Biomedical Image Processing

Alessandro Daducci

¹ Computer Science department, University of Verona, Italy
 ² Radiology department, Centre Hospitalier Universitaire Vaudois (CHUV), Switzerland
 ³ Signal Processing Lab (LTS5), École polytechnique fédérale de Lausanne (EPFL), Switzerland

About me

Background

- ► M.Sc. in *Computer Science* (Verona)
- ► Ph.D. in *Multimodal imaging in medicine* (Verona)
- Post-doc (EPFL, Switzerland + Sherbrooke, Canada)
- Assistant professor (Verona)

- Diffusion MRI acquisition and reconstruction
- ► Fiber-tracking using convex optimization
- ► Applications to clinical studies

Contact

- alessandro.daducci@univr.it
- ► Office hours: Monday and Tuesday

2

About the course

Context and motivation

Are you in the right course?

Become an expert radiologist?

▶ Build an x-ray scanner or develop your own RF antenna?

► Learn daily life in a research imaging lab?

► Apply your studies to solve concrete problems?

About the course

Modules

- ► Introduction and basic concepts
 - modalities, resolution, file formats, metadata etc
- Image formation
 - x-rays, CT, PET, US, MRI
- Basic image processing
 - survey of standard tools
- ► Advanced image processing
 - focus on diffusion MRI
 - from raw data to connectivity analysis
- Laboratory
 - use software and implement algorithms (in Python)

Suggested course

- Elaborazioni di immagini (Prof. Menegaz)
- Perhaps, only first few classes (FFT)

GIORNO	ORA	TIPO	LUOGO
mercoledì	8.30 - 11.30	laboratorio	Laboratorio didattico Delta
giovedì	9.30 - 11.30	lezione	Aula B
venerdì	9.30 - 11.30	lezione	Aula B

Exam

- Short report + final project (in Python)
- ► Possible to work in teams
- ► Journal club (?)

Classes schedule

- ► No lab first two weeks
- ► Breaks? Public holidays?
- **▶** English

DAY	TIME	TYPE	PLACE
Monday	2:30 PM - 4:30 PM	lesson	Lecture Hall L
Monday	4:30 PM - 7:30 PM	laboratorio	Laboratory Alfa
Tuesday	12:30 PM - 2:30 PM	lesson	Lecture Hall C

Reference books

5

About the course

(4/4)

Credits (sources of material/inspiration for this course)

▶ Books

- "Introduction to biomedical imaging" A. Webb
- "Introduction to medical imaging Physics, engineering and clinical applications" N. Barrie Smith and A. Webb
- "The essential physics of medical imaging" J. Bushberg, J. Seibert, E. Leidholdt JR, J. Boone
- "Image processing and acquisition using Python" R. Chityala and S. Pudipeddi
- "Medical image registration" J. Hajnal, D. Hill and D. Hawkes
- "Diffusion MRI Theory, methods and applications" D. Jones
- "Diffusion MRI From quantitative measurement to in-vivo neuroanatomy" H. Johansen-Berg and T. Behrens

Courses

- Dr. Meritxell Bach Cuadra University of Lausanne, Switzerland
- **Prof. Ulas Bagci** University of Central Florida, USA
- Prof. Maxime Descoteaux Université de Sherbrooke, QC, Canada
- **Prof. Tom Fletcher** University of Utah, USA
- Dr. Gabriel Girard Université de Sherbrooke, QC, Canada
- Prof. Klaus Mueller Stony Brook University

▶ Other

 Google images, Wikipedia and many other websites (sorry for not citing all contributions)

Represent various physical properties

Use electromagnetic and audio spectrums

Are not limited to 2D

time

NB: diffusion MRI is a **7D modality!**

Images formed by interaction with tissues/organs

- ► Photography
 - reflection of light
- ► Medical imaging:
 - emission and absorption of signal
 - different mechanisms to provide contrast

Positron Emission Tomography

The radiotracer, injected into a vein, emits gamma radiation as it decays. A gamma camera scans the radiation area and creates an image.

