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Importance of aerodynamics 

 Natural Philosophy
 Physics

 Mechanics
 Dynamics

 Aerodynamics…

‘‘The term “aerodynamics” is generally used for problems arising

from flight and other topics involving the flow of air’’.

Ludwig Prandtl, 1949

Aerodynamics: The dynamics of gases, especially atmospheric

interactions with moving objects.

The American Heritage Dictionary of the English Language, 

1969



Importance of aerodynamics 

 Naval power was going to depend greatly on the speed and

maneuverability of ships.

 To increase the speed of a ship, it is important to reduce the

resistance created by the water flow around the ship’s hull.

 Suddenly, the drag on ship hulls became an engineering

problem of great interest, thus giving impetus to the study of fluid

mechanics.

 On August 8, 1588, The great Spanish

Armada was met head-on by the English

fleet under the command of Sir Francis

Drake.

 The Spanish ships were large and heavy, in contrast, the

English ships were smaller and lighter.

 England won the naval war.



Importance of aerodynamics 

 In 1781, Leonhard Euler (1707–1783) pointed out the

physical inconsistency of Newton’s model and modified it.

 The rapid rise in the importance of naval architecture

made fluid dynamics an important science, occupying the

minds of Newton, d’Alembert, and Euler, among many

others in Europe.

 in 1687, Isaac Newton (1642–1727) published his

famous Principia, in which the entire second book

was devoted to fluid mechanics.

 In 1777, a series of experiments was carried out

by Jean Le Rond d’Alembert (1717–1783) in order

to measure the resistance of ships in canals.



 In the US, since their 1901 glider was of poor

aerodynamic design, the Wright Brothers set about

determining what constitutes good aerodynamic design.

 In the fall of 1901, they design and build a wind tunnel

powered by a two-bladed fan connected to a gasoline

engine.

 The aerodynamic data are taken logically and carefully.

 Armed with their new aerodynamic information, the

Wrights design a new glider in the spring of 1902 and flew

successfully.

 The good aerodynamics was vital to the ultimate success

of the Wright brothers and, of course, to all subsequent

successful airplane designs up to the present day.

Importance of aerodynamics 



Aerodynamics: Classification and Objectives

 The word fluid is used to denote either a

liquid or a gas.

 The liquid and gas will change its shape 

to conform to that of the container…

 The most fundamental distinction between solids,

liquids, and gases is at the atomic and molecular level.

 Fluid dynamics is subdivided into three areas:

Hydrodynamics — flow of liquids

Gas dynamics — flow of gases

Aerodynamics — flow of air



Aerodynamics: Classification and Objectives

 Aerodynamics is an applied science with many

practical applications in engineering.

 It is aimed at one or more of the following practical

objectives:

1. The prediction of forces and moments

on, and heat transfer to, bodies moving

through a fluid (usually air).

lift, drag, and moments on airfoils, wings,

fuselages, engine nacelles, and most

importantly, whole airplane configurations…

2. Determination of flows moving internally 

through ducts.

external aerodynamics

internal aerodynamics

the flow properties inside rocket and air-

breathing jet engines and to calculate the

engine thrust



Some Fundamental Aerodynamic Variables

 The four of the most frequently used words in

aerodynamics: pressure, density, temperature, and flow

velocity.

Pressure is the normal force per unit area

exerted on a surface due to the time rate of

change of momentum of the liquid/gas

molecules impacting on (or crossing) that

surface.

 Pressure is a point property and can have a different

value from one point to another in the fluid.

 It is a scalar quantity, not a vector,

 It is perpendicular to the surface,

 It acts inward, is toward the surface



Some Fundamental Aerodynamic Variables

 Another important aerodynamic variable

is density, defined as the mass per unit

volume.

 It is a point property, scalar quantity, that

can vary from point to point in the fluid.

dv = elemental volume around B
dm = mass of fluid inside dv

High density Low density



Some Fundamental Aerodynamic Variables

 Temperature takes on an important role in high-speed

aerodynamics.

 The temperature T of a gas is directly proportional to the

average kinetic energy of the molecules of the fluid.

 We can qualitatively visualize a high-temperature gas as

one in which the molecules and atoms are randomly

rattling about at high speeds.

 Temperature is also a point property, scalar quantity, which

can vary from point to point in the gas.

k = Boltzmann constant



Some Fundamental Aerodynamic Variables

 The principal focus of aerodynamics is fluids in motion.

Hence, flow velocity is an extremely important

consideration.

 Velocity is the time rate of change of displacement.

 In contrast to solid, a fluid is a “squishy” substance.

 For a fluid in motion, one part of the fluid may be

traveling at a different velocity from another part.

Flow velocity: The velocity of a flowing

gas at any fixed point B in space is the

velocity of an infinitesimally small fluid

element as it sweeps through B.

 The flow velocity V has both magnitude and direction;

hence, it is a vector quantity, and it is a point property.



Some Fundamental Aerodynamic Variables

 we note that friction can play a role internally in a flow.

The shear stress τ is the limiting form of the magnitude

of the frictional force per unit area

 Consider two adjacent fluid layers, streamlines. Due to

different velocity values, there will be shear stress on

the fluid surfaces.

 İt is directly proportional to velocity difference, and

inversely proportional to vertical distance.

 The constant of proportionality is defined as the

viscosity coefficient, μ;

it is a function of the

temperature of the fluid.



Units

 Two consistent sets of units will be used throughout this

course, SI units (Système International d’Unites) and the

English engineering system of units.

 The basic units of force, mass, length, time, and absolute

temperature in these two systems are given in Table 1.1.

Pressure: N/m2

Density: kg/m3

Velocity : m/s

Stress : N/m2

Force: kg·m/s2



Aerodynamic forces and moments 

 At first glance, the generation of the aerodynamic force

may seem complex…

 However, in all cases, the aerodynamic forces and

moments on the body are due to only two basic

sources:

1. Pressure distribution,

2. Shear stress distribution over the body surface

 p acts normal to the surface,

 τ acts tangential to the surface.



Aerodynamic forces and moments 

 The net effect of the p and τ distributions integrated over the

complete body surface is a resultant aerodynamic force R

and moment M on the body.

 The resultant R can be split into

components, Normal & Axial or Lift &

Drag forces.



Aerodynamic forces and moments 

 The flow far away from the body is

called the freestream, and hence V∞ is

also called the freestream velocity.

L; component of R perpendicular to V∞

D; component of R parallel to V∞

 The chord c is the linear distance from

the leading edge to the trailing edge of

the body.

 The angle of attack α is defined as the

angle between c and V∞.

 The geometrical relation between these

two sets of components is,



Aerodynamic forces and moments 

 We can examine in more detail the integration of the

pressure and shear stress distributions to obtain the

aerodynamic forces and moments.

dS = (ds)(1)

For the upper body surface, For the lower body surface,



 The total normal and axial forces per unit span are

obtained by integrating equations from the leading edge

(LE) to the trailing edge (TE):

 We can get lift and drag forces based on the previous

equations;

Aerodynamic forces and moments 



Aerodynamic forces and moments 

 The aerodynamic moment exerted on the body depends

on the point about which moments are taken.

 Lets consider moments taken about the leading edge.

 The moment per unit span about the leading edge due to

p and τ on the elemental area dS on the upper and lower

surface are

 By integrating from the leading to the trailing edges, we

obtain the pitching moment about the leading edge per

unit span



Aerodynamic forces and moments 

 In Equations; θ, x, and y are known functions of s for a

given body shape.

 A major goal of theoretical or experimental aerodynamics

is to calculate p(s) and τ(s) for a given body shape and

freestream conditions.

 We get the aerodynamic forces and moments based on

them.

 In aerodynamics, shape is probably the most important

factor.

 We may eliminate the scale of the shape by defining

some dimensionless coefficients.



Aerodynamic forces and moments 

 Let ρ∞and V∞be the density and velocity, respectively, in

the freestream, far ahead of the body.

 We define a dimensional quantity called the freestream

dynamic pressure as

 In addition, let S be a reference area and l be a

reference length.

 The dimensionless force and moment coefficients are

defined as follows:

Lift coefficient

Drag coefficient

Moment coefficient



Aerodynamic forces and moments 

• For two-dimensional bodies, it is conventional to denote

the aerodynamic coefficients by lowercase letters; for

example,

 Two additional dimensionless quantities of immediate

use are

Pressure coefficient

Skin friction coefficient

 From the geometry

p local static pressure

p∞ static free stream pressure

q∞ dynamic free stream pressure



Aerodynamic forces and moments 

 We obtain the following integral forms for the force and

moment coefficients

 The lift and drag coefficients can also be obtained:



Example 1.1

 Consider the supersonic flow over a 5° half-angle wedge at

zero angle of attack, as sketched in figure.

 The freestream Mach number ahead of the wedge is 2.0, and

the freestream pressure and density are 1.01×105 N/m2 and

1.23 kg/m3, respectively.

 The pressures on the upper and lower surfaces of the wedge

are constant with distance s and equal to each other, namely,

pu = pl = 1.31×105 N/m2.

 The pressure exerted on the base of the wedge is equal to p∞.

 The shear stress varies over both the upper and lower

surfaces as τw = 431s-0.2

 The chord length, c, of the wedge is 2 m. Calculate the drag

coefficient for the wedge.



Example 1.1

Flow field picture

Pressure distribution

Shear stress distribution



Example 1.1

 We can calculate the drag and then obtain the drag

coefficient.

 The drag can be obtained from



Example 1.1

 Adding the pressure integrals, and then adding the shear

stress integrals, we have for total drag



Example 1.1

 Note that, for this rather slender body, but at a supersonic

speed, most of the drag is pressure drag.

 This is typical of the drag of slender supersonic bodies.

 The drag coefficient is obtained as follows.

 The velocity of the freestream is twice the sonic speed,

which is given by

 Mach Number = V / a



Center of pressure

 We see that the normal and axial forces on the body

are due to the distributed loads imposed by the

pressure and shear stress distributions.

 Moreover, these distributed loads generate a moment

about the leading edge.

 Question: If the aerodynamic force on a body is

specified in terms of a resultant single force R, or its

components such as N and A, where on the body

should this resultant be placed?

 The answer is that the resultant force should be located

on the body such that it produces the same effect as

the distributed loads.



 The components of the resulted aerodynamic force R;

Nand Amust be placed on the airfoil at such a location

to generate the same moment about the leading edge.

 If A is placed on the chord line, then Nmust be located

a distance xcp downstream of the leading edge such that

Center of pressure

 In cases where the angle of attack of the body is small,

sin α ≈ 0 and cos α ≈ 1; hence, L≈ N. Thus, Equation

becomes



Center of pressure

 Note that if moments were taken about the center of

pressure, the integrated effect of the distributed loads

would be zero.

 Hence, an alternate definition of the center of pressure

is that point on the body about which the aerodynamic

moment is zero.

෍𝑀𝑐𝑝 = 0

 To define the force-and-moment system, the resultant

force can be placed at any point on the body, as long as

the value of the moment about that point is also given.



Example 1.4

 Consider the DC-3 A/C. Just outboard of the engine

nacelle, the airfoil chord length is 15.4 ft.

 At cruising velocity (188 mi/h) at sea level, the moments

per unit span at this airfoil location are Mc/4=−1071 ft lb/ft

and MLE=−3213.9 ft lb/ft.

 Calculate the lift per unit span and the location of the

center of pressure on the airfoil.



Example 1.4

 From given equations;

 We know that



Dimensional analysis: the Buckingham Pi theorem

 What physical quantities determine the variation of

these forces and moments? The answer can be found

from the powerful method of dimensional analysis.

 Dimensional analysis is based on the obvious fact that

in an equation dealing with the real physical world, each

term must have the same dimensions.

 For example, if

is a physical relation, then ψ, η, ζ , and φ must have the

same dimensions. Otherwise we would be adding

apples and oranges.

 The above equation can be made dimensionless by

dividing by any one of the terms, say, φ:



Dimensional analysis: the Buckingham Pi theorem

 These ideas are formally embodied in the Buckingham

pi theorem, stated below without derivation.

 Let K equal the number of fundamental dimensions

required to describe the physical variables.

 Let P1, P2, . . . , PN represent N physical variables in the

physical relation;

 Then, the physical relation may be re-expressed as a

relation of (N − K) dimensionless products (called 𝜋
products),



 Each product is a dimensionless product of a set of K

physical variables plus one other physical variable.

 Let P1, P2, . . . , PK be the selected set of K physical

variables. Then

Dimensional analysis: the Buckingham Pi theorem

 The choice of the repeating variables, P1, P2, . . . , PK

should be such that they include all the K dimensions

with the minimum number used in the problem.

 Also, the dependent variable should appear in only one

of the 𝜋 products.



Dimensional analysis: the Buckingham Pi theorem

 Consider a body of given shape at a given angle of attack.

The resultant aerodynamic force is R.

 On a physical, intuitive basis, we expect R to depend on:

1. Freestream velocity V∞.

2. Freestream density ρ∞.

3. Viscosity of the fluid, by the freestream viscosity coefficient μ∞.

4. The size of the body, c

5. The compressibility of the fluid, by the freestream speed of sound, a∞.

 In light of the above, we can use common sense to write



Dimensional analysis: the Buckingham Pi theorem

 Equation can be written in the form of

 Following the Buckingham pi theorem, The physical

variables and their dimensions are

 So, the fundamental dimensions are; m, l, t

 Physical factors; N = 6, and the required dimensions

K = 3



Dimensional analysis: the Buckingham Pi theorem

 Then Equation can be re-expressed in terms of

N − K = 6 − 3 = 3 dimensionless 𝜋 products in the form

of

 These products are

 We choose V∞, ρ∞, c such that they include all the K

dimensions (l, t, m) with the minimum number used.

 Lets assume that

where d, b, and e are exponents to be found.



Dimensional analysis: the Buckingham Pi theorem

 In dimensional terms, equation is

 Because 𝜋1is dimensionless, the right side of equation

must also be dimensionless.

 This means that the exponents of m must add to zero,

and similarly for the exponents of l and t. Hence,

 Solving the above equations, we find that d = −1, b = −2,

and e = −2.



 Substituting these values into equation, we have

Dimensional analysis: the Buckingham Pi theorem

 We can replace c2 with any reference area such as the

planform area of a wing S.

 Moreover, we can multiply 𝜋1 by a pure number, and it

will still be dimensionless. Thus



Homework

HOME-WORK : find 𝜋2 and 𝜋3



Dimensional analysis: the Buckingham Pi theorem

 Based on similar approach, we can find

 The dimensionless combination of 𝜋2 is defined as the

freestream Reynolds number.

 The Reynolds number is physically a measure of the ratio

of inertia forces to viscous forces in a flow and is one of the

most powerful parameters in fluid dynamics.

 The dimensionless combination of 𝜋3 is defined as the

freestream Mach number.

 It is a powerful parameter in the study of gas dynamics.



Dimensional analysis: the Buckingham Pi theorem

 The results of our dimensional analysis may be

organized as follows;

 Since the lift and drag are components of the resultant

force, corollaries to equation are



Dimensional analysis: the Buckingham Pi theorem

 Keep in mind that the analysis was for a given body shape

at a given angle of attack α.

 If α is allowed to vary, then CL , CD, and CM will in general

depend on the value of α.

 Hence, Equations can be generalized to

 Which means if the dimensionless parameters are the

same, the lift coefficient will be the same for the same

geometry, independent from the scale…

CL CL



Flow similarity

 Consider two different flow fields over two different

bodies.

 By definition, different flows are dynamically similar if:

1. The streamline patterns are geometrically similar.

2. The distributions of V/V∞, p/p∞, T/T∞, and the force

coefficients are the same.

Question: What are the criteria to ensure that two flows are

dynamically similar?

 The answer comes from the results of the dimensional

analysis. Two flows will be dynamically similar if:

1. The bodies and any other solid boundaries are

geometrically similar for both flows.

2. The similarity parameters are the same for both flows.



Flow similarity

 So far, we have emphasized two parameters, Re and M∞.

 Applicable to many problems, we can say that flows

over geometrically similar bodies at the same Mach

and Reynolds numbers are dynamically similar.

 Hence the lift, drag, and moment coefficients will be

identical for the bodies.

 This is a key point in the validity of wind-tunnel testing.

 If a scale model of a flight vehicle is tested in a wind tunnel, the measured lift, drag,

and moment coefficients will be the same as for free flight as long as the Mach and

Reynolds numbers of the wind-tunnel test-section flow are the same as for the free-

flight case.



Example 1.6

 Consider a Boeing 747 airliner cruising at a velocity of

550 mi/h at a standard altitude of 38,000 ft.

 Calculate the required velocity and pressure of the test

airstream in the wind tunnel such that the lift and drag

coefficients measured for the wind-tunnel model are the

same as for free flight.

 Assume that both μ and a are proportional to T1/2.

 The freestream pressure and temperature

are 432.6 lb/ft2 and 390°R, respectively.

 A one-fiftieth scale model of the 747 is

tested in a wind tunnel where the

temperature is 430°R.



Example 1.6

 Let subscripts 1 and 2 denote the free-flight and wind

tunnel conditions, respectively.

 For CL,1 = CL,2 and CD,1 = CD,2, the wind tunnel flow must be

dynamically similar to free flight.

 For this to hold, M1 = M2 and Re1 = Re2:

 Hence,



Example 1.6

 We have

 We know that

 So,

 The equation of state for a perfect gas is p = ρRT,

where R is the specific gas constant. Thus,



Flow similarity

 In Example 1.6, the wind-tunnel test stream must be

pressurized far above atmospheric pressure in order to

simulate the proper free-flight Reynolds number.

 Mach number simulation is achieved in one wind tunnel,

and Reynolds number simulation in another tunnel.

 The results from both tunnels are then analyzed and

correlated to obtain reasonable values for CL and CD

appropriate for free flight.

 However, most standard subsonic wind

tunnels are not pressurized as such,

because of the large extra financial cost

involved.

 Today, for the most part, we do not

attempt to simulate all the parameters

simultaneously.



Example 1.7

 Consider an executive jet transport Cessna 560

Citation V.

 The airplane is cruising at a velocity of 492 mph at an

altitude of 33,000 ft, where the ambient air density is

7.9656×10−4 slug/ft3.

 The weight and wing planform areas of the airplane

are 15,000 lb and 342.6 ft2, respectively.

 The drag coefficient at cruise is 0.015. Calculate the lift

coefficient and the lift-to-drag ratio at cruise.



Example 1.7

 If it has a stalling speed at sea level of 100 mph at the

maximum take-off weight of 15,900 lb.

 The ambient air density at standard sea level is

0.002377 slug/ft3.

 Calculate the value of the maximum lift coefficient for the

airplane.

CL,max

https://www.youtube.com/watch?v=p9R0GzIsDlI


Example 1.7

 To convert between mph and ft/s, it is useful to

remember that 88 ft/s = 60 mph.

 We can say that lift must be equal to weight for level

flight; L = W. So,

 The lift-to-drag ratio (fines)



 Once again we have to use consistent units, so

Example 1.7



Fluid statics

 In aerodynamics, we are concerned about fluids in

motion, and the resulting forces and moments on bodies

due to such motion.

 However, in this section, we consider the special case

of no fluid motion (i.e., fluid statics).

 A body immersed in a fluid will still experience a force

even if there is no relative motion between the body and

the fluid.

 Let us see why.



Fluid statics

 Consider a stagnant fluid above the xz plane. The

vertical direction is given by y.

 Consider an infinitesimally small fluid element with sides

of length dx, dy, and dz.

 There are two types of forces acting on this fluid

element: pressure forces and the gravity force.

 Consider forces in the y direction.



Fluid statics

 Letting upward force be positive, we have

 Since the fluid element is stationary (in equilibrium), the

sum of the forces exerted on it must be zero:

 It is called the Hydrostatic equation.

 It is a differential equation which relates the change in

pressure dp in a fluid with a change in vertical height dy.



Fluid statics

 Equation governs the variation of atmospheric

properties as a function of altitude in the air above us.

 It is also used to estimate the properties of other

planetary atmospheres such as for Venus, Mars, and

Jupiter.

 Let the fluid be a liquid, for which we can assume ρ is

constant.

 We have



 A simple application is the calculation of the pressure

distribution on the walls of a container holding a liquid,

and open to the atmosphere at the top.

Fluid statics

 Note that the pressure is a linear function of h and that p

increases with depth below the surface.



Fluid statics

 Another simple and very common application is the

liquid filled U-tube manometer used for measuring

pressure differences.

 Note that the pressure on the same level will be the

same in fluid.



 We stated that a solid body immersed in a fluid will

experience a force even if there is no relative motion

between the body and the fluid.

 We are now in a position to derive an expression for this

force, henceforth called the buoyancy force.

Fluid statics

 We see that the vertical force F on the

body due to the pressure distribution

over the surface is

 For simplicity, consider a rectangular

body of unit width (1), length l, and

height (h1 − h2).

 we obtain the buoyancy force.



Fluid statics

 Consider the physical meaning of the integral in

Equation.

 It is the weight of total volume of fluid;

 Therefore, we can states in words that

the well-known Archimedes principle

 The density of liquids is usually several orders of

magnitude larger than the density of gases.

 For water ρ = 103 kg/m3, for air ρ = 1.23 kg/m3).

