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Chapter 7

Structural design

Introduction
Structural design is the methodical investigation of the 
stability, strength and rigidity of structures. The basic 
objective in structural analysis and design is to produce 
a structure capable of resisting all applied loads without 
failure during its intended life. The primary purpose 
of a structure is to transmit or support loads. If the 
structure is improperly designed or fabricated, or if the 
actual applied loads exceed the design specifications, 
the device will probably fail to perform its intended 
function, with possible serious consequences. A well-
engineered structure greatly minimizes the possibility 
of costly failures.

Structural design process
A structural design project may be divided into three 
phases, i.e. planning, design and construction.

Planning: This phase involves consideration of the 
various requirements and factors affecting the general 
layout and dimensions of the structure and results in 
the choice of one or perhaps several alternative types 
of structure, which offer the best general solution. The 
primary consideration is the function of the structure. 
Secondary considerations such as aesthetics, sociology, 
law, economics and the environment may also be 
taken into account. In addition there are structural and 
constructional requirements and limitations, which 
may affect the type of structure to be designed.

Design: This phase involves a detailed consideration 
of the alternative solutions defined in the planning phase 
and results in the determination of the most suitable 
proportions, dimensions and details of the structural 
elements and connections for constructing each 
alternative structural arrangement being considered.

Construction: This phase involves mobilization of 
personnel; procurement of materials and equipment, 
including their transportation to the site, and actual 
on-site erection. During this phase, some redesign 
may be required if unforeseen difficulties occur, such 
as unavailability of specified materials or foundation 
problems.

Philosophy of designing
The structural design of any structure first involves 
establishing the loading and other design conditions, 
which must be supported by the structure and therefore 
must be considered in its design. This is followed by the 
analysis and computation of internal gross forces, (i.e. 

thrust, shear, bending moments and twisting moments), 
as well as stress intensities, strain, deflection and 
reactions produced by loads, changes in temperature, 
shrinkage, creep and other design conditions. Finally 
comes the proportioning and selection of materials for 
the members and connections to respond adequately to 
the effects produced by the design conditions.

The criteria used to judge whether particular 
proportions will result in the desired behavior reflect 
accumulated knowledge based on field and model tests, 
and practical experience. Intuition and judgment are 
also important to this process.

The traditional basis of design called elastic design is 
based on allowable stress intensities which are chosen 
in accordance with the concept that stress or strain 
corresponds to the yield point of the material and should 
not be exceeded at the most highly stressed points of 
the structure, the selection of failure due to fatigue, 
buckling or brittle fracture or by consideration of the 
permissible deflection of the structure. The allowable 
– stress method has the important disadvantage in that 
it does not provide a uniform overload capacity for all 
parts and all types of structures.

The newer approach of design is called the strength 
design in reinforced concrete literature and plastic design 
in steel-design literature. The anticipated service loading 
is first multiplied by a suitable load factor, the magnitude 
of which depends upon uncertainty of the loading, the 
possibility of it changing during the life of the structure 
and for a combination of loadings, the likelihood, 
frequency, and duration of the particular combination. In 
this approach for reinforced-concrete design, theoretical 
capacity of a structural element is reduced by a capacity-
reduction factor to provide for small adverse variations 
in material strengths, workmanship and dimensions. 
The structure is then proportioned so that depending 
on the governing conditions, the increased load cause 
fatigue or buckling or a brittle-facture or just produce 
yielding at one internal section or sections or cause 
elastic-plastic displacement of the structure or cause the 
entire structure to be on the point of collapse.

Design aids
The design of any structure requires many detailed 
computations. Some of these are of a routine nature. 
An example is the computation of allowable bending 
moments for standard sized, species and grades of 
dimension timber. The rapid development of the 
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computer in the last decade has resulted in rapid 
adoption of Computer Structural Design Software 
that has now replaced the manual computation. This 
has greatly reduced the complexity of the analysis and 
design process as well as reducing the amount of time 
required to finish a project.

Standard construction and assembly methods have 
evolved through experience and need for uniformity 
in the construction industry. These have resulted in 
standard details and standard components for building 
construction published in handbooks or guides. 

Design codes
Many countries have their own structural design codes, 
codes of practice or technical documents which perform 
a similar function. It is necessary for a designer to become 
familiar with local requirements or recommendations in 
regard to correct practice. In this chapter some examples 
are given, occasionally in a simplified form, in order to 
demonstrate procedures. They should not be assumed 
to apply to all areas or situations.

Design of members in direct tension 
and compression

Tensile systems
Tensile systems allow maximum use of the material 
because every fibre of the cross-section can be extended 
to resist the applied loads up to any allowable stress.

As with other structural systems, tensile systems 
require depth to transfer loads economically across 
a span. As the sag (h) decreases, the tensions in the 
cable (T1 and T2) increase. Further decreases in the 
sag would again increase the magnitudes of T1 and T2 
until the ultimate condition, an infinite force, would be 
required to transfer a vertical load across a cable that is 
horizontal (obviously an impossibility).

A distinguishing feature of tensile systems is that 
vertical loads produce both vertical and horizontal 
reactions. As cables cannot resist bending or shear, 
they transfer all loads in tension along their lengths. 
The connection of a cable to its supports acts as a pin 
joint (hinge), with the result that the reaction (R) must 
be exactly equal and opposite to the tension in the 
cable (T). The R can be resolved into the vertical and 
horizontal directions producing the forces V and H. 
The horizontal reaction (H) is known as the thrust.

The values of the components of the reactions can be 
obtained by using the conditions of static equilibrium 
and resolving the cable tensions into vertical and 
horizontal components at the support points.

Example 7.1
Two identical ropes support a load P of 5 kN, as shown 
in the figure. Calculate the required diameter of the 
rope, if its ultimate strength is 30  MPa and a safety 
factor of 4.0 is applied. Also determine the horizontal 
support reaction at B.
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The allowable stress in the rope is
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At support B, the reaction is composed of two 
components:

Bv = T2 sin 30° = 2.5 sin 30° = 1.25 kN

BH = T2 cos 30° = 2.5 cos 30° = 2.17 kN

Short columns
A column which is short (i.e. the height is small 
compared with the cross-section area) is likely to fail 
because of crushing of the material.

Note, however, that slender columns, which are tall 
compared with the cross-section area, are more likely 
to fail from buckling under a load much smaller than 
that needed to cause failure from crushing. Buckling is 
dealt with later.

Short columns

Slender columns

Example 7.2
A square concrete column, which is 0.5 m high, is made 
of a nominal concrete mix of 1:2:4, with a permissible 
direct compression stress of 5.3 MPa (N / mm²). What 
is the required cross-section area if the column is 
required to carry an axial load of 300 kN?

i.e. the column should be minimum 238 mm square.

56 604 mm2

5.3 N/mm2

300 000 N
σ
F

A ===  
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Design of simple beams

Bending stresses
When a sponge is put across two supports and gently 
pressed downwards between the supports, the pores 
at the top will close, indicating compression, and the 
pores at the bottom will open wider, indicating tension. 
Similarly, a beam of any elastic material, such as wood 
or steel, will produce a change in shape when external 
loads are acting on it.

Figure 7.1  Bending effects on beams

The stresses will vary from maximum compression 
at the top to maximum tension at the bottom. Where 
the stress changes from compressive to tensile, there 
will be one layer that remains unstressed and this is 
called the neutral layer or the neutral axis (NA).

This is why beams with an I-section are so effective. 
The main part of the material is concentrated in 
the flanges, away from the neutral axis. Hence, the 
maximum stresses occur where there is maximum 
material to resist them. 

If the material is assumed to be elastic, then the 
stress distribution can be represented by two triangular 
shapes with the line of action of the resultant force of 
each triangle of stress at its centroid.

The couple produced by the compression and 
tension triangles of stress is the internal-reaction couple 
of the beam section.

Compression

Tension

The moment caused by the external loads acting on 
the beam will be resisted by the moment of this internal 
couple. Therefore:

M = MR = C (or T) × h 

where:
M = the external moment
MR = the internal resisting moment
C = resultant of all compressive forces on the cross-		
	 section of the beam
T = resultant of all tensile forces on the cross-section 
	 of the beam 
h = lever arm of the reaction couple

Now consider a small element with the area (R) at a 
distance (a) from the neutral axis (NA).

Note that it is common practice to use the symbol f 
for bending stress, rather than the more general symbol. 
Maximum compressive stress (fc) is assumed to occur in 
this case at the top of the beam. Therefore, by similar 
triangles, the stress in the chosen element is:

As force  = stress × area, then the force on the 
element = fa × R = a × (fc / ymax) × R

The resisting moment of the small element is: 
force × distance (a)  = a × (fc / ymax) × R × a  = Ra2 × 
(fc / ymax) 
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The total resisting moment of all such small elements 
in the cross-section is:

MR = ∑ Ra2 × (fc / ymax)

But ∑ Ra2  = I, the moment of inertia about the 
neutral axis, and therefore

MR = I × (fc / ymax) 

As the section modulus Zc = I / ymax, therefore

MR = fc × Zc = M;

Similarly

MR = ft × Zt = M

The maximum compressive stress (fc) will occur in 
the cross-section area of the beam where the bending 
moment (M) is greatest. A size and shape of cross-
section, i.e. its section modulus (Z), must be selected so 
that the fc does not exceed an allowable value. Allowable 
working stress values can be found in building codes or 
engineering handbooks.