X-rays

Ultrasounds

Magnetic Resonance Imaging

Application: study "anatomy" or "structure"

electron microscopy

Application: study "function" or "activity"

SPECT

PET

perfusion CT

doppler US

10

Pros and cons

Don't have time to see all

- ► Only the most popular
 - X-rays, CT, PET, US, MRI
- ► Get the idea, how they work

- "...we are neither doctors nor physicists, but it is **very important to understand how images are formed** and what they represent in order to properly manipulate, process and analyze them..."

NB: crucial decisions made based on results of image analysis

- ▶ Life or death
- Surgical intervention or not?
- ▶ Treatment planning
- **....**

Visualization

Provide information in a form usable by doctors

12

(2/6)

Reconstruction

CT acquisition

projection offset

MRI acquisition

phase in x

Segmentation

Quantify/study different tissues

Detect tissue abnormalities

Registration

Compare different subjects

subject 1

subject 2

subject N

Subject motion

Detect changes in longitudinal studies

common template

first scan

second scan

Data fusion

Improve accuracy

Help making decisions

Merge different information

Alessandro Daducci

16

Artifact correction

(1/2)

Connectivity analysis with diffusion MRI

Microstructure Informed Tractography

- ► Tractography is <u>NOT</u> quantitative
- Combine tractography and models of tissue microstructure:

Large scale optimization: $size(A) \approx 10^7 \times 10^7$

Basic concepts

(1/2)

Array of numbers

- $f(x,y) \in \mathbb{N}^2 \mapsto \mathbb{R}$
- ► Not limited to 2D

► Not limited to single values or real values

Pixel vs voxel

- ► *Pixel* = "picture element"
- ► *Voxel* = "volume element"

What is an image?

Medical images usually displayed by anatomical planes

- Sagittal
 - divides left (L) and right (R)
- Coronal
 - divides anterior (A) and posterior (P)
- ► Transverse (or axial)
 - divides *superior* (S) and *inferior* (I)

Metadata is required for correct interpretation

- ▶ Which parameters were used to produce the image?
- How was the patient positioned inside the scanner?
- How is data stored?
- ► Patient name, age, sex?

Field of view (FOV)

- Matrix size
 - Number of voxels in each dimension (e.g. 128 x 128 x 40)
- Spatial resolution
 - Physical dimension of voxel (2.0 x 2.0 x 5.0 mm)
- ► Note:

Acquisition can be anisotropic!

A-P: high resolution L-R: high resolution

I-S: low resolution

(2/5)

NB: acquisition vs image spatial resolution

Acquisition

- **Nominal** ability to resolve fine details → intrinsic blur
- Point spread function (PSF) = response of an imaging system to a point source

Limited by wavelength of sound

- High resolution = distinguish smaller objects

MODALITY	SPATIAL RESOLUTION (mm)	COMMENTS
Screen film radiography	0.08	Limited by focal spot size and detector resolution
Digital radiography	0.17	Limited by size of detector elements and focal spot size
Fluoroscopy	0.125	Limited by detector resolution and focal spot size
Screen film mammography	0.03	Highest resolution modality in radiology, limited by same factors as in screen film radiography
Digital mammography	0.05-0.10	Limited by same factors as digital radiography
Computed tomography	0.3	About ½ mm pixels
Nuclear medicine planar imaging	2.5 (detector face), 5 (10 cm from detector)	Spatial resolution degrades substantially with distance from detector
Single photon emission computed tomography	7	Spatial resolution worst towards the center of cross-sectional image slice
Positron emission tomography	5	Better spatial resolution than the other nuclear imaging modalities
Magnetic resonance imaging	1.0	Resolution can improve at higher magnetic fields

► Image

- Actual resolution used for current acquisition
- Image resolution > acquisition resolution

Ultrasound imaging (5 MHz) 0.3

24

(3/5)

Photometric interpretation

- ► Grayscale (e.g. CT and MRI)
 - intensity of physical phenomenon, no color information
 - color is associated when displaying using colormaps
- Color palette (e.g. SPECT and PET)
 - image must be displayed with color stored in the voxel

NB: attention to jet/rainbow colormap

Pixel/voxel depth

- Number of bits to encode the information in each voxel
- ► Typical data types:
 - signed/unsigned byte (8-bit)
 - signed/unsigned short (16-bit)
 - signed/unsigned int (32-bit)
 - float (32-bit) and double (64-bit)
- ► Not very common:
 - signed/unsigned long (64-bit), complex (64-bit) etc

■ NB: typical mistakes when opening a dataset

► <u>Signed or unsigned</u>?

