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Main field of study 

Mathematics 

 

Course offered for 

Mathematics, Bachelor´s Programme 

 

Specific information 

The course is available every second year 

 

Course overview 
This course is an introductory course to the basic concepts of Graph Theory. This 

includes definition of graphs, vertex degrees, directed graphs, trees, distances, 

connectivity and paths  
 

Prerequisites 
Some elementary knowledge of linear algebra, particularly matrix algebra, would be 

helpful. In addition, a general experience in mathematics. 

 

Course objectives 

 The objective of the course is to introduce students with the 

fundamental concepts in graph Theory, with a sense of some its 

modern applications.  

 They will be able to use these methods in subsequent courses in the 

design and analysis of algorithms, computability theory, software 

engineering, and computer systems 

Intended learning outcomes  
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On successful completion of this course, student should be able to 

 understand the basic concepts of graphs, directed graphs, and 

weighted graphs and able to present a graph by matrices.  

 understand the properties of trees 

  understand Eulerian and Hamiltonian graphs. 

 apply the knowledge of graphs to solve the real-life problem. 

 

Program Outcomes 
The students should be able to  

 Solve problems using basic graph theory 

 To write precise and accurate mathematical definitions of objects in 

graph theory. 

 Use definitions in graph theory to identify and construct examples and 

to distinguish examples from non-example.  

 Determine whether graphs are Hamiltonian and/or Eulerian 

 Apply theories and concepts to test and validate intuition and 

independent mathematical thinking in problem solving. 

 Integrate core theoretical knowledge of graph theory to solve 

problems. 

 Reason from definitions to construct mathematical proofs  

 Model real world problems using graph theory 
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Course content  
 

Unit I  

Graphs and Subgraphs – Introduction – Definition and Examples – Degree of a vertex 

– subgraphs – isomorphism of Graphs – Ramsey Numbers – Independent sets and 

Coverings  

Unit-II 

 Intersection Graphs and Line Graphs – Adjacency and Incidence Matrices – 

Operations on Graphs – Degree Sequences – Graphic Sequences  

Unit III  

Connectedness -Introduction – Walks, Trails, paths, components, bridge, block - 

Connectivity 

Unit IV   

 Eulerian Graphs – Hamiltonian Graphs 

Unit V   

Trees – Characterization of Trees – Centre of a Tree – Planarity – Introduction, 

Definition and Properties – Characterization of Planar Graphs – Thickness – Crossing 

and Outer Planarity 

 

Course literature 

S.Arumugam and S.Ramachandran, “Invitation to Graph Theory”, SCITECH 

Publications India Pvt. Ltd., 7/3C, Madley Road, T.Nagar, Chennai - 17  

 

Reference Books  

 

1. S.Kumaravelu, SusheelaKumaravelu, Graph Theory, Publishers, 182, Chidambara 

Nagar, Nagercoil-629 002.  

2. S.A.Choudham, A First Course in Graph Theory, Macmillan India Ltd.  

3. Robin J.Wilson, Introduction to Graph Theory, Longman Group Ltd.  

4. J.A.Bondy and U.S.R. Murthy, Graph Theory with Applications, Macmillon, 

London.  
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UNIT – I 

Graphs and Sub graphs : Definition and examples of graphs – 

degrees – sub graphs – isomorphism – Ramsey numbers – 

independent sets and coverings  

 

1.1 DEFINITION AND 

EXAMPLES (1).GRAPH 

Definition: A graph G consists of a pair (V(G), X(G)) , where V(G) 

is a non – empty finite set whose elements are called points or 

vertices and X(G) is another set of unordered pairs of distinct 

elements of V(G). The elements of X(G) are called lines or edges of 

the graph. 

 

If x = {u, v} ∈ X then the line x is said to join of u and v. The 

points u and v are said to adjacent if x = u v. We say that the points u 

and the line x are incident with each other. 

 

If two distinct lines x and y are incident with a common point then 

they are called adjacent lines. 

 

A graph with p points and q lines is called a (p, q) graph. 

 
Note: When there is no possibility of confusion we write  V 

(G) = V and X (G) = X. 

 

Examples: 

 

Let V = {a, b, c, d} and X = {{a, b},{a, c},{a, d}}. 
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G = {V, X} is a (4, 3) graph. This graph can be represented by a 

diagram as shown in Fig.1.1. 
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b c 

a 
 
 

 

 

 

d 

Fig. 1.1 
 

In this graph the points a and b are adjacent whereas b and c are non – 

adjacent. 

2. Let V = {1, 2, 3,4} and X ={{1,2},{1,3},{1,4},{2,3},{2,4},{3,4}. 

 
G = (V, X) is a (4, 6) graph. 

 
This graph is represented by the diagram as shown in Fig.1.2. 

4 3 

 

 
1 2 

Fig. 1.2 

In this graph the lines {1, 3} and {2, 4} intersect in the diagram and their 

intersection is not a point of the graph. 

Fig. 1.3 is another diagram for the graph given in Fig. 1.2. 
 

1 

. 4 

2 3 

 
Fig. 1.3 

3. The (10, 15) graph given in Fig. 1.4 is called a Petersen graph. 
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Remark: 

1 

2 a 5 

b e 

c d 

3 4 

Fig.1.4 

 

The definition of a graph does not allow more than one line joining two 

points. Also, it does not allow any line joining a point to itself. 

Line joining points to itself is called a loop. Fig.1.5 is a loop. 

 

 
1 

 

 
2 

 

 

(2). MULTI GRAPH 

Definition: If more than one line joining two vertices are allowed then the 

resulting object is called a multi graph. Lines joining the same points are called 

multiple lines. 

Fig. 1.6 is an example of a multi graph. 
 

 
 

Fig. 1.6 

3 

Fig.1.5 

1 

2 3 
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(3). PSEUDO GRAPH 

Definition: If an object contains multiple lines and loops then it is called a 

pseudo graph. 

 
Fig. 1.7 is a pseudo graph. 

 

Fig. 1.7 

 
Note: If G is a (p, q) graph then q ≤ p C 2 and q = p C2 if and only if any two 

distinct points are disjoint. 

(4).COMPLETE GRAPH 

 
Definition: A graph in which any two distinct points are adjacent is called a 

complete graph. 

 
A complete graph with p vertices is denoted by K p. 

 
K1 K2 K3 K4 K5 

 

Fig. 1.8 

 
Note: The number of edges of a complete graph K p is p C 2 . 

 

(5). NULL GRAPH 

 
Definition: A graph G whose edge set is empty is called a null graph or a 

totally disconnected graph. 
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Example: G1, G2, G3 and G4 are null graphs. 
 

 

 
 

G1 G2 G3 G4 

 
Fig. 1.9 

 

 
(6).LABELLED GRAPH 

 
Definition: A graph G is called labelled if its p points are distinguished from 

one another by names such as v1, v2, ...,v p . 

 

The graphs given in Fig. 1.1 and Fig.1.2 are labelled graphs and the 

graph in Fig. 1.8 is an unlabelled graph. 

 

(7).BIPARTITE GRAPH 

 
Definition: A graph G is called a bigraph or bipartite graph if the vertex set V 

can be partitioned into two disjoint subsets V1 and V2 such that every line of G 

joins a point of V1 to a point of V2. (V1, V2) is called a bipartition of G. 

 

(8).COMPLETE BIPARTITE GRAPH 

 
Definition: A graph G is called a complete bipartite graph if the vertex set V 

can be portioned into two disjoint subsets V1 and V2 such that every line joining 

the points   of V1 to the points of V2. If V1 contains m points V2 contains n 

points then the complete bigraph is denoted by K m, n. 

 

The complete graph K1, n is called a star for n ≥ 1. 
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Note: The number of points of the complete bigraph Km , n is m + n and the 

number of lines is m n. 

 

Example: 

 

 

 

 

 

 

 

 
Problem: 

 
 

K 4 , 2 K2 , 3 K3 , 3 
 

 
Fig. 1.10 

 

Let V = {1, 2, 3, . . . , n} . Let X = {(i , j) / i , j ∊ V and are relatively prime }. 

The resulting graph (V, X) is denoted by G n. Draw G4 and G5. 

 

Solution: 

 
For G4 : V = { 1, 2, 3, 4} and X = { (1,2), (1,3), (1,4), (2, 3), (3, 4)}. 

 
For G5 : V = { 1, 2, 3, 4,5} and X = {(1,2), (1,3), (1,4), (1,5),(2,3), (2,5), (3, 4), 

(3, 5), (4, 5)}. 

 
1 2 4 

 
5 

 

3 4 
 

Graph of G4 (Fig. 1.11) Graph of G5 (Fig. 1.12) 

 
1.2. DEGREES 

 
Definition: The degree of a point vi in graph G is the number of lines incident 

with vi. It is denoted by d(vi) or deg vi or d G(vi). 

3 

1 2 
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𝑖=1 𝑗 =1 

A point v of degree 0 is called an isolated point. A point v of degree one is 

called an end point. 

 

Note: Loops are counted twice. 

 
Example: Consider the following (4, 5) graph, Fig.1.13. 

 

 

 
1 

 

3 
 

Fig.1.13 

 
d(1) = 2, d(2) = 4, d(3) = 2, d(4) = 2. 

 
Total degrees = 10 = 2 x 5. 

 
Theorem 1.1: The sum of the degrees of the points of a graph G is twice the 

number of lines in G. i.e. ∑d (vi ) = 2q. 

 

Proof: Every line of G is incident with two points. 

 
∴ Every line contributes two degrees. 

There are q lines in (p, q) graph. 

𝑝 
𝑖=1 (𝑣𝑖 ) = 2q = 2x (number of lines in G). 

 

Theorem 1.2: In any group G the number of points of odd degree is even. 

 
Proof: Let v1, v2, . . . , v k denote the points of odd degree and w1, w2, . . . , wm 

 
denote the points of even degree in G. 

 

By theorem (1.1), ∑𝑘 𝑑(𝑣𝑖) + ∑𝑚 (𝑤𝑗 ) = 2 q, which is even. 

 
2 

 
4 

∴∑ 
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𝑗 =1 Also, ∑𝑚 (𝑤𝑗 ) is even. 

 
𝑘 
𝑖=1(𝑣𝑖 ) is even. 

 
 

But, d(vi ) is odd for each i . 

Hence, k is even . 

∴ the number of points of odd degree is even. 

 
Definition :( REGULAR GRAPH) 

 
For any graph G, we define 

 
𝛿 (G) = min {d (v) / v ∈ V (G)} and 

 
∆ (G) = max {d (v) / v ∈ V (G)}. 

 
If all points of G have the same degree r then G is called a regular graph of 

degree r. Hence, in a regular graph 𝛿 (G) = ∆ (G). 

A regular graph of degree 3 is called a cubic graph. 

 
Example(1): Consider the following graph , Fig.1.14. 

 

3 

 

 

 
4 5 6 

 
Fig. 1.14. 

 
d(1) = 3, d(2) = 1, d(3) = 3, d(4) = 3, d(5) = 4, d(6) = 2. 

Here, 𝛿 = 1, ∆= 4 ⇒ 𝛿 ≠ ∆ . 

∴ The given graph is not regular. 

 
Example (2): Consider the graph as given in Fig.1.2. 

1 2 

∴ ∑ 
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𝑖=1 

 

Here, d(1) = 3, d(2) = 3, d(3) = 3, d(4) = 3. 

 
∴ 𝛿 = ∆ = 3 ⇒ the graph is regular. 

 
Example (3): 

 
(i). A null graph is a regular graph of degree 0. 

 
(ii). The complete graph K p is a regular graph of degree (p – 1). 

 
Theorem 1.3: Every cubic graph has an even number of points. 

 
Proof: Let G be a cubic graph with p points. 

 
To show that p is even. 

 

𝑝 
𝑖=1 (𝑣𝑖 ) = 3p, since G is a cubic graph 

 

We know that, by theorem (1.1), ∑𝑝 (𝑣 ) is an even number. 
𝑖 

 

∴ 3p is even ⇒ p is even. 

 
Hence, every cubic graph has an even number of points. 

 
SOLVED PROBLEMS 

 
Problem (1): Let G be a (p, q) graph all of whose points have degree k or k + 1. 

If G has t > 0 points of degree k then show that t = p (k +1) – 2q . 

Solution: 

 
Given that G is a (p, q) graph and all of whose points have degree k or k + 1. 

Also, given that G has t points of degree k. 

∴ the remaining p – t points have degree k + 1. 
 

We know that, ∑𝑝 𝑑(𝑣𝑖 ) = 2q . 

∴ ∑ 

𝑖=1 
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i.e. t k + ( p – t) ( k +1) = 2q 

 
⇒ t k + p k – t k +p - t = 2q 

 
⇒ t = p k +p - 2q 

 
⇒ t = p (k +1) - 2q. 

 
Problem (2): Show that in any group of two or more people, there are always 

two with exactly the same number of friends inside the group. 

 

Solution: 

 
Construct a graph G by taking the group of people as the set of points 

and joining two of them if they are friends. 

 

Then deg v = number of friends of v. 

 
To prove that at least two points of G have the same degree. 

Let v1, v2, . . . , vp be the points of G , where p ≥ 2. 

Clearly 0 ≤ deg vi ≤ p – 1 for each i. 

 
Suppose no two points of G have the same degree. 

 
Then the degree of points v1, v2, . . . , vp are 0, 1 , 2, . . . , p – 1 in some order. 

But, a point of degree (p – 1) is joined to ever other point of G. 

Hence, no point can have degree zero. This is a contradiction to the fact 

that point of G has degree zero. 

 

Thus, there exist two points of G with the same degree. 
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𝑝 

Problem (3): What is the maximum degree of any point in a graph with p 

points? 

 
Solution: 

 
Line is obtained by a selection of any two points from the p points. 

 
∴ Maximum number of lines = pC2 = p (p – 1) / 2. 

 

𝑝 
𝑖=1 𝑑(𝑣𝑖 ) = p (p – 1) 

 

∴ d (vi ) ≤ (p – 1) 

 
Hence, the maximum degree of any point in a graph with p points is (p – 1). 

 
Problem (4): Prove that 𝛿 ≤ 2𝑞 ≤ ∆. 

𝑝 
 

Solution: 

 
Let G be a (p, q) graph and v1, v2, . . . , vp be the points of G. 

 

We know that, ∑𝑝 (𝑣 ) = 2q . 
𝑖 

 

Also, 𝛿 (G) = min {d (v) / v ∈ V (G)} and 

 
∆ (G) = max {d (v) / v ∈ V (G)}. 

 
∴ 𝛿 ≤ d (vi)  ≤ ∆ for all i. 

 

𝑝 
𝑖=1 

𝑝 
𝑖=1 𝑑(𝑣𝑖 ) 𝑖=1 ∆ . 

 

i.e. p𝛿 ≤ 2q ≤ p∆ . 

 
i. e. 𝛿 ≤ 2𝑞 ≤ ∆. 

𝑝 

∴ ∑ 

𝑖=1 

∴ ∑ 𝛿 ∑≤ ≤ ∑ 
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Problem (5): Let G be a k – regular bigraph with bipartition (V1, V2) and k > 0. 

Prove that |V1| = |V2|. 

Solution: 

 
Given that G is a k – regular bigraph with bipartition (V1, V2) and k > 0. 

We know that, “Every line of G joins a point of V1 to a point of V2”. 

∴ ∑𝑣∈𝑉1 
(𝑣) = ∑𝑣∈𝑉2 

𝑑(𝑣). 

 

Also, d(v) =  k  for all v ∊ V1 ᴜ V2. 
 

Hence, ∑𝑣∈𝑉1 
𝑘 = ∑𝑣∈𝑉2 

𝑘. 
 

i.e. k |V1| = k |V2|. 

 
i.e. |V1| = |V2| , since k > 0. 

 

Problem (6): A (p, q) graph has t points of degree m and all other points are of 

degree n. Show that (m – n) t + p n = 2 q. 

Solution: 

 
Given that G is a (p, q) graph and t points of degree m. 

The remaining (p – t) points have degree n. 

We know that, ∑𝑣∈𝑉 (𝑣) = 2 q. 

 

i.e. m t + (p - t)n = 2q. 

 
i.e. (m – n) t + p n = 2 q. 

 
Problem (7): Give three examples for regular graph of degree 2. 

 
Solution: 
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Exercises: 

 
1. Give an example of a regular graph degree 0. 

2. Give an example of a regular graph degree 1. 

3. Give three examples for a cubic graph. 

4. If G is a graph with at least two points then show that G contains two 

vertices of the same degree. 

5. Show that a graph with p points is regular of degree p – 1 iff it is 

complete. 

1.3 SUBGRAPHS 

 
Definition: A graph H = (V1, X1) is called a subgraph of G ( V, X ) 

if V1 ⊆ V and X1 ⊆ X. 

H is a subgraph of G then we say t hat G is a supergraph of H. 

H is  called  a spanning graph  of G if V1 = V. 

H is called an induced subgraph of G if H is the maximal subgraph 

of G with point set V1. 

i.e. if H is an induced subgraph of G then two points are adjacent 

in H if and only if they are adjacent  in G. 

Example (1): Consider the graph G given in Fig. 1.15. 

