chain), because 1𝜎 + 1𝜎 = 0𝜎 = 0. In a similar way, the sum of a chain 𝛾1
with another chain 𝛾2 is going to be the chain with just the simplices that appear in 𝛾1
or 𝛾2, but not both. We call this addition modulo 2 or addition mod 2. Also notice
that because there is no distinction between sums and differences in ℤ2, the difference
of chains 𝛾1 − 𝛾2 is the same as the sum 𝛾1 + 𝛾2.

Definition. The 𝑛-chain group of 𝐾 (with coefficients in ℤ2), denoted 𝖢𝑛(𝐾), is the
collection of 𝑛-chains in 𝐾 under formal addition mod 2. If there are no 𝑛-simplices in
𝐾, the 𝑛-chain group of 𝐾 is defined to be the trivial group (containing only the empty
chain), which we denote by 0.

The 𝑛-chain group of 𝐾 with coefficients in ℤ2 is more formally denoted
𝐶𝑛(𝐾; ℤ2)
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but since we focus onℤ2-homology exclusively in this chapter, to simplify notationwe omit
writing the ℤ2 and use a sans serif letter to denote the chain group:

𝖢𝑛(𝐾).

Similarly, when we (soon) define the 𝑛th homology group of 𝐾 with coefficients in ℤ2,
we will use a sans serif letter to denote it:

𝖧𝑛(𝐾)

rather than the more formal notation

𝐻𝑛(𝐾; ℤ2).

Exercise 15.1. Check that 𝖢𝑛(𝐾) is an abelian group.

Figure 15.2. The simplicial complex from Figure 15.1, repeated.

Example. Consider the simplicial complex in Figure 15.2. Then 𝖢2(𝐾) has two gener-
ators: the simplices 𝜎1 and 𝜎2. Hence 𝖢2(𝐾) consists of four chains: the empty chain 0,
𝜎1, 𝜎2, and 𝜎1+𝜎2. As a group, 𝖢2(𝐾) is isomorphic to (ℤ2)2, the direct sum of two copies
of ℤ2. The chain group 𝖢1(𝐾) is generated by 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7 and is isomorphic to
(ℤ2)7, the direct sum of seven copies of ℤ2. As an example of ℤ2 addition in this group,
note that

(𝑒1 + 𝑒2 + 𝑒3) + (𝑒3 + 𝑒4 + 𝑒5) = 𝑒1 + 𝑒2 + 𝑒4 + 𝑒5.
The chain group 𝖢0(𝐾) is generated by 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5 and is isomorphic to (ℤ2)5.

Now let’s develop a notion of the boundary of a chain. Since wewant the boundary
of an 𝑛-chain to be an (𝑛 − 1)-chain, we will define the boundary operator 𝜕 in each
dimension to be a homomorphism between chain groups:

𝜕𝑛 ∶ 𝖢𝑛(𝐾) → 𝖢𝑛−1(𝐾).

That is, the boundary operator 𝜕𝑛 takes an 𝑛-chain (which is just a sum of 𝑛-simplices)
and associates with it an (𝑛−1)-chain (which is just a sum of (𝑛−1)-simplices) that we
will call the boundary of the 𝑛-chain. If you guessed at the definition of 𝜕𝑛, you would
get it right. One technicality: we set 𝖢−1(𝐾) = {0}, the trivial group, for convenience
so we can define 𝜕0. It will be our general practice to omit the subscript 𝑛 on the “𝜕”
symbol when it is clear from context.
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Definition. The ℤ2-boundary of an 𝑛-simplex 𝜎 = {𝑣0⋯𝑣𝑛} is defined by

𝜕𝜎 =
𝑛
∑
𝑖=0

{𝑣0⋯ ̂𝑣𝑖⋯𝑣𝑛}.

Thus the ℤ2-boundary of the 𝑛-simplex 𝜎 is just a formal sum of the (𝑛 − 1)-faces of 𝜎.
For a 0-simplex, the ℤ2-boundary is defined to be 0 in 𝖢−1(𝐾). The ℤ2-boundary of
an 𝑛-chain is the sum of the boundaries of the simplices in the chain, thereby making
𝜕 linear:

𝜕 (
𝑘
∑
𝑖=1

𝜎𝑖) =
𝑘
∑
𝑖=1

𝜕(𝜎𝑖),

where the sum is taken mod 2.

Exercise 15.2. Verify that 𝜕 is a homomorphism, and use the definition to compute the
ℤ2-boundary of 𝜎1 + 𝜎2 in Figure 15.1.

The above exercise shows that the definition of 𝜕 does the right thing: namely, the
common edge of 𝜎1 and 𝜎2 is not counted as a piece of the ℤ2-boundary of 𝜎1 + 𝜎2,
because that common edge appears twice in the sum of 𝜕𝜎1 and 𝜕𝜎2 and in ℤ2 this
coefficient becomes 0. Thus working over ℤ2 coefficients is critical. Later on, when we
define homology with coefficients in ℤwewill need to alter our definition of boundary
so that it still works out as it should. But since we will only work with ℤ2-boundary
in this chapter, we will feel free for the remainder of this chapter to just use the word
boundary in place of the more cumbersome “ℤ2-boundary”.

Definition. An𝑛-cycle is an𝑛-chain of𝐾 whose boundary is zero. The set of all𝑛-cycles
of 𝐾 is denoted 𝖹𝑛(𝐾). Thus

𝖹𝑛(𝐾) = Ker 𝜕𝑛,
the kernel of the boundary operator. An 𝑛-boundary is an 𝑛-chain that is the boundary
of an (𝑛 + 1)-chain of 𝐾. The set of all 𝑛-boundaries is denoted 𝖡𝑛(𝐾). Thus

𝖡𝑛(𝐾) = Im𝜕𝑛+1,
the image of the boundary operator.

Exercise 15.3. Explore:
(1) Which 2-chains of Figure 15.1 are cycles?
(2) Which 1-chains of Figure 15.1 are cycles?
(3) Which 1-chains of Figure 15.1 are boundaries?
(4) Which 0-chains of Figure 15.1 are cycles?
(5) Which 0-chains of Figure 15.1 are boundaries?

The next theorem contains one of the most basic of all observations at the heart of
homology, namely, that the boundary of any chain is a cycle.

Theorem 15.4. Both 𝖹𝑛(𝐾) and 𝖡𝑛(𝐾) are subgroups of 𝖢𝑛(𝐾). Moreover,
𝜕 ∘ 𝜕 = 0;

in other words, 𝜕𝑛 ∘ 𝜕𝑛+1 = 0 for each index 𝑛 ≥ 0. Hence, 𝖡𝑛(𝐾) ⊂ 𝖹𝑛(𝐾).
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Remember that our motivation for developing homology theory is to detect holes
in a space by finding cycles that are not boundaries. Our motivation suggests that we
should try to get rid of cycles that are boundaries, and count as equivalent two cycles
whose difference is a boundary.

Definition. Two 𝑛-cycles 𝛼 and 𝛽 in 𝐾 are equivalent or homologous if and only if
𝛼 − 𝛽 = 𝜕𝛾 for some (𝑛 + 1)-chain 𝛾. In other words, 𝛼 and 𝛽 are homologous if they
differ by an element of the subgroup 𝖡𝑛(𝐾). This is denoted:

𝛼 ∼ℤ2 𝛽.

The equivalence class of 𝛼 is denoted by enclosing it in brackets like this: [𝛼]. An 𝑛-
cycle that is homologous to 0 is therefore a boundary, and it is called a trivial cycle.

You may be wondering why we use a minus sign in 𝛼 − 𝛽 since it is the same as
𝛼 + 𝛽 for 𝑛-chains with ℤ2 coefficients. That is because the minus sign is important
for ℤ-homology which we explore in a later chapter. We see here that two 𝑛-cycles are
equivalent if together they bound an (𝑛 + 1)-chain.

Exercise 15.5. List all the equivalence classes of 0-cycles, 1-cycles, and 2-cycles in the
complex in Figure 15.1.

Exercise 15.6. List all the equivalence classes of 0-cycles, 1-cycles, and 2-cycles in the
complex in Figure 15.3.

v1

v2

v3

v4

v5 v6

Figure 15.3. A slightly more complicated simplicial complex.

Exercise 15.7. List all the equivalence classes of 0-cycles, 1-cycles, and 2-cycles in a tri-
angulated 2-sphere with its standard triangulation as the faces of a 3-simplex.

Definition. The 𝑛th homology group (with coefficients in ℤ2) of a finite simplicial
complex 𝐾, denoted 𝖧𝑛(𝐾), is the additive group whose elements are equivalence
classes of cycles under the ℤ2-equivalence defined above, where [𝛼] + [𝛽] ∶= [𝛼 + 𝛽].
That is,

𝖧𝑛(𝐾) = 𝖹𝑛(𝐾)/𝖡𝑛(𝐾).
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Figure 15.4. Standard triangulation of a 2-sphere.

This construction is quite natural. Indeed, 𝖧𝑛(𝐾) is the group formed when we
take the collection of 𝑛-cycles of 𝐾 and set to zero those that are the boundary of an
(𝑛 + 1)-chain. An 𝑛-cycle is something that potentially could detect a hole, but saying
it is the boundary of an (𝑛+1)-chain is tantamount to saying that the hole is “filled” (so
there is no hole). Thus the homology group is designed to consider only those 𝑛-cycles
that actually detect some structure of the space.

Since 𝐾 is finite, 𝖧𝑛(𝐾) is a finite abelian group, and it is easy to see that every
element (aside from the identity) has order 2. Thus by the fundamental theorem of
finite abelian groups, each homology group𝖧𝑛(𝐾)will be isomorphic to a (finite) direct
sum of copies of ℤ2.

The following exercises provide good warm-ups for understanding homology
groups. If the reasoning seems tedious at first, do not worry—soon we will develop
tools to compute homology groups more efficiently.

Theorem 15.8. If 𝐾 is a one-point space, 𝖧𝑛(𝐾) ≅ 0 for 𝑛 > 0 and 𝖧0(𝐾) ≅ ℤ2.

Definition. Any space with the homology groups of a point is called acyclic.

Theorem 15.9. If 𝐾 is connected, then 𝖧0(𝐾) is isomorphic to ℤ2. If 𝐾 has 𝑟 connected
components, then 𝖧0(𝐾) is isomorphic to ℤ𝑟2.

Exercise 15.10. Let 𝐾 be a triangulation of a 3-dimensional ball that consists of a 3-
simplex together with its faces. Compute 𝖧𝑛(𝐾) for each 𝑛.

Exercise 15.11. Let 𝐾 be a triangulation of a 2-sphere that consists of the proper faces of
a 3-simplex. Compute 𝖧𝑛(𝐾) for each 𝑛.

Definitions. (1) Let 𝐾 be a simplicial complex with |𝐾| ⊂ ℝ𝑛. A point 𝑥 ∉ 𝐾 can see
𝐾 if any ray from 𝑥 intersects |𝐾| at most once.

(2) Let 𝐾 be a finite complex and 𝑥 a point that sees 𝐾. If 𝜎 = {𝑣0⋯𝑣𝑘} is a simplex of
𝐾, define the cone of 𝑥 over 𝜎 to be the simplex

𝖢𝗈𝗇𝖾𝑥(𝜎) = {𝑥𝑣0⋯𝑣𝑘}.
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(3) Define𝑥∗𝐾, the cone over𝐾, to be the simplicial complex comprising all simplices
𝖢𝗈𝗇𝖾𝑥(𝜎) for 𝜎 ∈ 𝐾, and all faces of such simplices.

(4) Define the simplicial cone operator 𝖢𝗈𝗇𝖾𝑥 ∶ 𝖢𝑛(𝐾) → 𝖢𝑛+1(𝑥 ∗𝐾) by extending
the definition of 𝖢𝗈𝗇𝖾𝑥(𝜎) linearly to chains.

B

C

x
y

𝑥 and 𝑦 both see a 1-simplex 𝑒1

A

B

C

x

𝑥 sees a 2-simplex 𝜎1

Figure 15.5. Simplices being seen.

𝖢𝗈𝗇𝖾𝑥(𝑒1), 𝖢𝗈𝗇𝖾𝑦(𝑒1) 𝖢𝗈𝗇𝖾𝑥(𝜎1)

Figure 15.6. Some cones.

Theorem 15.12. For 𝑥 seeing 𝐾 and 𝜎 a simplex of 𝐾,
𝜕 𝖢𝗈𝗇𝖾𝑥(𝜎) + 𝖢𝗈𝗇𝖾𝑥(𝜕𝜎) = 𝜎.

Corollary 15.13. For any complex 𝐾 and 𝑥 seeing 𝐾, the complex 𝑥 ∗ 𝐾 is acyclic.

Theorem 15.14. The complex 𝐾 consisting of an 𝑛-simplex together with all its faces is
acyclic.
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15.3 Induced Homomorphisms and Invariance

Effective Thinking Principle. Consider Transformations. After defining a
concept, explore how it interacts with transformations.

Now that we have seen some concrete examples of homology groups, we will show
that they are indeed topological invariants for simplicial complexes, that is, if the un-
derlying spaces of two simplicial complexes are homeomorphic, their homology groups
are isomorphic. Just as we did for fundamental groups, we will accomplish this goal
through the use of induced homomorphisms. That is, given a continuousmap between
simplicial complexes, we will create maps between their homology groups. Unfortu-
nately, since the construction of simplicial homology groups depends heavily on tri-
angulations and since continuous maps do not in general respect simplicial structure,
the construction of the induced homomorphisms for homology is somewhat more in-
volved than the corresponding construction for fundamental groups.

Effective Thinking Principle. Start With Simple Cases. When creating a
concept, start with simple cases and add complexity incrementally.

Fix two simplicial complexes 𝐾 and 𝐿. Our first step is to consider the case where
our map does happen to respect simplicial structure. In this case, the definition of the
induced map on homology is straightforward.

Exercise 15.15. Let 𝑓 ∶ 𝐾 → 𝐿 be a simplicial map. Carefully write out the definition of
the natural induced map 𝑓#𝑛 ∶ 𝖢𝑛(𝐾) → 𝖢𝑛(𝐿) from 𝑛-chains of 𝐾 to 𝑛-chains of 𝐿 and
show that it is a homomorphism.

The map 𝑓#𝑛 is called the induced chain map. The next exercise contains an
important technicality about the induced chain map in the case where the image of an
𝑛-simplex is an (𝑛 − 1)-simplex.

Exercise 15.16. If the simplicial map 𝑓 ∶ 𝐾 → 𝐿 maps an 𝑛-simplex 𝜎 to an (𝑛 − 1)-
simplex 𝜏, what is 𝑓#𝑛(𝜎)?

As we did with the boundary operator, we typically drop the subscript 𝑛 from our
notation and simply write 𝑓#.

The following theorem is perhaps the most important theorem in homology. It
is the theorem that will be used in the proofs of most of the applications of homology
theory, including the No Retraction Theorem, the Jordan-Brouwer Separation Theo-
rem, the Borsuk-Ulam Theorem, and many more. This theorem is summarized by the
phrase: “The boundary of the image is the image of the boundary.”

Theorem 15.17. Let 𝑓 ∶ 𝐾 → 𝐿 be a simplicial map, and let 𝑓# be the induced map
𝑓# ∶ 𝖢𝑛(𝐾) → 𝖢𝑛(𝐿). Then for any chain 𝑐 ∈ 𝖢𝑛(𝐾),

𝜕(𝑓#(𝑐)) = 𝑓#(𝜕(𝑐)).
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In other words, the diagram:

𝖢𝑛(𝐾)
𝑓#−−−−−→ 𝖢𝑛(𝐿)

𝜕↑↑↓ ↑↑↓𝜕

𝖢𝑛−1(𝐾)
𝑓#−−−−−→ 𝖢𝑛−1(𝐿)

commutes.

As youwill see, certain theorems in algebraic topology can be succinctly expressed
by so-called commutative diagrams like this one, which means that the result of
following the arrows is the same no matter which path is taken.

Definition. Let 𝑓 ∶ 𝐾 → 𝐿 be a simplicial map. The induced homomorphism 𝑓∗ ∶
𝖧𝑛(𝐾) → 𝖧𝑛(𝐿) is defined by 𝑓∗([𝑧]) = [𝑓#(𝑧)].

Note that the induced homomorphism 𝑓∗ is technically a sequence of maps, one
for each homology group. We could have indicated this fact with a subscript, e.g., 𝑓∗𝑛
for the map on the 𝑛th homology group. However, unless needed for emphasis, we
omit the subscript and write 𝑓∗ when the context is clear.

Of course, we have to check that 𝑓∗ is well-defined, which involves basic applica-
tions of the fact that the boundary of the image of a chain is the image of the boundary
of that chain.

Theorem 15.18. Let 𝑓 ∶ 𝐾 → 𝐿 be a simplicial map. Then the induced homomorphism
𝑓∗ ∶ 𝖧𝑛(𝐾) → 𝖧𝑛(𝐿) is a well-defined homomorphism.

Effective Thinking Principle. Look at Examples to Understand Theorems.
Specific examples can help us understand the implications of theorems more
deeply.

Let’s look at an example of a simplicial map with a non-trivial homology group
and observe how the induced homomorphism behaves.

Exercise 15.19. Let 𝐾 be a complex comprising the proper faces of a hexagon: six edges
and six vertices 𝑣0, … , 𝑣5. Let 𝐿 be the complex comprising the proper faces of a trian-
gle: three edges and three vertices 𝑤0, 𝑤1, 𝑤2. Let 𝑓 be a simplicial map that sends 𝑣𝑖 to
𝑤(𝑖 mod 3). Compute the homology groups of 𝐾 and 𝐿 and describe the simplicial map 𝑓
and the induced homomorphism 𝑓∗.

Now that we can induce a homomorphism on homology from a simplicial map,
we want to show that arbitrary continuous functions induce a homomorphism on ho-
mology. In the last chapter we saw how to approximate arbitrary continuous functions
between the underlying sets of simplicial complexes by simplicial maps that are ho-
motopic to our original continuous function. So our next step is to see how the steps
involved in creating simplicial approximations relate to induced homology maps.
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In constructing a simplicial approximation, one of the basic steps involved is tak-
ing barycentric subdivisions. So we should check that if we compute homology groups
using a triangulation, then we should get the same homology groups if we use the
barycentric subdivision of that triangulation to compute the homology groups of our
complex. Taking a barycentric subdivision gives us more 𝑛-simplices and more 𝑛-
cycles, but our (correct) intuition tells us that there are no more equivalence classes
of 𝑛-cycles—that is, breaking simplices into pieces does not create more holes in the
space.

Effective Thinking Principle. Pin Down Intuition. Take the trouble to
pin down details that justify intuition. Either you will better understand
why your intuition is correct or you will realize you are mistaken—both good
outcomes.

Recall that if 𝐾 is a triangulated complex, then 𝗌𝖽𝐾 is the barycentric subdivision
of 𝐾. Our next goal is to show that 𝖧𝑛(𝗌𝖽𝐾) is isomorphic to 𝖧𝑛(𝐾). A reasonable
strategy is to construct a specific simplicial map 𝜆 ∶ 𝗌𝖽𝐾 → 𝐾 and prove that 𝜆∗ ∶
𝖧𝑛(𝗌𝖽𝐾) → 𝖧𝑛(𝐾) is an isomorphism. We will define a candidate map here and ask
you to verify that it does what we want.

The simplicial map 𝜆 ∶ 𝗌𝖽𝐾 → 𝐾 is determined by its values on its vertices and is
defined as follows. Any vertex 𝑣 in 𝗌𝖽𝐾 is the barycenter of a simplex 𝜎 in 𝐾. Choose
any vertex of 𝜎 and define 𝜆(𝑣) to be that vertex. Notice that if 𝑣 is a vertex in 𝐾, then
𝜆(𝑣) = 𝑣, since a vertex of 𝐾 is the barycenter of itself.

Since 𝜆 is a simplicial map, 𝜆∗ is a well-defined homomorphism from 𝖧𝑛(𝗌𝖽𝐾) to
𝖧𝑛(𝐾).

We shall prove 𝜆∗ is injective and surjective by exhibiting an inverse homomor-
phism from 𝖧𝑛(𝐾) to 𝖧𝑛(𝗌𝖽𝐾). We could find such a homomorphism by finding a
map that takes chains in 𝖢𝑛(𝐾) to chains in 𝖢𝑛(𝗌𝖽𝐾) that commutes with the bound-
ary operator. Before reading on, think about the following exercise.

Exercise 15.20. Suggest a homomorphism from 𝖢𝑛(𝐾) to 𝖢𝑛(𝗌𝖽𝐾) that commutes with
𝜕. Could its induced homomorphism on the homology group be an inverse for 𝜆∗?

In doing the preceding exercise, you probably associated each 𝑛-simplex in 𝐾 to a
set of 𝑛-simplices that comprise it in the barycentric subdivision 𝗌𝖽𝐾. For the record,
let’s describe the map from 𝖢𝑛(𝐾) → 𝖢𝑛(𝗌𝖽𝐾) that does that and give it a name. Don’t
be intimidated by the technical notation involved in the following definition; it just
does what we claim.

Definition. Define the subdivision operator 𝖲𝖣 ∶ 𝖢𝑛(𝐾) → 𝖢𝑛(𝗌𝖽𝐾) by first defining
𝖲𝖣 on a simplex:

𝖲𝖣({𝑣0⋯𝑣𝑛}) = ∑
𝜋∈𝑆𝑛+1

{𝑏𝜋0 ⋯𝑏𝜋𝑛 },

where 𝑏𝜋𝑘 is the barycenter of the face {𝑣𝜋(0)⋯𝑣𝜋(𝑘)}, and 𝜋 ∈ 𝑆𝑛+1 is a permutation of
{0, 1, … , 𝑛}. Then extend 𝖲𝖣 linearly to define it on 𝑛-chains. Thus 𝖲𝖣 is a homomor-
phism that sends an 𝑛-simplex to the formal sum of the 𝑛-simplices in its barycentric
subdivision.
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The subdivision operator is not a simplicial map since it takes a single simplex
in 𝐾 to a chain containing many simplices in 𝗌𝖽𝐾. Nevertheless, as is the case with
simplicial maps, the image of the boundary is the boundary of the image.

Theorem 15.21. The subdivision operator commutes with the boundary operator, that
is, if 𝑐 is a chain in 𝐾, then 𝖲𝖣(𝜕𝑐) = 𝜕 𝖲𝖣(𝑐).

So we see how an 𝑛-cycle in 𝐾 that bounds an (𝑛 + 1)-chain in 𝐾 corresponds to
an 𝑛-cycle in 𝗌𝖽𝐾 that bounds an (𝑛 + 1)-chain in 𝗌𝖽𝐾. This fact will come in handy.

As a result of this theorem, there is a natural induced homomorphism
𝖲𝖣∗ ∶ 𝖧𝑛(𝐾) → 𝖧𝑛(𝗌𝖽𝐾).

We claim that 𝖲𝖣∗ and 𝜆∗ are inverses and the next two exercises will help verify this
fact.

Exercise 15.22. Show that 𝜆# ∘ 𝖲𝖣 = 𝗂𝖽, the identity map on 𝖢𝑛(𝐾), and therefore 𝜆∗ ∘
𝖲𝖣∗ = 𝗂𝖽∗, the identity map on 𝖧𝑛(𝐾).

To do the preceding exercise, proceed simplex by simplex.

Exercise 15.23. Show that 𝖲𝖣 ∘𝜆# and 𝗂𝖽, the identitymap on 𝖢𝑛(𝗌𝖽𝐾), induce the same
homomorphism on homology.

A moment’s reflection reveals why 𝖲𝖣 ∘𝜆# and 𝗂𝖽 should, intuitively speaking, in-
duce the same homomorphism on homology: if you think of the underlying maps for
𝖲𝖣 and 𝗂𝖽 as the identity map on | 𝗌𝖽 𝐾| = |𝐾|, then the underlying maps 𝗂𝖽|𝐾| ∘𝜆 and
𝗂𝖽| 𝗌𝖽𝐾| are homotopic (in fact, via a straight line homotopy). So if 𝑐 is a cycle in 𝗌𝖽𝐾,
the homotopy between image cycles 𝖲𝖣 ∘𝜆#(𝑐) and 𝗂𝖽(𝑐) should, intuitively speaking,
sweep out a simplicial chain between the two image cycles. Unfortunately, a homo-
topy, while continuous, is not necessarily a simplicial map.

So we adopt another strategy. We will attempt to construct a chain 𝐷(𝑧) whose
boundary consists of the image cycles 𝖲𝖣 ∘𝜆#(𝑧) and 𝗂𝖽(𝑧). Rather than globally trying
to find 𝐷(𝑧) for every cycle 𝑧, we will instead try to find such chains 𝐷(𝑐) for every
chain 𝑐. Let’s start by defining 𝐷(𝜎) for every simplex 𝜎, and then extending linearly to
produce the definition of 𝐷 acting on a chain. We cannot expect the boundary of 𝐷(𝑐)
to be just 𝖲𝖣 ∘𝜆#(𝑐) and 𝗂𝖽(𝑐), however. The boundary of 𝐷(𝑐) in general may involve
𝜕𝑐. But that will vanish if 𝑐 is a cycle.

Exercise 15.24. If 𝜎 ∈ 𝗌𝖽𝐾 is contained in 𝜏 ∈ 𝐾, then 𝖲𝖣 ∘𝜆#(𝜎) and 𝗂𝖽(𝜎) both lie
inside 𝜏.

Because of the previous exercise, the possibility thus opens for us to define 𝐷(𝜎)
locally inside 𝜏. Start by defining 𝐷(𝑣) for 𝑣 a vertex. Then inductively define 𝐷 di-
mension by dimension. If you’re really stuck, you may gather some hints by seeing the
discussion in Section 18.3.

Theorem 15.25. Let 𝐾 be a simplicial complex. Then 𝖧𝑛(𝐾) is isomorphic to 𝖧𝑛(𝗌𝖽𝐾).
In fact, if the simplicial map 𝜆 ∶ 𝗌𝖽𝐾 → 𝐾 is defined by taking each vertex in 𝗌𝖽𝐾 to any
vertex of the simplex in 𝐾 of which it is the barycenter, then

𝜆∗ ∶ 𝖧𝑛(𝗌𝖽𝐾) → 𝖧𝑛(𝐾)
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is an isomorphism. Also, the induced homomorphism of the subdivision operator
𝖲𝖣∗ ∶ 𝖧𝑛(𝐾) → 𝖧𝑛(𝗌𝖽𝐾)

is an isomorphism and is the inverse of 𝜆∗.

Nowwe can define the induced homomorphism for an arbitrary continuous func-
tion.

Definition. Let 𝐾 and 𝐿 be simplicial complexes, and let 𝑓 ∶ |𝐾| → |𝐿| be a continuous
function. Let 𝑔 ∶ 𝗌𝖽𝑚 𝐾 → 𝐿 be a simplicial approximation to 𝑓, and let 𝖲𝖣 be the
subdivision operator. Then the induced homomorphism

𝑓∗ ∶ 𝖧𝑛(𝐾) → 𝖧𝑛(𝐿)
is defined by 𝑓∗ = 𝑔∗ ∘ (𝖲𝖣∗)𝑚.

We need to check that 𝑓∗ is well-defined: that is, it doesn’t depend on the choice of
simplicial approximation 𝑔.

