Basic Immunology
for Vaccine

Surasak Wongratanacheewin, Ph.D
Dean, Graduate School, KKU
Microbiology, Faculty of Medicine, KKU
sura wng@kku.ac.th

n1sausHunangnIUsENIAteUnsN1sUNsleudaing Ui 7-11 urad 2559 o 159UTUALINLLDTA NTUNNUNIUAT


mailto:sura_wng@kku.ac.th

Immunity

- Innate (Natural) Immunity:
First line of defense, pattern
recognition

- Adaptive (Acquired) Immunity:
Need stimulation or infection,
Memory and specific
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' Antigen recognition ' " Effector functions
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Innate-adaptive Immunity

Innate Immunity Adaptive Immunity
Specificity For structures shared by classes of microbes (pathogen- For structural detail of microbial molecules (antigens); may
associated molecular patterns) recognize nonmicrobial antigens
: Different
Different =

microbes —
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Ligands or microbes

TABLE 4-2 Examples of PAMPs and DAMPs
Pathogen-Associated Molecular Patterns Microbe Type Bacterial cell — TLR Fungal polysaccharide
wall lipid Extracellular h o
Nucleic acids ssRNA Virus Lectin
dsRNA Virus _
CpG Virus, bacteria R S B SSRistts,
Proteins Pilin Bacteria
Flagellin Bacteria
..... Pmma
Cell wall lipids LPS Gram-negative bacteria W R, membrane
‘ Lipoteichoic acid Gram-positive bacteria g 4
Carbohydrates Mannan Fungi, bacteria IMI
Dectin glucans Fungi NLR =
' - Viral DNA, =
Damage-Associated Molecular Patterns | Viral RNA
Stress-induced HSPs Q =
proteins Bacterial cell
RLR wall lipid ah Y S L
Crystals Monosodium urate WA £
’ . oc’évaral RNA P/ PPPoocccott "+~ “Endosomal
| Nuclear proteins HMGB1 b Y i
CpG, cytidine-guanine dinucleotide; dsRNA, double-stranded RNA; HMGBI1,
high-mobility group box 1; HSPs, heat shock proteins; LPS,
lipopolysaccharide; ssSRNA, single-stranded RNA.

Abbas et al, Cells and Molecular Immunology, 7 edition, 2012



Different ligands bind to different receptors
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Killing mechanisms of innate cells
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Active and passive iImmunity
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Adaptive immunity
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T cell activation in adaptive immunity
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CD28 and CD40L are essential
Signaling PI-3 kinase/Akt for T cell activation

intermediates RAS/MAP-kinase

Abbas et al, Cells and Molecular Immunology, 7 edition, 2012
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State and markers for T cell activation
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Activation of T cells
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Type of T cell responses
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Abbas et al, Cells and Molecular Immunology, 7 edition, 2012
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Abbas et al, Cells and Molecular Immunology, 7 edition, 2012
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B cell activation
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Activation of memory cells:important to generate vaccines
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What is Vaccine?

= A vaccine 1s a non-pathogenic or attenuated
antigen that mimics a particular pathogen in
order to elicit an immune response.

= The goal of a vaccine 1s to establish immunity
against that particular pathogen.



Principles of vaccination strategies

- Purified antigens --> protective antibody

- Not effective against microbes that mutate
antigenic proteins or hide inside infected cells

- Attenuated microbes, viral vectors for antigens -->
antibodies + CMI

- Safety concerns

- Difficult to induce effective CTL responses with
purified protein antigens

- Potential of plasmid DNA vaccines

» Clinically usable adjuvants
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Peter J. Delves, Seamus J. Martin, Dennis R. Burton and Ivan M. Roitt, Essential for Immunology. 12 ed. 2011



Table 13.2. Factors required for a successful vaccine.

Factor Requirements
Effectiveness Must evoke protective levels of immunity:
at the appropriate site
of relevant nature (Ab, Tc, Th1, Th2)
of adequate duration
Availability Readily cultured in bulk or accessible source of subunit
Stability Stable under extreme climatic conditions, preferably not requiring refrigeration
Cheapness What is cheap in the West may be expensive in developing countries but the Bill and Melinda Gates
Foundation and governments help
Safety Eliminate any pathogenicity

Peter J. Delves, Seamus J. Martin, Dennis R. Burton and Ivan M. Roitt, Essential for Immunology. 12 ed. 2011



Vaccine lypes

1. Killed whole organisms

In crude approach, the vaccine 1s made from the entire organism, killed to make it harmless. The typhoid
vaccine 1s an example.