 

G 

5 
 

 

 

2 

3 Fig. 1.15 

1 

4 
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a 

b e 

c d 

1 

a 

b e 

d c 

3 4 

c d 

Subgraph , H1 Subgraph, H2 

 

1 5 

 

 
2 4 4 

3 Fig. 1.16 

Spanning Subgraph Induced Subgraph 

 

1 5 1 5 

 

 
2 4 3 4 

3 

Fig. 1.17 Fig. 1.18 

Example (2): Consider the Peterson graph G given in Fig. 1.4. 
 

1 

2 5 
 

 

 

Fig.1.4 

3 4 
 

Subgraph of G Induced subgraph of G Spanning Subgraph of G 

 

1 a 
 

2 a 5 b e 2 3 

c 

Fig. 1.19 Fig. 1.20 

Fig. 1.21 
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REMOVAL OF A POINT 

 
Definition: Let G = (V, X) be a graph and v ∈ V. The subgraph of   G 

obtained by removing the point v and all the lines incident with v is 

called the subgraph obtained by the removal of the point v and is 

denoted by G – v. 

 

i.e. If G – v = ( V1 , X1) then V1 = V – { v} and 

X1 = { x / x ∈X and x is not incident with v }. 

i.e. G – v is an induced subgraph of G. 

 
REMOVAL OF A LINE 

 
Definition: Let G = (V, X) be a graph and x ∈ X. Then G – x = (V, X –{x}) is 

called the subgraph of G obtained  by the removal  of the line x . 

 

i.e. G – x is a spanning subgraph of G which contains all the lines of G 

except the line x. 

 

ADDITION OF A LINE 

 
Definition: Let G = (V, X) be a graph. Let u , v be two non adjacent points 

of G. Then G + u v = (V, X 𝖴 {u, v}) is called the graph obtained by the 

addition of the line u v to  G. 

 

i.e. G + u v is the smallest super graph of G containing the line u v. 
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Example:  

u u 

v v1 v v1 v 
 

 
 

G G – v1 G – x1 G + u v 

Fig. 1.22 
 
 

Theorem 1.4: The maximum number of lines among all p point graph with 

no triangles is [
𝑝2 

] , where[𝑥] denotes the greatest integer not exceeding the 
4 

real number x. 

 
Proof: 

 
The result can be easily verified for p ≤ 4. 

 
For p > 4, we prove by induction separately for odd p and for even p. 

 
Case (1): For odd p. 

 
Clearly the result is true when p = 1 or 3. 

Assume that the result is true for p = 2n +1. 

To prove the result for p = 2n +3. 

Let G be a ( p, q) graph with p = 2 n +3 and has no triangles. 
 

If q = 0, then 0 ≤ [
𝑝2 

]. 
4 

 

Let q > 0. 

 
∴ There exist two adjacent points in G. 

u 

v1 

x1 
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Let u and v be a pair of adjacent points in G. 

Consider the subgraph G1 = G – {u , v}. 

Then G1 has 2n + 1 points and no triangles. 

Hence by induction hypothesis, 

Lines of G1 is q(G1) ≤ [
(2𝑛+1)2 

] = [
4𝑛2+4𝑛+1

] 

 

= [𝑛2 

4 
 
 

+ 𝑛 + 

 
1] = 𝑛2 
4 

4 
 
 

+ 𝑛. 

 

i.e. q(G1) ≤ 𝑛2 + 𝑛 .............................................. (1) 

 
Since G has no triangles, no points of G1 can be adjacent to both u and v 

in G ................................................................................................ (2) 

Maximum number of lines between G1 and u  or v is  2n + 1. 

Now, lines in  G are of three types. 

 
(i). Lines of  G1 [ ≤ 𝑛2 + 𝑛 , by (1) ] 

 
(ii). Lines between G1 and { u , v} [≤ 2n + 1 , by (2) ] 

(iii). Line u v . 

Hence, Line of G , q(G)  ≤ q(G1) + (2 n +1) + 1. 

 
≤ 𝑛2 + 𝑛 + 2 n +2 

 
= 𝑛2 + 3𝑛 + 2 

 

= 
4𝑛 2 +12𝑛 +8 

4 

 

= 
4𝑛 2 +12𝑛 +9−1 

4 
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= 
(2𝑛+3)2    

- 
1 

4 4 
 

= [
(2𝑛+3)2 

]
 

4 
 

i.e. q (G) 
𝑝2 

≤ [ 
4 

], where p = 2 n + 3. 

 

∴ The result is true for all odd p. 

 
Also for p = 2 n + 3, the graph K n +1, k +2 has no triangles and the number 

of lines  is  q  = ( n +1)(n +2) 

= 𝑛2 + 3𝑛 + 2 

 

= 
4𝑛 2 +12𝑛 +8 

4 

 

= [
(2𝑛+3)2 

]
 

4 
 

= [
𝑝2 

]. 
4 

 

Hence this maximum q is attained. 

 
Case (2): For even p. 

 
Clearly the result is true when p = 2 or 4. 

Assume that the result is true for p = 2n . 

To prove the result for p = 2n +2. 

Let G be a ( p, q) graph with p = 2 n +2 and has no triangles. 

Let q > 0. 

∴ There exist two adjacent points in G. 



24  

Let u and v be a pair of adjacent points in G. 

Consider the subgraph  G1 = G – {u , v}. 

Then G1 has 2n points and no triangles. 

Hence  by induction hypothesis, 

Lines of G1 is q(G1) ≤ [
(2𝑛)2 

] = [
4𝑛2 

] = 𝑛2 
4 4 

 

i.e. q(G1) ≤ 𝑛2 ..................................................................... (1). 

 
Since G has no triangles, no points of G1 can be adjacent to both  u and 

v in G ............................................................................................... (2) 

Maximum number of lines between G1 and u or v is 2n. 

Now, lines in G are of three types. 

(i). Lines of  G1 [ ≤ 𝑛2 , by (1) ] 

(ii). Lines between G1 and { u , v} [≤ 2n , by (2) ] 

 
(iii). Line u v . 

 
Hence, Line of G is q(G) ≤ q(G1) + (2 n +1). 

 
≤ 𝑛2 + 2 n +1 

 
= 𝑛2 + 2𝑛 + 1 

 

= 
4𝑛 2 +8𝑛 +4 

4 

 

= 
(2𝑛+2)2 

4 

 

= [
(2𝑛+2)2 

]
 

4 
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i.e. q (G) 
𝑝2 

≤ [ 
4 

], where p = 2 n + 2. 

 

∴ The result is true for all even p. 

 
Also for p = 2 n + 2, the graph K n +1, k +1 has no triangles and the 

number of lines is q = ( n +1)(n +1) 

= 𝑛2 + 2𝑛 + 1 

 

= 
4𝑛 2 +8𝑛 +4 

4 

 

= [
(2𝑛+2)2 

]
 

4 
 

= [
𝑝2 

]. 
4 

 

Thus, for p = 2 n + 2, K 
 
n +1, k +1 is a (p , [

𝑝2 

]) 
4 

graph without triangles. 

 

∴ q attained its maximum [
𝑝2 

]. 
4 

 

Hence the theorem. 

 
1.4 ISOMORPHISM 

 
Definition: Two groups G1 = ( V1, X1) and G2 = ( V2, X2) are said to be 

isomorphic if there exists a bijection f :V1 → V2 such that u, v ∈ V1 are 

adjacent in  G1 if and only if f(u) , f(v) ∈ V2 are adjacent in  G2. 

If G1 is isomporphic to G2 then we write G1 ≅ G2. The map f is 

called an isomorphism from G1 to G2. 

Example (1): The two graphs given in Fig. 1. 23 are isomorphic. 
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u4 

u1 u2 

G1 G2 

u4 u3 v3 

 
v4 

 
u1 u2  v1 v2 

Fig. 1. 23 

f (ui ) = vi is an isomorphism between two groups G1 and G2 for i = 1, 2, 3, 4 . 

 
Example (2): The two graphs given in Fig. 1. 24 are isomorphic. 

 
G1 G2 

v5 

 
u5 u3 v3 v2 

 

v1 v4 
 

Fig.1. 24 

 
f(u1) = v1 , f(u2) = v2 , f (u3) = v3 , f(u4) = v4, f(u5) = v5 

 
i.e. f (ui )= vi is an isomorphism between two groups G1 and G2 for i =1, 2,...,5 

 
Theorem 1.5: Let f be an isomorphism of the group G1 = ( V1, X1) and 

G2 = (V2, X2). Let v ∈ V1. Then deg v = deg f (v). 

i.e. isomorphism preserves the degree of vertices. 

 
Proof: 

 
Let f be an isomorphism of the group G1 = ( V1, X1) and G2 = (V2, X2). 

Given that v ∈ V1. 
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∴ a point u ∈ V1 is adjacent to v in G1 if and only if f(u) is adjacent to 

f(v) in G2. 

Also, f is a bijection. 

 
Hence the number of points in V1 which are adjacent to v is equal to 

the number of points  in V2 which are adjacent to f(v). 

∴ deg v = deg f(v). 

 
Hence isomorphism preserves the degree of vertices. 

 
Remark: 

 
1). Two isomorphic group have the same number of points and the same 

number of lines. 

2). The converse of the above theorem is not true. 

 
i.e. If the degrees of the vertices of two graphs are equal then the 

two graphs  need not  be isomorphic. 

Example: 

 
Consider the two graphs given in Fig. 1.25. 

 

v5 
 

 

 

 

u1 u2 u3 u4 u5 

 

G1 Fig. 1.25 G2 

 
Here, deg ui = deg vi for i = 1, 2, 3, 4, 5, 6. 

 
But G1 and G2 are not isomorphic, because u2 is adjacent to u3 in G1 but v2 is 

not adjacent to v3 in G2. 

v1 v2 v4 v3 v6 

u6 
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AUTOMORPHISM 

 
Definition: An isomorphism of a group onto itself is called an 

automorphism of G. 

 
Remark: 

 
The set of all automorphism of G is a group. This group is denoted by 

Γ(G) and is called  the automorphism group of G. 

 

COMPLEMENT 

 

Definition: Let G = ( V, X) be a group. The complement 𝐺̅  of G is defined 

to be the graph which has V as its set of points and two points are 

adjacent in 𝐺̅  if and only if they are not adjacent in G. 

 

The graph G is said to be a self complementary graph if G is 

isomorphic to 𝐺̅  . 

 
Example: 

 
The graphs given in Fig. 1.26 and Fig. 2.27 are self complementary graphs. 

 

 

 
u4 u3 v1 v2 

 

 
 

u1 u2 v3 v4 

G 𝐺̅  

Fig. 1.26 
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u4 v5 

u5 u3 v3 v2 

 

 
 

u1 u2 v1 v4 

G 𝐺̅  

Fig. 1. 27 

ULAM’S CONJECTURE 

 
Let G and H be two graphs with p  points where p > 2 . Let v1, v2, ... ,vp 

be the points of G and w1, w2, ..., wp be the points of H. If for each i the 

subgraphs Gi = G – vi and H i = H – wi are isomorphic then the graphs G 

and H are isomorphic. 

Ulam‟s Conjecture is also known as reconstruction conjecture. 

 

 
SOLVED PROBLEMS: 

Problem 1: Prove that any self complementary graphs has 4 n or 4n + 1 

points. 

Solution: 

Let G be a complementary graph with p points. 

∴ G ≅ 𝐺̅  . 
 

⟹ |𝑋(𝐺̅)| = |𝑋( 𝐺̅  ) | . 
 

Also, |(𝐺̅)| + |𝑋( 𝐺̅  ) | = Number of edges in K p . 
 

𝑝 
= (2) = 

(𝑝−1) 
.
 

2 
 

i.e. 2 |(𝐺̅)| = 
𝑝(𝑝−1)

. 
2 
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⟹ |𝑋(𝐺̅)| = 
(𝑝−1) 

 
 

4 
is an integer. 

 

i.e. p (p -1) = 4 n, where n ∈ Z. 

 
i.e. p  or (p – 1) is  a multiple of 4. 

 
⟹ p = 4 n or p – 1 = 4 n. 

 
i.e. p = 4 n or p =  4 n + 1. 

 
Hence, G has 4 n or 4 n + 1 points. 

Problem 2: Prove that Γ(G) = Γ(𝐺̅ ). 

Solution: 

We know that, Γ(G) is a group automorphism of G. 

First, we prove that, Γ(G) ⊆ Γ (𝐺̅ ). 

Let f ∊ Γ(G) ⟹ f : G → G is an isomorphism. 

Let u , v ∊ V(G). 

Now, u , v are adjacent in 𝐺̅  ⇔ u , v are not adjacent in G. 

 
- f( u) , f (v) are not adjacent in G , 

 
since f is an automorphism of G. 

 

- f( u) , f (v) are adjacent in 𝐺̅ . 
 

∴ f : 𝐺̅  →  𝐺̅ is an automorphism. 
 

∴ f ∊ Γ(𝐺̅ ). 
 

Hence, Γ(G) ⊆ Γ (𝐺̅ ). 
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Similarly, we  can prove that Γ (𝐺̅ ) ⊆ Γ(G). 
 

∴ Γ(G) = Γ(𝐺̅ ). 

 
Exercises: 

 
1. Show that isomorphism is an equivalent relation among graphs. 

2. Prove that any group with p points is isomorphic to K p. 

3. Give a self complementary graph having five vertices. 

4. Show that the graphs given in Fig. 1.28 are not isomorphic. 
 

Fig. 1.28 

5. Find the complements of the graph given in Fig. 1.24. 

 
 

1.5 RAMSEY NUMBER 

Consider the following puzzle. In any set of six points there will 

always be either a subset of three who are mutually acquainted, or   a 

subset of three who are mutually strangers. This situation may be 

represented by a graph G with six points representing the six people in 

which adjacency indicates acquaintances. The above puzzle asserts that G 

contains three mutually adjacent points or three mutually non – adjacent 

points. That is G or 𝐺̅  contains a triangle. 

 

Theorem 1.6: For any graph G with 6 points, G and 𝐺̅  contains a triangle. 

 
Proof: 

 
Let G be a group  with 6 points. 
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Let v be a point of G. 

 
Since G contains 5 points other than v , v must be either adjacent to 

three points in G or non – adjacent to three points in  G. 

Hence v must be  adjacent to three points in G or in 𝐺̅ . 

 
Without loss of generality, let us assume that v is adjacent to three points 

u1, u2, u3 in G. 

 
If two of these three points are adjacent then G contains a triangle. 

Otherwise these three points form a triangle in 𝐺̅ . 

Hence G or 𝐺̅ contains a triangle. 

 
Note: The above theorem is not true for graphs with less than six points. 

 
RAMSEY NUMBER: 

 
Ramsey number is the least positive integer r (m, n) such that for any 

group G with r (m, n) points , G contains Km or  𝐾  𝑛  . 
 

Example: r (3, 3) = 6 

 
r (1, k) = r (k, 1) = 1 for  any positive integer k. 

 
SOLVED PROBLEMS: 

Problem 1:  Prove that r (m, n) = r (n, m). 

Solution: 

Let r (m, n) = s. 

 

Let G be any group with s points. Then 𝐺̅  also has s points. 
 

Since r (m, n) = s , 𝐺̅  contains Km or  𝐾  𝑛  . . 



33  

 G  contains  𝐾  𝑚  . or  Kn . 
 

i.e. G contains Kn or  𝐾  𝑚   . 
 

Thus an arbitrary graph on s points contains K n or 

induced subgraph. 

 r (m, n)  ≤ r (n, m) ………(1). 

 
Interchanging m and  n, we get 

 
r (n, m)  ≤ r (m, n) ………(2). 

 
Hence from (1) and (2), 

 
r (m, n) = r (n, m). 

 
Problem 2: Prove that r (2, 2) = 2 

 𝐾  𝑚   as  an 

 

Solution: 

Let G be a graph with 2 points. 

Let the two points be u and v. 

Then u and v  are  either adjacent in G or  adjacent  in 𝐺̅ . 

i.e. G or 𝐺̅ . contains K2. 

 

Thus  if  G  is  any  graph  on  two  points  then  G  contains  K2  or  𝐾  2   . 

Clearly 2 is the least positive integer with this property. 

 r (2, 2) = 2. 

 
Exercises: 

 
1. Prove by suitable example that the theorem 1.6 is not true for graphs 

with less than  6 points. 

2. Find r (1, 1) . 
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3. Find r (2, 3). 

4. Find r (2, k) for any positive integer k . 

 

 
1. 6 INDEPENDENT SETS AND COVERINGS 

INDEPENDENCE SET 

Definition: Let G = (V, X) be a graph. A subset S of V is called an 

independent set of G if no  two vertices of S are adjacent in G. 

 
An independent set S is said to be maximum if G has no 

independent set  S1 with │S1│ > │S│. 

The number of vertices in a maximum independent set is called 

the independent  number of G and  is denoted  by α . 

Example: Consider the graph given in  Fig. 1.29. 

 
v4 

 
v5 v3 

 

 
 

v1 v2 

 
Fig. 1.29 

 
S1 = { v1 , v3, v4} , S2 = { v2 , v5 }, S3 = { v3, v4 } are independent 

sets. 

S1 is the maximal independent set . 

