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Abstract 

This thesis examines the performance of the support vector machine and the random forest models in 

the context of binary classification. The two techniques are compared and the outstanding one is 

used to construct a final parsimonious model. The data set consists of 33 observations and 89 

biomarkers as features with no known dependent variable. The dependent variable is generated 

through k-means clustering, with a predefined final solution of two clusters. The training of the 

algorithms is performed using five-fold cross-validation repeated twenty times. The outcome of the 

training process reveals that the best performing versions of the models are a linear support vector 

machine and a random forest with six randomly selected features at each split. The final results of 

the comparison on the test set of these optimally tuned algorithms show that the random forest 

outperforms the linear kernel support vector machine. The former classifies all observations in the 

test set correctly whilst the latter classifies all but one correctly. Hence, a parsimonious random 

forest model using the top five features is constructed, which, to conclude, performs equally well on 

the test set compared to the original random forest model using all features. 
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1. Introduction 

Enormous amounts of data are continuously stored and accumulated. A lot of individuals’ 

everyday choices and acts are somehow registered and stockpiled. To take a few examples, 

data storing activities range from concerning financial transactions, shopping patterns and 

Internet behaviour to more general records about the population, demographics, 

socioeconomics and health. There are also huge quantities amassed concerning geological 

data, weather and satellite data. The sheer amount of data is in many cases unmanageable, 

hampering the possibility of making relevant interpretations. As a result, potential areas of 

data utilization are never realized (Bramer, 2007, Chapter Introduction).  

Access to large amounts of data in itself is not very useful unless it is possible to analyse the 

data, extract information from it and utilize this information in a meaningful way. In many 

cases, depending on what type of data is available and what the aim of the analysis of the data 

is, it may be difficult to identify and thoroughly comprehend the process that explains the data 

at hand. Instead, if the possibility exists to detect and uncover certain patterns in the data, one 

might be able to construct a sufficient approximation of some part of this process. Thereby, 

using this approximation, it is possible to attain increased understanding of the underlying 

process that generates the data and predictions can be made. This uncovering of patterns is in 

essence what the field of machine learning is about (Alpaydin, 2010, Chapter 1).  

Machine learning is a scientific field with origins in computer science, artificial intelligence 

and statistics. The main idea within the field is to uncover the mechanisms by which an 

explicit task is performed. In other words, a computer is to learn how to correctly perform a 

specified assignment by identifying certain patterns present in a set of data (Von Luxburg & 

Schölkopf, 2008). Machine learning is applied in a wide array of areas such as pattern and 

speech recognizing tasks, analysis of consumer behaviour, predicting credit losses and in 

bioinformatics (Alpaydin, 2010, Chapter 1). 

Statistical learning theory is a subfield in statistics that has emerged from the field of machine 

learning (James, Witten, Hastie & Tibshirani, 2013, Chapter 1). As in the case of machine 

learning, the term learning here, in short, concerns the ability to identify and make sense of 

patterns and trends in large amounts of data. The majority of the statistical learning problems 

can be categorized into two groups; either supervised or unsupervised learning (Hastie, 

Tibshirani & Friedman, 2009, Chapter 1).   
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In supervised learning the aim is to use a set of variables in order to predict an outcome. The 

term supervised comes from fact that the outcome variable acts as a supervisor that oversees 

the learning process of how future outcomes are predicted (Camm, Cochran, Fry, Ohlmann & 

Anderson, 2014, Chapter 6). To be more specific, if an outcome is presented for each 

variable, then the supervisor states whether or not the outcome is correct (Hastie et al., 2009, 

Chapter 14). Moving over to the case of the unsupervised learning methods, these techniques 

are not employed to predict an outcome. Instead, they are only used to uncover and identify 

existing patterns and relationships in the data (Camm et al., 2014, Chapter 6). As no outcome 

is predicted, there exists no supervisor that determines whether an outcome is correct or not, 

hence the name unsupervised learning.  

 

Supervised learning techniques are increasingly being employed within the fields of medicine 

and bioinformatics. The ability to extract useful information and knowledge from large 

amounts of data makes the techniques useful when dealing with, for example, the classifying 

of genes or cancer detection using DNA and gene expression microarrays (see for example  

Furey et al., 2000; Brown et al., 2000; Statnikov, Wang & Aliferis, 2008). A common 

characteristic of microarray data sets is that they usually consist of many variables and 

relatively few observations (Bennett & Campbell, 2000). There are supervised learning 

techniques especially suitable for analysing data sets with the above-mentioned traits, such as 

the methods known as the random forest and the support vector machine (Díaz-Uriarte & 

Andrés, 2006; Bennett & Campbell, 2000). 

 

In this bachelor’s thesis, the application of supervised learning techniques is further explored. 

More specifically, two of these methods are employed and compared, namely the just 

mentioned random forest and the support vector machine. The aim is to investigate how these 

methods perform when applied to a specific data set consisting of few observations and many 

variables.  The data set in question has not been previously analysed using these particular 

techniques and is provided by the company Pharma Consulting Group Clinical Services. 

 

The rest of this thesis is organized in the following way. In the remainder of section 1, the 

research problem and the aim of the thesis are presented as well as a short presentation of the 

company Pharma Consulting Group Clinical Services. This is followed by a discussion 

regarding the limitations of the thesis and motivation behind the choice of methods. Section 2 

includes a review of relevant literature and in section 3, the nature of the study as well as the 
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data set are discussed. Section 4 covers supervised and unsupervised learning with emphasis 

put on the random forest and the support vector machine. In section 5, the results of this study 

are displayed, while in section 6 the results are discussed. Lastly, in section 7, the conclusions 

of this thesis are presented and future research options are considered.   

1.1 Research problem and aim of the thesis 

On behalf of Pharma Consulting Group Clinical Services, the aim of this bachelor’s thesis is 

to analyse a specific data set they have provided. The main objective is to use the two 

supervised learning techniques, the random forest and the support vector machine, in order to 

classify the objects of the data set into either of two different classes. Thereafter, the 

classification performances of these two techniques are evaluated and compared. However, as 

the data provided only includes a set of objects with no information regarding any potential 

class label of these objects, supervised learning methods cannot be applied. A solution is to 

first use an unsupervised learning method to identify any existent structures and patterns in 

the data. In this case, the k-means clustering technique is chosen in order to detect any 

patterns and divide the data into two classes. Once this is achieved, the random forest and 

support vector machine methods are applicable and are used to classify the objects into the 

two classes determined by the k-means clustering. In this thesis it is determined which model 

performs best, within the context of the provided data, and through estimations of feature 

importance (also referred to as variable importance) a final parsimonious model is chosen. 

The goal of this bachelor’s thesis can thereby be summarized by the following research 

questions: 

 How successful are the two supervised learning techniques, the random forest and the 

support vector machine, in the case of classifying the specific data set provided and 

how do the two methods compare to each other? 

 In regards to which method performs the best, based on feature importance measures, 

how does a final parsimonious model perform? 

1.2 Pharma Consulting Group Clinical Services 

Pharma Consulting Group Clinical Services laid the foundations for this thesis by providing 

the data set and expressing an interest in having the data analysed using supervised learning 

methods. The company is a contract research organization (CRO) founded and headquartered 

in Uppsala, Sweden. Their services range from consultancy and assistance within the areas of 

clinical trials to facilitating the complete trial process. More concretely, the company provides 
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services within project management, clinical operations, biometrics, medical writing, error 

detection and correction (EDC) and auditing and validation (Pharma Consulting Group, 

2015).  

1.3 Motivation of method and limitations 

The two supervised learning techniques, the random forest and the support vector machine, 

are the main focus of this thesis. There are several supervised learning techniques, besides the 

random forest and the support vector machine, which can be used as classification tools such 

as neural networks and nearest neighbour classifiers (Cunningham, Cord & Delany, 2008). 

However, in this case, only the random forest and the support vector machine are applied. 

There are several reasons for this. One is that these techniques have shown to be both 

powerful and accurate tools for machine learning and data mining (Von Luxburg & 

Schölkopf, 2008). Also, they have been applied within the fields of medicine and 

bioinformatics with successful results (see for example Bennet & Campbell, 2000; Díaz-

Uriarte & Andrés, 2006; Cutler & Stevens, 2006; Jia, Hu & Sun, 2013). Furthermore they 

both perform well in situations when working with data where there are more variables than 

observations (Díaz-Uriarte & Andrés, 2006; Bennett & Campbell, 2000). Therefore these two 

methods appear suited to the task at hand as the forthcoming results supplied in this 

bachelor’s thesis are aimed at being as accurate as possible. Furthermore, the source 

providing the data set used was interested in how these two techniques, amongst others, 

would perform in comparison to each other.  

 
A section regarding the unsupervised method k-means clustering is included. The reason is 

that the application of an unsupervised learning method is, in this case, used in order to enable 

the use of the supervised methods. However, this section is considerably shorter and less 

detailed than the sections about the supervised learning as the main objective of the thesis is 

to apply and compare the supervised learning methods. The unsupervised learning method is 

only used in order to form two classes based on the multivariate structure present in the data, 

rather than just randomly simulating a binary dependent variable. The choice of the k-means 

clustering technique is due to its simplicity and suitability for defining clusters in an 

unlabelled data set (Hastie et al., 2009, Chapter 13). Moreover, as the aim is to classify a data 

set into either of two groups, only the random forest and the support vector machine for 

binary classification is addressed. Therefore, neither regression nor novelty/outlier detection 

is covered in this thesis. Additionally, multiclass classifications are also overlooked.  
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2. Literature review 

As previously brought to light, the random forest and the support vector machine methods 

employed in this thesis are in increasing manner being applied in cases within several 

different scientific fields, bioinformatics being one. One reason is their suitability regarding 

data sets consisting of relatively few observations and many variables (Díaz-Uriarte & 

Andrés, 2006; Bennett & Campbell, 2000), where examples of such sets are microarrays 

(Eckardt, 2004). Microarray technology enables the analysis of thousands of parameters 

simultaneously in a single experiment (Templin et al, 2002). Microarrays are often used to 

study expression levels of genes in an organism. These arrays are usually a glass slide where, 

at specific positions called spots, DNA molecules are located in an ordered fashion. Each spot 

can contain millions of molecules and each microarray can have thousands of spots (Babu, 

2004). 

 

Another reason for the increasing popularity of these methods is that they entail 

comparatively low computational load and are associated with relatively moderate 

computational complexity (Breiman, 2001; Hastie et al., 2009, Chapter 12; Karatzoglou, 

Meyer & Hornik, 2006). Below follows a brief presentation of a few examples of research 

papers where the two are compared and applied.  