129 =
$$10000001$$
 = 129 unsigned = -1 signed

► Endian-ness?

16-bit integer two bytes (b1 and b2)

big-endian

or *b2 b1*

little-endian

00000100 00000001

1 = 1025

00000100 = 260

big-endian

(many scanner workstations)

little-endian

(intel x86 and x86-64)

► <u>Is data scaled</u>?

- Often, values are stored as integers but scaling parameters are given in the header

00000001

- **NB**: always perform post-processing in float!

Biomedical Image Processing

Alessandro Daducci

26

(5/5)

Coordinate systems

- ▶ Image space (i, j, k)
 - voxel indices, no notion of "physical dimensions"
- \blacktriangleright World space (x, y, z)
 - actual coordinates [in mm] w.r.t. the scanner
 - scaling, rotation and translation
- ▶ Patient space (*L*, *A*, *S*)
 - coordinates w.r.t. anatomical planes

Transformation matrix

$$egin{pmatrix} x_1 \ x_2 \ x_3 \ 1 \end{pmatrix} = egin{pmatrix} A_{11} & A_{12} & A_{13} & t_1 \ A_{21} & A_{22} & A_{23} & t_2 \ A_{31} & A_{32} & A_{33} & t_3 \ 0 & 0 & 0 & 1 \end{pmatrix} egin{pmatrix} i \ j \ k \ 1 \end{pmatrix}$$

- ► Homogeneous coordinates
- Stored in the header

The mess with the orientation

It is really a mess!

- Every software/processing pipeline uses different conventions
- ► Causes lots of *headaches* and *problems* in the analysis

Example 1: where is the origin?

- ► *Center* of voxel?
- ▶ Its corner?

Biomedical Image Processing

► Indices start from "0" (c++, python) or "1" (matlab)?

What is the coordinate (0,0)?

Example 2: *neurological* or *radiological*?

"right" is "right"

"right" is "left"

Alessandro Daducci

- ► When displayed, images are **flipped**
- **▶ Transformation** matrix is different

Many more sources of confusion!

- Sometimes, the orientation stored in the header is wrong!
- ► **Terminology**: "RAS" for some people is "LPI"
- ► Some software use **ad-hoc fields** to change this behavior e.g. "qfac" (see description at https://nifti.nimh.nih.gov/pub/dist/src/niftilib/nifti1.h)

> ...

File formats (1/3)

Two categories:

- ► Standardize **images produced** by different modalities e.g. *DICOM*
- ► Facilitate **post-processing** pipelines e.g. *Analyze*, *NIFTI*, *MINC* etc

Summary of main characteristics:

Format	Header	Extension	Data types
Analyze	Fixed-length: 348 byte binary format	.img and .hdr	Unsigned integer (8-bit), signed integer (16-, 32-bit), float (32-, 64-bit), complex (64-bit)
Nifti	Fixed-length: 352 byte binary format ^a (348 byte in the case of data stored as .img and .hdr)	.nii	Signed and unsigned integer (from 8- to 64-bit), float (from 32- to 128-bit), complex (from 64- to 256-bit)
Minc	Extensible binary format	.mnc	Signed and unsigned integer (from 8- to 32-bit), float (32-, 64-bit), complex (32-, 64-bit)
Dicom	Variable length binary format	.dcm	Signed and unsigned integer, (8-, 16-bit; 32-bit only allowed for radiotherapy dose), float not supported

Not all the software support all the specified data types. Dicom, Analyze, and Nifti support color RGB 24-bit; Nifti also supports RGBA 32-bit (RGB plus an alpha-channel)

for most diffuse

^a Nifti has a mechanism to extend the header

File formats (2/3)

■ **DICOM** (1993)