 Therefore, a given body will experience a buoyancy

force a thousand times greater in water than in air.



Example 1.9

 A hot-air balloon with an inflated diameter of 30 ft is carrying

a weight of 800 lb, which includes the weight of the hot air

inside the balloon.

 Calculate;

 its upward acceleration at sea level the instant the

restraining ropes are released.

 the maximum altitude it can achieve.

 Assume that the variation of density in the standard

atmosphere is given by

where h is the altitude in feet and ρ is in slug/ft3.



Example 1.9

 The net upward force at sea level is

 Mass value (W/g);

 Hence

 The maximum altitude occurs when B = W



Example 1.9

 From the given variation of ρ with altitude, h,



Example 1.11

 Consider a U-tube mercury manometer oriented

vertically.

 One end is completely sealed with a total vacuum above

the column of mercury.

 The other end is open to the atmosphere where the

atmospheric pressure is that for standard sea level.

 What is the displacement height of the

mercury in centimeters, and in which

end is the mercury column the highest?

 The density of mercury is 1.36 × 104

kg/m3.



Example 1.11

 Consider the sealed end with the total vacuum to be on

the left, where pb = 0.

 We have

mercury



Example 1.10

 Show how the standard altitude tables are constructed

with the use of the Hydrostatic equation.

 We know that

 Also we have the equation of state for a perfect gas

 Lets divide them

 We know the relationship between altitude and

temperature:

 Therefore;

 From sea level to an altitude of 11 km, the standard altitude is based on

a linear variation of temperature with altitude, h, where T decreases at

a rate of −6.5 K per kilometer (the lapse rate).





 Lets integrate the equation from sea level where the

standard values of pressure and temperature are denoted

by ps and Ts , respectively,

Example 1.10

 At sea level, the standard pressure,

density, and temperature are 1.01325

× 105 N/m2, 1.2250 kg/m3, and 288.16

K, respectively.



Types of flow

 An understanding of aerodynamics, like that of any other

physical science, is obtained through a “building-block”

approach.

 An example of this process is the way that different types

of aerodynamic flows are categorized and visualized.

 As a result, a study of aerodynamics has evolved into a

study of numerous and distinct types of flow; from the

simplest flow to the most complex one…



Types of flow

Continuum Versus Free Molecule Flow

 Consider the flow over a body, say, for example, a circular

cylinder of diameter d.

 Also, consider the fluid to consist of individual molecules,

which are moving about in random motion.

 The mean distance that a molecule travels between

collisions with neighboring molecules is defined as the

mean-free path λ.

 If λ is orders of magnitude smaller than the scale of the

body measured by d, then the flow appears to the body as

a continuous substance.

 Such flow is called continuum flow. Knudsen number: 𝐾𝑛 =
λ

𝑑
< 0.01



Types of flow

Continuum Versus Free Molecule Flow

 The other extreme is where λ is on the same order as the

body scale.

 The gas molecules are spaced so far apart (relative to d)

that collisions with the body surface occur only infrequently.

 The body surface can feel distinctly each molecular impact.

 Such flow is called free molecular flow.

 For manned flight, vehicles such as the space shuttle

encounter free molecular flow at the extreme outer edge of

the atmosphere.

 The air density is so low that λ becomes on the order of the

shuttle size. Knudsen number: 𝐾𝑛 =
λ

𝑑
~1



Types of flow

Inviscid Versus Viscous Flow

 A flow that is assumed to involve no friction, thermal

conduction, or diffusion is called an inviscid flow.

 In contrast, a flow that is assumed to involve friction,

thermal conduction, or diffusion is called viscous flows

 Inviscid flows do not truly exist in nature.

 However, there are many practical aerodynamic flows

where the influence of transport phenomena is small,

and we can model the flow as being inviscid.

! no viscosity !



Types of flow

Incompressible Versus Compressible Flows

 A flow in which the density ρ is constant is called

incompressible.

 In contrast, a flow where the density is variable is called

compressible.

 All flows are compressible in nature.

 However, there are a number of aerodynamic problems

that can be modeled as being incompressible.

 For example, the flow of homogeneous liquids is treated

as incompressible.

 Also, the flow of gases at a low Mach number is

essentially incompressible; for M <0.3.



Mach Number Regimes

Types of flow

 If M is the local Mach number at an arbitrary point in a

flow field, then by definition the flow is locally:

Subsonic if M < 1

Sonic if M ~ 1

Supersonic if M > 1

https://www.youtube.com/watch?v=iz7DQWbZ5EM
https://www.youtube.com/watch?v=gWGLAAYdbbc


Types of flow

 if M∞ is subsonic but is near unity, the flow can become

locally supersonic (M > 1).

 The flow fields are characterized by mixed subsonic-

supersonic flows. Hence, such flow fields are called

transonic flows.



Types of flow

 Hypersonic aerodynamics received a great deal of

attention during the period 1955–1970.

 Because atmospheric entry vehicles encounter the

atmosphere at Mach numbers between 25 (ICBMs) and

36 (the Apollo lunar return vehicle).



 Mathematically speaking for steady

flows,

 Unsteady or non-steady flow is one

where the properties do depend on time.

Types of flow

 The flow features including velocity, pressure and other

properties of fluid flow can be functions of space and time.

where 𝑝 is any property like pressure, velocity or density.

 If a flow is such that the properties at every point in the flow

do not depend upon time, it is called a steady flow.

𝑝 = 𝑓(𝑥, 𝑦, 𝑧, 𝑡)

unsteady steady

https://www.youtube.com/watch?v=HSJ4NatC9I8


Types of flow

 A flow field is best characterized by its velocity

distribution.

 A flow is said to be one-, two-, or three-dimensional if

the flow velocity varies in one, two, or three dimensions,

respectively.

 In nature, every flow is 3D.

 However, the variation of velocity in certain directions

can be small relative to the variation in other directions

and can be ignored.

1D 3D

2D



Types of flow

 A flow field can also be characterized by its flow

pattern.

 Laminar flow, in which the streamlines are smooth and

regular and a fluid element moves smoothly along a

streamline.

 Turbulent flow, in which the streamlines break up and

a fluid element moves in a random, irregular, and

tortuous fashion.

https://www.youtube.com/watch?v=TqTSyFz6DJc


Applied aerodynamics

 The main purpose is to present knowledge and to show

its applications in practice.

Question: What are some typical drag coefficients for

various aerodynamic configurations?

 Some basic values are shown in Figure.

 The dimensional analysis proved that CD = f (M, Re).

 The drag-coefficient values are for low speeds,

essentially incompressible flow; therefore, the Mach

number does not come into the picture.



Applied aerodynamics



Applied aerodynamics

 Blunt body = a body where most of the

drag is pressure drag (form drag)

 Streamlined body = a body where most

of the drag is skin friction drag



Applied aerodynamics

 The breakdown of various sources of drag on a

late 1930s airplane, the Seversky XP-41



Applied aerodynamics

 The aircraft T38 is at a small negative angle of

attack such that the lift is zero, hence the CD in

Figure is called the zero-lift drag coefficient.

 Note that the value of CD is relatively constant from

M = 0.1 to about 0.86. Why?



Applied aerodynamics

 Variation of section lift coefficient

for a NACA 63-210 airfoil.

 Re = 3 × 106.

 No flap deflection.

 Variation of lift coefficient with angle of

attack for the T-38.

 Three curves are shown corresponding

to three different flap deflections.

Freestream Mach number is 0.4.



Example 1.12

 Note that the data given in Figure apply for the specific

condition where CL = 0.15.

 The wing planform area and the gross weight of the P-

35 are 220 ft2 and 5599 lb, respectively.

 Calculate the horsepower required for the P-35 to fly in

steady level flight with CL = 0.15 at standard sea level.

 Consider the Seversky P-35 shown in

Figure.

 Assume that the drag breakdown given

for the XP-41 applies also to the P-35.



Example 1.12

 From basic mechanics, if F is a force exerted on a body

moving with a velocity V, the power generated by this

system is P = F · V.

 When F and V are in the same direction, then the dot

product becomes P = FV where F and V are the scalar

magnitudes of force and velocity, respectively.

 When the airplane is in steady level flight (no

acceleration) the thrust obtained from the engine exactly

counteracts the drag, i.e., T = D.

 Hence the power required for the airplane to fly at a

given velocity V∞ is



Example 1.12

 To obtain V∞, we note that in steady level flight the weight

is exactly balanced by the aerodynamic lift,

 we have

 Solving Eq. for V∞, we have

 At standard sea level, ρ∞ = 0.002377 slug/ft3. Also,

S=220 ft2, W = 5599 lb, and CL = 0.15.

 Hence, from Eq. we have



 To complete the calculation of power required, we need

the value of D.

 The drag,

 The required power

 Note that 1 horsepower is 550 ft lb/s. Thus, in

horsepower,

Example 1.12

from the table



 The first person to define and use aerodynamic force

coefficients was Otto Lilienthal, the famous German

aviation pioneer at the end of the nineteenth century.

 By the end of World War I, Ludwig Prandtl at Gottingen

University in Germany established the nomenclature for

the aerodynamic force that is accepted as standard

today;

Historical notes

where W is the force, F is the area of the

surface, q is the dynamic pressure, and c

is a “pure number”



Questions



Questions
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Introductions 

 The principle is most important, not the detail.

Theodore von Karman, 1954



Introductions 

 Central to this chapter is the derivation and discussion of the

three most important and fundamental equations in

aerodynamics:

 the continuity,

 momentum,

 and energy equations.

 Nothing in aerodynamics is more fundamental than these

three physical principles in aerodynamics.

 The continuity equation is a mathematical

statement of the fundamental principle that

mass is conserved.

 The momentum equation is a mathematical

statement of Newton’s second law.

 The energy equation is a mathematical

statement of energy conservation.



Some Vector Algebra

 Consider a vector quantity A.

 The absolute magnitude of A is |A|, and is a scalar

quantity.

 The unit vector n, defined by n = A/|A|, has a magnitude

of unity and a direction equal to that of A.

 Let B represent another vector.

Tail-to-tip approach



 There are two forms of vector multiplication.

 The scalar product (dot product) of the two vectors A and

B is defined as

 Note that the scalar product of two vectors is a scalar.

 In contrast, the vector product (cross product) of the two

vectors A and B is defined as

where G is perpendicular to the plane of A and B and in a

direction which obeys the “right-hand rule.”

Some Vector Algebra



Typical Orthogonal Coordinate Systems

 To describe mathematically the flow of fluid through three-

dimensional space, we have to prescribe a three-

dimensional coordinate system.

 The geometry of some aerodynamic problems best fits a

rectangular space, whereas others are mainly cylindrical in

nature, and yet others may have spherical properties.

 Therefore, we have interest in the three most common

orthogonal coordinate systems:

 cartesian,

 cylindrical,

 and spherical.

 An orthogonal coordinate system is one where all three

coordinate directions are mutually perpendicular.



Typical Orthogonal Coordinate Systems

 A cartesian coordinate system

position vector r



Typical Orthogonal Coordinate Systems

 A cylindrical coordinate system

 The relationship, or transformation,

between cartesian and cylindrical

coordinates;



 A spherical coordinate system

 The transformation between cartesian

and spherical coordinates

Typical Orthogonal Coordinate Systems



Scalar and Vector Fields

 A scalar quantity given as a function of coordinate space

and time t is called a scalar field.

 For example, pressure, density, and temperature are

scalar quantities.

 A vector quantity given as a function of coordinate space

and time is called a vector field. For example, velocity is a

vector quantity.



Scalar and Vector Products

 Cartesian Coordinates

The scalar product The vector product

 Cylindrical Coordinates

The scalar product The vector product

 Spherical Coordinates



Gradient of a Scalar Field

 Consider a scalar field 𝑝 𝑥, 𝑦, 𝑧 .

 Consider an arbitrary point (x, y). If we move away

from this point in an arbitrary direction, p will, in

general, change because we are moving to another

location in space.

 Moreover, there will be some direction from this point

along which p changes the most over a unit length in

that direction.

 This defines the direction of the gradient of p.

 The magnitude of ∇p is the rate of

change of p per unit length in that

direction.



Gradient of a Scalar Field

 Expressions for ∇p in the different coordinate systems

 Consider ∇p at a given point (x, y). Choose some arbitrary

direction s away from the point. Let n be a unit vector in the

s direction.

 The rate of change of p per unit length

in the s direction is;

Nabla operator

grad p



Divergence of a Vector Field

 Consider a vector field

 The divergence of V is denoted by div V or ∇ · V.

 Cartesian

 Cylindrical

 Spherical

 ∇ · V. has physical meaning in flow field…

 expansion rate of 

change of …



Curl of a Vector Field

 Consider a vector field

 The curl of V is denoted by curl V, rot V or ∇×V

 Cartesian

 Rotational rate of 

change of …



 Cylindrical

 Spherical

 ∇×V has physical meaning in flow field…

Curl of a Vector Field



Line Integrals

 Consider a vector field

 Also, consider a curve C in space connecting

two points a and b.

 Let ds be an elemental length of the curve, and

n be a unit vector tangent to the curve.

 Define the vector ds = n ds.

 Then, the line integral of A along curve C from

point a to point b is

 If the curve C is closed

open

close
counterclockwise direction around C 

is considered positive



Surface Integrals

 Consider an open surface S bounded by the closed

curve C.

 At point P on the surface, let dS be an elemental area of

the surface and n be a unit vector normal to the surface.

 Define a vector elemental area as dS = n dS.

 In terms of dS, the surface integral over the surface S can

be defined in three ways:

 If the surface S is closed



Volume Integrals

 Consider a volume 𝑉 in space. Let ρ be a scalar field in

this space.

 The volume integral over the volume V of the quantity ρ

is written as

 The result is a scalar

 Let A be a vector field in space. The volume integral

over the volume V of the quantity A is written as

 The result is a vector



Relations Between Line, Surface, and Volume Integrals

 Consider again the open area S bounded by the closed

curve C.

 Let A be a vector field. The line integral of A over C is

related to the surface integral of A over S by Stokes’

theorem:

 Consider again the volume V enclosed by the closed

surface S.

 The surface and volume integrals of the vector field A are

related through the divergence theorem:



Relations Between Line, Surface, and Volume Integrals

 If p represents a scalar field, a relationship analogous to

previous equation is given by the gradient theorem;

 We will use these relations in conservation laws…



Models of fluids

 What is a suitable model of the fluid?

 How do we visualize this squishy substance in order to

apply the three fundamental physical principles to it?

 There are three different models. They are

 finite control volume,

 infinitesimal fluid element,

 and molecular model.



Finite Control Volume Approach

 Consider a general flow field as represented by the

streamlines.

 The control volume may be fixed in

space with the fluid moving through it.

 Alternatively, the control volume may be

moving with the fluid such that the same

fluid particles are always inside it

 Let us imagine a closed volume drawn

within a finite region of the flow.

 This volume defines a control volume V,

and a control surface S is defined as the

closed surface which bounds the control

volume.

We get equations in integral form…



Infinitesimal Fluid Element Approach

 Consider a general flow field as represented by the

streamlines.

 Let us imagine an infinitesimally small fluid element in

the flow, with a differential volume dV.

 The fluid element may be fixed in space with the fluid

moving through it.

 Alternatively, it may be moving along a streamline with

velocity V equal to the flow velocity at each point.

We get equations in differential form…



Molecular Approach

 In actuality, of course, the motion of a fluid is a

ramification of the mean motion of its atoms and

molecules.

 Therefore, a third model of the flow can be a microscopic

approach.

 The fundamental laws of nature are applied directly to

the atoms and molecules, using suitable statistical

averaging to define the resulting fluid properties.

 This approach is in the purview of kinetic theory.



Specification of the Flow Field

 Aerodynamic properties are function of space

and time.

 For example, in cartesian coordinates the

equations are

 They represent the flow field. We have 6 unknowns, we

need 6 equations to solve the flow field features…



Continuity Equation

 We now apply the fundamental physical principles to

fluid models.

 we will employ the model of a fixed finite control

volume.

 Here, the control volume is fixed in space, with the flow

moving through it.

 The volume V and control surface S are constant with

time, and the mass of fluid contained within the control

volume can change as a function of time.

The first physical principle Mass can be neither created nor

destroyed.



Continuity Equation

where B and C are just convenient symbols for the left

and right sides, respectively.

 First, let us obtain an expression for B in terms of the

quantities shown in Figure.

 The elemental mass flow across the area dS is



 By definition, the mass flow through A is the mass

crossing A per second (kilograms per second), ሶ𝑚.

 The net mass flow out of the entire control surface S is

the summation over S of the elemental mass flows.

 In the limit, this becomes a surface integral,

 Now consider the right side of Equation. The mass

contained within the elemental volume is

 Hence, the total mass inside the control volume is

 The time rate of increase of mass inside control volume

is then

Continuity Equation



Continuity Equation

 In turn, the time rate of decrease of mass inside the

volume is the negative of the above;

 Lets combine the resulted equations;

 Equation is called the continuity equation in integral

form.

 It is one of the most fundamental equations of fluid

dynamics.



Continuity Equation

 We can get the differential form that does relate flow

properties at a given point, as follows.

 The time derivative can be placed inside the volume

integral and Equation can be written as

 Note that the control volume is fixed in time.

 Applying the divergence theorem, we can express the

right-hand term of Equation as



Continuity Equation

 Substituting this Equation into continuity equation, we

obtain

 The only way for the integral to be zero for an arbitrary

control volume is for the integrand to be zero at all points

within the control volume.

 Thus, we have

 Equation is the continuity equation in the form of a partial

differential equation.

 This equation relates the flow field variables at a point in

the flow.



Continuity Equation

 If the flow is steady, the equation becomes

 or



Momentum Equation

 Newton’s second law is

 We will apply this principle to the model of a finite

control volume fixed in space.

 Our objective is to obtain expressions for both the left

and right sides of Equation in terms of the familiar flow-

field variables p, ρ, V, etc.

 First, let us concentrate on the left side of Equation.

This force comes from two sources:

1. Body forces: gravity, electromagnetic forces, or any other forces

which “act at a distance” on the fluid inside V.

2. Surface forces: pressure and shear stress acting on the control

surface S.



Momentum Equation

 Let f represent the net body force per unit mass exerted

on the fluid inside volume.

 The body force on the elemental volume is therefore

 The total body force exerted on the fluid in the control

volume is

 The elemental surface force due to pressure acting on

the element of surface area is

negative sign indicates that the force is in the direction

opposite of dS.

 The complete pressure force is the summation of the

elemental forces over the entire control surface



Momentum Equation

 In a viscous flow, the shear and normal viscous stresses

also exert a surface force.

 Let us simply recognize this effect by letting Fviscous denote

the total viscous force exerted on the control surface.

 We are now ready to write an expression for the left-

hand side of Equation:



 Now consider the right side of Equation.

 The time rate of change of momentum of the fluid as it

sweeps through the fixed control volume is the sum of

two terms:

 and

Momentum Equation

 Consider the term denoted by G in Equation. To obtain

an expression for G, recall that the mass flow across the

elemental area dS is (ρV· dS);

 Hence, the flow of momentum per second across dS is



Momentum Equation

 The net flow of momentum out of the control volume

through S is the summation of the above elemental

contributions,

 Now consider H. The momentum of the fluid in the

elemental volume is

 The momentum contained at any instant inside the

control volume is

 and its time rate of change due to unsteady flow

fluctuations is



Momentum Equation

 Combining them, we obtain an expression for the total

time rate of change of momentum of the fluid as it sweeps

through the fixed control volume,

 Newton’s second law, applied to a fluid flow is

 Equation is the momentum equation in integral form.

 Note that it is a vector equation.



Momentum Equation

 We now proceed to a partial differential equation which

relates flow-field properties at a point in space.

 Lets apply the gradient theorem to the first term on the

right side of Equation,

 Also, because the control volume is fixed, the time

derivative in Equation can be placed inside the integral.

Hence,

 Recall that Equation is a vector equation. It is

convenient to write this equation as three scalar

equations.



Momentum Equation

 Using cartesian coordinates, where

 The x component of Equation is

 Apply the divergence theorem to the surface integral on the

left side of Equation

 Substituting it into main Equation, we have



Momentum Equation

 The integrand in Equation is identically zero at all

points in the flow; hence,

 We can write the y and z components, we obtain in a

similar fashion

Navier-Stokes



Momentum Equation

 Specialized to a steady, inviscid flow with no body

forces, these equations become

 and

 The momentum equations for an inviscid flow are

called the Euler equations.

 The momentum equations for a viscous flow are called

the Navier-Stokes equations.

Euler



An application of the momentum equation: drag of a

two-dimensional body

Momentum Equation

 Consider a two-dimensional body in a flow, as sketched

in Figure.

 A control volume is drawn around this body, as given by

the dashed lines in figure.



 Photograph of the velocity profiles

downstream of an airfoil.

Momentum Equation



Momentum Equation

 The control volume is bounded by abcdefghia.

 The width of the control volume in the z direction

(perpendicular to the page) is unity.

 Stations 1 and 2 are inflow and outflow stations,

respectively.

 Assume that the contour abhi is far enough from the body

such that the pressure is everywhere the same on abhi

and equal to the freestream pressure p = p∞.

 Also, assume that both u1 and u2 are in the x direction;

hence, u1 = constant and u2 = f (y).