 

For instance, Meyer, Leish and Hornik (2003) compare the support vector machine to 16 

other classification methods and nine regression methods, including the random forest 

method. The performance measures used were the classification error for classification and 

the mean squared error for the regression. In the case of the classification, 21 data sets were 

used while nine were used in the regression case. Looking at the simulation procedure, from 

each data set 100 training sets and 100 test sets were generated. The authors’ results indicate 

that, even though they did not rank in the top in all data sets, the support vector machines 

performed strongly overall. In the case of the classification, the results were generally good 

while in the case of the regression, neural networks, projection pursuit regression and the 

random forest were found to perform better.    

 

In the paper by Statnikov, Wang and Aliferis (2008) the classification prowess of the support 

vector machine and the random forest is compared. The aim is to find which of these methods 
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perform best when it comes to microarray-based cancer classification. In the experiment, 22 

diagnostic and prognostic data sets are used. The results indicate that the support vector 

machine performs far better than the random forest, both on average and in most of the 

microarray data sets.       

 

In addition, Carauna and Niculescu-Mizil (2006) perform empirical comparisons between ten 

supervised learning methods including the support vector machine and the random forest. The 

authors use eight performance metrics divided into the three groups: threshold metrics, rank 

metrics and probability metrics. The algorithms are compared on 11 binary classifications 

problems consisting of 9366 to 40222 observations where for each test, 5000 training 

observations are randomly selected and the rest are used as a final test set. The results indicate 

that before calibration, bagged trees, the random forest and neural nets perform best on 

average when evaluated by all performance metrics and classification problems. After 

calibration, the support vector machine is on the same level as neural nets, just behind boosted 

trees, the random forest and bagged trees.       

 

One example where the support vector machine is applied is in the paper by Furey et al. 

(2000). The authors develop a method using support vector machines in order to analyse 

thousands of gene expression measurements generated by DNA microarray experiments. 

Tissue samples are classified and mislabelled or dubious tissue results are investigated. The 

microarray expression experiments are conducted using a previously unpublished data set 

consisting of 97802 DNA clones for 31 tissue samples where the samples are cancerous 

ovarian tissue, normal ovarian tissue or normal non-ovarian tissue. In order to show generality 

of the method, the experiments are also performed using previously published data sets. The 

results the authors present demonstrate that the support vector machines can classify tissue 

and cell types, however other techniques such as the perceptron algorithm perform 

comparably. Additionally, the support vector machine can be used to identify mislabelled 

data.  

 

In a paper by El-Naqa, Yang, Wernick, Galatsanos and Nishikawa (2002) it is investigated 

how the support vector machine performs as a tool to detect microcalcification clusters in 

digital mammograms. The aim is to use the support vector machine as a classifier to test if a 

microcalcification is present in a mammogram or not. The classifier is developed using 76 

clinical mammograms containing 1120 microcalcifications, where half the data set is used as 
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training data and the rest as test data. A ten-fold cross-validation was used for finding a 

suitable support vector machine classifier. Thereafter, its performance was compared to other 

methods commonly used for microcalcification detection. In this case, the other methods were 

IDT, the DoG method, a WD-based method and a TMNN method. The authors’ results show 

that the support vector machine performed better than the other methods and indicate that it is 

a useful tool for object detection in medical imaging.  

 

In a research paper by Díaz-Uriarte and De Andres (2006) the random forest technique is 

evaluated when used for classification of microarray data and variable selection (in this case 

gene selection). Generally, in gene expression studies, researchers try to detect the smallest 

possible set of genes while upholding good predictive performances. Nine microarray data 

sets are used as well as simulated data and the results of the random forest are compared to 

other methods used for classification and gene selection, including the linear kernel support 

vector machine. The results show, both when using the microarrays and the simulated data, 

that the random forest performs similarly to the other methods when it comes to classification. 

In the case of gene selection, the random forest often picks a smaller set of genes compared to 

other variable selection methods whilst keeping desired predictive performance. The authors 

conclude that due to the good performance of the random forest, the method is suitable when 

it comes the classification and variable selection of microarray data.    

 

The above mentioned are but a few of the numerous examples of research papers where 

results show that the two methods perform well, both in the cases of classification and 

regression. In addition, to summarize, when compared, both with each other and with other 

methods, the support vector machine and the random forest generally perform comparably 

well. 

 

In the light of the several promising prior results of the applications of the support vector 

machine and the random forest methods, expectations are high that they both will perform 

well as classifiers of the particular data set used in this thesis. However, which of them that is 

the superior classifier in this regard is impossible to form an opinion about, due to their, in 

general, similar capabilities and comparable classification prowess. 
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3. Nature of the study and the data set 

This is an empirical study in the sense that it is based on real-world data. However, as many 

of the details regarding the data set are unknown, no results regarding the actual meaning of 

neither the variables nor the classifications are presented. As a consequence, any conclusions 

drawn solely concern the performance of the statistical methods employed. As mentioned 

earlier, the emphasis is therefore on comparing the classification prowess of the two 

supervised learning methods albeit the application is on real-world data. 

3.1 Data set 

The original data set provided consists of 33 observations and 92 different variables. The 

variables are protein biomarkers, whose quantities or levels have been determined in the 33 

observations. The values of the levels have all been transformed to the log2-scale, hence, they 

are continuous numerical variables measured on the same scale. The reason for using the log2 

– scale has not been disclosed. However, usually, in the case of microarrays, the data are 

transformed into the log2 – scale as the magnitude of the range of the data is decreased and the 

data generally becomes more normally distributed. Furthermore, interpreting the log2 – scale 

is straightforward; a one-unit change in the log2 – scale corresponds to a doubling in the 

original scale (Ballman, 2008). The data set used in this thesis is not exactly a microarray, 

however, the reasoning behind the use of the log2 – scale should still be applicable.  

 

Further details regarding the data, such as for example selection criteria and selection method 

of the observations as well as the choice of protein biomarkers, are unknown.  

 

The data set used in this thesis only includes 89 variables, instead of the original 92. The 

reason for this is that, in the cases of the three omitted ones, the protein levels present in the 

observations were so low that they were immeasurable. Therefore these three variables are 

excluded from the analysis.  

3.2 Data processing 

In the case of the support vector machine, the features of each input object have to be 

represented as a vector of real numbers, meaning that any categorical ones have to somehow 

be changed into numerical data. It is also of essence to scale the variables appropriately. 

Otherwise, there is a risk that if some of an object’s attributes are measured in large numerical 

ranges and some are not, the former might dominate the latter. Examples of recommended 



  

 11 

ranges to linearly scale to are [0, 1] or [−1,+1] (Hsu, Chang & Lin, 2003). Therefore, the 

decision was made to scale the log2 – scaled numerical quantities of the variables to [0, 1]. 

 

When implementing the random forest algorithms it is important that the numerical variables 

are measured on the same scale or are transformed accordingly. Also, if using categorical 

predictors the variable importance measures are biased for variables with more categories 

(Breiman, 2001).  

 

As mentioned, the variables in this thesis are appropriately measured on the same scale and 

are numerical.  Hence the data set is, after being scaled to [0, 1] and the omission of the three 

immeasurable variables, well suited for the application of both supervised learning methods 

and there is no need for any further adjustments and transformations. Using the same scale 

also enables reliable comparisons.  
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4. Methodology 

In this section an overview of the statistical methods used in this thesis is presented. First of 

all, a brief description of the concepts of supervised learning, unsupervised learning, the k-

means clustering and classification is given. This is followed by a more thorough presentation 

of the random forest and the support vector machine, the two supervised learning methods 

predominantly used and compared in this thesis. Lastly, parts regarding the reasoning behind 

the choice of method for classifier optimization, the statistical software used, as well as the 

setup of the algorithms, are included. 

4.1 Supervised learning  

When dealing with supervised learning problems one has a set of measured inputs, which 

have some sort of effect on one or more outputs. In other words, the input variables are used 

to predict the output. The inputs are sometimes referred to as predictors or independent 

variables while outputs are also called responses or dependent variables. Input variables can 

either be qualitative, quantitative or both. Depending on the distinction between input 

variables one uses different methods for prediction. The output variables can either be 

qualitative or quantitative. Qualitative variables are also called categorical, discrete or factors. 

When predicting quantitative output variables, the term used is regression while prediction of 

qualitative outputs is called classification (Hastie et al., 2009, Chapter 2). 

4.1.1 Classification 

One of the most prominent and commonly studied tasks within supervised learning is the 

ability to perform correct classifications (Von Luxburg & Schölkopf, 2008). In classification, 

within supervised learning, there is a division made between what is known as the training 

data and test data. The training data consist of objects, also called instances, where each 

object contains a class label and several features. The class label is also known as the target 

value or category and the features are known as attributes or observed variables. These 

aspects of the training data are known and, based on them, a model is constructed that acts as 

a classifier. When a satisfactory classifier has been created it used to classify the test data. The 

features of the objects of the test data are known and based on these features, the classifier is 

used to predict the class labels of these objects (Hsu et al., 2003).  

In order to illustrate more specifically, consider the case of the basic binary classification. The 

training data consist of two spaces, the input space X and the output space Y. The input space 

consists of objects or instances while in the output space one has labels or categories. The 
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purpose is to find a functional relationship between the spaces X and Y i.e one wants to 

classify objects/instances into fixed categories/labels. This is achieved by the use of an 

algorithm that is trained in the sense that, in the training data, the objects are paired with a 

corresponding category. By this pairing, the algorithm “learns” which objects belong to which 

category with the aim to discover a way to correctly map the input space into the output 

space, with as high accuracy as possible. This mapping is then applied to the test data (Von 

Luxburg & Schölkopf, 2008).  

4.2 Unsupervised learning 

Unsupervised learning techniques are applied when solely the input objects are known and 

there is no information regarding any output. The aim is to identify if there is some sort of a 

meaningful structure present among the input objects and thereafter group them (Von 

Luxburg & Schölkopf, 2008). 

4.2.1 K-means clustering 

The k-means clustering method is used to determine clusters in an unlabelled data set (Hastie 

et al., 2009, Chapter 13). It is a partitioning method that minimizes within-cluster variation to 

create homogenous clusters. The first step is to decide the wanted number of clusters. 

Subsequently, the algorithm decides a centre of each cluster and the Euclidian distances 

between each object and the cluster centres is calculated. An object is allocated to the cluster 

centre that it is closest to. Then, by calculating the mean values of the objects of each cluster, 

the clusters’ centroids are computed and new centres are formed. Then the objects are 

reallocated to the new cluster centre they are closest to. This process is repeated until the 

objects do not change clusters anymore (or some predetermined number of iterations is 

reached).  The objects can change cluster belonging during the clustering process, which is 

contrary to hierarchical methods. Therefore k-means clustering is known as a non-hierarchical 

method (Sarstedt & Mooi, 2014, Chapter 9).  

