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Summary 
 
This chapter presents a perspective of the elements of control and programming of robot 
manipulators. The primary difference between industrial robots and automated machines 
with a fixed program is that the robots are adaptable to variation of objects in the work 
environment and to changes of tasks by re-programming. In order to make robots execute 
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various tasks such as welding, assembling, grinding, and so on, it is first necessary to 
enhance the robot control technologies. Moreover, programming technologies for 
instructing the motions of robots play an important role in making robots user friendly for 
humans.  
 
In view of constraints in the environment, robot control technologies are categorized into 
motion control in free space and interaction control in constrained space. As motion 
controls, servo controls such as the joint space servo and the Cartesian space servo, 
dynamic controls such as the computed torque control and the Cartesian based inverse 
dynamics control, and adaptive control in joint space are typical methods. Interaction 
control schemes can be grouped into two types: indirect force control and direct force 
control. Impedance control is a typical indirect force control. 
 
 Hybrid position/force control and adaptive hybrid position/force control are direct force 
controls. The robot programming methods are categorized into on-line programming and 
off-line programming. As advanced off-line programming, a graphical task-level robot 
language system and robot teaching in a virtual reality environment are expected to be 
developed because of their highly user friendly interfaces. 
 
1. Introduction 
 
Robot control is an essential technology that enables a robot to move precisely and 
adaptively. The problem of robot control is formulated to include determination of the 
joint torques to be generated by the joint actuators, so as to guarantee the execution of the 
robot task while satisfying given transient and steady state requirements. In view of 
constraints within the environment, the robot controls are categorized into motion control 
in free space and interaction control in constrained space.  
 
The motion control is the most essential of robot manipulator controls. One of the basic 
requirements for the successful completion of a robot task is the ability to handle an 
interaction between the end-effector of the robot and the environment. The contact force 
at the manipulator’s end-effector should be controlled at the desired force, because a large 
force error causes damages of the manipulator and the manipulated object. 
 
Sophistication of the interface between the human user and the industrial robot is 
becoming extremely important as robots are applied to more and more demanding 
industrial applications. The robot manipulators differ from fixed automation chiefly by 
their ability to for re-programming, which gives the robots the flexibility to be useful for 
various tasks. With regard to direct use of robots at the programming, robot programming 
technologies are categorized into on-line programming, which means a robot is located 
on the automated line and used at the programming, and off-line programming, which 
means a robot is located on the automated line but is not used at the programming.  
 
The on-line programming is an early-established technology, opted for because of its 
simplicity. In the present-day off-line programming, a robot user is offered a robot 
language system with graphical user interface. In present-day robot teaching 
technologies, a graphical task-level robot language in small batch production is practical 
and easy for low-skill users. Teaching in a virtual reality environment, in which the 
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human operator, rather than the robot, performs the task, the motion intention of the 
operator is analyzed, and robot instructions are generated from the analysis automatically; 
this is advanced off-line programming. Herein, these robot control and programming 
technologies are presented. 
 
2. Robot Dynamics 
 
In general, the equations of motion of n degrees of freedom (DOF) of the robot 
manipulator in joint space are represented by 
 

( ) ( , ) ( ) r+ + = −M q q C q q q g q τ f  (1) 
 
where n∈q  is the joint variable vector, n∈τ  is the joint torque vector, n

r ∈f  is the 
friction vector at the joints, ( ) n n×∈M q  is the manipulator inertia matrix, ( , )C q q q  is 
the quadratic velocity term, and ( ) n∈g q  is the gravity acceleration vector. This 
dynamic model has the following three properties: 
 
Property 1: ( )M q  is symmetric and positive definite. 
 
Property 2: For suitable definition of ( , )C q q , ( ) 2 ( , )−M q C q q  is a skew-symmetric 

matrix. 
 
Property 3: The equations of motion are linear with respect to suitable dynamic 

parameters; that is,  
 

( ) ( , ) ( ) ( , , , )+ + =M q α C q q v g q Y q q v α σ  (2) 
 
where pσ ∈  is a dynamic parameter vector, v  and n∈α are any velocity and 
acceleration vectors, and ( , , , ) n p×∈Y q q v α  is the regressor with respect to σ .  
 
The property 2 is referred to as passivity. These properties are utilized in the stability 
analysis of robot controls. Moreover, the equations of motion in Cartesian space have the 
same three properties.  (see Robot Kinematics and Dynamics). 
 