Momentum Equation

 We know that

 Lets assume that the flow is steady and does not have body

force.

 Additionally, the viscous force can be expressed as –R’ due

to action-reaction principle.



Momentum Equation

 Based on assumptions, we have

 Equation is a vector equation.

 Consider again inflow and outflow velocities u1 and u2 are

in the x direction and the x component of R is the

aerodynamic drag per unit span D’.

 Recall that the boundaries of the control volume abhi are

chosen far enough from the body such that p is constant

along these boundaries.



Momentum Equation

 Therefore, we obtain

 The only contributions to the integral in Equation come

from sections ai and bh.

 These sections are oriented in the y direction.

 Also, the control volume has unit depth in the z

direction (perpendicular to the page).

 Hence, for these sections, dS = dy(1).

 The integral becomes



Momentum Equation

 Note that the signs are due to

 Lets remember the integral form of the continuity equation

for steady flow. Applied to the control volume in Figure,

Equation becomes

 Multiplying Equation by u1, which is a constant, we obtain

 Substituting it into Equation, we have



Momentum Equation

 Therefore, we obtain

 For incompressible flow, ρ = constant and is known. For

this case, Equation becomes

 It shows how a measurement of the

velocity distribution across the wake of a

body can yield the drag.

 These velocity distributions are

conventionally measured with a Pitot

rake, such as shown in Figure.



Energy Equation

 This physical principle is embodied in the first law of

thermodynamics.

 Consider a fixed amount of matter contained within a

closed boundary.

 This matter defines the system.

 Because the molecules and atoms within the system are

constantly in motion, the system contains a certain

amount of energy.

 For simplicity, let the system contain a unit mass; in turn,

denote the internal energy per unit mass by e.



Energy Equation

 The region outside the system defines the surroundings.

 Let an incremental amount of heat δq be added to the

system from the surroundings.

 Also, let δw be the work done on the system by the

surroundings.

 Both heat and work are forms of energy, and when

added to the system, they change the amount of internal

energy in the system.

 Denote this change of internal energy by de. From our

physical principle that energy is conserved, we have for

the system



 Let us apply the first law to the fluid flowing through the

fixed control volume.

 Let

B1 = rate of heat added to fluid inside control volume

from surroundings,

B2 = rate of work done on fluid inside control volume,

B3 = rate of change of energy of fluid as it flows

through control volume.

 From the first law,

 Note that each term involves the time rate of energy

change; hence, Equation, strictly speaking, a power

equation…

Energy Equation



Energy Equation

 Consider the rate of heat transferred to or from the fluid.

 Let volumetric rate of heat addition per unit mass be

denoted by ሶ𝑞. Typical units for are J/s.

 The mass contained within an elemental volume is;

hence, the rate of heat addition to this mass is,

 Summing over the complete control volume, we obtain

 In addition, if the flow is viscous, additional heat can be

transferred into the control volume. The total rate of heat

addition is



Energy Equation

 Lets focus on work. We can state that the rate of doing

work on moving body is

 The rate of work done on fluid inside volume due to

pressure force on S is

 The rate of work done on fluid inside volume due to

body force is

 If the flow is viscous, the shear stress on the control

surface will also perform work on the fluid as it passes

across the surface.



 Then the total rate of work done on the fluid inside the

control volume is the sum of them

Energy Equation

 Recall that the internal energy e is due to the random

motion of the atoms and molecules inside the system.

 However, the fluid inside the control volume is not

stationary; it is moving at the local velocity V with a

consequent kinetic energy per unit mass of V2/2.

 Hence, the energy per unit mass of the moving fluid is

the sum of both internal and kinetic energies e + V2/2.

 This sum is called the total energy per unit mass.



Energy Equation

 We are now ready to obtain an expression for B3, the

rate of change of total energy of the fluid as it flows

through the control volume.

 Based on the elemental mass flow across dS

 In addition, if the flow is unsteady, there is a time rate of

change of total energy inside the control volume due to

the transient fluctuations of the flow-field variables.

 The total energy contained in the elemental volume

 Time rate of change of total energy inside V due to

transient variations of flow-field variables



Energy Equation

 In turn, B3 is the sum of them

 Repeating the physical principle that the rate of heat

added to the fluid plus the rate of work done on the fluid is

equal to the rate of change of total energy of the fluid.

 In turn, these words can be directly translated into an

equation by combining Equations



 We can obtain a partial differential equation for total energy

from the integral form.

 Applying the divergence theorem to the surface integrals,

collecting all terms inside the same volume integral, and

setting the integrand equal to zero, we obtain

 If the flow is steady, inviscid, adiabatic, without body forces,

then Equations reduce to

Energy Equation

integral form

differential form



Energy Equation

 With the energy equation, we have five equations, but six

unknowns.

 The additional equation comes from the perfect gas

equation of state;



Substantial derivative

 Consider a small fluid element moving through a flow

field, as shown in figure. We have

 At time t1, the fluid element is located at point 1 in the

flow and its density is



Substantial derivative

 At a later time t2 the same fluid element has moved to a

different location in the flow field, such as point 2.

 At this new time and location, the density of the fluid

element is

 Since ρ = ρ(x, y, z, t), we can expand this function in a

Taylor series about point 1 as follows:

 Dividing by t2 − t1, and ignoring the higher-order terms, we

have



 Consider the physical meaning of the left side of Equation.

 The term (ρ2 − ρ1)/(t2 − t1) is the average time rate of change

in density of the fluid element as it moves from point 1 to

point 2.

 In the limit, as t2 approaches t1, this term becomes

Substantial derivative

 By definition, this symbol is called the substantial

derivative D/Dt.

 Note that Dρ/Dt is the instantaneous time rate of change

of density of a given fluid element as it moves through

space.

 This is different from (∂ρ/∂t)1, which is physically the time

rate of change of density at the fixed point 1.



Substantial derivative

 Note that

 Thus, we obtain

 From it, we can obtain an expression for the substantial

derivative in cartesian coordinates:

 If we recall Nabla operator, it can be written as



Substantial derivative

 D/Dt is the substantial derivative, which is physically the

time rate of change following a moving fluid element.

 ∂/∂t is called the local derivative, which is physically the

time rate of change at a fixed point.

 V·∇ is called the convective derivative, which is

physically the time rate of change due to the movement

of the fluid element from one location to another.

 The substantial derivative applies to any flow-field

variable. For example,



Substantial derivative

 We can express the continuity, momentum, and energy

equations in terms of the substantial derivative.

 In the process, we make use of the following vector

identity:

 First, consider the continuity equation given in the form

of equation

 The continuity equation written in terms

of the substantial derivative.



Substantial derivative

 Next, consider the x component of the momentum

equation given in the form of equation

the continuity equation ! the sum inside the square 

brackets is zero.



Substantial derivative

 In a similar manner,

 In an analogous fashion, the energy equation can be

expressed in terms of the substantial derivative.

 The derivation is left as a homework problem; the result

is



Flow patterns

 In addition to knowing the density, pressure, temperature,

and velocity fields, in aerodynamics we like to draw

pictures of “where the flow is going.”

 Consider an unsteady flow with a velocity field.

 Also, consider an infinitesimal fluid element moving

through the flow field, say, element A.

 Element A passes through point 1. Let us trace the path

of element A as it moves downstream from point 1.

 Such a path is defined as the pathline for element A.



 By definition, a streamline is a curve whose tangent at

any point is in the direction of the velocity vector at that

point.

 In general, streamlines are different from pathlines.

 In an unsteady flow, the streamline pattern changes;

hence, each “frame” of the motion picture is different.

Flow patterns

 By definition of a streamline, V is parallel to ds. Hence,



Flow patterns

 We can concisely define a streakline as the locus of

fluid elements that have earlier passed through a

prescribed point.

 To help further visualize the concept of a streakline,

imagine that we are constantly injecting dye into the

flow field at point 1.

 The dye will flow downstream from point

1, forming a curve in the x, y, z space in

Figure.

 This curve is the streakline that the line

that connects all fluid elements passed

through point 1.



Angular velocity, vorticity, and strain

 In this section, we pay particular attention to the

orientation of the element and its change in shape as it

moves along a streamline.

 In the process, we introduce the concept of vorticity, one

of the most powerful quantities in theoretical

aerodynamics.

 The motion of a fluid element along a streamline is a

combination of translation and rotation.

 In addition, the shape of the element can become

distorted.



Angular velocity, vorticity, and strain

 The amount of rotation and distortion depends on the

velocity field; the purpose of this section is to quantify this

dependency.

Counterclockwise rotations by convention

are considered positive



 From the geometry

Angular velocity, vorticity, and strain

 Since θ2 is a small angle, tan θ2 ≈ θ2. Hence, Equation

reduces to

 From the geometry

 Since θ1 is a small angle, tan θ1 ≈ θ1, Equation reduces to

 Consider the angular velocities of lines AB and AC,

defined as dθ1/dt and dθ2/dt, respectively. From

Equation, we have



Angular velocity, vorticity, and strain

 By definition, the angular velocity of the fluid element is

the average of the angular velocities of lines AB and

AC.

 Let ωz denote this angular velocity. Therefore, by

definition,

 The x and y components of ω can be obtained in a

similar fashion.

 The resulting angular velocity of the fluid element in

three-dimensional space is



Angular velocity, vorticity, and strain

 We define a new quantity, vorticity, which

is simply twice the angular velocity.

Denote vorticity by the vector ξ :

 Recall Equation for ∇×V in cartesian

coordinates. Hence, we have the

important result that

 In a velocity field, the curl of the velocity

is equal to the vorticity.

Rotational flow

Irrotational flow



Angular velocity, vorticity, and strain

 Fluid elements in a rotational flow.

 Fluid elements in an irrotational flow.



Angular velocity, vorticity, and strain

 Let the angle between sides AB and AC

be denoted by κ.

 As the fluid element moves through the

flow field, κ will change.

 In Figure, at time t, κ is initially 90°. At

time t + t, κ has changed by the amount

κ, where

 By definition, the strain of the fluid element is the change in κ,

where positive strain corresponds to a decreasing κ. Hence,

 In viscous flows, the time rate of strain is an important

quantity.



 Denote the time rate of strain by εxy,

 By using the angular velocity definitions, we get

 In the yz and zx planes, by a similar derivation the strain

is, respectively,

Angular velocity, vorticity, and strain



Example 2.5

 Consider the velocity field given by u = y/(x2 + y2) and

v = −x/(x2 + y2).

 Calculate the equation of the streamline passing through

the point (0, 5).

 Calculate the vorticity.

 We know that

 The flow is 2D, so w=0. Hence,

 Integrating, we obtain

 We have the point (0, 5), so



Example 2.5

 We know that

 The flow field is irrotational.



Circulation

 In this section, we introduce a tool that is fundamental to

the calculation of aerodynamic lift, namely, circulation.

 This tool was used independently

 by Frederick Lanchester (1878–1946) in England,

 Wilhelm Kutta (1867–1944) in Germany, and

 Nikolai Joukowski (1847–1921) in Russia

to create a breakthrough in the theory of aerodynamic

lift at the turn of the twentieth century.

 Consider a closed curve C in a flow field.

 Let V and ds be the velocity and directed line segment,

respectively, at a point on C.

 The circulation, denoted by , is defined as

(m2/s)



Circulation

 The circulation is simply the negative of the line integral

of velocity around a closed curve in the flow.

 It is a kinematic property depending only on the velocity

field and the choice of the curve C.

 By mathematical convention the positive sense of the

line integral is counterclockwise.

 However, in aerodynamics, it is convenient to consider

a positive circulation as being clockwise.

 Hence, a minus sign

appears in the definition



Circulation

 Circulation is also related to vorticity.

From Stokes’ theorem;

 Hence, the circulation about a curve C

is equal to the vorticity integrated over

any open surface bounded by C.

 if the flow is irrotational (∇×V = 0 over

any surface bounded by C), then Γ= 0.

 We can also write

 Let A be a vector field. The line integral of

A over C is related to the surface integral

of A over S by Stokes’ theorem:



Example 2.8

 For the velocity field given below, calculate the

circulation around a circular path of radius 5 m.

 Assume that u and v are in units of meters per second.

 Since we are dealing with a circular path, it is easier to

work this problem in polar coordinates, where

 Therefore,



Example 2.8



Stream function

 We consider two-dimensional steady flow. We know

that

on the streamline.

 For 2D case, we get

 If u and v are known functions of x and y, then Equation

can be integrated to yield the algebraic equation for a

streamline:

where c is an arbitrary constant of integration, with

different values for different streamlines.

 The function ഥΨ is called the stream function.



Stream function

 Lets assume that the difference in stream function lines

is equal to the mass flow between the two streamlines.

 The mass flow through the streamtube per unit depth

perpendicular to the page is

 Here, n is the normal distance between two adjacent

stream lines.



Stream function

 Notice that the directed normal distance Δn

is equivalent first to moving upward in the y

direction by the amount Δ y and then to the

left in the negative x direction by the amount

− Δx.

 Due to conservation of mass, the mass flow

through n (per unit depth) is equal to the sum

of the mass flows through y and −x (per unit

depth):

 However, since ഥΨ = ഥΨ(𝑥, 𝑦), the chain rule of calculus states

 So,



Stream function

 In terms of polar coordinates,

 The stream function ഥΨ applies to both compressible and

incompressible flow.

 Now consider the case of incompressible flow only,

where ρ = constant.

 Equations can be written as

 We define a new stream function, for incompressible flow

only, as



Velocity potential

 Recall that an irrotational flow is defined as a flow where

the vorticity is zero at every point.

 We can describe a scalar function Φ that

that is, the curl of the gradient of a scalar function is

identically zero.

 Comparing Equations, we see that

 Equation states that for an irrotational flow, there exists a

scalar function Φ such that the velocity is given by the

gradient of Φ.

 We denote Φ as the velocity potential.



Velocity potential

 In cartesian coordinates,

 In cylindrical coordinates,

 In spherical coordinates,



Velocity potential

 The velocity potential is analogous to the stream

function. However, there are distinct differences

between Φ and ψ:

1. The flow-field velocities are obtained by

differentiating Φ in the same direction as the

velocities, whereas ψ is differentiated normal to

the velocity direction.

2. The velocity potential is defined for irrotational

flow only. In contrast, the stream function can be

used in either rotational or irrotational flows.

3. The velocity potential applies to three-

dimensional flows, whereas the stream function is

defined for two-dimensional flows only.

 Because irrotational flows can be described by the velocity

potential φ, such flows are called potential flows.

equipotential line

stream line



Relationship between flow functions

 Because gradient lines and isolines are perpendicular,

then equipotential lines (Φ = constant) and streamlines

(ψ = constant) are mutually perpendicular.

 We know that

 We also have

 Combining Equations, we have



How do we solve the equations?

 This chapter is full of mathematical equations that dictate

the characteristics of aerodynamic flow fields.

 For the most part, the equations are either in partial

differential form or integral form.

 They must be solved in order to obtain the actual flow

fields over specific body shapes with specific flow

conditions.

 For example, the flow field around a Boeing 777 jet

transport flying at a velocity of 800 ft/s at an altitude of

30,000 ft. We have to obtain a solution of the governing

equations for this case.

 A solution that will give us the results for the dependent

flow-field variables p, ρ, V, etc., as a function of the

independent variables of spatial location and time.



 Then we have to squeeze this solution for extra practical

information, such as lift, drag, and moments exerted on

the vehicle.

 How do we do this?

 There are two types of philosophical approaches;

 Theoretical (analytical) solutions,

 Numerical solutions—computational fluid dynamics

(CFD)

How do we solve the equations?

 The governing equations of aerodynamics, such as the

continuity, momentum, and energy equations are highly

nonlinear, partial differential, or integral equations.

 To date, no general analytical solution to these equations

has been obtained.



How do we solve the equations?

 However, based on some simplifications and

approximations, we can get some simple but basic

solutions.

 Classical aerodynamic theory is built on this approach

and, as such, is discussed at some length in this

course.

 The other general approach to the solution of the

governing equations is numerical.

 The high-speed digital computer in the last third of the

twentieth century has revolutionized the solution of

aerodynamic problems.

 It has given rise to a whole new discipline:

computational fluid dynamics



How do we solve the equations?

 Analytical approach

 If flow is 2D, steady and incompressible;

 Numerical approach

 the governing flow equations are discretized,



Example 2.10

 Consider a one-dimensional, unsteady flow, where the

flow-field variables such as ρ, u, etc. are functions of

distance x and time t.

 Consider the grid shown in Figure, where grid points

arrayed in the x direction are denoted by the index i .

 Two rows of grid points are shown, one at time t and

the other at the later time t + Δt.

 In particular, we are interested in calculating the

unknown density at grid point i at time t + Δt, denoted

by ρi
t+ Δt.

 Set up the calculation of this unknown density.



Example 2.10

 From the continuity equation,

 For unsteady, one-dimensional flow, we have

 Replace ∂ρ/∂t with a forward difference in time,

and ∂u/∂x and ∂ρ/∂x with central differences in

space, centered around grid point i

Analytical equation

Numerical equation



Homework



Assoc. Prof. Dr. Y . Volkan PEHLİVANOĞLU
volkan.pehlivanoglu@ieu.edu.tr

Aerodynamics
AE 301



Contents; Inviscid, Incompressible Flow

a. Bernoulli’s Equation,

b. Incompressible Flow in a Duct,

c. Pitot Tube: Measurement of Airspeed,

d. Pressure Coefficient,

e. Condition on Velocity,

f. Governing Equation: Laplace’s Equation,

g. Uniform Flow,

h. Source Flow,

i. Doublet Flow,

j. Vortex Flow,

k. The Kutta-Joukowski Theorem,

l. Applied Aerodynamics,

m. Historical Note…



Introduction 

Theoretical fluid dynamics, being a difficult subject, is for convenience, commonly

divided into two branches, one treating of frictionless or perfect fluids, the other

treating of viscous or imperfect fluids. The frictionless fluid has no existence in

nature, but is hypothesized by mathematicians in order to facilitate the investigation

of important laws and principles that may be approximately true of viscous or

natural fluids.

Albert F. Zahm, 1912
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Introduction 

 Inviscid, incompressible flow… Actually, such flow is

a myth on two accounts.

 First, in real life there is always friction. In nature

there is, strictly speaking, no inviscid flow.

 Second, every flow is compressible. In nature there

is, strictly speaking, no incompressible flow.

 There are a whole host of aerodynamic applications

that are so close to being inviscid and

incompressible.

Wright brothers on December 17, 1903.

 By making that assumption and we

obtain amazingly accurate results.

https://www.youtube.com/watch?v=RriKI7u72Xs


 From an aerodynamic point of view, at air velocities

between 0 and 300 mi/h the air density remains

essentially constant, varying by only a few percent.

 Hence, the aerodynamics of the family of airplanes

spanning the period between 1903 and 1940 could be

described by incompressible flow.

 Today, we are still very interested in incompressible

aerodynamics because most modern general aviation

aircraft still fly at speeds below 300 mi/h.

Introduction 

1903 1940 1985



Bernoulli’s equation

 The early part of the eighteenth century… It was at this

time that the relation between pressure and velocity in

an inviscid, incompressible flow was first understood.

 Bernoulli’s equation relates velocity and pressure from

one point to another in an inviscid, incompressible flow.

 Consider the x component of the momentum equation

and continuity equation;

 For an inviscid flow with no body forces, this equation

becomes

 For steady flow, ∂u/∂t = 0,



Bernoulli’s equation

 Multiply Equation by dx

 Consider the flow along a streamline in three-

dimensional space. The equation of a streamline is

given by Equations

 Substituting them into previous equation,

 The differential of u is



Bernoulli’s equation

 This is exactly the term in parentheses in Equation.

Hence,

 or

 In a similar fashion, starting from the y and z

components of the momentum equation, we have

 Adding Equations yields



Bernoulli’s equation

 However,

 and

 Substituting them into previous one, we have

 Equation is called Euler’s equation.

 It relates the change in velocity along a streamline dV

to the change in pressure dp along the same

streamline.



 In such a case, ρ = constant, and can be easily

integrated between any two points 1 and 2 along a

streamline.

Bernoulli’s equation

 Equation is Bernoulli’s equation, can also be written as

Johann Bernoulli, father… Daniel Bernoulli, son…



Bernoulli’s equation

 The physical significance of Bernoulli’s equation is

obvious from Equations.

 Namely, when the velocity increases, the pressure

decreases, and when the velocity decreases, the

pressure increases.

 Bernoulli’s equation is also a relation for mechanical

energy in an incompressible flow.

 It states that the work done on a fluid by pressure

forces is equal to the change in kinetic energy of the

flow.

 Indeed, Bernoulli’s equation can be derived from the

general energy equation…



Bernoulli’s equation

 The strategy for solving most problems in inviscid,

incompressible flow is as follows:

• Obtain the velocity field from the governing equations

appropriate for an inviscid, incompressible flow.

• Once the velocity field is known, obtain the

corresponding pressure field from Bernoulli’s

equation.



Example 3.1

 Consider an airfoil in a flow at standard sea level

conditions with a freestream velocity of 50 m/s.

 At a given point on the airfoil, the pressure is 0.9 × 105

N/m2. Calculate the velocity at this point.

 At standard sea level conditions,



Example 3.2

 Consider the inviscid, incompressible flow of air along a

streamline.