 

Compared to hierarchical methods, k-means clustering is less affected by outliers and 

irrelevant clustering variables. It is suitable to be applied to large data sets, as the method is 

less computationally challenging than hierarchical methods. The k-means clustering method 

is recommended to use on interval or ratio scaled data, although it can be used on ordinal data 

with the caveat that there might be some distortions (Sarstedt & Mooi, 2014, Chapter 9), thus 

the k-means clustering is suitable for the purpose of this thesis. 
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4.3 Terminology 

As made clear in previous sections, there are several different terms used referring to the same 

thing within the learning literature.  In order to simplify matters, from here on, the data 

consist of objects or observations. The input variables or independent variables are referred to 

as features and the output variables or dependent variables, as being qualitative, are denoted 

as class or class label. Feature importance and feature selection, used in the context of 

constructing a parsimonious model, are the terms used in this thesis. Important to note is that 

these concepts are also frequently referred to as variable importance and variable selection.  

4.4 The random forest method 

The random forest learning method is credited to Breiman in his influential article Random 

forests (2001). Its theoretical background rests in the concept of bagging and decision trees. 

The random forest is an ensemble method, which is a learning algorithm that constructs a set 

of individual classifiers, also referred to as base learners. The random forest classifies the 

observations based on how the majority of these base learners classify. This is commonly 

referred to as voting as the observations are classified based on which decision or vote the 

majority of the base learners make when classifying (Biau, Devroye & Lugosi, 2008). The 

classifiers used in the random forest method are classification and regression trees (CART) 

credited to Breiman amongst others (Breiman, Friedman, Olshen & Stone, 1984). Before the 

theoretical concepts of the random forest are treated, the CART method needs to be 

understood in the context of the random forest. As the main interest in this thesis is binary 

classification, the focus is on classification trees. 

4.4.1 CART 

CART is a hierarchical method which recursively splits the sample space into mutually 

exclusive subspaces that are more homogenous with respect to the class label (the dependent 

variable) than the initial sample space (Breiman et al. 1984, Chapter 2). Lets consider a 

simple example to illustrate this process. Assume there is a training set with 15 observations 

in a two-dimensional input space. Denote 𝒙𝑖 = (𝑥𝑖1,𝑥𝑖2) as the feature vector, with a binary 

class variable. In figure 1, a scatter plot of the training set is illustrated, where the two 

possible classes are displayed as squares and circles. 
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 Figure 1. Scatterplot of the training set where squares and 

circles denote class belonging. 

 

Through recursive binary splitting, a classification tree is constructed, which in full explains 

the partitioning of figure 1. Figure 2 shows the classification tree along with the illustration of 

how the space in figure 1 is divided.  

 

The CART algorithm is a so-called greedy algorithm where all the training data are included 

in the first step, which is the root node (Friedman et al. 2001). The upper oval in figure 2 is 

the root node containing all observations. The next step is to consider a good split. Looking at 

equation 1,  

 

𝑅1(𝑗, 𝑠) = {𝑋|𝑋𝑗 ≤ 𝑏} 𝑎𝑛𝑑 𝑅2(𝑗, 𝑠) = {𝑋|𝑋𝑗 > 𝑏} (1) 

 

consider a splitting feature 𝑗 and split point 𝑏. In figure 2, to the left, in step 1 the splitting 

feature is 𝑋𝑗 = 𝑋2 and the split point is 𝑏 on the x-axis. The first split divides the data by a 

vertical line and two sub-regions, 𝑅1 and 𝑅2, are formed. After another split, this time 

horizontal, two new regions denoted 𝑅1 and 𝑅2, are created as displayed in figure 2. Each 

splitting of the data forms two new 𝑅1 and 𝑅2regions, which become more homogenous with 

respect to the class belonging compared to the regions formed in previous splits. 
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Figure 2. Classification tree and partitioned input space (adopted from Hastie et al., 2009;Chapter 9). 

 

The first split, or partitioning, of the subspace is illustrated as two branches going from the 

root node. In the decision tree, to the left, the cases where 𝑋2 > 𝑏  are seen, which is an 

internal node and to the right, 𝑋2 ≤ 𝑏, which is a leaf node. The terminology of CART is that 

when a split is made from a node to two others, the resulting nodes from the split are referred 

to as child nodes whilst the node they were created from is referred to as the parent node. An 

internal node is one where not all observations respond to a single value of the classification 

value and a leaf node is one where all the observations correspond to a single classification 

value. Then the same is done for the subspace to the right of 𝑏 where the splitting feature is 

𝑋1 on point 𝑎. The resulting tree has three leaf nodes and fully describes the partitioning of 

the sample space. Note that often one does not continue partitioning until the tree only 

contains pure leaf nodes but rather a stopping rule is applied where one stops splitting the 

nodes when they contain a certain proportion of the sample (Caetano, Aires-de-Sousa, 

Daszykowski & Vander Heyden, 2005). In this straightforward example no algorithm was 

really needed to identify a good way to split the data in order to classify the observations. A 

cluster of squares can be seen in the upper right corner in figure 1, which is fully captured by 

the classification tree in figure 2. In reality some theory is needed concerning optimal splitting 

at each node of the tree. When constructing a classification tree this is quantified by an 

impurity measurement, which measures homogeneity in a node with respect to the class. The 

best split is found when the impurity function between the parent and two child nodes is 

minimized (Caetano et. al, 2005). The goodness of the split can be evaluated using equation 2 

 

∆𝑖(𝑠, 𝑡) = 𝑖(𝑡) − (𝑃𝐿𝑖(𝑡𝐿)+ 𝑃𝑅𝑖(𝑡𝑅)) 

 

(2) 
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where 𝑠 is the candidate split of a feature 𝑥, 𝑡 the parent node, 𝑖(𝑡)is the impurity of the node 

𝑡, 𝑝𝐿  and 𝑝𝑅  the proportions of objects going to the left or right child nodes, 𝑡𝐿 and 𝑡𝑅 , and 

𝑖(𝑡𝐿), 𝑖(𝑡𝑅) their respective impurities (Breiman et al., 1984, Chapter 4).  

 

Consider node 𝑚, representing a region 𝑅𝑚 with 𝑁𝑚 observations, let  

𝑝̂𝑚𝑘 =
1

𝑁𝑚
∑ 𝐼(𝑦𝑖 = 𝑘)

𝑥𝑖∈𝑅𝑚

 

be the proportion of class 𝑘 observations in node 𝑚. Observations in node 𝑚 are then 

classified to the majority class in that node. In the context of classification and the random 

forest, the standard impurity measurement is the Gini index (Ishwaran & Kogalur, 2015; 

Breiman & Cutler, 2004). In the below formula, lower values denote lesser impurity in the 

node while higher denote more impurity. 

 

Gini index: 
∑ 𝑝̂

𝑚𝑘
𝑘≠𝑘′

𝑝̂
𝑚𝑘′

=∑ 𝑝̂
𝑚𝑘

𝐾

𝑘=1

(1 − 𝑝̂
𝑚𝑘
) 

 

4.4.2 The random forest algorithms 

A formal definition of the random forest is that it is a classifier consisting of a collection of 

tree structured classifiers {ℎ(𝒙, Θk),𝑘 = 1,… , 𝐾} where Θk  are independent and identically 

distributed random vectors, generated for the 𝑘th tree by the random feature selection for the 

splits. Finally each of the 𝐾 trees cast a vote (a vote should in this context simply be 

understood as how a particular predictor in the ensemble classifies an observation) for the 

most popular class at input 𝒙, where 𝒙 is a feature vector (Breiman, 2001). The random forest, 

on one hand uses bootstrap aggregating (bagging) and on the other hand uses random feature 

selection when building the tree, meaning that a number of features (lower than the total 

amount of features) is randomly chosen at each split in the construction process. The latter is 

done to reduce the correlation between the decision trees (Díaz-Uriarte et al. 2006). Bagging 

is proven to be very successful when aggregating unstable learners such as CART. The term 

unstable refers to the hierarchical nature of CART, where changes early in the split decision 

lead to very different trees (Breiman, 1996). The reasoning for lowering the correlation 

between the trees is the reduction of variance when summing uncorrelated unbiased predictors 

(Breiman, 2001).  
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Next in this section a description of the bagging concept is presented. Assume there is a 

training set 𝐿 = {(𝑦𝑛, 𝒙𝑛}, 𝑛 = 1,… , 𝑁}, where 𝒙𝑛 is a feature vector. Furthermore a predictor 

𝜑(𝒙, 𝐿) is needed. Now assume a situation where instead of only having 𝐿, there are {𝐿(𝐵)} 

bootstrap samples following the same underlying distribution as 𝐿. An ensemble method, 

when working with sorting observations to a class 𝑗 ∈ {1, … , 𝐽}, would then consist of 

forming 𝐵 predictors 𝜑(𝒙,𝐿(𝐵)) and aggregate by letting them vote to form 𝜑𝐵  (Breiman, 

1996). The {𝐿(𝐵)} sets are data sets drawn from the original training set, with replacement, 

with N cases in each. This means that each (𝑦𝑛,𝒙𝑛) may appear several times or not at all in 

any particular 𝐿(𝐵). It is also satisfying that the {𝐿(𝐵)} sets follow the same underlying 

distribution as 𝐿 no matter what that is (Efron & Tibshirani, 1994; Chapter 3). In other words 

the random forest is not associated with any assumptions concerning distribution, an attractive 

feature of the method when working with large data sets containing many features. An 

important notion of this method is the “out-of-bag” data, which are observations that do not 

make it into a particular 𝐿(𝐵). This “out-of-bag” data forms a natural test set for the tree that is 

fitted to that bootstrap sample (Cutler & Stevens, 2006). In each bootstrap training set about 

one-third of the observations are not included, and there is empirical evidence that “out-of-

bag” estimates is as accurate as using a test sample of the same size as the training set. With 

the random forest it is not necessary to set aside a test data sample (Breiman, 2001). 

 

What differentiates the random forest from simply bagging several trees is the randomization 

at each split in every tree. At each node a small group of input features, 𝑚 < 𝑝, where 𝑝 is the 

total number of features, are selected at random and split where 𝑚 is held constant throughout 

the whole random forest procedure (Cutler et. al, 2007). The most common value is 𝑚 ≈ √𝑝, 

which is the standard value in the randomForest package in R (Breiman & Cutler, n.d).  The 

rationale behind this process is that if all features are considered possible candidates at each 

split, the similarity of the trees increases as only a few features are used for splitting, due to 

differences in feature importance for the algorithm. When instead using a smaller amount of 

randomly selected features, the correlation between the trees is reduced and therefore, so is 

the variance of the estimates (James et al., 2013, Chapter 8). If simply choosing 𝑚 = 𝑝, there 

is bagging of the decision trees.  
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Another attractive feature of the random forest is that estimates of feature importance are 

extracted from the algorithm (Breiman and Cutler, n.d). These estimations can be used to 

create a more parsimonious model.  