As the following diagrams show, the concept of 
a ‘resisting’ couple can be seen in many structural 
members and systems.

Girders and I –beams (1/6  web area can be added to 
each flange area for moment resistance)

Rectangular reinforced-concrete beams (note that 
the steel bars are assumed to carry all the tensile forces).
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In summary the following equation is used to test 
for safe bending:

fw ≥ f = Mmax / Z 

where: 
fw = allowable bending stress 
f = actual bending stress 
Mmax = maximum bending moment 
Z = section modulus

Horizontal shear 
The horizontal shear force (Q) at a given cross-section 
in a beam induces a shearing stress that acts tangentially 
to the horizontal cross-sectional plane. The average 
value of this shear stress is:

where A is the transverse cross-sectional area.

This average value is used when designing rivets, bolts 
and welded joints.

The existence of such a horizontal stress can be 
illustrated by bending a paper pad. The papers will slide 
relative to each other, but in a beam this is prevented by 
the developed shear stress.

Figure 7.2  Shearing effects on beams
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However, the shear stresses are not equal across the 
cross-section. At the top and bottom edge of the beam 
they must be zero, because no horizontal shear stresses 
can develop.

If the shear stresses at a certain distance from 
the neutral axis are considered, their value can be 
determined according to the following formula:

where: 
t = shear stress
Q = shear force
∆A = area for the part of the section being sheared off 
   = perpendicular distance from the centroid of PA to 
	 the neutral axis
I = moment of inertia for the entire cross-section 
b = width of the section at the place where shear stress 
	 is being calculated.

Maximum horizontal shear force in beams
It can be shown that the maximum shear stress tmax in a 
beam will occur at the neutral axis. Thus, the following 
relations for the maximum shear stress in beams of 
different shapes can be deduced, assuming the maximum 
shear force (Q) to be the end reaction at a beam support 
(column).
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For I-shaped sections of steel beams, a convenient 
approximation is to assume that all shearing resistance 
is afforded by the web plus the part of the flanges that 
forms a continuation of the web.

Thus:

For I-sections 
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where: 
d = depth of beam
t = thickness of web

If timber and steel beams with spans normally used 
in buildings are made large enough to resist the tensile 
and compressive stresses caused by bending, they are 
usually strong enough to resist the horizontal shear 
stresses also. However, the size or strength of short, 
heavily loaded timber beams may be limited by these 
stresses.

Deflection of beams
Excessive deflections are unacceptable in building 
construction, as they can cause cracking of plaster 
in ceilings and can result in jamming of doors and 
windows. Most building codes limit the amount of 
allowable deflection as a proportion of the member’s 
length, i.e. 1/180, 1/240 or 1/360 of the length.

For standard cases of loading, the deflection 
formulae can be expressed as:

where: 
δmax = maximum deflection (mm)
Kc = constant depending on the type of loading and the 
	 end support conditions 
W = total load (N) 
L = effective span (mm) 
E = modulus of elasticity (N/mm²) 
I = moment of inertia (mm4)

It can be seen that deflection is greatly influenced 
by the span L, and that the best resistance is provided 
by beams which have the most depth (d), resulting in a 
large moment of inertia.

EI
WL3

Kc ×=δmax

Z
Mmaxffw =≥
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Note that the effective span is greater than the clear 
span. It is convenient to use the centre to centre distance 
of the supports as an approximation of the effective span.

Some standard cases of loading and resulting 
deflection for beams can be found later in this section.

Design criteria
The design of beams is dependent upon the following 
factors: 

1.	 Magnitude and type of loading 
2.	 Duration of loading 
3.	 Clear span 
4.	 Material of the beam 
5.	 Shape of the beam cross-section 

Beams are designed using the following formulae:

1. Bending stress 

where:
fw = allowable bending stress 
f = actual bending stress 
Mmax = maximum bending moment 
Z = section modulus

This relationship derives from simple beam theory and

and

The maximum bending stress will be found in the 
section of the beam where the maximum bending 
moment occurs. The maximum moment can be obtained 
from the bending-moment diagram.

2. Shear stress
For rectangular cross-sections:

For circular cross-sections: 

EI
WL3

Kc ×=δmax

Z
Mmaxffw =≥

ymax

fmax

INA

Mmax =

Z
ymax

INA =

2bd
Qmax3

A2
Qmax3

=
×

×
=≥ ττw

3πd2

Qmax16
A3

Qmax4
ττw =

×
×

=≥

A
Qmax=≥ ττw

ymax

fmax

INA

Mmax =

Z
ymax

INA =

2bd
Qmax3

A2
Qmax3

=
×

×
=≥ ττw

3πd2

Qmax16
A3

Qmax4
ττw =

×
×

=≥

A
Qmax=≥ ττw

ymax

fmax

INA

Mmax =

Z
ymax

INA =

2bd
Qmax3

A2
Qmax3

=
×

×
=≥ ττw

3πd2

Qmax16
A3

Qmax4
ττw =

×
×

=≥

A
Qmax=≥ ττw

ymax

fmax

INA

Mmax =

Z
ymax

INA =

2bd
Qmax3

A2
Qmax3

=
×

×
=≥ ττw

3πd2

Qmax16
A3

Qmax4
ττw =

×
×

=≥

A
Qmax=≥ ττw

For I-shaped cross-sections of steel beams 

where:
tw = allowable shear stress
t = actual shear stress
Qmax = maximum shear force
A = cross-section area

Like allowable bending stress, allowable shear stress 
varies for different materials and can be obtained from 
a building code. Maximum shear force is obtained from 
the shear-force diagram.

3. Deflection
In addition, limitations are sometimes placed on 
maximum deflection of the beam (δmax):

Example 7.3
Consider a floor where beams are spaced at 1 200 mm 
and have a span of 4 000 mm. The beams are seasoned 
cypress with the following properties:

fw = 8.0 N/mm², tw = 0.7 MPa (N/mm²), E = 8.400 MPa 
(N/mm²), density 500 kg/m³

Loading on floor and including floor is 2.5 kPa.

Allowable deflection is L/240
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(i) Beam loading: w = 1.2 m × 2.5 kN/m2 = 3 kN/m

Assume a 100 mm by 250  mm cross-section for the 
beams.

(ii) Beam mass = 0.1 × 0.25 × 500 × 9.81 = 122.6 N/m 
= 0.12 kN/m

Total w = 3 + 0.12 = 3.12 kN/m

(iii) Calculate reactions and draw shear-force and 
bending-moment diagrams

iii) Calculate maximum bending moment (Mmax) using 
the equation for a simple beam, uniformly loaded (see 
Table 7.1)

iv) Find the required section modulus (Z) 

v) Find a suitable beam depth, assuming 100  mm 
breadths:

From Table 6.3, the section modulus for a rectangular 
shape is Z = 1/6 × bd2
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Choose a 100 mm by 225  mm timber. The timber 
required is a little less than that assumed. No 
recalculations are required unless it is estimated that a 
smaller size timber would be adequate if a smaller size 
had been assumed initially.

vi) Check for shear loading: 

As the safe load for the timber is 0.7 N/mm² (MPa) the 
section is adequate in resistance to horizontal shear.

vii) Check deflection to ensure that it is less than 1/240 of 
the span (from Table 7.1)

where:
E = 8 400 MPa (N/mm²)

W = 3.12 kN/m × 4 m = 12.48 kN = 12.48 × 103 N
L = 4 × 103mm

The allowable deflection, 400/240 = 16.7 >13. The beam 
is therefore satisfactory.

Bending moments caused by askew loads
If the beam is loaded so that the resulting bending 
moment is not about one of the main axes, the moment 
has to be resolved into components acting about the main 
axes. The stresses are then calculated separately relative 
to each axis and the total stress is found by adding the 
stresses caused by the components of the moment.

Example 7.4
Design a timber purlin that will span rafters 2.4 m on 
centre. The angle of the roof slope is 30° and the purlin 
will support a vertical dead load of 250  N/m and a 
wind load of 200 N/m acting normal to the roof. The 
allowable bending stress (fw) for the timber used is 8 
MPa. The timber density is 600 kg/m³.

1.	 Assume a purlin cross-section size of 50 mm × 
125 mm. Find an estimated self-load.

W = 0.05 × 0.125 × 600 × 9.81 = 37 N/m

The total dead load becomes 250 + 37 = 287 N/m
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2.	 Find the components of the loads relative to the 
main axes.

Wx = 200 N/m + 287 N/m × cos 30° = 448.5 N/m

Wy = 287 N/m × sin 30° = 143.5 N/m

3.	 Calculate the bending moments about each axis for 
a uniformly distributed load. The purlin is assumed 
to be a simple beam.

4.	 The actual stress in the timber must be no greater 
than the allowable stress. 

5.	 Try the assumed purlin size of 50 × 125 mm. 
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This size is safe, but a smaller size may be satisfactory. 
Try 50 mm × 100 mm.

This is much closer to the allowable stress. To save 
money, 50 mm × 75  mm should also be tried. In this 
case f > fw and therefore 50 mm × 100 mm is chosen.