 The air density along the streamline is 0.002377

slug/ft3, which is standard atmospheric density at sea

level.

 At point 1 on the streamline, the pressure and velocity

are 2116 lb/ft2 and 10 ft/s, respectively.

 Further downstream, at point 2 on the streamline, the

velocity is 190 ft/s.

 Calculate the pressure at point 2.

 What can you say about the relative change in

pressure from point 1 to point 2 compared to the

corresponding change in velocity?



Example 3.2

 From Equation

 Only a 2 percent decrease in the pressure creates a

1900 percent increase in the flow velocity.

 This is an example of a general characteristic of low-

speed flows.

 Only a small barometric change from one location to

another can create a strong wind.



Incompressible flow in a duct: 

the Venturi and low-speed wind tunnel

 Consider the flow through a duct. In general, the flow

through such a duct is three-dimensional.

 However, in many applications, the variation of area

A=A(x) is moderate.

 For such cases it is reasonable to assume that the

flow-field properties are uniform across any cross

section, and hence vary only in the x direction.

quasi-one-dimensional flow



Incompressible flow in a duct

 Consider the integral form of the continuity equation

 For steady flow, this becomes

 Apply Equation to the duct, where the control volume is

bounded by A1 on the left, A2 on the right, and the

upper and lower walls of the duct. Hence,

 Along the walls, the flow velocity is tangent to the wall,

and dS is perpendicular to the wall,



Incompressible flow in a duct

 We have

 Substituting Equations into main equation, we obtain

 Equation is the quasi-one-dimensional continuity

equation.

 It applies to both compressible and incompressible flow.



 It states that the volume flow (cubic meters per

second) through the duct is constant.

 We see that if the area decreases along the flow

(convergent duct), the velocity increases.

 Conversely, if the area increases (divergent duct), the

velocity decreases.

 Consider incompressible flow only, where ρ=constant.

Incompressible flow in a duct



Incompressible flow in a duct

 Moreover, from Bernoulli’s equation we see that when

the velocity increases in a convergent duct, the pressure

decreases.

 Conversely, when the velocity decreases in a divergent

duct, the pressure increases.

 The velocity increases in the convergent

portion of the duct, reaching a maximum value

V2 at the minimum area of the duct.

 This minimum area is called the throat.

 At the throat, the pressure reaches a minimum

value p2.

 In an application closer to aerodynamics, a

venturi can be used to measure airspeeds.

a venturi



Incompressible flow in a duct

 From Bernoulli’s equation,

 From the continuity equation

 we obtain

 Historically the first practical

airspeed indicator on an airplane

was a venturi used by the French

Captain A. Eteve in January 1911



Incompressible flow in a duct

 Another application of incompressible flow in a duct is

the low-speed wind tunnel.

 To simulate actual flight in the atmosphere dates back to

1871, when Francis Wenham in England built and used

the first wind tunnel in history.

 In essence, a low-speed wind tunnel is a large venturi

where the airflow is driven by a fan connected to some

type of motor drive.

 The wind-tunnel fan blades are similar to airplane

propellers and are designed to draw the airflow through

the tunnel circuit.

 The wind tunnel may be open circuit, or the wind tunnel

may be closed circuit.



Incompressible flow in a duct

A full-scale wind tunnel, Langley-VA A small-scale wind tunnel 

 The air is drawn in the front directly from

the atmosphere and exhausted out the

back, again directly to the atmosphere.



Incompressible flow in a duct

NASA Ames Research Center, Mountain View,

California-USA

Built in the early 1980's, the 80- by 120-foot is an open

circuit tunnel. Air is drawn from the huge 360-foot wide,

130-foot high air intake, passes through the 120-foot

wide, 80-foot high test section and then is expelled to

the atmosphere. The maximum airspeed through the

test section is 115 mph. Power is derived from six 40-

foot diameter fan blades, each motor rated at 23,500

hp. The 80-by 120-foot tunnel is capable of testing

aircraft as large as a Boeing 737. The wind tunnel

began regular operations in 1987.

The largest wind tunnel in the World.

https://www.youtube.com/watch?v=ubyxYHFv2qw


Incompressible flow in a duct

NASA Ames Research Center, Mountain

View, California-USA



Incompressible flow in a duct

 The air from the exhaust is returned directly to the front of

the tunnel via a closed duct forming a loop

•Size: 9.1 m high x 9.1 m wide x 24 m long
•Maximum wind speed: 55 m/s (200 km/h)

The National Research Council (NRC),
Ottowa, Canada



Incompressible flow in a duct

 From the continuity equation, the test-

section air velocity is

 The velocity at the exit of the diffuser is

 The pressure at various locations in the

wind tunnel is

 The basic factor that controls the air velocity in the test section of

a given low-speed wind tunnel is the pressure difference p1− p2.



Incompressible flow in a duct

 The test-section velocity V2 is governed by the pressure

difference p1 − p2.

 The fan driving the wind-tunnel flow creates this pressure

difference by doing work on the air.

 In low-speed wind tunnels, a method of measuring the

pressure difference p1 − p2 is by means of a manometer.

Denote the weight per unit volume by w



Example 3.3

 Consider a venturi with a throat-to-inlet area ratio of 0.8

mounted in a flow at standard sea level conditions.

 If the pressure difference between the inlet and the

throat is 7 lb/ft2, calculate the velocity of the flow at the

inlet.

 At standard sea level conditions, ρ = 0.002377 slug/ft3.

Hence,



Example 3.4

 Consider a low-speed subsonic wind tunnel with a 12/1

contraction ratio for the nozzle.

 The flow in the test section is at standard sea level

conditions with a velocity of 50 m/s.

 Calculate the height difference in a U-tube mercury

manometer with one side connected to the nozzle inlet

and the other to the test section.

 At standard sea level, ρ = 1.23 kg/m3. From Equation

 The density of liquid mercury is 1.36 × 104 kg/m3. Hence,



Example 3.4

 Consider a model of an airplane mounted in a subsonic

wind tunnel. The wind-tunnel nozzle has a 12-to-1

contraction ratio.

 The maximum lift coefficient of the airplane model is 1.3.

The wing planform area of the model is 6 ft2.

 The lift is measured with a mechanical balance that is

rated at a maximum force of 1000 lb.

 Calculate the maximum pressure difference allowable

between the wind-tunnel settling chamber and the test

section.

 Standard sea level density in the test section,

ρ∞=0.002377 slug/ft3.



Example 3.4

 Maximum lift occurs when the model is at its

maximum lift coefficient.

 The freestream velocity at which this occurs is

obtained from

 From Equation



Pitot tube

 In 1732, the Frenchman Henri Pitot was busy trying to

measure the flow velocity of the Seine River in Paris.

 He used his own invention, Pitot tube, the most

common device for measuring flight velocities of

airplanes.

 Consider a flow with pressure p1 moving with velocity

V1.

 Pressure is clearly related to

the motion of the molecules,

random but in all directions.



 Now imagine that you hop on a fluid element of the flow

and ride with it at the velocity V1.

 The gas molecules, because of their random motion,

will still bump into you, and you will feel the pressure p1

of the gas.

 We now give this pressure a specific name: the static

pressure.

 Static pressure is a measure of the purely random

motion of molecules in the gas.

 It is the pressure you feel when you ride along with the

gas at the local flow velocity.

Pitot tube



 Furthermore, consider a boundary of the flow, such as

a wall, where a small hole is drilled perpendicular to

the surface.

 The plane of the hole is parallel to the flow.

 Because the flow moves over the opening, the

pressure felt at point A is due only to the random

motion of the molecules.

Pitot tube

 That is, at point A, the static pressure is

measured.

 Such a small hole in the surface is

called a static pressure orifice, or a

static pressure tap.



Pitot tube

 In contrast, consider that a Pitot tube is now inserted into

the flow, with an open end facing directly into the flow.

 That is, the plane of the opening of the tube is

perpendicular to the flow.

 The other end of the Pitot tube is connected to a pressure

gage, such as point C.

 The Pitot tube is closed at point C.



Pitot tube

 For the first few milliseconds after the Pitot tube is

inserted into the flow, the gas will rush into the open end

and will fill the tube.

 However, the tube is closed at point C; there is no place

for the gas to go.

 Hence after a brief period of adjustment, the gas inside

the tube will stagnate; that is, the gas velocity inside the

tube will go to zero.

 Indeed, the gas will eventually pile up and stagnate

everywhere inside the tube, including at the open mouth

at point B.

 Hence, point B at the open face of the Pitot tube is a

stagnation point, where VB = 0.



Pitot tube

 From Bernoulli’s equation we know the pressure

increases as the velocity decreases. Hence, pB > p1.

 The pressure at a stagnation point is called the

stagnation pressure, or total pressure, denoted by p0.

Hence, at point B, pB = p0.

 The pressure gage at point C reads p0.

 This measurement, in conjunction with a measurement

of the static pressure p1 at point A, yields the

difference between total and static pressure, p0 − p1.

 This pressure difference that allows the calculation of

V1 via Bernoulli’s equation.

 It is possible to combine the measurement of

both total and static pressure in one

instrument, a Pitot-static probe,



Pitot tube

 Via Bernoulli’s equation.

 Equation allows the calculation of velocity

simply from the measured difference

between total and static pressure. dynamic

pressure

 It is important to repeat that Bernoulli’s equation holds

for incompressible flow only.



Pitot tube

 The diameter of the tube is denoted by d.

 A number of static pressure taps are arrayed radially

around the circumference of the tube.

 The location should be from 8d to 16d downstream of the

nose, and at least 16d ahead of the downstream support

stem.

DESIGN BOX



Example 3.9

 Consider the P-35 aircraft cruising at a standard altitude

of 4 km.

 The pressure sensed by the Pitot tube on its right wing

is 6.7 × 104 N/m2.

 At what velocity is the P-35 flying?

 At a standard altitude of 4 km, the freestream static

pressure and density are 6.166×104 N/m2 and 0.81935

kg/m3, respectively.

 The Pitot tube measures the total pressure of 6.7 × 104

N/m2. From Equation



Pressure coefficient

 Pressure, by itself, is a dimensional quantity

 However, we established the usefulness of certain

dimensionless parameters such as M, Re, CL .

 It makes sense, therefore, that a dimensionless

pressure would also find use in aerodynamics.

 Such a quantity is the pressure coefficient Cp, and

defined as

 The pressure coefficient is another similarity parameter.



Pressure coefficient

 For incompressible flow, Cp can be expressed in terms

of velocity only.

 From Bernoulli’s equation,

 Finally,

 The pressure coefficient at a stagnation point (where

V=0) in an incompressible flow is always equal to 1.0.

 Also, keep in mind that in regions of the flow where

V>V∞ or p < p∞, Cp will be a negative value.



Example 3.12

 Consider the airplane model in wind tunnel.

 The pressure coefficient which occurs at a certain point

on the airfoil surface is −5.3.

 Assuming inviscid, incompressible flow, calculate the

velocity at this point when

 (a) V∞ = 80 ft/s,

 (b) V∞ = 300 ft/s.

 The answer given in part (b) of Example 3.12 is not correct.

 Why? The speed of sound at standard sea level is 1117

ft/s…



Condition on velocity for Incompressible flow

 From the continuity equation,

 For incompressible flow, ρ = constant. Hence,

 Recall that ∇·V is physically the time rate of change of

the volume of a moving fluid element per unit volume.



Governing equation for irrotational,

incompressible flow: Laplace's equation

 For an incompressible flow

 For an irrotational flow we have seen that a velocity

potential Φ can be defined such that

 for a flow that is both incompressible and irrotational,

 Equation is Laplace’s equation and one of the most

famous and extensively studied equations in

mathematical physics.

 Laplace's equation is a second-order partial

differential equation named after Pierre-

Simon Laplace who first studied its properties.



Laplace's equation

 Laplace’s equation is written below in terms of the

three common orthogonal coordinate systems

Cartesian coordinates

Cylindrical coordinates

Spherical coordinates



Laplace's equation

 We can show that the stream function also satisfies the

Laplace’s equation.

 Recall that, for a two-dimensional incompressible flow,

a stream function ψ can be defined such that,

 From the irrotationality condition



Laplace's equation

 Note that Laplace’s equation is a second-order linear

partial differential equation.

 The fact that it is linear is particularly important.

 Because the sum of any particular solutions of a linear

differential equation is also a solution of the equation.

 For example, if Φ1, Φ2, Φ3, . . . , Φn represent n separate

solutions of Equation, then the sum

is also a solution of Equation.

 We conclude that a complicated flow pattern can be

synthesized by adding together a number of elementary

flows that are irrotational and incompressible.

Superposition 

principle



Laplace's equation

 By the same equation, namely, ∇2Φ = 0, how, then, do

we obtain different flows for the different bodies?

 The answer is found in the boundary conditions.

 Although the governing equation for the different flows

is the same, the boundary conditions for the equation

must conform to the different geometric shapes

and hence yield different flow-field solutions.

 Boundary conditions are therefore of vital concern in

aerodynamic analysis.



 Therefore, two sets of boundary

conditions apply as follows.

Laplace's equation

Infinity Boundary Conditions



Laplace's equation

Wall Boundary Conditions

 The velocity vector must be tangent to the surface.

 If we are dealing with ψ rather than Φ, then the wall

boundary condition is

 The body surface is a streamline of the flow.



 The general approach to the solution of irrotational,

incompressible flows can be summarized as follows:

 Solve Laplace’s equation for Φ or ψ along with the

proper boundary conditions.

 Obtain the flow velocity from V = ∇Φ or u = ∂ψ/∂y

and v = −∂ψ/∂x.

 Obtain the pressure from Bernoulli’s equation…

Laplace's equation

1749-1827



Uniform flow

 Consider a uniform flow with velocity V∞ oriented

in the positive x direction.

 Integrating 1st Equation with respect to x, we

have

 Integrating 2nd Equation with respect to y, we

have

 By comparing these equations, the velocity potential for a 

uniform flow



Uniform flow

 Consider the incompressible stream function ψ. We

have

 Integrating Equations with respect to x, y and comparing

the results, we obtain
the stream function 

for a uniform flow

 Equations can be expressed in terms of polar

coordinates,



Uniform flow

 Consider the circulation in a uniform flow.

 Equation is true for any arbitrary closed curve in the

uniform flow.



Source flow

 Consider a two-dimensional, incompressible flow where

all the streamlines are straight lines emanating from a

central point O.

 Let the velocity along each of the streamlines vary

inversely with distance from point O.

 Such a flow is called a source flow.



Source flow

 Consider a two-dimensional, incompressible flow where

all the streamlines are directed toward the origin point

O.

 The flow velocity varies inversely with distance from

point O.

 Indeed, a sink flow is simply a negative source flow.

 the origin is 

a singular 

point



Source flow

 By definition,

where c is constant.

 The value of the constant is related

to the volume flow from the source

 Denote this volume flow rate per unit length as

 So, the radial velocity, Λ defines the 

source strength,



Source flow

 The velocity potential for a source can be obtained as

follows.

 Integrating Equation with respect to r, we have

 Integrating Equation with respect to θ, we have

 Comparing Equations, we see that



Source flow

 The stream function can be obtained as follows.

 To evaluate the circulation for source flow, recall the

∇×V = 0 everywhere.



Combination of a uniform flow with a 

source and sink

 Consider a polar coordinate system with a source of

strength Λ located at the origin.

 Superimpose on this flow a uniform stream with velocity

V∞ moving from left to right,

 The stream function for the resulting flow is the sum of

Equations

https://www.youtube.com/watch?v=WkGQIpdSExk


Combination of a uniform flow with a 

source and sink

 The velocity field is obtained by differentiating

Equation

 Note that, consistent with the linear nature of Laplace’s

equation,

 not only can we add the values of Φ or ψ to obtain

more complex solutions,

 we can add their derivatives, that is, the velocities,

as well.

 The stagnation points in the flow can be obtained by

setting Equations equal to zero

one stagnation point exists



Combination of a uniform flow with a 

source and sink

 If the coordinates of the stagnation point at B are

substituted into Equation, we obtain

 This is a half-body that stretches to infinity in the

downstream direction (i.e., the body is not closed).

 However, if we take a sink of equal strength as the

source and add it to the flow downstream of point D,

then the resulting body shape will be closed.

 Let us examine this flow in more detail.



Combination of a uniform flow with a 

source and sink

 Consider a polar coordinate system with a source and sink

placed a distance b to the left and right of the origin,

respectively.

 The strengths of the source and sink are Λ and − Λ,

respectively (equal and opposite).

 In addition, superimpose a uniform stream with velocity V∞,

as shown in Figure.

b b



 The stream function for the combined flow at any point

P with coordinates (r, θ) is obtained from Equations

Combination of a uniform flow with a 

source and sink

 Note from the geometry that θ1 and θ2 are functions of r ,

θ, and b.

Scottish engineer W. J. M. Rankine. 

a Rankine oval.



Combination of a uniform flow with a 

source and sink

 By setting V = 0, two stagnation points are found,

namely, points A and B,

 The stagnation streamline is given by ψ = 0, that is,

 The region inside the oval can be replaced by a solid

body with the shape given by ψ = 0.

 The region outside the oval can be interpreted as the

inviscid, potential (irrotational), incompressible flow over

the solid body.



Combination of a uniform flow with a 

source and sink



Doublet flow

 There is a special case of a source-sink pair that leads

to a singularity called a doublet.

 Consider a source of strength Λ and a sink of equal

strength – Λ separated by a distance l, the stream

function is

 The geometry yields



Doublet flow

 Let the distance l approach zero while the absolute

magnitudes of the strengths of the source and sink

increase in such a fashion that the product lΛ remains

constant.

 Substituting dθ equation, we have

 The strength of the doublet is denoted by κ

 Velocity potential for a doublet is given by



Doublet flow

 The streamlines of a doublet flow are obtained from

 A circle with a diameter d on the vertical

axis and with the center located d/2

directly above the origin.

 The direction of flow is out of the origin to the left and 

back into the origin from the right.

 By convention, we designate the direction of the

doublet by an arrow drawn from the sink to the source.



Nonlifting flow over A circular cylinder

 Consider the addition of a uniform flow with velocity V∞

and a doublet of strength κ, as shown in Figure

 The stream function for the combined flow is



 Let

 Then Equation can be written as

Nonlifting flow over A circular cylinder

 Equation is the stream function for a uniform flow-doublet

combination.

 It is also the stream function for the flow over a circular

cylinder of radius R.

 The velocity field is obtained by

 The stagnation points,



Nonlifting flow over A circular cylinder

 The equation of this streamline where it goes through the

stagnation points

 Consequently, the inviscid irrotational, incompressible

flow over a circular cylinder of radius R can be

synthesized by a uniform flow and a doublet;

 The velocity distribution on the surface of the cylinder is

given by



Nonlifting flow over A circular cylinder

 The pressure coefficient is given by

 The pressure coefficient distribution over the surface is

sketched



Nonlifting flow over A circular cylinder

 Clearly, the pressure distribution over the top half of the

cylinder is equal to the pressure distribution over the

bottom half.

 Hence the lift must be zero.

 Clearly, the pressure distributions over the front and rear

halves are the same.

 Hence the drag is theoretically zero.



Example 3.13

 Consider the nonlifting flow over a circular cylinder.

 Calculate the locations on the surface of the cylinder

where the surface pressure equals the freestream

pressure.



Example 3.14

 In the nonlifting flow over a circular cylinder, consider

the infinitesimally small fluid elements moving along

the surface of the cylinder.

 Calculate the angular locations over the surface

where the acceleration of the fluid elements are a

local maximum and minimum.

 The radius of the cylinder is 1 m and the freestream

flow velocity is 50 m/s, calculate the values of the

local maximum and minimum accelerations.



Example 3.14

 The local velocity of the fluid elements on the surface

 The acceleration of the fluid elements is

 Incremental distance on the cylinder surface subtended

by dθ is ds



Example 3.14

 To find the θ locations at which the acceleration is a

maximum or minimum, differentiate Equation with

respect to θ, and set the result equal to zero.

 The values of the local flow acceleration at each one

of these locations are respectively

Tremendously

large accelerations



Vortex flow

 Consider a flow where all the streamlines are

concentric circles about a given point, as sketched in

Figure;

 Let the velocity along any given circular

streamline be constant.

 But let it vary from one streamline to

another inversely with distance from the

common center.

 Such a flow is called a vortex flow.



Vortex flow

 To evaluate the constant C, take the circulation around a

given circular streamline of radius r

 Therefore, for vortex flow, Equation demonstrates that

the circulation taken about all streamlines is the same

value, namely,

 Γ is called the strength of the vortex flow.

 We stated earlier that vortex flow is irrotational except at

the origin.

 The origin, r = 0, is a singular point in the flow field.



Vortex flow

 The velocity potential for vortex flow

 The stream function is determined in a similar manner



Summary for elementary flows



Lifting over a cylinder

 Consider the flow synthesized by the addition of the

nonlifting flow over a cylinder and a vortex of strength

Γ, as shown in Figure



Lifting over a cylinder

 Note that the streamlines are no longer symmetrical

about the horizontal axis through point O.

 That the cylinder will experience a resulting finite normal

force.

 However, the streamlines are symmetrical about the

vertical axis through O.

 As a result the drag will be zero.