 

This section is concluded by outlining the procedure more specifically: 

1. Create bootstrap samples by randomly drawing observations from the original set with 

replacement. 

2. Grow classification trees as outlined in section 4.5.2 for each bootstrap with randomly 

selected features tried at each split. 

3. Classify observations by votes from each tree. 

In this section, the foundations and basic workings of the random forest have been described. 

This is one of the two supervised learning methods that are being applied and compared in 

this thesis. The following section describes the fundamentals of the other supervised learning 

method, the support vector machine.  

4.5 The support vector machine  

To start with, in this section an overview and the general idea of the support vector machine is 

presented. Then, to illustrate the basic attributes of the support vector machine, a theoretical 

review is conducted using figures and equations with accompanying text (figures are adopted 

from Hastie et al., 2009, Chapter 12; James et al., 2013, Chapter 9; Bennett & Campbell, 2000 

unless specified differently). The aim is to demonstrate the fundamental properties of the 

support vector machine, its applications and usefulness. 

4.5.1 Background and overview 

The support vector machine was developed in the 1990s and was originally designed to 

handle binary classification (Cortes & Vapnik 1995). It is a supervised statistical learning 

technique that creates input-output mapping functions from a labelled training data set. Since 

the technique was introduced it has been developed and extended, in addition to binary 

classification functions, to also handle multi-classification and regression functions. The 

support vector machines, besides being mathematically solid, are considered to perform very 

well when applied to real-world cases and are considered to be one of the best tools for 

machine learning and data mining (Wang, 2005, Chapter 1).  

In essence, the support vector machine can be divided into three parts, depending on the data 

at hand. The optimal hyperplane that perfectly classifies the data into two groups is the most 
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basic form. This can only be applied to data sets where the classes can be linearly separated 

and is also known as the hard margin support vector machine or the maximal margin 

hyperplane. The soft margin hyperplane, also called the support vector classifier, is an 

extension that allows for some misclassification. The support vector classifier can in turn be 

extended to accommodate non-linear class boundaries, which is what is typically referred to 

as the support vector machine (Cortes & Vapnik, 1995; Hu & Kim, 2012; Hastie et al., 2009, 

Chapter 12). 

4.5.2 Theoretical illustration of support vector binary classification  

As previously mentioned, when classifying within supervised learning, the distinction is made 

between the known training data and the unknown test data. The training data consist of 

objects, where each object contains a class label and several features. Based on the features of 

the objects, they belong to a certain known class (Hsu et al., 2003). In order to classify the 

object into the correct class, a classifier mechanism needs to be constructed. In this case, 

using the training data, a support vector machine model is developed to perform the 

classification. When the support vector machine classifier has been trained (on the training 

data), the goal is to use it to predict which class the observations in the test data belong to.  

4.5.3 The hard margin support vector machine or maximal margin classifier 

The maximal margin classifier is the simplest support vector machine classifier in the sense 

that it is a linear classifier that is used when the data can be divided perfectly into two classes 

(James et al., 2013, Chapter 9).   

 

In order to demonstrate, consider a set of training data consisting of n training observations in 

a p-dimensional space. Then the np-matrix X is as follows: 

 

𝑥1 =

(

 

𝑥11
..
.
𝑥1𝑝)

 ,𝑥2 =

(

 

𝑥21
..
.
𝑥2𝑝)

 ,…… , 𝑥𝑛 =

(

 

𝑥𝑛1
..
.
𝑥𝑛𝑝)

  

 

In the binary classification case, the training observations can be classified into either of two 

known different classes, commonly denoted as -1 and 1. Thereby the classes can be expressed 

as (𝑦1 , … , 𝑦𝑛) ∈ {−1,1}. Then there exists a classifier in the form of a hyperplane that 

separates the observations according to class belonging (James et al., 2013, Chapter 9). A 
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separating hyperplane has the attribute that: 

𝑦𝑖(𝛽0 + 𝛽1𝑥𝑖1+. . . + 𝛽𝑝𝑥𝑖𝑝) > 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … , 𝑛   

where 𝛽0, 𝛽1, . . . , 𝛽𝑝 are the coefficients  of the hyperplane and 𝑦𝑖 ∈ {−1,1} 

 

 

Figure 3. Classification of training objects. 

As seen in figure 3, the training observations on one side of the hyperplane belong to one 

class while those on the other side belong to the other class (either class -1 or class 1, 

represented by the blue circles and green squares in the figure). The separating hyperplane in 

figure 3 acts as a linear decision boundary. As seen in figure 4, there exists not just one 

hyperplane that divides the data, between the observations from the two classes one can fit an 

infinite number of possible hyperplanes (James et al., 2013, Chapter 9).  

 

 

Figure 4. Multiple possible separating hyperplanes. 

Out of all possible ones, a hyperplane that acts as a successful classifier is the maximal 

margin hyperplane, which is found by solving the following optimization problem: 
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Maximize 𝑀 

Such that 

∑𝛽𝑗
2 = 1

𝑝

𝑗=1

 

𝑦𝑖,(𝛽0 + 𝛽1𝑥𝑖1+. . . + 𝛽𝑝𝑥𝑖𝑝) ≥ 𝑀, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,… , 𝑛 

 

where 𝛽0, 𝛽1, . . . , 𝛽𝑝 are the coefficients of the maximal margin hyperplane. The constraints 

guarantee that every test object is located on the correct side of the hyperplane at distance M 

or further away, where 𝑀 is the margin from the hyperplane (James et al., 2013, Chapter 9). 

As M is the margin from one side of the hyperplane, the total margin is 2M (Hastie et al., 

2009, Chapter 12). 

When the maximal margin hyperplane is found it can be used to classify the test data by 

predicting which class a test object belongs to. An observation of the test data is a p-vector of 

observed features 𝑥∗ = (𝑥1
∗…𝑥𝑝

∗)𝑇 belonging to either class -1 or class 1. A test object 𝑥∗, is 

classified into class -1 if the sign of 𝑓(𝑥∗) = 𝛽0 + 𝛽1𝑥1
∗+. . . + 𝛽𝑝𝑥𝑝

∗ is negative and into class 

1 if the sign is positive (James et al., 2013, Chapter 9).  

  

The maximal margin hyperplane is the hyperplane that has the farthest minimum distance to 

the observations, which is illustrated in figure 5. The observations that have the farthest 

minimum distance from this hyperplane are called support vectors. Their positions are 

highlighted by the two dotted lines seen in figure 5, which also signify the width of the 

margin. The lines perpendicular to the hyperplane emphasize the distance between each 

support vector and the hyperplane. If the support vectors are moved, the position of the 

hyperplane will change. This is contrary to what happens when moving any other 

observations, as there then is no effect on the position of the hyperplane. The support vectors 

are hence the points that decide the position of the hyperplane (James et al., 2013, Chapter 9). 
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Figure 5. Maximal margin hyperplane. 

The distance of the observations from the hyperplane can be seen as a measure of how much 

certainty there is in the classification. In the training data, if the support vectors are far from 

the hyperplane, then there is a large margin, and, ideally, the margin also will be large on the 

test data, leading to the test observations being classified correctly. The further the test object 

𝑥∗ is located from the hyperplane, the more certain the classification is.  On the other hand, if 

the support vectors are close to the hyperplane, the margin will be smaller. This leads to less 

confidence concerning the correctness of the classification. Using the maximal margin 

classifier is generally a successful way to classify when it is possible to find a separating 

hyperplane, though, when p is large there might be problems with overfitting the data (James 

et al., 2013, Chapter 9).  

 

Often, however, there does not exist such a hyperplane that exactly separates the two classes. 

Then there is no solution to the maximal margin hyperplane optimization problem with 𝑀 >

0. In such cases, a hyperplane that nearly separates the classes can be used, which is referred 

to as using a soft margin or the support vector classifier (James et al., 2013, Chapter 9).  

4.5.4 The soft margin support vector machine or the support vector classifier 

The support vector classifier is an extension of the maximal margin classifier that can be used 

when it is not possible or desirable to separate the classes exactly. At times, a classifier based 

on a separating hyperplane might only have a tiny margin. In such a case, the confidence to 

correctly predict class is lower and the sensitivity to changes in individual observations is 

increased. A solution is to use a support vector classifier, which does not classify perfectly as 

it allows for training observations either to be on the wrong side of the margin or on the 

wrong side of the hyperplane. Hence, using a support vector classifier leads to increased 

robustness to individual observations and improved classification of the majority of the 
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training observations. Solving the following optimization problem gives the support vector 

classifier:  

Maximize 𝑀 

Such that 

∑𝛽𝑗
2 = 1

𝑝

𝑗=1

 

𝑦𝑖,(𝛽0 +𝛽1𝑥𝑖1+. . . + 𝛽𝑝𝑥𝑖𝑝)≥ 𝑀(1− 𝜀𝑖), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1, … , 𝑛 

Where 𝜀𝑖 ≥ 0 and ∑ 𝜀𝑖
𝑛
𝑖=1 ≤ 𝐶 

 

and 𝜀1, … . 𝜀𝑛 are called the slack variables that permit individual observations to be located on 

the wrong side of the hyperplane or margin. When 𝜀𝑖 = 0, then the ith test object is on the 

correct side of the hyperplane. In the case of 𝜀𝑖 > 0, the object is on the wrong side of the 

margin and when 𝜀𝑖 > 1, the object is on the wrong side of the hyperplane. The parameter 𝐶 

is usually referred to as the tuning parameter. When 𝐶 is equal to 0, then 𝜀𝑖 =. . . = 𝜀𝑛 = 0 and 

the classifier is identical to the maximal margin hyperplane (James et al., 2013, Chapter 9). 

 

If the value of 𝐶 is greater than zero, the maximal number of observations on the wrong side 

of the hyperplane is equal to 𝐶. In other words, higher values of 𝐶 mean that there is a wider 

margin with more violations of the margin. The data fit is less strict and the classifier is 

possibly more biased but with less variance. Lower values of C allow for less violations, a 

narrower margin and the classifier fits the data well. This potentially leads to low bias but 

high variance. The value of 𝐶 is often chosen by cross-validations (James et al., 2013, Chapter 

9), which is explained in section 4.6.  

In figure 6, one can see what happens to the margin when one has two different values of 𝐶. 