2. Attenuated organisms

Here, the organism has been cultured so as to reduce its pathogenicity, but still retain some of the antigens of
the virulent form. The Bacillus Calmette-Gu?rin (BCG) is a weakened version of the bacterium that causes

tuberculosis in cows. BCG 1s used as a vaccine against tuberculosis in many European countries but 1s rarely
used in the U. S.

3. Toxoids

In some diseases, diphtheria and tetanus are notorious examples, it 1s not the growth of the bacterium that is
dangerous, but the protein toxin that is liberated by it. Treating the toxin with, for example, formaldehyde,
denatures the protein so that it is no longer dangerous, but retains some epitopes on the molecule that will elicit
protective antibodies.

4. Surface molecules

Antibodies are most likely to be protective if they bind to the surface of the invading pathogen triggering its
destruction. Several vaccines employ purified surface molecules.

5. Inactivated virus

Like killed bacterial vaccines, these vaccines contain whole virus particles that have been treated (again, often
with formaldehyde) so that they cannot infect the host's cells but still retain some unaltered epitopes. The Salk
vaccine for polio (IPV) is an example.



Vaccine lypes

6. Attenuated virus

In these vaccines, the virus can still infect but has been so weakened that it 1s no longer
dangerous. The measles, mumps, and rubella ("German measles") vaccines are examples.
The Sabin oral polio vaccine (OPV) 1s another example. 6. Attenuated virus

7. DNA Vaccine

With DNA vaccines, the subject is not injected with the antigen but with DNA encoding
the antigen. The DNA 1is incorporated in a plasmid containing

DNA sequences encoding one or more protein antigens or, often, simply epitopes of the
complete antigen(s); DNA sequences incorporating a promoter that will enable the DNA
to be efficiently transcribed in the human cells. Sometimes DNA sequences encoding
costimulatory molecules sequences that target the expressed protein to specific
intracellular locations (e.g., endoplasmic reticulum) are included as well.

The DNA vaccine can be injected into a muscle just as conventional vaccines are.

In contrast to conventional vaccines, DNA vaccines elicit cell-mediated — as well as
antibody-mediated — immune responses.



Type of vaccines
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Vaccine concepts

e Extracellular bacteria or toxin
—Antibodies or B cells
—Blocking antibodies
—Complements
—Need T cells for class switching.

—Need conformational epitopes (B cells)

 Intracellular bacteria or virus
—CMI or T cells
—CTL
—Activated macrophages

—Cytokines

33



How to find the candidate
antigens?

e Conventional approaches

—Antigens selected from specific criteria (surface
molecules and accessible).

—Derived from basic investigations.

e Post genomic approaches

—Reverse vaccinology

34



Antigen selections (1)

e Accessible to immune cells

—Toxin, surface antigens
e Possess T and B cell epitopes

 Immunogenic in human (present or not
present 1in nature)

e Important for survival and diseases causation
of pathogens.

—present 1n all/most of disease 1solates.

—loss/alteration of disease survival

35



Antigen selections (2)

e Contain epitopes common to all/most
1solates

e Target selection should based on

—Pathogenesis of diseases

36



Efficacy of vaccines

- Vaccines have been useful for generating
protective antibodies, but so far, not for
generating effective cell-mediated immunity

- Vaccines work best against microbes that:
- Do not vary their antigens
- Do not have animal reservoirs

- Do not establish latent infection within host
cells

- Do not interfere with the host immune
response



Typical features of pathogen Vaccine approach

(@) Low antigenic variability Polio Conventional vaccinology
Antibody-mediated immunity dominant MMR Whole cell vaccines
Tetanus (killed or live attenuated)

Influenza Subunit

Diphtheria Recombinant

Licensed vaccines Conjugate

(b) High antigenic variability %%188
and/or T-cell-dependent Staphy Js WRM = I
immunity more Pn%%Tocococchcus R engi nology
significant amydia e neering/
Gonorrhea vooei‘ nology
Malaria -omics”
Parasite diseases
1B
HIV

NO vaccine available

Schematic view of conventional vaccinology and evolving vaccinology in the post-genome era.