 

 α = │S1│ = 3. 
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VERTEX COVERING 

 
Definition: A covering of a graph G = (V, X) is a subset K of V such 

that every line of G is incident with  the vertex  in K. 

A covering K is called a minimum covering if G has no 

covering K1  with │ K1│ < │ K│. 

The number of vertices in a minimum covering of G is called the 

covering number of g and is denoted by β. 

 
Example: Consider the graph given in Fig. 1. 29. 

 
K1 = { v1 , v3, v4} , K2 = { v2 , v5 } , K3 = { v4 ,v2 , v5 } are covering of G. 

K2 is the minimum covering. 

β = │ K2│ = 2 

 
Theorem 1.7: A set S ⊆ V is an independent set G if and only if V - S is 

a covering of S. 

Proof: 

Let G = (V, X) be a graph. 

By definition, A set S ⊆ V is an independent iff no two vertices of S are 

adjacent. 

i.e. iff every line of S is incident  with at least one point of V - S. 

 
i.e. iff V - S is  a covering  of G. 

 
Corollary 1.1: For any graph G of p vertices α + β = p 

 
Proof: Let G be a group with p vertices. 

 
Let S be a maximum independent set and K be a minimum covering of G. 
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 │S│ = α and │K│ = β. 

 
By theorem 1.7, S is an independent set iff V – S is an covering. 

But, K is  a minimum covering of G. 

Hence, │K│ ≤ │V – S│. 

 
i.e. β ≤ p - α 

 
i.e. β + α ≤ p ...................................... (1) 

 
Also K is a covering iff V – K is an independent set. 

But, S is a maximum independent set. 

 │V – K│ ≤ │S│. 

 
i. e. p – β ≤ α 

 
i. e. p ≤ α + β ..................................... (2) 

 
From equations (1) and (2), we get α + β = p. 

 

 
LINE COVERING 

 
Definition: A line covering of a graph G = (V, X) is a subset L of X 

such that every vertex is incident  with a line of L. 

The number of lines in a minimum line covering of G is called the 

line covering number of G and is denoted by β1. 

 
A set of lines is called independent if no two of them are adjacent. 

 
The number of lines in a maximum independent set of lines is called 

the edge independent number and is denoted  by α1. 
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Example: Consider the graph of Fig.1. 30. 
 

x1 

 
Fig.1.30 

 
L1 = { x1, x3, x6 } , L2 = { x2, x4 }, L3 = { x3, x5, x8 } are edge independent 

sets. 

Here, L1 and L3 are maximum edge independent sets. 

 
 α1 = │L1│= │L3│= 3. 

 
K1 = { x1, x3, x6 } and K2 = { x3, x5, x8 } are edge covering  sets. 

 
i.e. K1 and K2 are minimum edge covering sets. 

 
 β1 = │K1│= │K2│= 3. 

 

 

GALLIA’S THEOREM 

 
Theorem 1.8: For any non – trivial graph with p vertices, α1 + β1 = p. 

 
Solution: 

 
Let G be a (p, q) graph. 

 
We know that, α1 is the maximal edge independent set and β1 is the 

minimum edge covering  number. 

Let S be the maximum independent set of lines of G. 

x4 x3 

x6 x9 

x5 x7 x8 x2 
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 │S│ = α1. 

 
Let M be a set of lines, one incident line for each of the p - 2 α1 points 

of G not covered by any line of S. 

Clearly, S U M is a line covering of G. 

 
 │S U M│ ≥ β1 

 
i.e. α1 + p - 2 α1 ≥ β1 

 
i.e. p ≥ α1 + β1 ..................................... (1). 

 
Let T be the minimum edge covering set. 

 
 │T│ = β 1. 

 
T cannot have a line x , both of whose ends are also incident with lines 

of T other than x. 

Hence G[T], the spanning subgraph of G induced by T is the union of 

stars. 

Hence each line of T is incident with at least one end point of G [T]. 

 
Let W be the set of end points of G [T] consisting of exactly one 

end point  for each line of T. 

 │W│ = │T│ = β 1 

 
Hence, p = │T│ + number of stars in G [T] 

 
i.e. p = β 1 + number of stars in G [T] .................. (2) 

 
By choosing one line from each  star, we get  a set  of independent lines. 

 
 α1 ≥ (number of stars in G[T]) 
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x4 x6 x7 x3 

x8 

x5 x9 x10 x2 

x5 x6 

i.e. p ≤ β 1 + α1 ......................................................... (3) 

 
Hence, from equations (1) and (3), α1 + β1 = p. 

 
SOLVED PROBLEMS: 

 
Problem 1: Find α, β, α1 and β1 for the complete graph K p. 

 

Solution: 

K2 
 

v1 x1 v2 α = 1, β = 1 

α1 = 1,  β1 = 1 

v3 

x3 x2 α = 1, β =  2 

v1 x1 v2 α1 = 1, β1 = 2 

 

 
v4 x3 v3 α = 1, β = 3 

 

x4 x2 α1 = 2, β1 = 2 
 

v1  x1 v2 

v4 

α = 1, β = 4 

 
v5 v3 α1 = 2, β1 = 3 

 

 

 

 

v1 x1 v2 
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v1 v2 

α = { 

v5 v4 

 

 
 

v6 v3  α = 1, β = 5 

α1 = 3, β1 = 3 

 

 

Fig.1.31 

 
α = 1, β = p – 1 

 

𝑝 
 

 

1 2 
𝑝−1 

 

 

2 

𝑖𝑓 𝑝 𝑖𝑠 𝑒𝑣𝑒𝑛 

𝑖𝑓 𝑝 𝑖𝑠 𝑜𝑑𝑑 

 
and β1 = p - α1. 

 

Problem 2: Give an example to show that the complement of an 

independent set of lines need not be a line covering. 

Solution: Consider the graph given in fig. 1.32. 
 

x1 

 
Fig.1.32 

 
Independent set, S = { x2 , x5} 

 
Complement of independent set, S1 = { x1 , x3, x4}. 

 
Exercises: 

 
1. Give an example to show that the complement of a line covering 

need not be an independent set of lines. 

x4 

x5 x3 x2 
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2. Prove or disprove. Every covering of a graph contains a minimum 

covering. 

3. Prove or disprove. Every independent set of lines is contained in a 

maximum independent set of lines. 

 
Unit II 

Intersection graphs and line graphs – matrices – operations in graphs – degree 

sequences, graphic sequences. 

INTERSECTION GRAPHS 

Definition: Let F = {S1 , S2, …, S n } be a non - empty family of distinct 

non – empty subsets of a given set S. The intersection graph of F, denoted by 

Ω (F) is defined  as  follows: 

The set  of points  V of Ω (F) is  F itself and two points Si , Sj are 

adjacent if i ≠ j and Si ∩ Sj ≠  φ . 

A graph G is called an intersection graph on S if there exists a 

family F of subsets of  S such  that G is  isomorphic to Ω (F). 

Example: 

 
Let S = { a, b, c }  and 

 
F = { {a} , {c} , { a , b} , {b, c}} = { A , B, C, D } , say. 

 
𝛀 (F) 

 
A B 

 
 

 

 

C D 
 

Fig.2.1 
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Theorem 2.1: Every graph is an intersection graph. 

 
Proof: 

 
Let G = (V, X) be a graph. 

 
Let the vertex set V = {v1, v2, …, vp}. 

Let S = V U X. 

For each vi ∊ V, we define 

 
Si = {vi} U { x ∊ X /  the edge x is incident  on vi}. 

 
Clearly, F = {S1, S2, …, Sp} is a family of non – empty subsets of S. 

To prove that G is an intersection  graph. 

i.e. to prove G ≅ Ω (F). 

 
Now, If vi and vj are adjacent in G then x = vi vj ∊ Si and vi vj ∊ Sj. 

 
⇒  vi vj ∊ Si ∩ Sj 

 
⇒ Si ∩ Sj ≠ φ 

 
⇒ Si and Sj are adjacent in  Ω (F). 

 
Conversely, If Si and Sj are adjacent in Ω (F) 

 
⇒ Si ∩ Sj ≠ φ 

 
⇒ The element common to Si and Sj is the line 

joining vi and  vj. 

⇒ vi is adjacent to vj in G . 

 
Thus the map f : V → F defined by f(vi) = Si is an isomorphism of G to 

Ω (F) . 
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x2 

x1 v 

x4 

 G ≅ Ω (F). 

 
Hence, every graph is an intersection graph. 

 
LINE GRAPH 

 
Definition: Let G = (V, X) be a graph with X ≠ φ. Then X is a family of two 

element subsets of V. The intersection graph Ω (X) is called a line graph of G 

and is denoted by L(G). Thus the points of L(G) are the lines of G and 

two points in L(G) are adjacent   iff the corresponding lines   are adjacent 

in G. 

Example: Consider the graph given in Fig. 1.34. 

 
w x1 x2 

 

 

 

 

u x3 x4 x3 
 

 
 

x 
G L(G) 

 
Fig.2.2 

 
Theorem 2.2: Let G be a  (p , q) graph .Then L(G) is a ( q , q L ) graph 

 

where q = 1 (∑𝑝 𝑑2) - q , where d is the degree of the vertex v 
 

 

in G. 
L 2 𝑖=1 𝑖 i i 

 

Proof: 

 
Let G be a (p , q) graph. 

 
By the definition of line graph, 

 
Number of points in L(G) is the number of lines in L(G). 
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= ∑ 

 L(G) has q points. 

 
Also, di is the degree of the vertex vi in G. 

 
But, Any two of the  di lines incident with vi are adjacent in L(G). 

 

 
𝑑𝑖 (𝑑𝑖−1) 

2 
lines in L(G) . 

 

Hence, q 
𝑝 

L 𝑖=1 

 
= 

1 
(∑𝑝 

 

𝑑𝑖 (𝑑𝑖−1) 
 

2 

 
𝑑2) - 1 (∑𝑝 

 

 
 
 
𝑑 ) 

2 𝑖=1 𝑖 2 𝑖=1 𝑖 
 

=1 (∑𝑝 𝑑2) - 1 (2𝑞) 
  

2 𝑖=1 𝑖 2 
 

= 1 (∑𝑝 𝑑2) - q 
 

2 𝑖=1 𝑖 
 

Definition:A graph G is called a line graph if G ≅ L(H)for some graph  H. 

 
Example: Consider the graph given in Fig. 2.2. 

 
Clearly, K4 - x is a line graph. 

 
 MATRICES 

ADJACENCY MATRIX 

Definition: Let G = (V, X) be a (p, q) graph. Let V = {v1, v2, …,v p}. The p x p 

matrix A = (a i j) where 

 
a i j = 1  , if vi is  adjacent to v j 

 
0 ,   otherwise 

is called the adjacency matrix. 
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v2 

x1 

x5 

x2 

v3 

x4 

x6 

x3 

v4 

Example: The adjacency matrix of the graph G given in Fig. 1.35 is shown 

below: 

v1 G 
 

 

 

 

 

 

 

v5 Fig. 1.35 
 

 
 

 
 

Adjacency Matrix  

v1 v2 v3 v4 v5 

v1 0 1 0 1 0 

v2 1 0 1 0 1 

v3 0 1 0 1 0 

v4 1 0 1 0 1 

v5 0 1 0 1 0 

Remark: 
    

 

1. The adjacency matrix A is symmetric. 

2. The sum of  the ith row of A is  equal to  the degree of vi. 

3. The entries along the principal diagonal of A are 0. 

 
INCIDENCE MATRIX 

 
Definition: Let G = (V, X) be a (p, q) graph. Let V = {v1, v2, …,v p} and 

X = { x1, x2, …, x q}. The p x q matrix B = (a i j) where 
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b i j = 1 , if vi is adjacent with x j 

 
0 , otherwise 

 
is called the incidence matrix of the graph. 

 
Example: The incidence matrix of the graph G given in Fig. 1.35 is shown 

below: 

Incidence matrix 

 

 

1. The sum of  the ith row of B is  equal to  the degree of vi. 

2. Each column of the incident matrix B contains exactly two 1‟s because 

each edge is incident with exactly two vertices. 

Exercises: 

 
1. Write the adjacency and incidence matrix for the graph G given in 

Fig.1.34. 

2. Relabel the points of the graphs given in Fig. 1.30 and Fig. 1.32 and 

write the incidence and adjacency matrices for the relabeled graph. 

  x1 x2 x3 x4 x5 x6 

v1 1 0 0 1 0 0 

v2 1 1 0 0 1 0 

B = v3 0 0 0 0 1 1 

 
v4 0 0 1 1 0 1 

 

 
Remark: 

v5 0 1 1 0 0 0 
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OPERATIONS ON GRAPHS 

Definition: 

Let G1 = (V1, X1) and G2 = (V2, X2) be two graphs with V1 ∩ V2 = φ . Then 

(i).The union G1U G2 to be the graph (V, X) where V = V1 U V2 and 

X= X1 U X2. 

 
(ii). The sum G1 + G2 as G1U G2 together with all the lines joining points of 

V1 to  points of V2. 

(iii). The product G1  G2 is the graph having vertex set V = V1 V2 and 

 
u = (u1, u2) and v = (v1, v2) are adjacent if  u1 = v1 and u2 is adjacent to v2 

 
in G2 or u1 is adjacent to v1 in G1 and u2 = v2. 

 
(iv). The composition G1[G2] is the graph having vertex set V1V2 and 

u = (u1, u2) and v = (v1, v2) are adjacent if u1 is adjacent to v1 in G1 or 

(u1 = v1 and u2 is adjacent to v2 in G2). 

Example: 

 
G1 G2 (G1 U G2) G1 + G2 

 
v1 v1 v1 

 

u1 v2 u1 v2 u1 v2 

 

u2 v3 u2 v3 u2 v3 

 

 

 

 

G1 x G2 G1 [G2] 
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2 

(u2, v1) (u2, v2) (u2, v3) (u2, v1) (u2, v2) (u2, v3) 

(u1, v1) (u1, v2) (u1, v3) (u1, v1) (u1, v2) (u1, v3) 
 

 

 
Note: 

 

 𝐾  𝑚  + 

 

 𝐾  𝑛   =  𝐾𝑚 ,𝑛 . 

Fig. 2.3 

 

Theorem 2.3: Let G1 be a (p1, q1) graph and G2 be a (p2, q2) graph. 

 (i). G1U G2  is  a ( p1 + p2 , q1 + q2) graph. 

(ii). G1+ G2 is a ( p1 + p2 , q1 + q2 + p1 p2) graph. 

(iii). G1 x G2 is a ( p1 p2 , q1 p2 + q2 p1) graph. 

(iv). G1 [G2] is a ( p1 p2 ,  p1 q2 + 𝑝2 q1) graph. 

Proof: 

 
(i). Let G1  be a (p1, q1) graph and  G2 be a (p2, q2) graph. 

 
We know that, G1U G2 is a graph with vertex set V = V1 U V2 

and X= X1 U X2. 

│V1 U V2│ = p1 + p2 and │X1 U X2│ = q1 + q2. 

Hence G1U G2 is a  ( p1 + p2 , q1 + q2) graph. 

(ii). We know that, G1+ G2  is a graph with vertex set V = V1 U V2. 

 
│V1 U V2│ = p1 + p2 and 

 
Number of lines in G1+ G2 = number of lines in G1U G2 + number of 

 
lines joining points of V1 to  the points of V2. 
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= q1 + q2 + p1 p2. 

 
 G1 + G2 is a ( p1 + p2 , q1 + q2 + p1 p2) graph. 

 
(iii). We know that, G1  G2 is a graph with vertex  set V = V1  V2. 

 
│V1  V2│ = p1 p2. 

 
Also we know that, the points (u1, u2) and (v1, v2) are adjacent if u1 = v1 

and u2 is adjacent to v2 in G2 or u1 is adjacent to v1 in G1 and u2 = v2. 

 

 deg (u1, u2) = deg u2 + deg u1 

 
i.e. deg (u1, u2)  = deg u1 + deg u2. 

 

The total number of lines in G  G = 
1 

[∑𝑝1 
 ∑𝑝2 𝑑𝑒𝑔(𝑢 , 𝑢 )] 

1 2 
2

 𝑖 = 1 𝑗 =1 𝑖 𝑗 

 

= 1 [∑𝑝1 ∑p2 (𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔 )] 
 

2 𝑖 = 1 𝑗 =1 𝑖 𝑗 
 

= 1 [∑
𝑝1

 
 

 ∑
p2 (𝑑𝑒𝑔𝑢 ] + 1 [∑

𝑝1
 

 

 ∑
p2 (𝑑𝑒𝑔𝑢 ] 

2 𝑖 = 1 𝑗=1 
 

= 1 [𝑝 
 

 
 
2𝑞 

𝑖 
 
 
+ 𝑝 

2 

 

2𝑞 

𝑖 = 1 
 

] 

𝑗=1 𝑗 

2 2 1 1 2 

 

= p2 q1+ p1 q2 

 

Thus G1 G2 is a  ( p1 p2 , p2 q1+ p1 q2)  graph. 

(iv). G1[G2] is the graph with vertex set V1V2 

│V1  V2│ = p1 p2. 