To the right, 𝐶 has a higher number meaning that there is a wider margin with more 

observations on the wrong side of the margin. To the left, where 𝐶 has a lower value, the 

margin is narrower and fewer observations are on the wrong side.     
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Figure 6. Different values of the parameter 𝐶. 

As before, the only observations that affect the position of the support vector classifier are the 

support vectors; the observations that lie on the margin or on the wrong side of the margin for 

their class. As higher values of 𝐶 lead to a larger margin, it, depending on the nature of the 

data, probably also leads to an increased number of support vectors (James et al., 2013, 

Chapter 9).  

As the support vector classifier depends on the support vectors, which generally constitute 

only a small part of the training data, the classifier is fairly robust to the behaviour of 

observations far away from the hyperplane (James et al., 2013, Chapter 9).   

4.5.5 The non-linear case, the support vector machine and the use of kernels  

In cases where the data set cannot be separated by a linear classifier, a non-linear one is 

needed. A classical way to achieve this is by adding attributes to the data that are non-linear 

functions of the original data, which leads to the change from a linear to a non-linear 

classification algorithm. By doing this, current linear classification algorithms can be used in 

the expanded feature space while non-linear ones are produced in the original input space.  

This method of non-linear mapping is associated with two possible problems; overfitting due 

to the exponential dimensional increase of the feature space and practical calculation issues 

(Bennett & Campbell, 2000).  

 

In the case when using the support vector machine, these problems are usually more or less 

overcome. As long as there is a suitable value of 𝐶, the overfitting problem is generally not an 

issue as the support vector machine uses margin maximization (for more details regarding 

overfitting and underfitting, see section 4.6). Furthermore, by using kernel functions, the 

computational complexity is reduced (Bennett & Campbell, 2000). 
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Before moving forward, a short description of kernel methods and kernel functions is 

appropriate. Kernel methods, of which the support vector machine is one, in essence, consist 

of two parts; one that accomplishes the mapping of the input data into the vector space called 

the feature space and one that is the learning algorithm aimed at uncovering linear patterns in 

this feature space (Shawe-Taylor & Christianini, 2004, Chapter 2). 

 

By using kernel functions the input data are non-linearly mapped into a higher dimensional 

feature space where it is possible to define a similarity measure based on the inner products. 

In the feature space a linear classifier is used while it is non-linear in the original input space. 

This classifier is only expressed by the inner products of the data. The kernel function 

facilitates the possibility to operate in the input space leading to the inner products of the 

feature space not needing to be assessed, which makes calculations much easier (Jakkula, 

2006).  

 

Moving back to the case of the support vector machine, it happens to be the case that the 

solution to the support vector classifier optimization problem solely involves the inner 

products of the objects. The inner product for two objects 𝑥𝑖 and 𝑥𝑖∗ is:    

〈𝑥𝑖 ,𝑥𝑖∗〉 = ∑ 𝑥𝑖𝑗𝑥𝑖∗𝑗

𝑝

𝑗=1

 

 

Hence, the support vector classifier can be represented as: 

 

𝑓(𝑥) = 𝛽0 +∑ 𝛼𝑖

𝑛

𝑖=1

〈𝑥, 𝑥𝑖〉, 𝑖 = 1, … , 𝑛 

 

where there is one parameter 𝛼𝑖 per training object. The inner product between the new object 

𝑥 and each of the training objects 𝑥𝑖 has to be calculated. Regarding 𝛼𝑖, if the training object 

is not a support vector, 𝛼𝑖 is zero. If 𝑆 is the support vectors, the solution function is of the 

form: 

𝑓(𝑥) = 𝛽0 +∑𝛼𝑖
𝑖∈𝑆

〈𝑥,𝑥𝑖〉 

So, only the inner products are needed in representing the linear classifier 𝑓(𝑥) and 

calculating its coefficients (James et al., 2013, Chapter 9). 
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A generalization of the inner product of two objects can be written as 𝐾(𝑥𝑖 ,𝑥𝑖∗) where 𝐾 is 

the kernel function that quantifies their similarities. A linear kernel is the same as the support 

vector classifier, which is the case when (𝑥𝑖 ,𝑥𝑖∗) = ∑ 𝑥𝑖𝑗𝑥𝑖∗𝑗
𝑝
𝑗=1 . The linear kernel quantifies 

the similarities of a pair of observations using Pearson correlation (James et al., 2013, Chapter 

9). 

 

In order to classify data that are not linearly separable, the support vector machines use kernel 

functions instead of adding attributes to the data that are non-linear functions of the original 

data, which was the classical way of doing it. The main idea is still as has been outlined 

earlier; the input vectors are transformed into high-dimensional feature vectors where the 

training data are linearly separable. A separating hyperplane is constructed which, in the 

transformed feature space, becomes a linear function while being a non-linear function in the 

input space (Hu & Kim, 2012). The transformation of the input vectors is illustrated in figure 

7, where the non-linearly separable input space is seen to the left, the middle shows the 

transformation into a higher dimensional feature space where linear separation is possible, 

while to the right, the non-linear separation in the input space is illustrated (Brereton & Lloyd, 

2010). 

 

Figure 7. Transformation of the input space (adopted from Brereton & Lloyd, 2010). 

 

Depending on the nature of the data, the kernel to choose is the one that best captures the 

decision boundary. Examples of two commonly used kernels are the polynomial kernel and 

the radial kernel, described below. The radial kernel is also commonly referred to as the radial 

basis function ( RBF) kernel or the Gaussian RBF kernel (Ben-Hur & Weston, 2010; Hastie et 

al., 2009, Chapter 12; James et al., 2013, Chapter 9). For simplicity, henceforth, solely the 

term radial kernel is used in this thesis.  
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The polynomial kernel of degree 𝑑 can be seen below, where 𝑑 is the kernel parameter, a 

positive integer. If 𝑑 is equal to 1 it is equivalent of the linear kernel.  

 

𝐾(𝑥𝑖 ,𝑥𝑖′) = (1 +∑ 𝑥𝑖𝑗𝑥𝑖′𝑗
𝑝
𝑗=1 )𝑑 

 

The radial kernel has the following form: 

𝐾(𝑥𝑖 ,𝑥𝑖′) = {−𝛾∑ (𝑥𝑖𝑗𝑥𝑖′𝑗)
2

𝑝

𝑗=1

} 

where 𝛾 is the kernel parameter, a positive constant (James et al., 2013, Chapter 9).  

 

The kernel parameters, together with the tuning or soft margin parameter 𝐶, are usually 

referred to as the hyperparameters. As previously brought up, the parameter 𝐶 affects the 

width of the margin. The kernel parameters instead affect the flexibility of the classifier (or 

decision boundary). In the case of the polynomial kernel, as mentioned, a degree of 1 gives 

the linear kernel while increasing the value of 𝑑 leads to more flexibility and bend to the 

classifier. Regarding the radial kernel, low values of 𝛾 give a classifier that is almost linear 

while increasing 𝛾 leads to more curvature of the classifier (Ben-Hur & Weston, 2010). 

Figure 8 gives an idea of how the two non-linear kernels work. To the left is an example of a 

polynomial kernel separating the data and to the right, an example of what a radial kernel 

might look like. In these two examples the values of 𝑑 and 𝛾 respectively are quite high as the 

classifiers do not resemble a linear classifier and have quite an amount of curvature. 

 

Figure 8. Polynomial and radial kernels 

To summarize this section, the choice of classifier to apply depends on the nature of the data. 

Theoretically, following the just presented outline of the workings of the support vector 

machine, if the data are linearly or nearly linearly separable, the choice should fall upon the 
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maximal margin classifier or the support vector classifier. In the case of non-linear data, the 

support vector machines with its non-linear kernel functions are suitable. In practice, 

however, kernel functions are used regardless of the nature of the data. In cases where the 

data are linearly or nearly linearly separable, a linear kernel function is used and tuned 

appropriately. When the data are non-linear, a suitable non-linear kernel is applied.   

Regarding the choice of the kernel function to use, whether it is the linear, polynomial, radial 

kernel or any other kernel, it depends on the data and is a process of trial and error in order to 

find the one that is the most suitable (Ben-Hur & Weston, 2010). In this thesis, the kernel 

functions that are applied and evaluated against each other are the linear, polynomial and 

radial kernels. The reason for using these particular ones is that they are the most commonly 

used ones and, with the right tuning, are capable of classifying most data sets (see for example 

James et al., 2013, Chapter 9; Ben-Hur & Weston, 2010).   

4.6 Prediction accuracy and cross-validation 

The usual way to evaluate a classifier is by its prediction (classification) accuracy, which is 

the percentage of correct classifications out of the total number of classifications (Kotsiantis, 

Zaharakis & Pintelas, 2007).  

 

In the case of the random forest, the prediction accuracy is optimized by tuning the number of 

randomly selected features tried at each split (Breiman, 2001). Regarding the support vector 

machine, the tuning of the classifier is achieved by adjusting its parameters. Depending on 

which kernel is used, there are different hyperparameters that have to be tuned. As mentioned, 

three different kernels are investigated in this thesis, namely the linear, the polynomial and the 

radial kernel. Starting with the linear kernel, the only parameter to tune is 𝐶. Regarding the 

polynomial kernel, the parameters to tune are 𝐶 and 𝑑 while in the case of the radial kernel 

the parameters are 𝛾 and 𝐶. The aim is to choose the parameter values that lead to the 

classifier predicting the test data with as high accuracy as possible (one wants high accuracy 

regarding the test data, which is not always desirable for the training data) (Hsu et al., 2003). 

Also important to consider, when deciding on an appropriate value of the parameter 𝐶, is that 

it may have an effect on whether the model underfits or overfits the data (James et al., 2013, 

Chapter 9). Different values of 𝐶 affect the margin’s width and give a trade-off between 

maximizing the margin and minimizing the errors. Choosing values that are too high lead to 

overfitting while too low values lead to underfitting, which potentially leads to an 
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oversimplified model being used (Alpaydin, 2010, Chapter 13). When there is overfitting, the 

generalizability of the support vector machine disappears with the consequence being 

misleading results. Although results might be decent on a particular training data set, the 

performance of the classifier cannot be generalized to the test data. In addition to tuning 𝐶 

inappropriately, overfitting might happen if an unsuitable kernel function is chosen (Han & 

Jiang, 2014).   

 

In order to illustrate the problems caused by overfitting consider the two simple examples 

seen in figure 9 and figure 10. To the left of figure 9, a classifier that is overfitted on the 

training data is seen, while to the right, the unsuccessful classification of the test data when 

using the overfitted classifier is shown. Looking at figure 10, to the left, a more suitable 

classifier is fitted on the training data. To the right, when using the more appropriate 

classifier, the classification of the test data is more successful (Hsu et al., 2003).  