Peter J. Delves, Seamus J. Martin, Dennis R. Burton and Ivan M. Roitt, Essential for Immunology. 12 ed. 2011



Subunit vaccines

Whole organisms have a multiplicity of antigens,
some of which are not protective, may induce
hypersensitivity or might even be
immunosuppressive.

It makes particular sense in these cases to

use purified components or those made
recombinantly.

Toxoids, inactivated toxins, are effective as vaccines
in preventing illness due to some bacterial agents.
The hepatitis B surface antigen particle is a classic
example of an effective subunit viral vaccine.

Many successful bacterial vaccines target glycans on
the surface of the organism using glycoconjugate
preparations.

DNA encoding the proteins from a pathogen can be
injected directly into muscle injected directly into
muscle to generate the proteins in situ and produce
immune responses. The advantages are stability,
ease of production and cheapness. The method has
not been as effective in humans as in mice but
newer developments such as a DNA prime with a
protein or vector boost are promising.



Killed organisms as vaccines
B Killed bacteria and viruses have been widely
used as effective vaccines.

Live attenuated organisms

B The advantages include the larger antigen dose
typically provided by a replicating organism, the
tendency to elicit better cellular immunity and the
generation of an immune response at the site of the
natural infection.

B Nonpathogenic vectors such as adenovirus,
attenuated fowlpox and modified vaccinia
Ankara virus can serve as Trojan horses for genes
from pathogenic organisms that are difficult to
attenuate.

B BCG is a good vehicle for antigens requiring CD4
T-cell immmunity and salmonella constructs may give
oral and systemic immunity. Intranasal immunization
IS gaining popularity.

B The risk with live attenuated organisms is reversion
to the virulent form and danger to
iImmunocompromised individuals.



Newer approaches to vaccines

B The rise of genomics has been crucial in allowing a
rational approach to the identification of many more
bacterial vaccine targets. “Reverse vaccinology” has
been successfully applied to the development of a
MenB vaccine.

B Highly variable pathogens such as HIV and HCV
present particular problems to vaccine design in that
they require the elicitation of broadly protective
iImmune responses. Here molecular approaches are
being adopted to describe how broadly neutralizing
antibodies interact with their targets and use the
information to rationally design vaccine candidates.
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MenB vaccine development

Preclinical reverse vaccinology
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Peter J. Delves, Seamus J. Martin, Dennis R. Burton and Ivan M. Roitt, Essential for Immunology. 12 ed. 2011



Neisseria meningitidis serogroup B

Vaccine
development
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J. Adu-Bobie et al. / Vaccine 21 (2003)



Comparison of conventional and genomic
approaches to vaccine development

Conventional vaccinology Reverse vaccinology

Most abundant antigens during disease  All antigens immunogenic during disease

Antigens expressed in vitro Antigens expressed in vitro and in vivo
Cultivable microorganism Antigens even in non-cultivable microorganisms
Animal models essential Animal models essential

Correlates of protection useful Correlates of protection essential

Structural components of microorganism Non-structural components, including early proteins of viruses
Correct folding in recombinant expression important

High throughput expression/analysis important

Polysaccharides may be used as antigens Non-proteic antigens cannot be used

J. Adu-Bobie et al. / Vaccine 21 (2003)



Problems with antigen selections

* No real comparison between different antigens.
- Limitation in ability to predict efficacy.

- Lack of adequate infection models.

- Function assay do not reflect in vivo conditions.

- Do not know the antigen variation or loss of
antigens.



Technology for Vaccines

Next-generation technologies
New adjuvants, structural vaccinology,

synthetic biology, DNA and RNA

Reverse vaccinology
C. difficile, E. coli, group A streptococcus, group B
streptococcus, meningococcus serogroup B, S. aureus

Glycoconjugation
Group B streptococcus, H. influenzae type B,
meningococcus serogroups A, C, Y
and W135, pneumococcus, S. aureus

Recombinant DNA
Acellular pertussis, hepatitis B,
human papilloma virus, Lyme disease

Empirical approach
BCG, diptheria, influenza,
MMRYV, pertussis, polio,
rabies, smallpox, tetanus

Rappuoli R. et al, Nature Rev Immunol, 2011



Vaccines in the 21st century

100

Today's society
90— | J:

Society for which most
vaccines were developed

Life expectancy (years)
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I | | | | | |
1750 1800 1850 1900 1950 2000 2050

increase life expectancy
Rappuoli R. et al, Nature Rev Immunol, 2011



Different age groups need different vaccinations

a Age groups

Pre-birth

* Cytomegalovirus

* Group B streptococcus

* Hepatitis B virus

* Influenza virus

* Meningococcus serogroups
A, B C, Yand W135

* Pertussis

* Respiratory syncytial virus

* Tetanus

Infants and children

* Diphtheria

* Group A streptococcus

* H. influenzae type b

* Helicobacter pylori

* Hepatitis A virus

* Hepatitis B virus

* Inactivated poliovirus
vaccine

* Influenza virus

* Measles

* Meningococcus serogroups
A B, C Y and W135

* Mumps

* Pertussis

* Pneumococcus

* Respiratory syncytial virus

* Rotavirus

* Rubella

* Tetanus

* Varicella
zoster virus

Adolescents

* Cytomegalovirus

* Diphtheria, tetanus
acellular pertussis

* Epstein—Barrvirus

* Herpes simplex virus

* Human papilloma virus

* Influenza virus

* Meningococcus
serogroups A, B, C, Y and
W135

* Parvovirus B19

Adults

* Diphtheria

* Hepatitis B virus

* Influenzavirus

* Meningococcus
serogroups A, B, C, Y
and W135

* Pertussis

* Respiratory syncytial
virus

* Tetanus

Elderly

Recurrent infections:

* Group B streptococcus

* Influenza virus

* Meningococcus serogroups
A B,C,Yand W135

* Pneumococcus

* Respiratory syncytial virus

* Varicella zoster virus

Antibiotic resistance:

* Acinetobacter baumannii

* C.difficile

* Candida spp.

* Enterotoxigenic E. coli

* Klebsiella pneumoniae

* P aeruginosa %'
\ '_\R
| »

* S. aureus

Cancer:

* Breast cancer

* Colorectal -
cancer

* Prostate cancer

Rappuoli R. et al, Nature Rev Immunol, 2011




Some characteristics of an ideal vaccine

Shows an impeccable safety profile in all populations, including young infants,
the elderly and immunocompromised subjects (such as HIV-positive subjects)
Elicits a high level of long-lived efficacy, including in young infants and the elderly
Requires only a single dose (or at most two doses spaced fairly close together) to
confer protection

Stimulates protection within 2 weeks of administration

Administrable without a needle and syringe; that is, orally, nasally or transcutaneously
or with a needle-free injection device

Administrable in combination with (in the same formulation) or concomitantly
(coadministered) with other vaccines

Can be manufactured in large scale and with quality control by relatively
uncomplicated and economical processes

Amenable to production in formulations that are resistant to high and low
temperatures and therefore free from strict storage requirements

Myron M Levine & Marcelo B Sztein. Nature Immunology, 2004



Adjuvants
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What is an adjuvant?

- Adjuvants are the substances that essential for
enhancing and directing the adaptive immune
response to vaccine antigens.

- They enhance the either innate or adaptive
immune responses.

- This response is mediated by two main types of
lymphocytes, B and T cells.
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Steven G Reed, Mark T Orr & Christopher B Fox Nature Medicine, 2013.



1885

1886

1889

1911

1916

1921

1926

1937

1942

1949

1955

1966

1979

1991

Vaccine

Rabies

Typhoid

BCG for TB

Diphtheria, pertussis
and tetanus

Whole-cell
influenza

Inactivated
polio vaccine

Hepatitis A

Adjuvant and mechanism

ssRNA
TLRs 7 and 8

LPS, DNA
TLRs1,2,4,5,6and9

Lipovaccine

DNA, lipoprotein
TLRs1,2,6and 9

Aluminum salts

Incomplete Freund’s
adjuvant (IFA)
(water-in-oil emulsion)

LPS, DNA
TLRs 1,2,4,5,6and 9

ssRNA
TLRs 7 and 8

ssRNA
TLRs 7 and 8

Scientific findings

Briegen describes endotoxin

Coley shows tumor necrosis
with bacterial extracts

More durable immune
response to typhoid vaccine

Enhanced antibody
responses to diphtheria
vaccine

Enhanced cellular and
antibody responses to TB

LPS structure determined

Ribi makes detoxified
endotoxin MPL

MPL tested in clinic

Steven G Reed, Mark T Orr & Christopher
B Fox Nature Medicine, 2013.