Theorem 15.26. Let 𝗌𝖽ℓ 𝐾 and 𝗌𝖽𝑚 𝐾 be barycentric subdivisions of 𝐾. Suppose 𝑔 ∶
𝗌𝖽ℓ 𝐾 → 𝐿 and ℎ ∶ 𝗌𝖽𝑚 𝐾 → 𝐿 are simplicial approximations to a continuous function
𝑓 ∶ |𝐾| → |𝐿|. Then 𝑔∗ ∘ 𝖲𝖣ℓ∗ ∶ 𝖧𝑛(𝐾) → 𝖧𝑛(𝐿) is the same homomorphism as ℎ∗ ∘ 𝖲𝖣𝑚∗ .

First check when ℓ = 𝑚 that 𝑔 and ℎ induce the same homomorphism. You will
use similar ideas as you used in Exercise 15.23 to construct a chain “between” 𝑔# and
ℎ#. Then, if ℓ and𝑚 are different, note that 𝑔∗ ∘ 𝖲𝖣ℓ∗ = 𝑔∗ ∘ (𝜆−1∗ )ℓ.

We have thus achieved our goal of taking a continuous map and inducing a map
on homology.

Nowwe can use our induced homomorphism to prove important key results about
homology. They show that our induced maps on the homology groups have the same
functorial properties as did our induced maps on the fundamental group.

Lemma 15.27. If𝐾, 𝐿, and𝑀 are simplicial complexes and 𝑓 ∶ |𝐾| → |𝐿| and 𝑔 ∶ |𝐿| →
|𝑀| are continuous maps, then (𝑔 ∘ 𝑓)∗ = 𝑔∗ ∘ 𝑓∗.

Lemma 15.28. If 𝑖 ∶ |𝐾| → |𝐾| is the identitymap, then 𝑖∗ is the identity homomorphism
on each homology group.

Homeomorphic spaces had better have isomorphic homology, and indeed they do.

Theorem 15.29. Let 𝐾 and 𝐿 be simplicial complexes. If 𝑓 ∶ |𝐾| → |𝐿| is a homeo-
morphism, then 𝑓 induces an isomorphism between the ℤ2-homology groups of 𝐾 and
𝐿.

We have thus successfully shown that homology is a topological invariant. No-
tice that, in particular, the isomorphism classes of a complex’s homology groups only
depend on the underlying space, not on the particular triangulation. Hence, we are
justified in using the notation 𝖧𝑛(𝐾)without reference to that particular triangulation
involved. Of course, if we want to actually exhibit elements of a homology group, we
need to choose a triangulation.

Not only do homeomorphic spaces have the same homology groups, but any ho-
motopy equivalent spaces have isomorphic homology groups.
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Theorem 15.30. Let 𝐾 and 𝐿 be simplicial complexes. If 𝑓 ∶ |𝐾| → |𝐿| is a homotopy
equivalence, then 𝑓 induces an isomorphism between the ℤ2-homology groups of 𝐾 and
𝐿.

Corollary 15.31. If𝐾 is a strong deformation retract of 𝐿, then𝐾 and 𝐿 have isomorphic
ℤ2-homologies.

15.4 The Mayer-Vietoris Theorem

Effective ThinkingPrinciple. PiecesMakeWholes. If you understand basic
pieces and you understand what happens when pieces are combined, you can
understand complicated wholes.

In this section we will prove the Mayer-Vietoris Theorem, which will allow us to
break a complex into smaller subcomplexes to compute its homology. In this sense,
the Mayer-Vietoris Theorem is the homological analogue to Van Kampen’s Theorem
for fundamental groups.

Definition. If 𝐾 is a simplicial complex, a subcomplex is a simplicial complex 𝐿 such
that 𝐿 ⊂ 𝐾.

In other words, to get a subcomplex of 𝐾 we choose some of the simplices in 𝐾 in
such a way that the resulting space is still a complex (that is, if we choose a simplex,
we also need to choose its faces).

Exercise 15.32. If 𝐾 is a finite simplicial complex, verify that the intersection of two sub-
complexes of 𝐾 is a subcomplex.

Now imagine that we express a simplicial complex 𝐾 as the union of two subcom-
plexes 𝐴 and 𝐵. The question before us is how the homology groups of 𝐾 are related
to the homology groups of the pieces. We should also expect to include information
about how 𝐴 and 𝐵 overlap. Thus we should look for relationships among the cycles
of 𝐾, 𝐴, 𝐵, and 𝐴 ∩ 𝐵.

Now is a good time to draw pictures!

Effective Thinking Principle. Draw a Picture. If we haven’t said it enough,
drawing pictures is an excellent way to build intuition. Choose examples that
illustrate various possibilities.

For instance, youmight draw exampleswhere the intersection of𝐴 and𝐵 produces
cycles that are homologous to zero in one side but not the other. You might also look
at examples in various dimensions.

A first observation starts with cycles in𝐴∩𝐵 and considers what can happenwhen
you view them in the other pieces. The following exercise asks a series of questions that
highlights an important feature of discovery.
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α

α

β

β

A

B

Figure 15.7. Overlapping subcomplexes𝐴 and𝐵 of a complex𝐾, and
cycles broken into chains in each side.

Effective Thinking Principle. Invent Your Own Questions. As you get used
to thinking like an explorer, youwill come upwith your own questions, whose
answers may be interesting and delightful.

Exercise 15.33. Note that an 𝑛-cycle in𝐴∩𝐵 is still a cycle in𝐴, 𝐵, and𝐾. Then answer:
(1) Can a trivial cycle (one homologous to 0) in 𝐴 ∩ 𝐵 be non-trivial in 𝐴?

(2) Can a non-trivial cycle in 𝐴 ∩ 𝐵 be trivial in 𝐴?

(3) Can a non-trivial cycle in 𝐴 ∩ 𝐵 that’s also non-trivial in 𝐴 and in 𝐵 be trivial in 𝐾?

A second observation starts with a cycle in𝐴, and asks if, in𝐾, that cycle in𝐴 is ho-
mologous to a cycle in 𝐵? If so, is there a cycle in their intersection that is homologous
to both?

Theorem 15.34. Let 𝐾 be a finite simplicial complex, and let 𝐴 and 𝐵 be subcomplexes
such that 𝐾 = 𝐴 ∪ 𝐵. If 𝛼, 𝛽 are 𝑘-cycles in 𝐴 and 𝐵, respectively, and if 𝛼 ∼ℤ2 𝛽 in 𝐾,
then there is a 𝑘-cycle 𝑐 in 𝐴 ∩ 𝐵 such that 𝛼 ∼ℤ2 𝑐 in 𝐴 and 𝛽 ∼ℤ2 𝑐 in 𝐵.

A third observation starts with cycles in 𝐾 and considers what can be said when
you look at their parts in 𝐴 and in 𝐵.

Theorem 15.35. Let 𝐾 be a finite simplicial complex, and let 𝐴 and 𝐵 be subcomplexes
such that 𝐾 = 𝐴 ∪ 𝐵. Let 𝑧 be a 𝑘-cycle in 𝐾. Then there exist 𝑘-chains 𝛼 and 𝛽 in 𝐴 and
𝐵, respectively, such that
(1) 𝑧 = 𝛼 + 𝛽 and

(2) 𝜕𝛼 = 𝜕𝛽 is an (𝑛 − 1)-cycle 𝑐 in 𝐴 ∩ 𝐵.
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Furthermore, if 𝑧 = 𝛼′ + 𝛽′, a sum of 𝑛-chains in 𝐴 and 𝐵, respectively, and 𝑐′ =
𝜕𝛼′ = 𝜕𝛽′ is an (𝑛 − 1)-cycle, then 𝑐′ is homologous to 𝑐 in 𝐴 ∩ 𝐵.

There are some natural homomorphisms between various homology groups.

Exercise 15.36. Let 𝐾 be a simplicial complex, and let 𝐴 and 𝐵 be subcomplexes such
that 𝐾 = 𝐴∪ 𝐵. Construct natural homomorphisms 𝜙, 𝜓, 𝛿 among the groups below and
show that 𝜓 ∘ 𝜙 = 0 and 𝛿 ∘ 𝜓 = 0:
(1) 𝜙 ∶ 𝖧𝑛(𝐴 ∩ 𝐵) → 𝖧𝑛(𝐴) ⊕ 𝖧𝑛(𝐵).

(2) 𝜓 ∶ 𝖧𝑛(𝐴) ⊕ 𝖧𝑛(𝐵) → 𝖧𝑛(𝐾).

(3) 𝛿 ∶ 𝖧𝑛(𝐾) → 𝖧𝑛−1(𝐴 ∩ 𝐵).

Van Kampen’s Theorem was phrased in terms of quotient groups of free products.
The analogous theorem in homology is written in terms of exact sequences.

Definition. Given a (finite or infinite) sequence of groups and homomorphisms

… → 𝐺𝑖−1
𝜙𝑖−1⟶𝐺𝑖

𝜙𝑖⟶𝐺𝑖+1 →⋯,
the sequence is exact at 𝐺𝑖 if and only if Im𝜙𝑖−1 = Ker 𝜙𝑖. The sequence is called
an exact sequence if and only if it is exact at each group (except at the first and last
groups if they exist).

Theorem 15.37 (ℤ2 Mayer-Vietoris). Let 𝐾 be a finite simplicial complex, and let𝐴 and
𝐵 be subcomplexes such that 𝐾 = 𝐴 ∪ 𝐵. The sequence

… → 𝖧𝑛(𝐴 ∩ 𝐵) → 𝖧𝑛(𝐴) ⊕ 𝖧𝑛(𝐵) → 𝖧𝑛(𝐾) → 𝖧𝑛−1(𝐴 ∩ 𝐵) → ⋯ ,
using the homomorphisms 𝜙, 𝜓, 𝛿 above, is exact.

In using the Mayer-Vietoris sequence it is helpful to record some facts about exact
sequences that come in handy.

Exercise 15.38. Let 𝐶,𝐷, 𝐸 be groups, and let arrows represent homomorphisms below.
Show

(1) 0 → 𝐶 𝜙→ 𝐷 is exact at 𝐶 if and only if 𝜙 is one-to-one.

(2) 𝐷 𝜓→ 𝐸 → 0 is exact at 𝐸 if and only if 𝜓 is onto.

(3) 0 → 𝐶 𝜙→ 𝐷 → 0 is exact if and only if 𝜙 is an isomorphism.

When applyingMayer-Vietoris to a decomposition of a complex𝐾 into parts𝐴 and
𝐵, do not forget that you can also use results like Theorem 15.30 to simplify homology
calculations for 𝐴 and 𝐵.

Exercise 15.39. Compute the ℤ2-homology groups for each complex 𝐾 below:

(1) The bouquet of 𝑘 circles (the union of 𝑘 circles identified at a point).

(2) A wedge sum of a 2-sphere and a circle (the two spaces are glued at one point).
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(3) A 2-sphere union its equatorial disk.

(4) A double solid torus.

Exercise 15.40. Compute theℤ2-homology groups of a torus usingMayer-Vietoris in two
different ways (with two different decompositions).

Exercise 15.41. Use the Mayer-Vietoris Theorem to compute 𝖧𝑛(𝑀) for every compact,
triangulated 2-manifold 𝑀. What compact, triangulated 2-manifolds are not distin-
guished from one another by ℤ2-homology? What does 𝖧2(𝑀) tell you?

Exercise 15.42. Let 𝑝, 𝑞 ∈ ℤ be relatively prime. Calculate 𝖧𝑛(𝐿(𝑝, 𝑞)), the homology of
the lens space 𝐿(𝑝, 𝑞).

Exercise 15.43. Use the Mayer-Vietoris Theorem to compute 𝖧𝑛(𝐾) for the complexes 𝐾
pictured in Figure 15.8.

Figure 15.8. Two interesting spaces.

Exercise 15.44. Use theMayer-Vietoris Theorem to find the𝑍2-homology groups for each
of the following spaces:

(1) 𝕊𝑛.

(2) A cone over a finite simplicial complex 𝐾.

(3) A suspension over a finite simplicial complex 𝐾 (that is, the finite simplicial complex
created by gluing two cones over 𝐾 along 𝐾).

(4) ℝP𝑛 (which is 𝕊𝑛 with antipodal points identified).

15.5 Introduction to Cellular Homology
We have now defined the ℤ2-homology groups, and in small examples we have seen
how to compute them. But you can anticipate how unwieldy a computation would
become if the triangulation of our space were large. Is there an easier way?

We can define another kind of homology theory called cellular homology, that
can be easier to compute since the associated chain groups will have far fewer genera-
tors. Instead of decomposing a triangulated space into simplices, we will try to decom-
pose it into fewer and larger cells, which are basically unions of simplices. The bound-
ary maps will still be of interest, so we must decompose in a way that ensures that
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boundaries of cells remain unions of other cells. Fewer cells means fewer homology
computations. Of course, we will need to show that cellular homology is isomorphic
to simplicial homology.

Cellular homology beginswith an existing triangulation, sowewill need thenotion
of the interior of a simplex.

Definition. Given an𝑛-simplex𝜎, the interior of𝜎, denoted Int(𝜎), is the set of all points
of 𝜎 that do not lie on a proper face of 𝜎.

Of course, the interior of an 𝑛-simplex 𝜎 coincides with its topological interior
when 𝜎 is embedded in ℝ𝑛. Note that if 𝜎 is a 0-simplex (a point), then Int(𝜎) = 𝜎.

Theorem 15.45. Let 𝐾 be a simplicial complex where 𝑇 = {𝜎𝑖}𝑘𝑖=1. Then

𝐾 =
𝑘

⨆
𝑖=1

Int(𝜎𝑖),

where ⊔ denotes disjoint union.

Definition. Let 𝐾 be a simplicial complex. An open 𝑛-cell of 𝐾 is a set 𝜎 that is the
(disjoint) union of interiors of simplices of 𝐾 (not necessarily all of dimension 𝑛) such
that 𝜎 is homeomorphic to an open 𝑛-ball. By convention, an “open 0-ball” is a point,
so a 0-cell is the same as a 0-simplex. We sometimes say open cellwhen the dimension
of the cell is understood. Every open 𝑛-cell 𝜎 in 𝐾 has an associated ℤ2 𝑛-chain in
𝖢𝑛(𝐾); namely, the sum of all the 𝑛-simplices of 𝐾 whose interiors are included in the
𝑛-cell 𝜎.

We are now ready to specify what we mean by an open cell decomposition.

Definition. Let 𝐾 be a simplicial complex. A ℤ2 open cell decomposition of 𝐾 is a
collection 𝐾𝑐 of subsets of |𝐾| which satisfies the following conditions:

(1) Every set in 𝐾𝑐 is an open cell of 𝐾.

(2) |𝐾| is the disjoint union of the sets in 𝐾𝑐.

(3) If 𝑐 ∈ 𝐾𝑐 is an open 𝑛-cell and 𝑐′ is the associated ℤ2 𝑛-chain, then the boundary
𝜕𝑐′ = ∑𝑖 𝑏′𝑖 , where each 𝑏′𝑖 is the (𝑛−1)-chain associated with some (𝑛−1)-cell 𝑏𝑖.

Then 𝐾𝑐 will be called a ℤ2 cellular complex.

You can think of a cellular complex as being built up, successively by dimension,
by attaching cells of dimension 𝑛 to a skeleton of cells of dimension up to (𝑛 − 1).
Condition (3) says that the boundary of an 𝑛-cell cannot meet the (𝑛 − 1)-cells along
partial pieces of cells.

Example. Let 𝐾 be the proper faces (vertices and edges) of a square. Thus |𝐾| is a
simple closed curve. Then one vertex and one open 1-cell would form an open cell
decomposition of 𝐾.
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Figure 15.9. A 1-cycle with four edges.

Exercise 15.46. Let 𝐾 be a 3-simplex with triangulation shown in Figure 15.10 (a tetra-
hedron). Find an open cell decomposition of 𝐾 with one vertex, one open 2-cell, and one
open 3-cell. This example shows that it is not necessary to have every dimension less than
the dimension of 𝐾 represented.

Figure 15.10. A 2-cycle with four faces.

Example. Let 𝐾 be the 2-complex created by starting with a triangle (not filled in) and
attaching a disk whose boundary goes around it twice. We could look at this complex
as a quotient space of a 6-sided triangulated disk with opposite edges identified with
arrows all going clockwise around the hexagon. It could exist inℝ4. Then an open cell
decomposition of 𝐾 could consist of one open 2-cell, one open 1-cell, and one vertex as
suggested in Figure 15.11.

a

a

b

c

c

b

v

Figure 15.11. A “six sided” 2-cycle.

We can now define homology for a cellular complex. Our construction will essen-
tially mirror that for simplicial complexes. We will fix a simplicial complex 𝐾 and a
corresponding open cell decomposition 𝐾𝑐.

Definition. A ℤ2 cellular 𝑛-chain in 𝐾𝑐 is a formal sum, with coefficients in ℤ2, of
open 𝑛-cells in 𝐾𝑐. The collection of such chains forms a group, denoted by 𝖢𝑐𝑛(𝐾𝑐).
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As before, we need a notion of boundary. You should try out a few examples to see
that the next definition is natural.

Definition. Let 𝑐 ∈ 𝐾𝑐 be an open 𝑛-cell. Let 𝑐′ be the associated ℤ2 𝑛-chain. By
assumption, theℤ2-boundary of 𝑐′ is 𝜕𝑐′ = ∑𝑏′𝑖 , where 𝑏′𝑖 is an (𝑛−1)-chain associated
to some open (𝑛−1)-cell 𝑏𝑖 in 𝐾𝑐. So we define the ℤ2-boundary of the open cell 𝑐 to
be 𝜕𝑐 = ∑𝑏𝑖. The ℤ2-boundary of a cellular chain is defined by extending linearly:
the boundary of a sum of open cells is the sum of the boundary of those open cells.

Definition. A ℤ2 cellular boundary is a ℤ2 cellular 𝑛-chain that bounds some cellular
(𝑛+1)-chain. The collection ofℤ2 cellular boundaries is denoted𝖡𝑐𝑛(𝐾𝑐). Aℤ2 cellular
𝑛-cycle is a cellular 𝑛-chain with zero boundary. The collection of ℤ2 cellular 𝑛-cycles
is denoted 𝖹𝑐𝑛(𝐾𝑐).

Theorem 15.47. Both 𝖹𝑐𝑛(𝐾𝑐) and 𝖡𝑐𝑛(𝐾𝑐) are subgroups of 𝖢𝑐𝑛(𝐾𝑐). Moreover, 𝖡𝑐𝑛(𝐾𝑐) ⊂
𝖹𝑐𝑛(𝐾𝑐).

We can now define the homology of a cellular complex.

Definition. The ℤ2 cellular 𝑛th-homology group of 𝐾𝑐, denoted 𝖧𝑐𝑛(𝐾𝑐), is defined
by

𝖧𝑐𝑛(𝐾𝑐) = 𝖹𝑐𝑛(𝐾𝑐)/𝖡𝑐𝑛(𝐾𝑐).

Finally, we confirm that cellular homology is the same as simplicial homology.
The argument may feel familiar if you wrestled with the subdivision operator from a
prior section.

Theorem 15.48. Let𝐾𝑐 be an open cell decomposition of the finite simplicial complex𝐾.
Then for each 𝑛, the obvious homomorphism 𝖧𝑐𝑛(𝐾𝑐) → 𝖧𝑛(𝐾) is an isomorphism.

In view of this isomorphism, we hereafter drop the superscript on the homology
notation and make no distinction between cellular and simplicial homology.

Exercise 15.49. For each space below, describe a triangulation 𝐾 and an open cell de-
composition 𝐾𝑐. Then use cellular homology to compute 𝖧𝑛(𝐾) for each 𝑛:
(1) The sphere.

(2) The torus.

(3) The projective plane.

(4) The Klein bottle.

(5) The double torus.

(6) Any compact, connected, triangulated 2-manifold.

(7) The Möbius band.

(8) The annulus.

(9) Two (hollow) triangles joined at a vertex.
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Use cellular homology to answer the following questions.

Exercise 15.50. What is 𝖧𝑛(𝕊𝑘) for 𝑛 = 0, 1, 2, … and 𝑘 = 0, 1, 2, …?

Exercise 15.51. What is 𝖧𝑛(𝕋) for 𝑛 = 0, 1, 2, … for a solid torus 𝕋?

15.6 Homology Is Easier Than It Seems
The problem with homology is that it is easy to get lost in the woods even though the
forest is beautiful and easy to appreciate. We had a great, intuitive idea that something
that encircles a hole should be noted and if two such things encircle the same hole,
they should be equal. What a simple idea. What happened to that simplicity during
the last twenty pages or so? Those pages were not only numerous, they were also full
of annoying details. What can we do? How can we relate to this stuff?

The answer is to get to the point where whole chunks become clear and simple.
Yes, there are details, but if you can realize that all those details arise from following a
rather simple path that all works out, then you can keep the whole outline clearly in
mind and you can work your way through the details whenever you need to.

The great thing is that ℤ2-homology really is clear and simple. Holes are detected
by 𝑛-cycles that are physical objects that surround those holes in some sense. Induced
maps turn out to be maps that are the first and only thing you can think of as a way
to correspond a cycle in the domain with a cycle in the codomain. It all works out
smoothly.

The true payoff is contained in the next chapter. There you will see that ℤ2-homol-
ogy is preciselywhat you need to deduce some of the classical results in topology. Enjoy
them.
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Applications of ℤ2-Homology:

A Topological Superhero

Many fundamental and important theorems in the field of algebraic topology can be
proved using ℤ2-homology. There is something extremely delightful about the fact
that difficult-sounding and historically challenging mathematical insights can be es-
tablished using the clear geometric insights that ℤ2-homology captures.

In this chapter youwill have the unalloyed joy in proving theorems that are among
the highlights of topology as we celebrate the consequences that flow from applying
ℤ2-homology.

In fact, the workhorse theorem about ℤ2-homology that is used most is the basic
fact summarized by saying that for inducedmaps onℤ2-homology, the boundary of the
image is the image of the boundary (Theorem 15.17). Perhaps even more specifically,
often what is used is the special case of that theorem that for inducedmaps, if you start
with a cycle that bounds, then the image of that cycle must also bound.

16.1 The No Retraction Theorem
This first theorem uses the fact that the boundary of an 𝑛-manifold is an (𝑛 − 1)-cycle
that is the ℤ2-boundary of the 𝑛-manifold itself.

Theorem 16.1 (No Retraction Theorem). Let𝑀𝑛 be a connected triangulated 𝑛-mani-
fold with 𝜕𝑀𝑛 ≠ ∅. Then there is no retraction 𝑟 ∶ 𝑀𝑛 → 𝜕𝑀𝑛, i.e., no continuous
function 𝑟 ∶ 𝑀𝑛 → 𝜕𝑀𝑛 such that for each 𝑥 ∈ 𝜕𝑀𝑛, 𝑟(𝑥) = 𝑥.

Part of the intuition of this theorem is that such a retraction cannot exist because
you somehow have to puncture the inside of 𝑀𝑛 in order for it to be mapped to its
boundary, and this puncturing process would not be continuous. Anytime you are
thinking of punching a hole in something you should suspect that homological rea-
soning may be illuminating.

251
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In this case, if there were such a retraction 𝑟, what could you infer about the in-
duced homomorphism 𝑟∗ going from the (𝑛 − 1)-dimensional ℤ2-homology group of
𝑀𝑛 to the (𝑛 − 1)-dimensional ℤ2-homology group of 𝜕𝑀𝑛?

16.2 The Brouwer Fixed Point Theorem
Theorem 16.2 (𝑛-dimensional Brouwer Fixed Point Theorem). Let 𝐵𝑛 be the 𝑛-dimen-
sional ball. For every continuous function 𝑓 ∶ 𝐵𝑛 → 𝐵𝑛 there exists a point 𝑥 ∈ 𝐵𝑛 such
that 𝑓(𝑥) = 𝑥.

In Chapter 14, we saw that one way to prove the Brouwer Fixed Point Theorem is
to prove that it is equivalent to the No Retraction Theorem for a ball. That is, instead
of proving the Brouwer Fixed Point Theorem directly, we prove that it is equivalent to
the No Retraction Theorem for an 𝑛-ball. Recall that to prove the equivalence of those
two statements, you need to answer two questions:

(1) Suppose you were given a retraction from a ball to its boundary. Then how could
you use that map to construct a fixed point free map from the ball to itself?

(2) Suppose you were given a fixed point free map from the ball to itself. Then how
could you use that map to produce a retraction from the ball to its boundary?

Since ℤ2-homology provided a great proof of the No Retraction Theorem, then the
equivalence above proves the Brouwer Fixed Point Theorem as well.

16.3 The Borsuk-Ulam Theorem
The Borsuk-Ulam Theorem has the flavor of a fixed point theorem. A physical ver-
sion of it in dimension 2 would state that if you smash a beach ball on the pavement,
some pair of antipodal points (spherically opposite points) on the beach ball must get
smashed right on top of one another. Wewill state the Borsuk-Ulam Theorem formally
later. Now we will prove it through a sequence of preliminary results.

The first lemma boils down to recognizing that a connected 𝑛-manifold has exactly
one ℤ2 𝑛-cycle; namely, itself.

Lemma 16.3. Let𝑀𝑛 be a triangulated, connected 𝑛-manifold. Let 𝑓 ∶ 𝑀𝑛 → 𝑀𝑛 be a
simplicial map. Then 𝑓∗ ∶ 𝖧𝑛(𝑀𝑛) → 𝖧𝑛(𝑀𝑛) is surjective if and only if 𝑓#(𝑀𝑛) = 𝑀𝑛.

The next theorem basically asserts that antipode preserving maps of 𝕊1 must be
surjective from a ℤ2 perspective. Note that for a point 𝑥 on a sphere 𝕊𝑛, the antipodal
point is denoted −𝑥.

Theorem 16.4. Let 𝑓 ∶ 𝕊1 → 𝕊1 be an antipode preserving continuous map (that is, for
every 𝑥 ∈ 𝕊1, 𝑓(−𝑥) = −𝑓(𝑥)). Then 𝑓∗ ∶ 𝖧1(𝕊1) → 𝖧1(𝕊1) is surjective.

Your next challenge is to use the preceding theorem to prove the Borsuk-Ulam
Theorem in dimension 2 (stated next). Try to show that if there existed a counterexam-
ple to the Borsuk-Ulam Theorem in dimension 2, then there would be a continuous,
antipode preserving function from the whole 2-sphere to 𝕊1. In particular, the equator
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would go to 𝕊1 in an antipode preserving way. Recall that the equator bounds a disk in
the 2-sphere and then see why that fact creates a problem with the previous theorem
when you look at the induced homomorphism on the first homology group 𝖧1(𝕊2).

Theorem 16.5 (Borsuk-Ulam Theorem for 𝕊2). Let 𝑓 ∶ 𝕊2 → ℝ2 be a continuous map.
Then there exists an 𝑥 ∈ 𝕊2 such that 𝑓(−𝑥) = 𝑓(𝑥).

The above strategy for proving the Borsuk-Ulam Theorem in dimension 2 can be
extended towork in all dimensions. Start by seeingwhether you canuse the truth of the
antipode preserving map theorem in one dimension to prove it in the next dimension.
In other words, see whether you can prove the following theorem by induction on 𝑛.

Theorem 16.6. Let 𝑓 ∶ 𝕊𝑛 → 𝕊𝑛 be an antipode preserving map (that is, for every
𝑥 ∈ 𝕊𝑛, 𝑓(−𝑥) = −𝑓(𝑥)). Then 𝑓∗ ∶ 𝖧𝑛(𝕊𝑛) → 𝖧𝑛(𝕊𝑛) is surjective.

The 𝑛-dimensional Borsuk-Ulam Theorem follows.

Theorem 16.7 (Borsuk-Ulam). Let 𝑓 ∶ 𝕊𝑛 → ℝ𝑛 be a continuous function. Then there
is an 𝑥 ∈ 𝕊𝑛 such that 𝑓(−𝑥) = 𝑓(𝑥).