 
Also, we know that, the points (u1, u2) and (v1, v2) are adjacent in G1[G2] 

if u1 is adjacent to v1 in G1 or (u1 = v1 and u2 is adjacent to v2 in G2). 

 deg (u1, u2) = deg u2 + p2 deg u1 
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2 

2 

= p2deg u1 + deg u2 

 
The total number  of lines in G1[G2] 

 

= 
1 

[∑𝑝1 
 ∑𝑝2 𝑑𝑒𝑔(𝑢 , 𝑢 )] 

2 𝑖 = 1 𝑗 =1 𝑖 𝑗 

 

= 1 [∑𝑝1 ∑p2 (𝑝 𝑑𝑒𝑔𝑢 + 𝑑𝑒𝑔 )] 
 

2 𝑖 = 1 𝑗 =1 2 𝑖 𝑗 
 

= 1 [𝑝 
 

 ∑
𝑝1 

∑
p2 (𝑑𝑒𝑔𝑢 )] + 1 [∑

𝑝1
 

 

 ∑
p2 (𝑑𝑒𝑔𝑢 )] 

2 2 𝑖 = 1 𝑗=1 𝑖 2 𝑖 = 1 𝑗=1 𝑗 
 

= 1 [𝑝22𝑞 + 𝑝 2 ] 
 

2 2 1 1 2 

 
= 𝑝2 q1+ p1 q2 

 

Hence G1 [G2] is a ( p1 p2 , p1 q2 + 𝑝2 q1) graph. 

 
Exercises: 

 

1. What is Km + Kn ? 

2. Express  K4 – x  in  terms  of  K2  and  𝐾   2   . 

3. Express the graph G in Fig. 1. 35 in terms of  𝐾  3   and     2   . 

4. Express the graph L (G) in Fig. 1. 34 in terms of K1 and K3. 

 
DEGREE SEQUENCES 

 
Definition: A partition of a non – negative n is a finite set of non – 

negative integers   d1, d2, . . . , d p whose sum is   n. This partition is denoted 

by (d1, d2, . . . , d p). 

For example, the integer 5 has the following partitions. 

 
5 =  (2, 2, 1) or  (4, 1) or (3, 2) or ( 3, 1, 1) or (2, 1, 1) or (1, 1, 1, 1, 1). 
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Definition: Let G be a (p, q) graph. The partition of 2q as the sum of the 

degree of its points is called the partition or the degree sequence of the 

graph. 

Example: Consider the graph K1, 2 given in Fig. 2.4. 

 
v1 

 

 
 

v2 v3 

 
Fig. 2.4 

Here, d(v1) = 2 , d(v2) = 1 , d(v3) = 1 

 

 degree sequence  of K1, 2 = ( 2, 1, 1). 

 

GRAPHICAL PARTITION (OR) GRAPHIC SEQUENCE 

 
 

Definition: A partition P = (d1, d2, . . . , d p) of n into p parts is said to be 

a graphical partition or a graphic sequence if there exists a graph G 

whose points have degree d i. G is  called a realisation of P. 

 
Example: 

The partition P = (2, 1, 1) of 4 is graphical and K1, 2 is the unique 

realization of P. 

 
Remarks: 

1. Any two isomorphic graphs determine the same partition. 

But the converse is not  true. 

For example , the two non – isomorphic graphs given in 

Fig. 1.25 determine the same partition (3, 2, 1, 1, 1). 
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2. If the partition (d1, d2, . . . , d p) of n is graphical then n is even 

and d i ≤ p – 1 for each i. 

This is the necessary condition that the sequence (d1, d2, . . . , d p) 

to be graphical . However the condition is not sufficient. 

SOLVED PROBLEMS 

 
Problem 1: Show that the partition P = (7, 6, 5, 4, 3, 2) is not graphic. 

 
Solution: 

 
Suppose P is graphic. 

 
Then P has realization graph G. 

Clearly, G has  six  points 

Hence the maximum degree of any point in G is ≤ 5. 

This is a contradiction to the degrees are 6 , 7. 

 the given partition is not graphic. 

 
Problem 2: Show that the partition P = (6, 6, 5, 4, 3, 3, 1) is not graphic. 

 
Solution: 

 
Suppose P is graphic. 

 
Let G be its realization graph . 

Clearly, G has seven points 

Given that two points of G have degree 6. 

 
 These two points are adjacent to every other point of G. 

 
 The  minimum degree of each vertex in G is at least 2. 
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This is a contradiction to the fact that a point has degree 1. 

Hence P is not graphic. 

Problem 3: Show that the partition P = (7, 6, 5, 4, 3, 2, 1) is not graphic. 

 
Solution: 

 
Suppose P is graphic. 

 
Let G be its realization graph . 

Clearly, G has seven points 

Then G has seven points and maximum degree is 6. 

 
This is a contradiction to the fact that the degree of a point is 7. 

Hence P is not graphic. 

GRAPHIC SEQUENCES 

 
Theorem 2.4: [The necessary and sufficient condition for a partition to be 

graphical] 

A partition P = (d1, d2, . . . , d p) of an even number into  p parts  with 

 
p -1 ≥ d1 ≥ d2 ≥ . . . ≥ d p is graphical iff the modified partition 𝑃′ =(d2 -1, . . 

. , 𝑑𝑑1+1 − 1, 𝑑𝑑1+2, . . . , d p) is graphical. 

Proof: 

 
Assume that the modified partition 

 
𝑃′ =(d2 -1, . . . , 𝑑𝑑1+1 − 1, 𝑑𝑑1+2, . . . , d p) is graphical. 

Let 𝐺̅′ be its realisation graph with vertex set {v2,v3, . . . , v p} such that 
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1 

1 1 

d (v2) = d2 -1 , d (v3) = d3 -1, . . . , d(𝑣𝑑1+1 ) = 𝑑𝑑1+1, . . . , d (v p) = d p. 

Let G be a graph obtained from 𝐺̅′ by adding a new vertex v1 and 

making it adjacent  to v2, v3, . . . , 𝑣𝑑1+1. 

Clearly, the partition of G is (d1, d2, . . . , d p). 

Hence P is  a graphic sequence. 

Conversely, suppose P is graphical. 

 
Let G = (V, X) be a realization graph of P with vertex set 

V = {v1, v2, . . . , v p} and deg vi = d i. 

If v1 is adjacent to v2, v3, . . . , 𝑣𝑑 +1 then 𝐺̅′ = G – { v1} is a realization 

graph of P1. 

 𝑃′ =(d2 -1, . . . , 𝑑𝑑 +1 − 1, 𝑑𝑑 +2 , . . . , d p) 

 
⇒ the modified partition P1 is graphical. 

 
If v1 is not adjacent to all the vertices v2, v3, . . . , 𝑣𝑑1+1 then there exist 

two vertices vi and v j such that d i > d j and v1 is adjacent to v j but not 

adjacent to vi. 

Since v1 vi is not an edge, there exist a vertex v k such   that v k is 

adjacent to v i but not  adjacent  to v j. 

Let 𝐺̅′ be the graph obtained from G by deleting the lines v1 v j and 

vi v k and by adding the lines v1 v i and v j v k. 

 
Clearly 𝐺̅′ is a realisation of P in which v1 is adjacent to v I but not 

with v j. 



55  

1 1 

By repeating this process we get a realisation of P in which v1 is 

adjacent to all the vertices v2, v3, . . . , 𝑣𝑑1 +1. 

Thus the modified partition 𝑃′ is graphical. 

Hence the theorem. 

Note: 

 
The above theorem gives an effective algorithm to determine whether 

a given partition P is graphical and to obtain a graph G realising P 

when it  is  graphical. 

Algorithm: 

 
Let P = (d1, d2, . . . , d p) be a partition of an  even integer with 

 
p -1 ≥ d1 ≥ d2 ≥ . . . ≥ d p . P is graphical iff the following procedure results 

in 

a partition with every summand zero. 

 
1). Determine the modified partition P1 described in theorem 1. 12. 

i.e. 𝑃′ =(d2 -1, . . . , 𝑑𝑑 +1 − 1, 𝑑𝑑 +2, . . . , d p) 

2). Reordering the terms  of 𝑃′ so that  they are non – increasing and call 

 
the resulting partition P1. 

 
3). Determine the modified partition 𝑃′′ of P1 and let P2 be the 

reordered partition. 

4). Continue this process as long as non – negative summands can be 

obtained. 
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1 1 

1 1 

SOLVED PROBLEMS 

 
Problem 1: Prove that the partition P = (6, 6, 5, 4, 3, 3, 1) is not graphical. 

 
Solution: 

 
Given partition is P = (6, 6, 5, 4, 3, 3, 1). 

 
= (d1, d2, d3, d4, d5, d6, d7) 

 
d1 = 6, 𝑑𝑑1+1 = 𝑑6+1 = 𝑑7 , 𝑑𝑑1+1 − 1 = 𝑑7 - 1 = 1 -1 = 0 

The modified partition is 

𝑃′ = (d2 -1, . . . , 𝑑𝑑 +1 − 1, 𝑑𝑑 +2 , . . . , d p). 

 
= ( 5, 4, 3, 2, 2, 0). 

 
𝑃′′ = (3, 2, 1, 1, -1). 

 
It contains the negative number. 

 

 𝑃′′ is not graphical. 

 
 P is not graphical. 

 
Problem 2:  Prove that the partition P = (4, 4, 4, 2, 2, 2) is graphical and 

construct graphs realizing the partition. 

Solution: Let P = (4, 4, 4, 2, 2, 2) . 

 
The modified partition is 𝑃′ = (d2 -1, . . . , 𝑑𝑑 +1 − 1, 𝑑𝑑 +2 , . . . , d p). 

 
= ( 3 , 3, 1, 1,  2) , since 𝑑𝑑1+1 − 1 = d5 -1 = 2 – 1 =1 

= (v2, v3, v4, v5, v6) , say 

 
P1 = (3, 3, 2, 1, 1) = (v2, v3, v6 , v4, v5) 
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v5 

v2 

v6 

v2 

v6 

1 𝑃′ = (2, 1, 0, 1) = (v3, v6 , v4, v5) 

 
P2 = (2, 1, 1, 0) = (v3, v6 , v5, v4) 

 
Realisation of graph P2: 

 

v4 

v3 v6 

Fig. 2.5 
 

Realisation of graph P1: 
 

v4 
 

v3 
 

v3 Fig. 2.6 

 
Realisation of graph P: 

 

v1 
 

v4 
 

v3 
 

v5 Fig. 2.7 

 
P2 is graphical 

 

 P1 is graphical 

Hence, P is graphical. 

Problem 3: Which of the following partitions are graphical? Wherever 

graphical, construct graphs realizing the partitions. 

(a). (5, 5, 3, 3, 2, 2) 
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(b). (5, 3, 2, 1,1, 1,1,1,1) 

 
( c). (7, 6, 5, 4, 3, 3, 2) 

 
(d). (4, 3, 2, 1, 1, 1) 

 
(e). (5, 3, 3,3, 3, 3) 

 
Solution: 

 
(a). Partition P = (5, 5, 3, 3, 2, 2) = (v1, v2, v3, v4, v5, v6 ) 

Modified partitions 

𝑃′ = (4, 2, 2, 1, 1) = (v2, v3, v4, v5, v6 ) 

 
𝑃′′ = (1, 1, 0, 0) = (v3, v4, v5, v6 ) 

 
Realisation of 𝑃′′ : Realisation of 𝑃′ : 

 
v4 v2 

 
v3  v5 v3   v4 

v6   v6 v5 

Realisation of  : 

 
v2 v1 

 
v3 v4 

 
v6 v5 

 
𝑃′′ is graphical. 

 

 𝑃′ is graphical. 

 
Hence, P is graphical. 
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1 

(b). Let P =  (5, 3, 2, 1,1, 1, 1, 1, 1) = (v1, v2, v3, v4, v5, v6 , v7, v8, v9) 

 
𝑃′ = ( 2, 1, 0, 0, 0, 1, 1, 1)  = (v2, v3, v4, v5, v6 , v7, v8, v9) 

 
P1 = ( 2, 1, 1, 1, 1, 0, 0, 0)  =  (v2, v3, v7, v8, v9, v4, v5, v6) 

 
𝑃′ = (0, 0, 1, 1, 0, 0, 0) = (v3, v7, v8, v9, v4, v5, v6) 

 
P2 = ( 1, 1, 0, 0, 0, 0, 0, 0) = (v8, v9, v3, v7, v4, v5, v6) 

 

 
 

Realisation of P2: Realisation  of P1 
 

v3 v3 v2 
 

v4  v6  v7 v4  v6  v7 

v5  v8   v5  v8 

v9 v9 

 
Realisation of P: 

 

v1 

 
v3 v2 

 
v4 v6 v7 

 
v5 v8 

 
v9 

 
P2 is graphical 

 

 P1 is graphical. 

Hence, P is graphical. 
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𝑖=1 

(c) Let P = (7, 6, 5, 4, 3, 3, 2) 

 
Suppose P is graphical 

 
Let G be its realization graph. Then G contains 7 points and the 

maximum degree is 6. 

This is a contradiction, since here the degree is 7. 

 

 P is not graphical. 

 
Theorem 2.6: If a partition P = (d1, d2, . . . , d p) with d1 ≥ d2 ≥ . . . ≥ d p 

is graphical then ∑𝑝 𝑑 is even and ∑𝑝 𝑑 ≤ k (k – 1) + ∑𝑝 𝑚𝑖𝑛{𝑘, 𝑑 } 
 

for 1 ≤ k ≤ p. 

 
Proof: 

𝑖=1 𝑖 𝑖=1 𝑖 𝑖=𝑘+1 𝑖 

 

Given that the partition P = (d1, d2, . . . , d p) is graphical. 

 
Let G = (V , X) be the realization of P with vertex set V = {v1, v2,…, v p} 

and deg vi = d i . 

We know that, by theorem 1.1 
 

𝑝 
𝑖=1 𝑑𝑖 = 2 q = even number. 

 

𝑝 
𝑖=1 𝑑𝑖 is even. 

 

Now the sum ∑𝑝 𝑑𝑖 is the sum of the degrees of the vertices v1,v2,…, v k. 
 

This can be divided into two parts. 

 
The first part contains the lines joining the points v1, v2,…, v k. 

 
This part is ≤ k (k – 1). 

 
The second part contains lines joining one of the points 

∑ 

 ∑ 
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𝑖=1 𝑖=𝑘+1 

{ 𝑣𝑘+1 , 𝑣𝑘+2 ,…, 𝑣𝑝 } with the points on the set { v1, v2,…, v k}. 
 

Clearly the second part is ≤ ∑𝑝 𝑚𝑖{𝑘, 𝑑 } 
𝑖 

 

Hence, ∑𝑝 𝑑𝑖 ≤ k (k – 1) + ∑𝑝 𝑚𝑖𝑛{𝑘, 𝑑𝑖 }. 

𝑖=𝑘+1 
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UNIT – III 

Walks - trails and Paths - connectedness and components - blocks - 

connectivity  

 WALKS, TRIALS AND PATHS 

 
WALK 

 

Definition: A walk of a graph G is defined   as a finite   alternating 

sequence of points and lines of the form v0, x1, v1, x2, v2, x2,v3, …,vn-1, x n, v n 

beginning and ending with points such that each line xi is incident with 

vi – 1 and vi. 

Definition: The walk joins v0 and v n is called a v0 - v n walk. v0 is called the 

initial point and v n is called the terminal point of the walk. The number of 

lines in  the walk is  called the length of the walk. 

Note: 

 
1). No edge appears more than once in a walk. 

2). A vertex may appear more than once. 

3). The v0 - v n walk is also denoted by v0, v1, … ,v n. 

4). A single point is considered as a walk of length 0. 

CLOSED WALK AND OPEN WALK 

 
Definition: A walk which begins and ends at the same point is called a closed 

walk 

i.e. a v0 – v n walk is called walk if v0 = v n . 

 
A walk that is not closed is called an open walk. 
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CYCLE 

 

Definition: A closed walk in which no point except the terminal point appear 

more than once is called a cycle. 

A closed walk v0, v1, v2, …,v n = v0 in which n ≥ 3 and v0, v1, v2, … ,v n-1 

are distinct is called a cycle of length n. 

 
The graph consisting of cycle of length n is denoted by C n. 

C 3 is called a triangle. 

TRIAL 

 

Definition: A walk is called a trial if all its lines are distinct. 

 
PATH 

 

Definition: A walk is called a path if all its points are distinct. 

 
Note: 

 
1).Every path is a trial and a trail need not be a path. 

 
2). The graph consisting of a trial with n points is denoted by Pn . 

3).The length of a path in which the number of lines in the path. 

Example: Consider the graph given in Fig. 3.1. 

 
x5 v1 x1 

 
v5 x6 v2 

 

x4 x7 x2 
 

v4 x3 v3 Fig. 3.1 

 
1). v1, v2, v3, v4, v5 is a walk. It is a v1 – v5 walk. 
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Initial point of the walk is v1. Terminal point of the walk is v5. 

The length of the walk is 4. 

2). v1, v2, v3, v4, v2,, v1, v2, v5, is a walk. 

 
3). v1, v2, v4, v5, v2 and v1, v2, v3, v4, v5, v1 are closed walk. 

4).v1, v2, v4, v3, v2, v5 is a trial but not a path. 

