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To the student

These are lecture notes for a first course in linear algebra; the prerequisite is a good course

in calculus. The notes are quite informal; although I’ve tried to be careful, they probably

contain errors (both typographical and factual).

These are notes, and not a textbook; they correspond quite closely to what is actually said

and discussed in class. The intention is for you to use them instead of an expensive textbook,

but in order to do this successfully, you will have to treat them differently:

• Before each class, read the corresponding lecture. You will have to read it carefully.

It’s not the case that the “important” material is set off in italics or boxes and the rest

can safely be ignored. Typically, you’ll have to read each lecture two or three times

before you start to understand it. At this point, you’re ready for class. You can pay

attention in class to whatever was not clear to you in the notes, and ask questions.

• The way most of us learn math out of a textbook is to grab the homework assignment

and start working, referring back to the text for any needed worked examples. That

won’t work here. The exercises are not all at the end of the lecture; they’re scattered

throughout the text. They are to be worked when you get to them. If you can’t work

the exercise, you don’t understand the material, and you’re just kidding yourself if you

go on to the next paragraph. Go back, reread the relevant material and try again.

Work all the exercises. If you can’t do something, get help.

• You should treat mathematics as a foreign language. In particular, definitions must

be memorized (just like new vocabulary words in French). If you don’t know what the

words mean, you can’t possibly do the math. Go to the bookstore, and get yourself

a deck of index cards. Each time you encounter a new word in the notes (you can

tell, because the new words appear in green text), write it down, together with its

definition, and at least one example, on a separate index card. Memorize the material

on the cards.



To the instructor

The present incarnation of these lecture notes has a number of shortcomings (or features,

depending on your viewpoint). Some general comments:

• You can safely ignore the fact that the students’ high schools claim to have taught

them some of this material.

• There are not enough “routine” exercises. Some lectures don’t have any. If you use

the notes, you’ll have to supply some.

• There are not enough pictures.

• The course seems too theoretical to some students. What else is new?

• The section on the derivative is optional; it’s useful for honors students taking multi-

variable calculus. It’s not used anywhere else.

• The matrix P used to change the basis is denoted by P−1 in some texts. This can

confuse the student who’s using some other text to supplement these notes.

• The section on inner products should be toned down somewhat; the course was taught

to an honors class, and included several lectures on special relativity (not part of the

present text) which necessitated the more general treatment.

• No general definition of vector space is given; in the author’s opinion, this is a distrac-

tion at the elementary level. Everything is done in subspaces of R
n.

• Most of the computations are done with 2 × 2 matrices. I wanted them to develop

some minimal computational skills. No use is made of graphing calculators.

• Future versions (if they come to pass) will include lectures on the diagonalization of

symmetric matrices and a laboratory exercise for large matrices in MatLab.
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1 Matrices and matrix algebra

1.1 Examples of matrices

A matrix is a rectangular array of numbers and/or variables. For instance

A =





4 −2 0 −3 1

5 1.2 −0.7 x 3

π −3 4 6 27





is a matrix with 3 rows and 5 columns (a 3 × 5 matrix). The 15 entries of the matrix are

referenced by the row and column in which they sit: the (2,3) entry of A is −0.7. We may

also write a23 = −0.7, a24 = x, etc. We indicate the fact that A is 3 × 5 (this is read as

”three by five”) by writing A3×5. Matrices can also be enclosed in square brackets as well as

large parentheses. That is, both


 2 4

1 −6



 and



 2 4

1 −6





are perfectly good ways to write this 2 × 2 matrix.

Real numbers are 1 × 1 matrices. A vector such as

v =





x

y

z





is a 3 × 1 matrix. We will generally use upper case Latin letters as symbols for matrices,

boldface lower case letters for vectors, and ordinary lower case letters for real numbers.

Definition: Real numbers, when used in matrix computations, are called scalars.

Matrices are ubiquitous in mathematics and the sciences. Some instances include:

• Systems of linear algebraic equations (the main subject matter of this course) are

normally written as simple matrix equations of the form Ax = y.
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• The derivative of a function f : R3 → R2 is a 2 × 3 matrix.

• First order systems of linear differential equations are written in matrix form.

• The symmetry groups of mathematics and physics, which we’ll look at later, are groups

of matrices.