16.4 The Ham Sandwich Theorem
TheHamSandwichTheoremhas a name that suggests nourishment for the body, while
its proof certainly provides nourishment for the mind. The fanciful name arises from
a manifestation of the theorem when cutting a sandwich. Namely, suppose you have
a sandwich consisting of two pieces of awkwardly shaped bread and one piece of ham.
Is it possible to cut the sandwich into two pieces with a single flat cut of a knife such
that all three objects are cut exactly into two pieces of equal volume? In other words,
can you find a single, flat plane simultaneously bisecting all three masses?

The statement of the Ham Sandwich Theorem contains the words “measurable
set,” but do not panic or worry about a definition, just think “sets that have a volume.”

The Ham Sandwich Theorem appears in this chapter about applications of ℤ2-
homology, although the proof youwill supplymight not directlymentionℤ2-homology.
The totality of your proof might just show that the Ham Sandwich Theorem is equiva-
lent to the Borsuk-Ulam Theorem, which you just proved—using ℤ2-homology.

As you seek to prove the equivalence of the Borsuk-Ulam Theorem and the Ham
Sandwich Theorem, you might keep several ideas in mind. First, it might be easier
to show the equivalence between the 𝑛-dimensional Ham Sandwich Theorem and the
(𝑛−1)-dimensional Borsuk-Ulam Theorem (although youmay find a different equiva-
lence). Second, if you are given a hyperplane𝐻 in ℝ𝑛, how many hyperplanes parallel
to 𝐻 will cut 𝐴1 in half? If there is more than one such parallel plane, can you think
of a natural choice of a parallel plane in that family? And, third, for each point on the
unit 𝕊𝑛−1 in ℝ𝑛, can you think of a way to associate a family of parallel hyperplanes
with that point?

Theorem 16.8 (Ham Sandwich Theorem). Let 𝐴1, 𝐴2, … , 𝐴𝑛 be measurable sets of fi-
nite measure in ℝ𝑛. Then there exists an (𝑛 − 1)-dimensional hyperplane 𝐻 in ℝ𝑛 that
simultaneously cuts each 𝐴𝑖 in half.
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16.5 Invariance of Domain
Some mathematical facts seem obvious. The problem is that some of those that seem
“obvious” turn out to be untrue. Here is a pictorial example. Consider the two pictures
in Figure 16.1. Each represents an embedding of a double torus into ℝ3. It seems
obvious that you could not distort one figure by justmaking elasticmoves, like amovie,
and take the object in the left-hand picture andmake it look like the object in the right-
hand picture. However, it is actually possible.

Figure 16.1. These are double tori, and you can get from one to the
other with no cutting or gluing.

Exercise 16.9. Draw a sequence of pictures to demonstrate a sequence of elastic moves
with no tricks, no cutting, and no gluing that takes the left-hand picture of Figure 16.1
and turns it into the right-hand picture.

This example and many others keep us alive to the reality that the world, particu-
larly the world of topology, is not always as it seems.

This introduction to this section is intended to suggest that it is important to prove
some apparently obvious facts. One of those facts, which actually is true, is the theo-
rem that goes by the name of Invariance of Domain. You will find that ℤ2-homology
provides just the right tools for confirming and proving this result.

Theorem 16.10. If𝑚 ≠ 𝑛, then ℝ𝑚 is not homeomorphic to ℝ𝑛.

This theorem can be stated in a bit more generality.

Theorem 16.11 (Invariance of Domain or Invariance of Dimension). A space cannot
be both an 𝑛-manifold and an𝑚-manifold if 𝑛 ≠ 𝑚.

16.6 An Arc Does Not Separate the Plane
A topologically embedded arc in the plane (that is, an embedding of [0, 1] in ℝ2) can
have infinitely many bumps and spirals. The next theorem and exercises ask you to
create some examples of exotic embeddings of an interval into the plane to open your
mind to the potential variety in embeddings of an arc. Recall that an embedding of 𝑋
into 𝑌 is a continuous map 𝑋 → 𝑌 that is a homeomorphism onto its image. So 𝑋 has
the same topology as that inherited as a subspace of 𝑌 .
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In this section, we will eventually prove that no embedded arc in the plane sepa-
rates the plane. Youmay recall that we actually suggested a proof of this theorem in the
penultimate section of the chapter on the classification of 2-manifolds. In this section
you will see how naturally this result flows from ℤ2-homology.

Effective Thinking Principle. Gain Experience—Explore Examples. Give
yourself experience with ideas by constructing and investigating examples
with unusual features.

We begin our exploration of embedded arcs in the plane by looking at some ex-
amples. One source of such embeddings arises from looking at graphs of continuous
functions.

Definition. Let 𝑓 ∶ 𝑋 → 𝑌 be a function. Then the graph of 𝑓, denoted 𝐺𝑓, is
{(𝑥, 𝑓(𝑥))}𝑥∈𝑋 . Notice that 𝐺𝑓 ⊂ 𝑋 × 𝑌 .

Theorem 16.12. Let 𝑓 ∶ [0, 1] → ℝ2 be a continuous function. Then the graph of 𝑓 is
an embedding of [0, 1] into the plane.

The continuous functions thatmight first come tomind are functions such as poly-
nomials or trigonometric or exponential functions. However, those examples are ac-
tually anomalous—they represent the bias of experience over reality. In fact, most
continuous functions are not smooth.

Exercise 16.13. Describe a continuous function from [0, 1] to [0, 1] that is nowhere dif-
ferentiable.

At first it may be difficult to think of any continuous function that is nowhere dif-
ferentiable, but, in fact, most continuous functions are not differentiable. If you would
like a challenge, try to prove that most continuous functions are nowhere differen-
tiable. To define what we mean by “most”, let’s consider the topological space of all
continuous functions from [0, 1] to [0, 1].

Definition. Let 𝒞 = {𝑓 ∣ 𝑓 ∶ [0, 1] → [0, 1] is continuous}. The topology on 𝒞 is
induced by the metric 𝑑(𝑓, 𝑔) = max{|𝑓(𝑥) − 𝑔(𝑥)|}𝑥∈[0,1].

By “most” we will mean a countable intersection of dense open sets in 𝒞. In par-
ticular, the countable intersection of dense open sets in 𝒞 is dense (why?), because 𝒞
is a complete metric space (why?).

Theorem 16.14. Let 𝐵 be the set of all nowhere differentiable continuous functions from
[0, 1] to [0, 1]. Then 𝐵 is the intersection of countably many dense open sets in 𝒞.

Often things that at first seem strange and anomalous later turn out to be the norm
rather than the rare exception. Nowhere differentiable continuous functions provide
us with a great example of that phenomenon.

Let’s think of some other apparently anomalous features that an embedded arc
might have. Embeddings of [0, 1] can have infinite length.



256 Chapter 16. Applications of ℤ2-Homology: A Topological Superhero

Exercise 16.15. Describe an embedding of [0, 1] into the plane that has infinite length.
In fact, you might choose the graph of a differentiable function.

Embedded arcs can have other strange properties.

Exercise 16.16. Describe an embedding of [0, 1] into the unit square and two points 𝑥
and 𝑦 in the unit square not on the embedded arc such that to connect𝑥 to 𝑦 by a polygonal
path missing the embedded arc requires a polygonal path of length at least a mile.

All these examples were explored to suggest that the world of embedded arcs may
be more varied and complicated than you might at first have supposed. Nevertheless,
it is true that no arc separates the plane.

Proving that fact is surprisingly difficult. One method of proving it is to prove that
if an embedded arc did separate the plane, then half of it must do so. This technique
involves relating a characteristic of a whole space to related characteristics of spaces
whose intersection or union is the space we are interested in. This impulse suggests
that we consider using the Mayer-Vietoris Theorem. Recall that the Mayer-Vietoris
Theorem relates the homology of pieces of a space to the homology of the whole space.

Lemma 16.17. Let ℎ ∶ [0, 1] → ℝ2 be an embedding and let 𝑝 and 𝑞 be points in
ℝ2 − ℎ([0, 1]). If 𝑝 and 𝑞 are connected in ℝ2 − ℎ([0, 1

2
]) and 𝑝 and 𝑞 are connected in

ℝ2 − ℎ([ 1
2
, 1]), then 𝑝 and 𝑞 are connected in ℝ2 − ℎ([0, 1]).

You might want to observe that saying that 𝑝 and 𝑞 are connected in a space is the
same as saying that the 0-cycle {𝑝, 𝑞} bounds a 1-chain in that space. The catechism for
using the Mayer-Vietoris Theorem suggests saying, “Suppose {𝑝, 𝑞} bounds a 1-chain
here; and {𝑝, 𝑞} bounds a 1-chain there. Then suppose the 1-cycle created by those
two 1-chains bounds a 2-cycle in some union. Then {𝑝, 𝑞} must bound in some inter-
section.” Think about asking the question of connecting {𝑝, 𝑞} in 𝕊2 rather than ℝ2,
and figure out how to apply the Mayer-Vietoris Theorem to conclude that the lemma
is true.

After you have accomplished that insight, you will be able to prove that no embed-
ded arc separates the plane.

Theorem 16.18 (An arc does not separate the plane). Let ℎ ∶ [0, 1] → ℝ2 be an em-
bedding. Then ℎ([0, 1]) does not separate ℝ2.

16.7 A Ball Does Not Separate ℝ𝑛

Effective Thinking Principle. Extend Results.
“The time to work on a result is after you’ve solved it.” —R. H. Bing
After getting a result, see if it can be extended.

R. H. Bing was a 20th century topologist. One strategy he advocated for doing
successful research was to make maximal use of insights you obtain. That is, when
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you have discovered or understood a technique, see whether that same insight can be
applied to extend your result.

In the previous section, you proved that an arc does not separate the plane. It
is natural to ask what extensions of that theorem might be true. For example, was it
important that the embedding of the arc be in ℝ2? Would the theorem still be true if
the embedding were in ℝ𝑛 for larger 𝑛’s? Would the theorem still be true if instead
of embedding an arc, we embedded a higher-dimensional disk? Those questions are
natural extensions of the arc-not-separating-the-plane result.

The other extension to explore is an extension of the proof. Would the same proof
or the same style of proof work in the higher-dimensional cases?

It turns out that extensions of both the result and the proof technique work for
higher dimensions. But the results are not obvious, because in higher dimensions,
embeddings can become quite strange.

In the plane we saw that for any embedding of an arc or a simple closed curve,
there is a homeomorphism of the plane that takes that embedding to a nice embed-
ding, for example a smooth or a polygonal embedding. The analogous statements in
higher dimensions are not true. That is, there exists an embedding of an arc in ℝ3

such that there is no homeomorphism of ℝ3 to itself that takes that embedded arc to
a straight line. Such embeddings are appropriately called wild embeddings. However,
even though such wild embeddings exist, from the point of view of homology, all em-
beddings behave like standard embeddings behave.

Let’s begin by showing that arcs cannot separateℝ𝑛 by following the same strategy
as we used to show that an arc cannot separate ℝ2. As before, it is easier to work in 𝕊𝑛
rather than ℝ𝑛.

Lemma 16.19. For any natural number 𝑛, let ℎ ∶ [0, 1] → ℝ𝑛 be an embedding, and
let 𝑝 and 𝑞 be points in ℝ𝑛 − ℎ([0, 1]). If 𝑝 and 𝑞 are connected in ℝ𝑛 − ℎ([0, 1

2
]) and 𝑝

and 𝑞 are connected in ℝ𝑛 − ℎ([ 1
2
, 1]), then 𝑝 and 𝑞 are connected in ℝ𝑛 − ℎ([0, 1]).

As before, you will now be able to prove that arcs cannot separate points in ℝ𝑛 or
𝕊𝑛.

Theorem 16.20. For any natural number 𝑛, let ℎ ∶ [0, 1] → ℝ𝑛 be an embedding. Then
ℎ([0, 1]) does not separate ℝ𝑛.

This result could be phrased in terms of a 0-cycle bounding a 1-chain. Let’s see
whether we can extend this result by showing that a 1-cycle in the complement of an
embedded arc bounds a 2-chain in the complement of that embedded arc. The best way
to get a new idea is to use an old idea, so let’s use the same strategy as before, namely,
dividing the embedded arc into two parts.

Lemma 16.21. For any natural number 𝑛, let ℎ ∶ [0, 1] → ℝ𝑛 be an embedding, and let
𝑍 be a ℤ2 1-cycle inℝ𝑛−ℎ([0, 1]). If 𝑍 bounds a 2-chain inℝ𝑛−ℎ([0, 1

2
]) and 𝑍 bounds

a 2-chain in ℝ𝑛 − ℎ([ 1
2
, 1]), then 𝑍 bounds a 2-chain in ℝ𝑛 − ℎ([0, 1]).

You are now on a roll. You can now prove that an embedded arc does not get in
the way of a 1-cycle bounding.
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Theorem 16.22. For any natural number 𝑛, let ℎ ∶ [0, 1] → ℝ𝑛 be an embedding and
let 𝑍 be a ℤ2 1-cycle in ℝ𝑛 − ℎ([0, 1]). Then 𝑍 bounds a 2-chain in ℝ𝑛 − ℎ([0, 1]).

Nowwe can work our way up in dimension by considering whether an embedded
arc could obstruct higher-dimensional cycles from bounding. Following that path, you
will be able to prove the following.

Theorem 16.23. For any natural numbers 𝑛 and 𝑘 with 𝑘 < 𝑛, let ℎ ∶ [0, 1] → 𝕊𝑛 be
an embedding and let 𝑍 be a ℤ2 𝑘-cycle in 𝕊𝑛 −ℎ([0, 1]). Then 𝑍 bounds a (𝑘 + 1)-chain
in 𝕊𝑛 − ℎ([0, 1]).

Next we can work our way up in the dimension of the embedded object from a
1-dimensional arc to a 2-dimensional disk, then to a 3-dimensional disk, and so on.
Finally, you will be able to prove that no embedded ball of any dimension can get in
the way of letting a cycle bound.

Theorem 16.24. Let 𝐵 be a topologically embedded 𝑚-ball in 𝕊𝑛, and let 𝑍 be a ℤ2 𝑘-
cycle in 𝕊𝑛 − 𝐵 for 𝑘 < 𝑛. Then there is a (𝑘 + 1)-chain 𝐶 in 𝕊𝑛 − 𝐵 whose boundary
is 𝑍.

In particular, no embedded ball separates 𝕊𝑛.

16.8 The Jordan-Brouwer Separation Theorem
If you draw a circle in the plane, that circle separates the plane into two pieces and is the
boundary of each. Even if you distort the circle, that is, you consider any embedding of
the circle in the plane, it is still true that the embedded circle separates the plane into
two pieces and is the boundary of each, as you may have seen in Chapter 14. Proving
that fact is surprisingly difficult and proving its analogs in higher dimensions is also
difficult. However, the concepts of homology theory will come to the rescue and allow
us to prove it.

Since the proof involves quite a number of technicalities, we will begin with an
outline of the proof to help us keep our bearings. Here is the goal statement that we
will prove.

Theorem 16.25 (Jordan-Brouwer Separation Theorem). Let ℎ ∶ 𝕊𝑛−1 → 𝕊𝑛 be a topo-
logical embedding. Then ℎ(𝕊𝑛−1) separates 𝕊𝑛 into precisely two components and is the
boundary of each.

Here is a big-picture outline of the main steps of the proof. Throughout, we will
think of 𝕊𝑛 and 𝕊𝑛−1 as simplicial complexes where “straight lines” are great circle
segments.

The main idea of the proof is that the embedding ℎ ∶ 𝕊𝑛−1 → 𝕊𝑛 can easily be
approximated arbitrarily closely by simplicialmaps 𝑓 ∶ 𝕊𝑛−1 → 𝕊𝑛. An approximating
simplicial map 𝑓 is not an embedding, but using homology, we can think of 𝑓(𝕊𝑛−1)
as dividing 𝕊𝑛 into two pieces. Specifically, the following theorem is true—and not too
difficult to prove.

Theorem 16.26 (Two Chains Theorem). Let 𝑓 ∶ 𝕊𝑛−1 → 𝕊𝑛 be a simplicial map. Then
there existℤ2 𝑛-chains𝐴𝑛 and𝐶𝑛 such that 𝜕(𝐴𝑛) = 𝜕(𝐶𝑛) = 𝑓#(𝕊𝑛−1)and𝐴𝑛∪𝐶𝑛 = 𝕊𝑛.
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Here is an outline of the proof of the Jordan-Brouwer Separation Theorem. We
approximate the embedding ℎ with a sequence of increasingly finer simplicial approx-
imations 𝑓𝑖 ∶ 𝕊𝑛−1 → 𝕊𝑛. For each 𝑖, we produce an 𝐴𝑖 and 𝐶𝑖 using the Two Chains
Theorem above. We decide on a criterion for which side is the𝐴𝑖 side andwhich side is
the 𝐶𝑖 side. Then we shave off a bit from each 𝐴𝑖 and 𝐶𝑖 to produce connected subsets
𝐴′𝑖 and 𝐶′

𝑖 of 𝐴𝑖 and 𝐶𝑖, respectively, that are disjoint and just miss ℎ(𝕊𝑛−1). Finally, we
conclude that⋃𝐴′𝑖 and⋃𝐶′

𝑖 are the two components of 𝕊𝑛 − ℎ(𝕊𝑛−1) that we seek.
So let’s begin by proving the Two Chains Theorem above. As a suggestion for get-

ting started, assume that 𝑓(𝕊𝑛−1) misses the north and south poles of 𝕊𝑛. Then draw
great circle lines between the north pole and each point of 𝑓(𝕊𝑛−1) to create a simpli-
cial map 𝐹 from the cone over 𝕊𝑛−1 (basically 𝐵𝑛 or the northern hemisphere of 𝕊𝑛)
into 𝕊𝑛 that extends 𝑓. Now remember that the boundary of the image is the image of
the boundary. After you have produced the 𝑛-chain 𝐴, you really have no choice about
what 𝐶 must be to satisfy the conclusions of the Two Chains Theorem.

It is easy to create close simplicial approximations of a homeomorphism ℎ ∶ 𝕊𝑛−1
→ 𝕊𝑛—just take a fine triangulation of 𝕊𝑛−1, have those vertices under 𝑓 go to the
same places that ℎ takes them, and extend linearly. But we are left with the question of
how close an approximation would be useful. Part of the answer lies with our realizing
that for any embedding of 𝕊𝑛−1, some neighborhood of it retracts to it. That insight is
the content of the next theorem, which is easier to state using the following definition.

Definition. A topological space 𝑌 is an absolute neighborhood retract if and only
if for every normal space 𝑋 and embedding ℎ ∶ 𝑌 → 𝑋 such that ℎ(𝑌) is a closed
subset of 𝑋 , there is a neighborhood 𝑈 of ℎ(𝑌) that retracts to ℎ(𝑌), that is, there is a
neighborhood 𝑈 of ℎ(𝑌) and a continuous function 𝑟 ∶ 𝑈 → ℎ(𝑌) such that 𝑟(𝑈) =
ℎ(𝑌) and for every point 𝑥 ∈ ℎ(𝑌), 𝑟(𝑥) = 𝑥.

Theorem 16.27 (Absolute Neighborhood Retract Theorem). For every 𝑘, 𝕊𝑘 is an ab-
solute neighborhood retract.

Wewill be applying this fact about spheres being absolute neighborhood retracts to
𝕊𝑛−1 in order to conclude that there exists some neighborhood of ℎ(𝕊𝑛−1) that retracts
to ℎ(𝕊𝑛−1). First let’s prove that spheres are absolute neighborhood retracts.

We will need to remember the Tietze Extension Theorem for 𝐵𝑛, namely, if 𝑋 is a
normal space, 𝐴 ⊂ 𝑋 is closed, and 𝑔 ∶ 𝐴 → 𝐵𝑛 is a continuous function (where 𝐵𝑛 is
the 𝑛-ball), then there exists a continuous function 𝐺 ∶ 𝑋 → 𝐵𝑛 that extends 𝑔.

We have several of the hypotheses of the Tietze Extension Theorem, namely,
ℎ(𝕊𝑛−1) is a closed subset of the normal space 𝕊𝑛. There is a natural continuous func-
tion from ℎ(𝕊𝑛−1) to 𝐵𝑛, namely, ℎ−1. So the Tietze Extension Theorem says that
ℎ−1 ∶ ℎ(𝕊𝑛−1) → 𝐵𝑛 can be extended to a continuous function 𝐹 ∶ 𝕊𝑛 → 𝐵𝑛. A
neighborhood of 𝜕𝐵𝑛 = 𝕊𝑛−1 = ℎ−1(ℎ(𝕊𝑛−1)) certainly retracts to 𝜕𝐵𝑛. How can that
retraction be used to create a retraction from a neighborhood𝑈 of ℎ(𝕊𝑛−1) to ℎ(𝕊𝑛−1)?

No neighborhood that retracts to ℎ(𝕊𝑛−1) can be the whole sphere. Once again
homology saves the day.

Theorem 16.28. Let ℎ ∶ 𝕊𝑛−1 → 𝕊𝑛 be a topological embedding, and let 𝑈 be a neigh-
borhood of ℎ ∶ 𝕊𝑛−1 that retracts to it. Then 𝑈 ≠ 𝕊𝑛.
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A corollary to the existence of a neighborhood that retracts to ℎ(𝕊𝑛−1) is that we
can find an even smaller neighborhood of ℎ(𝕊𝑛−1)where the retraction can be accom-
plished by a straight line homotopy.

Corollary 16.29. Let ℎ ∶ 𝕊𝑛−1 → 𝕊𝑛 be a topological embedding, and let 𝑈 be a neigh-
borhood of ℎ ∶ 𝕊𝑛−1 with retraction 𝑟 ∶ 𝑈 → ℎ(𝕊𝑛−1). Then there exists an open set
𝑉 ⊂ 𝑈 such that for every point 𝑣 ∈ 𝑉 , the straight line between 𝑣 and 𝑟(𝑣) is contained
in 𝑈.

The retracting neighborhood 𝑈 of ℎ(𝕊𝑛−1) will be useful in proving the following
lemma. Also useful is the fact that anymap from 𝕊𝑛−1 to 𝕊𝑛−1 that is homotopic to the
identity map of 𝕊𝑛−1 induces a non-trivial homomorphism on the (𝑛 − 1)-homology
group.

Lemma 16.30. Let ℎ ∶ 𝕊𝑛−1 → 𝕊𝑛 be a topological embedding. Then there exists an
𝜖 > 0 such that if 𝑓 ∶ 𝕊𝑛−1 → 𝕊𝑛 is a simplicial map such that 𝑑(𝑓(𝑥), ℎ(𝑥)) < 𝜖 for all
𝑥 ∈ 𝕊𝑛−1, then 𝑓#(𝕊𝑛−1) does not bound an 𝑛-chain in the 𝜖-neighborhood of ℎ(𝕊𝑛−1).

A corollary to the proof of this lemma is the observation that close simplicial ap-
proximations of ℎ cobound 𝑛-chains near 𝕊𝑛−1.

Lemma16.31. Letℎ ∶ 𝕊𝑛−1 → 𝕊𝑛 be a topological embedding, and let 𝜖 > 0. Then there
exists a 𝛿 > 0 such that if𝑓, 𝑔 ∶ 𝕊𝑛−1 → 𝕊𝑛 are simplicialmaps such that𝑑(𝑓(𝑥), ℎ(𝑥)) <
𝛿 and 𝑑(𝑔(𝑥), ℎ(𝑥)) < 𝛿 for all 𝑥 ∈ 𝕊𝑛−1, then 𝑓#(𝕊𝑛−1) and 𝑔#(𝕊𝑛−1) bound an 𝑛-chain
in the 𝜖-neighborhood of ℎ(𝕊𝑛−1).

Another corollary of the fact that simplicial approximations of ℎ do not bound in
𝑈 is that the 𝐴 and 𝐶 in the Two Chains Theorem must have distinct “anchor points”
outside of the retracting neighborhood 𝑈 for any approximation.

Lemma 16.32. Let ℎ ∶ 𝕊𝑛−1 → 𝕊𝑛 be a topological embedding, let𝑈 be a neighborhood
that retracts to ℎ(𝕊𝑛−1), and let 𝑓 ∶ 𝕊𝑛−1 → 𝕊𝑛 be a simplicial map such that for each
point 𝑥 ∈ 𝕊𝑛−1, the straight line segment between ℎ(𝑥) and 𝑓(𝑥) lies in 𝑈. Let 𝐴𝑛 and
𝐶𝑛 be ℤ2 𝑛-chains such that 𝜕(𝐴𝑛) = 𝜕(𝐶𝑛) = 𝑓#(𝕊𝑛−1) and 𝐴𝑛 ∪ 𝐶𝑛 = 𝕊𝑛. Then there
exists a point 𝑎 ∈ (𝐴 − 𝑈) and a point 𝑐 ∈ (𝐶 − 𝑈).

We are inching our way toward constructing objects that are going to become the
two components of the complement of ℎ(𝕊𝑛−1). The next lemma says that the 𝐴 and
𝐶 anchor points remain on different sides for nearby approximations of ℎ.

Lemma 16.33. Let ℎ ∶ 𝕊𝑛−1 → 𝕊𝑛 be a topological embedding, let𝑈 be a neighborhood
that retracts to ℎ(𝕊𝑛−1), and let 𝑓, 𝑔 ∶ 𝕊𝑛−1 → 𝕊𝑛 be simplicial maps such that for
each point 𝑥 ∈ 𝕊𝑛−1, the straight line segments between ℎ(𝑥) and 𝑓(𝑥) and ℎ(𝑥) and
𝑔(𝑥) lie in 𝑈. Let 𝐴𝑛𝑓 and 𝐶𝑛

𝑓 be ℤ2 𝑛-chains ( from the Two Chains Theorem) such that
𝜕(𝐴𝑛𝑓) = 𝜕(𝐶𝑛

𝑓) = 𝑓#(𝕊𝑛−1) and 𝐴𝑛𝑓 ∪𝐶𝑛
𝑓 = 𝕊𝑛, and let 𝑎 ∈ (𝐴𝑛𝑓 −𝑈) and 𝑐 ∈ (𝐶𝑛

𝑓 −𝑈).
Let 𝐴𝑛𝑔 and 𝐶𝑛

𝑔 be ℤ2 𝑛-chains such that 𝜕(𝐴𝑛𝑔) = 𝜕(𝐶𝑛
𝑔 ) = 𝑔#(𝕊𝑛−1) and 𝐴𝑛𝑔 ∪ 𝐶𝑛

𝑔 = 𝕊𝑛,
where 𝑎 ∈ 𝐴𝑔. Then 𝑐 ∉ 𝐴𝑔.

Our goal is to create connected components of 𝕊𝑛 − ℎ(𝕊𝑛−1), so we need to bring
connected pieces into the discussion.
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Lemma 16.34. Let ℎ ∶ 𝕊𝑛−1 → 𝕊𝑛 be a topological embedding, let𝑈 be a neighborhood
such that there is a retract 𝑟 ∶ 𝑈 → ℎ(𝕊𝑛−1), and let 𝑉 be an open set in 𝑈 such that
for each 𝑥 ∈ 𝑉 , the straight line segment from 𝑥 to 𝑟(𝑥) is in 𝑈. Let 𝑎 ∉ 𝑈, and let 𝑇
be a standard triangulation of 𝕊𝑛 with simplices so small that for any simplex 𝜎 ∈ 𝑇, if
𝜎 ∩ (𝕊𝑛 − 𝑉) ≠ ∅, then 𝜎 ∩ ℎ(𝕊𝑛−1) = ∅. Let 𝜏0 be an 𝑛-simplex in 𝑇 such that 𝑎 ∈ 𝜏0.
Let 𝐴 be the union of all 𝑛-simplices 𝜏𝑘 in 𝑇 such that there are 𝑛-simplices {𝜏𝑖}𝑖=0,…,𝑘
such that (1) each 𝜏𝑖 contains a point in 𝕊𝑛 − 𝑉 , and (2) for each 𝑖, 𝜏𝑖 and 𝜏𝑖+1 share an
(𝑛−1)-face. Then 𝜕𝐴 ⊂ 𝑉 and ℎ−1(𝑟(𝜕𝐴)) is the non-trivial element of𝖧𝑛−1(𝕊𝑛−1). Also,
𝑟(𝜕𝐴) = ℎ(𝕊𝑛−1).