5). v1, v2, v4, v5 is a path. 

6). v2, v3, v4, v2 is a cycle. 

Theorem 3.1: In a graph G, any u – v walk contains a u – v path. 

Proof: We prove the result by induction on the length of the walk. 

Any walk of length zero or one itself is a path. 

Assume the result for all walks of length < n. 

Prove the result for a walk of length n. 

Let u = u0, u1, u2, …, un = v be a u – v walk of length n. 

 
If all the points u0, u1, u2, …, un a are distinct then this walk itself is a 

path. 

If not, there exist i and  j such  that  0 ≤ i  < j ≤ n  and  u i = u j . 

 
Now u = u0, u1, u2, …, u i , u j + 1, …, un = v  is a  u – v  walk of length < n. 

 

 By induction hypothesis this walk contains u – v path. 

Hence, any u – v walk contains  a u – v path. 

Theorem 3.2:  If  δ ≥ k then  G is  a path of length k.. 
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Proof: 

 
Let δ  be the  minimum degree  of   the   graph G. 

Let k be the number of  vertices  of the graph G. 

Let P = {v0, v1, v2 , …, v n} be the longest path in G. 

Then  every vertex adjacent to v0 lies  on  P. 

Since deg v0  ≥ δ, the length of P ≥ δ and   δ ≥ k. 

Hence  P1 = { v0, v1, v2 , …, v k} is a path of  length k in G. 

Theorem 3.3: A closed walk of odd length contains a cycle. 

 
Proof: 

 
Let v0, v1, v2 , … , v n = v0 be a closed walk of odd length n . 

Clearly n ≥ 3. 

If n = 3 then the closed walk of length three is a triangle which is 

trivially a cycle. 

 The result is true  for n = 3 . 

 
Assume the result is true for all walks of length < n. 

 
To prove the result for a closed walk v0, v1, v2 , … , v n = v0 of odd 

length n . 

If all the points in this walk are distinct then this walk itself is a cycle. 

If not there exist two  positive integers i and  j such that i < j , 

{i , j} ≠ { 0 , n} and vi = v j ,  where n is odd. 
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Now vi, vi + 1, …, vj and v0, v1, v2 ,  … , vi, vj + 1 , … v n = v0 are closed 

walks contained in the given walk and the sum of their lengths is n. 

Since n is odd, at least one of these walks is of odd length. 

Hence by induction hypothesis this closed walk contains a cycle. 

 By the principle of Mathematical induction, the theorem is true for all 

odd length  n. 

SOLVED PROBLEMS 

 

Problem 1: If A is the adjacency matrix of a  graph with V = {v1, v2 , … 

 
, v p} then prove that for n ≥ 1 the (i , j)th entry of An is  the number of 

 
vi – v j walks of length n. 

 
Solution: 

 
Let G be a graph with vertex set V = {v1, v2 , … , v p}. 

We know that , 

The adjacency matrix A =  (a i j) p x p , where 

 
a i j = 1 , if vi is adjacent to v j 

 
0 , otherwise 

 
We prove the result by induction on n. 

When n = 1, 

The number of vi – v j walks of length 1. 

 
= 1 , if  vi is  adjacent to v j 

 
0 , otherwise 
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𝑖𝑗 

𝑖𝑗 

𝑖𝑗 

= (a i j) = (i , j )th element  of A. 

 
 The result  is true for n = 1. 

 
Assume that the result is true for n – 1. 

Let An - 1 =  (𝑎
(𝑛−1)

) 

 (𝑛−1) = the number of vi – v j walks of length (n – 1). 

 
Now An =  An – 1. A 

 

= (
(𝑛−1)

) p x p (a i j)p x p 

 

(i , j)th entry of An = ∑𝑝 (𝑛−1)𝑎 
 

………..(1). 

 

Take  (𝑛−1)𝑎 

𝑖=1 
 

= (𝑛−1)  , if 𝑎 

𝑖𝑘 𝑘𝑗 
 
 
= 1 i.e. if v k is adjacent to v j 

𝑖𝑘 𝑘𝑗 𝑖𝑗 𝑘𝑗 

 

0 , if v k  is  not adjacent  to v j 

 
By induction hypothesis the (i , j)th entry of An – 1 is the number of 

walks of length n - 1 between v i and v k if v k is adjacent to v j then the 

above walk can  be made into walks of length n between v i  and v j. 

(i , j)th entry of An is the number of walks of length n between v i 

and v j. 

 
Hence the theorem. 

 
CONNECTEDNESS AND COMPONENTS 

 
CONNECTEDNESS 

 

Definition: Two points u and v of a graph G are said to be connected if 

there exists  a  u – v path. 
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Definition: A graph G is said to be connected if there is at least one 

path between  every pair of vertices in  G. 

A graph G which is not connected is said to be disconnected. 

 
COMPONENTS 

 

Definition: Each of the connected graphs is called a component. 

 
A graph G is connected iff it has exactly one component. 

 
A graph G is disconnected then G has at least two components. 

 

Example: 

Connected Graphs 
 

 

G1 G2 G3 

 
Disconnected Graphs 

 
 

G4 Fig. 3.2 G5 

 
G1 is a connected graph with one component. 

G2 is a connected graph with one component. 

G3 is a connected graph with one component. 

G4 is a disconnected graph with two components. 

G5 is a disconnected graph with three components. 
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Theorem 3.4: A graph G with p points and δ ≥ 
𝑝−1 

is connected. 
2 

 

Proof: 

 

Let G be  a  graph and δ  ≥ 
𝑝−1 

is connected. 
2 

 

To prove: G is connected. 

Suppose G is not connected. 

Then G has at least two components. 

Consider G1 = (V1, X1) of G. 

Let v1∊V1. 

 

We have δ ≥ 
𝑝−1

. 
2 

 

∃ at least 𝑝−1 
2 

points in G1 which are adjacent to V1. 

 

 V1 contains at least 𝑝−1 + 1 points. 
2 

 

i.e. V1 contains 𝑝+1 . 
2 

 

Also G has at least two components. 

 
The number of points in G ≥ 𝑝+1 +𝑝+1 

2 2 
 

i.e. p ≥ p + 1 

 
Which is a contradiction to G has p points. 

Hence G is connected. 

Theorem 3.5: A graph G is connected iff for any partition of V into subsets V1 

andV2 there is a line of G joining a points of V1 to a point of V2. 



70  

Proof: 

 
Assume that G is connected. 

 
Let V = V1U V2  and V1∩V2 = φ. 

 
To prove: There is a line of G joining a point of V1 to a point of V2. 

Let u ∊ V1 and v ∊ V2 . 

Since G is connected, there exists a u - v path in G. 

Let u = v0, v1, v2, …, vn = v be a path. 

Let i be the least positive integer such that vi ∊ V2 . 

Then v i - 1∊ V1. 

The line v i – 1 v i joins a point of V1 to a point of V2. 

 
Hence there is a line of G joining a point of V1 to a point of V2. 

 
Conversely, assume that there is a line of G joining a point of V1 to a point of 

V2. 

To prove: G is connected. 

Suppose G is not connected. 

Then G contains at least two components say, G1 and G2. 

 
Let V1 be the set of all points of G1 and V2 be the set of all points of V2. 

Clearly V = V1 U V2 is a partition of V. 

Also there is no line joining any point of V1 to a point of V2. 

Which is a contradiction to the assumption. 

 G is connected. 
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Theorem 3.6: If G is not connected then 𝐺̅  is connected. 

 
Proof: 

 
Suppose G is not connected. 

 
Then G has at least two components. 

Let u and v be any two points of G. 

If u and v belong to different components of G then they are not adjacent in G. 

 

 They are adjacent in 𝐺̅ .  Hence 𝐺̅  is connected. 

 
If u and v lie in the same component of G then they are connected in G. 

Choose w in the other component. 

Then u, w, v is a u – v path in 𝐺̅ . 
 

Hence 𝐺̅  is connected. 

 
DISTANCE 

 

Definition: For any two points u, v of a graph we define the distance between 

 
u and v by 

 
d(u, v) = the length of a shortest u – v path if such a path exists 

 

 , otherwise 

 
Note: 

 
If G is a connected graph then d(u, v) is always a non negative integer. 

Hence, d is a metric on the set of points V. 
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Theorem 3.7: [Necessary and sufficient condition for a graph to be bipartite] 

 
A graph G with at least two points is bipartite iff all its cycles are of even 

length. 

Proof: 

 
Let G be a graph with at least two points is bipartite. 

 
Then V can be partitioned into two subsets V1 and V2 such that every line joins 

a point of V1 to a point of V2. 

To prove: All its cycles are of even length. 

 
Let v0, v1, v2, … , v n = v0 be a cycle of length n . 

Choose v0 ∊ V1. 

Then v2, v4, v6, … ∊ V1 and v1, v3, v5, … ∊ V2. 
 

Also v n = v0 ∊ V1. 
 
 n is even. 

 
Hence all its cycles are of even length. 

 
Conversely, assume that all cycles in g are of even length. 

Without loss of generality we assume that G is connected. 

To prove: G is bipartite. 

Let v1 ∊ V1. 
 

Define V1 = { v ∊ V/ d(v, v1) is even } 

V2 = { v ∊ V/ d(v, v1) is odd } 

Clearly, V = V1 U V2 and V1∩ V2 = φ. 
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Claim: Every line of G joins a point of V1 to a point of V2. 

Suppose two points u, v ∊ V1 are adjacent. 

Let P be the shortest v 1 – u path of length m and let Q be the shortest v 1 – v 

path of length n. 

 
Since u, v ∊ V1 , both m and n are even. 

 
Let u1 be the last common point of P and Q. 

 
Then the v 1 – u1 path along P and the v 1 – u1 path along Q are both shortest 

path and hence have the same length, say i. 

Now the u 1 – u path along P, the line u v followed by the v 1 – u1 path along Q 

form a cycle. 

Its length is = (m – i) + 1 +(n – i) = m + n – 2i +1 = odd number. 

This is a contradiction to our assumption. 

Hence no two points of V1 are adjacent. 

 
Similarly, we can prove that no two points of V2 are adjacent. 

Thus every line joins a point of V1 to a point of V2. 

Hence G is bipartite. 

 
CUT POINT 

 

Definition: A cut point of a graph G is a point whose removal increases the 

number of components. 

BRIDGE 

 

Definition: A bridge of a graph G is a line whose removal increases the number 

of components. 
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3 7 

2 4 

Fig. 2.3 

Note: If v is a cut point of a connected graph then G – {v} is 

disconnected. 

Example: 
 

6 
 

1 5 
 

  8 
 

For the graph given in Fig. 2.3, 

 
2, 4, 5 are cut points. 

 
{2, 4} and {5, 8} are bridges. 

 
Theorem 3.8: Let v be a point of a connected graph G. Then the following 

statements are equivalent. 

(i). v is a cut - point of G. 

 
(ii).There exists a partition of V – {v} into subsets U and W such that 

for each u ∊ U and w ∊ W, the point v is on every u – w path. 

(iii).There exists two points u and w distinct from v such that v is on 

every u – w path. 

Proof: Let G be a connected graph and v be a point of G. 

To prove: (i) ⇒ (ii) ⇒ (iii) ⇒ (i). 

First, we prove: (i) ⇒ (ii). 
 

Assume that v is a cut - point of G. 

Then G – v is disconnected. 
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 G – v contains at least two components. 

 
Let U be the set of points in one component and W be the set of 

points in the  remaining  components. 

 V – {v} = U 𝖴 W and U ∩ W = φ . 

 
i.e. There exists a partition of V – {v} into subsets U and W. 

 
To prove: each u ∊ U and w ∊ W, the point v is on  every u – w path. 

Let u ∊ U and w ∊ W. 

Then u and w lie on different component of G – v. 

 

 There is no u – w path in G – v. 

 
Hence the point v lies on every u – w path in G. 

Secondly, to prove: (ii) ⇒ (iii) 

This is trivially true. 

Thirdly, to prove: (iii) ⇒ (i) 

Assume that there exists two points u and w distinct from v such that v 

 
is on every u – w path. 

 
 there is no u – w path in G – v. 

 
⇒ G – v is disconnected. 

Hence v is a cut - point of G. 

Theorem 3.9: Let x be a line of a connected graph G. Then the following 

statements are equivalent. 

(i). v is a bridge of G. 
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(ii).There exists a partition of V into subsets U and W such that for 

every point u ∊ U and w ∊ W, the line x is on every u – w path. 

(iii).There exists two points u and w such that the line x is on every 

 
u – w path. 

 
The Proof is similar to theorem 3.8 and is left as an exercise. 

 
Theorem 3.10: A line x of a connected graph G is a bridge iff x is not 

on any cycle of G. 

Proof: Let G be a connected graph. 

 
Let the line x be a bridge of G ................................................ (1). 

 
Then G – x is disconnected. 

 
To prove: x is not on any cycle C of G. 

Suppose x is on any cycle C of G. 

Let w1 and w2 be any two points in G. 

 
Since G is connected, there exists a w1 – w2 path P in G. 

If x is  not  on  P, then  P itself is  a w1 – w2 path  in G – x. 

 G – x is connected , which is a contradiction to (1). 

 
If x is on P, then replace x by C – x , we get a w1 – w2 walk in G – x. 

This walk contains a w1 – w2 path in G – x. 

 G – x is connected , which is a contradiction to (1). 

 
Conversely, assume that x is not on any cycle of G ...................... (2) 

 
To prove: x is a bridge of G. 
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Suppose x is not a bridge. 

Then G – x is connected. 

Let x = u v. 

Then there exists a u - v path in G – x. 

 
This path together with the line x = u v forms a cycle containing x . 

This is a contradiction to (2). i.e. to x is not on any cycle of G. 

Hence x is a bridge. 

 
Theorem 3.11: Every non – trivial connected graphs has at least two points 

which are not  cut  points. 

Proof: Let G be a non – trivial connected graph. 

 
Choose two points u and v such that d (u , v) is maximum. 

To prove: u and v are not cut points. 

Suppose v is a cut point. 

Then G – v is disconnected. 

 G – v has at least two components. 

 
Choose a point w in a component that do not contain u. 

Then v lies on every u – w path. 

 d (u , w)  > d (u , v). 

 
This is a contradiction to d (u, v) is maximum. 

 
v is not a cut point. 

 
Similarly we can prove that u  is not a cut point. 
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Hence G has at least two points which are not cut points. 

 
BLOCKS 

 
Definition: A connected non – trivial graph having no cut point is a block. 

 
A block of a graph is a sub graph and which is connected. 

 
Example: A graph and its blocks are given in Fig. 3.4. 

 

 

 

 
 

 

 

Blocks of G 
 

Fig.3.4 

 
Theorem 3.12: Let G be a connected graph with at least three points. 

The following statements  are equivalent. 

(1). G is  a block. 

 
(2). Any two points of G lie on a common cycle. 

 
(3). Any point and any line of G lie on a common cycle. 

(4). Any two lines of G lie on a common cycle. 

Proof: Let G be a connected graph with at least three points. 

(i). To prove: (1) ⇒ (2). 

Assume that G is a block.. 

Then G has no cut points. 

To prove that any two points of G lie on a common cycle. 

Let u  and  v be any two  points  in  G. 

G 
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We prove the result by using induction on d (u, v). 

 
If d (u, v) = 1 then u and v are adjacent and G ≠ K2 , Since G has 

at least three points. 

Also G has no  cut points. 

 

 x =  u v  is not a  bridge. 

 
By theorem 2. 10, x lies on a common cycle. 

 
Hence the points u and v lie on a common cycle of G. 

Assume the result for any two points at distance less than k . 

To prove the result for d (u , v ) = k , where k ≥ 2 . 

Consider a u – v path of length k . 

 
Let w be a point that precedes v on this path. 

Then d (u , w ) = k – 1. 

By induction hypothesis, the points u and w lie on a common cycle 

C of G. 

Since G is  a block,  w is not  a cut  point of G. 

 
 G  - w is  connected. 

 
Hence there exists a  u – v path not containing w . 

 
Let 𝑣′ be the last point common to P and C. [ See Fig . 2. 5]. 

Since u is common to P and C , such a 𝑣′ exists. 
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Q 

 

Let Q denote the u – 𝑣′ path along the cycle not containing the point w. 

Now, u – 𝑣′ path along Q, 𝑣′ - v path along P, the line v w and w – u 

path along  C form a cycle. 

This cycle contains both  u and v. 

 
Hence by induction, any two points of G lie on a common cycle. 

(ii). To  prove :  (2) ⇒ (1). 

Assume that any two points of G lie on a common cycle. 

To prove that G is a block. 

Since G is a connected non – trivial graph it is enough to prove that 

G has no cut point. 

Suppose v is  a cut point. 

 
By theorem 4.8, there exists two points u and w distinct from v 

such that v lies on every u – w path. 

 
Also by assumption, u and w lie on a common cycle. This cycle 

determines two u – w paths and at least one of these paths does not 

contain v . 

u 𝑣′ P 

w v 

Fig. 2. 5 
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This is a contradiction , since v lies on every u – w path. 

 

 v is a cut point. 

Hence  G is a block. 

 (1) ⇔ (2). 

 
(iii). To prove : (2) ⇒ (3). 