1996 TLRs discovered

1997 Fluad MF59
(oil-in-water emulsion)
Epaxal (for hepatitis A) :
1997 Inflexal (for influenza) Virosome
LPS shown to be
1998 TLR ligand
Invivac :
2004 (for influenza; Europe) Virosome
2005 Fendrix MPL
(for hepatitis B; Europe) Defined TLR4
2007- Pandemic influenza MF59, AS03
2009 vaccines (Europe) (oil-in-water emulsion)
2009 Cervarix (for HPV16 MPL
and HPV18; USA) Defined TLR4

Steven G Reed, Mark T Orr & Christopher B Fox Nature Medicine, 2013.



Mechanism of Adjuvants

1.Adjuvants may exert their effects through different mechanisms.

2.Some adjuvants, such as alum and emulsions (e.g. MF59®), function as delivery
systems.

3.Sone providing slow release in order to continue the stimulation of the immune
system.

4.Some enhance the antigen persistence at the injection site and increase recruitment
and activation of antigen presenting cells (APCs). Some adjuvants are also capable of
directing antigen presentation by the major histocompatibility complexes (MHC) [1].

5.0ther adjuvants, essentially ligands for pattern recognition receptors (PRR), act by
inducing the innate immunity, predominantly targeting the APCs and consequently
influencing the adaptative immune response.

- Toll-like receptors (TLRs),

- NOD-like receptors (NLRs),

- RIG-I-like receptors (RLRs) and

- C-type lectin receptors (CLRs).

- They signal through pathways that involve distinct adaptor molecules leading to the
activation of different transcription factors. These transcription factors (NF-kB, IRF3)

- Activation of some members of the NLR family, such as NLRP3 and NLRC4,


http://www.invivogen.com/alhydrogel
http://www.invivogen.com/addavax

Table 1. Selective List of Different Classes of Adjuvants That Have
Been Evaluated for Enhancing Immune Responses to Vaccines

Mineral salts
Aluminum phosphate*
Calcium phosphate*

Immunostimulatory adjuvants

Saponins e.g., QS21
MDP derivatives

Bacterial DNA (CpG oligos)

LPS

MPL and synthetic derivatives

Lipopeptides

Lipid particles
Liposomes
Virosomes*
Iscoms
Cochleates

Particulate adjuvants
Poloxamer particles
Virus-like particles

Mucosal adjuvants
Cholera toxin (CT)
Mutant toxins e.g., LTK63

and LTR72
Microparticles
Polymerized liposomes
Chitosan

Aluminum hydroxide*

Cytokines e.g., IL-2, IL-12,
GM-CSF

Emulsions e.g., Freund’s,
SAF, MF59*

PLG microparticles

Heat labile enterotoxin (LT)

Manmohan Singh and Derek T. O’Hagan,2002
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Adjuvants

Adjuvant name (year licensed) Adjuvant class Components

Adjuvants licensed for use in human vaccines

Alum* (1924)
MF59 (Novartis; 1997)

ASO03 (GlaxoSmithKline; 2009)

Virosomes (Berna Biotech; 2000)

AS04* (GlaxoSmithKline; 2005)

Mineral salts Aluminium phosphate or aluminium hydroxide

Oil-in-water emulsion  Squalene, polysorbate 80 (Tween 80; ICI
Americas), sorbitan trioleate (Span 85; Croda
International)

Oil-in-water emulsion  Squalene, Tween 80, a-tocopherol
Liposomes Lipids, hemagglutinin

Alum-absorbed TLR4 Aluminium hydroxide, MPL
agonist

Vaccine adjuvants tested in humans but not licensed for use

CpG 7909, CpG 1018

Imidazoquinolines
Polyl:C

Pam3Cys

Flagellin

Iscomatrix

AS01
AS02
AF03
CAFO01
IC31

TLR9 agonist CpG oligonucleotides alone or combined with
alum/emulsions

TLR7 and TLR8 agonists Small molecules

TLR3 agonist Double-stranded RNA analogues

TLR2 agonist Lipopeptide

TLR5S agonist Bacterial protein linked to antigen

Combination Saponin, cholesterol,
dipalmitoylphosphatidylcholine

Combination Liposome, MPL, saponin (QS21)

Combination Oil-in-water emulsion, MPL, saponin (QS21)

Oil-in-water emulsion  Squalene, Montane 80, Eumulgin B1 PH

Combination Liposome, DDA, TDB

Combination Oligonucleotide, cationic peptides

Vaccines (disease)