Since the actuator that generates the joint torques also has dynamic characteristics, the 
dynamic characteristics of the actuator should be taken into consideration at a design of 
control input. The most typical actuator is the DC servomotor. Its circuit, as shown in 
Figure 1, is described by 
 

M M M M M e ME R i L i K θ= + −  
 
and the output motor torque is given by 
 

M T MK iτ =  
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where ME  is the voltage source, Mi  is a motor current, Mθ  is a motor angle, MR is a 
motor electric resistance, ML  is a motor inductance, eK  is a back electromotive force 
constant, and TK  is a motor torque constant.  
 
It is generally desirable to control the output torque with a current amplifier motor driver, 
which senses the current through the motor armature and continuously adjusts the voltage 
source ME  so that a desired current Mi  flows through the motor armature. This is 
accomplished by large current feedback in the motor driver. In general, the motor is 
connected through a gear reduction to a joint. A relation between the joint load torque τ  
and motor output torque Mτ  is represented in terms of motor variables by 
 

M M M
1Jτ θ τ
γ

= + , 

 
or in terms of joint variables by  
 

2
L M MJτ γτ γ θ τ= = +  

 
where MJ  is a motor inertia, γ  is a reduction ratio, θ  is a joint angle and Lτ  is a motor 
output torque at the link side. This yields the equation of the manipulator, rewritten as 
 

T
M L( ( ) ) ( , ) ( ) r+ + + = −M q Γ M Γ q C q q q g q τ f  (3) 

 
where Γ  is a reduction ratio matrix, MM  is a diagonal motor inertia matrix, and Lτ  is a 
motor output torque vector at the link side. Since the motor inertia T

MΓ M Γ  is positive 
definite and constant, this dynamics also has the above-mentioned three properties. The 
term T

M( ) +M q Γ M Γ  is sometimes called the effective inertia matrix. It is noted that in a 
highly geared joint, the motor inertia can be a significant portion of the combined 
effective inertia. This may allow us to make the assumption that the effective inertia 
matrix is a constant. Hereafter, for simplicity of description, it is assumed that the actuator 
is an ideal generator of joint torque.  

 

 
 

Figure 1: The circuit and mechanical model of a DC servomotor with gear reduction 
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3. Motion Control 
 
Equations of motion of the manipulator are highly non-linear because the manipulator 
motion is affected by the gravitational acceleration, the centrifugal force, the Coriolis 
force, and the friction at the joints. The aim of manipulator motion control is to drive the 
end-effector to a desired point or to follow it to a desired trajectory in free space. Typical 
motion control techniques are presented; i.e., servo control in joint space, servo control in 
task space, dynamic control, and adaptive control. 
 
3.1. Servo Control 
 
The servo control system is a control system that makes the position and/or velocity of a 
mechanical motion system follow desired values. In robot motion control, the desired 
values are given by the joint variables in joint space or by the position and orientation 
(pose) of the end-effector in Cartesian space. The former is called a joint servo control 
system, the latter a Cartesian servo control system. 
 
3.1.1. Servo Control in Joint Space 
 
As servo control techniques in joint space, PD control, PD control with gravity 
compensator, and PID control are presented. 
 
PD control 
 
For given desired constant joint variable [ ]d d1 d, , T

nq q=q , the most simplest control 
scheme is an independent joint control, the control law of which is given by 
 

D P( ) ( ) ( )t t t= +τ K e K e  (4) 
 
where d( ) ( )t t= −e q q  is the position error vector, and P p1 p( , , )ndiag K K=K and 

D D1 D( , , ) n n
ndiag K K ×= ∈K  are the proportional and derivative feedback gain 

matrices, respectively. This is called PD control in joint space. When the joint velocities 
are adequately low, such that the effects of the centrifugal force and the Coriolis force can 
be ignored, that is, ( , ) ≅C q q q 0 ; the gravitational force can be ignored, that is, ( ) ≅g q 0 ; 
and the manipulator inertia matrix is assumed to be represented by 

11( ) ( , , )nndiag m m= ≡M q M , which means that the interaction between the joints can 
be ignored, then the equations of errors are represented by the second order linear 
constant coefficient differential equation 
 

D P( ) ( ) ( )t t t+ + =Me K e K e 0 . 
 