 
Assume that any two points of G lie on a common cycle of G. 

To prove that any point and any line  lie on a common cycle. 

Let u  be a point and v w be a line of G. 

 
By assumption u and v lie on a common cycle C. 

 
If w lies on C, then the point u and the line v w lie on a common 

cycle. 

If w is not on C, let 𝐶′ be a cycle containing u and w . 

 
This cycle determines two w – u paths and at least one of them does 

not contain v. Denote this  path by P. 

Let 𝑢′ be the first point common to P  and C. 

 
Now, the line v w , the w - 𝑢′ path along P , 𝑢′ - v path in C 

containing u form a cycle. This cycle contains the point u and the 

line v w . 

(iv). To prove : (3) ⇒ (2) is trivial. 

 
 (2) ⇔ (3). 
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(v). To prove : (3) ⇒ (4) is trivial. 

 
Assume that any point and any line lie on a common cycle. 

To prove that  any two lines of G lie on a common cycle. 

Let u u1 and  v w be two lines. 
 

By assumption, the point u and the line v w lie on a common cycle 

C. 
 

Also the point u1 and the line v w lie on the common cycle 𝐶′ . 

 
Now the line u u1, u1 w path along 𝐶′ , the line v w and the v – w 

path along C form a cycle. 

 
This cycle contains the lines  u u1 and v w. 

 
Hence any two lines of G lie on a common cycle. 

(vi). To  prove :  (4) ⇒ (3) is trivial. 

 (3) ⇔ (4). 

 
Hence, the statements (1) , (2) , (3) and (4) are equivalent for any 

connected graph with at least  three points. 

CONNECTIVITY 

 
Definition: The connectivity  =  (G) of a graph G is the minimum 

number of points whose removal gives a disconnected or trivial graph. 

The   line   connectivity    = (G)   of   a   graph   G   is   the 

minimum number of lines whose removal gives a disconnected or trivial 

graph. 
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Examples: 

 
1). The connectivity of a disconnected graph is 0. 

 
2). The line connectivity of a disconnected graph is also 0. 

 
3). The connectivity of a connected   graph with one cut point   is   1. 

4). The line connectivity of a   connected   graph with a bridge   is   1. 

5). For the complete graph  K p ,  = p – 1 =  . 

Theorem 3.13: For any graph G,  ≤  ≤ δ . 

 
Proof: 

 
First we prove that  ≤ δ. 

 
If G has no lines then  = 0 , δ = 0. 

 
Otherwise  removal of all  the lines incident with a vertex of 

minimum degree gives a disconnected graph. 

  ≤ δ ......................................(1). 

 
Now to prove  ≤ . 

 
Case (i): G is disconnected or trivial. 

 
Then  = 0, δ  = 0. 

 
Case (ii): G is a connected graph with a bridge x = u v. 

 
Then  = 1. 

 
In this case G = K2 or one of the points incident with x is a cut 

point. 
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  = 1. 

 
Hence  =  = 1. 

 
Case (iii):  ≥ 2. 

 
Then there exist  lines whose removal gives a disconnected graph. 

 
 the removal of  - 1 lines gives a connected graph G with a bridge 

 
x =  u v. 

 

For each of these  - 1 lines, elect an incident point different from u or v. 

 
The removal of these  - 1 points removes all the  - 1 lines. 

Hence the resulting graph is disconnected with a bridge x = u v. 

  ≤  - 1. 

 
Thus the removal of u or v gives a disconnected or trivial graph. 

 

  ≤  . 

 
Hence  ≤  ≤ δ . 

 
Note: The inequality  ≤  ≤ δ is often strict inequality. i.e.  <  < δ. 

 

Fig. 3. 6 

 
 = 2 ,  = 3 and δ =  4. 
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1 

Definition: A graph  G is  said  to be n – connected if  (G) ≥ n  and 

 
n – line connected if  (G) ≥ n . 

 
Note: 

 
1). A non trivial graph is 1 – connected iff it is connected. 

 
2). A non trivial graph is 2 – connected iff it is a block having more 

than one line. Hence K 2 is the only block which is not 2 – connected. 

 

SOLVED PROBLEMS 

 

Problem 1:  Prove that if G is  a k – connected graph then  q ≥ 
𝑝 𝑘 

. 
2 

 

Solution: Let G be a ( p , q ) graph. 

Since G is  k – connected ,  ≥ k . 

 k ≤ δ , [since  ≤  ≤ δ] 
 

Now q = 
1 
∑𝑝 𝑑𝑒𝑔𝑣 

 

2 𝑖=1 𝑖 

 

≥ 𝑝 δ , [since deg vi 
2 

≥ δ ] 

 

≥ 
𝑝 𝑘 2 

, [since δ ≥  ≥ k ] 
 

Problem 2: Prove that there is no 3 – connected graph with 7 edges. 

 
Solution: Suppose G is a 3 – connected graph with 7 edges. 

 

Then p ≥ 5 and  > 3. 
 

We have q ≥ 
3𝑝
 
2 

, [since if G is  a k – connected  graph then q  ≥ 
𝑝 𝑘

] 
2 

 

⇒ q ≥ (3x5 / 2) 
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⇒ q ≥  7.5 

 
⇒ q  ≥ 8 , which is a contradiction since G has only 7 edges. 

 
Hence there is no 3 – connected graph with 7 edges. 

 
Problem 3: Find the connectivity of K m , n . 

 
Solution: 

 
Connectivity  = min { m , n} 

 
 = min { m , n} 

δ = min { m , n} 

  =  = δ. 

 
Unit IV 

 
Eulerian graph and Hamiltonian graph 

 

EULERIAN GRAPHS 

Definition : A  closed trial containing all points and lines is called 

an Eulerian trial . 

A graph having an Eulerian trial is called an Eulerian graph. 

 
Example: 

 

 
Fig. 4.1 Fig. 4.2 
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The graph given in Fig. 4.1 and Fig. 4.1 are an Eulerian graphs. 
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Theorem 4.1: If G is a graph in which the degree of every vertex is at least 

two  then G contains  a cycle. 

Proof: 

 
Construct a sequence v, v1, v2 , … of vertices as follows. 

Choose a  vertex v. 

Let v1 be any vertex adjacent to v. 

 
Let v2 be any vertex adjacent to v1 other than v. 

 
At any stage, if vertex vi , i ≥ 2 is already chosen,  then choose v i + 1 

 
to be any vertex adjacent to vi other than v i - 1 . 

 
Since degree of each vertex is at least 2,  the existence of v i + 1 is 

always guaranteed. 

Since G has only a finite number of vertices, at some stage we 

have to choose a vertex  which has been chosen before. 

Let v k be the first  such vertex and  let v k = v i where i < k. 

 
Then v i , v i + 1 , . . . , v k is a cycle. 

 
v4 

 
v v1 

 

v3 v2 Fig. 4.3 
 

Euler’s problem: 

 
In what type of graph G is it possible to find a closed trial running 

through every edge of 𝐺̅′ ? 



89  

Theorem 4.2: The following statements are equivalent for a connected 

graph G. 

(1). G is Eulerian. 

 
(2). Every point of G has even degree. 

 
(3). The set of edges of G can be partitioned into cycles. 

 
Proof: 

 
(i). To prove (1) ⇒ (2): 

 
Let G be an Eulerian graph. 

 
Let T be an Eulerian trial in G with origin (and terminus) u . 

Each time a vertex v occurs in T in a place other than the origin 

and terminus , two of the edges incident with v are accounted for. 

Since an Eulerian trial contains every edges of G, d(v) is even 

for every v ≠ u. 

For u , one of the edges incident with u is accounted for by the 

origin of T, another by the terminus of T and others are accounted 

for in pairs. 

Hence d (u) is also even. 

(ii). To  prove (2) ⇒ (3). 

Since G is connected and non - trivial every vertex of G has 

degree at least 2, G contains a cycle Z. 

The removal of the lines of Z results  in a spanning sub  graph G1 in 
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which again every vertex has even degree. 

 
If G1 has no edges then all the lines of G form one cycle and 

hence (3) holds. 

Otherwise, G1  has a cycle Z1. 

 
Removal of the lines of Z1 from G1 results in a spanning sub graph 

G2 in which every vertex  has  even degree. 

Continuing the above process, when a graph Gn with no edge is 

obtained, we obtain a partition of the edges of G into n  cycles. 

(iii). To prove (3) ⇒ (1): 

 
If the partition has only one cycle, then G is obviously Eulerian, 

since it is  connected. 

Otherwise let Z1, Z2, . . . , Zn be the cycles forming a partition of the 

lines of G. 

Since G is connected there exists a cycle Z i ≠ Z1 having a common 

point v1 with Z1. 

Without loss of generality, let  it  be Z2. 

 
The walk beginning at v1 and consisting of the cycles Z1 and Z2 in 

succession is a closed trial containing the edges of these two cycles. 

Continuing this process, we can construct a closed trial containing 

all the edges  of G. Hence, G is Eulerian. 
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Corollary 1: Let G be a connected graph with exactly 2n, n ≥ 1, odd 

vertices. Then the edge set of G can be partitioned into n open trials. 

Proof: 

 
Let G be a connected graph with exactly 2n, n ≥ 1, odd vertices. 

 
Let the odd vertices of G be labeled v1, v2 , …, v n , w1, w2, . . . , w n in 

any order. 

deg (v i) = odd number and deg (w i) = odd number. 

 
Add  n edges  (v1, w1), (v2, w2),  . . . , (v n, w n) to G. 

The resulting graph 𝐺̅′ may be a multi graph. 

No two of these n – edges are incident with the same vertex. 

Also every vertex of 𝐺̅′ is of even degree. 

 𝐺̅′ has an Eulerian Trial T. 

 
If we remove the n edges that we added to G from T then the open 

trial T will  split into n open  trials. 

Hence the edge set of G can be partitioned into n – open trials. 

 
Corollary 2: Let G be a connected graph with exactly two odd vertices. 

Then G has an open trial containing all the vertices and edges of G. 

Proof: 

 
This is only a particular case of corollary 1. 

 
Obviously the open trial mentioned in corollary 2 begins at one of 

the odd vertices and  end  at the other. 
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Note: Corollary 2 answers the following question: 

 
“ Which diagram can be drawn without lifting one‟s pen from the 

paper not covering any line segment more than once ? ”. 

TRACEABLE (OR) ARBITRARILY TRAVERSABLE 

 

Definition: A graph G is said to be arbitrarily traversable or traceable 

 
from a vertex  v if the following procedure always give an Eulerian trial. 

 
Start   at   v    and traversing    any incident edge . On arriving at a 

vertex u, depart through any incident edge not yet covered and continue 

until all  the edges are covered. 

If a graph is arbitrarily traversable from a vertex then   it   is 

obviously Eulerian. 

The following theorem due to Ore ( 1951) tells just when a given 

graph is  arbitrarily traversable from a chosen point. 

Theorem 4.3: [ Ore’s  theorem ] 

 
An Eulerian graph G is arbitrarily traversable from a vertex v in G 

iff every cycle in G contains v. 

Fleury’s Algorithm : 

 
Step – 1: 

 
Choose an arbitrary vertex v0 and set walk W0 = v0 . 

 
Step – 2: 

 
Suppose that the trial W i = v0 e1 v2 e2 … e i vi has been chosen. Then 

Choose an edge e i + 1 from X(G) - {e1 , e2 , …, e i}  in such a way that 

(i). e i + 1 is incident with vi . 
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(ii).Unless there is no alternative, e i + 1 is not a  bridge of G -{e1, e2,...,e i}. 

 
Step – 3: 

 
Stop when step – 2 can no longer be implemented. 

 
Note: Fleury‟s algorithm construct a trial in  G. 

 
If G is Eulerian then any trial in G constructed by Fleury‟s 

algorithm is  an  Euerian trial  in  G. 

Question 1: For what value  of n , K n is Eulerian ? 

 
Answer: K n is Eulerian when n is odd . 

 
Question 2: For what value of m and n, K m, n is Eulerian ? 

 
Answer: K m, n is Eulerian when both m and n are even. 

 
HAMILTONIAN GRAPHS 

In 1959, Sir William Hamilton devised a mathematical game on the 

graph of the dodecahedron (Fig. 2.10). 

Definition: A spanning cycle in a graph is called a Hamiltonian cycle. 

 
A graph having a Hamiltonian cycle is called a Hamiltonian graph. 

 

 

Fig. 4.4 
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Definition: A block with two non adjacent vertices of degree 3 and all 

other vertices of degree 2  is called  a theta graph. 

Example: 
 

 
Fig. 4.5 Fig. 4.6 

 
The graphs given in the Fig. 4.5 and Fig. 4.6 are theta graphs. 

 
Note: 

 
A theta graph is non – Hamiltonian and every non – Hamiltonian 

2 – connected  graph  has  a theta sub graph. 

Theorem 4.4: Every Hamiltonian graph is 2 – connected. 

 
Proof: 

 
Let G be a  Hamiltonian graph. 

Then  G  has a Hamiltonian cycle Z. 

For any vertex v of G, Z – v is connected. 

 

 G – v is connected. 

i.e. any vertex in G will not be a cut point. 

Hence the minimum number of points whose removal gives a 

disconnected or trivial graph will be ≥ 2. i.e.  ≥ 2. 

Thus G is 2 – connected. 
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Theorem 4.5: If G is Hamiltonian then for every non – empty proper subset 

S of V(G), 𝜔 ( G – S) ≤ │S│ where 𝜔 (H) denotes the number of components 

in  any graph  H. 

Proof: 

 
Let G be a Hamiltonian graph. 

Then  G  has a Hamiltonian cycle Z. 

Let S be any non – empty proper subset of V(G). 

Clearly 𝜔 (Z – S) ≤ │S│ 

Also Z – S is a spanning sub graph of G – S. 

 
 𝜔 (G – S) ≤ 𝜔 (Z – S) 

 
≤ │S│. 

 
Hence 𝜔 (G – S) ≤ │S│. 

 
Example: 

 
K n is Hamiltonian for all n. 

K m, n is Hamiltonian if  m = n. 

When m < n, K m, n is non Hamiltonian. 

 
Note : 

 
1) The above theorem is useful in showing that some graphs are non 

Hamiltonian. 

2) The   converse   of   the above theorem   is    not    true. For    example, 

the Peterson graph (Ref. Fig. 1.4) satisfies the conditions of the 

theorem but is  non Hamiltonian. 
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Theorem 4.6: [Dirac Theorem , 1952] (Sufficient condition for a graph G 

to be Hamiltonian). 

If G is  a graph with p ≥ 3 vertices and  δ ≥ p / 2 then G is Hamiltonian. 

 
Proof: 

 
Let G be a graph with p ≥ 3 vertices and δ ≥ p / 2 . 

Suppose the theorem is false. 

Let G be a maximal ( with respect to number of edges) non 

Hamiltonian graph with p vertices.. 

Since p  ≥ 3, G is  not complete. 

 
 There exists  two non adjacent vertices in  G. 

Let u and v be the non adjacent vertices in G. 

Then G + u v is Hamiltonian. 

Since G is non Hamiltonian, each Hamiltonian cycle of G + u v 

 
must contain the line u v. 

 
 G has a spanning path v1, v2 , …, v p with origin u = v1 and terminus 

 
v = v p. 

 
Let S ={v i / u v i + 1 ∊ E} and T ={v i / i < p , v i v ∊ E}, E is the edge set 

of G. 

Clearly v p ∉ S U T 

 
 │ S U T │ < p ....................................................... (1) 

 
To prove S ∩ T = φ 
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Suppose S ∩ T ≠ φ. Then there exists at least one vertex vi ∊ S ∩ T. 

 
 u v i + 1 ∊ E and vi v ∊ E 

 
Then v1, v2 , …, v i , v p, v p - 1 , …, v i + 1, v1 is a  Hamiltonian cycle in G. 

 

 
 

v1 v2 . . . . vi v i + 1 . . . . . . v p - 1 v p 

 
Fig. 4.6 

 
This is a contradiction to G in non Hamiltonian. 

 

 S ∩ T = φ ⇒ │ S ∩ T │ =  0 . 

 
Hence (1) becomes, │S│ + │T│ < p ............................ (2) 

 
Also by the definition of S and T, 

 
│S│ = d (u) and │T│ = d (v). 

 
But, d (u) ≥  δ ≥  p / 2 and d (v) ≥  δ ≥ p / 2 

 

 d (u)  + d (v)  ≥ p ⇒ │S│ + │T│≥ p. 

 
This is a contradiction to equation (2). 

Hence G is Hamiltonian. 

Theorem 4.7: Let G be a graph with p points and let u and v be 

nonadjacent points in G such that d(u) + d(v) ≥ p. Then   G   is 

Hamiltonian iff G + u v is Hamiltonian. 

Proof: 

 
Let G be a graph with p points and let u and v be nonadjacent 

points in G such that d(u) + d(v) ≥ p .......................... (1) 
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Assume that G is Hamiltonian. 

 
To prove that G + u v is Hamiltonian. 

 
Since  G is  Hamiltonian, G has  a Hamiltonian cycle Z. 

This cycle Z is a Hamiltonian cycle in G + u v . 

 G + u v is Hamiltonian. 

 
Conversely, assume that G + u v is Hamiltonian. 