Universal steel beams
Steel beams of various cross-sectional shapes are 
commercially available. Even though the properties of 
their cross-sections can be calculated with the formulae 
given in the section ‘Design of members in direct 
tension and compression’, it is easier to obtain them 
from handbook tables. These tables will also take into 
consideration the effect of rounded edges, welds, etc.

Sections of steel beams are indicated with a 
combination of letters and a number, where the letters 
represent the shape of the section and the number 
represents the dimension, usually the height, of the 
section in millimetres, e.g. IPE 100. In the case of HE 
sections, the number is followed by a letter indicating 
the thickness of the web and flanges, e.g. HE 180B.

An example of an alternative method of notation is 
305 × 102 UB 25, i.e. a 305 mm by 102 mm universal 
beam weighing 25 kg/m.

The following example demonstrates another 
method of taking into account the self-weight of the 
structural member being designed.

Example 7.5
Design a steel beam, to be used as a lintel over a door 
opening, which is required to span 4.0  m between 
centres of simple supports. The beam will be carrying 
a 220  mm thick and 2.2  m high brick wall, weighing 
20 kN/m³. Allowable bending stress is 165 MPa.

Uniformly distributed load caused by brickwork is 
0.22 × 2.2 × 4.0 × 20 = 38.7 kN.

Assumed self-weight for the beam is 1.5 kN.
(Note: the triangular load distribution for bricks above 

the lintel would result in a slightly lower load value).
Total uniformly distributed load W = 38.7 + 1.5 = 

40.2 kN

fwZy

Mmax z

Zx

Mmax xf ≤+=

mm3103130
6
125250

6
bd2

Zx ×=
×

==

mm310352
6

502125
6

bd2

Zy ×=
×

==

MPaN/mm2 5.45.425.2
10352
103103

103130
103323

f ==+=
×
×

+
×
×

=

mm310383
6
100250

6
bd2

Zx ×=
×

==

mm310342
6

502100
6

bd2

Zy ×=
×

==

4.65.29.3
10342
103103

10383
103323

f =+=
×
×

+
×
×

= MPaN/mm2 4.6=

fwZy

Mmax z

Zx

Mmax xf ≤+=

mm3103130
6
125250

6
bd2

Zx ×=
×

==

mm310352
6

502125
6

bd2

Zy ×=
×

==

MPaN/mm2 5.45.425.2
10352
103103

103130
103323

f ==+=
×
×

+
×
×

=

mm310383
6
100250

6
bd2

Zx ×=
×

==

mm310342
6

502100
6

bd2

Zy ×=
×

==

4.65.29.3
10342
103103

10383
103323

f =+=
×
×

+
×
×

= MPaN/mm2 4.6=

fwZy

Mmax z

Zx

Mmax xf ≤+=

mm3103130
6
125250

6
bd2

Zx ×=
×

==

mm310352
6

502125
6

bd2

Zy ×=
×

==

MPaN/mm2 5.45.425.2
10352
103103

103130
103323

f ==+=
×
×

+
×
×

=

mm310383
6
100250

6
bd2

Zx ×=
×

==

mm310342
6

502100
6

bd2

Zy ×=
×

==

4.65.29.3
10342
103103

10383
103323

f =+=
×
×

+
×
×

= MPaN/mm2 4.6=

NmmkNm 1061.201.20
8

0.42.40
8

WL
Mmax ×==

×
==

cm2122mm3106122.0
165

1061.20
Zreq =×=

×
=

NmmkNm 1061.201.20
8

0.42.40
8

WL
Mmax ×==

×
==

cm2122mm3106122.0
165

1061.20
Zreq =×=

×
=



124 Rural structures in the tropics: design and development

Suitable sections as found in a handbook would be:

Section Zx-x Mass

INP 160 117 cm³ 17.9 kg/m

IPE 180 146 cm³ 18.8 kg/m

HE 140A 155 cm³ 24.7 kg/m

HE 120A 144 cm³ 26.7 kg/m

Choose INP 160 because it is closest to the required 
section modulus and has the lowest weight. Then 
recalculate the required Z using the INP 160 weight: 4.0 
× 17.9 × 9.81 = 702 N, which is less than the assumed 
self-weight of 1.5  kN. A recheck on the required Z 
reveals a value of 119 cm³, which is close enough.

Continuous beams
A single continuous beam extending over a number of 
supports will safely carry a greater load than a series 
of simple beams extending from support to support. 
Consider the shear force and bending moment diagrams 
for the following two beam loadings:

M max = 40 kNm

M max = 30 kNm

8 m

8 m2 m 2 m

5 kN/m

20 kN 20 kN

+20

30 kN/m

5 kN/m

-10

-10 -10

-20

+20

30 kN/m

+10

Although the total value of the load has increased, 
the maximum shear force remains the same but the 
maximum bending is reduced when the beam is 
cantilevered over the supports.

Although continuous beams are statically indeterminate 
and the calculations are complex, approximate values 
can be found with simplified equations. Conservative 
equations for two situations are as follows:

Load concentrated between supports: 
6

WL
BM =

12
WL

BM =

Load uniformly distributed: 

6
WL

BM =

12
WL

BM =

It is best to treat the two end sections as simple beams.

Standard cases of beam loading
A number of beam loading cases occur frequently and it 
is useful to have standard expressions available for them. 
Several of these cases will be found in Table 7.1.

Composite beams
In small-scale buildings the spans are relatively small 
and, with normal loading, solid rectangular or square 
sections are generally the most economical beams. 
However, where members larger than the available sizes 
and/or length of solid timber are required, one of the 
following combinations may be chosen:

1.	 Arranging several pieces of timber or steel into a 
structural frame or truss. 

2.	 Universal steel beams. 
3.	 Built-up timber sections with the beam members 

nailed, glued or bolted together into a solid 
section, or with the beam members spaced apart 
and only connected at intervals. 

4.	 Strengthening the solid timber section by the 
addition of steel plates to form a ‘flitch-beam’. 

5.	 Plywood web beams with one or several webs. 
6.	 Reinforced-concrete beams. 

Continuous beam

Simple beam
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Table 7.1
Beam equations

Loading diagram Shear force at x: Qx Bending moment at x: Mx Deflection at x: δx
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Built-up timber beams
When designing large members, there are advantages in 
building up solid sections from smaller pieces because 
these are less expensive and easier to obtain. Smaller 
pieces also season properly without checking. The 
composite beams may be built up in ways that minimize 
warping and permit rigid connections between columns 
and beams. At the same time the importance of timber 
defects is decreased, because the load is distributed to 
several pieces, not all with defects in the same area.

Figure 7.3  Built-up beams and trusses

Built-up solid beams are normally formed by using 
vertical pieces nailed or bolted together: Nailing is 
satisfactory for beams up to about 250  mm in depth, 
although these may require the use of bolts at the ends if 
the shear stresses are high. Simply multiplying the strength 
of one beam by the number of beams is satisfactory, 
provided that the staggered joints occur over supports.

Built-up sections with the members spaced apart 
are used mainly where the forces are tensile, such as 
in the bottom chords of a truss. Where used in beams 
designed to resist bending, buckling of the individual 
members may have to be considered if those members 
have a large depth-to-width ratio. However, this can 
be avoided by appropriate spacing of stiffeners that 
connect the spaced members at intervals.

Where the loading is heavy, the beam will require 
considerable depth, resulting in a large section modulus 
to keep the stresses within the allowable limit. If 
sufficient depth cannot be obtained in one member, it 
may be achieved by combining several members, such 
as gluing the members together to form a laminate.

Built-up solid beam

Built-up solid column

Tie memberRafte
r m

embers s
paced apart

Columns
Although the column is essentially a compression 
member, the manner in which it tends to fail and the 
amount of load that causes failure depend on:

1.	 The material of which the column is made. 
2.	 The shape of cross-section of the column. 
3.	 The end conditions of the column. 

The first point is obvious: a steel column can carry a 
greater load than a timber column of similar size.

Columns with a large cross-section area compared 
with the height are likely to fail by crushing. These 
‘short columns’ have been discussed earlier.

Buckling of slender columns
If a long, thin, flexible rod is loaded axially in 
compression, it will deflect a noticeable amount. This 
phenomenon is called buckling and occurs when the 
stresses in the rod are still well below those required 
to cause a compression/shearing-type failure. Buckling 
is dangerous because it is sudden and, once started, is 
progressive.

Although the buckling of a column can be compared 
with the bending of a beam, there is an important 
difference in that the designer can choose the axis about 
which a beam bends, but normally the column will take 
the line of least resistance and buckle in the direction 
where the column has the least lateral unsupported 
dimension.

As the loads on columns are never perfectly axial 
and the columns are not perfectly straight, there will 
always be small bending moments induced in the 
column when it is compressed.

There may be parts of the cross-section area where 
the sum of the compressive stresses caused by the 
load on the column could reach values larger than the 
allowable or even the ultimate strength of the material.
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Therefore the allowable compressive strength δcw 
is reduced by a factor kλ, which depends on the 
slenderness ratio and the material used.

Pbw = kλ × δcw × A

where:
Pbw = allowable load with respect to buckling 
kλ = reduction factor, which depends on the slenderness 
	 ratio 
δcw = allowable compressive stress
A = cross-section area of the column

When the load on a column is not axial but eccentric, 
a bending stress is induced in the column as well as 
a direct compressive stress. This bending stress will 
need to be considered when designing the column with 
respect to buckling.