 The velocity field can be obtained by



Lifting over a cylinder

 To locate the stagnation points in the flow, set



 From the above discussion, Γ is clearly a parameter that

can be chosen freely.

 There is no single value of Γ that “solves” the flow over

a circular cylinder; rather, the circulation can be any

value.

 Therefore, for the incompressible flow over a circular

cylinder, there are an infinite number of possible

potential flow solutions, corresponding to the infinite

choices for values of Γ .

 This statement is not limited to flow over circular

cylinders, but rather, it is a general statement that holds

for the incompressible potential flow over all smooth

two-dimensional bodies.

Lifting over a cylinder



Lifting over a cylinder

 The velocity on the surface of the cylinder is given by

(r=R),

 The pressure coefficient is

 The drag coefficient cd is given by



Lifting over a cylinder

 Noting that we immediately obtain

 The lift on the cylinder can be evaluated in a similar

manner



Lifting over a cylinder

 Noting that we immediately obtain

 From the definition of cl, the lift per unit span L can be

obtained from

 It states that the lift per unit span is directly proportional

to circulation.

It is called 

the Kutta-Joukowski theorem



Lifting over a cylinder

No rotation

Rotation

Rotation

 This pressure imbalance

creates a net upward force,

that is, a finite lift.

the Magnus effect

https://www.youtube.com/watch?v=4uWojJQZ78U
https://www.youtube.com/watch?v=23f1jvGUWJs


Example 3.18

 Consider the lifting flow over a circular cylinder with a

diameter of 0.5 m.

 The freestream velocity is 25 m/s, and the maximum

velocity on the surface of the cylinder is 75 m/s.

 The freestream conditions are those for a standard

altitude of 3 km.

 Calculate the lift per unit span on the cylinder.

 From Appendix, at an altitude of 3 km, ρ = 0.90926

kg/m3.

 The maximum velocity occurs at the top of the cylinder,

where θ = 90◦,



Example 3.18

 From Equation

 Recalling our sign convention that Γ is positive in the

clockwise direction, and Vθ is negative in the clockwise

direction

 From Equation, the lift per unit span is



The Kutta-Joukowski theorem and the generation of lift

 Consider the incompressible flow over an airfoil section,

as sketched in Figure.

 Let curve A be any curve in the flow

enclosing the airfoil.

 If the airfoil is producing lift, the velocity

field around the airfoil will be such that

the line integral of velocity around A will

be finite, that is, the circulation

 In turn, the lift per unit span Lon

the airfoil will be given by the

Kutta-Joukowski theorem,



The Kutta-Joukowski theorem and the generation of lift

 The theoretical analysis of lift on two-dimensional bodies

in incompressible, inviscid flow focuses on the calculation

of the circulation about the body.

 Once is obtained, then the lift per unit span follows

directly from the Kutta-Joukowski theorem.



Nonlifting flows over arbitrary bodies: 

the numerical source panel method

 Recall that we have already dealt with the nonlifting

flows: a Rankine oval and both the nonlifting and the

lifting flows over a circular cylinder.

 We added our elementary flows in certain ways and

discovered that the dividing streamlines turned out to fit

the shapes of such special bodies.

 However, this indirect method can hardly be used in a

practical sense for bodies of arbitrary shape.

 For example, consider the airfoil. Do we know in

advance the correct combination of elementary flows to

synthesize the flow over this specified body?

No



 What we want is a direct method.

 That is, let us specify the shape of an arbitrary body

and solve for the distribution of singularities which

produce the flow over the given body.

 The purpose of this section is to present such a direct

method, limited for the present to nonlifting flows.

Nonlifting flows over arbitrary bodies: 

the numerical source panel method



Nonlifting flows over arbitrary bodies: 

the numerical source panel method

 The present technique is called the source panel method.

 Now imagine that we have an infinite number of such line

sources side by side, where the strength of each line

source is infinitesimally small.

 These side-by-side line sources form a source sheet.

 Let s be the distance measured along the source sheet in

the edge view.

 Define λ = λ(s) to be the source strength

per unit length along s.

 The small section of the source sheet

can be treated as a distinct source of

strength λ ds



Nonlifting flows over arbitrary bodies: 

the numerical source panel method

 Now consider point P in the flow, located a distance r

from ds.

 The cartesian coordinates of P are (x, y).

 The small section of the source sheet of strength λ ds

induces an infinitesimally small potential dφ at point P.

 From Equation, dΦ is given by

 The complete velocity potential at point P, induced by the

entire source sheet from a to b, is obtained by integrating

Equation



Nonlifting flows over arbitrary bodies: 

the numerical source panel method

 Note that, in general, λ(s) can change from positive to

negative along the sheet.

 That is, the “source” sheet is really a combination of line

sources and line sinks.

 Next, consider a given body of arbitrary shape in a flow

with freestream velocity V∞, as shown in Figure.

 The combined action of the uniform flow and the source

sheet makes the airfoil surface a streamline of the flow.

 Our problem now becomes one of

finding the appropriate λ(s).



Nonlifting flows over arbitrary bodies: 

the numerical source panel method

 The solution of this problem is carried out numerically,

as follows.

 Let us approximate the source sheet by a series of

straight panels,



Nonlifting flows over arbitrary bodies: 

the numerical source panel method

 Moreover, let the source strength λ per unit length be

constant over a given panel, but allow it to vary from one

panel to the next.

 If there are a total of n panels,

 These panel strengths are unknown.

 Let P be a point located at (x, y) in the flow, and let r pj be

the distance from any point on the j th panel to P,

 The velocity potential induced at P due to the j th panel

ΔΦj is,



Nonlifting flows over arbitrary bodies: 

the numerical source panel method

 In turn, the potential at P due to all the panels is

Equation summed over all the panels:

where (x j , yj ) are coordinates along the surface of the j

th panel.

 Since point P is just an arbitrary point in the flow, let us

put P at the control point of the ith panel and the

coordinates of this control point be given by (xi , yi ),

the contribution of all the panels to 

the potential at the ith panel.



Nonlifting flows over arbitrary bodies: 

the numerical source panel method

 Recall that the boundary condition is applied at the

control points.

 That is, the normal component of the flow velocity is

zero at the control points.

 First consider the component of freestream velocity

perpendicular to the panel.

 The normal component of velocity induced at (xi , yi ) by

the source panels is,



Nonlifting flows over arbitrary bodies: 

the numerical source panel method

 A singular point arises on the ith panel because when j=i,

at the control point itself ri j = 0.

 It can be shown that when j = i , the contribution to the

derivative is simply λi/2.

 We obtain

 The values of the integrals in Equation depend simply on

the panel geometry; they are not properties of the flow.

 Let is



Nonlifting flows over arbitrary bodies: 

the numerical source panel method

 Then Equation can be written as

 Equation is a linear algebraic equation with n unknowns λ1,

λ2, . . . , λn.

 It represents the flow boundary condition evaluated at the

control point of the ith panel.

 Now apply the boundary condition to the control points of all

the panels; i = 1, 2, . . . , n.

 The results will be a system of n linear algebraic equations

with n unknowns (λ1, λ2, . . . , λn), which can be solved

simultaneously by conventional numerical methods.



Nonlifting flows over arbitrary bodies: 

the numerical source panel method

 We now have the distribution of source panel strengths

which cause the body surface to be a streamline of the

flow.

 This approximation can be made more accurate by

increasing the number of panels.

 A circular cylinder can be accurately represented by as

few as 8 panels.

 And most airfoil shapes, by 50 to 100 panels.

 In general, all the panels can be different lengths.



Nonlifting flows over arbitrary bodies: 

the numerical source panel method

 Once the λi ’s (i = 1, 2, . . . , n) are obtained, the velocity

tangent to the surface at each control point can be

calculated.

 The component of freestream velocity tangent to the

surface is

 The tangential velocity Vs at the control point of the ith

panel induced by all the panels is obtained by

differentiating

The tangential velocity on a flat source panel 

induced by the panel itself is zero



Nonlifting flows over arbitrary bodies: 

the numerical source panel method

 The total surface velocity at the ith control point Vi is

the sum of the contribution from the freestream and

from the source panels

 The pressure coefficient at the ith control point is

obtained from



 When you carry out a source panel solution as

described above, the accuracy of your results can be

tested.

 Recall that λj is the strength of the j th panel per unit

length.

 Hence, the strength of the j th panel itself is λj Sj . For a

closed body,

Nonlifting flows over arbitrary bodies: 

the numerical source panel method

 Equation provides an independent check on the

accuracy of the numerical results.



Example 3.19

 Calculate the pressure coefficient distribution around a

circular cylinder using the source panel technique.

 We choose to cover the body with eight panels of equal

length.

 The panels are numbered from 1 to 8, and the control

points are shown by the dots in the center of each

panel.

 Let us evaluate the integrals Ii,j which

appear in Equation.

 Recall that the integral Ii, j is evaluated at

the ith control point and the integral is

taken over the complete j th panel.



Example 3.19



Example 3.19

 Since

 Then

 From this geometry,  Also, from the geometry, we have



Example 3.19

 Substituting Equations, we obtain

where

 We obtain an expression for Equation from standard table

of integrals:



Example 3.19

 Equation is a general expression for two arbitrarily

oriented panels.

 It is not restricted to the case of a circular cylinder.

Letting

 We now apply Equation to the circular cylinder.

 For purposes of illustration, let us choose panel 4 as the

ith panel and panel 2 as the j th panel.

 That is, let us calculate I4,2.



 From the geometry, assuming a unit radius for the

cylinder, we see that

Example 3.19

 Hence, substituting these numbers into the above

formulas, we obtain

 Inserting the above values into Equation, we obtain

 We obtain, by means of a similar calculation,



 Written for panel 4, Equation becomes (after multiplying

each term by 2π and noting that βi = 45◦ for panel 4)

Example 3.19

 Equation is a linear algebraic equation in terms of the

eight unknowns, λ1, λ2, . . . ,λ8.

 If we now construct similar equations for each of the

seven other panels, we obtain a total of eight

equations.

 They can be solved simultaneously for the eight

unknown λ’s.



 The results are

Example 3.19

 Note the symmetrical distribution of the λ’s, which is to

be expected for the nonlifting circular cylinder.

 Also, as a check on the above solution,

 The velocity at the control point of the ith panel can be

obtained from,

 In that equation, the integral over the j th panel is a

geometric quantity that is evaluated in a similar manner

as before.



 The result is

Example 3.19

 With the integrals and with the values for λ1, λ2, . . . , λ8

obtained above, we obtain the velocities V1, V2, . . . , V8.

 In turn, the pressure coefficients Cp,1,Cp,2, . . . ,Cp,8 are

obtained directly from



 Results for the pressure coefficients obtained from this

calculation are compared with the exact analytical

result,

Example 3.19

Amazingly enough, in spite of the

relatively crude paneling



Applied aerodynamics: the flow over a 

circular cylinder—the real case

0 < Re < 4,

4 < Re < 40

40 < Re < 104

104 < Re < 3x105

3 × 105 < Re < 3 × 106

a Karman vortex street

Stokes flow

Separated flow

turbulent and a 

wake flow



Historical note

D'Alembert and his paradox

 We demonstrate that the combination of a

uniform flow and a doublet produces the flow

over a circular cylinder.

 Note that the entire flow field is symmetrical

about both the horizontal and vertical axes

through the center of the cylinder.

 Hence, the pressure distribution is also

symmetrical about both axes.

 As a result, there is no net lift.

 In real life, the result of zero lift is easy to

accept, but the result of zero drag makes no

sense.



Historical note

D'Alembert and his paradox

 This paradox between the theoretical result of zero

drag, and the knowledge that in real life the drag is

finite, was encountered in the year 1744 by the

Frenchman Jean Le Rond d’Alembert.

 It has been known as d’Alembert’s paradox ever since.

 For d’Alembert and other fluid dynamic researchers

during the eighteenth and nineteenth centuries, this

paradox was unexplained.



 Of course, today we know that the drag is due to viscous

effects which generate frictional shear stress at the body

surface.

 It cause the flow to separate from the surface on the

back of the body, thus;

 creating a large wake downstream of the body,

 destroying the symmetry of the flow about the

vertical axis through the cylinder.

Historical note

D'Alembert and his paradox



Questions



Questions



 Calculate the pressure coefficient distribution around a

circular cylinder using the source panel technique.

 Choose to cover the body with 12 panels of equal

length.

Questions

 Compare results for the pressure coefficients obtained

from this calculation with the exact analytical result.
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Nomenclature 

Xi (saɪ) ξ



Introduction 

Of the many problems now engaging attention, the following are considered

of immediate importance and will be considered by the committee as rapidly

as funds can be secured for the purpose. . . . The evolution of more efficient

wing sections of practical form, embodying suitable dimensions for an

economical structure, with moderate travel of the center-of-pressure and still

affording a large range of angle-of-attack combined with efficient action.

From the first Annual Report of the

NACA, 1915

the National Advisory Committee for Aeronautics

(NACA)

National Aeronautics and Space Administration

(NASA)



Introduction 

 Figure shows an airplane in flight,

sustained in the air by the

aerodynamic action of its wing.

 Airplane wings are made up of airfoil

shapes.

 The first step in understanding the aerodynamics of

wings is to understand the aerodynamics of airfoils.

 Airfoil aerodynamics is important stuff—it is the stuff

of this chapter.



Introduction 

 In the period 1912–1918, the analysis of airplane wings

took a giant step forward.

 When Ludwig Prandtl and his colleagues at Göttingen,

Germany, showed that the aerodynamic consideration

of wings could be split into two parts:

 The study of the section of a wing—an airfoil—

 The modification of such airfoil properties to

account for the complete, finite wing.
1875–1953



Introduction 

 Consider a wing as drawn in perspective in

Figure.

 The wing extends in the y direction (the span

direction).

 The freestream velocity V∞ is parallel to the xz

plane.

 Any section of the wing cut by a plane parallel to

the xz plane is called an airfoil.

 We will deal with inviscid flow, which does

not lead to predictions of airfoil drag.

 However, the lift and moments on the airfoil

are due mainly to the pressure distribution,

which is dictated by inviscid flow.

no drag

but lift



Airfoil nomenclature

 The first patented airfoil shapes were developed by

Horatio F. Phillips in 1884.

 In the early 1930s, NACA embarked on a

series of definitive airfoil experiments using

airfoil shapes that were constructed

rationally and systematically.

 Many of these NACA airfoils are in common

use today. Therefore, we follow the

nomenclature established by the NACA.

 The NACA identified different airfoil shapes with a

logical numbering system.

 “four-digit” series, such as the NACA 2412 airfoil.

 “five-digit” series, such as the NACA 23012 airfoil.

 “6-series”, such as the NACA 65-218 airfoil.

 Many of the large aircraft companies today design their

own special purpose airfoils; for example, the Boeing…



Airfoil nomenclature



Airfoil nomenclature

 The mean camber line is the locus of points halfway

between the upper and lower surfaces as measured

perpendicular to the mean camber line itself.

 The most forward and rearward points of the mean

camber line are the leading and trailing edges,

respectively.

 The straight line connecting the leading and trailing

edges is the chord line of the airfoil, c.



Airfoil nomenclature

 The camber is the maximum distance between the

mean camber line and the chord line, measured

perpendicular to the chord line.

 The thickness is the distance between the upper and

lower surfaces, also measured perpendicular to the

chord line.

 The shape of the airfoil at the leading edge is usually

circular, with a leading-edge radius of approximately

0.02c.



Airfoil nomenclature

 The shapes of all standard NACA airfoils are

generated by

 specifying the shape of the mean camber line,

 and then wrapping a specified symmetrical

thickness distribution around the mean camber

line.

 “four-digit” series, such as the NACA 2412 airfoil.

 the maximum camber length is 0.02c

 located at 0.4c from the leading edge,

 the maximum thickness is 0.12c.

 NACA 0012 airfoil is a symmetric airfoil

with no camber, a maximum thickness of

12 percent.



Airfoil nomenclature

 “five-digit” series, such as the NACA 23012 airfoil.

 the design lift coefficient is 0.3,

 the location of maximum camber is at 0.15c,

 the airfoil has 12 percent maximum thickness.

multiplied by 3/2, in tenths

the next two digits when divided by 2

 “6-series”, such as the NACA 65-218 airfoil.

 the 6 is the series designation,

 the minimum pressure occurs at 0.5c,

 the design lift coefficient is 0.2,

 the airfoil is 18 percent thick, 0.18c.

in tenths



Airfoil characteristics

 The typical variation of lift coefficient with angle of

attack for an airfoil is sketched in Figure.

 At low-to-moderate angles of attack, cl varies linearly

with α.



Airfoil characteristics

 In this region, the flow moves smoothly over the airfoil

and is attached over most of the surface.

 However, as α becomes large, the flow tends to

separate from the top surface of the airfoil, creating a

large wake of relatively “dead air” behind the airfoil.

 Part of the flow is actually moving in a direction opposite

to the freestream—so-called reversed flow.

 We see decrease in lift and a large increase in drag.

 Under such conditions the airfoil is said

to be stalled.

 The maximum value of cl, which occurs

just prior to the stall, is denoted by cl,max.

https://www.youtube.com/watch?v=WFcW5-1NP60
https://www.youtube.com/watch?v=5wIq75_BzOQ
https://www.youtube.com/watch?v=eNXMmf2XCLM


Airfoil characteristics

 The higher is cl,max, the lower

is the stalling speed.

 A great deal of modern airfoil

research has been directed

toward increasing cl,max.

 The NACA 2412 airfoil is

given example.

 Note from Figure that

 αL=0 = −2.1◦,

 cl,max ≈ 1.6,

 the stall at α ≈ 16◦.



Airfoil characteristics

 The physical source of drag

coefficient is both skin friction drag

and pressure drag due to flow

separation (so-called form drag).

 The sum of these two effects yields

the profile drag coefficient cd for the

airfoil.

 The NACA 2412 airfoil is given

example.

 Also plotted in Figure is the moment

coefficient about the aerodynamic

center cm,ac.

 In general, moments on an airfoil are

a function of α.



Airfoil characteristics

 Foil in viscous flow at varying

angles of attack.

Viscous Flow (α = 45 degrees)

Viscous Flow (α= 22 degrees)

 Circulation around an airfoil.



 However, there is one point on the airfoil about which the

moment is independent of angle of attack.

 Such a point is defined as the aerodynamic center.

 Clearly, the data in Figure illustrate a constant value for

cm,ac over a wide range of α.

Airfoil characteristics

𝑑𝐶𝑀
𝑑𝛼

= 0 Aerodynamic center;

෍𝑀𝑐.𝑝 = 0 Center of pressure;

𝑀𝑐.𝑎. = 𝑐



Example 4.1

 Consider an NACA 2412 airfoil with a chord of 0.64 m

in an airstream at standard sea level conditions.

 The freestream velocity is 70 m/s. The lift per unit span

is 1254 N/m.

 Calculate the angle of attack and the drag per unit

span.

 At standard sea level

 From Figure



Example 4.1

 Since cd = f (Re), let us calculate Re. At standard sea

level,

 Therefore, using the data for Re = 3.1 × 106 in Figure,

we find



Example 4.2

 For the airfoil and flow conditions given in Example 4.1,

calculate the moment per unit span about the

aerodynamic center.

 Calculate and compare the lift-to-drag ratios at angles

of attack of 0, 4, 8, and 12 degrees.

 The Reynolds number is 3.1 × 106.

 From Figure, cm,ac, which is independent of angle of

attack, is −0.05.

 The moment per unit span about the aerodynamic

center is

 A negative moment, as obtained here, is a pitch-down

moment, tending to reduce the angle of attack.



Example 4.2

 The lift-to-drag ratio, L/D, is given by

 From Figures, we have

 As the angle of attack increases, the lift-to-drag ratio

increases, reaches a maximum, and then decreases.

 The maximum lift-to-drag ratio, (L/D)max, is a direct

measure of aerodynamic efficiency.

 The higher the value of (L/D)max, the more efficient is the

airfoil.

 The values of (L/D)max for real airplanes are on the order of

10 to 20.



The vortex sheet

 Imagine a straight line perpendicular to the page,

extending to infinity both out of and into the page.

 This line is a straight vortex filament of strength Γ.

 Imagine an infinite number of straight

vortex filaments side by side.

 These side-by-side vortex filaments

form a vortex sheet,

vortex filament

vortex sheet



The vortex sheet

 Here, we are looking at an edge view of the sheet; the

vortex filaments are all perpendicular to the page.

 Let s be the distance measured along the

vortex sheet in the edge view.

 Define γ = γ (s) as the strength of the

vortex sheet, per unit length along s.

 Thus, the strength of an infinitesimal

portion ds of the sheet is γ ds.

 Now consider point P in the flow, located

a distance r from ds.

 The small section of the vortex sheet of

strength γ ds induces an infinitesimally

small velocity dV at point P.

 dV is given by

in a direction perpendicular to r



The vortex sheet

 The increment in velocity potential dΦ induced at point

P by the elemental vortex γ ds is,

 The velocity potential at P due to the entire vortex

sheet from a to b is

 The circulation around the vortex sheet is the sum of

the strengths of the elemental vortices; that is



 The change in tangential velocity across the vortex

sheet is related to the strength of the sheet as follows.