- ► International standard for medical images and related information (ISO 12052)
- "...an image separated from its metadata is meaningless as medical image..."
- ► *Most complete* description of the data
- Self-contained
 - from the image, an experiment can be repeated!
- Data sharing
 - Picture Archiving and Communication System (PACS)
- ► Notes:
 - too much for post-processing
 - remember to anonymize data before sharing
 - not really standard (different vendors use different fields)
 - store only integers


```
(0008,0022) Acquisition Date [20161012]
(0008,0023) Content Date [20161012]
(0008,0030) Study Time [135549.133000]
(0008,0031) Series Time [141430.792000]
(0008,0032) Acquisition Time [141640.767500]
(0008,0033) Content Time [141750.818000]
(0008,0050) Accession Number []
(0008,0060) Modality [MR]
(0008,0061) Modalities in Study [MR]
(0008,0061) Modalities in Study [MR]
(0008,0061) Modalities in Study [MR]
(0008,0080) Institution Name [Radiologie CHUV]
(0008,0081) Institution Address [Rue du Bugnon 21,Lausanne,District,CH,1011]
(0008,0090) Referring Physician's Name []
(0008,1010) Station Name [MRAWP67014]
```

```
(0010,0010) Patient's Name [BERCLAZ_V_DIFF_PH]
(0010,0020) Patient ID [16.10.12-13:55:14-DST-1.3.12.2.1107.5.2.43.67014]
(0010,0021) Issuer of Patient ID []
(0010,0030) Patient's Birth Date [19790115]
(0010,0040) Patient's Sex [F]
(0010,1010) Patient's Age [037Y]
(0010,1020) Patient's Size [1.77]
(0010,1030) Patient's Weight [75]
(0018,0015) Body Part Examined [BRAIN]
```

```
(0018,0020) Scanning Sequence [EP]
(0018,0021) Sequence Variant [SK,SP]
(0018,0022) Scan Options [PFF,FS]
(0018,0023) MR Acquisition Type [2D]
(0018,0024) Sequence Name [*ep_b2000#49]
(0018,0025) Angio Flag [N]
(0018,0050) Slice Thickness [1.6000000238419]
(0018,0080) Repetition Time [5100]
(0018,0081) Echo Time [80]
(0018,0083) Number of Averages [1]
(0018,0084) Imaging Frequency [123.251798]
(0018,0085) Imaged Nucleus [1H]
```

File formats

(3/3)

Analyze (1990)

- ► Designed for multi-dimensional data
- ➤ Separates data (.img) from metadata (.hdr)
- Not possible to establish image orientation

NIFTI (2000)

- ► Revised version of *Analyze*
- ► Standard de-facto in neuroimaging research (.nii)
- ► Supports **compression** (.nii.gz)
- ▶ Double way to store **orientation**:
 - "gform": to world space coordinates
 - "sform": to standard space coordinates, e.g. common template
- ▶ Default file format of most **software packages**:
 - FSL, SPM, ITK Snap, 3D Slicer, ITK & VTK, nipy, etc

Quaternion Parameters: $b = 0.0 \ c = 0.0 \ d = 1.0$ Quaternion Offsets: $x = 80.0 \ y = 80.0 \ z = 85.0$ S-Form Parameters X: -1.0, 0.0, -0.0, 80.0S-Form Parameters Y: 0.0, -1.0, -0.0, 80.0S-Form Parameters Z: 0.0, 0.0, -1.0, 85.0

Image quality

■ Trade-off between *quality* and *patient comfort*

usually, higher quality requires longer acquisitions

Monkey:

- ex-vivo
- 1 week

Human:

- in-vivo
- 25 minutes

Main criteria for quality assessment:

- 1) Presence of artifacts
- 2) Spatial resolution
- 3) Noise level
- 4) Image contrast

(2/4)

Image quality

1) Presence of artifacts

2) Spatial resolution

0.5 x 0.5 x 0.5 mm

1.0 x 1.0 x 1.0 mm

Image quality

3) Signal-to-noise ratio

- ► Many different definitions
- ► A common one is:

$$SNR = \frac{\mu_s}{\sigma_N}$$

► Averaging improves SNR:

signal strength

4) Contrast-to-noise ratio

Common definition:

$$\mathrm{CNR}_{\mathrm{AB}} = rac{C_{\mathrm{AB}}}{\sigma_{\mathrm{N}}} = rac{|S_{\mathrm{A}} - S_{\mathrm{B}}|}{\sigma_{\mathrm{N}}}$$

where $C_{AB} = |S_A - S_B|$ is the contrast between region A and B

Image quality

All factors affect diagnostic power:

multiple sclerosis lesions are visible in the original image

lower resolution

lower SNR

reduced CNR