If the feedback gains are settled by 2

Pi ii iK m ω=  and D 2i i i iiK mξ ω= , an error equation of 
the i-th joint variable is  
 

2( ) 2 ( ) ( ) 0i i i i i ie t e t e tξ ω ω+ + =  (5) 
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where iξ  is a damping coefficient and iω  is a natural angular frequency. This means ie  
converges to zero as t  approaches infinity. As shown in Figure 2, this control scheme 
consists of n independent single-input, single-output control systems. This is the design 
approach presently adopted by most industrial robot suppliers.  

 

 
 

Figure 2: Joint servo controller.  
 
PD control with gravity compensation 
 
When the effect of gravity acceleration cannot be ignored, PD control with gravity 
compensation is adopted. Its control law is given by 
 

D P ˆ( ) ( ) ( ) ( )t t t= + +τ K e K e g q  (6) 
 
where D 0>K  and P 0>K  are symmetric positive definite feedback gain matrices, and 
ˆ ( ) n∈g q  is a  computed gravity term which is an estimate of ( )g q . Asymptotic stability 
of the closed system is proved based on the Lyapunov stability theorem on the 
assumption that ˆ ( ) ( )=g q g q .  
 
The closed system in which the PD control with gravity compensation is applied is 
represented by 
 

D P( ) ( , ) ( ) ( )t t+ − − =M q q C q q q K e K e 0 . (7) 
 
Choose the following positive definite quadratic form as a Lyapunov function candidate: 
 

{ }T T
P

1( ) ( )
2

V t = +q M q q e K e . (8) 
 
An energy-based interpretation of (8) reveals a first term expressing the system kinematic 
energy and a second term expressing the potential energy stored in the system of 
equivalent stiffness PK  provided by the feedback loop. Since ( ) 2 ( , )−M q C q q  is skew 
symmetric, a time derivative of (8) is found to be 
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T
D( ) 0V t = − ≤q K q . 

 
Hence, ( )V t  is a Lyapunov function, which means that the system reaches an equilibrium 
posture satisfying ( ) 0V t = . This means ( )t =q 0 . At the equilibrium satisfying (7), 

d( )t =q q  is the equilibrium posture. If d( )t ≠q q , then ( )t ≠q 0  and ( ) 0V t < . Hence, q  
tends toward dq  as t  tends toward infinity. This shows that any manipulator equilibrium 
posture is globally asymptotically stable under PD control with gravity compensation.  
(see Lyapunov Stability). 
 
PID control 
 
If the computation of gravity term is not exact, and/or the friction at the joints can be 
ignored, steady state errors of joint variables will arise. In order to reduce the steady state 
errors, PID control is adopted. Its control law is 
 

D P I 0
( ) ( ) ( ) ( )

t
t t t t dt= + + ∫τ K e K e K e  (9) 

 

where I
n n×> ∈K 0  is an integral gain matrix. It is shown that the PID control scheme 

ensures asymptotic stability only when the initial states belong to a restricted region about 
the equilibrium state.  (see PID-control). 
 
3.1.2. Servo Control in Cartesian Space 
 
Most robot tasks are designed in Cartesian space, and desired positions and orientations 
(posture) of the end-effector are given in Cartesian space. In such situations, servo 
controls in Cartesian space are desirable. When link parameters of the manipulator are not 
precise, desired joint variables dq  that are computed using the desired posture of the 
end-effector d

m∈r  through the inverse kinematic model do not lead to the precise 
posture of the end-effector. In order to converge the posture errors of the end-effector 

r d= −e r r  on zero without computation of the inverse kinematic model, a PD servo 
control with gravity compensation in Cartesian space is effective. Its control law is 
 

T
D P r ˆ( ) ( ) ( ) ( ) ( )t t t= + +τ K q J q K e g q  (10) 

 
where ( ) ( ) /= ∂ ∂J q r q q  is the geometric Jacobian of the manipulator, and P >K 0  
and D >K 0  are the proportional and derivative symmetric feedback gain matrices, 
respectively, in Cartesian space. By the duality of velocity kinematics and statics, the 
following physical interpretation is admitted: T

P r( ) ( )tJ q K e  is a compensatory term in 
joint torque space that balances to force P r ( )tK e , which is generated by the spring with 
stiffness PK . If ˆ ( ) ( )=g q g q  and a Lyapunov function candidate is chosen as 
 

{ }T T
r P r

1( ) ( )
2

V t = +q M q q e K e , 
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then the stability argument is similar to that in joint space. On the assumption that the 
Jacobian is full rank, it is shown that r  converges to dr  as t  tends toward infinity. This 
controller needs measurements of ,q q , and r . If measurements of r  are made directly 
in the Cartesian space through an external sensor such as the vision sensor, this controller 
does not need the computation of the inverse kinematic model. (see Lyapunov Stability). 
 