The final consequence of the above lemma is what will allow us to conclude that
each point of ℎ(𝕊𝑛−1) will be a limit point of the boundary of each of its two compo-
nents.

Putting all these insights together, we can create the sequence of 𝐴𝑖’s and 𝐶𝑖’s
whose unions are the components we seek.

Lemma 16.35. Let ℎ ∶ 𝕊𝑛−1 → 𝕊𝑛 be a topological embedding, and let {𝑈𝑖}𝑖∈ℕ be
open sets each containing ℎ(𝕊𝑛−1) and each contained in the 1

𝑖
-neighborhood of

ℎ(𝕊𝑛−1) with retract 𝑟 ∶ 𝑈1 → ℎ(𝕊𝑛−1) and such that for every 𝑖 ∈ ℕ and every point
𝑥 ∈ 𝑈𝑖+1, the straight line homotopy between 𝑥 and 𝑟(𝑥) lies in 𝑈𝑖. Let {𝑇𝑖}𝑖∈ℕ be a
sequence of triangulations of 𝕊𝑛 where each triangulation 𝑇𝑖+1 is a subdivision of 𝑇𝑖 with
simplices so small that any simplex of 𝑇𝑖 that intersects ℎ(𝕊𝑛−1) lies entirely in 𝑈𝑖. Let
𝑎 ∈ (𝕊𝑛 − 𝑈1). Let 𝐴𝑖 be the component containing 𝑎 of the union of all 𝑛-simplices of
𝑇𝑖 that miss ℎ(𝕊𝑛−1). Then 𝜕(𝐴𝑖+1) and 𝜕(𝐴𝑖+2) cobound an 𝑛-chain in 𝑈𝑖, ⋃𝑖∈ℕ 𝐴𝑖 ∩
ℎ(𝕊𝑛−1)=∅, each point 𝑥 ∈ ℎ(𝕊𝑛−1) is a limit point of⋃𝑖∈ℕ 𝐴𝑖, there exists a point 𝑐 in
(𝕊𝑛 −⋃𝑖∈ℕ 𝐴𝑖 − 𝑈1), and if we do the same process that we did for 𝑎 for 𝑐 creating 𝐶𝑖’s,
then 𝕊𝑛 = (⋃𝑖∈ℕ 𝐴𝑖) ∪ ℎ(𝕊𝑛−1) ∪ (⋃𝑖∈ℕ 𝐶𝑖).

Finally, we have proved the Jordan-Brouwer Separation Theorem.

Theorem 16.36 (Jordan-Brouwer Separation Theorem). Let ℎ ∶ 𝕊𝑛−1 → 𝕊𝑛 be a topo-
logical embedding. Then ℎ(𝕊𝑛−1) separates 𝕊𝑛 into precisely two components and is the
boundary of each.

Another commonly used version of the Jordan-Brouwer SeparationTheorem is the
following corollary. It is one the most fundamental results about the global topology
of ℝ𝑛.

Corollary 16.37 (Jordan-Brouwer Separation Theorem). Let ℎ ∶ 𝕊𝑛−1 → ℝ𝑛 be a
topological embedding. Then ℎ(𝕊𝑛−1) separates ℝ𝑛 into precisely two components and
is the boundary of each. The two components are distinguished topologically by the fact
that one has a compact closure and the other does not.

One of the consequences of understanding the proof of the Jordan-Brouwer Sepa-
ration Theorem is that every topologically embedded (𝑛 − 1)-manifold must separate
ℝ𝑛 just as an (𝑛 − 1)-sphere does.

Theorem 16.38. Every connected, compact topologically embedded (𝑛− 1)-manifold in
ℝ𝑛 separates ℝ𝑛 into two components and is the topological boundary of each.
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This insight allows us to conclude that a Klein bottle cannot be embedded in ℝ3.

Theorem 16.39. The Klein Bottle cannot be embedded in ℝ3.

16.9 ℤ2-Homology—A Topological Superhero
The results in this section are among the triumphs of topology. They are definitely a
rich reward for developing the concepts of homology that allow us to prove them.

One way to evaluate the perceived significance of mathematical results is to no-
tice which ones have names. In this chapter you proved many named theorems, some
named after people and some named after fast food cuisine: the No Retraction The-
orem, the Brouwer Fixed Point Theorem, the Borsuk-Ulam Theorem, the Ham Sand-
wich Theorem, the Invariance of Domain Theorem, and the Jordan-Brouwer Separa-
tion Theorem.

These theorems are among the highlights of topology. Many of them followed from
applying strategies of extending ideas step by step from simple to more complex. That
methodical systemmay appear mundane, but the pay off was enormous here and gives
you a strategy of learning and producing ideas that can be used in mathematics and
beyond.



17
Simplicial ℤ-Homology:

Getting Oriented

In the previous chapters we began our study of homology by defining ℤ2 simplicial
homology. The ℤ2 world was a convenient place to start, because having just two coef-
ficients 1 and 0 corresponded to the idea that a simplex was either present or absent in
a chain. Moreover, the boundary of a chain could be easily defined in a way that cor-
responds with our intuition that an (𝑛 − 1)-simplex appearing where two 𝑛-simplices
meet should not be regarded as part of the boundary of their union. Having ℤ2 coef-
ficients meant that if the boundary of a sum is defined to be the sum of boundaries,
then such a shared (𝑛 − 1)-simplex is counted twice, which in ℤ2 means they are not
counted at all.

Effective Thinking Principle. Extend Good Ideas. The best source of new
good ideas is old good ideas—generalize and extend them.

In this chapter, we will develop a homology theory that generalizes ℤ2 simplicial
theory in two important respects. First, we consider how to define simplicial homol-
ogy with ℤ coefficients in much the same way as we did with ℤ2 coefficients, and we
flesh out several more properties of homology, including a relative version. Then in
the next chapter we show how to generalize simplicial homology to a more general
homology theory called singular homology which holds for any topological space, not
just simplicial complexes.

We hope you will also see this chapter as an opportunity to take your learning
to a new level. We will provide less scaffolding in these final chapters than in prior
chapters. However, you’ll be able to draw on the effective learning principles as well as
the topological intuition you have developed. And whenever there is a new idea, we’ll
try to suggest a path forward. As you have already seen, many of the ideas of homology
theory are easy to describe, but pinning down the details requires goodnotation, careful
bookkeeping, and attention to just a few important ideas.

263
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Effective Thinking Principle. Pin Down Intuition. Let your intuition be
your guide—then pin it down.

17.1 Orientation and ℤ-Homology
In Chapter 15, we developed simplicial homology with ℤ2 coefficients, but it turns out
that we can develop homology with coefficients in any group 𝐺. In order to keep the
notation as simple as possible in Chapter 15, the ℤ2-homology groups of a complex 𝐾
were denoted𝖧𝑛(𝐾) in sans serif font, but customarily they are denoted𝐻𝑛(𝐾; ℤ2), and
𝐻𝑛(𝐾; 𝐺) is the notation used for homology with coefficients in 𝐺. When 𝐺 = ℤ, it is
customary to drop the group from the notation and write 𝐻𝑛(𝐾), since ℤ is the most
common coefficient group to use. We will study ℤ-homology throughout this chapter.

To define simplicial ℤ-homology, we need to alter our definition of the boundary
map so that cancellation occurs for a shared (𝑛−1)-simplex between two 𝑛-simplices in
a chain. Usingℤ coefficients will allow us to draw finer distinctions among spaces. For
example, ℤ2-homology was not able to distinguish the torus 𝕋2 and the Klein bottle𝕂2.
But we will find that 𝕋2 and𝕂2 have different ℤ-homology groups in dimension 2, and
in fact, we will see that ℤ-homology groups will successfully distinguish all compact
connected surfaces from one another.

The first idea to grapple with is what it means to have chains with coefficients in
ℤ. Now we can talk about 5 times a simplex or (−3) times a simplex. The possibility of
having a “negative” simplex means that we can salvage our definition of the boundary
map at an (𝑛 − 1)-simplex where two 𝑛-simplices meet by getting their boundaries to
“cancel” along that common face.

We have already seen something similar in Section 11.8. There we noted that every
edge and every triangle had two possible orientations. Orientation allows us to define
the negative of a simplex with a given orientation to be the same simplex but with the
other orientation. We revisit this idea here in order to generalize the idea to higher-
dimensional complexes.

For an edge {𝑣𝑤}, the two orientation classes correspond to two orderings of the
vertices 𝑣 and𝑤, and are denoted [𝑣𝑤] and [𝑤𝑣]. It is customary to think of the oriented
edge [𝑣𝑤] as an edge with an arrow pointing from 𝑣 to 𝑤. We set [𝑣𝑤] = −[𝑤𝑣].

For a triangle {𝑢𝑣𝑤} with vertices 𝑢, 𝑣, and 𝑤, the two orientation classes corre-
spond geometrically to clockwise or counterclockwise orderings of the vertices when
viewed from a particular vantage point. Algebraically, we can think of these as group-
ing permutations of three vertices into two equivalence classes, and as above, we place
brackets around the permutations to denote these classes. Thus [𝑢𝑣𝑤] = [𝑣𝑤𝑢] =
[𝑤𝑢𝑣] and [𝑢𝑤𝑣] = [𝑤𝑣𝑢] = [𝑣𝑢𝑤]. Readers familiar with algebra may recognize that
these are the classes of permutations that differ by an even number of transpositions.
In a chain group that we will define soon, we set these classes to be additive inverses
of one another; e.g., [𝑢𝑣𝑤] = −[𝑣𝑢𝑤].

A natural way to define the boundary of [𝑢𝑣𝑤] is [𝑢𝑣] + [𝑣𝑤] + [𝑤𝑢], a sum of
oriented edges. Thus the orientation of the triangle {𝑢𝑣𝑤} will induce an orientation
in each of the edges of the boundary. This method of inducing orientation is good,
because if we were to orient each triangle in Figure 17.1 counterclockwise, then the
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boundary of the neighboring triangles that meet along edge {𝑣𝑤}would have that edge
oriented in opposite directions. An alternative way to write the boundary of [𝑢𝑣𝑤] is:

𝜕[𝑢𝑣𝑤] = [𝑣𝑤] − [𝑢𝑤] + [𝑢𝑣],
an alternating sum of oriented edges obtained by removing one vertex from the ori-
ented simplex [𝑢𝑣𝑤].

Figure 17.1. Neighboring oriented simplices. Note how the sim-
plices induce opposite orientations on the edge 𝑣𝑤.

We can now generalize our concept to apply to 𝑛-simplices.

Definition. Let {𝑣0⋯𝑣𝑛} be an 𝑛-simplex. Orderings of the vertices 𝑣0, … , 𝑣𝑛 are placed
into two orientation classes such that the orderings in each class differ by an even
number of transpositions. An 𝑛-simplex {𝑣0⋯𝑣𝑛} with a chosen ordering is called an
oriented simplex and denoted [𝑣0⋯𝑣𝑛].

We shall think of the same simplex with opposite orientations as additive inverses
of one another in the chain group we now define. Just as in the case of ℤ2-homology,
a chain will be a sum of simplices, but this time it will be a sum of oriented simplices.

Definition. Fix a simplicial complex 𝐾. The 𝑛-chain group of 𝐾 (with coefficients
in ℤ) is the free abelian group on the collection of oriented 𝑛-simplices of 𝐾, modulo
the relation that any oriented simplex and its oppositely oriented version are inverses
of one another. This group is denoted 𝐶𝑛(𝐾) or 𝐶𝑛(𝐾; ℤ) when one wants to mention
the coefficient group ℤ explicitly. Thus 𝐶𝑛(𝐾) is a free abelian group generated by a
set containing exactly one orientation of each 𝑛-simplex. An 𝑛-chain is an element of
𝐶𝑛(𝐾), a ℤ-linear combination of a finite number of oriented simplices. When there
are no 𝑛-simplices in 𝐾, the only 𝑛-chain is the empty chain. Thus 𝐶𝑛(𝐾) = {0}, the
trivial group we shall denote by 0.

Example. Consider the simplicial complex𝐾 in Figure 17.2, which is a filled-in triangle
and a hollow triangle.

It has a single 2-simplex. If that simplex is oriented and called 𝜎, then 𝐶2(𝐾) is
generated by 𝜎. (It is also generated by −𝜎, the oppositely oriented simplex.) Hence
𝐶2(𝐾) is isomorphic to ℤ.

We see also that𝐶1(𝐾) is a free abelian group on five generators, consisting of edges
of 𝐾 with a chosen orientation. If those oriented edges are 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, then other
generators are also possible for this group: for instance, 𝑒1, −𝑒2, −𝑒3, 𝑒4, −𝑒5. A sample
element 𝑐 in 𝐶1(𝐾) is 𝑐 = 3𝑒1 − 7𝑒3 + 𝑒4.
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Figure 17.2. A simplicial complex.

Similarly, 𝐶0(𝐾) is a free abelian group on four generators, namely, the vertices
of 𝐾.

Besides viewing a chain as a formal sum of simplices, it may sometimes be conve-
nient to think of a chain as a tuple (one for each generator) or as a function from gen-
erators to ℤ. For instance the element 𝑐 = 3𝑒1 − 7𝑒3 + 𝑒4 in 𝐶1(𝐾) can be thought of as
a 5-tuple (3, 0, −7, 1, 0) or as an integer-valued function on generators, e.g., 𝑐(𝑒3) = −7.

We can define the boundary map.

Definition. For 𝑛 ≥ 1, the boundary of an oriented 𝑛-simplex 𝜎 = [𝑣0⋯𝑣𝑛] is
defined by

𝜕(𝜎) =
𝑛
∑
𝑖=0

(−1)𝑖[𝑣0⋯𝑣𝑖⋯𝑣𝑛].

Recall that [𝑣0⋯𝑣𝑖⋯𝑣𝑛] represents the simplex with 𝑣𝑖 removed. The boundary of 𝜎
can be viewed as the sum of the (𝑛 − 1)-dimensional faces of 𝜎, each of which has the
induced orientation (−1)𝑖[𝑣0⋯𝑣𝑖⋯𝑣𝑛]. The boundary of a 0-simplex is defined to
be zero.

Exercise 17.1. Check that this boundary map is well-defined: it does not depend on the
oriented representative chosen for the definition.

Exercise 17.2. Find the boundary of the oriented 2-simplex 𝜏 = [𝑣0𝑣1𝑣2] and the bound-
ary of the oriented 3-simplex 𝜎 = [𝑤0𝑤1𝑤2𝑤3]. Repeat the procedure for −𝜏 and −𝜎.
What is the relationship between the boundary of 𝜏 and the boundary of −𝜏? What is the
relationship between the boundary of 𝜎 and the boundary of −𝜎?

Theorem 17.3. For any 𝑛-simplex 𝜎,
𝜕(−𝜎) = −𝜕(𝜎).

So wemay define the boundary of an 𝑛-chain by extending the definition on simplices.

Definition. The boundary of an 𝑛-chain∑𝑘
𝑖=1 𝑐𝑖𝜎𝑖 is an (𝑛 − 1)-chain:

𝜕 (
𝑘
∑
𝑖=1

𝑐𝑖𝜎𝑖) =
𝑘
∑
𝑖=1

𝑐𝑖𝜕(𝜎𝑖).

Thus the boundary operator is a homomorphism
𝜕𝑛 ∶ 𝐶𝑛(𝐾) → 𝐶𝑛−1(𝐾)

for each 𝑛 ≥ 0 (note that 𝐶−1(𝐾) = 0).
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Theorem 17.4. For all 𝑛 ≥ 0,
𝜕𝑛 ∘ 𝜕𝑛+1 = 0.

We suppresswriting the subscript 𝑛 on 𝜕𝑛when there is no possibility of confusion.
The sequence of chain groups and boundary maps

⋯ 𝜕−−−−−→ 𝐶𝑛+1(𝐾)
𝜕−−−−−→ 𝐶𝑛(𝐾)

𝜕−−−−−→ 𝐶𝑛−1(𝐾)
𝜕−−−−−→ ⋯

is called a chain complex.

Definition. An 𝑛-cycle of a simplicial complex𝐾 is an 𝑛-chain whose boundary is zero.
The collection of 𝑛-cycles, denoted 𝑍𝑛(𝐾), is the kernel of the homomorphism 𝜕𝑛. An
𝑛-boundary of 𝐾 is an 𝑛-chain that is the boundary of an (𝑛+1)-chain. The collection
of 𝑛-boundaries, denoted 𝐵𝑛(𝐾), is the image of the homomorphism 𝜕𝑛+1.

Theorem 17.5. For any simplicial complex 𝐾, both 𝑍𝑛(𝐾) and 𝐵𝑛(𝐾) are subgroups of
𝐶𝑛(𝐾), and 𝐵𝑛(𝐾) ⊂ 𝑍𝑛(𝐾).

Definition. Two 𝑛-cycles 𝛼 and 𝛽 in the simplicial complex 𝐾 are equivalent or
homologous if and only if 𝛼− 𝛽 = 𝜕𝛾, where 𝛾 is some (𝑛 + 1)-chain. In other words,
𝛼 and 𝛽 are homologous if they differ by an element of the subgroup 𝐵𝑛(𝐾). Being
homologous is denoted:

𝛼 ∼ 𝛽.
The equivalence class of 𝛼 is denoted by [𝛼].

In the expression 𝛼−𝛽 = 𝜕𝛾, we can see that two 𝑛-cycles are equivalent if together
they bound an (𝑛 + 1)-chain 𝛾 when the orientation of 𝛽 is reversed.

If we turn our attention to dimension one, we get a sense of a relationship between
homology and the fundamental group. Suppose two oriented 1-cycles 𝛼 and 𝛽 both in-
volve loops that begin and end at a common point. If together they bound a 2-chain 𝛾,
then they are homologous. This scenario is reminiscent of the definition of homotopic
loops when we were defining the fundamental group. Indeed, there is a specific rela-
tionship between the first homology group (with ℤ coefficients) and the fundamental
group of a simplicial complex, as we shall see later in this chapter.

Exercise 17.6. Create a triangulation of aMöbius band such that the central circle forms
a 1-cycle 𝛾. Show that the Möbius band’s boundary 1-cycle 𝛼 is equivalent to either 2𝛾 or
−2𝛾 (depending on the orientation you give the two cycles).

Definition. The 𝑛th-homology group (with coefficients in ℤ) of a finite simplicial
complex 𝐾 is the additive group of 𝑛-cycles under the equivalence defined above. The
group is denoted 𝐻𝑛(𝐾) or 𝐻𝑛(𝐾; ℤ) when one wants to mention the coefficient group
ℤ explicitly. Thus,

𝐻𝑛(𝐾) = 𝑍𝑛(𝐾)/𝐵𝑛(𝐾).

Theorem 17.7. For a finite simplicial complex 𝐾, 𝐻𝑛(𝐾) is a finitely generated abelian
group.
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One of the conveniences of homology is that for a finite complex 𝐾, the group
𝐻𝑛(𝐾) is always a finitely generated abelian group, a type of structure which is well-
understood. In particular, it is usually easy to see whether two such groups are iso-
morphic or not. After we show that homeomorphic spaces have isomorphic homology
groups, then we will know that two spaces with different homology groups are not
homeomorphic. So computing homology groups is an effective tool for distinguishing
spaces.

Theorem 17.8. If 𝐾 is a connected simplicial complex, then𝐻0(𝐾) is isomorphic to ℤ. If
𝐾 has 𝑟 connected components, then𝐻0(𝐾) is a free abelian group of rank 𝑟.

Theorem 17.9. If 𝐾 is a one-point space,𝐻𝑛(𝐾) ≅ 0 for 𝑛 > 0 and𝐻0(𝐾) ≅ ℤ.

Let 𝐾 be a finite simplicial complex. Recall that a point 𝑥 ∉ 𝐾 can “see” 𝐾 if any
ray from 𝑥 intersects |𝐾| at most once. Also, recall that the cone of 𝑥 over a simplex
{𝑣0⋯𝑣𝑘} is the simplex {𝑥𝑣0⋯𝑣𝑘} and 𝑥∗𝐾 denotes the simplicial complex that is the
cone over 𝐾. Now we define the cone over an oriented simplex.

Definition. Let 𝐾 be a finite simplicial complex, and let 𝑥 be a point that sees 𝐾. If
𝜎 = [𝑣0⋯𝑣𝑘] is an oriented simplex of𝐾, define the cone of 𝑥 over 𝜎 to be the oriented
simplex:

𝖢𝗈𝗇𝖾𝑥(𝜎) = [𝑥𝑣0⋯𝑣𝑘].
Then there is a simplicial cone operator 𝖢𝗈𝗇𝖾𝑥 ∶ 𝖢𝑛(𝐾) → 𝖢𝑛+1(𝑥 ∗ 𝐾) that extends
the definition of 𝖢𝗈𝗇𝖾𝑥(𝜎) linearly to chains.

Theorem 17.10. Let 𝑥 see a complex 𝐾, and let 𝑐 ∈ 𝐶𝑛(𝐾) be a chain. Then
𝜕 𝖢𝗈𝗇𝖾𝑥(𝑐) + 𝖢𝗈𝗇𝖾𝑥(𝜕𝑐) = 𝑐.

Recall that a space with the homology groups of a point is called acyclic.

Corollary 17.11. For any complex 𝐾 and 𝑥 seeing 𝐾, the complex 𝑥 ∗ 𝐾 is acyclic.

Theorem 17.12. The complex 𝐾 consisting of an 𝑛-simplex together with all its faces is
acyclic.

EffectiveThinkingPrinciple. GeneralizeMethodically. When generalizing
a concept or theory, follow through andmethodically consider generalizations
of all features of the source.

For any simplicial map, there’s an associated chain map, and an induced homo-
morphism in homology.

Definition. Let 𝑓 ∶ 𝐾 → 𝐿 be a simplicial map between complexes 𝐾 and 𝐿. The
induced chain map 𝑓#𝑛 ∶ 𝐶𝑛(𝐾) → 𝐶𝑛(𝐿) is defined on oriented simplices as follows:

𝑓#𝑛([𝑣0, … , 𝑣𝑛]) = {[𝑓(𝑣0), … , 𝑓(𝑣𝑛)] if all the 𝑓(𝑣𝑖) are distinct,
0 otherwise.
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As we did with the boundary operator, we will typically drop the subscript 𝑛 from
our notation and simply write 𝑓#.

Theorem 17.13. Let 𝑓 ∶ 𝐾 → 𝐿 be a simplicial map, and let 𝑓# be the induced map
𝑓# ∶ 𝐶𝑛(𝐾) → 𝐶𝑛(𝐿). Then for any chain 𝑐 ∈ 𝐶𝑛(𝐾), 𝜕(𝑓#(𝑐)) = 𝑓#(𝜕(𝑐)). In other
words, the diagram

𝐶𝑛(𝐾)
𝑓#−−−−−→ 𝐶𝑛(𝐿)

𝜕↑↑↓ ↑↑↓𝜕

𝐶𝑛−1(𝐾)
𝑓#−−−−−→ 𝐶𝑛−1(𝐿)

commutes.

Because of this fact, the induced homomorphism is well-defined.

Definition. Let 𝑓 ∶ 𝐾 → 𝐿 be a simplicial map. The induced homomorphism 𝑓∗ ∶
𝐻𝑛(𝐾) → 𝐻𝑛(𝐿) is defined by 𝑓∗([𝑧]) = [𝑓#(𝑧)].

You have seen how to show this map exists and is well-defined for ℤ2-homology.
Let’s do it again here, but take the opportunity to illustrate the argument as a diagram
chase, a frequent method of reasoning in homology theory. Consider the following
commutative diagram:

𝐶𝑛+1(𝐾)
𝑓#−−−−−→ 𝐶𝑛+1(𝐿)

𝜕↑↑↓ ↑↑↓𝜕

𝐶𝑛(𝐾)
𝑓#−−−−−→ 𝐶𝑛(𝐿)

𝜕↑↑↓ ↑↑↓𝜕

𝐶𝑛−1(𝐾)
𝑓#−−−−−→ 𝐶𝑛−1(𝐿)

The idea of a diagram chase is to allow the diagram to suggest where the argument
should go next. Let’s first show that 𝑓# takes cycles to cycles. Consider a cycle 𝑧 in
𝐶𝑛(𝐾). What do we know about 𝑧 in the diagram? Well, because it is a cycle, it maps
to 0, going downward in the diagram to 𝐶𝑛−1(𝐾). And that maps rightward to 0 in
𝐶𝑛−1(𝐿). Whenever we have gone around a square one way, we think: “I could have
gone around the square another way.” So that means 𝑧 maps rightward to some 𝑐 in
𝐶𝑛(𝐿) which must then map downward to 0, by commutativity of the square. So, we
conclude that 𝑐 is a cycle and that means the definition 𝑓∗([𝑧]) = [𝑓#(𝑧)]makes sense.

Do you see how the diagram often suggests what to do next?
Now, see if you can use a diagram chase to show that 𝑓∗ is well-defined. Start with

two cycles 𝑧 and 𝑧′ in 𝐶𝑛(𝐾) that differ by a boundary. That means, looking upward,
there is a chain 𝑤 ∈ 𝐶𝑛+1(𝐾) such that 𝑧 − 𝑧′ = 𝜕𝑤. What should we do with 𝑤? You
take it from here, to finish the proof of the next theorem.

Theorem 17.14. Let 𝑓 ∶ 𝐾 → 𝐿 be a simplicial map. Then the induced homomorphism
𝑓∗ ∶ 𝐻𝑛(𝐾) → 𝐻𝑛(𝐿) is a well-defined homomorphism.
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17.2 Relative Simplicial Homology
Homology groups are easy to define but they will not be easy to compute unless we
develop tools. One strategy thatwehave seen forℤ2-homologywas to break a space into
pieces and use theMayer-Vietoris sequence. Soon, we shall develop a similar sequence
for ℤ-homology.

Another strategy is to find a relationship between the homology groups of a com-
plex and the homology groups of a subcomplex. This approach leads to a more general
notion of homology called relative homology. This strategy could also have been done
for ℤ2-homology, though we did not do so earlier.

Definition. Let 𝐾′ be a subcomplex of a simplicial complex 𝐾. Then the chain group
𝐶𝑛(𝐾′) can be viewed as a subgroup of the chain group 𝐶𝑛(𝐾) consisting of all chains
that are zero on any simplex outside 𝐾′. Then we can define the group of relative
chains of 𝐾 modulo 𝐾′ as the quotient group:

𝐶𝑛(𝐾, 𝐾′) = 𝐶𝑛(𝐾)/𝐶𝑛(𝐾′).

Exercise 17.15. Check that 𝐶𝑛(𝐾, 𝐾′) is a free abelian group.

Note that the boundary map 𝜕𝑛 ∶ 𝐶𝑛(𝐾) → 𝐶𝑛−1(𝐾) restricts to 𝜕𝑛 ∶ 𝐶𝑛(𝐾′) →
𝐶𝑛−1(𝐾′), so taking boundaries of chains in the subcomplex stays in the subcomplex.
This observation produces a boundary map on relative chains.