 

 

Figure 9. Overfitting the data (adopted from Hsu et al., 2003) 

 

Figure 10. Using a more suitable classifier (adopted from Hsu et al., 2003) 

 

The three most widely used methods for tuning and calculating the prediction accuracy of a 

classifier are the two-one method, cross-validation and leave-one-out cross-validation. In the 

first method, the training data are divided so that two-thirds is used for training and one-third 

is used for performance estimation (Kotsiantis et al., 2007). 
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In the case of cross-validation (also called v-fold or k-fold cross-validation), the training set is 

divided into v equally sized subsets. When equal division is not possible, some of the folds 

get an extra observation.  Then, a classifier trained on v-1 subsets (or folds), is used to test the 

remaining subset sequentially. By doing this, each object of the entire training set is predicted 

once and the percentage of correctly classified data is the cross-validation accuracy. 

Regarding the support vector machine, the parameter values that give the highest cross-

validation accuracy based on receiver operating characteristic (ROC) values (further 

explained in section 4.9) are the ones to choose. As mentioned earlier, the choosing of the 

parameter value 𝐶 using the process of cross-validation can alleviate problems of overfitting 

(Hsu et al, 2003). In the case of the random forest it is not strictly necessary to use cross-

validation as the algorithm performs a parallel cross-validation with the out-of-bag samples. 

As previously mentioned, about one third of the observations are not included in a given 

bootstrap sample. The algorithm then automatically lets the 𝐵th classification tree predict the 

left-out observations for the bootstrap sample the tree was generated from. The out-of-bag 

assessment of performance and the cross-validation procedure has been proven to give quite 

similar, unbiased, results (Svetnik et al., 2003; Breiman & Cutler, n.d.). However, for the sake 

of comparison, the same method of cross-validation as for the support vector machine is used.  

 

An extreme case of v-fold cross-validation is the leave-one-out cross-validation where in each 

fold, training is done on n-1 observations and validation is performed on one observation in 

each fold. The test classification error is then averaged over all folds. The result is an 

unbiased estimator with high variance due to the data sets in all folds being very similar apart 

from one observation. When taking the bias and variance trade off into account a 

recommendation is using five or ten folds (James et al., 2013, Chapter 5). In regards to this 

recommendation, the chosen method, in this thesis, for optimizing classification accuracy is to 

use the five-fold cross-validation.  

 

There are two main drawbacks associated with the cross-validation procedure when 

comparing different models. One is that the classification accuracy is dependent on the 

random dividing of the data into folds. To alleviate any problems with this and enable reliable 

comparisons between the random forest and the support vector machine, the cross-validation 

process has to be repeated several times and the results thereafter averaged (Salkind, 2010, 



  

 32 

Cross-Validation). Therefore, the five-fold cross-validation process in this thesis is repeated 

twenty times. 

 

Another issue is that the cross-validation process is data-driven, meaning that a model that 

works well when tested on one set might not always work as well on another. Therefore, 

ideally, when comparing models, before deciding which one is the best, the models should be 

applied on several test sets (Salkind, 2010, Cross-Validation). Otherwise, questions regarding 

the generalizability of the results can be raised. Unfortunately, in this thesis, only one test set 

is available and it is therefore not possible to further investigate this by applying the models to 

additional sets. However, both the random forest and the support vector machine are known to 

generalize well even when trained on small training sets (see for example Cortes & Vapnik, 

1995; Rio & Zha, 2004; Ham, Chen, Cramford & Ghosh, 2005; Mountrakis, Im & Ogole, 

2011).  

4.7 Statistical software 

The k-means clustering method is performed using the statistical software SAS. The main 

reason to use SAS, in this case, is that the clustering method is relatively simple and 

straightforward to conduct in this software. 

 

In the cases of the random forest and the support vector machine, the software used is R. The 

random forest technique was developed for use in R by Breiman (Breiman & Cutler, n.d) and 

includes all the relevant packages concerning the random forest. In SAS, on the other hand, 

the random forest procedure is not as developed. Regarding the support vector machine, the 

necessary tools to apply the method are available in both SAS and R. However, as a large 

amount of research papers and books (see for example James et al., 2013; Statnikov et al., 

2008; Karatzoglou et al., 2006) applying and dealing with both the random forest and the 

support vector machine use R, the choice of using R for both methods seems reasonable. The 

specific R packages used in the case of the random forest and the support vector machine are 

the Caret, kernlab, pROC and randomForest packages. 

4.8 The parameter 𝑪, the cost parameter and the radial kernel parameter 

In the just mentioned examples illustrating the theoretical foundations of the support vector 

machine, the tuning parameter 𝐶 that adjusts the margin of the classifier has been mentioned 

several times. In the presented mathematical formulations, this parameter is a constant (Hastie 
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et al., 2009) that is regarded as a budget parameter, where higher values allow for more 

violations of the margin and lower values allow for less. However, in practice, when 

computing the support vector machines with linear and non-linear kernels in the statistical 

software R, the parameter 𝐶 is replaced by a cost parameter that penalizes or specifies the cost 

of violating the margin. This cost parameter is a constant that is tuned in R in order to achieve 

the best possible classification performance. Choosing higher values of the cost parameter 

create a narrower margin, leading to fewer support vectors located on the margin (or violating 

the margin) while lower values lead to the opposite (James et al., 2013, Chapter 9). In order to 

clarify, higher values of the cost parameter lead to a smaller margin while lower values lead 

to a larger margin (Ben-Hur & Weston, 2010). Comparing with the budget parameter 𝐶, both 

affect the classifier’s width of the margin albeit in opposite directions as in the case of the 

budget parameter, higher values lead to a larger margin and lower lead to a smaller margin. 

Important to note, is that the cost parameter is also frequently referred to as the parameter 𝐶 

or the soft margin constant, which can be misleading (see for example Hsu et al., 2003; Hastie 

et al., 2009, Chapter 12; Ben-Hur & Weston, 2010). 

The scale of the cost parameter has no meaningful interpretation, which is why it is more 

intuitive to use alternative formulations such as the parameter 𝑣, which controls the fraction 

of the support vectors and of the margin errors (Ben-Hur, Ong, Sonnenburg, Schölkopf & 

Rätsch, 2008), or the above mentioned budget parameter 𝐶. This being said, the software R 

uses the cost parameter, and it is this parameter that is actually tuned in order to optimize the 

classifier. Therefore, in the subsequent sections of this thesis, when mentioning a parameter 

that affects the margin’s width or the cost in connection with the support vector machine, 

henceforth, the parameter in question is the cost parameter.    

In the case of the radial kernel, as mentioned, the kernel parameter that decides the curvature 

of the classifier is denoted 𝛾 in the previous theoretical section. Using 𝛾 is a common way to 

represent this kernel parameter, however, an alternative way is to use the symbol 𝜎. These 

two symbols are not identically interchangeable, although in essence they have the same 

effect on the radial kernel. The symbol 𝜎, comparing with 𝛾, affects the radial kernel’s width 

and curvature in the opposite direction. Hence larger values of 𝜎 lead to less curvature and 

more resemblance to a linear kernel while smaller values lead to more flexibility and greater 

curvature. The Caret package in R uses 𝜎, denoted in practice as sigma (Karatzoglou, Smola, 

Hornik & Karatzoglou, 2015; Ben-Hur et al., 2008). Therefore, in the following sections, 
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when mentioning the radial kernel parameter, sigma is used. In the case of the polynomial 

kernel, the Caret package also includes a scaling parameter. This parameter normalizes 

patterns in the data without actually altering the data itself (Karatzoglou et al., 2015).  

4.9 Choice of algorithm setup and evaluation techniques 

The data set used in this thesis, discussed in section 3.1, consists of 33 observations. As 

mentioned, the data are divided into what is referred to as the training data and the test data. 

Commonly, the distinction between the training data and the test data is achieved by 

randomly separating the available data into two groups where about half to one-third of the 

data, depending on the size of the data set, are considered as training data while the rest is 

treated as test data (Salkind, 2010, Cross-Validation). In this case, the data set is divided in 

such as way that the test data contain 11 observations while the training data contain 22.  

 

The unsupervised learning method applied, the k-means clustering technique, divides the data 

and forms two classes based on existent patterns in the data, where one class is denoted as 

class 1 and the other as class 2.  In order to determine whether or not the k-means clustering is 

successful, the cubic clustering criterion is used. Values above 2 or 3 indicate that the 

clustering is capturing some of the multivariate structure in the data (Cleland, Rothschild & 

Haslam, 2000). 

 

In the case of the support vector machine, as mentioned, the three kernels that are evaluated 

are the linear, the radial and the polynomial kernel. The standard procedure to follow 

regarding which kernel to use is to start with the linear kernel and evaluate how it performs. 

The next step is to use non-linear kernels, in this case the radial and the polynomial, and 

assess how they perform in comparison with each other and the linear kernel. The one that 

usually performs better of these two non-linear kernels is the radial one. Within 

bioinformatics, using a linear kernel often gives the best results (Statnikov et al., 2008; Ben-

Hur & Weston, 2010). In such cases, where there are often relatively few observations and 

many features, as in for example microarray data sets, using the polynomial or radial kernels 

might lead to overfitting in higher dimensions (Ben-Hur & Weston, 2010). In the results, 

cross-validated and optimally tuned support vector machines with linear, radial and 

polynomial kernels are compared and evaluated. As overfitting is of concern, the same 

comparison of optimally tuned kernels is done on a noised-up version of the original data set 

where a random number from a normal distribution, with zero mean and 0.5 standard 
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deviation, is randomly added to 30 per cent of the measured protein levels. The choice of 

selecting a zero mean, a standard deviation of 0.5 and adding noise to 30 per cent of the 

measured protein levels is more or less arbitrary. The reasoning behind choosing these values 

is that the aim is to only slightly modify the data in order to examine whether there are any 

signs of overfitting or not. Feature importance measures are not provided automatically in R 

for the support vector machine, however, it is possible to extract the most important features 

based on the receiver operating characteristic (ROC) value (briefly explained below) of each 

feature. 

 

Regarding the optimization of the random forest algorithm the process is quite 

straightforward. The number of trees to use and the number of features tried at each split are 

the two things to consider. There is a diminishing effect in terms of accuracy for each added 

tree, with the algorithm stabilizing at around 200 trees (Hastie et al., 2009, Chapter 15). In 

this case, 2500 trees are used, well above the stabilizing point, as the power of a modern 

computer means that the computational time it takes to add that many trees is negligible. The 

only real parameter to tune is the number of features tried at each split. The algorithm 

sequentially tests 1 to 50 randomly chosen features tried at each split and then chooses the 

optimal number in terms of the ROC value. If there are ties i.e different number of features 

tried give the same highest ROC value, the lowest optimal number is used. Regarding feature 

importance measures, this is provided automatically in the setup of the randomForest package 

in R.  