 Consider a vortex sheet as sketched,

The vortex sheet

 From the definition of circulation, the

circulation around the dashed path is

 we also have

 Therefore,

 Let
 The local jump in tangential

velocity across the vortex sheet is

equal to the local sheet strength.



The vortex sheet

 A philosophy of airfoil theory of inviscid, incompressible

flow is as follows.

 Consider an airfoil of arbitrary shape and thickness in a

freestream with velocity V∞, as sketched in Figure.

 Replace the airfoil surface with a vortex sheet of variable

strength γ (s).

 Calculate the variation of γ as a function of s.

 Such that the induced velocity field from the vortex sheet

when added to the V∞ will make the vortex sheet (hence

the airfoil surface) a streamline of the flow.



The vortex sheet

 In turn, the circulation around the airfoil will be given by

where the integral is taken around the complete surface

of the airfoil.

 Finally, the resulting lift is given by the Kutta-Joukowski

theorem

 However, no general analytical solution for γ = γ (s)

exists for an airfoil of arbitrary shape and thickness.

 Rather, the strength of the vortex sheet must be found

numerically.



The vortex sheet

 However, imagine that the airfoil in Figure is made

very thin.

 So, the portions of the vortex sheet on the top and

bottom surface of the airfoil would almost coincide.

 This gives rise to a method of approximating a thin

airfoil by replacing it with a single vortex sheet

distributed over the camber line of the airfoil.

 Although it is an approximation, it has the advantage

of yielding a closed-form analytical solution.



 The lifting flow over a circular cylinder was discussed in

Section 3.15.

 We observed that an infinite number of potential flow

solutions were possible, corresponding to the infinite

choice of Γ.

 The same situation applies to the potential flow over an

airfoil.

 For a given airfoil at a given angle of attack, there are

an infinite number of valid theoretical solutions,

corresponding to an infinite choice of Γ.

The Kutta condition



The Kutta condition

 But, we know from experience that a given airfoil at a

given angle of attack produces a single value of lift.

 So, although there is an infinite number of possible

potential flow solutions, nature knows how to pick a

particular solution.

 Clearly, we need an additional condition that fixes Γ for

a given airfoil at a given α.



The Kutta condition

At the beginning Later…

 According to the experiments, the flow is smoothly leaving the

top and the bottom surfaces of the airfoil at the trailing edge.

 This flow pattern is sketched in Figure and represents the type

of pattern to be expected for the steady flow over an airfoil.



The Kutta condition

 In establishing the steady flow over a given airfoil at a

given angle of attack, nature adopts that particular value

of circulation.

 This certain circulation results in the flow leaving

smoothly at the trailing edge.

 That observation was first made and used in a

theoretical analysis by the German mathematician M.

Wilhelm Kutta in 1902.

 Therefore, it has become known as the Kutta condition.



 We can summarize the statement of the Kutta condition

as follows:

 For a given airfoil at a given angle of attack, the

value of around the airfoil is such that the flow

leaves the trailing edge smoothly.

 If the trailing-edge angle is finite, then the trailing

edge is a stagnation point.

 If the trailing edge is cusped, then the velocities

leaving the top and bottom surfaces at the trailing

edge are finite and equal in magnitude and

direction.

The Kutta condition

 We need to be more precise about the nature of the flow

at the trailing edge.



The Kutta condition

 The statement of the Kutta condition in terms of the

vortex sheet is as follows.

 At the trailing edge (TE), we have

 At the trailing edge (TE), the strength of the vortex sheet

is ‘0’.

 Nature enforces the Kutta condition by means of friction.

 If there were no boundary layer (i.e., no friction), there

would be no physical mechanism in the real world to

achieve the Kutta condition.

 We can say that without friction we could not have lift.



Kelvin’s circulation theorem

 Specifically, the Kutta condition states that the circulation

around an airfoil is just the right value to ensure that the

flow smoothly leaves the trailing edge.

 Question: How does nature generate this circulation?

 Does it come from nowhere, or is circulation somehow

conserved over the whole flow field?

 Consider an arbitrary inviscid, incompressible flow.

 Assume that all body forces f are zero.



Kelvin’s circulation theorem

 we can state that circulation around a closed curve formed

by a set of contiguous fluid elements remains constant as

the fluid elements move throughout the flow.

 Hence, a mathematical statement of the above discussion

is simply

Equation is called 

Kelvin’s circulation theorem



Kelvin’s circulation theorem

 Kelvin’s theorem helps to explain the generation of

circulation around an airfoil, as follows.

 Consider an airfoil in a fluid at rest.

 Because V = 0 everywhere, the circulation around curve

C1 is zero.

 Now start the flow in motion over the airfoil.

 Initially, the flow will tend to curl around the trailing edge.

 Consequently, during the very first moments after the flow

is started, a thin region of very large velocity gradients

(and therefore high vorticity) is formed at the trailing edge.



Kelvin’s circulation theorem

 This high vorticity region is fixed to the same fluid

elements.

 Consequently it is flushed downstream as the fluid

elements begin to move downstream from the trailing

edge.

 As it moves downstream, this thin sheet of intense

vorticity is unstable, and it tends to roll up and form a

picture similar to a point vortex.

 This vortex is called the starting vortex.



Kelvin’s circulation theorem

 After the flow around the airfoil has come

to a steady state where the flow leaves

the trailing edge smoothly (the Kutta

condition), the high velocity gradients at

the trailing edge disappear.

 Vorticity is no longer produced at that

point.

 However, the starting vortex

has already been formed

during the starting process.

 It moves steadily downstream

with the flow forever after.



 The circulation around the airfoil is equal and opposite to

the circulation around the starting vortex.

Kelvin’s circulation theorem

https://www.youtube.com/watch?v=VcggiVSf5F8
https://www.youtube.com/watch?v=bvV7-9wAXc0


Example 4.4

 For the NACA 2412 airfoil at the conditions given,

calculate the strength of the steady-state starting

vortex.

 From the Kutta-Joukowski theorem,

The circulation associated with

the flow over the airfoil

 The steady-state starting vortex has strength equal and

opposite to the circulation around the airfoil. Hence,

 For practical calculations in aerodynamics, an actual number

for circulation is rarely needed.

 Circulation is a mathematical quantity, the starting vortex is

simply a theoretical construct.



Classical thin airfoil theory:

the symmetric airfoil

 We deal with thin airfoils; for such a case, the airfoil can

be simulated by a vortex sheet placed along the

camber line.

 Our purpose is to calculate the variation of γ (s).

 Such that the camber line becomes a streamline of the

flow and the Kutta condition is satisfied at the trailing

edge; that is, γ (TE) = 0.

 Then the total circulation around the airfoil is found by

integrating γ (s) from the leading edge to the trailing

edge.

 In turn, the lift is calculated from via the Kutta-

Joukowski theorem.



Classical thin airfoil theory:

the symmetric airfoil

 Consider a vortex sheet placed on the

camber line of an airfoil,

 w is the component of velocity normal to

the camber line induced by the vortex

sheet.

 If the airfoil is thin, the camber line is close to

the chord line, the vortex sheet appears to fall

approximately on the chord line.

 Therefore, let us place the vortex sheet on

the chord line.

 The strength of the vortex sheet on

the chord line is determined such that

the camber line is a streamline &



Classical thin airfoil theory:

the symmetric airfoil

 For the camber line to be a streamline, the component

of velocity normal to the camber line must be zero at all

points along the camber line.

 For a thin airfoil at small

angle of attack,

 Keep in mind that α is in

radians.



Classical thin airfoil theory:

the symmetric airfoil

 Let us develop an expression for w’(s) in terms of the

strength of the vortex sheet.

 Let w(x) denote the component of velocity normal to

the chord line induced by the vortex sheet.

 If the airfoil is thin,

 Remember that;

 We wish to calculate the value of w(x) at the location x.



Classical thin airfoil theory:

the symmetric airfoil

 Recall the boundary condition necessary for the camber

line to be a streamline. Substituting Equations, we

obtain

 The fundamental equation of thin airfoil theory; it is

simply a statement that the camber line is a streamline

of the flow.

 In this section, we treat the case of a symmetric airfoil;



Classical thin airfoil theory:

the symmetric airfoil

 To help deal with the integral, let us transform ξ into θ

via the following transformation:

 Since x is a fixed point in Equations, it corresponds to

a particular value of θ, namely, θ0, such that

 Also, from Equation

 Substituting them and noting that the limits of

integration become θ = 0 at the leading edge (where

ξ= 0) and θ = π at the trailing edge (where ξ = c), we

obtain



Classical thin airfoil theory:

the symmetric airfoil

 A rigorous solution of Equation for γ (θ) can be obtained

from the mathematical theory of integral equations.

 We simply state that the solution is

L'Hospital's Rule tells us that if we have an indeterminate form

0/0 or all we need to do is differentiate the numerator and

differentiate the denominator and then take the limit.

 Note that at the trailing edge, where θ = π, Equation

yields

 However, using L’Hospital’s rule

 Thus, Equation also satisfies the Kutta condition.



Classical thin airfoil theory:

the symmetric airfoil

 We are now in a position to calculate the lift coefficient

for a thin, symmetric airfoil. The total circulation around

the airfoil is

 Substituting Equation into the Kutta-Joukowski

theorem, we find that the lift per unit span is



 The lift coefficient is

Classical thin airfoil theory:

the symmetric airfoil

 They state the theoretical result that the lift coefficient is

linearly proportional to angle of attack, which is

supported by the experimental results.

 The experimental lift coefficient data for an NACA 0012

symmetric airfoil are given in Figure.

 Note that Equation accurately predicts cl over a large

range of angle of attack.



Classical thin airfoil theory:

the symmetric airfoil

𝛼 = 4°

𝐶𝑙 = 2𝜋𝛼 = 2 × 𝜋 × 4 ×
2𝜋

360

𝐶𝑙 = 0,4386



Classical thin airfoil theory:

the symmetric airfoil

 The moment about the leading edge can be calculated

as follows.

 The increment of lift dL contributed by the elemental

vortex is

 This increment of lift creates a moment

about the leading edge

Transforming Equation and performing the

integration, we obtain



Classical thin airfoil theory:

the symmetric airfoil

 The moment coefficient is

 From previous Equation, the moment coefficient about

the quarter-chord point is

 Combining Equations, we have

Clearly, Equation demonstrates the theoretical result

that the center of pressure is at the quarter-chord

point for a symmetric airfoil.



Classical thin airfoil theory:

the symmetric airfoil

 By the definition, that point on an airfoil where moments

are independent of angle of attack is called the

aerodynamic center.

 From Equation, the moment about the quarter chord is

zero for all values of α.

 Hence, for a symmetric airfoil, we have the theoretical

result that the quarter-chord point is both the center of

pressure and the aerodynamic center.

 The theoretical result is supported by the experimental

data.



Questions



The cambered airfoil

 To treat the cambered airfoil, return to Equation:

 Once again, let us transform Equation, obtaining

 We wish to obtain a solution for γ (θ) from Equation,

subject to the Kutta condition



 The result is

The cambered airfoil

 The coefficients A0 and An(n = 1, 2, 3, . . .) in Equation

must be specific values in order that the camber line be a

streamline of the flow.

 To find these specific values, substitute Equation:

 Hence, using integral definitions, we can

reduce Equation to



 By using the form of a Fourier cosine series expansion

for the function of dz/dx

The cambered airfoil

 The coefficients in Equation are given by



The cambered airfoil

 Let us now obtain expressions for the aerodynamic

coefficients for a cambered airfoil.

 The total circulation due to the entire vortex sheet from the

leading edge to the trailing edge is

 Substituting Equation for γ (θ), we obtain

 From any standard table of integrals,



The cambered airfoil

 The lift per unit span is

 The lift coefficient

 Recall the coefficients

 The expression for cl itself differs

between a symmetric and a cambered

airfoil.

 The difference has physical significance.



The cambered airfoil

 From the geometry

 Substituting Equation, we have

 Comparing Equations, we see that the

integral term is simply the negative of

the zero-lift angle; that is



The cambered airfoil

 The moment about the leading edge can be obtained by

substituting γ(θ) into the transformed version of

Equation;

 The moment coefficient is

 The moment coefficient about the quarter chord



 It is independent of α.

 Thus, the quarter-chord point is the theoretical location

of the aerodynamic center for a cambered airfoil.

 The location of the center of pressure can be obtained

from

The cambered airfoil



Example 4.6

 Consider an NACA 23012 airfoil. The mean camber line

for this airfoil is given by

 Calculate

(a) the angle of attack at zero lift,

(b) the lift coefficient when α = 4◦,

(c) The moment coefficient about the quarter chord,

(d) the location of the center of pressure in terms of xcp/c, when α = 4◦.

 Compare the results with experimental data.



Example 4.6

 We will need dz/dx. From the given shape of the mean

camber line, this is

 Transforming from x to θ



(a) From Equation

Example 4.6

For simplicity, we have dropped the subscript zero

from θ; in Equation, θ0 is the variable of integration

 Substituting the equation for dz/dx into Equation, we

have

 From a table of integrals, we see that



Example 4.6

 Hence, Equation becomes

(b) α = 4◦ = 0.0698 rad

 From Equation



Example 4.6

(c) The value of cm,c/4 is obtained.

 For this, we need the two Fourier coefficients A1 and A2.

From Equation,



Example 4.6

 Note:

 Thus,

 From Equation



Example 4.6

(d) From Equation

 The data for the NACA 23012 airfoil are shown in

Figure.

 From this, we make the following tabulation

Wonderful !!!



The aerodynamic center: 

additional considerations

 Based on experimental and theoretical results, it seems

that the aerodynamic center exists.

 For most conventional airfoils, the aerodynamic center

is close to, but not necessarily exactly at, the quarter-

chord point.

 If that center is different, we can calculate the location of

the aerodynamic center as follows.

 We designate the location of the

aerodynamic center by c xac measured from

the leading edge.

 Here, xac is the location of the aerodynamic

center as a fraction of the chord length c.



The aerodynamic center

 Taking moments about the aerodynamic center, we

have

 Dividing Equation by q∞Sc, we have

 Differentiating Equation with respect to angle of attack

α, we have

𝑑𝐶𝑀
𝑑𝛼

= 0



 For airfoils below the stalling angle of attack, the slopes

of the lift coefficient and moment coefficient curves are

constant.

 Designating these slopes by

The aerodynamic center

 Equation proves that the aerodynamic center exists as

a fixed point on the airfoil.



Example 4.7

 Consider the NACA 23012 airfoil;

 From the given information, calculate the location of the

aerodynamic center for the NACA 23012 airfoil.

 The lift slope is

 The slope of the moment coefficient curve is

 From Equation



The aerodynamic center

 For some airfoil family (NACA 230XX & NACA 64-2XX), the

location of the aerodynamic center depends on the

airfoil thickness,



The aerodynamic center

 The fact that Mac for a flight vehicle is independent of

angle of attack simplifies the analysis of the stability and

control characteristics.

 The use of the aerodynamic center therefore becomes

important in airplane design.

 For example: the design of tail…



Lifting flows over arbitrary bodies:

the vortex panel numerical method

 The thin airfoil theory applies only to thin airfoils at small

angles of attack.

 The results compare favorably with experimental data

for airfoils of about 12 percent thickness or less.

 However, the airfoils on many low-speed airplanes are

thicker than 12 percent.

 Moreover, we are frequently interested in high angles of

attack, such as occur during takeoff and landing.

 Finally, we are sometimes concerned with the

generation of aerodynamic lift on other body shapes,

such as automobiles or submarines.



 We need a method that allows us to calculate the

aerodynamic characteristics of bodies of arbitrary shape,

thickness, and orientation.

 Specifically, we treat the vortex panel method, which is a

numerical technique that has come into widespread use

since the early 1970s.

 We now return to the original idea of wrapping the vortex

sheet over the complete surface of the body.

Lifting flows over arbitrary bodies:

the vortex panel numerical method



 We wish to find γ (s) such that the body surface becomes

a streamline of the flow.

 There exists no closed-form analytical solution for γ (s);

rather, the solution must be obtained numerically.

 This is the purpose of the vortex panel method.

Lifting flows over arbitrary bodies:

the vortex panel numerical method

 Let the vortex strength γ (s) per unit length be constant

over a given panel, but allow it to vary from one panel to

the next.

 These panel strengths are unknowns.

 The main thrust of the panel technique is to solve for γj

such that the body surface becomes a streamline of the

flow and such that the Kutta condition is satisfied.



Lifting flows over arbitrary bodies:

the vortex panel numerical method

 The midpoint of each panel is a control point at which the

boundary condition is applied.

 That is, at each control point, the normal component of the

flow velocity is zero.



Lifting flows over arbitrary bodies:

the vortex panel numerical method

 The velocity potential induced at P due to the j th panel,

∆Φ𝑗, is,

 γj is constant over the j th panel.

 The angle θpj is given by

 The potential at P due to all the panels is

 Since point P is just an arbitrary point in the flow, let us

put P at the control point of the ith panel.



Lifting flows over arbitrary bodies:

the vortex panel numerical method

 The coordinates of this control point are (xi , yi ).

 Then Equations become

 Equation is physically the contribution of all the panels to

the potential at the control point of the ith panel.

 At the control points, the normal component of the

velocity is zero.

 This velocity is the superposition of the uniform flow

velocity and the velocity induced by all the vortex panels.



Lifting flows over arbitrary bodies:

the vortex panel numerical method

 The component of V∞ normal to the ith panel is given by

 The normal component of velocity induced at (xi , yi ) by

the vortex panels is

 The boundary condition states that



 Let Ji, j be the value of this integral when the control point

is on the ith panel.

 Then Equation can be written as

Lifting flows over arbitrary bodies:

the vortex panel numerical method

 If Equation is applied to the control points of all the

panels, we obtain a system of n linear equations with n

unknowns.

 For the lifting case with vortex panels, in addition to the

n equations applied at all the panels, we must also

satisfy the Kutta condition.

 The Kutta condition is applied precisely at the trailing

edge and is given by γ(TE) = 0.



 To approximate this numerically, if points i and i − 1

are close enough to the trailing edge, we can write

Lifting flows over arbitrary bodies:

the vortex panel numerical method

 Such that the strengths of the two vortex panels i and i −

1 exactly cancel at the point where they touch at the

trailing edge.

 Thus, in order to impose the Kutta condition on the solution of

the flow, Equation (or an equivalent expression) must be

included.

 to obtain a determined system, velocity Equation is not

evaluated at one of the control points on the body.

 We choose to ignore one of the control points, and we evaluate

velocity Equation at the other n − 1 control points.



 This, in combination with Kutta condition, now gives a

system of n linear algebraic equations with n unknowns,

which can be solved by standard techniques.

 The flow velocity tangent to the surface can be obtained

directly from γ .

Lifting flows over arbitrary bodies:

the vortex panel numerical method

 From Equation

 Therefore, the local velocities tangential to the airfoil

surface are equal to the local values of γ.

 In turn, the local pressure distribution can be obtained

from Bernoulli’s equation.



Lifting flows over arbitrary bodies:

the vortex panel numerical method

 The total circulation due to all the panels is

 The lift per unit span is obtained from

 Such accuracy problems have also encouraged the

development of higher order panel techniques.

 For example, a “second-order” panel method assumes a

linear variation of γ over a given panel.



 An approach is frequently called the direct problem,

wherein the shape of the body is given, and the

surface pressure distribution is calculated.

 It is desirable to specify the surface pressure

distribution and calculate the shape of the airfoil that

will produce the specified pressure distribution.

 This approach is called the inverse problem.

 Today the power of computational fluid dynamics

(CFD) is revolutionizing airfoil design and analysis.

 The inverse problem is being made tractable by CFD.

Lifting flows over arbitrary bodies:



Viscous flow: airfoil drag

 The lift on an airfoil is primarily due to the pressure

distribution exerted on its surface.

 The shear stress distribution acting on the airfoil, when

integrated in the lift direction, is usually negligible.

 The lift, therefore, can be accurately calculated

assuming inviscid flow in conjunction with the Kutta

condition at the trailing edge.

 When used to predict drag, however, this same

approach yields zero drag, d’Alembert’s paradox.

 The paradox is immediately removed when viscosity

(friction) is included in the flow.



Viscous flow: airfoil drag

 Viscosity in the flow is totally responsible for the

aerodynamic drag on an airfoil.

 It acts through two mechanisms:

 Skin-friction drag, due to the shear stress acting on

the surface,

 Pressure drag due to flow separation, sometimes

called form drag.

 As a first approximation, we assume that skin-friction

drag on an airfoil is essentially the same as the skin-

friction drag on a flat plate at zero angle of attack.



Viscous flow: airfoil drag

 We first deal with the case of completely laminar flow

over the airfoil (and hence the flat plate).

 There is an exact analytical solution for the laminar

boundary-layer flow over a flat plate.

 The boundary-layer thickness for incompressible

laminar flow over a flat plate at zero angle of attack is

given by



Viscous flow: airfoil drag

 The skin-friction drag coefficient is a function of the

Reynolds number, and is given by

 In contrast to the situation for laminar flow, there are no

exact analytical solutions for turbulent flow.

 All analyses of turbulent flow are approximate.

 The boundary-layer thickness for turbulent flow over a

flat plate at zero angle of attack is given by

 The skin-friction drag coefficient is



Viscous flow: airfoil drag

 In reality, the flow always starts out from the leading

edge as laminar.