3.2. Dynamic Control 
 
In the previous section, the position control is discussed. This section deals with a 
trajectory control in which desired joint variables d ( )tq , joint velocities ( )tdq , and joint 
acceleration d ( )tq  are given as the time function. The control scheme that takes the 
manipulator dynamics into consideration is called dynamic control. As the dynamic 
controls, the computed torque control and the Cartesian based inverse dynamics control is 
presented. In this case, it is assumed that the manipulator dynamics are known precisely. 
The basic idea is to realize not a local linearization but a global linearization of the 
manipulator dynamics by means of a nonlinear state feedback. (see Feedback 
Linearization) 
 
Computed torque control 
 
In order to perform a global linearization of the manipulator dynamics in joint space, 
computed torque control as shown in Figure 3 is adopted. Its control law is given by 
 

* ˆˆ ˆ( ) ( , ) ( )= + +τ M q q C q q q g q  (11) 
 
where 
 

*
d v p( ) ( )t t= + +q q K e K e  

 
and ˆˆ ( ), ( , )M q C q q , and ˆ ( )g q  are computed values of ( ), ( , )M q C q q , and ( )g q , 
respectively, and pK  and vK  are the respective position and velocity feedback gain 
matrices. The manipulator system is linearized by the second and third terms on the right 
hand side of (11), and the linearized system is controlled by the linear servo compensator 
given by the first term on the right hand side of (11). If the dynamic model is exact, 
ˆ ( ) ( ),=M q M q ˆ ( , ) ( , )=C q q C q q , and ˆ ( ) ( )=g q g q , then the closed system is given by 
*

d=q q . Hence, equations of the trajectory errors d( ) ( ) ( )t t t= −e q q are described by a 
second order linear differential equation as follows: 
 

v p( ) ( ) ( )t t t+ + =e K e K e 0 . (12) 
 
If pK  and vK  are chosen as diagonal positive definite matrices, the closed system is 
decoupled and globally asymptotically stable. For example, by choosing i-th diagonal 
elements for pK  and vK  of 2ξω  and 2ω , respectively, the closed system with the 
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damping coefficient ξ  and the natural angular frequency ω  is constructed at each joint. 
The nonlinear control law (11) needs the efficient computation algorithm of inverse 
dynamics and exact dynamic parameters. If the dynamic parameters are not known 
precisely, the mismatch between actual and modeled parameters will cause servo errors. 
The parameters of dynamics can be obtained by the dynamic parameter identification. 
(see Robot Kinematics and Dynamics).  

 

 
 

Figure 3: Computed torque method. 
 
Cartesian based inverse dynamics control  
 
When the desired posture of end-effector d ( )tr , its velocity d ( )tr  and acceleration 

d ( )tr are given as a time function, dynamic control in Cartesian space is desirable. 
Cartesian-based inverse dynamics control consists of the feedback linearization in 
Cartesian space and position and velocity feedback compensation as shown in Figure 4. 
On the assumption that the manipulator geometric Jacobian ( )J q  is non-singular, its 
control law is given by 
 

( )1 * ˆˆ ˆ( ) ( ) ( ) ( , ) ( )−= − + +τ M q J q r J q q C q q q g q  (13) 
 
where 
 

*
d v r p r( ) ( )t t= + +r r K e K e  

 
and r d( ) ( ) ( )t t t= −e r r  is the posture error of the end-effector in Cartesian space. If the 

dynamic model is exact, ˆ ( ) ( ),=M q M q ˆ ( , ) ( , )=C q q C q q , and ˆ ( ) ( )=g q g q , then the 
closed system satisfies *=r r , which yields equations of the posture error in Cartesian 
space that are represented by 
 

r v r p r( ) ( ) ( )t t t+ + =e K e K e 0 . 
 
If pK  and vK  are chosen as diagonal positive definite matrices, the closed system is 
decoupled and the posture error converges on zero.  
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Controlling a manipulator in the Cartesian space is in general more complex than 
controlling it in the joint space because of the presence of singularities and/or redundancy 
of the geometric Jacobian. Basically, it should avoid passing a singularity configuration 
of the manipulator. For the redundant manipulator, the Cartesian-based control scheme 
should incorporate a redundancy handling technique in the feedback loop. 

 

 
 

Figure 4: Cartesian based inverse dynamics control. 
 
- 
- 
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