 

In order to make an accurate assertion concerning the relative performance of the support 

vector machine and the random forest, a measurement that measures performance in a way 

that allows for comparison is needed. The receiver operating characteristic (ROC) is a suitable 

measurement as it works well in cases of binary classification. The measurement is commonly 

used in medical research where classification is a diagnosis (positive or negative), and with an 

uneven number of observations in the classes. It is in fact a measurement frequently used 

when determining the validity of biomarkers for evaluating a binary outcome (Kumar & 

Indrayan, 2011). The total area under the ROC curve is a measurement of the classification 

performance of the algorithm, referred to as the area under the curve (AUC). The larger the 

area below the curve is, a value between 0.5 and 1, the more accurate the classification of the 

observations in the test set is. The ROC curve is a plot with sensitivity on the y-axis and 1-

specificity on the x-axis. Using the class notation of the k-means clustering in order to 
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illustrate, sensitivity is the proportion of observations with class belonging equal to 1 that are 

correctly classified and specificity is the proportion of observations with class belonging 

equal to 2 that are correctly classified. A perfect test means that both are equal to 1. Anything 

above the diagonal line indicates that the algorithm performs better than what is achieved by 

random chance. The diagonal line, specificity + sensitivity = 1, represents the situation where 

an algorithm is useless and the classification outcome is completely random and equally 

likely. The classification capabilities of an algorithm are quantified by the AUC, where a 

perfect score on the test set is equal to 1 and the worst possible is 0.5 (Bewick, Cheek & Ball, 

2004). Generally, AUC values above 0.9 are considered excellent while between 0.8-0.9 is 

considered good. A value between 0.7-0.8 is regarded as fair and between 0.6-0-7 is poor 

(Tape, 2006). The AUC values are accompanied by corresponding confidence intervals, 

which further enables evaluation of the classification accuracy.  

 

ROC values are also used in the tuning process of the random forest and the support vector 

machine. In the case of the random forest, the ROC is used in order to decide which 

parameter value to choose while in the case of the support vector machine, the ROC is used to 

decide which kernel to use. 

 

Finally, certainty regarding the reliability of the results needs to be established in order to 

make sure that the results are not just a function of the randomness associated with assigning 

observations to folds. Therefore, on the training data, a twenty times repeated five-fold cross-

validation is performed and results are averaged across the repeats.  
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5. Results 

In this section, to start with, the results of the k-means clustering are briefly reported. Then 

the results of the classification of the data set in regards to the random forest and the support 

vector machine are presented. The two techniques are compared and the method that is shown 

to be the superior classifier is thereafter used to construct a final parsimonious model based 

on feature importance measures. Results from using the five and ten most important features 

are reported. The performance of this parsimonious model is then compared to the original 

classifications performed by the best performing method.  

5.1 The k-means clustering 

The results of the cluster analysis plotted against two principal components are shown in 

figure 11. Examining the figure, it is evident that the k-means clustering is successful in 

dividing the observations into two clusters, where an observation’s cluster belonging is 

denoted by either the number 1 or 2. The two classes that the observations can belong to are 

hence class 1 and class 2. Further inspection of the figure reveals that it is possible to fit a 

straight line between the two clusters and thereby perfectly separate them.    

 
Figure 11. The results of the cluster analysis with group belonging illustrated by the  

observation markers and principle components on the y and x-axis. 

 
The cubic clustering criterion from the k-means cluster analysis is equal to 10.32, which is 

safely above the threshold of around 2 to 3, meaning that the goal of deriving a binary 

dependent variable from the underlying structure is fulfilled.  
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5.2 The support vector machine 

The three support vector machine kernels are optimally tuned on the training data and the one 

that performs the best is thereafter applied to the test data. Starting with the radial kernel, the 

receiver operating characteristic (ROC) is displayed as a function of the two tuning 

parameters sigma and cost, as seen in the two diagrams in figure 12. After tuning, the support 

vector machine with the radial kernel has an optimal sigma value = 0.006 and cost = 36. The 

tuning gives an area under the curve (AUC) value of 0.983. 

 

 
 

Figure 12. ROC displayed as a function of the tuning parameters sigma and cost for the radial kernel. 

 

In figure 13, the ROC is plotted as a function of the cost parameter for the support vector 

machine with a linear kernel. The cost is the only parameter subject to tuning when using a 

linear kernel. The optimal tuning gives a cost = 0.5, with an AUC value of 0.983. 

  
Figure 13. The ROC displayed as a function of the tuning parameter cost for the linear kernel. 
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Lastly, in figure 14, the ROC is shown as a function of the tuning parameters of the 

polynomial kernel: cost, degree and scale. The optimal tuning gives a degree = 1, scale = 1, 

cost = 0.5 with a ROC value of 0.983. That the optimal polynomial kernel is of degree 1 and 

has cost = 0.5 means that it is equivalent to the linear kernel. In table 1, a summary of all 

kernel parameter values as well as AUC values is displayed. 

 

 

Figure 14. ROC displayed as a function of tuning parameters cost, scale and degree for the polynomial kernel 

 

Linear kernel Radial kernel Polynomial kernel 

Cost AUC Cost Sigma AUC Cost Degree Scale AUC 

0.5 0.983 36 0.006 0.983 0.5 1 1 0.983 

Table 1. Optimal parameter values and the AUC value for each kernel 

 

In figure 15, the confidence intervals (95 %) of the ROC for the three support vector machine 

models are shown. Examining the confidence intervals shows that the models perform equally 

well on the training data set and it is therefore unclear which of them outperforms the others. 

However, as previously reported, the radial kernel has the highest cost parameter of the three, 

meaning that misclassifications are to a greater degree penalized with the likely consequence 

being overfitting.  
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Figure 15. Confidence intervals (95 %) of the ROC values 

 for the three support vector machine models.  

 

In order to further investigate whether there is overfitting or not, the three different support 

vector machines are applied to, and evaluated on, a noisier version of the training data set. In 

figure 16, the confidence intervals for the optimally tuned support vector machines applied on 

the noisy data set are displayed.  

 

Figure 16. Confidence intervals (95 %) of ROC values for the three 

 support vector machine models on the noisy training data. 

 

It is evident by figure 16 that the optimally tuned radial kernel performs worse than the 

polynomial and linear kernels. This is an indication that the radial kernel is indeed overfitted 

on the original training data. In light of these results, the radial kernel is discarded. As the 
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optimal polynomial kernel is linear and identical to the linear kernel performancewise, the 

linear kernel support vector machine is henceforth used and compared to the random forest on 

the test data.  

5.3 The random forest  

In the case of the random forest, the only tuning parameter to consider is the number of 

features tried at each split when creating the decision trees. In figure 17, the ROC is plotted as 

a function of the number of features tried at each split.  

 

Figure 17. The ROC plotted as a function of the number 

 of randomly selected features for the random forest. 

 

The optimal number of features is chosen based on the ROC value. If there are ties, the lowest 

optimal number of features is chosen in order to reduce the correlation between the trees. As 

seen in figure 17, the optimal number of features tried at each split is 6. The number of trees 

used when training the algorithm is 2500 as further increasing the number of trees beyond this 

point does not have any impact on the results apart from computing time.  

5.4 Comparisons and model choice 

To start with, the performance on the training data set of the optimally tuned random forest 

and support vector machine with a linear kernel is compared. The results show that the 

random forest outperforms the support vector machine on all evaluation measures. The mean, 

as well as the minimum and maximum values from the training process of the ROC, 

sensitivity and specificity for all models are found in table 2. These results are the average 

across all folds of the cross-validation procedure from the training process. Studying the 

means of the different measurement, the random forest has a slight edge over the support 

vector machine in terms of the ROC value, as well as sensitivity and specificity. 
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 RF SVM 

 Min Mean Max Min Mean Max 

ROC 0.833 0.997 1 0.667 0.99 1 

Sens.  0 0.85 1 0 0.78 1 

Spec.  1 1 1 0.333 0.96 1 

Table 2. Minimum, mean and maximum accuracy values for the random forest (RF) and the support 

vector machine (SVM). 

 

The confidence intervals for the evaluation measurements are found in figure 18. That the 

random forest performs better is supported by its narrower confidence intervals for the ROC 

value, the specificity and the sensitivity. The random forest has a specificity value of 1 across 

all folds in the cross-validation, which is why no confidence interval is reported. The 

confidence interval for sensitivity of the random forest is relatively narrower with a higher 

lower and upper bound. 

 

Figure 18. Confidence intervals of the ROC, specificity and sensitivity for the random forest  

and the support vector machine based on the training of the algorithms. 

 

The next step is to compare how the random forest and the support vector machine actually 

perform on the test data. The main measurement used is the AUC value. In figure 19, based 

on their performance on the test set, the ROC curves for both algorithms are shown. In the 
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case of the random forest, the AUC value is 1 whilst it is 0.9643 for the support vector 

machine. The interpretation of this is that, overall, the random forest does a better job when 

classifying the observations in the test set as a value of 1 means that all observations are 

correctly classified.  

 

 

Figure 19. ROC curves for the random forest to the left with AUC=1 

 and the support vector machine to the right with AUC = 0.9643. 

 

In table 3, the classification accuracy (percentage of correct classifications) and corresponding 

confidence interval based on the results on the test set, are found. Note that the p-value 

displayed, reported in parenthesis, is a test whether the accuracy is significantly higher than 

the no information rate (NIR), which is 0.6364 in this sample. The NIR is the largest class, 

which in this case is class 2, as the percentage of the total data. As seen in table 3, the random 

forest correctly classifies all 11 observations in the test set while the support vector machine 

correctly classifies 10 observations. Apart from this, a noticeable difference between the 

models becomes evident when considering their lower bounds for the confidence intervals of 

accuracy. The random forest model has a lower bound of 0.751 whilst the support vector 

machine has a lower bound of 0.587. 

 RF SVM 

Accuracy 1 

(0.007) 

0.909 

(0.051) 

95 %  CI 0.7151, 1 0.587, 0.998 

Table 3. Accuracy, as the proportion of correctly classified observations in the test set, and the 

corresponding confidence intervals. P-value in parenthesis of hypothesis Accuracy > NIR. 

 



  

 44 

As the random forest model does a better job in classifying the observations in the test data 

set the conclusion is that the random forest is, in this case, a better model. Hence, the 

parsimonious model will be based on the random forest. 