 Then at some point downstream of the leading edge,

the laminar boundary layer becomes unstable.

 Small “bursts” of turbulence begin to grow in the flow.

 Finally, over a certain region called the transition

region, the boundary layer becomes completely

turbulent.



Viscous flow: airfoil drag

 The value of x where transition is said to take place is

the critical value xcr.

 In turn, xcr allows the definition of a critical Reynolds

number for transition as

 An accurate value for Rexcr applicable to your problem

must come from somewhere—experiment, free flight,

or some semi empirical theory.

 This may be difficult to obtain.



Example 4.10

 For the NACA 2412 airfoil and the conditions

 Calculate the net skin friction drag coefficient assuming

that the critical Reynolds number is 500,000.



Example 4.10

 The Reynolds number in the equations for skin friction

drag coefficient is always based on length measured

from the leading edge.

 We can not simply calculate the turbulent skin friction

drag coefficient for region 2 by using Equation:

 Assuming all turbulent flow over the entire length of the

plate, the drag (on one side of the plate) is (Df,c)turbulent,

where

 The turbulent drag on just region 1 is (Df,1)turbulent:



Example 4.10

 Thus, the turbulent drag just on region 2, (Df,2)turbulent, is

 The laminar drag on region 1 is (Df,1)laminar

 The total skin-friction drag on the plate, Df , is then

 The total skin-friction drag coefficient is



Example 4.10

 Taking into account both

sides of the flat plate,



Viscous flow: airfoil drag

 Pressure drag on an airfoil is caused by the flow

separation.

Flow Separation

 If the flow is partially separated over the rear surface,

the pressure on the rear surface pushing forward will be

smaller than the fully attached case.

 The pressure acting on the front surface pushing

backwards will not be fully counteracted, giving rise to a

net pressure drag on the airfoil



Viscous flow: airfoil drag

Flow Separation



Viscous flow: airfoil drag

Flow Separation

 What flow conditions are conducive /

possible to flow separation?

 The main reason is the pressure

gradients:

 Due to viscosity, the fluid particles inside

the boundary layer get slower.

 This deceleration cause pressure

increase in the flow direction.

 That is, the region where dp/dx is

positive.

 In such a case, the real viscous flow

tends to separate from the surface.

𝑑𝑝

𝑑𝑥
> 0

𝑑𝑝

𝑑𝑥
< 0

Flow from high pressure to low 

pressure

𝑑𝑝

𝑑𝑥
> 0

https://www.youtube.com/watch?v=WFcW5-1NP60


Viscous flow: airfoil drag

Flow Separation

 Two major consequences of the flow separating over an

airfoil are:

 A drastic loss of lift (stalling).

 A major increase in drag, caused by pressure drag

due to flow separation.

 In the real case, flow separation occurs over the top

surface of the airfoil when the angle of attack exceeds a

certain value—the “stalling” angle of attack.



Applied aerodynamics: the flow over

an airfoil—the real case



for an NACA 4412 airfoil

 The type of stalling phenomenon is called leading-edge stall.

 Flow separation takes place rather suddenly and abruptly

over the entire top surface of the airfoil, with the origin of this

separation occurring at the leading edge.

Applied aerodynamics: the flow over

an airfoil—the real case



Applied aerodynamics: the flow over

an airfoil—the real case

 A second category of stall is the trailing-edge stall.

 This behavior is characteristic of thicker airfoils such as

the NACA 4421.

 Here, we see a progressive and gradual movement of

separation from the trailing edge toward the leading edge

as α is increased.



Applied aerodynamics: the flow over

an airfoil—the real case



Applied aerodynamics: the flow over

an airfoil—the real case

 There is a third type of stall behavior, namely, behavior

associated with the extreme thinness of an airfoil.

 This is sometimes labeled as “thin airfoil stall.”

a separation bubble

 The separation bubble extends over

almost the complete flat plate.



Applied aerodynamics: the flow over

an airfoil—the real case

 The amount of thickness will influence the type of stall

(leading-edge versus trailing-edge) and Clmax.

 Here, experimental data for cl,max for the NACA 63-2XX

series of airfoils is shown as a function of the

thickness ratio.

 We see a local maximum.

 The simple generation of lift by an

airfoil is not the prime consideration

in its design



 There are two figures of merit that are primarily used to 

judge the quality of a given airfoil;

 The lift-to-drag ratio,

 The maximum lift coefficient

Applied aerodynamics: the flow over

an airfoil—the real case

determines the stalling

speed of the aircraft

 To increase cl,max beyond such a value, we must carry

out some special measures.

 Such special measures include the use of flaps and/or

leading-edge slats.



Applied aerodynamics: the flow over

an airfoil—the real case

 Effect of flap deflection



Applied aerodynamics: the flow over

an airfoil—the real case



 The high-lift devices used on modern, high-performance

aircraft are usually a combination of leading-edge slats

(or flaps) and multi-element trailing-edge flaps.

Applied aerodynamics: the flow over

an airfoil—the real case

Effect of leading-edge and multi-element

flaps on the streamline pattern around an

airfoil



Applied aerodynamics: the flow over

an airfoil—the real case



Applied aerodynamics: the flow over

an airfoil—the real case
leading-edge 

slats 

flaps

multi-element 

trailing-edge 

flaps

spoiler



Applied aerodynamics: the flow over

an airfoil—the real case

 İncreased area 

 increased wing 

camber

flaps leading-edge slats 

 increased wing camber

 improved wing upper surface

boundary layer by means of the

slat-wing slot



Historical note: Kutta, Joukowski, and 

the circulation theory of lift

 Frederick W. Lanchester (1868–1946), an English engineer,

automobile manufacturer, and self-styled aerodynamicist,

was the first to connect the idea of circulation with lift, 1894.

 He published two books, entitled Aerodynamics and

Aerodonetics, where his thoughts on circulation and lift were

described in detail, 1907.

 M. Wilhelm Kutta (1867–1944), born in Pitschen, Germany,

developed the idea that lift and circulation are related.

 Kutta attempted theoretically to calculate the lift on the

curved wing surfaces used by Lilienthal.

 In the process, he realized from experimental data that the

flow left the trailing edge of a sharp-edged body smoothly.

 That this condition fixed the circulation around the body (the

Kutta condition, 1902.



Historical note: Kutta, Joukowski, and 

the circulation theory of lift

 Joukowski was born in Orekhovo in central Russia on

January 5, 1847.

 The son of an engineer, he became an excellent

student of mathematics and physics.

 Joukowski was deeply interested in aeronautics, and

he combined a rare gift for both experimental and

theoretical work in the field.

 Much of Joukowski’s fame was derived from a paper

published in 1906, wherein he gives, for the first time in

history, the relation

 Joukowski was unaware of Kutta’s 1902 note.



Questions
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Nomenclature 



Introduction 

 We pose the question: Are CL and CD for the wing the

same as those for the airfoil (cl and cd)?

 The answer is NO!

 Surprised? How can this be? Why are the aerodynamic

coefficients of the wing not the same as those for the

airfoil shape from which the wing is made?

 Surely, the aerodynamic properties of the airfoil must

have something to do with the aerodynamic properties

of the finite wing.

 This chapter is focused on the aerodynamic properties

of real, finite wings.



Downwash and induced drag

 Airfoil data are frequently denoted as “infinite wing”

data.

 However, all real airplanes have wings of finite span.

 The flow over an airfoil is two-dimensional.

 In contrast, a finite wing is a three-dimensional body,

and consequently the flow over the finite wing is three-

dimensional.

 That is, there is a component of flow in the spanwise

direction.



 The physical mechanism for generating lift on the wing is

the existence of a high pressure on the bottom surface

and a low pressure on the top surface.

 By-product of this pressure imbalance, the flow near the

wing tips tends to curl around the tips.

Downwash and induced drag



 The tendency for the flow to “leak” around the wing

tips has another important effect on the aerodynamics

of the wing.

 This flow establishes a circulatory motion that trails

downstream of the wing; that is, a trailing vortex is

created at each wing tip.

Downwash and induced drag



 The tip vortices are essentially weak “tornadoes” that

trail downstream of the finite wing.

 For large airplanes such as a Boeing 747, these tip

vortices can be powerful enough to cause light

airplanes following too closely to go out of control.

 Such accidents have occurred, and this is one reason

for large spacing between aircraft landing or taking off

consecutively at airports.

Downwash and induced drag

https://www.youtube.com/watch?v=L_8tQKVLzE0
https://www.youtube.com/watch?v=Lc86Akaq3KQ
https://www.youtube.com/watch?v=L_8tQKVLzE0


Downwash and induced drag



Downwash and induced drag

 These wing-tip vortices downstream of the wing induce

a small downward component of air velocity in the

neighborhood of the wing itself.

 This downward component is called downwash,

denoted by the symbol w.

 In turn, the downwash combines with the freestream

velocity V∞ to produce a local relative wind.



Downwash and induced drag



Downwash and induced drag



Downwash and induced drag

 The presence of downwash, and its effect on inclining

the local relative wind in the downward direction, has two

important effects on the local airfoil section, as follows:

 Although the wing is at a geometric angle of attack α, the

local airfoil section is seeing a smaller angle, namely, the

effective angle of attack

 The local lift vector is aligned perpendicular to the local

relative wind, and hence is inclined behind the vertical by

the angle

 Consequently, there is a component of the local lift

vector in the direction of V∞.

 That is, there is a drag created by the presence of

downwash. This drag is defined as induced drag,

denoted by Di.



Downwash and induced drag

 Keep in mind that we are still dealing with an inviscid,

incompressible flow, where there is no skin friction or

flow separation.

 For such a flow, there is a finite drag - the induced drag

- on a finite wing.

 D’Alembert’s paradox does not occur for a finite wing.



Downwash and induced drag

Roadmap for the analysis



Downwash and induced drag

 For the two-dimensional bodies

 On a complete three-dimensional body such as a finite

wing

 The total drag coefficient for the finite wing CD is given

by

the skin friction drag

the pressure drag
profile drag

the induced drag

 The parasite drag is the sum of the drag due to skin friction

and pressure drag due to flow separation associated with

the complete airplane, including the wing.



The vortex filament, the Biot-Savart law, and 

Helmholtz’s theorems

 We discussed a straight vortex filament extending to ±∞.

 In general, a vortex filament can be curved.

 The strength of the vortex filament is defined as Γ.

 Consider a directed segment of the filament dl.

 The radius vector from dl to an arbitrary point P in space

is r.

 The segment dl induces a velocity at P

equal to



The vortex filament, the Biot-Savart law, and 

Helmholtz’s theorems

 Equation is called the Biot-Savart law and is one of the

most fundamental relations in the theory of inviscid,

incompressible flow.

 It resembles an analogy with electromagnetic theory, a

general result of potential theory.

 Let us apply the Biot-Savart law to a straight vortex

filament of infinite length,

 The magnitude of the velocity, V = |V|, is given by



The vortex filament, the Biot-Savart law, and 

Helmholtz’s theorems

 From the geometry

 Substituting Equations



 Consider the semi-infinite vortex filament

The vortex filament, the Biot-Savart law, and 

Helmholtz’s theorems

 The filament extends from point A to ∞.

 Point A can be considered a boundary

of the flow, (𝜃 = 𝜋/2).

 The velocity induced at P by the semi-

infinite vortex filament is

 The German mathematician and physician Hermann von

Helmholtz (1821–1894) was the first to make use of the

vortex filament concept in the analysis of inviscid,

incompressible flow.



The vortex filament, the Biot-Savart law, and 

Helmholtz’s theorems

 He established several basic principles

of vortex behavior which have become

known as Helmholtz’s vortex theorems:

 The strength of a vortex filament is

constant along its length.

 A vortex filament cannot end in a

fluid;

 It must extend to the boundaries of

the fluid (which can be ±∞) or form

a closed path.

 We make use of these theorems in the

following sections.



The vortex filament, the Biot-Savart law, and 

Helmholtz’s theorems

 Let us introduce the concept of lift distribution along the

span of a finite wing.

 The calculation of the lift distribution L(y) [or the

circulation distribution Γ(y)] is one of the central

problems of finite-wing theory.

 The lift distribution goes to zero at the tips; there is a

pressure equalization from the bottom to the top of the

wing, and hence no lift is generated at these points.



Prandtl’s classical lifting-line theory

 Prandtl reasoned as follows. A vortex filament of strength

that is somehow bound to a fixed location in a flow—a

so-called bound vortex.

 Let us replace a finite wing of span b with a bound

vortex, extending from y = −b/2 to y = b/2.

 However, due to Helmholtz’s theorem, a vortex filament

cannot end in the fluid.

 Therefore, assume the vortex filament continues as two

free vortices trailing downstream from the wing tips to

infinity.

 This vortex (the bound plus the two free) is in the shape

of a horseshoe, and therefore is called a horseshoe

vortex.



Prandtl’s classical lifting-line theory

 Consider the downwash w induced along the bound

vortex from −b/2 to b/2 by the horseshoe vortex.

 we see that the bound vortex induces no velocity

along itself; however, the two trailing vortices both

contribute to the induced velocity.



Prandtl’s classical lifting-line theory

 If the origin is taken at the center of the bound

vortex, then the velocity at any point y along the

bound vortex induced by the trailing semi-

infinite vortices is,

 Equation reduces to

 Note that w approaches −∞ as y approaches −b/2 or b/2.



Prandtl’s classical lifting-line theory

 The downwash distribution due to the single horseshoe

vortex does not realistically simulate that of a finite wing.

 The downwash approaching an infinite value at the tips

is especially disconcerting.

 Instead of representing the wing by a single horseshoe

vortex, let us superimpose a large number of horseshoe

vortices.

 Each with a different length of the bound vortex, but with

all the bound vortices coincident along a single line,

called the lifting line.



Prandtl’s classical lifting-line theory

 The circulation varies along the line of bound vortices -

the lifting line defined above.



 Let us extrapolate Figure to the case where an infinite

number of horseshoe vortices are superimposed along

the lifting line.

 Each with a vanishingly small strength dΓ.

Prandtl’s classical lifting-line theory



Prandtl’s classical lifting-line theory

 Note that the vertical bars in Figure have now become

a continuous distribution of Γ(y) along the lifting line.

 The value of the circulation at the origin is Γ0.

 The total strength of the sheet integrated across the

span of the wing is zero.

 Because it consists of pairs of trailing vortices of

equal strength but in opposite directions.

 The velocity dw at y0 induced by the entire semi-

infinite trailing vortex located at y is given by



Prandtl’s classical lifting-line theory

 The total velocity w induced at y0 by the entire trailing

vortex sheet is

 By the way, the induced angle of attack αi is given by

 Generally, w is much smaller than V∞, and hence αi is a

small angle,



Prandtl’s classical lifting-line theory

 Consider again the effective angle of attack αeff.

 αeff is the angle of attack actually seen by the local airfoil

section.

 Since the downwash varies across the span, then αeff is

also variable.

 The lift coefficient for the airfoil section located at y = y0

is

 The local section lift slope a0 has been replaced by the

thin airfoil theoretical value of 2π.



 From the definition of lift coefficient and from the Kutta-

Joukowski theorem, we have, for the local airfoil

section located at y0,

Prandtl’s classical lifting-line theory

 Solving for αeff, we have

 We obtain



Prandtl’s classical lifting-line theory

 That is the fundamental equation of Prandtl’s lifting-line

theory.

 The only unknown is Γ.

 All the other quantities, α, c, V∞, and αL=0, are known

for a finite wing of given design at a given geometric

angle of attack in a freestream with given velocity.

 Based on Γ(y) solution we have;

 The lift for an airfoil

 The total lift for a wing

 The lift coefficient for a wing



Prandtl’s classical lifting-line theory

 The induced drag, an airfoil

 The total induced drag, a wing

 The induced drag coefficient, a wing

 Γ(y) is clearly the key to obtaining the aerodynamic

characteristics of a finite wing.

 Before discussing the general solution of this equation, let

us consider a special case.



Prandtl’s classical lifting-line theory

 Consider/assume that a circulation

distribution given by

 Γ0 is the circulation at the origin.

 The circulation varies elliptically with distance y

along the span; hence, it is designated as an

elliptical circulation distribution.

 Since

 We now ask the question, ‘What are the aerodynamic

properties of a finite wing with such an elliptic lift

distribution?’



Prandtl’s classical lifting-line theory

 First, let us calculate the downwash. Differentiating

Equation, we obtain

 Substituting it, we have the total velocity

 The integral can be evaluated easily by making the

substitution

 Hence, Equation becomes



Prandtl’s classical lifting-line theory

 The solution becomes

which states the interesting and important result that the

downwash is constant over the span for an elliptical lift

distribution.

 In turn, from Equation, we obtain, for the induced angle

of attack,

 The induced angle of attack is also constant along the

span.



 For lift, we have

Prandtl’s classical lifting-line theory

 For Γ0, we have

 Substituting Equation, we obtain

 An important geometric property of a finite wing is the

aspect ratio, denoted by AR and defined as



Prandtl’s classical lifting-line theory

 Hence, Equation becomes

 The induced drag coefficient, a wing

 The induced drag coefficient is

 We obtain
 The dependence of induced drag on the lift

is not surprising,

 Even at relatively high cruising speeds,

induced drag is typically 25 percent of the

total drag.



Prandtl’s classical lifting-line theory

 Another important aspect of induced drag is that, CD,i is

inversely proportional to aspect ratio.

 Hence, to reduce the induced drag, we want a finite

wing with the highest possible aspect ratio.

 Unfortunately, the design of very high aspect ratio

wings with sufficient structural strength is difficult.

 Therefore, the aspect ratio of a conventional aircraft is

a compromise between conflicting aerodynamic and

structural requirements.
Today the aspect ratios of conventional

subsonic aircraft range typically from 6 to 8.



Prandtl’s classical lifting-line theory

 Another property of the elliptical lift distribution is related

to the geometry.

 We have seen that αi is constant along the span, (with

no geometric twist and no aerodynamic twist).

 Since the local section lift coefficient cl is given by

constant along the span

 Solving Equation for the chord, we have

 Thus, Equation dictates that for such an elliptic lift

distribution, the chord must vary elliptically along the

span.

 That is, for the conditions given above, the wing

planform is elliptical.



Prandtl’s classical lifting-line theory

 Illustration of the related quantities: an elliptic

circulation/lift distribution, elliptic planform, and constant

downwash.



Prandtl’s classical lifting-line theory

General Lift Distribution

 Consider the transformation

 In terms of θ, the elliptic lift distribution is

 Equation hints that a Fourier sine series would be an

appropriate expression for the general circulation distribution

along an arbitrary finite wing.

 Hence, assume for the general case that

 The coefficients An (where n = 1, . . . , N) are unknowns.

 However, they must satisfy the fundamental equation of Prandtl’s

lifting-line theory.



Prandtl’s classical lifting-line theory

 The fundamental equation of Prandtl’s lifting-line theory;

it simply states that the geometric angle of attack is

equal to the sum of the effective angle plus the induced

angle of attack.

 Differentiating the general circulation Equation, we

obtain

 Substituting Equations, we obtain



Prandtl’s classical lifting-line theory

 The integral in Equation becomes

 Examine Equation closely.

 It is evaluated at a given spanwise location; hence, θ0 is

specified.

 In turn, b, c(θ0), and αL=0(θ0) are known quantities from the

geometry and airfoil section of the finite wing.

 The only unknowns in Equation are the An’s.



Prandtl’s classical lifting-line theory

 However, let us choose N different spanwise stations,

and let us evaluate Equation at each of these N

stations.

 We then obtain a system of N independent algebraic

equations with N unknowns.

 In this fashion, actual numerical values are obtained for

the An’s.

 Now that Γ(θ) is known, the lift coefficient for the finite

wing follows

 Hence, Equation becomes



Prandtl’s classical lifting-line theory

 The induced drag coefficient is obtained from

 We know that

 Therefore,



 θ0 is simply a dummy variable which ranges from 0 to π

across the span of the wing; it can therefore be

replaced by θ,

Prandtl’s classical lifting-line theory

 Substituting Equation, we have

 From the standard integral,

 Hence, Equation becomes



Prandtl’s classical lifting-line theory

 We know that

 Substituting Equation, we obtain

 Let us define a span efficiency factor, e, as

 Then Equation can be written as

 Note that δ = 0 and e = 1 for the elliptical lift distribution.

 Hence, the lift distribution which yields minimum

induced drag is the elliptical lift distribution.

e: span efficiency factor



Prandtl’s classical lifting-line theory

 However, elliptic planforms are more expensive to

manufacture.

 On the other hand, a simple rectangular wing generates

a lift distribution far from optimum.

 A compromise is the tapered wing.

 The tapered wing can be designed with a taper ratio,

that is, tip chord/root chord ≡ ct/cr, such that the lift

distribution closely approximates the elliptic case.



Prandtl’s classical lifting-line theory

 The views of the Supermarine Spitfire, a

famous British World War II fighter.



Prandtl’s classical lifting-line theory

 Induced drag factor δ as a function

of taper ratio.

 For a specific aspect ratio, we have the

optimal taper ratio which provides the

minimum induced drag.



Prandtl’s classical lifting-line theory

Effect of Aspect Ratio

 Note that the induced drag coefficient for a finite wing

with a general lift distribution is inversely proportional to

the aspect ratio.