Slenderness ratio
As stated earlier, the relationship between the length 
of the column, its lateral dimensions and the end fixity 
conditions will strongly affect the column’s resistance 
to buckling. An expression called the slenderness ratio 
has been developed to describe this relationship:

where:
λ = slenderness ratio
K = effective length factor whose value depends on how 
	 the ends of the column are fixed
L = length of the column 
r = radius of gyration (r = I / A)
l = effective length of the column (K × L)

There are four types of end condition for a column or 
strut:

1.	 Total freedom of rotation and side movement – 
like the top of a flagpole. This is the weakest end 
condition.

r
l

r
KL

==λ

θ Rotation

side movement

P

2. Fixed in position but not in direction (pinned).

3. Fixed in direction but not in position.

4. Fixed in position and in direction.

The consideration of the two end conditions together 
results in the following theoretical values for the effective 
length factor (Kp is the factor usually used in practice).

P

Rotationθ

P P

P
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Both ends pinned

One end fixed in direction and position, the other free

Both ends fixed in direction and position

One end pinned, the other fixed in direction and position

L K=1∙0

K=2∙0

K=0∙5
Kp=0∙65

0∙7
0∙85Kp

Columns and struts with both ends fixed in 
position and effectively restrained in direction would 
theoretically have an effective length of half the actual 
length. However, in practice this type of end condition 
is almost never perfect and therefore somewhat higher 
values for K are used and can be found in building 
codes. In fact, in order to avoid unpleasant surprises, 
the ends are often considered to be pinned (Kp = 1.0) 
even when, in reality, the ends are restrained or partially 
restrained in direction.

The effective length can differ with respect to the 
different cross-sectional axes:

1.	 A timber strut that is restrained at the centre has 
only half the effective length when buckling about 
the y-y axis as when buckling about the x-x axis. 
Such a strut can therefore have a thickness of less 
than its width.

2.	 In the structural framework, the braces will reduce 
the effective length to l when the column A-B 
is buckling sideways but, as there is no bracing 
restricting buckling forwards and backwards, the 
effective length for buckling in these directions is 3l. 
Similarly, the bracing struts have effective lengths of 
1/2 d and d respectively.

x

y

ly

ly lx

l

l

B

A

d

l
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3.	 The leg of a frame, which is pinned to the foundation, 
has the effective length l = 2 L but, if the top 
is effectively secured for sideways movement, the 
effective length is reduced to l  = L.

4.	 In a system of post and lintel where the bottom of 
the post is effectively held in position and secured 
in direction by being cast in concrete, the effective 
length l = 2 L.

Axially loaded timber columns
Timber columns are designed with the following 
formulae:

Note that in some building codes a value of 
slenderness ratio in the case of sawn timber is taken 
as the ratio between the effective length and the least 
lateral width of the column l/b.

Example 7.6
Design a timber column that is 3 metres long, supported 
as shown in the figure and loaded with a compressive 
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L
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AkλPbwr
KL

××== δcwλ and

load of 15 kN. Allowable compressive stress (σcw) for 
the timber is 5.2 MPa.

1. In this case, the end conditions for buckling about 
the x-x axis are not the same as about the y-y axis. 
Therefore both directions must be designed for 
buckling (Where the end conditions are the same, 
it is sufficient to check for buckling in the direction 
that has the least radius of gyration).

Find the effective length for buckling about both axes. 
Buckling about the x-x axis, both ends pinned:

lx = 1.0 × 3 000 = 3 000 mm

Buckling about the y-y axis, both ends fixed:

ly = 0.65 × 3 000 = 1 950 mm

Pin

d

b

15 kN

L 
=

 3
 0

00

y
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b

Table 7.2 
Reduction factor (kλ) for stresses with respect to the slenderness ratio for wood columns

Slenderness 
ratio l/b 2.9 5.8 8.7 11.5 14.4 17.3 20.2 23.0 26.0 28.8 34.6 40.6 46.2 52.0

l/r 10 20 30 40 50 60 70 80 90 100 120 140 160 180

kλ 1.0 1.00 0.91 0.81 0.72 0.63 0.53 0.44 0.35 0.28 0.20 0.14 0.11 0.40

b = least dimension of cross-section; r = radius of gyration
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2. Choose a trial cross-section, which should have 
its largest lateral dimension resisting the buckling 
about the axis with the largest effective length. Try 
50 mm × 125 mm. The section properties are:

A = b × d = 50 × 125 = 6 250 mm²

3. Find the allowable load with regard to buckling on 
the column for buckling in both directions.
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 gives kλx = 0.41 (from Table 7.2)
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 gives kλy = 0.16 (from Table 7.2)

Pw = kλ × σc × A
Pwx = 0.41 × 5.2 × 6 250 mm² = 13 325 N
Pwy = 0.16 × 5.2 × 6 250 mm² = 5 200 N

4. As the allowable load with respect to buckling is 
smaller than the actual load, a bigger cross-section 
needs to be chosen. Try 75 mm × 125 mm and repeat 
steps 2 and 3.

Section properties:

A = 75 × 125 = 9 375 mm²
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Find the allowable buckling load for the new cross-
section:
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 gives kλx = 0.41
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 gives kλy = 0.16

Pwx = 0.41 × 5.2 × 9 375 = 19 988 N, say 20 kN
Pwy = 0.35 × 5.2 × 9 375 = 17 063 N, say 17 kN

The allowable load with respect to buckling on the 
column with cross-section 75 mm × 125 mm is therefore 
17  kN. Although this is bigger than the actual load, 
further iterations to find the precise section to carry the 
15 kN are not necessary.

The compressive stress in the chosen cross-section 
will be:
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This is much less than the allowable compressive 
stress, which makes no allowance for slenderness.

Axially loaded steel columns
The allowable loads for steel columns with respect to 
buckling can be calculated in the same manner as for 
timber. However, the relation between the slenderness 
ratio and the reduction factor (kλ) is slightly different, 
as seen in Table 7.3.

Example 7.7
Calculate the safe load on a hollow square steel stanchion 
whose external dimensions are 120 mm × 120 mm. The 
walls of the column are 6 mm thick and the allowable 
compressive stress σcw = 150 MPa. The column is 
4 metres high and both ends are held effectively in 
position, but one end is also restrained in direction.

The effective length of the column l = 0.85L = 0.85 
× 4 000 = 3 400 mm.
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 gives kλ = 0.72 by interpolation

Pw = kλ × σcw × A = 0.72 × 150 (1202 - 1082) = 295 kN.

Table 7.3
Reduction factor (kλ) for stresses with respect to the slenderness ratio for steel columns

λ 10 20 30 40 50 60 70 80 90 100 110 120 130 140

kλ 0.97 0.95 0.92 0.90 0.86 0.81 0.74 0.67 0.59 0.51 0.45 0.39 0.34 0.30

λ 150 160 170 180 190 200 210 220 230 240 250 300 350  

kλ 0.26 0.23 0.21 0.19 0.17 0.15 0.14 0.13 0.12 0.11 0.10 0.07 0.05  
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Axially loaded concrete columns
Most building codes permit the use of plain concrete 
only in short columns, that is to say, columns where the 
ratio of the effective length to least lateral dimension 
does not exceed 15, i.e. l/r ≤ 15. If the slenderness ratio is 
between 10 and 15, the allowable compressive strength 
must be reduced. The tables of figures relating to l/b in 
place of a true slenderness ratio are only approximate, 
as radii of gyration depend on both b and d values in 
the cross-section and must be used with caution. In the 
case of a circular column:
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D = the diameter of the column.

Table 7.4
Permissible compressive stress (Pcc) in concrete for 
columns (MPa or N/mm2)

Concrete mix Slenderness ratio, l/b

  ≤ 10 11 12 13 14 15

Prescribed

C10 3.2 3.1 3.0 2.9 2.8 2.7

C15 3.9 3.8 3.7 3.6 3.5 3.4

C20 4.8 4.6 4.5 4.3 4.2 4.1

Nominal

1:3:5 3.1 3.0 2.9 2.8 2.7 2.6

1:2:4 3.8 3.7 3.6 3.5 3.4 3.3

1:1.5:3 4.7 4.5 4.4 4.2 4.1 4.0

Higher stress values may be permitted, depending on the level of 
work supervision.

Example 7.8
A concrete column with an effective length of 4 metres 
has a cross-section of 300  mm by 400  mm. Calculate 
the allowable axial load if a nominal 1:2:4 concrete mix 
is to be used.
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Hence Table 7.4 gives Pcc = 3.47 N/mm² by interpolation.
 
Pw = Pcc × A = 3.47 × 300 × 400 = 416.4 kN.

Eccentrically loaded timber and steel columns 
Where a column is eccentrically loaded, two load effects 
need to be considered:

The axial compressive stress caused by the load and 
the bending stresses caused by the eccentricity of the 
load.

Obviously, by the law of superposition, the added 
stresses of the two load effects must be below the 
allowable stress.

Therefore 
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Example 7.9
Determine within 25  mm the required diameter of a 
timber post loaded as shown in the figure. The bottom 
of the post is fixed in both position and direction by 
being cast in a concrete foundation. Allowable stresses 
for the timber used are σcw = 9 MPa and fw = 10 MPa.