Theorem 17.16. There is a boundary map
𝜕𝑛 ∶ 𝐶𝑛(𝐾, 𝐾′) → 𝐶𝑛−1(𝐾, 𝐾′)

such that 𝜕𝑛 ∘ 𝜕𝑛+1 = 0 for all 𝑛 ≥ 0.

By analogywith the usual homology, we define the subgroup of relative 𝑛-cycles
𝑍𝑛(𝐾, 𝐾′) to be Ker 𝜕𝑛. A relative 𝑛-cycle can be represented by an 𝑛-chain in 𝐾 whose
boundary lives in the subcomplex 𝐾′. And the subgroup of relative 𝑛-boundaries
𝐵𝑛(𝐾, 𝐾′) are the elements in Im 𝜕𝑛+1. A relative 𝑛-boundary can be represented by an
𝑛-chain in 𝐾 that, together with an 𝑛-chain in 𝐾′, forms the boundary of an (𝑛 + 1)-
chain in 𝐾. By Theorem 17.16, 𝐵𝑛(𝐾, 𝐾′) is a subgroup of 𝑍𝑛(𝐾, 𝐾′). Then the relative
homology group𝐻𝑛(𝐾, 𝐾′) is defined as a quotient—the “relative cycles mod relative
boundaries”:

𝐻𝑛(𝐾, 𝐾′) = 𝑍𝑛(𝐾, 𝐾′)/𝐵𝑛(𝐾, 𝐾′).

Exercise 17.17. Check that if 𝐾′ = ∅, the empty set, then 𝐻𝑛(𝐾, 𝐾′) = 𝐻𝑛(𝐾) for all 𝑛,
the usual homology groups.

For a vertex 𝑣 ∈ 𝐾, the relative homology groups 𝐻𝑛(𝐾, {𝑣}) are sometimes called
the reducedhomology groups of𝐾, written𝐻𝑛(𝐾). They donot depend on the choice
of 𝑣.

Exercise 17.18. Show that𝐻𝑛(𝐾) ≅ 𝐻𝑛(𝐾) for 𝑛 > 0 and𝐻0(𝐾) ≅ 𝐻0(𝐾) ⊕ ℤ.

Exercise 17.19. Let 𝐾 be the complex consisting of a triangle and all its faces. Let 𝐾′ be
just the proper faces of the triangle. Determine𝐻𝑛(𝐾, 𝐾′) for all 𝑛 ≥ 0.
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Exercise 17.20. Let 𝐾 be a triangulation of an annulus, and let 𝐾′ be the subcomplex
consisting of the inner and outer edges of the annulus. Find a relative 1-cycle in𝐶1(𝐾, 𝐾′)
that is not a relative 1-boundary.

Exercise 17.21. Let 𝐾 be a triangulation of a Möbius band, and let 𝐾′ be its boundary.
Determine𝐻𝑛(𝐾, 𝐾′) for 𝑛 ≥ 0.

The next theorem shows that you can “excise” a part of the subcomplex without
affecting the relative homology.

Theorem 17.22 (Excision). Suppose 𝐾′ is a subcomplex of 𝐾. Remove an open set 𝑈
from 𝐾′ such that what remains of 𝐾′ is a subcomplex 𝐿′, and what remains of 𝐾 is a
subcomplex 𝐿. Then

𝐻𝑛(𝐿, 𝐿′) ≅ 𝐻𝑛(𝐾, 𝐾′).

Now that we’ve defined the relative homology 𝐻𝑛(𝐾, 𝐾′), we can consider simpli-
cial maps on pairs that induce homomorphisms on relative homology. Suppose 𝐾′ is a
subcomplex of 𝐾 and 𝐿′ is a subcomplex of 𝐿. We write

𝑓 ∶ (𝐾, 𝐾′) → (𝐿, 𝐿′)
to denote a simplicial map 𝑓 ∶ 𝐾 → 𝐿 for which 𝑓(𝐾′) ⊂ 𝐿′.

Theorem 17.23. Given a simplicial map 𝑓 ∶ (𝐾, 𝐾′) → (𝐿, 𝐿′) there is an associated
chain map 𝑓# ∶ 𝐶𝑛(𝐾, 𝐾′) → 𝐶𝑛(𝐿, 𝐿′) and induced homomorphism 𝑓∗ ∶ 𝐻𝑛(𝐾, 𝐾′) →
𝐻𝑛(𝐿, 𝐿′).

If we can discern the relationship of 𝐻𝑛(𝐾, 𝐾′) to 𝐻𝑛(𝐾) and 𝐻𝑛(𝐾′), we may be
able to use this relationship to compute 𝐻𝑛(𝐾) using the other two. For instance, are
there natural homomorphisms between them? Before thinking about cycles, let’s first
think about any homomorphisms that exist between chain groups. Note that the rela-
tionship 𝐶𝑛(𝐾, 𝐾′) = 𝐶𝑛(𝐾)/𝐶𝑛(𝐾′) can be expressed as a statement about homomor-
phisms. Before reading further, think about these questions.

Exercise 17.24. There are natural maps between chain groups:

𝐶𝑛(𝐾′) 𝑖−−−−−→ 𝐶𝑛(𝐾)
𝜋−−−−−→ 𝐶𝑛(𝐾, 𝐾′).

What are the maps 𝑖 and 𝜋, and what do you notice about them and their relationship
with each other?

The map 𝑖 is an inclusion map, and 𝜋 is a projection map onto cosets. If you did
the exercise, you saw that 𝑖 and 𝜋 are related in a special way. First you might have
noticed that the composition 𝜋 ∘ 𝑖 = 0, the zero map. Another way to express this
equality is that the image of 𝑖 is contained in the kernel of 𝜋. A second thing youmight
have noticed is that there are no other elements of 𝐶𝑛(𝐾) contained in the kernel of
𝜋. In other words, the image of 𝑖 exactly equals the kernel of 𝜋. This special situation
has a name as you may recall from the section on the Mayer-Vietoris Theorem in the
ℤ2-homology chapter. Namely, the sequence 𝐶𝑛(𝐾′) → 𝐶𝑛(𝐾) → 𝐶𝑛(𝐾, 𝐾′) is exact at
𝐶𝑛(𝐾). We recall the definition here.
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Definition. Given a sequence (finite or infinite) of groups and homomorphisms,

⋯ −−−−−→ 𝐺𝑖−1
𝜙𝑖−1−−−−−→ 𝐺𝑖

𝜙𝑖−−−−−→ 𝐺𝑖+1 −−−−−→ ⋯,
the sequence is exact at 𝐺𝑖 if and only if Im𝜙𝑖−1 = Ker 𝜙𝑖. The sequence is called
an exact sequence if and only if it is exact at each group (except at the first and last
groups if they exist).

Exact sequences show up everywhere in the subject of algebraic topology. They
turn out to be a surprisingly effective way to summarize relationships between the
groups that appear in the subject. For instance, in the exercise above, you might have
also noticed that the map 𝑖 is injective and the map 𝜋 is surjective. Both these facts are
summarized by the statement that the sequence

0⟶ 𝐶𝑛(𝐾′)⟶ 𝐶𝑛(𝐾)⟶ 𝐶𝑛(𝐾, 𝐾′)⟶ 0
is exact. A sequence of five groups such as this sequence—with first and last groups
trivial and exactness at each of the three middle groups—is called a short exact se-
quence.

In fact, because themaps 𝑖 and𝜋 exist in each dimension, they are chainmaps, and
there is therefore a short exact sequence of chain complexes with short exact sequences
at every level:

𝜕↑↑↓ 𝜕↑↑↓ 𝜕↑↑↓

0 −−−−−→ 𝐶𝑛+1(𝐾′) 𝑖−−−−−→ 𝐶𝑛+1(𝐾)
𝜋−−−−−→ 𝐶𝑛+1(𝐾, 𝐾′) −−−−−→ 0

𝜕↑↑↓ 𝜕↑↑↓ 𝜕↑↑↓

0 −−−−−→ 𝐶𝑛(𝐾′) 𝑖−−−−−→ 𝐶𝑛(𝐾)
𝜋−−−−−→ 𝐶𝑛(𝐾, 𝐾′) −−−−−→ 0

𝜕↑↑↓ 𝜕↑↑↓ 𝜕↑↑↓

0 −−−−−→ 𝐶𝑛−1(𝐾′) 𝑖−−−−−→ 𝐶𝑛−1(𝐾)
𝜋−−−−−→ 𝐶𝑛−1(𝐾, 𝐾′) −−−−−→ 0

𝜕↑↑↓ 𝜕↑↑↓ 𝜕↑↑↓
If you think about the meaning of relative homology, an element in 𝐻𝑛(𝐾, 𝐾′) is

the class of a relative cycle in 𝐶𝑛(𝐾, 𝐾′); that relative cycle is represented by a chain in
𝐶𝑛(𝐾) whose boundary is completely inside 𝐾′. What may not be apparent at first
is that the boundary map on 𝐶𝑛(𝐾) induces a well-defined map from 𝐻𝑛(𝐾, 𝐾′) to
𝐻𝑛−1(𝐾′).

Theorem 17.25. The boundary map 𝜕 ∶ 𝐶𝑛(𝐾) → 𝐶𝑛−1(𝐾′) induces a well-defined
map

𝜕∗ ∶ 𝐻𝑛(𝐾, 𝐾′) → 𝐻𝑛−1(𝐾′).

A proof of this fact uses the diagram above and a diagram chase. As we saw earlier,
a diagram chase starts at some node in the diagram, and at each step, uses the informa-
tion in the diagram to infer the existence of an object at another node in the diagram.
Usually it is clear which node to focus on (“chase”) next.

We illustrate how to chase a diagram in a proof of the theorem above. Start with a
relative cycle 𝑧𝑛 in 𝐶𝑛(𝐾, 𝐾′). Since 𝑧𝑛 is a relative cycle, we know (looking downward
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in the diagram) that 𝜕𝑧𝑛 = 0 in 𝐶𝑛−1(𝐾, 𝐾′). Since 𝜋 is surjective, 𝑧𝑛 is the image of
(looking leftward from 𝑧𝑛) some chain 𝑐𝑛 in 𝐶𝑛(𝐾). But then (looking downward from
there) 𝜕𝑐𝑛 is a chain in 𝐶𝑛−1(𝐾), and the commutativity of the diagram implies that
𝜋(𝜕𝑐𝑛) = 𝜕𝜋(𝑐𝑛) = 𝜕𝑧𝑛 = 0. Then exactness of rows at 𝐶𝑛−1(𝐾) suggests that 𝜕𝑐𝑛 is
the image of some 𝑐𝑛−1 in 𝐶𝑛−1(𝐾′). You’ll need to check that 𝑐𝑛−1 is a cycle (more
diagram chasing) and once you do, you can define

𝜕∗[𝑧𝑛] = [𝑐𝑛−1],
where brackets denote the homology class. You will also need to show that 𝜕∗ is well-
defined: it doesn’t depend on the choice of 𝑧𝑛 in 𝐶𝑛(𝐾, 𝐾′) to represent the homology
class. This verification involves another diagram chase. You should try to master such
arguments.

The map 𝜕∗ and the induced maps 𝑖∗ and 𝜋∗ have a special relationship; they form
a long exact sequence in homology.

Theorem 17.26 (Long exact sequence of a pair). If 𝐾′ is a subcomplex of a simplicial
complex 𝐾, then there is a long exact sequence:

⋯ 𝜕∗−−−→ 𝐻𝑛(𝐾′) 𝑖∗−−−→ 𝐻𝑛(𝐾)
𝜋∗−−−→ 𝐻𝑛(𝐾, 𝐾′) 𝜕∗−−−→ 𝐻𝑛−1(𝐾′) 𝑖∗−−−→ ⋯

The ideas underlying these proofs can be generalized, since the core of the argu-
ments are algebraic and don’t require the underlying meaning of the groups involved.
We do this algebra in the next section.

17.3 Some Homological Algebra
In this section, we prove a purely algebraic result known as the Zig-Zag Lemma, as well
as some other algebraic results. You’ve done a version of the Zig-Zag Lemma in show-
ing the existence of a long exact sequence from a short exact sequence, which involved
zig-zagging your way through a diagram. The value in this algebraic abstraction is that
we will be able to use it in many other applications; for instance, the Mayer-Vietoris
sequence can be viewed as a consequence of the Zig-Zag Lemma. The study of such
algebraic arguments motivated by homology is called homological algebra.

Before proving the Zig-Zag Lemma, we restate in a purely algebraic fashion some
concepts we have already encountered.

Definition. A chain complex 𝒞 is a family {𝐶𝑛, 𝜕𝑛} of abelian groups 𝐶𝑛 and homo-
morphisms 𝜕𝑛 ∶ 𝐶𝑛 → 𝐶𝑛−1 such that 𝜕𝑛 ∘ 𝜕𝑛+1 = 0 for all 𝑛. The 𝑛th homology
group 𝐻𝑛(𝒞) is defined by

𝐻𝑛(𝒞) = Ker 𝜕𝑛/ Im 𝜕𝑛+1.

Definition. Given two chain complexes 𝒞 = {𝐶𝑛, 𝜕𝑛} and 𝒞′ = {𝐶′
𝑛, 𝜕′𝑛}, a chain map

𝜙 ∶ 𝒞 → 𝒞′ is a family of homomorphisms 𝜙𝑛 ∶ 𝐶𝑛 → 𝐶′
𝑛 such that the 𝜙𝑛 commute

with the boundary maps:
𝜕′𝑛 ∘ 𝜙𝑛 = 𝜙𝑛−1 ∘ 𝜕𝑛.

Theorem 17.27 (Zig-Zag Lemma). Suppose 𝒞 = {𝐶𝑛, 𝜕𝐶𝑛 },𝒟 = {𝐷𝑛, 𝜕𝐷𝑛 }, and ℰ =
{𝐸𝑛, 𝜕𝐸𝑛 } are chain complexes, and 𝜙 ∶ 𝒞 → 𝒟 and 𝜓 ∶ 𝒟 → ℰ are chain maps such that

0 −−−−−→ 𝒞 𝜙−−−−−→ 𝒟 𝜓−−−−−→ ℰ −−−−−→ 0
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is a short exact sequence of chain complexes. Then there is a long exact sequence

⋯ 𝜕∗−−−−−→ 𝐻𝑛(𝒞)
𝜙∗−−−−−→ 𝐻𝑛(𝒟)

𝜓∗−−−−−→ 𝐻𝑛(ℰ)
𝜕∗−−−−−→ 𝐻𝑛−1(𝒞)

𝜙∗−−−−−→ ⋯,

where 𝜕∗ is induced by 𝜕𝐷.

The short exact sequence of chain complexes in the Zig-Zag Lemma can be visu-
alized as the following commutative diagram, where every row is exact, every column
is a chain complex, and every square commutes:

↑↑↓ ↑↑↓ ↑↑↓

0 −−−−−→ 𝐶𝑛+1
𝜙−−−−−→ 𝐷𝑛+1

𝜓−−−−−→ 𝐸𝑛+1 −−−−−→ 0

𝜕↑↑↓ 𝜕↑↑↓ 𝜕↑↑↓

0 −−−−−→ 𝐶𝑛
𝜙−−−−−→ 𝐷𝑛

𝜓−−−−−→ 𝐸𝑛 −−−−−→ 0

𝜕↑↑↓ 𝜕↑↑↓ 𝜕↑↑↓

0 −−−−−→ 𝐶𝑛−1
𝜙−−−−−→ 𝐷𝑛−1

𝜓−−−−−→ 𝐸𝑛−1 −−−−−→ 0
↑↑↓ ↑↑↓ ↑↑↓

To prove the Zig-Zag Lemma, you should chase your way through the diagram above.
Start by constructing 𝜕∗, then check it is well-defined, and after that, check the exact-
ness of the long exact sequence at each group in the sequence. It is hefty work but can
be quite satisfying. Everyone should do it at least once in their life.

As the following theorem shows, the long exact sequence that emerges from the
Zig-Zag Lemma has a property that it plays well with functions between short exact
sequences of chain complexes, the so-called naturality property of long exact se-
quences.

Theorem 17.28. Given the commutative diagram of chain maps 𝛼, 𝛽, 𝛾 between the
chain complexes of two short exact sequences:

0 −−−−−→ 𝒞 𝜙−−−−−→ 𝒟 𝜓−−−−−→ ℰ −−−−−→ 0

𝛼↑↑↓ 𝛽↑↑↓ 𝛾↑↑↓

0 −−−−−→ 𝒞′ 𝜙′−−−−−→ 𝒟′ 𝜓′−−−−−→ ℰ′ −−−−−→ 0
there are corresponding induced homomorphisms between the associated long exact se-
quences, such that the following diagram is commutative:

⋯ 𝜕∗−−−−−→ 𝐻𝑛(𝒞)
𝜙∗−−−−−→ 𝐻𝑛(𝒟)

𝜓∗−−−−−→ 𝐻𝑛(ℰ)
𝜕∗−−−−−→ 𝐻𝑛−1(𝒞)

𝜙∗−−−−−→ ⋯
𝛼∗↑↑↓ 𝛽∗↑↑↓ 𝛾∗↑↑↓ 𝛼∗↑↑↓

⋯ 𝜕∗−−−−−→ 𝐻𝑛(𝒞′)
𝜙′∗−−−−−→ 𝐻𝑛(𝒟′) 𝜓′∗−−−−−→ 𝐻𝑛(ℰ′)

𝜕∗−−−−−→ 𝐻𝑛−1(𝒞′)
𝜙′∗−−−−−→ ⋯

The following lemma is useful when analyzing diagrams like the one above.
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Lemma 17.29 (The Five Lemma). Consider the following commutative diagram of
abelian groups and homomorphisms, where the rows are exact:

𝐴 𝑞−−−−−→ 𝐵 𝑟−−−−−→ 𝐶 𝑠−−−−−→ 𝐷 𝑡−−−−−→ 𝐸

𝛼↑↑↓ 𝛽↑↑↓ 𝛾↑↑↓ 𝛿↑↑↓ 𝜖↑↑↓

𝐴′ 𝑞′−−−−−→ 𝐵′ 𝑟′−−−−−→ 𝐶′ 𝑠′−−−−−→ 𝐷′ 𝑡′−−−−−→ 𝐸′

If the rows are exact and 𝛼, 𝛽, 𝛿, 𝜖 are isomorphisms, then 𝛾 is also an isomorphism.

The proof is a diagram chase. If you pay attention to what you are doing, you can
answer the next question.

Exercise 17.30. In the proof of the Five Lemma, not all of 𝛼, 𝛽, 𝛿, 𝜖 are required to be
isomorphisms for the conclusion to still hold. Which isomorphisms can be relaxed to be
just injections or surjections?

Here is another result from homological algebra with a fun name, made famous
by its appearance in a movie.

Exercise 17.31 (The Snake Lemma). Consider the following commutative diagram
os abelian groups and homomorphisms where the rows are short exact sequences:

0 −−−−−→ 𝐴 −−−−−→ 𝐵 −−−−−→ 𝐶 −−−−−→ 0

𝛼↑↑↓ 𝛽↑↑↓ 𝛾↑↑↓
0 −−−−−→ 𝐴′ −−−−−→ 𝐵′ −−−−−→ 𝐶′ −−−−−→ 0

Show there is an exact sequence

0 → Ker 𝛼 → Ker 𝛽 → Ker 𝛾 → Coker 𝛼 → Coker 𝛽 → Coker 𝛾 → 0,

whereCoker stands for the cokernel of a homomorphism: the quotient of its codomain by
its image.

17.4 Useful Exact Sequences
TheZig-Zag Lemmahas several important consequences. We can establish a long exact
sequence involving relative homology.

Corollary 17.32 (Long exact sequence of a pair). If 𝐾′ is a subcomplex of a simplicial
complex 𝐾, then there is a long exact sequence

⋯ 𝜕∗−−−→ 𝐻𝑛(𝐾′) 𝑖∗−−−→ 𝐻𝑛(𝐾)
𝜋∗−−−→ 𝐻𝑛(𝐾, 𝐾′) 𝜕∗−−−→ 𝐻𝑛−1(𝐾′) 𝑖∗−−−→ ⋯

where the maps are induced by the inclusion maps 𝑖 ∶ 𝐾′ → 𝐾 and 𝜋 ∶ (𝐾, ∅) → (𝐾, 𝐾′)
and the boundary map 𝜕 ∶ 𝐶𝑛(𝐾) → 𝐶𝑛−1(𝐾).

Naturality implies the following theorem.
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Theorem 17.33. Given a simplicial map 𝑓 ∶ (𝐾, 𝐾′) → (𝐿, 𝐿′), there is a chain map
between the long exact sequences:

⋯ 𝜕∗−−−→ 𝐻𝑛(𝐾′) 𝑖∗−−−→ 𝐻𝑛(𝐾)
𝜋∗−−−→ 𝐻𝑛(𝐾, 𝐾′) 𝜕∗−−−→ 𝐻𝑛−1(𝐾′) 𝑖∗−−−→ ⋯

𝑓∗↑↑↓ 𝑓∗↑↑↓ 𝑓∗↑↑↓ 𝑓∗↑↑↓

⋯ 𝜕∗−−−→ 𝐻𝑛(𝐿′)
𝑖∗−−−→ 𝐻𝑛(𝐿)

𝜋∗−−−→ 𝐻𝑛(𝐿, 𝐿′)
𝜕∗−−−→ 𝐻𝑛−1(𝐿′)

𝑖∗−−−→ ⋯

Using the Zig-Zag Lemma, we can also establish the Mayer-Vietoris Theorem; in
this case, the ℤ-homology version. You will recall in an earlier chapter that we proved
a ℤ2 version of this theorem in a different way. Now you see the theorem can be re-
garded as a simple consequence of the Zig-Zag Lemma. You will need to construct
homomorphisms 𝜙 and 𝜓 for the sequence:

0 −−−−−→ 𝐶𝑛(𝐴 ∩ 𝐵)
𝜙−−−−−→ 𝐶𝑛(𝐴) ⊕ 𝐶𝑛(𝐵)

𝜓−−−−−→ 𝐶𝑛(𝐾) −−−−−→ 0

To make the sequence exact, remember that plus and minus signs are your friends.
As you prove this theorem, keep in mind the geometric insights that motivated the
Mayer-Vietoris theorem in the ℤ2 case.

Theorem 17.34 (Mayer-Vietoris). Let 𝐾 be a finite simplicial complex, and let 𝐴 and 𝐵
be subcomplexes such that 𝐾 = 𝐴 ∪ 𝐵. Then there is a long exact sequence:

⋯ 𝜕∗−−−−−→ 𝐻𝑛(𝐴 ∩ 𝐵)
𝜙∗−−−−−→ 𝐻𝑛(𝐴) ⊕ 𝐻𝑛(𝐵)

𝜓∗−−−−−→ 𝐻𝑛(𝐾)
𝜕∗−−−−−→ 𝐻𝑛−1(𝐴 ∩ 𝐵)

𝜙∗−−−−−→ ⋯

Exercise 17.35. Compute the ℤ-homology of the Klein bottle, and compare it to the ℤ2-
homology of the Klein bottle.

Exercise 17.36. Compute the ℤ-homology of every compact, triangulated 2-manifold.

17.5 Homotopy Invariance and Cellular
Homology—Same as ℤ2

As is the case of simplicial ℤ2-homology, simplicial ℤ-homology is a topological invari-
ant and homotopicmaps induce the samehomomorphisms on homology groups. As in
the ℤ2-homology case, homotopy equivalent spaces have the same homology groups.

In the chapter on ℤ2-homology, we also introduced the concept of cellular homol-
ogy, where simplices were grouped together to form cells. We showed that the ℤ2-
homology groups on a simplicial complex and on an associated cellular complex were
the same. The same holds forℤ-homology, that is, theℤ-homology groups of a complex
𝐾 are identical to the ℤ-homology groups of an associated cellular complex.

Since the proofs about homotopy invariance and cellular complexes for ℤ-homol-
ogy are essentially identical to those youhave already done in theℤ2-homology chapter,
we will not repeat that development here, but we invite you to check them for yourself.
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17.6 Homology and the Fundamental Group

Effective Thinking Principle. Make Connections. When you observe sim-
ilarities in apparently different contexts, ask if there is a reason.

When we started investigating methods for recognizing holes in spaces, our first
attempt led to the idea of the fundamental group. That idea involved looking at loops
that surround holes and viewing two loops as equivalent if they were homotopic. If
we think of a loop as a map of a circle, then a homotopy is the map of a cylinder. So
two loops were viewed as the same in the context of the fundamental group if in some
sense they cobounded a cylinder.

In the case of the first homology, we again look at loops, in this case called 1-cycles.
Two 1-cycles are viewed as the same in homology if they cobound a 2-chain. Other than
on its boundary, that 2-chain has the property that its 2-simplicesmust have boundaries
that cancel out. Roughly speaking that means that the 2-chain is morally a 2-manifold
whose boundary consists of the two 1-cycles that are homologous.

So 2-manifolds have conceptually appeared in our thinking about the first ho-
mology of a complex. But remember that homology respects orientability, so the 2-
manifolds that are appearing are actually orientable 2-manifolds. So, intuitively speak-
ing, two loops that are equivalent in homologymust cobound an orientable 2-manifold
whose boundary is the difference of the two loops.

You may recall from the polygonal representation proof of the classification of
compact, connected, triangulated 2-manifolds that the connected sum of tori were rep-
resented by sequences of edges of the form 𝑎𝑏𝑎−1𝑏−1𝑐𝑑𝑐−1𝑑−1⋯. Each letter corre-
sponded to a loop in the 2-manifold. And the form 𝑎𝑏𝑎−1𝑏−1 suggests a commutator.

So suppose you have two loops that may be different in the fundamental group
but are the same in the first homology. Then in some sense commutators of loops
have made an appearance in the 2-chain that the two loops cobound. This intuitive
exploration suggests that commutators of elements of the fundamental groupmay cor-
respond with trivial elements of the first homology group. That suggestion leads us to
consider whether it might be true that the commutator subgroup of the fundamental
group, denoted [𝜋1(𝐾), 𝜋1(𝐾)], exactly captures the difference between the fundamen-
tal group and the first homology group. Satisfyingly, that connection is exactly correct.

Theorem 17.37. Let 𝐾 be a finite, connected simplicial complex. Then
𝐻1(𝐾; ℤ) ≃ (𝜋1(𝐾))/[𝜋1(𝐾), 𝜋1(𝐾)],

that is, the first homology group of𝐾 is isomorphic to the abelianization of the fundamen-
tal group of 𝐾.

Pinning down the intuition that brought us to this conclusion will help us to prove
this theorem. Let 𝜙 ∶ 𝜋1(𝐾) → 𝐻1(𝐾; ℤ) be the map that takes an element [𝛼] of 𝜋1(𝐾)
to the element [𝛼#(𝕊1)] of𝐻1(𝐾; ℤ), where 𝛼 is understood to be a simplicial map from
𝕊1 into 𝐾. First note that 𝜙 is a well-defined, surjective homomorphism.

It remains to show that Ker(𝜙) is the commutator subgroup of 𝜋1(𝐾). For this
purpose, let [𝛼] ∈ Ker(𝜙). Let 𝐶2 = ∑𝑘

𝑖=1 𝑐𝑖𝜎2𝑖 be a 2-chain such that 𝜕(𝐶2) = 𝛼#(𝕊1).
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Since 𝜕(𝐶2) = 𝛼#(𝕊1), for each edge of any 𝜎2𝑖 that is not in 𝛼#(𝕊1), that edge must be
cancelled out when computing 𝜕(𝐶2). So we can create an abstract 2-manifold whose
2-simplices are the 𝜎2𝑖 ’s where we take several copies of a simplex depending on its
coefficient. Using the classification theorem of oriented 2-manifolds, we can recognize
that 𝛼 is in the commutator subgroup of 𝜋1(𝐾).