5.5 Feature selection and performance  

In this section, the performance of the random forest using the top ten as well as the top five 

features is evaluated. Furthermore, a comparison is made with the random forest using all 

features. In figure 20, a plot is displayed of the top ten features in falling order in terms of 

explanatory power, from the random forest algorithm, when classifying observations. The 

higher importance value of a feature, the more important the feature is in the context of 

classifying an observation correctly. 

 

Figure 20. Gini index for measurement of feature importance in the random forest algorithm. 

 
First, the performance on the training set of the random forest using different number of 

features is evaluated. In figure 21 the confidence intervals of the evaluation measurements are 

reported. When using both the top ten features and the top five, the random forest still 

performs very well. The main difference is the increased uncertainty of the ROC when using 

only five features. The lower bound is still above 0.95 though. Also, the sensitivity when 

using five and ten features is slightly higher compared to when using all features. In table 4, 

the minimum, the mean and the maximum of the evaluation measurements from the training 

data are reported.  
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Figure 21. Confidence intervals for the random forest when using five, ten and all features respectively.  

 

The random forest with the top ten features performs the best in terms of the ROC and the 

specificity and is tied best when it comes to sensitivity. Using only the top five features 

performs comparably well also, although it has the lowest minimum value of the ROC.  

 

 RF all RF top 10 RF top 5 

 Min Mean Max Min Mean Max Min Mean Max 

ROC 0.833 0.997 1 1 1 1 0.667 0.9867 1 

Sens.  0 0.85 1 0 0.88 1 0 0.88 1 

Spec.  1 1 1 1 1 1 1 1 1 

Table 4. Minimum, mean and maximum accuracy values for the random forest with different number of features. 

 

Lastly, the classification accuracy on the test data is reported. As displayed in table 5, when 

using the top five features the random forest still classifies all observations in the test set 

correctly. This indicates that a random forest with only five of the original 89 features does, in 

this sample, as good a job in terms of classification as the random forest with all features.  
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 RF all RF top 10 RF top 5 

Accuracy 1 

(0.007) 

1 

(0.007) 

1 

(0.007) 

95 %  CI 0.7151, 1 0.7151, 1 0.7151, 1 

Table 5. Accuracy, as the proportion of correctly classified observations in the test set,  

and corresponding confidence intervals. P-value in parenthesis of hypothesis Accuracy > NIR. 

 

Based on the test results from table 5, the random forest with feature selection works just as 

well on the test set as the random forest without feature selection.  
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6. Discussion and analysis 

The k-means clustering method clearly shows that it manages to identify patterns and 

underlying structures in the data set as well divide as it into two different classes. The 

separation of the data is clearly successful as there are two distinct clusters as seen in figure 

11 in the results. As mentioned earlier, the actual meaning of the two classes is unknown and 

the division of the data into the classes is solely performed in order to facilitate the application 

of the two supervised learning techniques.  

 

Starting with the support vector machine, due to the nature of the separation, all three kernels 

tested are capable of performing well when classifying the observations into either of the two 

classes. As has been mentioned earlier, research suggests that within bioinformatics, where it 

is common to have more features than observations, the linear kernel tends to perform the 

best. In cases where the data is non-linear, in general, the radial kernel is the most successful. 

Due to this data set having many more features than observations a likely suitable kernel is 

therefore the linear one.  

 

The optimization and cross-validation process on the training data shows that all three 

kernels, when optimally tuned, are capable of separating the data equally well in regards to 

the prediction (classification) accuracy expressed as AUC values. Identical are also the 

corresponding confidence intervals of the AUC values. However, worth noting is that the 

optimal polynomial kernel is of degree 1, meaning that it is equivalent of a linear kernel.  

Furthermore, the radial kernel has a low value of sigma, resulting in a flexible classifier 

having substantial curvature with little resemblance to the other two kernels.  

 

Another apparent difference between the radial kernel and the other two kernels is the 

different optimal values of the cost parameter. The linear and the polynomial kernels both 

have a cost parameter value of 0.5 while the radial kernel has a value of 36. The polynomial 

kernel has a scale parameter of value 1, which just means that no scaling has taken place. 

 

In regards to the radial kernel, generally, in cases where there are more features than 

observations, research suggests there is a risk of overfitting the data. Normally this applies to 

the polynomial kernel as well, however as it is in practice a linear kernel in this case, it is 

treated as a linear kernel. As previously mentioned, having too high values of the cost 
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parameter lead to overfitting and the comparatively higher value of the radial kernels cost 

parameter could be a sign of just this. The identical cost values of the linear and the 

polynomial kernel is logical as both the classifiers are linear and in fact equal.  

 

By solely considering the results of the training procedure, as all three kernels (or two as the 

linear and polynomial are equal) perform equally in terms of AUC values and confidence 

intervals, there is no obvious reason to choose one over the other as a classifier of the test 

data. In order to further investigate any differences between them, the trained kernels are 

tested on a version of the data set with added noise, as been previously explained. The 

reasoning here is that the k-means clustering creates two classes that are too cleanly 

separated. As a consequence, any of the three classifiers can too easily be fitted between the 

classes, thereby, rendering any comparisons between the kernels redundant. Additionally, if 

there actually is overfitting in the case of the radial kernel, it might be expressed as the kernel 

performing worse on the noised-up data set, compared to the other kernels. The results of 

applying the classifiers to the noised-up data set show that the radial kernel does indeed 

perform worse than the linear and polynomial kernels, which could be an indication of 

overfitting. As the linear and polynomial kernels are identical and slightly outperform the 

radial kernel, the linear kernel is used on the test data.  

 

As the training of the random forest algorithm is straightforward, discussing the process 

further is unnecessary. When comparing the results of the random forest and the support 

vector machine using a linear kernel on the training data, the random forest performs slightly 

better. However, this does not necessarily mean that the random forest performs better when 

applied to the test data. As mentioned, in the case of the support vector machine, allowing for 

a certain amount of misclassifications on the training data can result in a better classifier on 

the test data. Yet, examining the results of the application of the two classifiers on the test 

data, the random forest does indeed classify with higher accuracy. The support vector 

machine manages to correctly classify 10 out of 11 observations while the random forest 

manages to correctly classify all 11. That the support vector machine has a lower bound of the 

confidence interval of its AUC value further confirms the greater accuracy of the random 

forest. Important to note is that, although the support vector machine is inferior to the random 

forest in this case, it still achieves a classification accuracy above 0.9, which is regarded as an 

excellent result. 
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As this result is based on classifying a test data set only consisting of 11 observations and 

where both classifiers perform very well, applying them to another, preferably larger, test data 

set in order to investigate if the results still hold is an interesting notion worth exploring if the 

possibility had existed. Nevertheless, on this data set the random forest is the best classifier 

and is therefore used to construct a parsimonious model.  

 

In regards to selecting the appropriate features for the parsimonious model, when comparing 

the training results of the random forest using five, ten and all features, the three perform very 

similarly when considering their evaluation measures. The only result that appears to be 

slightly surprising at first sight, is that the random forest with ten features is optimized in such 

a way that it classifies all training observations correctly. However, this is just interpreted as, 

when the random forest uses ten features, the algorithm is optimized when it classifies all 

training observations correctly.  

 

Moving over to classifying the test set, the results show that selecting the five most important 

features when it comes to affecting the classification, gives as high classification accuracy as 

using ten or all features. This indicates that a parsimonious model only having five features 

manages to classify the observations of the test set as accurately as using all the features. As 

in the case when comparing the support vector machine and the random forest, employing the 

random forest on a test set with more observations in order to explore whether the same 

selected features as well as the same number of features are relevant is an interesting idea.       

 

As has been touched upon above, there are several reasons to why it is an interesting 

extension to this thesis to apply and evaluate these random forest and support vector machine 

algorithms to additional protein biomarker data sets. Another reason is to further investigate 

the classifiers’ generalizability. As has been mentioned before, both the random forest and the 

support vector machine tend do generalize well, even when trained on limited training sets. 

The results of this thesis show that the classification performance of both the random forest 

and the support vector machine is excellent in the case of the test data, indicating that the 

generalizability of the classifiers is good. Notwithstanding the signs of generalizing well, due 

to the relatively few observations in both the training and the test data set and that the cross-

validation procedure is data-driven, the generalizability could still be questioned. Therefore, 

in order to further explore this issue, applying these tuned classifiers to additional, preferably 

larger data sets, is a conceivable notion.  
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7.Conclusions 

In this thesis, the two supervised learning techniques, the random forest and the support 

vector machine, are compared and evaluated in the context of binary classification of a 

protein biomarker data set. Finally, in regards to the best performing classifier, a 

parsimonious model is derived where the most important features are included. This thesis is 

a two-stage process as the data set originally only consisted of features. Preceding the stage of 

comparing the models, using k-means clustering, a binary class variable was created, which is 

a construct of the underlying structure of the data. This variable enables the comparison of the 

two models performance on the test set using the ROC values and their respective confidence 

intervals. To recapitulate, the research questions in this thesis are the following: 

 

(1) How successful are the two supervised learning techniques, the random forest and the 

support vector machine, in the case of classifying the specific data set provided and how 

do the two methods compare to each other? 

 

(2) In regards to which method performs the best, based on feature importance measures, 

how does a final parsimonious model perform? 

 

In this thesis, the optimally tuned random forest, with 6 features tried at each split, 

outperformed the optimally tuned linear kernel support vector machine with cost = 1, in terms 

of classification accuracy on the test data. Important to note is that all support vector 

machines performed exceptionally well with ROC values above 0.9. When extracting the ten 

most important features in the random forest algorithm for classification, the results show that 

the random forest performed exceptionally well using both ten features and five features. 

Although the uncertainty of the ROC when using only five features is slightly higher 

compared to the case when using all features, the lower bound of its confidence interval is 

still above 0.95. This indicates that only using five features is more than sufficient in order to 

successfully classify the observations in the test set.  

 

This thesis is, at best, a rough start when working with unsupervised and supervised learning 

techniques within the context of this protein biomarker data set. The results indicate that the 

random forest outperforms the support vector machine, however, would this conclusion stand 

if there existed additional classes or perhaps a third class for outliers? Identifying completely 

new classes by more closely investigating the multivariate structure of the data set using other 
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unsupervised learning methods is a possible subject for further research. Furthermore, other 

supervised learning techniques such as neural networks, and the shrunken centroid method 

can be included in the analysis.  

 

As has been previously touched upon, although they generally generalize well, another 

interesting extension of this thesis is to further explore the capabilities and generalizability of 

the random forest and the support vector machine by applying them to additional protein 

biomarker data sets. If the case is that the classifiers perform well on other data sets, it is a 

sign that they have good generalizability within the specific area of classifying observations 

based on the protein biomarkers used in this thesis. 
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