The load of 5  kN on the cantilever causes a bending 
moment of M = F × e = 5 kN × 0.5 m = 2.5 kNm in the 
post below the cantilever.

The effective length of the post = L × K = 3 000 × 2.1 = 
6 300 mm. Try a post with a diameter of 200 mm.

The cross-sectional properties are:

P = 30 kN

e = 500 F = 5 kN

L 
=

 3
 0

00
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The slenderness ratio 
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Interpolation in Table 7.3 gives kλ = 0.18
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If the post has a diameter of 200  mm, it will be 
able to carry the loads, but the task was to determine 
the diameter within 25  mm. Therefore a diameter of 
175 mm should also be tried.
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This diameter is too small, so a diameter of 200 mm 
should be chosen. It will be appreciated that the choice 
of effective length based on end fixity has a great effect 
on the solution.

Plain and centrally reinforced concrete walls
Basically walls are designed in the same manner as 
columns, but there are a few differences. A wall is 
distinguished from a column by having a length that is 
more than five times the thickness.

Plain concrete walls should have a minimum 
thickness of 100 mm.

Where the load on the wall is eccentric, the wall 
must have centrally placed reinforcement of at least 
0.2 percent of the cross-section area if the eccentricity 
ratio e/b exceeds 0.20. This reinforcement may not be 
included in the load-carrying capacity of the wall.

Many agricultural buildings have walls built of 
blocks or bricks. The same design approach as that 
shown for plain concrete with axial loading can be used. 
The maximum allowable compressive stresses must 
be ascertained, but the reduction ratios can be used as 
before.

Example 7.10
Determine the maximum allowable load per metre of a 
120 mm thick wall, with an effective height of 2.8 metres 
and made from concrete grade C 15: (a) when the load is 
central; (b) when the load is eccentric by 20 mm.
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Interpolation gives: 
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Allowable load Pw = A × Pcw = 1.0 × 0.12 × 2.27 × 106 
	 = 272.4 kN/m wall

Ratio of eccentricity 
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A double interpolation gives:

Pcw = 1 .06 N/mm² = 1 .06 MPa

Allowable load
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Central reinforcement is not required because 
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Trusses
It can be seen from the stress distribution of a loaded 
beam that the greatest stress occurs at the top and 
bottom extremities of the beam.

This led to the improvement on a rectangular section 
by introducing the I-section in which the large flanges 
were situated at a distance from the neutral axis. In 
effect, the flanges carried the bending in the form of 
tension stress in one flange and compression stress in 
the other, while the shear was carried by the web.

N

C

fc

ft

A

T

For these situations where bending is high but shear is 
low, for example in roof design, material can be saved 
by raising a framework design. A truss is a pinpointed 
framework.

A truss concentrates the maximum amount of materials 
as far away as possible from the neutral axis. With 
the resulting greater moment arm (h), much larger 
moments can be resisted.

Resistance of a truss at a section is provided by:

M = C × h = T × h 

N

C

h
A

T

Table 7.5
Allowable compressive stress, Pcw for concrete used in walls (N/mm²)

Concrete grade 
or mix

Slenderness 
ratio l/b

Ratio of eccentricity of the load e/b

Plain concrete walls Centrally reinforced concrete walls

0.00 0.10 0.20 0.30 0.40 0.50

C20 25 2.4 1.7 0.9 - - -

20 3.3 2.3 1.4 0.8 0.4 0.3

15 4.1 3.0 2.0 0.8 0.4 0.3

≤ 10 4.8 3.7 2.7 0.8 0.4 0.3

C15 25 2.0 1.3 0.7 - - -

20 2.8 1.9 1.1 0.7 0.35 0.25

15 3.4 2.4 1.7 0.7 0.35 0.25

≤ 10 3.9 3.0 2.2 0.7 0.35 0.25

C10 20 2.3 1.6 1.0 0.5 0.3 0.2

15 2.7 2.0 1.4 0.5 0.3 0.2

≤10 3.2 2.5 1.8 0.5 0.3 0.2

1:1:3 

1:1:2

25 2.3 1.6 0.8 - - -

20 3.2 2.2 1.3 0.8 0.4 0.3

15 4.1 2.9 1.9 0.8 0.4 0.3

≤ 10 4.7 3.6 2.6 0.8 0.4 0.3

1:2:3 20 3.0 2.1 1.3 0.7 0.35 0.25

15 3.7 2.7 1.9 0.7 0.35 0.25

≤10 4.3 3.4 2.5 0.7 0.35 0.25

1:2:4 20 2.7 1.8 1.0 0.6 0.3 0.2

15 3.3 2.3 1.6 0.6 0.3 0.2

≤ 10 3.8 2.9 2.1 0.6 0.3 0.2

Higher values of stress may be permitted, depending on the level of work supervision.
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where:
C = T in parallel chords and:
C = compression in the top chord of the truss. 
T = tension in bottom chord of a simply supported truss.
h = vertical height of truss section.

If either C or T or h can be increased, then the truss will 
be capable of resisting heavier loads. The value of h can 
be increased by making a deeper truss.

Allowable C- or T-stresses can be increased by 
choosing a larger cross-section for the chords of the 
truss, or by changing to a stronger material.

A framework or truss can be considered as a beam 
with the major part of the web removed. This is possible 
where bending stresses are more significant than shear 
stresses. The simple beam has a constant section along 
its length, yet the bending and shear stresses vary. The 
truss, comprising a number of simple members, can 
be fabricated to take into account this change in stress 
along its length.

The pitched-roof truss is the best example of this, 
although the original shape was probably designed to 
shed rainwater. Roof trusses consist of sloping rafters 
that meet at the ridge, a main tie connecting the feet of 
the rafters and internal bracing members. They are used 
to support a roof covering in conjunction with purlins, 
which are laid longitudinally across the rafters, with the 
roof cover attached to the purlin. The arrangement of 
the internal bracing depends on the span. 

Rafters are normally divided into equal lengths and, 
ideally, the purlins are supported at the joints so that 
the rafters are only subjected to axial forces. This is not 
always practicable because purlin spacing is dependent 
on the type of roof covering. When the purlins are 
not supported at the panel joints, the rafter members 
must be designed for bending as well as axial force. See 
Figure 7.2.

The internal bracing members of a truss should be 
triangulated and, as far as possible, arranged so that 
long members are in tension and compression members 
are short to avoid buckling problems.

The outlines in Figure 7.3 give typical forms for 
various spans. The thick lines indicate struts.

The lattice girder, also called a truss, is a plane frame 
of open web construction, usually with parallel chords 

or booms at top and bottom. There are two main types, 
the N- (or Pratt) girder and the Warren girder. They are 
very useful in long-span construction, in which their 
small depth-to-span ratio, generally about 1/10 to 1/14, 
gives them a distinct advantage over roof trusses.

Steel and timber trusses are usually designed 
assuming pin-jointed members. In practice, timber 
trusses are assembled with bolts, nails or special 
connectors, and steel trusses are bolted, riveted or 
welded. Although these rigid joints impose secondary 
stresses, it is seldom necessary to consider them in 
the design procedure. The following steps should be 
considered when designing a truss:

1.	 Select general layout of truss members and truss 
spacing.

2.	 Estimate external loads to be applied including 
self-weight of truss, purlins and roof covering, 
together with wind loads.

3.	 Determine critical (worst combinations) loading. 
It is usual to consider dead loads alone, and then 
dead and imposed loads combined.

4.	 Analyse the framework to find forces in all 
members.

5.	 Select the material and section to produce in each 
member a stress value that does not exceed the 
permissible value. Particular care must be taken 
with compression members (struts), or members 
normally in tension but subject to stress reversal 
caused by wind uplift.

Unless there are particular constructional requirements, 
roof trusses should, as far as possible, be spaced to 
achieve minimum weight and economy of materials 
used in the total roof structure. As the distance 
between trusses is increased, the weight of the purlins 
tends to increase more rapidly than that of the trusses. 
For spans up to around 20  m, the spacing of steel 
trusses is likely to be about 4 metres and, in the case of 
timber, 2 metres.

The pitch, or slope, of a roof depends on locality, 
imposed loading and type of covering. Heavy rainfall 
may require steep slopes for rapid drainage; a slope of 
22° is common for corrugated steel and asbestos roofing 
sheets. Manufacturers of roofing material usually make 
recommendations regarding suitable slopes and fixings.

Figure 7.4  Truss components
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To enable the designer to determine the maximum 
design load for each member, the member forces can be 
evaluated either by calculation or graphical means, and 
the results tabulated as shown:

Member Dead

Load

D

Imposed

Load

I

Dead + imposed

Load

D + I

Wind

Load

W

Design

Load

A simplified approach can be taken if the intention 
is to use a common section throughout. Once the 
layout has been chosen, the member that will carry the 
maximum load can be established. An understanding 
of the problems of instability of compression members 
will lead the designer to concentrate on the top chord 
or rafter members. A force diagram or method of 
sections can then be used to determine the load on these 
members and the necessary size.

Example 7.11
A farm building comprising block walls carries steel 
roof trusses over a span of 8  metres. Roofing sheets 
determine the purlin spacings. Design the roof trusses.