17.7 The Degree of a Map
In this section we use ℤ-homology to study maps from an 𝑛-sphere to itself. In some
sense, everymapof a sphere to itself coats itself somenumber of times. In the case of𝕊1,
a map of a circle to itself winds around some number of times forwards or backwards.
Of course the fundamental group captures that fact, and the number of times around
is sometimes called awinding number.

Wewould like to generalize the idea of the winding number and pin down the idea
of how many times a map from a sphere to itself coats itself. Homology will allow us
to formulate a useful notion of this coating process. Recall that 𝐻𝑛(𝕊𝑛) ≅ ℤ.

Definition. Let 𝑓 ∶ 𝕊𝑛 → 𝕊𝑛 be a continuous map. Then 𝑓∗ ∶ 𝐻𝑛(𝕊𝑛) → 𝐻𝑛(𝕊𝑛) is a
homomorphism from ℤ to itself. Hence it represents multiplication by some integer,
called the degree of 𝑓 and denoted deg 𝑓.

Note how this notion is tied to ℤ-homology. In ℤ2-homology, this analysis would
give just a binary categorization of maps.

Lemma 17.38. If 𝑓 ∶ 𝕊𝑛 → 𝕊𝑛 is continuous, then deg 𝑓 is well-defined. That is, it does
not depend on the way in which we identify𝐻𝑛(𝕊𝑛) with ℤ.

Theorem 17.39. Let 𝑓, 𝑔 ∶ 𝕊𝑛 → 𝕊𝑛 be continuous maps.
(1) If 𝑓 and 𝑔 are homotopic, they have the same degree.
(2) deg(𝑓 ∘ 𝑔) = (deg 𝑓) ⋅ (deg 𝑔).

Theorem 17.40. The identity map on 𝕊𝑛 has degree 1. The antipodal map has degree
(−1)𝑛+1.

An application of these theorems is the famous Hairy Ball Theorem.

Definition. A vector field on 𝕊𝑛 is a continuous map 𝑉 ∶ 𝕊𝑛 → ℝ𝑛+1 such that the
dot product ⟨𝑉(𝑥), 𝑥⟩ℝ𝑛+1 = 0 for each 𝑥 ∈ 𝕊𝑛 ⊂ ℝ𝑛+1. The vector field 𝑉 is non-
vanishing if 𝑉(𝑥) is never the zero vector.

The following result is known as the Hairy Ball Theorem because, for 𝑛 = 2, it can
be interpreted to say that one cannot comb the hair on a billiard ball without leaving
a bald spot or a cowlick. No one has ever understood why a billiard ball, which is
aggressively hairless, is the metaphor of choice, but who are we to resist the wisdom of
history.

Theorem 17.41 (Hairy Ball Theorem). There exists a non-vanishing vector field on 𝕊𝑛
if and only if 𝑛 is odd.
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17.8 The Lefschetz Fixed Point Theorem
The Brouwer Fixed Point Theorem asserts that a continuous map 𝑓 from a ball to itself
has a fixed point. This theorem holds for any continuous map. In particular, if we de-
form amap 𝑓 by perturbing it a little bit, the fixed point property persists. This analysis
suggests that having a fixed point may be in some sense “robust” under homotopy. Of
course, any two maps from a ball to itself are homotopic, since the ball is contractible.
But for continuous maps on other spaces we may be able to obtain some related result.

For instance, consider the self-map of a circle, 𝑔 ∶ 𝕊1 → 𝕊1, defined by 𝑔(𝑥, 𝑦) =
(−𝑥, 𝑦) viewing 𝕊1 as a subset ofℝ2. This “mirror-reversing” map clearly has two fixed
points: (0, 1) and (0, −1). Moreover, for this map, fixed points persist under homotopy:
if we deform this map inside neighborhoods of those two fixed points, the resulting
mapwill retain fixed points inside these neighborhoods. This fact can be seen by noting
that in a neighborhood of one of those points, the second coordinate 𝑦 is determined
by the first coordinate 𝑥, so we can apply the Intermediate Value Theorem to Δ(𝑥) =
𝑥 − 𝑔1(𝑥, 𝑦), where 𝑔1 is the projection function. At the endpoints of a neighborhood
Δ(𝑥) is positive when 𝑥 is positive, negative when 𝑥 is negative, so must have a zero
somewhere inside. A zero for Δ corresponds to a fixed point for 𝑔.

On the other hand, the identity map 𝑖 ∶ 𝕊1 → 𝕊1 fixes each point of the circle, but
it is homotopic to the map that rotates every point by a small angle 𝜃 that has no fixed
points. So in this instance, the fixed points do not persist under homotopy.

The Lefschetz Fixed Point Theorem tells us when a homotopy class of maps on a
space 𝐾 has persistent fixed points, based on the computation of a number associated
to the map.

We might first consider what happens to a simplicial map 𝑓: the analogue of a
fixed point of 𝑓 is a fixed simplex under 𝑓#, the induced map on chains. For a finite
simplicial complex, the chain group 𝐶𝑛(𝐾) is freely generated by a basis consisting of
the 𝑛-simplices of 𝐾. So the homomorphism 𝑓#𝑛 ∶ 𝐶𝑛(𝐾) → 𝐶𝑛(𝐾) can be represented
by amatrix𝑀 in that basis. The non-zero diagonal entries of𝑀would indicatewhether
any simplices were sent to themselves; thus the trace of 𝑀 is a number that captures
the number of “fixed” simplices in dimension 𝑛.

This insight leads us to carefully define the notion of the trace of a homomorphism
on a finitely generated abelian group.

Definition. Let𝐺 be a finitely generated abelian group. A structure theorem for finitely
generated abelian groups states that 𝐺 can be expressed as 𝐺𝑓𝑟𝑒𝑒⊕𝐺𝑡𝑜𝑟, the direct sum
of a free group 𝐺𝑓𝑟𝑒𝑒 and a torsion group 𝐺𝑡𝑜𝑟. The free group 𝐺𝑓𝑟𝑒𝑒 is isomorphic
to the direct sum of finitely many copies of ℤ (called the rank of 𝐺), and the torsion
group 𝐺𝑡𝑜𝑟 is isomorphic to the subgroup of 𝐺 consisting of all elements of finite order.
Let ℎ ∶ 𝐺 → 𝐺 be a homomorphism. Then ℎ induces a homomorphism on ℎ𝑓𝑟𝑒𝑒 ∶
𝐺𝑓𝑟𝑒𝑒 → 𝐺𝑓𝑟𝑒𝑒. The trace of ℎ, denoted 𝖳𝗋(ℎ), is the trace of a matrix that represents
ℎ𝑓𝑟𝑒𝑒 with respect to any chosen basis of 𝐺𝑓𝑟𝑒𝑒.

Exercise 17.42. In the definition above and using a little linear algebra, show that
𝖳𝗋(ℎ𝑓𝑟𝑒𝑒) does not depend on the choice of basis for 𝐺𝑓𝑟𝑒𝑒.

Of course determining 𝖳𝗋(𝑓#𝑛) could be very cumbersome if 𝐶𝑛(𝐾) is very large.
Furthermore, there is no reason to expect homotopy invariance—in fact, even if 𝑓 and
𝑔 are homotopic, it is not necessarily true that 𝖳𝗋(𝑓#𝑛) equals 𝖳𝗋(𝑔#𝑛). On the other
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hand, this trace idea seems potentially promising. It may be useful to study the trace
of the induced homomorphism 𝑓∗ on homology groups, for which we know homotopy
invariance holds, since we showed that 𝑓∗ = 𝑔∗ if 𝑓 and 𝑔 are homotopic.

Exercise 17.43. Construct a simple example of a map homotopic to the identity map
on the triangulated circle whose induced chain map does not have the same trace as the
identity chain map.

For a given simplicial map 𝑓, is there a connection between 𝖳𝗋(𝑓#𝑛) and 𝖳𝗋(𝑓∗𝑛)?
One potential connection is that elements of 𝐻𝑛(𝐾) are cycles (modulo boundaries),
and cycles are a subgroup of 𝐶𝑛(𝐾). Those relationships can be expressed by the short
exact sequences

0 → 𝐵𝑛(𝐾) → 𝑍𝑛(𝐾) → 𝐻𝑛(𝐾) → 0
and

0 → 𝑍𝑛(𝐾) → 𝐶𝑛(𝐾) → 𝐵𝑛−1(𝐾) → 0.
The map 𝑓 induces homomorphisms on all these groups. The following theorem will
be helpful to understand the relationship between traces of all these homomorphisms
and will help us prove the Hopf Trace Formula.

Theorem 17.44. Suppose 0 → 𝐴 → 𝐵 → 𝐶 → 0 is a short exact sequence of finitely
generated abelian groups, and 𝑓𝐴 ∶ 𝐴 → 𝐴 and 𝑓𝐵 ∶ 𝐵 → 𝐵 are homomorphisms such
that 𝑖 ∘ 𝑓𝐴 = 𝑓𝐵 ∘ 𝑖. Then there is an induced homomorphism 𝑓𝐶 ∶ 𝐶 → 𝐶 that makes the
following diagram commutative:

0 −−−−−→ 𝐴 𝑖−−−−−→ 𝐵 𝜋−−−−−→ 𝐶 −−−−−→ 0

𝑓𝐴↑↑↓ 𝑓𝐵↑↑↓ 𝑓𝐶↑↑↓

0 −−−−−→ 𝐴 𝑖−−−−−→ 𝐵 𝜋−−−−−→ 𝐶 −−−−−→ 0
Moreover,

𝖳𝗋(𝑓𝐵) = 𝖳𝗋(𝑓𝐴) + 𝖳𝗋(𝑓𝐶).

Theorem 17.45 (The Hopf Trace Formula). Let 𝐾 be a finite simplicial complex, and
let 𝑓 ∶ 𝐾 → 𝐾 be a simplicial map. Then

∑(−1)𝑖 𝖳𝗋(𝑓#𝑛) = ∑(−1)𝑖 𝖳𝗋(𝑓∗𝑛).

The expression on the right has a special name.

Definition. Let 𝐾 be a finite simplicial complex, and let 𝑓 ∶ |𝐾| → |𝐾| be a continuous
map. The Lefschetz number of 𝑓 is

Λ(𝑓) = ∑(−1)𝑖 𝖳𝗋(𝑓∗𝑛).

Theorem 17.46 (Lefschetz Fixed Point Theorem). Let 𝑓 ∶ |𝐾| → |𝐾| be a continuous
map on a simplicial complex 𝐾. If Λ(𝑓) ≠ 0, then 𝑓 has a fixed point.

One way to proceed is to show that if 𝑓 does not have a fixed point, then the map
𝑓 has a simplicial approximation ̄𝑓 for which ̄𝑓(𝜎) ∩ 𝜎 = ∅ for every simplex 𝜎.
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Exercise 17.47. Compute the Lefschetz number of the “mirror-reversing” self-map of a
circle, 𝑔 ∶ 𝕊1 → 𝕊1, defined by 𝑔(𝑥, 𝑦) = (−𝑥, 𝑦) viewing 𝕊1 as a subset ofℝ2. Argue that
any reversing map of a circle must have a fixed point.

The 𝑖th Betti number of a complex 𝐾 is the rank of its 𝑖th homology group. For
instance the Betti numbers of the torus 𝕋2 are 1, 2, 1 (in dimensions 2, 1, 0). The Hopf
Trace Formula reveals an interesting connection between the Betti numbers of a com-
plex and its Euler characteristic, by choosing an appropriate simplicial map from 𝐾 to
itself.

Theorem 17.48. Let 𝐾 be a finite simplicial complex, and let 𝑏𝑖 be the 𝑖th Betti number
of 𝐾. Show that the alternating sum∑(−1)𝑖𝑏𝑖 equals the Euler characteristic of 𝐾.

This result may be a surprise if you look at an example, since these numbers do
not at first glance appear to have anything to do with one another! If 𝐾 is the sphere
triangulated as the proper faces of a 3-simplex, the Betti numbers are 1, 0, 1 (in dimen-
sions 2, 1, 0), whose alternating sum is 2. The ranks of the chain groups (counting the
number of faces in each dimension) are 4, 6, 4 (in dimensions 2, 1, 0), whose alternating
sum is also 2.

Theorem17.49. Let𝐾 be a finite simplicial complex that is acyclic. Then any continuous
map from |𝐾| to itself must have a fixed point.

Thus, if |𝐾| is a ball, then the previous theorem reduces to the Brouwer Fixed Point
Theorem.

Exercise 17.50. Suppose that 𝐾 is a complex such that the identity map is homotopic to
a map with no fixed points. Then 𝜒(𝐾) = 0.

The previous result can shed light on the study of topological groups.

Definition. A topological group is a topological space 𝐺 on which there is a contin-
uous group operation. That is, a group operation such that the multiplication map
𝐺 × 𝐺 → 𝐺 and the inverse map 𝐺 → 𝐺 are continuous.

Theorem 17.51. Suppose 𝐺 is a path-connected triangulable topological group. Then
the Euler characteristic of 𝐺 is zero.

The circle𝕊1 and𝕋2 are examples of triangulable topological groups. This theorem
implies, for instance, that 𝕊2 cannot be a topological group.

17.9 ℤ-Homology—A Step in Abstraction
Looking at physical cycles led to our creation ofℤ2-homology. But oncewehave created
a concept, that concept then becomes part of our world. So we can subject it to good
practices of generalization and extension and use it as a source of analogies in the same
manner as we take advantage of sights and insights in the real world. So ℤ-homology
is the result of a natural impulse to abstract and extend ideas we had before.
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There are at least two kinds of complexity. One is complexity where steps present
conceptual challenges. The other kind of complexity is where there are lots of details,
but it is clear what each stepmeans andwhy it follows. Our exploration ofℤ-homology
involved complexity of the second kind—lots of details, but essentially all of themwere
the result of a clear application of the strategy of moving from the ℤ2 world, which has
a clearer physical interpretation, to the ℤ world where the algebraic features are more
prominent.

Let’s not forget to step back and see the forest. The bottom line of homology is that
we can associate abelian groups with topological spaces that can help us distinguish
spaces from one another. In the next chapter we take one further step of homological
abstraction.



18
Singular Homology:

Abstracting Objects to Maps

We have now seen a couple of examples of homology theories—simplicial and
cellular—and noted that they give the same answers on simplicial complexes when the
coefficient group (ℤ or ℤ2) is fixed. And it will turn out that singular homology theory,
which we discuss in this chapter, will give the same answers on simplicial complexes
as well, though they hold for a larger class of spaces.

This consistency is no accident, because one can develop a homology theory axio-
matically—in terms of the properties, or axioms, it satisfies. If the homology of any
class of spaces can be determined strictly by these axioms, then any homology theory
that satisfies these axiomsmust give the same homology groups on that class of spaces.

For example, think about some of the techniques we have used to simplify a ho-
mology computation: the long exact sequence of a pair, excision, and the fact that
spaces of the same homotopy type have the same homology. To get the ball rolling
with these techniques we also needed the homology groups of a specific simple space.
As you will see, if we demand a homology theory satisfy these properties (the so-called
Eilenberg-Steenrod axioms) then that is enough to compute the homology groups of all
triangulable spaces.

That is essentially why these theories will give the same answers in such cases.
And that is why we use the same notation 𝐻𝑛 for each one. And if we have multiple
ways of computing homology, we can pick the one that is easiest to think about for
various properties or computations we are interested in. For example, the topological
invariance of homology turns out to be very easy to show in singular homology, whereas
it requires work for simplicial homology. But computing the singular homology for an
arbitrary space 𝑋 might be complicated, while, if we know a small triangulation or
cellular decomposition for that space, the simplicial homology may be relatively easy
to compute.

Also, one of the main benefits of singular homology, as we shall see, is that it holds
for all topological spaces, not just triangulable ones.

283
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If you are bypassing simplicial homology in Chapter 17 and going straight to sin-
gular homology, be sure to read Section 17.3, which contains algebraic preliminaries.

18.1 Eilenberg-Steenrod Axioms

Effective Thinking Principle. Seek Essentials. Isolating the essential in-
gredients of a concept clarifies those features that are truly fundamental.

Before describing singular homology, we begin by presenting the Eilenberg-
Steenrod axioms, which are properties that characterize homology groups on simpli-
cial complexes. Then we will show that singular homology satisfies these axioms.

Definition. Let 𝐴 be a subspace of the space 𝑋 . We say (𝑋, 𝐴) is a compact triangula-
ble pair if and only if there exists a finite simplicial complex 𝐾, a subcomplex 𝐾′, and
a homeomorphism 𝑓 ∶ (|𝐾|, |𝐾′|) → (𝑋, 𝐴).

Note that 𝐴may be empty, in which case the corresponding subcomplex 𝐾′ is also
empty.

Definition. A homology theory (𝐻, 𝜕) on compact triangulable pairs is a sequence
of functors and for each pair, a sequence of homomorphisms, described below.
(1) There is a sequence of functors {𝐻𝑛}𝑛∈ℤ that assigns to each compact triangulable

pair (𝑋, 𝐴) an abelian group 𝐻𝑛(𝑋, 𝐴) and to each continuous map 𝑓 ∶ (𝑋, 𝐴) →
(𝑌, 𝐵) a homomorphism 𝑓∗ ∶ 𝐻𝑛(𝑋, 𝐴) → 𝐻𝑛(𝑌, 𝐵) satisfying:
(a) if 𝑖 is the identity map, then 𝑖∗ is the identity homomorphism, and
(b) for any pair of composable maps 𝑓 and 𝑔, (𝑓 ∘ 𝑔)∗ = 𝑓∗ ∘ 𝑔∗.

(2) For any pair (𝑋, 𝐴), there is a sequence of homomorphisms {𝜕𝑛 ∶ 𝐻𝑛(𝑋, 𝐴) →
𝐻𝑛−1(𝐴, ∅)}𝑛∈ℤ such that each homomorphism is natural: for any map 𝑓 ∶ (𝑋, 𝐴)
→ (𝑌, 𝐵), the following diagram commutes:

𝐻𝑛(𝑋, 𝐴)
𝑓∗−−−−−→ 𝐻𝑛(𝑌, 𝐵)

𝜕𝑛↑↑↓ ↑↑↓𝜕𝑛

𝐻𝑛−1(𝐴, ∅)
(𝑓|𝐴)∗−−−−−→ 𝐻𝑛−1(𝐵, ∅)

These functors and homomorphisms must satisfy the Eilenberg-Steenrod axioms:
• Exactness Axiom: For inclusion maps 𝑖 ∶ (𝐴, ∅) → (𝑋, ∅) and 𝜋 ∶ (𝑋, ∅) → (𝑋, 𝐴),

the following sequence is exact:

⋯→ 𝐻𝑛(𝐴, ∅)
𝑖∗−→ 𝐻𝑛(𝑋, ∅)

𝜋∗−−→ 𝐻𝑛(𝑋, 𝐴)
𝜕𝑛−−→ 𝐻𝑛−1(𝐴, ∅) → ⋯ .

• Homotopy Axiom: If 𝑓 and 𝑔 are homotopic maps, then 𝑓∗ = 𝑔∗.

• ExcisionAxiom: For every (𝑋, 𝐴) and every open subset𝑈 of𝑋 such that𝑈 ⊂ Int𝐴,
the inclusion (𝑋 − 𝑈,𝐴 − 𝑈) in (𝑋, 𝐴) induces an isomorphism

𝐻𝑛(𝑋 − 𝑈,𝐴 − 𝑈) ≅ 𝐻𝑛(𝑋, 𝐴).
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• Dimension Axiom: If 𝑃 is a one-point space, then 𝐻𝑛(𝑃) ≅ 0 for all 𝑛 > 0.
The group 𝐻0(𝑃) is called the coefficient group of the homology theory.

For example, simplicial homology (either theℤ orℤ2 version) is a homology theory
on compact triangulable pairs, setting𝐻𝑛(𝑋, 𝐴) to be the relative homology groups and
noting 𝐻𝑛(𝑋, ∅) ≅ 𝐻𝑛(𝑋). We showed the Dimension Axiom with relative ease. The
Exactness Axiom for simplicial homology follows from the long exact sequence of a
pair and the topological invariance of simplicial homology. We proved a version of the
excision property for simplicial homology, but it isn’t strong enough for the Excision
Axiom, since we only showed excision is possible in the special case where removing
𝑈 left a subcomplex of 𝐾. However, after seeing the proof of the excision property
for singular homology, you may want to attempt the simplicial version. Similarly, you
may not have fully established the Homotopy Axiom, but the singular version you will
establish soon by constructing a chain homotopy may give you some ideas for how to
do the simplicial version.

Here is the amazing theorem of Eilenberg and Steenrod (which we do not expect
you to prove).

Theorem 18.1 (Eilenberg-Steenrod). Fix a group 𝐺. Any two homology theories on
compact triangulable pairs with coefficient group 𝐺 are isomorphic.

This theorem means that for compact triangulable pairs, as long as we have ho-
mology groups with coefficients in ℤ, induced homomorphisms and boundary maps
that play nice with each other, and if the Exactness, Homotopy, Excision, and Dimen-
sion Axioms are satisfied, the computation of homology groups will produce the same
answers.

This theoremhas been generalized in various ways, such as to non-compact spaces
(requiring an additional axiom) and other pairs of spaces (e.g., CW complexes).

18.2 Singular Homology
A drawback to using simplicial homology is that its definition is restricted to simplicial
complexes. Of course this limitation has not prohibited us from proving many ma-
jor results since we can, because of topological invariance, compute homology for any
space homeomorphic to a simplicial complex. But topological invariance of simplicial
homology was difficult to show.

Singular homology, on the other hand, will apply to any topological space, and its
topological invariance will be almost trivial to show. Also, it will give the same homol-
ogy groups on triangulable spaces, so once we define it, we can use it as an alternative
to simplicial homology.

However, singular homology takes a littlemorework to define. Instead of breaking
up the space 𝑋 into simplices, we considermaps of simplices into 𝑋 . The chain groups
will be formal sums of such maps.

First we specify the domain of such maps. They will be simplices of various di-
mensions; for convenience, we place them in a common space 𝔼∞, the generalized
Euclidean space, which is defined to be the subspace of ℝ∞ (countably infinite prod-
uct of copies of ℝ) whose points have only finitely many non-zero coordinates.
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Definition. In 𝔼∞, let 𝑒0 be the zero vector, and let 𝑒𝑖 be the 𝑖th standard basis vector
which has 1 in the 𝑖th coordinate and zeros in every other coordinate. The standard
𝑛-simplex Δ𝑛 is the convex hull of {𝑒0, 𝑒1, … , 𝑒𝑛} in 𝔼∞. The barycentric coordinates
of a point 𝑥 in the standard 𝑛-simplex are just the 𝑛+1 coefficients (𝑥0, … , 𝑥𝑛) from the
convex combination 𝑥 = 𝑥0𝑒0 +⋯+ 𝑥𝑛𝑒𝑛. The 𝑖th face of the standard 𝑛-simplex
is the set of points in Δ𝑛 whose 𝑖th barycentric coordinate is zero.

Definition. For 𝑛 ≥ 0, a singular 𝑛-simplex in a space 𝑋 is a continuous map
𝜎 ∶ Δ𝑛 → 𝑋.

Note that such a map could be really strange (“singular”) and does not need to
be one-to-one. Also, even simple spaces could have many singular simplices. For
instance, if 𝑋 = ℝ, in every dimension 𝑛, there are uncountably many singular 𝑛-
simplices.

Definition. For 𝑛 ≥ 0, the singular 𝑛-chain group 𝑆𝑛(𝑋) is the free abelian group gen-
erated by singular 𝑛-simplices. As before, we denote an element of 𝑆𝑛(𝑋) by a formal
sum of singular 𝑛-simplices with coefficients in ℤ. Note that formal sums are always
finite sums. For convenience, we set 𝑆−1(𝑋) = 0, the trivial group.

Note that unlike the simplicial chain groups for finite simplicial complexes—which
have only finitely many generators and are trivial above dimension 𝑛 for an 𝑛-dimen-
sional complex—the singular chain group can have uncountably many generators in
any dimension, even for underlying spaces of finite simplicial complexes. So a singular
𝑛-chain group is a very large group!

It will be convenient to define the faces of a singular 𝑛-simplex 𝜎 ∶ Δ𝑛 → 𝑋 . An
(𝑛−1)-dimensional face of 𝜎 should be a map whose domain is Δ𝑛−1, so we obtain the
correct domain by prepending the map 𝜎 with a face map.

Definition. For 𝑛 ≥ 1 and 0 ≤ 𝑖 ≤ 𝑛, define the 𝑖th face map 𝑓𝑛𝑖 ∶ Δ𝑛−1 → Δ𝑛 to
be the affine linear map that sends the vertices 𝑒𝑘 to 𝑒𝑘 for 0 ≤ 𝑘 < 𝑖 and sends 𝑒𝑘 to
𝑒𝑘+1 for 𝑖 ≤ 𝑘 ≤ 𝑛 − 1, so it omits 𝑒𝑖 in the image. In barycentric coordinates, this map
preserves the order of the coordinates but inserts a 0 in the 𝑖th position, so the image
of this map is just the 𝑖th face of the standard 𝑛-simplex. Define the 𝑖th face operator

Φ𝑛
𝑖 ∶ 𝑆𝑛(𝑋) → 𝑆𝑛−1(𝑋)

to be the homomorphism specified on each singular 𝑛-simplex 𝜎 by Φ𝑛
𝑖 (𝜎) = 𝜎 ∘ 𝑓𝑛𝑖 .

There is also a related operator that raises the dimension of a singular chain, by
coning each simplex with a point. Of course the spacemust be star-convexwith respect
to that point to do this.

Definition. A subspace 𝑋 ⊂ 𝔼∞ is star-convex with respect to a point 𝑥 ∈ 𝑋 if and
only if for each point 𝑧 ∈ 𝑋 , the straight line between 𝑥 and 𝑧 is contained in 𝑋 .

Definition. Let 𝑋 ⊂ 𝔼∞ be star-convex with respect to a point 𝑥. For a singular 𝑛-
simplex 𝜎 ∶ Δ𝑛 → 𝑋 , define the singular (𝑛 + 1)-simplex Cone𝑥(𝜎) ∶ Δ𝑛+1 → 𝑋 to be
the map whose image is a “cone” over the image of 𝜎 to 𝑥: for each 𝑑 ∈ Δ𝑛, the map
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sends the line segment in Δ𝑛+1 from 𝑓𝑛+10 (𝑑) to 𝑒𝑛+1 linearly to the line segment from
𝜎(𝑑) to 𝑥 in 𝑋 . By extending this definition to a homomorphism of singular chains, we
obtain the cone operator:

Cone𝑥 ∶ 𝑆𝑛(𝑋) → 𝑆𝑛+1(𝑋).

Exercise 18.2. Let 𝑋 ⊂ 𝔼∞ be star-convex with respect to a point 𝑥. Verify that Φ𝑛+1
0 ∘

Cone𝑥 is the identity map on 𝑆𝑛(𝑋).

We can now define an appropriate boundary operator by analogy with simplicial
homology.

Definition. For 𝑛 ≥ 1, the boundary of a singular 𝑛-simplex 𝜎 is defined by

𝜕𝑛(𝜎) =
𝑛
∑
𝑖=0

(−1)𝑖Φ𝑛
𝑖 (𝜎).