Various

Fluad (seasonal influenza), Focetria
(pandemic influenza), Aflunov
(pre-pandemic influenza)

Pandremix (pandemic influenza),
Prepandrix (pre-pandemic influenza)

Inflexal (seasonal influenza), Epaxal
(hepatitis A)

Fendrix (hepatitis B), Cervarix (human
papilloma virus)

61



Adjuvants in development for human vaccines

Adjuvants
Montanides

Saponins (QS-21)
SAF

AS03

MTP-PtdEtn

Exotoxins

ISCOMS

TLR ligands
MPL®-SE
Synthetic Lipid A
MPL®-AF

ASO1

AS02

AS04

AS15

RC529

TLR-9

(CpG)

TLR-9 ISS series

TLR-9 IMO series
(YpG, CpR motif)

TLR-9 agonist (MIDGE®)
TLR-7/8 (Imiquimod)

Formulation
Water-in-0il emulsions

Aqueous

Oil-in-water emulsion conteining
squalene, Tween™ 80, Pluronic™ L121

Oil-in-water emulsion conteining
a-tocopherol, squalene, Tween™ 80

Oil-in-water emulsion

P aeruginosa

E. coli heat-labile enterotoxin LT
Phospholipids, cholesterol, QS-21

Oil-in-water emulsion

Oil-in-water emulsion

Aqueous

Liposomal

Oil-in-water emulsion containing MPL®
and QS-21

Alum + aqueous MPL*®

AS01 + CpG

Aqueous

n/a

n/a

n/a
n/a

n/a
n/a

In pre-clinical or clinical trials

Malaria (Phase ), HIV, cancer (Phase I/l)

Cancer (Phase Il), herpes (Phase 1), HIV (Phase |)
HIV (Phase | - Chiron)

Pandemic flu (GSK)

HSV

P aeruginosa, cystic fibrosis (AERUGEN - Crucell/
Berna)
ETEC (Phase Il - lornai Corp.)

Influenza, HSV, HIV, HBV, malaria, cancer

Leishmania (Phase I/Il - IDRI)
Various indications (Avanti/IDRI)
Allergy (ATL); cancer (Biomira)

HIV (Phase |), malaria (ASO1, Phase lll, GSK)
cancer (Phase II/lll, Biomira/MerckKGaA)

HPV (Cervarix), HIV, tuberculosis, malaria (Phase Ill),
herpes (GSK)

HPV, HAV (GSK)

Cancer therapy (GSK)

HBV, pneumovax

Cancer (ProMune - Coley/Pfizer)
HCV (ACTILON Coley)

HIV, HBV, HSV, anthrax (Vaximmune Coley/GSK/
Chiron)

HBV (HEPLISAV, Phase lll - Dynavax)

Cancer (Phase I, Dynavax)

Cancer (IMOxine, Phase |, Hybridon Inc.)

Cancer (IMO-2055, Phase Il, Idera Pharm.)
HIV (Remune, Phase |, Idera/IMNR)

Cancer (Phase |, Mologen AG)

Melanoma (3M Pharmaceutical)
HIV (nralinicall laichmaniacie

Reed, S.G et al, 2008



Natural
ligands

Candidate
adjuvants

TLR

Adjuvants: as innate stimulators

IL-12p70

v
IL-12p70

v
IL-12p70

Human - Human
myeloid DC ;| plasmacytoid DC

Triacyl lipopeptides (TLR1/TLR2) E.coli LPS Flagellin Profilin dsRNA ssRNA Bacterial
Diacy! lipopeptides (TLR2/TLRS) Hsp60/70 . from T.gondii = | (virus-derived) (virus-derived) or viral

Peptidoglycans (TLR2) RSV ' (murine TLR11) DNA

Lipoteichoic acids (TLR2)

Neisseria porins (TLR2)

Pam3Cys (TLR1/TLR2) 5 MPL Flagellin, Not applicable Poly I.C Imiquimod (TLR7) CpG DNA

Pam2Cys (TLR2/TLR6) | (lipid A and (human ; ssRNA (TLR7)

OMPC (TLR2) i derivative) engineered TLR11is ; Resiquimod (TLR8)
| 1

Weak IL-12p70 | '

Innate Weak IL-12p70
High IL-10 IFN-ot High III.-10 : IFP:-a
! ! ! ! 1 | !
Adaptive ThO/Th2/T regulatory Thi Thi Th1 Thi Thi

Cross presentation/strong CTL