Assume a force analysis shows maximum rafter 
forces of approximately 50 kN in compression (D + I) 
and 30 kN in tension (D + W), outer main tie member 
50 kN tension (D + I) and 30 kN compression (D + W). 
A reversal of forces caused by the uplift action of wind 
will cause the outer main tie member to have 50 kN of 
tension and 30 kN of compression.
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Figure 7.5  Types of trusses
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Consulting a structural engineering handbook 
reveals that a steel angle with a section of 65  mm  × 
50  mm × 6  mm and an effective length of 1.8  m can 
safely carry 29 kN in compression.

Rafter: Using two angles back-to-back will be 
satisfactory because the distance between restraints 
is only 1.38  m. (Note that angles must be battened 
together along the length of the rafter).

Main Tie: The 65 mm × 50 mm × 6 mm section can 
carry the required tensile force. Although its length is a 
little greater than 1.8 m, the compressive load brought 
about by wind uplift is safe as the design codes allow 
a greater slenderness ratio for intermittent loads such 
as wind.

Finished Design: Note the use of a sole plate to 
safely distribute the load to the blockwork wall to 
ensure that the bearing stress of the blocks is not 
exceeded. See Figure 7.4.

Frames
Apart from the roof truss, there are a number of other 
structural frames commonly used in farm building 
construction. They include portal frames, pole barns 
and post-and-beam frames.

A single-bay portal frame consists of a horizontal 
beam or pitched rafters joined rigidly to vertical 
stanchions on either side to form a continuous plane 
frame. For design purposes, portal frames can be 
classified into three types: fixed base, pinned base (two 
pins), pinned base and ridge (three pins).

The rigid joints and fixed bases have to withstand 
bending moments and all bases are subjected 
to horizontal, as well as vertical, reactions. Hence 
foundation design requires special attention. The 
externally applied loads cause bending moments, shear 
forces and axial forces in the frame.

Portal frames are statically indeterminate structures 
and the complexity of the analysis precludes coverage 
here. However, the results of such calculations for 
a number of standard cases of loading are tabulated 
in handbooks. Using these and the principle of 
superposition, the designer can determine the structural 
section required for the frame. Determining the 
maximum values of the bending moment, shear force 
and axial force acting anywhere in the frame allows the 
selection of an adequate section for use throughout the 
frame. Care must be exercised to ensure that all joints 
and connections are adequate.

Figure 7.6  Finished design of the roof truss

Notes:
All welds to be 4mm fillet
All bolts to be M16
Gusset plates to be 8mm thick
Internal bracing shown 65 x 50 x 6 to use common section
(size can be reduced if others available)
All sections in grade 43 steel
Purlin supports: 70 x 70 x 6 with 2 x 6 ø holes
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Portal frames may be made of steel, reinforced 
concrete or timber. With wider spans the structural 
components become massive if timber or reinforced 
concrete is used. Hence, steel frames are most common 
for spans over 20  m. At the eaves, where maximum 
bending moments occur, the section used will need a 
greater depth than at other points in the frame.

Figure 7.7  Portal or rigid frame

Pole barns are usually built with a relatively simple 
foundation, deeper than usual, and backfilled with 
rammed earth. Pole barns are braced between columns 
and rafters in each direction. The braces serve to reduce 
the effective length of compression members and the 
effective span of rafters and other beam members. This 
leads to a structure that is simple to analyse and design, 
and can be a low-cost form of construction.

A shed-type building is a simple construction 
consisting of beams (horizontal or sloping), supported 
at their ends on walls or posts. There may be one or 
more intermediate supports depending on the width 
of the building. Purlins running longitudinally support 
the roof cover. 

As the principal members are simple or continuous 
beams (very often timber of rectangular section), the 
stress-analysis aspect of the design is straightforward. 
When the beam is supported by timber posts, the 
design of the posts is not difficult because the load is 
assumed to be axial. Like the poles in the pole barn, 
the foundation can consist of a simple pad of concrete 
beneath the post, or the base of the post can be set into 
concrete.

RC PORTAL FRAME

TIMBER PORTAL FRAME

Example 7.12
Design the roof of a building using block walls, timber 
posts and rafters as shown in the figures below.

It is assumed that the knee braces reduce the 
effective span of the rafters between the central wall and 
the timber posts.

The moments and forces involved are as shown 
in the diagram below. Self-weights and service load 
have been estimated. Continuity over post and brace 
has been disregarded. This provides a simple but safe 
member.

Self-weights and service load have been estimated. 
Continuity over post and brace have been disregarded. 
This provides a simple safe member.

Maximum shear force = 5 kN

Maximum bending moment = 3 120 kN/ mm².

Try two rafters at 38 × 200 (back to back)
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Tables of allowable stresses indicate that most 
hardwoods, but not all softwoods, are adequate.

The load transferred to the outer wall by rafters is a 
little over 3  kN. Assuming that the strength of the 
blocks is at least 2.8 MPa (N/mm²), the area required is:

MPa = N/mm2  =   =

  = Maximum bending stress

 2.62.6
 2002 × 76

 6× 103 × 120 3
Z
M

 = 
I

My

1 072 mm2

8.2
0003

=

mm 14= 
76

 072 1

As the rafter underside is 76  mm, the minimum 
interface across the wall is:

MPa = N/mm2  =   =

  = Maximum bending stress

 2.62.6
 2002 × 76

 6× 103 × 120 3
Z
M

 = 
I

My

1 072 mm2

8.2
0003

=

mm 14= 
76

 072 1

Hence there is no problem of load transfer to the wall.

Assume posts are 100 mm × 100 mm and 2.5 m long, 
then l / b = 25 and Table 7.2 gives K = 0.38

With σc = 5.2 MPa (N/mm²) allowable for design, 0.38 
× 5.2 N/mm² × 1002 ≈ 20 kN. 

Therefore the load is within the safety margin.

Connections

Timber structure
The methods used to join members include lapped 
and butt connectors. Bolt and connector joints, nailed 
joints and glued joints, and sometimes a combination 
of two types, are examples of lapped connections. Butt 
connections require the use of plates or gussets. In all 
cases the joints should be designed by calculating the 
shear forces that will occur in the members.

If two members overlap, the joint is called a single-
lap joint. If one is lapped by two other members, i.e. 
sandwiched between them, it is called a double-lap joint.

With a single lap, the joint is under eccentric 
loading. While for small-span trusses carrying light 
loads this is not significant, when the joints carry large 
loads eccentricity should be avoided by the use of 
double-lap joints. Double members are also used to 
obtain a satisfactory arrangement of members in the 
truss as a whole.

Sandwich construction enables the necessary 
sectional area of a member to be obtained by the use 
of relatively thin timbers, with any double members in 
compression being blocked apart and fixed in position 
to provide the necessary stiffness.

Butt joints
The use of gussets permits members to butt against 
each other in the same plane, avoids eccentric loading 
on the joints and, where necessary, provides a greater 

joining area than is possible with lapped members. This 
is often an important factor in nailed and glued joints. 
Arrangement of members on a single centre line is 
usually possible with gussets.

When full-length timber is not available for a 
member, a butt joint with cover plates can be used to 
join two pieces together. This should be avoided, if 
possible, for the top members (rafters) of a truss and 
positioned near mid-span for the bottom member 
(main tie).

Figure 7.8  Butt joints

Bolt and connector joints
Simple bolted joints should only be used for lightly 
loaded joints because the bearing area at the hole (hole 
diameter  ×  member thickness) and the relatively low 
bearing stress allowed for the timber compared with 
that of the steel bolt, may cause the timber hole to 
elongate and fail.

Timber connectors are metal rings or toothed plates 
used to increase the efficiency of bolted joints. They are 
embedded half into each of the adjacent members and 
transmit loads from one to the other. The type most 
commonly used for light structures is the toothed-plate 
connector, a mild-steel plate cut and stamped to form 
triangular teeth projecting on each side that embed in 
the surfaces of the members on tightening the bolt that 
passes through the joint. The double-sided toothed 
connector transmits the load and the bolt is assumed to 
take no load.

Glued joints
Glues made from synthetic resins produce the most 
efficient form of joint, as strong as or even stronger 
than the timber joint, and many are immune to attack 
by dampness and decay. With this type of joint, 

Plywood
gussets

Cover plates
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all contact surfaces must be planed smooth and the 
necessary pressure applied during setting of the glue. 
Bolts or nails that act as clamps are often used and left 
in place.

The members may be glued directly to each other 
using lapped joints, or single-thickness construction 
may be used by the adoption of gussets. As with nailed 
joints, lapped members may not provide sufficient 
gluing area and gussets must then be used to provide 
the extra area.

Glued joints are more often used when trusses are 
prefabricated because control over temperature, joint 
fit and clamping pressure is essential. For home use, 
glue is often used together with nail joints.

Figure 7.9  Double-sided toothed plate connector

Nailed joints
Although joining by nails is the least efficient of the 
three methods mentioned, it is an inexpensive and 
simple method, and can be improved upon by using 
glue in combination with the nails.

When trusses are prefabricated in factories, nailing 
plates are often used to connect the member. These 
fasteners come in two types:

1.	 A thin-gauge plate called a pierced-plate fastener, 
which has holes punched regularly over its 
surface to receive nails. The pierced plate can 
also be used for on-site fabrication.