 AR, which typically varies from 6 to 22 for standard

subsonic airplanes and sailplanes, has a much stronger

effect on CD,i than the value of δ.

 Hence, the primary design factor for minimizing induced

drag is the ability to make the aspect ratio as large as

possible.

 Recall from Equation that the total drag of a finite wing is

given by



 This is a plot of lift coefficient versus

drag coefficient, and is called a drag

polar.

Prandtl’s classical lifting-line theory

 Prandtl’s classic rectangular wing data for

seven different aspect ratios from 1 to 7;

variation of lift coefficient versus drag

coefficient.

 Note that, in his nomenclature, Ca = lift

coefficient and Cw = drag coefficient.

 Also, the numbers on both the ordinate and

abscissa are 100 times the actual values of

the coefficients.



Prandtl’s classical lifting-line theory

 Also, recall that at zero lift, there are

no induced effects.

 Thus, when CL = 0, α = αeff.

 As a result, αL=0 is the same for the

finite and the infinite wings,

 The values of a0 and a are related as

follows.



Prandtl’s classical lifting-line theory

 Recall that

 Substituting Equation, we obtain

 Differentiating Equation with respect to α, and solving

for dCL/dα, we obtain

for an elliptic finite wing.

 For a finite wing of general planform,

 τ is a function of the Fourier coefficients An.

 Values of τ typically range between 0.05 and 0.25.



Prandtl’s classical lifting-line theory

 The effect of aspect ratio on the lift curve is shown in

Figure;

 Prandtl’s lifting-line model with its trailing-

vortex sheet is physically consistent with

the actual flow downstream of a finite wing.

Physical Significance



Example 5.4

 Consider the wing of the Beechcraft

Baron 58 at a 4-degree angle of attack.

 The wing has an aspect ratio of 7.61 and

a taper ratio of 0.45.

 Calculate CL and CD for the wing.

 From Figure, the zero-lift angle of attack

of the airfoil, which is the same for the

finite wing, is

 We arbitrarily pick two points on this

curve: α = 7◦ where cl = 0.9, and α = −1◦

where cl = 0. Thus



Example 5.4

 The lift slope in radians is:

 From Figure, for AR = 7.61 and taper ratio = 0.45;

 Assuming τ = δ,

 For the linear lift curve for the finite wing

 For α = 4◦, we have



Example 5.4

 The drag coefficient is given by

 We need cl for cd.

 We need αi for cl.

 we will assume an elliptical lift

distribution over the wing.

 Taking the data at the highest Reynolds number

shown, for cl = 0.452, we have



Example 5.4

 Returning to Equation

 The lift coefficient for the finite wing is 0.443 compared to

the airfoil value of 0.54.

 18% lower than the airfoil value - a substantial difference.

 The drag coefficient for the finite wing is 0.0148 compared to

the airfoil value of 0.0068.

 More than a factor of two larger - a dramatic difference.



A numerical nonlinear lifting-line method

 The classical theory is essentially closed form; that is,

the results are analytical equations.

 However, the elements of the lifting-line theory lend

themselves to a straightforward purely numerical

solution which allows the treatment of nonlinear effects.

 Consider the most general case of a finite wing of given

planform and geometric twist, with different airfoil

sections at different spanwise stations.

 Assume that we have experimental data for the lift

curves of the airfoil sections, including the nonlinear

regime

 A numerical iterative solution for the finite-wing

properties can be obtained as follows:



A numerical nonlinear lifting-line method

1. Divide the wing into a number of spanwise stations, here

k + 1 stations are shown, with n designating any specific

station.

2. For the given wing at a given α, assume the lift

distribution along the span; that is, assume values for at

all the stations 1, 2, . . . , n, . . . , k+1.

An elliptical lift distribution is satisfactory for such an

assumed distribution.



A numerical nonlinear lifting-line method

3. With this assumed variation of Γ, calculate the induced

angle of attack αi at each of the stations:

4. Using αi from step 3, obtain the effective angle of attack

αeff at each station from

5. With the distribution of αeff calculated from step 4,

obtain the section lift coefficient (cl)n at each station.

These values are read from the known lift curve

(experimental data) for the airfoil.

Simpson’s rule



A numerical nonlinear lifting-line method

6. From (cl)n obtained in step 5, a new circulation

distribution is calculated from the Kutta-Joukowski

theorem and the definition of lift coefficient:

where cn is the local section chord. Keep in mind that in

all the above steps, n ranges from 1 to k + 1.

7. The new distribution of obtained in step 6 is compared

with the values that were initially fed into step 3.

If the results from step 6 do not agree with the input to

step 3, then a new input is generated.

If the previous input to step 3 is designated as Γold and

the result of step 6 is designated as Γnew,



A numerical nonlinear lifting-line method

where D is a damping factor for the iterations.

Experience has found that the iterative procedure

requires heavy damping, with typical values of D on

the order of 0.05.

8. Steps 3 to 7 are repeated a sufficient number of cycles

until Γnew and Γold agree at each spanwise station to

within acceptable accuracy.

9. From the converged Γ(y), the lift and induced drag

coefficients are obtained. The integrations in these

equations can again be carried out by Simpson’s rule.



The lifting-surface theory and 

the vortex-lattice numerical method

 Prandtl’s classical lifting-line theory gives reasonable

results for straight wings at moderate to high aspect

ratio.

 However, for low-aspect-ratio straight wings, swept

wings, and delta wings, classical lifting-line theory is

inappropriate.

 For such planforms, a more sophisticated model must

be used.



The lifting-surface theory and 

the vortex-lattice numerical method

 Let us place a series of lifting lines on the

plane of the wing, at different chordwise

stations.

 That is, consider a large number of lifting

lines all parallel to the y axis, located at

different values of x.

 In the limit of an infinite number of lines of

infinitesimal strength, we obtain a vortex

sheet, where the vortex lines run parallel to

the y axis.

 The strength of this sheet (per unit length in

the x direction) is denoted by γ= γ(x,y).



 In addition, recall that each lifting line has a system of

trailing vortices.

 Hence, the series of lifting lines is crossed by a

series of superimposed trailing vortices parallel to the

x axis.

 In the limit of an infinite number of infinitesimally weak

vortices, these trailing vortices form another vortex

sheet of strength δ (per unit length in the y direction),

δ = δ(x, y).

 The two vortex sheets—the one with vortex lines

running parallel to y with strength γ and the other with

vortex lines running parallel to x with strength δ result

in a lifting surface distributed over the entire planform

of the wing,

The lifting-surface theory and 

the vortex-lattice numerical method



The lifting-surface theory and 

the vortex-lattice numerical method

 Note that downstream of the trailing edge we have no

spanwise vortex lines, only trailing vortices.

 Hence, the wake consists of only chordwise vortices.

 The strength of this wake vortex sheet is given by δw=δw (y).

 Consider point P located at (x, y) on the

wing. The lifting surface and the wake

vortex sheet both induce a normal

component of velocity at point P.

 Denote this normal velocity by w(x, y).

 Keep in mind that we are treating the

wing as a flat surface in this discussion.



The lifting-surface theory and 

the vortex-lattice numerical method

 We want the wing planform to be a stream surface of the

flow.

 That is, we want the sum of the induced w(x, y) and the

normal component of the freestream velocity to be zero at

point P and for all points on the wing.

 This is the flow-tangency condition on the wing surface.

 The central theme of lifting-surface theory is to find γ (x, y)

and δ(x, y) such that the flow-tangency condition is satisfied

at all points on the wing.

 Let us obtain an expression for the induced normal velocity

w(x, y) in terms of γ , δ, and δw.



The lifting-surface theory and 

the vortex-lattice numerical method

 Consider the sketch given in Figure.

 Consider the point given by the coordinates

(ξ, η). At this point, the spanwise vortex

strength is γ (ξ,η).

 Consider a thin ribbon, or filament, of the

spanwise vortex sheet of incremental

lengths.

 From the Biot-Savart law, the incremental

velocity induced at P due to γ



 The induced velocity w as

The lifting-surface theory and 

the vortex-lattice numerical method

 The incremental velocity induced at P due to δ

 The incremental velocity induced at P due to δw

 the normal velocity induced at P by both the lifting

surface and the wake is



The lifting-surface theory and 

the vortex-lattice numerical method

 The advent of the high-speed digital computer/codes

has made possible the implementation of numerical

solutions based on the lifting-surface concept.

http://tornado.redhammer.se/


Design box

 The lift slope for a high-aspect-ratio straight wing with

an elliptical lift distribution is predicted by Prandtl’s

lifting-line theory and is given by

 The German aerodynamicist H. B. Helmbold in 1942

modified Equation to obtain the following form

applicable to low-aspect-ratio straight wings:

 For swept wings, Kuchemann suggests the following

modification to Helmbold’s equation:

where Λ is the sweep angle of the wing, referenced to

the half-chord line



Applied aerodynamics: the delta wing

 A special case of swept wings is those aircraft

with a triangular planform, called delta wings.

 Indeed, there are several variants of the basic

delta wing used on modern aircraft;

The Convair F-102A The space shuttle



Applied aerodynamics: the delta wing

 The subsonic flow pattern over the top of a delta wing at

angle of attack is sketched in Figure.

 The vortex formation is because of

pressure difference between upper and

lower surface of wing.

Flow visualization

https://www.youtube.com/watch?v=-GMg536L4PU


Applied aerodynamics: the delta wing

 Vortex formation generates pressure drop on the upper

surface, especially near the leading edge and

reasonably constant over the middle of the wing..



 The suction effect of the leading-edge vortices enhances

the lift.

 For this reason, the lift coefficient curve for a delta wing

exhibits an increase in CL for values of α at which

conventional wing planforms would be stalled.

 A typical variation of CL with α for a 60◦ delta wing is

shown in Figure.

Applied aerodynamics: the delta wing

 The lift slope is small, the stalling angle of

attack is on the order of 35◦.

 However, the aerodynamic effect of these

vortices is not necessarily advantageous.

 In fact, the lift-to-drag ratio L/D for a delta

planform is not so high as conventional

wings.



Historical note: Ludwig Prandtl - the man

 His Ph.D. thesis at Munich was in solid mechanics,

dealing with unstable elastic equilibrium in which bending

and distortion acted together.

 Prandtl’s contributions in fluid mechanics had begun as

an engineer in the Maschinenfabrick Augsburg.

 In 1904, Prandtl delivered his famous paper on the

concept of the boundary layer to the Third Congress on

Mathematicians at Heidelberg.

 Ludwig Prandtl was born on February 4, 1874, in

Freising, Bavaria/Germany.

 In his childhood, his father, a great lover of

nature, induced Ludwig to observe natural

phenomena and to reflect on them.



Historical note: Ludwig Prandtl - the man

 Prandtl spent the remainder of his life at Göttingen, building

his laboratory into the world’s greatest aerodynamic

research center of the 1904–1930 time period.

 At Göttingen, during 1905–1908 Prandtl carried out

numerous experiments on supersonic flow through nozzles

and developed oblique shock- and expansion wave theory.

Prandtl’s water tunnel, 1902.

 Prandtl’s Heidelberg paper established the basis

for most modern calculations of skin friction,

heat transfer, and flow separation.

 Later that year, he moved to the prestigious

University of Göttingen to become Director of the

Institute for Technical Physics, (1904-1953).



 Prandtl died in 1953 in Göttingen. He was clearly the father

of modern aerodynamics - a monumental figure in fluid

dynamics. His impact will be felt for centuries to come.

Historical note: Ludwig Prandtl - the man

 From 1910 to 1920, he devoted most of his efforts to low-

speed aerodynamics, principally airfoil and wing theory,

developing the famous lifting line theory for finite wings.

 Prandtl remained at Göttingen throughout the turmoil of

World War II, engrossed in his work and seemingly

insulated from the intense political and physical

disruptions.
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Introduction 

 To this point in our aerodynamic discussions, we have

been working mainly in a two-dimensional world; so-

called planar flows.

 The real world of aerodynamic applications is three-

dimensional.

 However, because of the addition of one more

independent variable, the analyses generally become

more complex.

 The accurate calculation of three-dimensional flow

fields has been, and still is, one of the most active

areas of aerodynamic research.



Introduction 

 The purpose of this chapter is to introduce some very

basic considerations of three-dimensional incompressible

flow.

 The governing fluid flow equations have already been

developed in three dimensions.

 In particular, if the flow is irrotational,

 If the flow is also incompressible, the velocity potential is

given by Laplace’s equation:

 Solutions of Equation for flow over a body must satisfy the

flow-tangency boundary condition on the body, that is,



Introduction 

 n is a unit vector normal to the body surface.

 In all of the above equations, Φ is, in general, a

function of three-dimensional space.

 For example, in spherical coordinates Φ = Φ(r, θ, Ф).

 Let us use these equations to treat some elementary

three-dimensional incompressible flows.



Three-dimensional uniform flow

 Consider the velocity potential given by

 We obtain



Three-dimensional source

 Consider the velocity potential given by

where C is a constant and r is the radial coordinate from

the origin.

 We obtain

 In terms of the velocity components,

we have

 Such a flow is defined as a three-

dimensional source. Sometimes it is

called simply a point source



Three-dimensional source

 To evaluate the constant C, consider a sphere of

radius r and surface S centered at the origin.

 The mass flow across the surface of this sphere is

 Hence, the volume flow, denoted by λ, is

 On the surface of the sphere, the velocity is a constant

value

 Hence,



Three-dimensional source

 Substituting Equation, we find

 In the above equations, λ is defined as the strength of

the source.

 When λ is a negative quantity, we have a point sink.



Three-dimensional doublet

 Consider a sink and source of equal but opposite

strength located at points O and A.

 The distance between the source and sink is l.

 Consider an arbitrary point P located a distance r from

the sink and a distance r1 from the source.

 The velocity potential at P is

 Let



Three-dimensional doublet

 The flow field produced by Equation is a three-

dimensional doublet.

 μ is defined as the strength of the doublet.

 We find



Flow over a sphere

 Consider again the flow induced by the

three-dimensional doublet.

 Superimpose on this flow a uniform

velocity field of magnitude V∞ in the

negative z direction.

 The spherical coordinates of the

freestream are

 We obtain, for the combined flow,



 To find the stagnation points in the flow, set

Flow over a sphere

 We obtain

 There are two stagnation points, both on the z axis, with

(r, θ) coordinates



Flow over a sphere

 Insert the value of r = R from Equation into the

expression for Vr. We obtain

 Thus, Vr = 0 when r = R for all values of θ and Ф.

 This is precisely the flow-tangency condition for

flow over a sphere of radius R.

 Hence, the velocity field is the incompressible

flow over a sphere of radius R.



Flow over a sphere

 On the surface of the sphere, where r = R, the

tangential velocity is obtained from

 The maximum velocity occurs at the top and bottom

points of the sphere, and its magnitude is

 For the two-dimensional flow, the maximum velocity is



 Hence, for the same V∞, the maximum surface

velocity on a sphere is less than that for a cylinder.

 The flow over a sphere is somewhat “relieved” in

comparison with the flow over a cylinder.

 The flow over a sphere has an extra dimension in

which to move out of the way of the solid body.

 The flow can move sideways as well as up and down.

 This is an example of the three-dimensional relieving

effect, which is a general phenomenon for all types of

three-dimensional flows.

Flow over a sphere



 The pressure distribution on the surface of the sphere

is given by

Flow over a sphere

 The pressure distributions over a

sphere and a cylinder are compared in

Figure.

 It dramatically illustrates the three-

dimensional relieving effect.



General three-dimensional flows:

panel techniques

 In modern aerodynamic applications, three-dimensional,

inviscid, incompressible flows are almost always

calculated by means of numerical panel techniques.

 The general idea behind all such panel programs is to

cover the three-dimensional body with panels.

 There is an unknown distribution of

singularities (such as point sources, doublets,

or vortices).

 These unknowns are solved

 through a system of simultaneous linear

algebraic equations,

 generated by calculating the induced

velocity at control points on the panels

and applying the flow-tangency condition.



General three-dimensional flows:

panel techniques

 For a nonlifting body, a distribution of source panels is

sufficient.

 However, for a lifting body, both source and vortex

panels are necessary.

Boeing 747-space shuttle

piggyback combination.

 The geometric complexity of distributing

panels over the three-dimensional

bodies…;

 How do you distribute the panels

over the body?

 How many panels do you use?

 A few months determining the

best geometric distribution of

panels over a complex body…



Applied aerodynamics:

airplane lift and drag

 A three-dimensional object of primary interest to aerospace

engineers is a whole airplane.

 We emphasized that the aerodynamic force on any body

moving through the air is due only to two basic sources, the

pressure and shear stress distributions exerted over the

body surface.

 Lift is primarily created by the pressure distribution; shear

stress has only a minor effect on lift.

 Inviscid flow has given us reasonable predictions of the lift

on airfoils, and finite wings.

 Drag, on the other hand, is created by both the pressure

and shear stress distributions, and analyses based on just

inviscid flow are not sufficient for the prediction of drag.



Applied aerodynamics:

airplane lift and drag
Airplane Lift

 Lift is produced by the fuselage of an airplane as well as

the wing.

 Of course, other components of the airplane such as a

horizontal tail, canard surfaces, and wing strakes can

contribute to the lift, either in a positive or negative sense.

 We emphasize that reasonably accurate predictions of lift

on a complete airplane can come only from

 wind tunnel tests,

 detailed computational fluid dynamic calculations

(such as the panel calculations),

 and, of course, from actual flight tests of the airplane.



Applied aerodynamics:

airplane lift and drag
Airplane Lift

 For subsonic speeds, however, data obtained using

different fuselage thicknesses, d, mounted on wings

with different spans, b, show that the total lift for a

wing-body combination is essentially constant for d/b

ranging from 0 to 6.

 Hence, the lift of the wing-body combination can be

treated as simply the lift on the complete wing by itself,

including that portion of the wing that is masked by the

fuselage.



Applied aerodynamics:

airplane lift and drag
Airplane Drag

 It is important to produce this lift as efficiently as

possible, that is, with as little drag as possible.

 The ratio of lift to drag, L/D, is a good measure of

aerodynamic efficiency.

 As in the case of lift, the drag of an airplane can not

be obtained as the simple sum of the drag on each

component.

 For example, for a wing-body combination, the drag is

usually higher than the sum of the separate drag

forces on the wing and the body, giving rise to an

extra drag component called interference drag.



Applied aerodynamics:

airplane lift and drag
Airplane Drag

 For a finite wing;

 CD is the total drag coefficient for a finite wing,

 cd is the profile drag coefficient caused by skin friction

and pressure drag due to flow separation,

 and the induced drag coefficient with the span efficiency

factor e.



 For the whole airplane,

Applied aerodynamics:

airplane lift and drag
Airplane Drag

 CD is the total drag coefficient for the airplane.

 CD,e is defined as the parasite drag coefficient.

 It contains not only the profile drag of the wing [cd ] but

also the friction and pressure drag of the other surfaces.

 Such as tail surfaces, fuselage, engine nacelles, landing

gear, and any other component of the airplane that is

exposed to the airflow.



Applied aerodynamics:

airplane lift and drag
Airplane Drag

 We think that as the angle of attack is varied, CD,e will

change with angle of attack.

 Because the lift coefficient, CL , is a specific function of

angle of attack, we can consider that CD,e is a function of

CL .

 A reasonable approximation for this function is

where r is an empirically determined constant.

 Since at zero lift, CL = 0, then Equation defines CD,o as

the parasite drag coefficient at zero lift, or more

commonly, the zero-lift drag coefficient.



 We can rewrite Equation as

Applied aerodynamics:

airplane lift and drag
Airplane Drag

 It is similar to a finite wing drag expression.

 We can redefine e as Oswald efficiency factor (e is span

efficiency factor) and rewrite the equation

𝑒 = 𝑟𝜋𝐴𝑅 +
1

𝑒

 e the Oswald efficiency factor is for a complete airplane.

 the Oswald efficiency factor for different airplanes typically

varies between 0.7 and 0.85 whereas the span efficiency

factor typically varies between 0.9 and at most 1.0.

the drag polar for

the airplane



 Daniel Raymer gives the following empirical expression

for the Oswald efficiency factor for straight-wing

aircraft, based on data obtained from actual airplanes:

Applied aerodynamics:

airplane lift and drag
Airplane Drag

𝐴𝑅 < 25



Applied aerodynamics:

airplane lift and drag

Airplane Lift-to-Drag Ratio

 Note that CL /CD first increases as α

increases, reaches a maximum value at a

certain value of α, and then subsequently

decreases as α increases further.



Applied aerodynamics:

airplane lift and drag

Airplane Lift-to-Drag Ratio

 The maximum lift-to-drag ratio, (L/D)max = (CL /CD)max, is a

direct measure of the aerodynamic efficiency of the

airplane.

 Therefore, its value is of great importance in airplane

design.

 Let us see (extremum point)



Applied aerodynamics:

airplane lift and drag

Airplane Lift-to-Drag Ratio

 Equation is an interesting intermediate result.

 It states that when the airplane is flying at the specific

angle of attack where the lift-to-drag ratio is

maximum, the zero-lift drag and the drag due to lift

are precisely equal.

 Solving Equation for CL, we have

 We obtain for the maximum lift-to-drag ratio

or,



Questions