To prove that G is Hamiltonian. 

Suppose G is non Hamiltonian. 

Let S = {v I / u v i + 1 ∊ E} and 

T = {v I / i < p , v i v ∊ E}, where E is the edge set of G. 

 
Let v1 , v2 , …, v p be a spanning path in G with origin u = v1 and 

terminus v = v p. 

Clearly v p is not an element of S U T. 

 

│S U T│ < p ......................................................... (2) 

 
Also S ∩ T = φ and │S│ = d(u)  ; │T│ = d(v) 

 
 (2) ⇒ │S│+│T│ < p . 

 
i.e. d(u) + d(v) < p. 

 
This is a contradiction to (1). 

 

 G is Hamiltonian. 
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CLOSURE OF A GRAPH 

 

Definition: The closure of a graph G with p points is the graph obtained 

from G by repeatedly joining pairs of non - adjacent   vertices   whose 

degree sum is at least   p until no such pair remains. The   closure   of    G 

is denoted by c(G). 

Theorem 4.8: c (G) is  well defined. 

 
Proof: 

 
Let  G be a graph with p vertices. 

 
Let G1 and G2 be two graphs obtained from G by repeatedly joining 

pairs of non – adjacent vertices whose degree sum is p until   no   such 

pairs remains. 

Let x1, x2, …, x m and y1, y2, …, y n be the sequences of edges added to 

G in  obtaining G1  and G2 respectively. 

To prove that {x1, x2, … , x m} = { y1, y2, …, y n }. 

 
If possible, let x i + 1 = u v be the first edge in the sequence 

 
{x1, x2, …, xm} that is not an edge  of G2. 

 
Let H = G + { x1, x2, …, x i}  . 

 
Since x i + 1 = u v is the next edge to be added to H in the process of 

constructing G1, we have 

d H( u ) + d H( v ) ≥ p . 

 
Also, H is a sub graph of G2. 

 

 𝑑′ ( u ) ≥ d H( u ) and 𝑑′ ( v ) ≥ d H( v ) , 

 
where 𝑑′ (u ) and 𝑑′ ( v ) denote degrees of u and v in G2. 
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Hence 𝑑′ (u) + 𝑑′ (v ) ≥ d H( u ) + d H( v ) 

 
≥ p . 

 

 x i + 1 = u v is the next edge to be added to H to get G2. 

Hence each x i is  an  edge  of G2. 

Similarly we can  prove that  each y i  is  an  edge of G1. 

 
 { x1, x2, …, x m} = { y1, y2, …, y n }. 

 
i.e. G1 = G2. 

 
Hence c (G) is well defined. 

 
Theorem 4.9: A graph is Hamiltonian iff its closure is Hamiltonian. 

 
Proof: 

 
Let x1, x2, …, x n be the sequences of edges added to G to get the 

closure of G. 

Let G1, G2, . . . , G n = c (G) be the successive graphs obtained. 

 
Applying the theorem 2.20 repeatedly, we get 

 
G is Hamiltonian iff G1 is Hamiltonian 

iff G2 is Hamiltonian 

. 

. 

. 

 
iff G n = c (G) is Hamiltonian. 

 
Corollary: Let  G  be a graph with at least 3 points. If c (G) is 

complete then G is Hamiltonian. 
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Theorem 4.10: [Chavatal theorem , 1972] 

 
Let G be a graph with  degree sequence (d1, d2, . . . , d p) where 

 

d1 ≤ d2 ≤ . . . ≤ d p and p ≥  3. Suppose that for every value of m <  , 
2 

 

d m >  m or d p – m ≥ p – m. 

 
( i.e. there is  no value of m < 𝑝 

2 

 

 
for which d m 

 

 
≤ m or d 

 

 
 

 
p – m 

 

 
< p – m ). 

 

Then G is Hamiltonian. 

 
Proof: 

 
Let G be a graph with  degree sequence (d1, d2, . . . , d p) where 

 

d1 ≤ d2 ≤ . . . ≤ d p and p ≥ 3. 

 
Suppose that there is no value of m <  , d 

2 

 

 
≤ m or d 

 

 

 

 
p – m 

 

 
< p – m. 

 

To prove G is Hamiltonian. 

 
i.e. to prove  c (G) is complete. 

 
Suppose c (G) is not complete. 

 
Then there exist at least two non – adjacent vertices. 

 
Let u and v be two non – adjacent vertices in c (G) with 𝑑′ (u) ≤ 𝑑′ (v ) 

and   𝑑′ (u ) + 𝑑′ ( v ) is   maximum, where 𝑑′ (u ) denote the degree of 

vertex v in c (G) . 

Let 𝑑′ (u ) = m . 

 
Here, u and v are not adjacent. 

 
 𝑑′ (u ) + 𝑑′ ( v ) < p . 

m 
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m 

 𝑑′ (v ) < p – m . 

 
We have 𝑑′ (u ) ≤ 𝑑′ ( v ) < p – m . 

 

i.e. m < p – m . 

 
i.e. m < 𝑝 

2 

 
 There  is a value of m less than 𝑝 . 

2 
 

Let S denote the set  of vertices in  V – {v} which are not adjacent to v 

 
in c (G). 

 
Let T denote the set  of vertices  in V – {u} which  are not adjacent to u 

 
in c (G). 

 
Clearly, │S│= p – 1 - 𝑑′ ( v ) and │T│= p – 1 - 𝑑′ ( u ) 

 
i.e. │S│ ≥  p – 1 - (p – m) , [ Since  𝑑′ (v ) < p – m ] 

 
i.e. │S│ ≥  m – 1 

 
 │S│> m 

 
i.e. c (G) has at least m points with degree ≤ m . 

 
Also, each vertex in T U {u} has degree ≤ p – m . 

 
 │T│= p – 1 – m and │T U {u}│ = p – m . 

 
i.e. c (G) has  at least p – m vertices of degree ≤  p – m . 

 
Because G is a spanning sub graph of c (G), degree of each point in  G 

 

cannot exceed that in c (G). 

 
Hence G satisfies the condition that there is  a value of m < 𝑝 , d ≤ m 

2 



103  

and d p – m < p – m. 

 
This is a contradiction to the hypothesis.. 

 

 c (G) is  complete. 

 
Hence G is Hamiltonian. 

 
Problem 1: Show that the Peterson graph is Hamiltonian. 

 
Solution: Consider the Fig. 2. 14. 

 
1 

 
a 

2 b e 5 

 

 

 
c d 

 
3 4 

 
Fig. 4.7 

 
Let us label the vertices as in Fig. 4.7. 

 
We know that, “ A regular spanning sub graph of degree 1 is 

called a one – factor ”. 

If the Peterson has a Hamilton cycle C then G – E (C) must be a 

regular spanning  sub graph of degree 1. 

Let us find all 1 – factors in G and show that they are from the 

Hamiltonian cycle of G. 
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Case (1): 

 
Consider the subset A = { 1 a, 2 b, 3 c, 4 d, 5 e} of the edge set of G. 

Clearly A is a 1 – factor of G. 

But G – A is the union of two disjoint cycles and hence is not a 

Hamiltonian cycle of G. 

Case (2): 

 
If the 1 - factor contains 4- edges from A then the only line passing 

through the remaining two points must also be included in the one – 

factor . 

So, again  we get  A. 

 
Case (3): 

 
If the 1 - factor contains just 3- edges from A then two choices can 

be made. 

Choice -1: 

 
Let the 1 – factor contains the edges 1 a , 2 b and 3 c . Now, the sub 

graph induced by the remaining 4 points is the path 

d e 

 
4 5 

 
The unique 1 – factor in this path is  {4 d , 5 e}. 

Thus  the 1 – factor of  G  considered becomes A. 
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   e 

 
d 

Choice -2: 

 
Let the 1 – factor contains the edges 1a , 2b and 4d . The remaining 

4 points is the path 

 

 

 
c e 5 

  

 

3 

 
The unique 1 – factor in this path is {3 c , 5 e}. 

Thus the 1 – factor of G considered becomes A. 

Case (4): 

 
If a 1 - factor contains just 2- edges from A then again two choices 

are possible. 

Choice -1: 

 
Let the 1 – factor contain the edges 1 a and 2 b. Now, the sub graph 

induced by the remaining 6 points gives the path 

c 
 

5 
 

3 4 

 
Here the d point has degree 1. 

 

Any 1 – factor of this sub graph must contain the edge 4 d . 

Thus case (3) is repeated. 
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d 

4 

2 c d 5 

3 4 

Choice -2: 

 
Let the 1 – factor contain the edges 1 a and 3 c. Now, the sub graph 

induced by the remaining 6 points gives the path. 

 

 

2 b e 
 

5 
 

 

 

 

Here, the point 2 has degree 1. 

 

 Any 1 – factor of this sub graph  must contain the edge 2 b . 

Thus case (3) is repeated. 

Case (5): 

 
Let the 1 – factor contain just  one edge of A, say 1a. 

 
The induced sub graph by the remaining 8 points  is 

 
b e 

 

 

 

 

 

 

 

i.e. b e 2 5 

c d 3 4 

This contains two different paths c e b d and 2345 each of length 3. 

Here, degree  of c  = 1 = degree of d 

 The 1 – factor must contain  the edges 2 3 and 4 5. 
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Hence the 1 – factor is { 1 a, c e , b d, 23, 45}. 

 
Now, G – B is 

 
1 

2 a 5 

 
b e 

 
c d 

 
3 4 

 
It is the union of two disjoint cycles and hence it is not a Hamiltonian. 

 
Case (6): 

Suppose there exist a 1 – factor that does not contain any edge from A. 

It can contain at most 2 –edges from the cycle 123451 and at most 2 - 

edges from the cycle a c e b d a. 

Hence it can  contain at most 4 – edges. 

Hence there does not  exist such a 1 – factor. 

From the above six cases, G has no Hamiltonian cycle. 

 G is non Hamiltonian. 

Exercises: 

1). Give an example of a Hamiltonian graph G that contains an induced 

sub graph  isomorphic to  the graph  in Fig . 2.11. 

2). Give an example of a Hamiltonian graph G such that c (G) is not 

Complete. 

3). Find the closure of C 5 + x and K 4 – x . 
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U n i t  V  

TREES 

Characterisation of trees- center of tree- planarity – definition and properties – 

characterization of planar graphs- thickness, crossing and outer planarity. 

The Concept of a tree was discovered by Cayley in the year 1857. 

Definition: 

A graph which contains no  cycles is  called an acyclic graph. 

A connected acyclic graph is called  a  tree. 

Note: 

 
 Any graph without cycles is also called a forest. 

 Components of a forest are trees. 

 
Example: 

 

Fig. 5.1 

 
All trees with six vertices is given in Fig. 5.1 

 
CHARACTERISATION OF TREES 

Theorem 5.1: Let G be a (p, q) graph. The following statements are 

equivalent. 

1. G is a tree. 

2. Every two  points of G are joined  by a unique path. 

3. G is connected and p = q + 1. 

4. G is a cyclic and p = q + 1. 
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Proof: 

 
Let G be a (p, q) graph . 

To prove : (1)  ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1). (i). To prove : (1) ⇒ (2) 

Assume that G is a tree. 

 
 G is a connected acyclic graph. 

 
To prove that any two points of G are connected by a unique path. 

Let  u and v be any two points of G. 

Since G  is connected  there exists  a u – v path in G. 

Suppose there exists two distinct u – v  paths. 

P1 : u =  v0 , v1 , . . . , v n = v and 

 
P2 : u = w0 , w1 , . . . , w m = v . 

 
Let i be the least positive integer such that 1 ≤ i <  m and w i ∉ P1. 

 

 w i – 1 ∊ P1 ∩ P2. 

 
Let j be the least  positive integer such that i <  j ≤  m and w j ∊ P1. 

Then the w i – 1 - w j path along P2 followed by the w j – w i - 1 path 

along P1 form a cycle. This is a contradiction to G is acyclic. 

Hence every two points of G are joined by a unique path. 

(ii). To prove: (2) ⇒ (3). 

Assume that every two points of G are joined by a unique path. 

To prove that G is connected and p = q + 1. 

Clearly, G is connected. 



110  

To prove: p = q + 1. 

 
Let us  prove  the result by using induction on p. 

When p = 1 or p = 2 ;  q = 0 or  q = 1 

 The result is true when p = 1 or p = 2 

 
Assume the result for all graphs with less than p points. 

To prove the result for a graph G with p points. 

Let u and v be any two points of G. 

 
Then by the assumption there exists a unique u - v path in G. 

Consider any line x on the path. Then G - x is   a   disconnected 

graph  with exactly two  components  G1 and  G2. 

Let G1 be a (p1, q1) graph and G2 be a (p2, q2) graph. 

Then p1 + p2 = p and q1 + q2 = q – 1. 

Clearly, p1 and p2 < p. 

 
 By the induction assumption,  p1 = q1 + 1 and p2= q2 + 1. 

 
Now, p = p1 + p2 

 
= q1 + q2 + 2. 

 
= q – 1 + 2 

 
= q + 1. 

 
Hence G is connected and p = q + 1. 

(iii). To prove: (3) ⇒ (4). 
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Assume that G  is  connected  and    p  =  q + 1. 

To prove that  Gis  acyclic   and  p = q + 1. 

Suppose  that  G   contains  a  cycle   of   length n. 

There are  n points  and n lines on this cycle. 

Fix a point u on the cycle. Consider any one of the remaining 

 
p - n points not on  the cycle, say  v . 

 
Since G is connected we can find a shortest u - v path in G. 

Consider the line on this shortest path incident  with v. 

The p – n lines thus obtained are all distinct. 

 
 q ≥ (p – n) + n 

 
⇒   q ≥ p 

 
This is a contradiction to p = q + 1. 

Hence G is acyclic and p = q + 1. 

(iii). To prove:  (4) ⇒ (1). 

 
Assume that G is acyclic and p = q + 1. 

To prove  that  G  is  a tree. 

It is enough to prove that G is connected. 

 
Suppose G is not connected. Then G has more than one component. 

Let G1 , G2 , . . . , G k , k ≥ 2 be the components of G. 

Since G is  acyclic, each of these components is  a tree. 
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 p i  = q i + 1 for  i = 1 , 2, . . . , k , where G i is a  (p i , q i) graph. 
 

𝑘 
𝑖=1 𝑝𝑖 

𝑘 
𝑖=1 𝑞𝑖 + 1 . 

 

⇒ p  = q + k ≥ q + 2 , since k ≥ 2. 

This is a contradiction to  p = q + 1. 

 G  is  connected. 

 
Hence G is a  tree. 

 
Corollary: Every non – trivial tree G has at least two vertices of degree 1. 

 
Proof: 

 
Since  G  is  non – trivial, d(v) ≥ 1 for all points v. 

Also G is a tree. 

 p = q + 1, 

 
Now, ∑ d (v) = 2 q = 2( p – 1) = 2 p – 2. 

 
⇒ d (v) = 1 for at least two vertices. 

 
Theorem 5.2: Every connected graph has a spanning tree. 

 
Proof: 

 
Let G be a connected graph. 

 
Let  T be  a minimal  connected spanning sub graph of G. 

To prove that  T is a  tree . 

By the definition of T , for any line x of T, T – x is disconnected. 

 
 x is  a bridge of T. 

 ∑ = ∑ 
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We know that, “ A line x of a connected graph G is a bridge iff x is 

not on any cycle of G”. 

 x is not on any cycle of  T. 

 
 T is acyclic. 

 
Further, T is connected. 

 
 T is a tree . 

 
Hence T is a spanning tree of G. 

 
Corollary: Let G be a (p, q) connected graph . Then q ≥ p – 1. 

 
Proof: 

 
Let G be a (p, q) connected graph . 

 
We know that, “ Every connected graph has a spanning tree”. 

 
 G has a spanning tree T. 

 
 T has p points and p – 1 lines. 

Hence q ≥ p – 1. 

Theorem 5.3: Let T be a  spanning tree of  a connected graph G. 

Let x = u v be an  edge of G not  in T. Then T + x contains a unique 

cycle . 

Proof: 

 
Let T be a spanning tree of a connected graph G. 

Also x = u v be an edge of G not  in T. 
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We have T is acyclic. 

 
 Every cycle in T + x must contain the  edge x. 

 
Hence there exists a one to one correspondence between the cycles in 

T + x and u – v path in tree T. 

We know that , In a tree there is a unique u – v path. 

Hence there is a unique cycle in T + x. 

 CENTRE OF A TREE 

Definition: Let v be a point in a connected graph G. The eccentricity e 

(v) is defined  by e (v) = max { d(u, v) / u ∊ V(G)} 

 
The radius r(G) is  defined by r(G ) = min{ e (v) / v∊ V(G)}. 

 
v is called a central point if e (v) = r(G ) and the set of all 

central points  is called the centre of G. 

Example: Consider the graph given in Fig. 5.2. 
 

v4 v6 

 
v5 

 

v3 

v2 

v1 

Fig. 5.2 

 
The eccentricity 

 
e (v 1)  = 4 ; e (v 4)  =  3 



115  

e (v 2)  = 3 ; e (v 5) = 3 

 
e (v 3)  = 2 ; e (v 6) = 4 

 
The radius r(G ) = min{ e (v) / v∊ V(G)}. 