The boundary of a singular 0-simplex is defined to be zero. The boundary of a singu-
lar 𝑛-chain can be defined by extending the definition of 𝜕𝑛 above linearly. Then 𝜕𝑛 is
a homomorphism between singular chain groups:

𝜕𝑛 ∶ 𝑆𝑛(𝑋) → 𝑆𝑛−1(𝑋)
for 𝑛 ≥ 0.

Definition. An element of Im 𝜕𝑛+1 is a singular 𝑛-boundary of 𝑋 : a singular 𝑛-chain
that is the boundary of a singular (𝑛 + 1)-chain. An element of Ker 𝜕𝑛 is a singular
𝑛-cycle of a space 𝑋 : a singular 𝑛-chain whose boundary is zero.

As expected, the boundary of a boundary is zero. The proof of this result is similar
to the argument in simplicial homology.

Theorem 18.3. For all 𝑛 ≥ 0,
𝜕𝑛 ∘ 𝜕𝑛+1 = 0.

Hence Im 𝜕𝑛+1 ⊂ Ker 𝜕𝑛.

We suppresswriting the subscript 𝑛 on 𝜕𝑛when there is no possibility of confusion.
The sequence of chain groups and boundary maps

⋯ 𝜕−−−−−→ 𝑆𝑛+1(𝑋)
𝜕−−−−−→ 𝑆𝑛(𝑋)

𝜕−−−−−→ 𝑆𝑛−1(𝑋)
𝜕−−−−−→ ⋯

is called the singular chain complex.

Definition. The singular homology groups (with coefficients in ℤ) of a finite simpli-
cial complex are the groups

𝐻𝑛(𝑋) = Ker 𝜕𝑛/ Im 𝜕𝑛+1.
Two singular 𝑛-cycles 𝛼 and 𝛽 in the same homology class are called equivalent or
homologous. Homologous cycles are denoted 𝛼 ∼ 𝛽 and the homology class of the
cycle 𝛼 is denoted by [𝛼].

By considering what the singular chain groups are, the following will be straight-
forward to show.
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Theorem 18.4 (Dimension Axiom). If 𝑃 is a point,𝐻𝑛(𝑃) ≅ 0 for all 𝑛 > 0, and𝐻0(𝑃)
≅ ℤ.

Definition. Any space with the homology groups of a point is called acyclic.

Theorem 18.5. Let 𝑋 ⊂ 𝔼∞ be star-convex with respect to 𝑥 ∈ 𝑋 . For any singular
𝑛-simplex 𝜎,

𝜕𝑛+1(Cone𝑥 𝜎) + Cone𝑥(𝜕𝑛𝜎) = 𝜎.

Theorem 18.6. Show that any star-convex space is acyclic.

Singular homology “sees” path-connectedness.

Theorem 18.7. For a space 𝑋 , show that𝐻0(𝑋) is a free abelian group with a generator
for every path-connected component of 𝑋 .

18.3 Topological Invariance and the Homotopy
Axiom

If 𝑓 ∶ 𝑋 → 𝑌 is a continuous map, there is a natural homomorphism called the chain
map between singular 𝑛-chains:

𝑓# ∶ 𝑆𝑛(𝑋) → 𝑆𝑛(𝑌)
which we can specify by its action on singular simplices: 𝑓#(𝜎) = 𝑓 ∘𝜎. The chain map
plays nicely with the boundary operator.

Theorem 18.8. Let 𝑓 ∶ 𝑋 → 𝑌 be a continuous map. Then for any chain 𝑐 ∈ 𝑆𝑛(𝑋),
𝜕(𝑓#(𝑐)) = 𝑓#(𝜕(𝑐)). In other words, the diagram

𝑆𝑛(𝑋)
𝑓#−−−−−→ 𝑆𝑛(𝑌)

𝜕↑↑↓ ↑↑↓𝜕

𝑆𝑛−1(𝑋)
𝑓#−−−−−→ 𝑆𝑛−1(𝑌)

commutes.

Because of this property, the image of a cycle is a cycle and the image of a boundary
is a boundary. So there is an induced homomorphism 𝑓∗ ∶ 𝐻𝑛(𝑋) → 𝐻𝑛(𝑌) defined
by 𝑓∗([𝑧]) = [𝑓#(𝑧)].

Exercise 18.9. Check that the induced homomorphism is well-defined and a homomor-
phism.

The next two theorems are the so-called functorial properties of the induced
homomorphism.

Theorem 18.10. The identity map 𝑖 ∶ 𝑋 → 𝑋 induces the identity homomorphism on
each homology group.
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Theorem18.11. If𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are continuousmaps between topological
spaces, then (𝑔 ∘ 𝑓)∗ = 𝑔∗ ∘ 𝑓∗

These functorial properties are far more easily established than their simplicial
counterparts! Thus you can show the topological invariance of singular homology
rather easily.

Theorem 18.12. If 𝑓 ∶ 𝑋 → 𝑌 is a homeomorphism, then 𝑓∗ ∶ 𝐻𝑛(𝑋) → 𝐻𝑛(𝑌) is an
isomorphism between singular homology groups.

Recall that two maps are homotopic if, roughly speaking, we can deform one map
into another continuously over time. It should come as no surprise, then, that homo-
topicmaps 𝑓 and 𝑔 induce the same homomorphism in homology, since we expect that
the image of a cycle under 𝑓 would be homologous to the image of that cycle under 𝑔.
The key is to produce a chain that witnesses that the image cycles are homologous.

Let’s think about this situation a little more generally. Suppose 𝑓 and 𝑔 are maps
from 𝑋 to 𝑌 . Ignoring for the moment any homotopy between 𝑓 and 𝑔, let’s just ask
under what conditions they induce the same homomorphism in homology.

If 𝑧 is a chain in𝑋 that is an 𝑛-cycle, then the homology class of 𝑧 satisfies 𝑓∗([𝑧]) =
𝑔∗([𝑧]) as long as 𝑓#(𝑧) − 𝑔#(𝑧) is the boundary of an (𝑛 + 1)-chain in 𝑌 . The main
problem is how to find such a chain for every cycle.

As we have done with many proofs so far, we ask if we can define such a chain by
doing it for each simplex. Thus we are looking for an operator 𝐷 ∶ 𝑆𝑛(𝑋) → 𝑆𝑛+1(𝑌)
such that if 𝜎 is a singular simplex in 𝑋 , then 𝐷𝜎 is an (𝑛 + 1)-chain in 𝑌 that ties
together 𝑓#(𝜎) and 𝑔#(𝜎). So we expect the boundary of𝐷𝜎 to involve 𝑓#(𝜎), 𝑔#(𝜎), and
some 𝑛-chains that connect the corresponding boundaries of 𝑓#(𝜎) and 𝑔#(𝜎). Since
𝜕 commutes with 𝑓# and 𝑔#, this quest is the same as looking for an 𝑛-chain whose
boundary comprises the (𝑛 − 1)-chains 𝑓#(𝜕𝜎) and 𝑔#(𝜕𝜎). But that is the problem of
defining𝐷 one dimension lower. Sowemay aswell be inductive, and set this term to be
−𝐷𝜕𝜎. Then we can require 𝐷 to be a homomorphism such that for a chain 𝑐 ∈ 𝑆𝑛(𝑋),
we seek 𝐷 ∶ 𝑆𝑛(𝑋) → 𝑆𝑛+1(𝑌) such that

𝜕𝐷𝑐 = 𝑓#(𝑐) − 𝑔#(𝑐) − 𝐷𝜕𝑐.
Note that if 𝑐 is a cycle 𝑧, then the final term disappears and 𝜕(𝐷𝑧) = 𝑓#(𝑧) − 𝑔#(𝑧).
Thus 𝐷𝑧 is the desired chain that shows 𝑓∗(𝑧) = 𝑔∗(𝑧).

A homomorphism 𝐷 ∶ 𝑆𝑛(𝑋) → 𝑆𝑛+1(𝑌) such that
𝜕𝐷 + 𝐷𝜕 = 𝑓# − 𝑔#

is called a chain homotopy between chain maps 𝑓# and 𝑔#. Our discussion shows
that when a chain homotopy exists between chain maps, they induce the same homo-
morphism in homology.

You have actually seen a chain homotopy before. Recall from Theorem 18.5 the
cone operator Cone𝑥 on a star-convex space satisfies

𝜕 Cone𝑥 +Cone𝑥 𝜕 = 𝗂𝖽,
where 𝗂𝖽 stands for the identity operator. What this equation actually means is that the
identity map 𝗂𝖽 on chains is chain homotopic to the zero map on chains. So for cycles,
every cycle differs from the empty chain by a boundary, i.e., is a boundary itself. This
perspective shows why star-convex sets are acyclic (Theorem 18.6).
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To prove theHomotopyAxiom for singular chains, you’ll need to construct a chain
homotopy.

Theorem 18.13 (Homotopy Axiom). If 𝑓 and 𝑔 are homotopic maps from 𝑋 to 𝑌 , then
they induce the same homomorphism in homology.

To show this fact, you should construct a chain homotopy 𝐷 between 𝑓# and 𝑔#
using the homotopy 𝐹 ∶ 𝑋 × 𝐼 → 𝑌 that exists between 𝑓 and 𝑔. Start by defining it
on a singular simplex 𝜎 ∶ Δ𝑛 → 𝑋 . The intuition is that the chain 𝐷𝜎 should “cover”
the prism 𝐹(𝜎(Δ𝑛) × 𝐼) in 𝑌 , but of course 𝜎 is singular and could have a crazy image
in 𝑋 so it’s not obvious what simplices to use. So instead of trying to write 𝜎(Δ𝑛) × 𝐼 as
a sum of singular simplices, you might view it as the image of a “model space” Δ𝑛 × 𝐼
under the map 𝜎 × 𝑖𝐼 ∶ Δ𝑛 × 𝐼 → 𝑋 × 𝐼, where 𝑖𝐼 is the identity map on 𝐼 = [0, 1], and
decompose the model space Δ𝑛 × 𝐼 as a sum of simplices and push that sum forward
by 𝐹# ∘ (𝜎 × 𝑖𝐼)#. There are two potential strategies to decompose the model space into
simplices. One is to construct a special triangulation of Δ𝑛 × 𝐼. Another is to appeal to
the acyclic nature of the model space and construct a chain homotopy inductively by
dimension. The relation 𝜕𝐷𝑐 = 𝑓#(𝑐) − 𝑔#(𝑐) − 𝐷𝜕𝑐 provides the inductive step.

18.4 Relative Singular Homology
Relative homology can be developed for singular homology, just as we did with simpli-
cial homology.

Definition. Let 𝐴 be a subspace of a topological space 𝑋 . By viewing singular simplices
in 𝐴 as singular simplices in 𝑋 , the singular chain group 𝑆𝑛(𝐴) can be viewed as a
subgroup of the chain group 𝑆𝑛(𝑋). Then we can define the quotient group:

𝑆𝑛(𝑋, 𝐴) = 𝑆𝑛(𝑋)/𝑆𝑛(𝐴)
which we call the group of relative singular chains of 𝑋 modulo 𝐴. An element in
𝑆𝑛(𝑋, 𝐴) can be represented by a chain involving only singular simplices whose images
do not lie completely in 𝐴.

Note that the boundary map 𝜕 ∶ 𝑆𝑛(𝑋) → 𝑆𝑛−1(𝑋) restricts to 𝜕 ∶ 𝑆𝑛(𝐴) →
𝑆𝑛−1(𝐴) so that taking boundaries of chains in 𝐴 stays in 𝐴. This observation produces
a boundary map on relative chains.

Theorem 18.14. There is a boundary map
𝜕 ∶ 𝑆𝑛(𝑋, 𝐴) → 𝑆𝑛−1(𝑋, 𝐴)

such that 𝜕𝑛 ∘ 𝜕𝑛+1 = 0 for all 𝑛 ≥ 0.

By analogy with the usual homology, Ker 𝜕𝑛 is a subgroup of 𝑆𝑛(𝑋, 𝐴), consisting
of relative 𝑛-cycles. A relative 𝑛-cycle can be represented by an 𝑛-chain in 𝑋 whose
boundary is a chain in 𝐴. And Im 𝜕𝑛+1 is a subgroup of 𝑆𝑛(𝑋, 𝐴), consisting of relative
𝑛-boundaries. A relative 𝑛-boundary can be represented by an 𝑛-chain in 𝑋 that,
togetherwith an𝑛-chain in𝐴, forms the boundary of an (𝑛+1)-chain in𝑋 . The theorem
above shows that the relative boundaries form a subgroup of the relative cycles, so
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we can define the relative singular homology group 𝐻𝑛(𝑋, 𝐴) as a quotient—the
“relative cycles mod relative boundaries”:

𝐻𝑛(𝑋, 𝐴) = Ker 𝜕𝑛/ Im 𝜕𝑛+1.

Exercise 18.15. Check that if 𝐴 = ∅, the empty set, then 𝐻𝑛(𝑋, 𝐴) = 𝐻𝑛(𝑋), the usual
homology.

Exercise 18.16. Let 𝑋 be a triangular region inℝ2 and let 𝐴 be its boundary. Determine
𝐻𝑛(𝑋, 𝐴) for all 𝑛 ≥ 0.

Exercise 18.17. Let 𝑋 be an annulus, and let 𝐴 be the inner and outer edges of the an-
nulus. Find a relative 1-cycle in 𝐶1(𝑋, 𝐴) that is not a relative 1-boundary.

Exercise 18.18. Let 𝑋 be a Möbius band, and let 𝐴 be its boundary as a subset of ℝ3.
Determine𝐻𝑛(𝑋, 𝐴) for 𝑛 ≥ 0.

Now that we’ve defined the relative homology 𝐻𝑛(𝑋, 𝐴), we can consider simpli-
cial maps on pairs that induce homomorphisms on relative homology. Suppose 𝐴 is a
subcomplex of 𝑋 and 𝐵 is a subcomplex of 𝑌 . We write

𝑓 ∶ (𝑋, 𝐴) → (𝑌, 𝐵)
to denote a continuous map 𝑓 ∶ 𝑋 → 𝑌 for which 𝑓(𝐴) ⊂ 𝐵.

Theorem 18.19. Given a continuous map 𝑓 ∶ (𝑋, 𝐴) → (𝑌, 𝐵) there is an associated
chain map 𝑓# ∶ 𝑆𝑛(𝑋, 𝐴) → 𝑆𝑛(𝑌, 𝐵) and induced homomorphism 𝑓∗ ∶ 𝐻𝑛(𝑋, 𝐴) →
𝐻𝑛(𝑌, 𝐵).

To understand the relationship between 𝐻𝑛(𝑋, 𝐴) to 𝐻𝑛(𝑋) and 𝐻𝑛(𝐴) we should
examine the relationship between the associated chain groups. There is an obvious
one from the definition of 𝑆𝑛(𝑋, 𝐴) as a quotient, namely, the short exact sequence

0 → 𝑆𝑛(𝐴)
𝑖−→ 𝑆𝑛(𝑋)

𝜋−→ 𝑆𝑛(𝑋, 𝐴) → 0.
This short exact sequence leads to a long exact sequence in homology.

Theorem 18.20 (Long exact sequence of a pair). Let 𝐴 be a subspace of 𝑋 . Then there
is a long exact sequence

⋯ 𝜕∗−−−−→ 𝐻𝑛(𝐴)
𝑖∗−−−−→ 𝐻𝑛(𝑋)

𝜋∗−−−−→ 𝐻𝑛(𝑋, 𝐴)
𝜕∗−−−−→ 𝐻𝑛−1(𝐴)

𝑖∗−−−−→ ⋯,
where the maps are induced by the inclusion maps 𝑖 ∶ 𝐴 → 𝑋 and 𝜋 ∶ (𝑋, ∅) → (𝑋, 𝐴)
and the boundary map 𝜕 ∶ 𝑆𝑛(𝑋) → 𝑆𝑛−1(𝑋).

18.5 Excision
The excision property for homology seems quite plausible when you think about it: a
relative cycle in 𝐻𝑛(𝑋, 𝐴) should be representable by a chain that is mostly outside of
𝐴 or near the boundary of 𝐴. So if we “excise” out 𝑈, a portion of 𝐴 away from the
boundary, it shouldn’t affect the relative homology group.
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The excision property was easy to establish for simplicial homology when remov-
ing an open set 𝑈 from 𝐴 left a subcomplex behind (see Theorem 17.22). Removing 𝑈
only removes simplices inside 𝐴, and therefore such simplices can be safely removed
from chains of relative cycle and produce a relative cycle that is still homologous to the
original cycle.

However, for singular homology, the problem is that singular simplices can be
wild, and some of their imagesmay not lie completely inside𝐴 or𝑋−𝑈. If so, whenwe
excise an open set 𝑈 from 𝐴, we may rightly worry that a relative cycle in 𝑆𝑛(𝑋, 𝐴) in-
volving such simplicesmay not be homologous to any relative cycle in 𝑆𝑛(𝑋−𝑈,𝐴−𝑈).

In order to show that we do not need to worry, we want to show first that singular
simplices can be subdivided sufficiently so that their images lie completely in 𝑋 or
𝐴−𝑈, and then show that we do not lose any homology classes when we perform such
subdivisions, i.e., removing the “big” simplices from the singular chain groups will not
affect the homology of the chain complex.

We will need a subdivision operation, closely related to barycentric subdivision on
simplices.

Definition. Let 𝑋 be a topological space. We define the barycentric subdivision op-
erator on singular chains 𝖲𝖣 ∶ 𝑆𝑛(𝑋) → 𝑆𝑛(𝑋) inductively as follows. If 𝜎 is a
0-simplex, define 𝖲𝖣𝜎 = 𝜎. Assuming 𝖲𝖣 has been defined for singular chains of di-
mension less than𝑛, let 𝑖 ∶ Δ𝑛 → Δ𝑛 be the identitymap (called the standard singular
𝑛-simplex), let 𝑏 be the barycenter of Δ𝑛, and recall that Cone𝑏 is the cone operator
that takes singular chains and cones them to 𝑏. Then for any simplex 𝜎 ∶ Δ𝑛 → 𝑋 ,
define

𝖲𝖣(𝜎) = 𝜎#(Cone𝑏(𝖲𝖣(𝜕𝑖))).

In words: we are taking the boundary of the standard singular 𝑛-simplex, applying
the subdivision operator there (since it has been defined for dimensions less than 𝑛),
and coning to the barycenter (which is possible since Δ𝑛 is convex). This procedure
produces a barycentric subdivision of the standard singular 𝑛-simplex. Then we push
this subdivision forward to 𝑋 by the map that 𝜎 induces on chains (applying 𝜎 to each
singular simplex in the chain).

Exercise 18.21. Verify that 𝖲𝖣 is a chain map, commuting with 𝜕, and verify that it is
natural, which means that for any continuous map 𝑓 ∶ 𝑋 → 𝑌 , the following diagram
commutes:

𝑆𝑛(𝑋)
𝑓#−−−−−→ 𝑆𝑛(𝑌)

𝖲𝖣↑↑↓ ↑↑↓𝖲𝖣

𝑆𝑛(𝑋)
𝑓#−−−−−→ 𝑆𝑛(𝑌)

Given a cover of a space 𝑋 , we will use the barycentric subdivision operator to
reduce the size of the simplex images so that they lie completely inside one element
of the cover. It may seem strange to refer to “size,” since 𝑋 is not necessarily a metric
space. However, the domain of each simplex is a metric space and this fact may help
you prove the next theorem.
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Theorem 18.22. Let𝒰 be an open cover of a space 𝑋 . For any singular simplex 𝜎, there
exists an𝑚 such that each termof𝖲𝖣𝑚(𝜎)has an image that lieswithin one of the elements
of𝒰.

Thus we have a method to make sure simplices can be subdivided enough to fit
inside any cover. Next you will want to ensure that no homology class is lost when you
ignore big simplices.

Theorem18.23. There is a chainhomotopy between𝖲𝖣𝑚 and the identitymapon𝑆𝑛(𝑋);
in other words, there exists a homomorphism 𝐷𝑋 ∶ 𝑆𝑛(𝑋) → 𝑆𝑛+1(𝑋) such that

𝜕𝐷𝑋𝜎 + 𝐷𝑋𝜕𝜎 = 𝖲𝖣𝑚 𝜎 − 𝜎

for every singular simplex 𝜎 of 𝑋 . Moreover, this chain homotopy is natural, meaning it
commutes with maps of spaces: if 𝑓 ∶ 𝑋 → 𝑌 , then 𝑓# ∘ 𝐷𝑋 = 𝐷𝑌 ∘ 𝑓#.

As usual in these kinds of proofs, you will want to construct the chain homotopy
inductively by dimension, first on a model space (the standard singular simplex), and
then push forward.

Theorem 18.24. For each 𝑛 ≥ 0, the induced homomorphism

𝖲𝖣𝑚∗ ∶ 𝐻𝑛(𝑋) → 𝐻𝑛(𝑋)

is an isomorphism.

Theorem 18.25. Suppose 𝑈 and 𝐴 are subspaces of 𝑋 such that 𝑈 ⊂ Int𝐴. Then the
inclusion map of (𝑋 − 𝑈,𝐴 − 𝑈) in (𝑋, 𝐴) induces an isomorphism

𝐻𝑛(𝑋 − 𝑈,𝐴 − 𝑈) ≅ 𝐻𝑛(𝑋, 𝐴).

Note that in singular excision,𝑈 is not required to be open, so this result is stronger
than needed for the Eilenberg-Steenrod axiom.

Now that we have established the Eilenberg-Steenrod axioms of Exactness, Homo-
topy, Excision, and Dimension, we illustrate an application that uses all four in a nice
way—computing the homology groups of spheres.

Recall that 𝑆𝑛 is the 𝑛-dimensional sphere and is the boundary of an (𝑛 + 1)-
dimensional ball. Spheres can be built up from two 𝑛-balls by gluing them along their
boundaries. Or, said another way, if you take an 𝑛-sphere and cut it with a plane
through its center, you get two hemispheres 𝐵𝑛+ and 𝐵𝑛−, each of which is a closed 𝑛-ball
if you include their boundaries. But their common boundary is the (𝑛−1)-sphere 𝑆𝑛−1.
See if you can use these ideas to compute the homology of spheres.

Theorem 18.26. For 𝑛 ≥ 1, show that𝐻𝑛(𝑆𝑛) ≅ ℤ and𝐻𝑛(𝑆𝑘) ≅ 0 if 𝑛 ≠ 𝑘.

Some hints: consider the pair (𝑆𝑛, 𝐵𝑛−). If you could excise the interior of 𝐵𝑛−, it
would leave youwith the pair (𝐵𝑛+, 𝑆𝑛−1), but you can’t quite do that because the excised
set needs to have its closure contained in the interior of 𝐵𝑛−. Can you get around that?
Then compare 𝐻𝑛(𝑆𝑛, 𝐵𝑛−) with 𝐻𝑛(𝑆𝑛) and 𝐻𝑛(𝐵𝑛+, 𝑆𝑛−1) with 𝐻𝑛−1(𝑆𝑛−1) using the
long exact sequences.
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18.6 A Singular Abstraction
This chapter was the final step that we will take in starting with a concrete approach
to finding holes in spaces by surrounding them with physical sets and step-by-step ab-
stracting that process. The step of abstraction in using maps of simplices rather than
simplices themselves is in some sense a rather natural process. We saw that maps can
fit together just like simplices do, but maps are (literally) more flexible and allow us to
study arbitrary spaces.

The Eilenberg-Steenrod axioms and theorem present us with yet another example
of the strategy of developing mathematics by seeking essentials and then following the
consequences of our choices. One indication that the choices of essentials were well
made is the fact that the motivating homology theories are subsumed in the generality.

The steps of abstraction thatwehave seen in the development of homology theories
provide us with a good metaphor for one manner in which mathematics develops. It
also reminds us of the importance of returning regularly to motivating examples and
insights in order to understand both the origins and the generalizations more deeply.



19
The End: A

Beginning—Reflections on
Topology and Learning

Wehave reached the end of a beginning—the end of an introduction to a subject whose
end is not in sight. Topology explores and exposes the essence ofmattersmathematical.

The first part of this book demonstrated how the heart of familiar mathematical
ideas and objects can be expressed in set-theoretical terms. We started with the basic
idea of counting and extended the idea to the concept of the cardinality of infinite sets.
Arguably, one of the great triumphs of human thought is the counterintuitive realiza-
tion that infinity comes in more than one size. Cantor’s theorems prove that infinity is
not a monolithic everything-ness, but instead infinity comes in infinitely many differ-
ent sizes. Cantor’s theorem is one jewel in a gem-encrusted crown of the exploration
of the infinite.

We next defined what we mean by a topological space. That definition was in-
tended to capture the set-theoretic essence of familiar spaces. The wisdom of the
choices made in creating that definition was made clear in the richness of all the chap-
ters that followed.

After defining a topological space, we developed concepts that reflected our in-
tuition and experience with familiar mathematics, but framed them in the context of
the world of topological spaces. That exploration let us see familiar spaces such as
the Euclidean spaces and familiar ideas such as continuity in a new light. We saw con-
nectedness and the concept of distance reflected through the lens of topological spaces.
Seeing the familiar withmore nuance became the pole star of our strategy for exploring
the consequences of taking a topological perspective.

We aremost interested in those parts of ourworldwithwhichwe aremost familiar.
In the domain of mathematics, the most familiar spaces are the Euclidean spaces and
objects in them. So the entire last part of this book was an exploration of objects that
are made from basic Euclidean pieces.

295
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Two ways to construct Euclidean-based spaces are to think of spaces that are lo-
cally Euclidean (creatingmanifolds) or to think of spaces built from rectilinear building
blocks (creating simplicial complexes).

We started the second part of this book by exploring 2-manifolds—that is, sur-
faces. Our description of those surfaces was driven by an urge to classify those spaces,
which are all the same locally, but differ globally. In the case of compact, connected
2-manifolds, we successfully showed that every such object was built from combining
simple 2-manifolds: the 2-sphere, the torus, and the projective plane.

The success in classifying 2-manifolds actually opened doors to new collections of
questions and mathematical concepts and tools for answering those questions. One
challenge we faced in distinguishing 2-manifolds was to pin down the difference be-
tween spaces that intuitively appeared different. What is the fundamental difference
between a torus and a double torus? How can we pin that down? Answering those
questions led us to develop some of the most powerful strategies for understanding
and distinguishing topological spaces.

Associating a group with a space in a specified manner turned out to be an ex-
tremely effective way to create distinctions among spaces. The first idea we pursued
came from the observation that we can encircle a hole in the plane, for example, by
going around the hole some number of times. It required an effort of specificity and
clarity of purpose to arrive at the definition of the fundamental group. Putting loops
into equivalence classes based on homotopies created ideas that were extended and
modified in many ways.

Fundamental groups and their relationships to covering spaces provided us with
a satisfying study, but the fundamental group did not help us to deal with spaces with
higher-dimensional holes. So we invented yet another method of associating groups
with a space—in this case, a group for every dimension, the homology groups.

We saw that there is a direct connection between the fundamental group, which re-
flects structure captured by 1-dimensional loops, and the first homology of the space—
namely, the first homology is merely the abelianization of the fundamental group. But
the homology groups allow us to distinguish spaces whose differences are based on
higher-dimensional structure.

Homology was created by starting with, in some sense, the simplest way we could
imagine to capture the presence of a “hole” in a space, namely, thinking about putting
an object around thehole. The physical strategy led toℤ2-homology. The consequences
of ℤ2-homology are enormous.

You proved many of the highlight theorems of topology using ℤ2-homology. You
proved the No Retraction Theorem, the Brouwer Fixed Point Theorem, the Borsuk-
Ulam Theorem, the Ham Sandwich Theorem, the Jordan-Brouwer Separation Theo-
rem, and many others. These theorems justify our characterization of ℤ2-homology as
a topological superhero.