2.	 A heavier plate with teeth punched from the plate 
and bent up 90 degrees, called a toothed-plate 
fastener, or connector. This type, in which the 
teeth are an integral part of the plate, must be 
driven in by a hydraulic press or roller.

Figure 7.10  Truss gussets

Figure 7.11  Nailing plates for truss construction

Plywood gusset

Pierced plate fastener

Toothed plate fastener
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Table 7.6
Minimum nailing distances

In order to permit the development of the full load 
at each nail and to avoid splitting the wood, minimum 
spacing between nails and distances from the edges and 
ends of the member are necessary.

Nailing patterns for use on timber structures are 
usually available locally. They depend on the quality 
and type of nails and timber used, and are based on the 
safe lateral nail load.

The Housing Research and Development Unit of 
the University of Nairobi investigated timber nailed 
joints made with spacings in accordance with the 
continental standard for timber joints, which proved to 
be satisfactory. The main principles are given in tables 
7.6 and 7.7. 

Connections in steel structures
Connections may be bolted, riveted or welded. The 
principal design considerations are shear, tension 
and compression, and the calculations are relatively 
straightforward for the types of design covered.

rb

ro

ro

ro
Loaded edge of
member 2

FO
RC

E

Loaded end member 1

Nailing area

ro

rb

ro

ro

FO
RC

E

Loaded end member 1

Loaded edge

Nailing area

Nailing area

x ro d1 d11 rb e0 eb

0 5d 5d 10d 5d - 15d

10 5d 5d 10d 5.5d 8d 15d

20 5d 5d 10d 6d 8d 15d

30 5d 5d 10d 6.5d 8d 15d

40 5d 5d 10d 7d 8d 15d

50 5d 5d 10d 7.5d 8d 15d

≤ 60 5d 5d 10d 8d 8d 15d

d :	 Diameter of the nail (mm). 
r0 :	 Distance from the extreme row of nails to the 
	 unloaded edge of member. 
d1 :	 Distance between two nails in the nailing area, 
	 measured perpendicular to the axis of the member. 
d11 :	 Distance between two nails measured parallel to the 
	 axis of the member. 
rb :	 Distance from the extreme row of nails to the 
	 loaded edge of the member. 
e0 :	 Distance from the nearest row of nails to the 
	 unloaded end of member. 
eb :	 Distance from the nearest row of nails to the loaded 
	 end of the member. 

Stability
Stability problems in a building are chiefly the result 
of horizontal loads, such as those resulting from wind 
pressure, storage of granular products against walls, soil 
pressure against foundations and sometimes earthquakes.

Overturning of foundation walls and foundation 
piers and pads is counteracted by the width of the 
footing and the weight of the structure. Only in special 
cases will it be necessary to give extra support in the 
form of buttresses.

Overturning of external walls is counteracted by the 
support of perpendicular walls and partitions. Note, 
however, that not all types of wall, for example framed 
walls, are adequately rigid along their length without 
diagonal bracing. If supporting walls are widely spaced 
and/or the horizontal loads are large, extra support can 
be supplied by the construction of piers, columns or 
buttresses. See Chapter 8.

Diagonal bracing is used to make framed walls and 
structures stiff. Long braces should preferably transfer 
the load with a tensile stress to avoid buckling. Braces 

ro

ro

d1

d11 d11

d1

eb eb
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are usually supplied in pairs, i.e. on both diagonals, so 
that one will always be in tension independently of the 
wind direction.

If the framed wall is covered with a sheet material, 
such as plywood, chipboard or metal sheets, the lateral 
forces on the frame can be counteracted by shear in the 
sheets. This design requires the sheets to be securely 
fixed to the frame, both horizontally and vertically. 
The sheets must be strong enough to resist buckling or 
failure through shear.

Masonry and concrete walls that are stiff and capable 
of resisting lateral wind loading are called shear walls.

Portal or rigid frame buildings are normally stable 
laterally, when the wind pressure acts on the long sides. 
However, when the wind loads occur at the gable ends, 

Wind force

Braces Sheet material
thoroughly fixed
to the frame

Afternate direction
of wind force

the frames may need extra support from longitudinal 
bracing. Tension rods are frequently used.

Figure 7.13  Bracing for portal frame

Post-and-beam or shed-frame buildings will, in 
most cases, require wind bracing, both along and across 
the building because there are no rigid connections at 
the top of the wall to transfer loads across and along the 
building. The same applies to buildings employing roof 
trusses. End bracing should be installed.

Figure 7.12  Connections for steel frames

Connections in single shear at bottom boom of truss Bolts in shear and tension at ridge of portal frame

Table 7.7
Basic lateral loads per nail

Continental nail diameter (mm) 2.1 2.4 2.8 3.1 3.4 3.8 4.2 4.6 5.1 5.6 6.1

Kenya nail diameter (mm) 1.8 2.0 2.65 3.35 3.75 4.5 5.6 6.0

Basic lateral nail load (N) 90 120 140 190 220 250 310 350 370 430 450 540 600 630 750 880 960 1 000

(If the case of pre-bored nail holes 0.8 times nail diameter, the lateral nail load can be increased by 25%)
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Walls with long spans between the supporting 
crosswalls, partitions or buttresses tend to bend inwards 
under the wind load, or outwards if bulk grain or other 
produce is stored against the wall. At the bottom of the 
wall this tendency is counteracted by the rigidity of the 
foundation (designed not to slide) and the support of 
a floor structure. The top of the wall is given stability 
by the support of the ceiling or roof structure, or a 
specially designed wall beam that is securely anchored 
to the wall.

The designer must consider the ability of the 
building to withstand horizontal loading from any and 
all directions, without unacceptable deformation.

Retaining walls

Wall failure
Walls are commonly used to retain soil on sloping 
sites, water in a pond or bulk products within a storage 
area. There are several limiting conditions which, if 
exceeded, can lead to the failure of a retaining wall. 
Each must be addressed in designing a wall.

1.	 Overturning: This occurs when the turning 
moment resulting from lateral forces exceeds 
that exerted by the self-weight of the wall. The 
factor of safety against overturning should be at 
least two.

2.	 Sliding: The wall will slide if the lateral thrust 
exceeds the frictional resistance developed 
between the base of the wall and the soil. The 
factor of safety against sliding should be about 
two.

POverturning

Sliding P

3.	 Bearing on ground: The normal pressure between 
the base of the wall and the soil beneath can cause 
a bearing failure of the soil, if the ultimate bearing 
capacity is exceeded. Usually the allowable 
bearing pressure will be one-third of the ultimate 
value. Note that the pressure distribution across 
the base is not constant.

4.	 Rotational Slip: The wall and a large amount of 
the retained material rotate about point O if the 
shear resistance developed along a circular arc is 
exceeded. The analysis is too complex to include 
here.

5.	 Wall material failure: The structure itself must 
be capable of withstanding the internal stresses 
set up, that is to say, the stresses must not 
exceed allowable values. Factors of safety used 
here depend on the material and the level of 
the designer’s knowledge of the loads actually 
applied. Naturally, both shear and bending must 
be considered, but the most critical condition is 
likely to be tension failure of the ‘front’ facet.

PBearing
pressure

PRotation

PJoint
failure in 
blockwork
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Gravity walls and dams are dependent on the effect of 
gravity, largely from the self-weight of the wall itself, 
for stability. Other types of wall rely on a rigid base, 
combined with a wall designed against bending, to 
provide an adequate structure.

Pressure exerted by retained material

Liquid pressure
The pressure in a liquid is directly proportional to 
both the depth and the specific weight of the liquid (w) 
which is the weight per unit volume, w = ρg (N/m³),

where:
ρ = density of liquid (kg/m³)
g = gravitational acceleration (9.81 m/s2)

The pressure at a given depth acts equally in all 
directions, and the resultant force on a dam or wall face 
is normal to the face. The pressure from the liquid can 
be treated as a distributed load with linear variation in a 
triangular load form, with a centroid two-thirds of the 
way down the wet face.

p = ρgH = wH (N/m2) and:

2
wH2

P =

H
3
2

acting at a depth of 

2
wH2

P =

H
3
2

It should be noted that a wall retaining a material that is 
saturated (waterlogged) must resist this liquid pressure 
in addition to the lateral pressure from the retained 
material.

PTension 
bending
failure

P
H

H/3

Free surface

Liquid

Example 7.13
Design of a gravity wall retaining water

Consider a mass concrete dam with the cross-
section shown, which retains water to 3 m depth. 

Assume: 
Ground safe bearing capacity: 300 kPa. 
Coefficient of sliding friction at base: 0.7. 
Specific weight of concrete: 23 kN/m³.

1. Find water force P:
All calculations per metre length of wall: 
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(acting one metre up face)

2. Find mass of one metre length of wall:
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3. Find line of action of w: Taking moments of area 
about vertical face:
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Hence the self-weight of the wall acts 0.25 m to left of 
the base centre line.

4. Find the vertical compressive stress on the base:
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Pσ ==
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486.0 × 4.23
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5. Find the moment about the centre line of the base

M = (1 × 44.1) - (0.25 × 82.8); (clockwise) - (anticlockwise) 
M = 23.4 kNm

6. Find the bending stresses/pressures
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where:
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7. Find the actual stresses/pressures 

I

My + 
A
W

Pσ ==

σE = PE = 46 + 12.6 = 58.6 kPa (compression)
σD = PD = 46 - 12.6 = 33.4 kPa (compression)

(Note: Compression only indicates the resultant P, and 
W would intersect the base line within its middle third).