 
= 2 

 
Centre of G = { v / e (v) = r(G ) } 

 
= v 3. 

 
Theorem 5.4: Every tree has a centre consisting of either one point or 

two adjacent points. 

Proof: 

 
The  result  is obvious for the trees K1 and K2. 

Let T be any tree with p  ≥ 2  points. 

Then  T has at least two end points and the maximum distance 

from a given point u to any other point v occurs only when v is an 

end point. 

Now delete all the end points from T. 

 
The resulting graph 𝑇′ is also a tree and also the eccentricity of 

each  point  in 𝑇′ is exactly  one less than the eccentricity of that 

vertex  in T. 

 T and 𝑇′ have the same centre. 

 
The process of removing end points is repeated . 

 
Finally we get a successive trees having the same centre as T. 
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Hence we obtain a tree which is either K1 or K2. 

 

 The centre of T consists of either one point or two adjacent 

points 

Exercises: 

 
1. Draw all trees with 4 and 5 vertices. 

2. Prove that if G is a forest with p points and k components then G 

has p – k points. 

3. Prove that the origin and terminus of a longest path in a tree have 

degree 1. 

4. Show that  every tree with  exactly 2  vertices of degree 1  is a path. 

 

PLANAR GRAPH AND THEIR PROPERTIES 

Definition: 

A Graph is said to be embedded in a surface S if it is drawn on 

the surface S such that no two edges intersect ( cross over). 

A graph is called planar if it can be drawn on a plane without 

intersecting edges. 

A graph is called non – planar if it is not planar. 

 
A graph that is drawn on a plane without intersecting edges is 

called  a plane graph. 

Examples: 

 
(1). K 4 is a plane graph. 
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v5 v3 

Fig. 5.2 

(2). K 2 , 3 is a plane graph or planar graph. 
 

Fig.5.3 

 

(3). The graph given in Fig. 5.4 (a) is planar even though it is not 

plane. 

v4 v4 

 
v5 v3 

 

v1 v2 v1 v2 

 
(a) Fig. 5.4 (b) 

 

 

 
Theorem 5.5: K5 is non – planar. 

 
Proof: 

 
We know that K5 has 5 vertices and 5 C 2 = 10 edges. 

Let the vertices  be  v1, v2, v3, v4, v5. 

Out of these 10 edges , 5 edges form a cycle v1, v2, v3, v4, v5 , v1. 

This cycle divides the plane into two regions namely the interior 

region and the exterior region. 

The remaining 5 edges should be drawn either in the interior or in 
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the exterior. 

 
Suppose the edges v5 v3 and v1 v3 can be drawn in the interior region 

without cross over. 

The edges v4 v1 and v4 v2 can be drawn in the exterior region without 

cross over. 

Now the edge v2 v5 remains which cannot be drawn without cross over. 

 
Hence K 5 is non – planar. 

 
Definition: Let G be a  graph embedded on  a plane . Then  - G 

is the union of  disjoint  regions. Such regions are  called  faces of G. 

Each plane graph has exactly one unbounded face and it is called the 

exterior face. The interior faces are bounded by cycles. 

 
Theorem 5.6: A graph can be embedded in the surface of a sphere iff it 

can be embedded in a plane. 

Proof: 

 
N 

 

 

 

 














Fig5.5 

 
Let G be a graph embedded on a sphere. Place the sphere on 

a plane . Let S be the point of contact of the sphere with the plane. 

Q P 

S P1 

Q1 
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Draw a normal to the plane and the normal intersects the surface of the 

sphere at N. 

Assume that the sphere is placed in such a way that the point N is 

different from the vertices of G. 

For each point P on the surface of the sphere draw the line NP and 

it meets the plane at P1. 

The point P1 is called the stereographic projection of P on the plane. 

 
In this way the vertices and edges of G can be projected on the 

plane which gives an embedding  of the graph G in the plane. 

 A graph G can be embedded in the plane. 

 
Conversely, Assume that the graph G can be embedded in the plane. 

The  reverse  process  obviously gives an embedding of the graph in 

the surface of the sphere. 

Theorem 5.7:  [Euler’s Polyhedron Formula] 

 
If  G is a connected plane graph having V , E and F as the vertices , 

edges and faces respectively, then │V│-│E│+ │F│= 2. 

Proof: Let G be a connected plane graph. 

 
We prove the theorem by using induction on the number of edges 

of G. 

If │E│ = 0 then clearly G = K1 , [ since G is connected]. 

 
 │V│ = 1 and │F│= 1. 
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Now, │V│-│E│+ │F│= 1 – 0 +1 = 2 

 
 The result is true when │E│ = 0. 

 
Assume the result for all connected plane graphs with < │E│ 

edges. 

To prove the result for a graph G with │E│ edges. 

If G is a tree then │E│ = │V│- 1, │ F│ = 1. 

Now, L. H. S. = │V│-│E│+ │F│ 

 
= │E│+1 -│E│+ 1 

 
= 2 

 
= R. H. S. 

 
 The result is true for G is a tree. 

 
If G is not a tree then G contains some cycles. 

Let x be an edge contained in some cycle of G. 

Then 𝐺̅′ = G – x is a connected plane graph. 

 
Also, │𝑉′ │ = │V│, │𝐸1│ = │E│ - 1 < │E│ and │𝐹1│ = │F│ - 1. 

By induction assumption, │𝑉′ │-│𝐸1│+ │𝐹1│= 2. 

i.e. │V│ - │E│ + 1 + │F│ - 1 = 2 . 

 
i.e. │V│ - │E│ +│F│ = 2. 

 
 The result is true for G is not a tree. 

Hence by the induction principle, the result is true for all connected 

plane graphs. 
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𝑖=1 

𝑖=1 

𝑖=1 

Corollary 1: If G is a plane (p, q) graph with a r faces and k 

components then p - q +  r =  k +1. 

 
Proof: 

 
Consider a plane embedding of G such that the exterior face of each 

component contains all other components. 

Let the i t h component  be a (p i , q i ) graph with r i faces for each i. 

Then each component is a connected plane graph. 

 By Euler‟s Polyhedron formula, 

 
p i - q i + r i = 2. 

 

𝑘 
𝑖=1 𝑝𝑖 

𝑘 
𝑖=1 𝑞𝑖 + ∑𝑘 𝑟𝑖 

𝑘 
𝑖=1 ……….(1) 

 

Also, ∑𝑘 𝑝𝑖 
𝑘 
𝑖=1 𝑞𝑖 

𝑘 
𝑖=1 𝑟𝑖 = r + (k – 1) 

 

 p -  q + r + (k – 1)  = 2k 

 
i.e. p -  q + r = k + 1. 

 
Corollary 2: If G is  a (p, q) plane graph in  which  every face  is  an 

 

n cycle then q = 
𝑛(𝑝−2)

. 
𝑛−2 

 

Proof: 

 
Let G be  a (p, q) plane graph  in which  every face  is an n  cycle . 

 

 Each edge lies on the boundary of exactly two faces. 

Let  f 1, f 2, . . . , f r be the faces of G. 

Then 2 q = ∑𝑟 ( number of edges in the boundary of the face f i). 

 ∑ - ∑ = ∑ 

= p, ∑ = q , ∑ 

2 
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𝑟 
𝑖=1 𝑛 , since each face is an n - cycle 

 

= n r 
 

⇒ r = 
2 

.
 

𝑛 
 

By Euler‟s theorem, 

 
p - q + r = 2. 

 

i. e. p - q + 
2𝑞 

= 2. 
𝑛 

 

⇒ q ( 
2

 
𝑛 

- 1) =2 - p 

 

⇒ q = 
(𝑝−2)

.
 

𝑛−2 
 

Corollary 3: In any connected plane (p, q) graph , p ≥ 3 , with r faces 
 

then q ≥ 3𝑟 
2 

and q ≤ 3 p - 6. 

 

Proof: 

 
Let G be any connected plane (p, q) graph with r faces and 

p ≥ 3. 

 
Case 1: Let G be a tree. 

 
Then q = p - 1 and r = 1. 

 
 p =  q + 1 and r = 1. 

 
p ≥ 3 ⇒ q + 1 ≥ 3 

 
⇒ q ≥ 2 > 3 

2 
 

 q ≥ 3𝑟 
2 

= ∑ 
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𝑖=1 

Also, p ≥ 3 ⇒ 2p ≥ 6 

 
i.e. 2p + p ≥ 6 + p 

 

⇒ 3p – 6 ≥ p > p – 1 

 
i.e. 3p – 6 ≥ q 

 
i.e. q ≤ 3p – 6. 

 
Hence for a tree, 3𝑟 ≤ q ≤ 3p – 6. 

2 
 

Case 2: Let G have a cycle. 

 
Let f 1, f 2, . . . , f r be the faces of G. 

 
We know that, “ Each edge lies  on the boundary of at most  two faces”. 

 

 2 q ≥ ∑𝑟 
 

𝑟 
𝑖=1 

( number of edges in the boundary of the face f i). 

 
, [since each face is bounded by at least 3 edges] 

 

= 3r 

 
i.e. q ≥ 3𝑟. 

2 
 

By Euler‟s formula, p - q + r = 2 

 
i.e. r = 2 + q – p. 

 
We have q ≥ 3𝑟 

2 

 

 q ≥ 
3( 2+𝑞−𝑝) 

2 
 

i.e. 2q ≥ 6 + 3q – 3p . 

 
i.e. 3p - 6 ≥ q 

≥ ∑ 3 
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⇒ q ≤ 3p – 6. 

 
Hence 3𝑟 ≤ q ≤ 3p – 6. 

2 
 

MAXIMAL PLANAR GRAPH 

 

Definition: A graph is called a maximal planar if no line can be added 

toit without losing  planarity. 

A graph is called a triangulated graph if each face is a triangle. 

In a maximal planar graph, each face is a triangle. 

Corollary 4: If G is a maximal planar (p, q) graph then and q = 3 p - 6. 

Corollary 5: If G is a plane   connected   (p, q)   graph   without   triangle 

and p ≥ 3 then q ≤ 2p - 4. 

Proof: Let G be a plane connected (p, q) graph without triangle and 

 
p ≥ 3. 

 
Case 1: Let G be a tree. 

 
Then q = p – 1. 

 
To prove q ≤ 2p - 4. 

 
We have p ≥ 3 ⇒ p + p ≥ 3 + p 

 
⇒ 2p ≥ 3 + q + 1 

 
⇒ q ≤ 2p - 4. 

 
Case 2:  Let G have a cycle. 

 
The boundary of each force has at least four edges. Also each 

edge lies on  at  most  2  faces. 
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𝑖=1 2 q ≥ ∑𝑟 

 
𝑟 
𝑖=1 

 
= 4r 

 
i.e. 2q ≥ 4r. 

( number of edges in the boundary of  the face  f i). 

 

By Euler‟s formula, p - q + r = 2 

 
i.e. r = 2 + q – p. 

 
 2q ≥ 4(2 + q – p). 

 
⇒ q ≤ 2p - 4. 

 
Corollary 6: The graphs K5 and K 3, 3 are not planar. 

 
Proof: 

 
We know that, 

 
“K5 is a connected (5, 10) graph”. 

 
and “ In any connected plane  ( p, q) graph p ≥ 3 , q ≤ 3 p - 6 ”. 

 
Here, 3 p – 6 = 3 x 5 – 6 = 9 

 
i.e. 10 ≰ 9 

 
⇒ the inequality q ≤ 3 p - 6 is not satisfied. 

 
Hence K 5 is not planar. 

 
Next, To prove K 3, 3 is not planar. 

 
We know that, K 3, 3 is a complete bipartite (6, 9) graph. 

Also K 3, 3 has no  triangles. 

= ∑ 4 
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𝑖=1 

𝑖=1 

We also know that “ If G is a plane connected ( p, q) graph without 

triangle p ≥ 3 then q ≤ 2p - 4”. 

Here 2p -  4 = 2 x 6 – 4 = 8 

 

 9 ≰ 8  ⇒ q ≰ 2p - 4 . 

Hence K 3, 3 is not planar. 

Corollary 7: Every planar graph G with p ≥ 3 points has at least three 

points of degree < 6. 

Proof: 

 
Let G be a planar graph with p ≥ 3  points. 

 
To prove that G has at least three points of degree < 6. 

By corollary 3,  q ≤ 3 p - 6 

 2 q ≤ 6 p - 12 
 

i.e. ∑𝑝 𝑑𝑖 ≤ 6 p - 12 .................................. (1). 
 

Suppose at most two points have degree < 6. 

Also G is connected. 

d i  ≥  1 , ∀ i. 
 

𝑝 
𝑖=1 𝑑𝑖 ≥ 6 + 6 + . . . + (p -2) + 1 +1 

 
= 6 ( p – 2) + 2 

 
= 6 p – 10 

 

i.e. ∑𝑝 𝑑𝑖 ≥ 6 p – 10 
 

This is a contradiction to (1). 

∑ 
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𝑖=1 

Hence G has at least three points of degree < 6. 

 
Theorem 5.8: Every polyhedron  has at least two faces with the 

same number of edges on the boundary. 

Proof: 

 
Let G be the graph got from the polyhedron. 

Then  G  is  planar and  3 – connected. 

i.e.  ≥ 3 

 
δ ≥ 3 , [ Since  ≤  ≤ δ ] 

 
We know that “ The number of faces adjacent to any given face f is 

equal to the number of boundary edges of the face f ” . 

Let f 1, f 2, . . . , f m be the faces of the polyhedron and e i be the 

boundary edges of the face f i . 

Let the faces be labeled in such a way that e i ≤ e i + 1 for  every i . 

 
To prove that there exists at least two faces with the same number of 

boundary edges. 

Suppose no two faces have the same number of boundary edges. 

Then e i +1 - e i ≥ 1 for every i . 

 ∑𝑚−1( e i +1 - e i) ≥ ∑𝑚−1 1 = m – 1. 
𝑖=1 𝑖=1 

 

Also, ∑𝑚−1( e i +1  - e i) = (e2 – e1) + (e3 – e2) + . . . +(e m - e m – 1) 
 

= e m - e1 

 
i.e. e m - e1 ≥ m – 1. 
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i. e. e m ≥ (m – 1) + e1 

 
i.e. e m ≥ m + 2 , [ since e1 ≥ 3 ] 

 
i.e. The m th face is adjacent to at least (m + 2) faces. 

 
This is a contradiction to the fact that there are only m faces. 

 
Hence there exists at least two faces with the same number of 

boundary edges. 

CHARACTERISATION OF PLANAR GRAPH 

 
(1). A graph is planar iff all its  blocks  are planar. 

 
(2). A disconnect graph is planar iff each of its components are planar. 

(3). Every subgraph of  a planar graph is  planar. 

Definition: Let   x   =   u v   be   an   edge   of   a   graph   G. The   line   x   is 

said to be subdivided when a new point   w is   adjoined to   G and   the 

line x isreplaced   by the lines u w and w v. This   process   is   also   called 

an elementary subdivision of the edge x. 

Two graphs are called homeomorphic if both can be obtained from 

the same graph by a sequence of subdivisions of the lines. 

Solved Problem: 

 
Problem 1: If a  (p1, q1) graph and a ( p2, q2) graph are homeomorphic 

then p1 + q2 = p2 + q1. 

Solution: 

 
Assume that the graphs G1(p1, q1) and G2(p2, q2) are homeomorphic. 



129  

Then G1 and G2 can be got from a (p, q) graph G by a series of 

elementary subdivisions. 

Let G1 can be got from G by r elementary subdivisions and G2 can 

be got from G  by s  elementary subdivisions. 

In each elementary subdivision , the  number of points as well as the 

number of lines increases  by one. 

 p1 = p + r , q1 = q + r ; p2 = p + s , q2 = q + s . 

 
L. H. S. = p1 + q2 = p + r + q + s 

 
= (p + s) + (q + r) 

 
= p2 + q1 

 
= R. H. S. 

 
Theorem 5.9: [Kuratowski Theorem, 1930] 

 
A graph is planar iff it has no subgraph homeomorphic to K5 or K 3, 3. 

 
Note: 

 
1). The above Kuratowski theorem gives the necessary and sufficient 

condition for a  graph to be planar. 

2). The graphs K5 or K 3, 3 are called Kuratowski graphs. 

 
THICKNESS, CROSSING AND OUTER PLANARITY 

 
Definition: The crossing number of a graph G is the minimum number 

of pair wise intersections of the edges when G is drawn in the plane. 

The crossing number of a planar graph is zero. 

 
The crossing number of each of the Kuratowski graphs is one. 
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Definition: A planar graph is called outer planar if it can be embedded 

in the plane so that all its  vertices lie on the same face. This face is 

often chosen to be the exterior face. 

Definition: The outer planar graph is called maximal outer planar if no 

line can be added  without losing outer planarity. 

Every maximal outer planar graph is a triangularisation of a 

polygon. But, every maximal plane graph is a triangularisation of the 

sphere. 

Definition: The genus of a graph G is defined to be the minimum 

Number of handles to be attached to a sphere so that G can be drawn on 

The resulting surface without intersecting lines. 

Every planar graph has genus 0. 

 
K5 , K6, K7, K 3, 3 and K 4, 4 each has genus 1. 
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