One of the principal themes of mathematics is that once we have met with suc-
cess, extensions and variations will lead to yet further successes. So it was with ho-
mology. After the success of ℤ2-homology, we were driven to extend the idea to create
ℤ-homology and singular homology. Those extensions and abstractions of the physical
basis of ℤ2-homology were created by taking all the theorems and techniques that we
had constructed in the physical ℤ2-homology world and seeing how we could abstract
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them a bit. In fact, the abstractions to ℤ-homology and singular homology followed
the development of ℤ2-homology closely, but then went beyond.

The new homology theories in their turn allow us to prove yet more fascinating
theorems. The concept of the degree of a map allows us to prove theorems such as the
Hairy Ball Theorem, which tells us which dimensional spheres admit non-zero vector
fields. The stronger homology theories allow us to prove new fixed point theorems
such as the Lefschetz Fixed Point Theorem.

The whole of our exploration of topology was the result of employing effective
strategies of thinking that turn our minds in the direction of concept creation. Cre-
ating new mathematics or other new ideas is not magic—insights arise by employing
practices ofmind that inevitably lead to insight. In a real sense, thewhole of topology is
an example of the fabulous results that come about by thinking hard about basics. Soon
the quest for understanding the essentials blossoms into a forest of beautiful ideas. The
part of topology you have seen here is just a bit of undergrowth in that lush jungle—
there is always more to come.

We hope your interactions with this book included many pleasant struggles and
triumphs. Topology presents us with many delights. We have served you a bounti-
ful feast of delectable treats, but we hope you leave hungry for more. We wish you a
lifetime ahead of joyful grappling with ideas from topology and beyond.





AppendixA
Group Theory Background

A.1 Group Theory
Definition. A group is a set 𝐺 along with a binary operation 𝐺 × 𝐺 → 𝐺, typically
denoted by ⋅ or juxtaposition satisfying the following three conditions:
(1) There exists an element 1𝐺 ∈ 𝐺, called the identity element, such that 𝑔 ⋅ 1𝐺 =

1𝐺 ⋅ 𝑔 for all 𝑔 ∈ 𝐺.
(2) For every 𝑔 ∈ 𝐺 there exists an element 𝑔−1 ∈ 𝐺, called the inverse of 𝐺, such

that 𝑔 ⋅ 𝑔−1 = 𝑔−1 ⋅ 𝑔 = 1𝐺 .
(3) For all 𝑔1, 𝑔2, 𝑔3 ∈ 𝐺 the associative property holds: (𝑔1 ⋅ 𝑔2) ⋅ 𝑔3 = 𝑔1 ⋅ (𝑔2 ⋅ 𝑔3).

The notation above for the group operation is generally called multiplicative no-
tation. An alternative is so-called additive notation. The operation is denoted by “+,”
the identity element is denoted by 0𝐺 , and the inverse of 𝑔 ∈ 𝐺 is denoted by −𝑔.
When there is only one group in question (or when all the groups in question have the
same identity element), we will typically drop the𝐺 subscript from the notation for the
identity.

Additive notation is usually reserved for commutative or abelian groups.

Definition. A group 𝐺 is a commutative group or abelian group if 𝑔1 ⋅ 𝑔2 = 𝑔2 ⋅ 𝑔1
for all 𝑔1, 𝑔2 ∈ 𝐺.

Often instead of using “⋅” to denote the group operation, we use juxtaposition. In
other words, 𝑥𝑦 = 𝑥 ⋅ 𝑦. We often use the verb “to multiply” to indicate the group
operation.

Definition. The trivial group is the group that contains only one element, namely the
identity. In other words 𝐺 = {1𝐺} or 𝐺 = {0𝐺} (depending on which notation is being
used).

Definition. Let 𝐺 be a finite group. Then the cardinality, |𝐺|, of the set 𝐺 is called the
order of 𝐺.
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Definition. Let 𝐴 be a set of 𝑛 elements. Then a permutation is a bijective function
from 𝐴 to itself. Usually we use positive integers to describe 𝐴, that is, 𝐴 = {1, … , 𝑛}.
Let {𝑎1, … , 𝑎𝑚} ⊆ 𝐴. Then we use (𝑎1𝑎2⋯𝑎𝑚) to represent the function that takes 𝑎𝑖
to 𝑎𝑖+1 for 1 ≤ 𝑖 ≤ 𝑚 − 1 and 𝑎𝑚 to 𝑎1 (and preserves all others). Such a permutation
is called an𝑚-cycle. A 2-cycle is called a transposition.

Exercise A.1.
(1) Show that the set of all permutations on 𝑛 elements forms a group with the group

operation of function composition.

(2) Show that any permutation can be written as a composition of disjoint cycles.

(3) Show that any𝑚-cycle can be written as a composition of transpositions.

Definition. The group of all permutations on the first 𝑛 positive integers is called the
symmetric group, denoted by 𝑆𝑛.

Exercise A.2. What is the order of 𝑆𝑛?

Note that 𝑆𝑛 is not an abelian group for 𝑛 ≥ 3.

Definition. A permutation is even if it can be written as the composition of an even
number of transpositions and odd otherwise.

Exercise A.3.
(1) Show that an 𝑛-cycle can be written as the composition of 𝑛 − 1 transpositions. Thus

a 3-cycle is an even permutation and a 4-cycle is an odd permutation!

(2) Show that the group of even permutations is a subgroup of 𝑆𝑛.

Definition. The group of even permutations is called the alternating group, denoted
by 𝐴𝑛.

Exercise A.4. What is the order of 𝐴𝑛?

Definition. The symmetry group of a regular 𝑛-sided polygon (under composition) is
called the dihedral group, denoted 𝐷𝑛.

Exercise A.5. Show that if we let 𝑎 represent a reflection along a line passing through
the polygon’s center and a vertex, and 𝑏 a rotation of 2𝜋/𝑛 around its center, then

𝐷𝑛 = {1, 𝑏, … , 𝑏𝑛−1, 𝑎, 𝑎𝑏, … , 𝑎𝑏𝑛−1}.

Exercise A.6. Show that 𝐷𝑛 is not abelian for 𝑛 > 2.

Definition. A subgroup of a group 𝐺 is a subset 𝐻 that forms a group under the oper-
ation it inherits from 𝐺. We write 𝐻 < 𝐺.

Since the symmetries of a polygon induce permutations on its vertices, it is easy to
see that 𝐷𝑛 is isomorphic to a subgroup of 𝑆𝑛.
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Exercise A.7. Show that 𝐷𝑛 is isomorphic to a proper subgroup of 𝑆𝑛 for 𝑛 > 3.

Exercise A.8. Under what conditions, if ever, is 𝐷𝑛 isomorphic to a subgroup of 𝐴𝑛?

Definition. Let 𝑔 ∈ 𝐺, a group, and 𝐻 be a subgroup of 𝐺. Then the left coset of 𝐻
by 𝑔 is

𝑔𝐻 ∶= {𝑔ℎ|ℎ ∈ 𝐻}.
We can define the right coset 𝐻𝑔 similarly.

Exercise A.9. Let 𝑔, 𝑔′ ∈ 𝐺. Then either 𝑔𝐻 = 𝑔′𝐻 or 𝑔𝐻 ∩ 𝑔′𝐻 = ∅.

Definition. Let 𝐻 be a subgroup of 𝐺. Then the index of 𝐻 in 𝐺, denoted [𝐺 ∶ 𝐻], is
the number of left cosets of 𝐻 in 𝐺.

TheoremA.10 (Lagrange’s Theorem). Let 𝐺 be a finite group and𝐻 a subgroup. Then
the cardinality |𝐻| of𝐻 divides the cardinality |𝐺|of 𝐺 and

[𝐺 ∶ 𝐻] = |𝐺|
|𝐻| .

Definition. A subgroup 𝐻 of 𝐺 is called a normal subgroup of 𝐺 (denoted 𝐻 ◁ 𝐺) if
and only if for every 𝑔 ∈ 𝐺, 𝑔𝐻𝑔−1 = 𝐻, where 𝑔𝐻𝑔−1 ∶= {𝑔ℎ𝑔−1|ℎ ∈ 𝐻}.

Multiplying a group or an element on the left by one element and on the right
by its inverse is called conjugation, so a normal subgroup is one which is unchanged
(setwise) by conjugation.

TheoremA.11. Let𝐻◁𝐺 be a normal subgroup. Then its left and right cosets coincide
for all 𝑔 ∈ 𝐺, in other words 𝑔𝐻 = 𝐻𝑔 for all 𝑔 ∈ 𝐺.

Definition. The direct product𝐺⊗𝐻 of two groups𝐺 and𝐻 is the set𝐺×𝐻 with the
group operation defined by (𝑔, ℎ) ⋅ (𝑔′, ℎ′) = (𝑔𝑔′, ℎℎ′). When the groups are additive
we call this the direct sum and write 𝐺 ⊕𝐻.

Definition. A function𝜙 ∶ 𝐺 → 𝐻 is a (group)homomorphism if𝜙(𝑔⋅𝑔′) = 𝜙(𝑔)⋅𝜙(𝑔′)
for all 𝑔, 𝑔′ ∈ 𝐺.

In other words 𝜙 preserves the group structure in the image of 𝐺.

Definition. A bijective homomorphism 𝜙 ∶ 𝐺 → 𝐻 is an isomorphism, in which case
we say 𝐺 is isomorphic to 𝐻 and write 𝐺 ≅ 𝐻.

But what about when the homomorphism is not bijective?

Definition. The kernel of a homomorphism 𝜙 ∶ 𝐺 → 𝐻 is
Ker 𝜙 ∶= {𝑔 ∈ 𝐺|𝜙(𝑔) = 1𝐻}.

Theorem A.12. An onto homomorphism 𝜙 ∶ 𝐺 → 𝐻 is an isomorphism if and only if
Ker 𝜙 = {1𝐺}.
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Theorem A.13. Let 𝜙 ∶ 𝐺 → 𝐻 be a homomorphism from a group 𝐺 to a group 𝐻.
Then Ker 𝜙◁ 𝐺 and 𝜙(𝐺) < 𝐻.

Definition. A normal subgroup 𝑁 ◁ 𝐺 has its left cosets equal to its right cosets: 𝑔𝑁 =
𝑁𝑔. Therefore the set

𝐺/𝑁 ∶= {𝑔𝑁|𝑔 ∈ 𝐺}
of all left cosets of 𝑁 is a group with the group operation

(𝑔𝑁) ⋅ (𝑔′𝑁) ∶= 𝑔𝑔′𝑁.
This group is called the quotient group of 𝐺 by 𝑁.

Definition. Let 𝐻 be a subgroup of 𝐺. Then the normalizer of 𝐻 in 𝐺 is 𝑁(𝐻) =
{𝑔 ∈ 𝐺|𝑔𝐻𝑔−1 = 𝐻}.

Note that𝑁(𝐻) is a subgroup of𝐺, and𝐻◁𝑁(𝐻), and𝑁(𝐻) is the largest subgroup
of 𝐺 in which 𝐻 is normal, meaning that any subgroup of 𝐺 containing 𝐻 in which 𝐻
is normal must be contained in 𝑁(𝐻).

Theorem A.14 (First isomorphism theorem). Let 𝜙 ∶ 𝐺 → 𝐻 be a homomorphism
with Ker 𝜙 = 𝑁. Then 𝜙(𝐺) ≅ 𝐺/𝑁.

Definition. Let 𝑔 ∈ 𝐺. Then ⟨𝑔⟩, the cyclic subgroup generated by 𝑔, is the subgroup
formed by all powers of 𝑔:

⟨𝑔⟩ ∶= {𝑔𝑛|𝑛 ∈ ℤ},

where 𝑔𝑛 =
𝑛 times
⏞⎴⏞⎴⏞𝑔 ⋅ 𝑔⋯𝑔 if 𝑛 > 0, 𝑔0 = 1, and 𝑔−𝑛 =

𝑛 times
⏞⎴⎴⎴⏞⎴⎴⎴⏞𝑔−1 ⋅ 𝑔−1⋯𝑔−1 for 𝑛 ∈ ℕ.

Note that with additive notation ⟨𝑔⟩ = {𝑛𝑔|𝑔 ∈ 𝐺, 𝑛 ∈ ℤ}, where

𝑛𝑔 =
𝑛 times

⏞⎴⎴⎴⏞⎴⎴⎴⏞𝑔 + 𝑔 +⋯+ 𝑔

for 𝑛 ∈ ℕ, 𝑔0 = 0, and −𝑛𝑔 =
𝑛 times

⏞⎴⎴⎴⎴⎴⎴⏞⎴⎴⎴⎴⎴⎴⏞(−𝑔) + (−𝑔) +⋯+ (−𝑔) for 𝑛 ∈ ℕ.

Definition. If 𝐺 = ⟨𝑔⟩ for some 𝑔 ∈ 𝐺, then 𝐺 is a cyclic group with generator 𝑔.

Note that cyclic groups are abelian. If 𝐺 = ⟨𝑔⟩ and there exists 𝑛 ∈ ℤ such that
𝑔𝑛 = 1, then there exists a smallest 𝑛 ∈ ℕ such that 𝑔𝑛 = 1. This 𝑛 is the order of 𝐺.

Theorem A.15. A cyclic group that is infinite is isomorphic to ℤ.

Theorem A.16. A finite cyclic group of order 𝑛 is isomorphic to ℤ𝑛, the integers with
additionmod𝑛.

Definition. A group 𝐺 ≅
𝑛 times

⏞⎴⎴⎴⎴⏞⎴⎴⎴⎴⏞ℤ⊕ ℤ⊕⋯⊕ℤ is called the free abelian group of rank 𝑛.
𝐺 has a generating set of 𝑛 elements of infinite order, one for each ℤ factor.

Definition. Let𝐺 be a group and 𝑆 ⊆ 𝐺. Then the smallest subgroup𝐻 of𝐺 containing
𝑆 is called the subgroup generated by 𝑆. If𝐻 = 𝐺, then we say 𝐺 is generated by 𝑆,
or that 𝑆 generates 𝐺.
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We can view the subgroup 𝐻 generated by 𝑆 as the set of all possible finite prod-
ucts of elements of 𝑆 or their inverses. We can also view 𝐻 as the intersection of all
subgroups of 𝐺 that contain 𝑆.

Exercise A.17.
(1) Verify that the dihedral group 𝐷𝑛 = {1, 𝑏, … , 𝑏𝑛−1, 𝑎, 𝑎𝑏, … , 𝑎𝑏𝑛−1} is generated by

{𝑎, 𝑏}.
(2) Show that the symmetric group 𝑆𝑛 for 𝑛 ≥ 2 is generated by the set of 2-cycles: {(12),

(23), … , (𝑛 − 1, 𝑛)}.
(3) Show that the symmetric group 𝑆𝑛 for 𝑛 ≥ 2 is generated by the pair of cycles (12) and

(12⋯𝑛).

Definition. A group is finitely generated if there exists a finite subset 𝑆 of 𝐺 that
generates 𝐺.

TheoremA.18 (Classification of finitely generated abelian groups). Let𝐺 be a finitely
generated abelian group. Then 𝐺 is isomorphic to

𝐻0 ⊕𝐻1 ⊕⋯⊕𝐻𝑚,
where 𝐻0 is a free abelian group, and 𝐻𝑖 ≅ ℤ𝑝𝑖 (𝑖 = 1, … , 𝑛), where 𝑝𝑖 is a power of a
prime. The rank of 𝐻0 is unique and is called the rank of 𝐺. The orders 𝑝1, … , 𝑝𝑚 are
also unique up to reordering.

Definition. A commutator in a group 𝐺 is an element of the form 𝑔ℎ𝑔−1ℎ−1. The
commutator subgroup 𝐺′ is the subgroup generated by the commutators of 𝐺.

Theorem A.19. Let 𝐺 be a group. The commutator subgroup 𝐺′ is a normal subgroup
of 𝐺 and is the smallest subgroup for which 𝐺/𝐺′ is abelian. In other words, if there is a
subgroup 𝑁 ◁ 𝐺 such that 𝐺/𝑁 is abelian, then 𝐺′ ⊂ 𝑁.

Definition. If 𝐺 is a group and 𝐺′ is its commutator subgroup, the group 𝐺/𝐺′ is called
the abelianization of 𝐺.

Theorem A.20. Isomorphic groups have isomorphic abelianizations.

There is a useful notation for groups that, roughly speaking, uses the fact that if
we know a set of generators and the “rules” (called “relations”) to tell when two el-
ements are the same, then the group (up to isomorphism) is determined by a list of
these generators and relations. What follows is a very non-technical description of the
generator-relation notation for groups.

For example, in 𝐷𝑛 (as described above) it is enough to know that there are two
generators 𝑎 and 𝑏, of order 2 and 𝑛, respectively, and that they satisfy 𝑎𝑏 = 𝑏𝑛−1𝑎.
These facts determine a complete list of elements 1, 𝑏, … , 𝑏𝑛−1, 𝑎, 𝑎𝑏, … , 𝑎𝑏𝑛−1. The
expression 𝑎𝑏 = 𝑏𝑛−1𝑎 can be written as 𝑎𝑏𝑎−1𝑏 = 1, since 𝑏𝑛 > 1. The word 𝑎𝑏𝑎−1𝑏
is called a relation. By 𝑎 and 𝑏’s order, we also know that 𝑎 and 𝑏 satisfy 𝑎2 = 1 and
𝑏𝑛 = 1. The two letters 𝑎 and 𝑏 together with the above relations completely determine
the group 𝐷𝑛, and thus we write

𝐷𝑛 = ⟨𝑎, 𝑏|𝑎2, 𝑏𝑛, 𝑎𝑏𝑎−1𝑏⟩.
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Similarly, we can write the cyclic group of order 𝑛 as

𝐶𝑛 = ⟨𝑎|𝑎𝑛⟩.

We can write the infinite cyclic group as

𝐶∞ = ⟨𝑎| ⟩.

We can denote the free abelian group of rank 𝑛 as

𝐹ab𝑛 = ⟨𝑎1, … , 𝑎𝑛|𝑎𝑖𝑎𝑗𝑎−1𝑖 𝑎−1𝑗 , 𝑖 ≠ 𝑗 ∈ {1, … , 𝑛}⟩.

Exercise A.21. Confirm that the lists of generators and relations given above completely
determine the groups.

Weshould note that since the relations 𝑔⋅𝑔−1 = 1, 𝑔⋅1 = 𝑔, and 1⋅𝑔 = 𝑔hold for any
𝑔 ∈ 𝐺, as they are implicit in the definition of a group, such relations are not included
in the list of relations. In general, a group 𝐺 can be written as 𝐺 = ⟨𝐿|𝑅⟩, where 𝐿
is a collection of generating elements (often called “letters”) and 𝑅 is a collection of
relations between them (that is, words in the letters which are trivial in the group).
This is called a group presentation of 𝐺.

This notation is very useful, especially when dealing with the fundamental group
and Van Kampen’s Theorem. The problem with this notation, however, is that it is
very difficult, in general, given two groups with this notation, to tell if the groups are
isomorphic or not, or even if twowords represent the same group element. A group that
can be presented with a finite number of generators and a finite number of relations is
called finitely presented.

Theorem A.22. Suppose that 𝐿 is a set and 𝑅 is a collection of words in 𝐿. Then there is
a group whose presentation is ⟨𝐿|𝑅⟩.

Exercise A.23. What is a group presentation for an arbitrary finitely generated abelian
group? for the symmetric group?

Definition. For 𝑛 ∈ ℕ, the free group on 𝑛 letters is the group 𝐹𝑛 whose presentation
is ⟨𝑒1, … , 𝑒𝑚|∅⟩. That is, 𝐹𝑛 is the group which is generated by 𝑛 letters with no rela-
tions among them. In general any group which can be given a presentation without
generators is called free. We say that 𝑛 is the rank of the free group 𝐹𝑛.

Theorem A.24. For𝑚 ≠ 𝑛, 𝐹𝑚 ≠ 𝐹𝑛.

An important construction for creating a new group from other groups is the free
product. We take two disjoint groups and construct a new group from the elements in
each. The only relations are those from the original group, except that we assume that
the two identities are equal (and also equal to the identity in the free product). The
formal definition is below.

Definition. Let 𝐺 and 𝐻 be disjoint groups. Let 𝐺 = ⟨𝑆, 𝑅⟩ and 𝐻 = ⟨𝑇,𝑄⟩ be presen-
tations. Then the free product of 𝐺 and 𝐻 is 𝐺 ∗ 𝐻 = ⟨𝑆 ∪ 𝑇,𝑄 ∪ 𝑅⟩ .
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Lemma A.25. We have natural injections 𝐺 → 𝐺 ∗𝐻 and𝐻 → 𝐺 ∗𝐻, so 𝐺 and𝐻 can
be viewed as subgroups of 𝐺 ∗ 𝐻.

Theorem A.26. Let 𝐺 and 𝐻 be disjoint groups. Each element in 𝐺 ∗ 𝐻 has a unique
expression of the form 𝑔1ℎ1⋯𝑔𝑛ℎ𝑛, where 𝑔1, … , 𝑔𝑛 ∈ 𝐺, ℎ1, … , ℎ𝑛 ∈ 𝐻, and 𝑔1 and ℎ𝑛
are allowed to be the identity, but no other letter is.
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locally connected, 113
locally finite, 79
locally finite collection, 132
locally path connected, 114
long exact sequence, 273
long line, 209
longitude, 190
loop, 176
lower limit topology, 43

Möbius band, 91
Möbius band, 166
manifold, 141, 209
manifold with boundary, 166
map, 11
constant, 172

Mayer-Vietoris Theorem
ℤ, 276
ℤ2, 245

meridian, 190
metric, 119
metric continuum, 127
metric on a countable product, 123
metric space, 120
metrizable, 121
minimal face, 217
model space, 290

Nagata-Smirnov Metrizability Theorem, 132
naturality, 274
neighborhood, 31
regular, 151

neighborhood basis, 68
No Retraction Theorem, 220
𝐵2, 183
𝑛-dimensional, 251

non-separating point, 110
non-vanishing vector field, 278
normal, 56
normal subgroup, 301
Normality Lemma, 61
normalizer, 302
nowhere dense, 126
null homotopic, 172

open ball, 32
open cell, 247
boundary, 249

open cell decomposition
ℤ2, 247

open cover, 72
open function, 85

open set, 31
order of a group, 299
order topology, 46
ordering
equvalent, 163

ordinal number, 23
orientablity
triangulated surface, 164

orientation
𝑛-simplex, 163
induced, 163

orientation class, 265
oriented simplex, 265

pair of paints, 166
paracompact, 79
paracompactness of metric spaces, 133
partially ordered set, 19
partition of unity, 99
pasting lemma, 84
path, 112, 173
constant, 175
endpoints, 173
equivalence, 173
inverse, 176
product, 174

path components, 112
path connected, 112
path from 𝑥0 to 𝑥1, 173
Peano continuum, 114, 127
perfectly normal, 62
permutation, 300
even, 300
odd, 300

PL homeomorphism, 214
polygonal presentation, 158
poset, 19
positive definite, 120
power set, 15
preimage, 11
presentation of a group, 304
product, 49
product of discrete two-point spaces, 51
product topology, 49, 51
projection functions, 49, 51
projective 2-space
real, 148

projective plane
real, 148

quantum mechanics, 51
quotient group, 302
quotient map, 92
quotient space, 92

rank, 302, 303
rank of a group, 279
reduced homology, 270
refinement of a cover, 79
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regular, 56
completely, 98

regular covering, 202
regular neighborhood, 151
relative boundaries, 270
relative 𝑛-boundary, 290
relative 𝑛-cycle, 290
relative homology, 270
relative homology groups, 270
relative homotopy, 173
relative singular chains, 290
relative singular homology group, 291
relative topology, 48
retract, 183
strong deformation, 182

retraction, 97, 183, 251
right coset, 301

Schoenflies Theorem, 225
Schroeder-Bernstein Theorem, 16
second barycentric subdivision, 216
seeing a complex, 236
semilocally simply connected, 203
separable space, 66
separated, 61
separated sets, 61, 102
separating point, 110
separation properties, 56
sequence
exact, 245

set
basic, 42
boundary, 38
Cantor, 89
closure of, 35
countable, 13
finite, 12
interior, 38
open, 31
partially ordered, 19
separated, 61
totally ordered, 19
well-ordered, 20

simplex, 150, 211
ℤ2-boundary, 234
boundary, ℤ, 266
boundary, oriented, 266
interior, 247

simplicial approximation, 218
simplicial complex
finite, 212

simplicial complexe, 141
simplicial homeomorphism, 213
simplicial map, 213
simply connected, 178
semilocally, 203

singular chain group, 286
singular chain complex, 287
singular homology groups, 287

singular simplex, 286
skeleton
1-dimensional, 150

Sorgenfrey line, 43
Souslin property, 69
space, 30
space-filling curve on 𝕊2, 178
Sperner labeling, 220
Sperner’s Lemma, 220
sphere, 146
𝑛-dimensional, 208

standard 𝑛-simplex, 286
standard metric, 120
standard singular simplex, 292
standard topology on ℝ𝑛, 32
standard topology on ℝ, 31
standard wrapping map, 177
star condition, 218
star of a vertex, 217
star-convex, 286
star-like space, 178
stereographic projection, 178
strong deformation retract, 182
subbasic open set, 45
subbasis element, 45
subbasis of a topology, 45
subcomplex, 243
subcover, 72
subdivision
barycentric, 216
of a finite simplicial complex, 214

subdivision operator, 240
subgroup, 300
cyclic, 302
index, 301
normal, 301
normalizer, 302

subset, 9
subspace, 48
subspace topology, 47
surface, 209, 210
surjection, 11
symmetric group, 300

taxi-cab metric, 120
theta space, 182
Tietze Extension Theorem, 96
topological group, 281
topological space, 30
1st countable, 68
2nd countable, 67
𝑇2, 56
compact, 72
connected, 102
countably compact, 76
Hausdorff, 56
homeomorphic, 87
Lindelöf, 76
locally arcwise connected, 114
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locally connected, 113
locally path connected, 114
normal, 56
paracompact, 79
regular, 56
separable, 66
Souslin property, 69

topologically complete, 125
topologist’s comb, 37, 101
topologist’s sine curve, 37, 101
topology, 30
as a pair of glasses, 33
basis, 42
cofinite, 33
countable complement, 33
discrete, 32
finite complement, 33
indiscrete, 32
lower limit, 43
order, 46
standard
ℝ, 31
ℝ𝑛, 32

subbasis, 45
subspace, 47

torus, 91, 146
double, 147
quadruple, 147
triple, 147

totally disconnected, 115
totally ordered set, 19
trace, 279
transposition, 300
tree, 152
trefoil knot, 193
triangle inequality, 120
triangulable manifold, 221, 222, 226
triangulable space, 212
triangulation, 212
of a surface, 150
simplicially homeomorphic, 213

trivial group, 299
Tychonoff Plank, 60

unbounded
ordinals, 24

uncountable set, 13
underlying space, 212
uniform continuity, 124
uniform convergence, 124
union, 10
universal cover, 204
universal mapping property, 88, 93
upper bound, 20
upper half plane with the sticky bubble

topology, 44
upper half-space, 167
Urysohn’s Metrization Theorem, 128

Van Kampen’s Theorem, 187
group presentations, 189

vector field, 278
vertex of a simplex, 211
vertices
equivalent
ordering, 163

vertices of a simplicial complex, 212

wedge sum, 93
well-ordered set, 20
Well-Ordering Theorem, 20
winding number, 180, 278
word, 158
wrapping map, standard, 177

Zorn’s Lemma, 20
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