8. Compare maximum pressure with allowable bearing 
capacity:

Pmax = 58.6 kPa

This is less than the allowable safe bearing capacity of 
the soil. Hence the wall-soil interface is safe against 
bearing failure.

9. Compare actual stresses in the wall with allowable 
values:

Maximum stress  = 58.6 kPa (compression) and no 
tensile stress at any point across wall. Hence the wall 
material is safe.

10. Check overturning

Overturning moment about D = 44.1 × 1 = 44.1 kNm
Stabilising moment about D = 82.8 × 1.15 = 95.22 kNm

Factor of safety against overturning = 94.22 / 44.1 = 2.16

The wall is safe against overturning.

11. Check sliding

Frictional resistance = mW
mW= 0.7 × 82.8 = 58 kN
Horizontal thrust = P = 44.1 kN

As the required factor against sliding is 2, there is a 
deficiency of (2 × 44.1) - 58 = 30.2 kN.

Additional anchorage against sliding should be provided.

Example 7.14
Design a circular water tank with the following 
dimensions/properties:

Diameter 5 m, depth of water 3 m
Water weighs 9.8 × 103 N/m³
Pressure (P) at a depth of 3 m

P = 44·1 kN

W = 82·8

1 m

0·65 1·15

P

F=μ·W

W
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P3 = wH = 9.8 × 103 × 3 = 29.4 kPa

This acts vertically over the entire base; therefore the 
base should be designed for a uniformly distributed 
load (UDL) of 29.4 kPa.

Pressure P3 also acts laterally on the side wall at its 
bottom edge. This pressure decreases linearly to zero at 
the water surface.

Total force on base = 
( )

kN 3.577= 
4

52

  4.29 = ABP3

×
×

π

(acting at the centre of the base)

Total force on the side per metre of perimeter wall:
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(acting one metre above base)

Pressure exerted by granular materials
Granular materials such as sandy soils, gravelly soils 
and grain possess the property of internal friction 
(friction between adjacent grains), but are assumed 
not to possess the property of cohesion. If a quantity 
of such material in a dry condition is tipped on to 
a flat surface, it will form a conical heap: the shape 
maintained by this internal friction between grains. The 
angle of the sloping side is known as the angle of repose.

Angle of reponse

For a dry material, the angle of repose is usually equal 
to the angle of shearing resistance of the material. This 
angle of shearing resistance is called the angle of internal 
friction (θ). The angle of friction is the essential property 
of a granular material on which Rankine’s theory is based. 
This theory enables the lateral pressure to be expressed as 
a proportion of the vertical pressure, which was shown 
(before) to depend on specific weight and depth only.

In this case, at a depth h the active lateral pressure is 
given by:

P = k × w × h

where: 
k = a constant dependent on the materials involved.

Although there is some friction between the retained 
material and the wall face, usually this is disregarded, 
giving a relatively simple relationship for k:
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where:
θ = the angle of friction 
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where:
pa = total force per metre of wall-face (N)
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Pa = total force per metre of wall face (N)

This gives the approximate horizontal resultant force 
on a vertical wall face when it is retaining material that 
is level with the top of the wall. If the surface of the 
retained material is sloping up from the wall at an angle 
equal to its angle of repose, a modification is required.

Example 7.15
Wall retaining soil

Timber beams

SOIL

Steel posts set
in concrete
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Consider the wall shown retaining loose sandy soil to 
a depth of 2 metres. Tables provide angle of friction 
equal to 35° and specific weight equal to 18.6 kN/m³. 
Assuming a smooth vertical surface and horizontal soil 
surface, Rankine’s theory gives: 
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P = 10.1 kN/m length of wall.

If steel posts are placed at 2.5 m centres, each post can 
be approximated to a vertical cantilever beam 2.5  m 
long, carrying a total distributed load of 10.1 × 2.5 
= 25.25 kN of linear variation from zero at the top to 
a maximum at the base. The steel post and foundation 
concrete must be capable of resisting the applied load, 
principally in bending but also in shear.

The timber crossbeams can be analysed as beams 
simply supported over a span of 2.5 m, each carrying 
a uniformly distributed load. This load is equal to the 
product of the face area of the beam and the pressure in 
the soil at a depth indicated by the centroid of the area 
of the beam face. 
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if beam face is 0.3 m high, 

h = 2.0 – 0.15= 1.85 m

P = 0.27 × 18.6 × 1.85 = 9.29 kN/m2

Total uniformly distributed load on the beam 
= 9.29 × 0.3 × 2.5 = 6.97 kN

The maximum bending moment at the centre of the 
span can be determined and the beam section checked.

Example 7.16
Grain storage bin
(The theory given does not apply to deep bins). A 
shallow bin can be defined as one with a sidewall height 
of less than
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Consider a square bin of side length 4 metres retaining 
shelled maize/corn to a depth of 2 metres. Assume θ = 
27°; specific weight is 7.7 kN/m³.

Critical height is:
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Design in the same way as the shallow bin because the 
depth of grain is only 2 metres.

Maximum pressure at the base of the wall:
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or resultant force 
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(acting 2/3 m above the base of the wall).

Note that the design of the wall is complex if it consists 
of a plate of uniform thickness, but if the wall is 
thought of as comprising a number of vertical members 
cantilevered from the floor, an approach similar to that 
for the soil-retaining wall can be used.

Designing for EARTHQUAKES
In areas where earthquakes occur frequently, buildings 
must be designed to resist the stresses caused by 
tremors. While the intensity of tremors can be much 
greater in loosely compacted soil than in firm soil or 
solid bedrock, one- and two-storey buildings are at 
greater risk on firm ground or bedrock because of the 
shorter resonance periods.

S = 4 m

PRESSURE
DIAGRAM

2 
m
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Casualties are most likely to be caused by the 
collapse of walls causing the roof to fall, and the failure 
of projecting elements such as parapets, water tanks, 
non-monolithic chimneys and loose roof coverings. 
Outbreaks of fire caused by fractures in chimneys 
or breaks in mains supply lines present an additional 
hazard.

While small buildings with timber frame walls, or 
a wooden ring beam supported by the posts of a mud-
and-pole wall, can resist quite violent earthquakes, the 
following measures will increase the resistance of a 
large building to collapse from earth tremors:

•	 Use a round or rectangular shape for the building. 
Other shapes such as ‘L’ ‘T’ or ‘U’ should be 
divided into separate units. To be effective, this 
separation must be carried down through to the 
foundation. 

•	 Avoid large spans, greatly elongated walls, vault-
and-dome construction and wall openings in 
excess of one-third of the total wall area. 

•	 Construct a continuously reinforced footing that 
rests on uniform soil at a uniform depth – even on 
sloping ground. 

•	 Fix the roof securely, either to a continuously 
reinforced ring beam on top of the walls, or to 
independent supports, which will not fail even if 
the walls collapse. 

•	 Avoid projecting elements, brittle materials and 
heavy materials on weak supports. 

•	 Avoid combustible materials near chimneys and 
power lines.

Ductile structures have many joints that can 
move slightly without failing, e.g. bolted trusses. 
Such structures have a greater capacity to absorb the 
energy of earthquake waves. A symmetrical, uniformly 
distributed ductile framework with the walls securely 
fixed to the frame is suitable for large buildings.

Masonry walls are sensitive to earthquake loads 
and tend to crack through the joints. It is therefore 
important to use a good mortar and occasionally 
reinforcing will be required.

Review questions
1.	 Define structural design.
2.	 Briefly describe the structural design process.
3.	 Why is it important to take into account deflection 

of structural elements during design phase?
4.	 Outline factors that influence design of beams.
5.	 Which measures improve the resistance of 

buildings to earthquake?
6.	 Calculate section moduli for a T –section, flange 

150 mm by 25 mm, web thickness 25 mm and 
overall depth, 150 mm.

7.	 A 10 m long T section beam is simply supported, 
with the flange uppermost, from the right-hand 
end and at a point 2.5 m from the left-hand end. 
The beam is to carry a uniformly distributed 
load of 8 kN/m over the entire length.  The 

allowable flange and web thickness is 25 mm. 
If the allowable maximum tensile strength and 
compressive stress are 125 MPa and 70 MPa 
respectively. Determine the size of the flange.

8.	 A short hollow cylindrical column with an 
internal diameter of 200 mm and external diameter 
of 250 mm carries a compressive load of 600 kN. 
Find the maximum permissible eccentricity of 
the load if (a) the tensile stress in the column 
must not exceed 15 MPa; (b) the compressive 
stress must not exceed 76 MPa. 

9.	 Design a section of a trapezoidal masonry 
retaining wall 10 metres high, to retain earth 
weighing 16 000 N/m3. The angle of repose 
for the earth is 25° when the earth surface is 
horizontal and level with the top of the wall. The 
weight of the masonry wall is 25 000 N/m3.

10.	A reinforced concrete beam is 200 mm wide, 
has an effective depth of 450 mm and four 
20 mm diameter reinforcing bars. If the section 
has to resist a bending moment of 50 × 106 N mm, 
calculate the stresses in steel and concrete. The 
modular ratio of steel to concrete is equal to 18.
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