• Quantum mechanics can be formulated using infinite-dimensional matrices.

1.2 Operations with matrices

• Addition: matrices of the same size can be added or subtracted by adding or subtracting

the corresponding entries:





2 1

−3 4

7 0




+





6 −1.2

π x

1 −1




=





8 −0.2

π − 3 4 + x

8 −1




.

Definition: If the matrices A and B have the same size, then their sum is the matrix

A+B defined by

(A +B)ij = aij + bij .

Their difference is the matrix A− B defined by

(A−B)ij = aij − bij

.

• Definition: A matrix A can be multiplied by a scalar c to obtain the matrix cA, where

(cA)ij = caij .

This is called scalar multiplication. We just multiply each entry of A by c. For example

−3



 1 2

3 4



 =



 −3 −6

−9 −12




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• Definition: The m × n matrix whose entries are all 0 is denoted 0mn (or, more often,

just by 0 if the dimensions are obvious from context). It’s called the zero matrix.

• Definition: Two matrices A and B are equal if all their corresponding entries are equal:

A = B ⇐⇒ aij = bij for all i, j.

• Definition: If the number of columns of A equals the number of rows of B, then the

product AB is defined by

(AB)ij =
k∑

s=1

aisbsj .

Here k is the number of columns of A or rows of B.

Example:



 1 2 3

−1 0 4









−1 0

4 2

1 3




=



 1 · −1 + 2 · 4 + 3 · 1 1 · 0 + 2 · 2 + 3 · 3
−1 · −1 + 0 · 4 + 4 · 1 −1 · 0 + 0 · 2 + 4 · 3



 =



 10 13

5 12





If AB is defined, then the number of rows of AB is the same as the number of rows of

A, and the number of columns is the same as the number of columns of B:

Am×nBn×p = (AB)m×p.

Why define multiplication like this? The answer is that this is the definition that

corresponds to what shows up in practice.

Example: Recall from calculus (Exercise!) that if a point (x, y) in the plane

is rotated counterclockwise about the origin through an angle θ to obtain a

new point (x′, y′), then

x′ = x cos θ − y sin θ

y′ = x sin θ + y cos θ.

In matrix notation, this can be written


 x′

y′



 =



 cos θ − sin θ

sin θ cos θ







 x

y



 .
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If the new point (x′, y′) is now rotated through an additional angle φ to get

(x′′, y′′), then



 x′′

y′′



 =



 cos φ − sin φ

sin φ cosφ







 x′

y′





=



 cos φ − sin φ

sinφ cosφ







 cos θ − sin θ

sin θ cos θ







 x

y





=



 cos θ cos φ− sin θ sin φ −(cos θ sinφ+ sin θ cosφ)

cos θ sinφ+ sin θ cos φ cos θ cosφ− sin θ sinφ







 x

y





=



 cos(θ + φ) − sin(θ + φ)

sin(θ + φ) cos(θ + φ)







 x

y





This is obviously the correct answer, since it shows that the point has been

rotated through the total angle of θ + φ. The correct answer is given by

matrix multiplication as we’ve defined it, and not some other way.

• Matrix multiplication is not commutative: in English, AB 6= BA, for arbitrary matrices

A and B. For instance, if A is 3 × 5 and B is 5 × 2, then AB is 3 × 2, but BA is not

defined. Even if both matrices are square and of the same size, so that both AB and

BA are defined and have the same size, the two products are not generally equal.

Exercise: Write down two 2 × 2 matrices and compute both products. Unless you’ve

been very selective, the two products won’t be equal. Can you think of cases in which

they are equal?

Another example: If

A =



 2

3



 , and B =
(

1 2
)
,

then

AB =



 2 4

3 6



 , while BA = (8).

• Two properties of matrix multiplication:

1. If AB and AC are defined, then A(B + C) = AB + AC.
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2. If AB is defined, and c is a scalar, then A(cB) = c(AB).

(Although we won’t do it here, both these properties can be proven by showing

that, in each equation, the (i, j) entry on the right hand side of the equation is

equal to the (i, j) entry on the left.)

• Definition: The transpose of the matrix A, denoted At, is obtained from A by making

the first row of A into the first column of At, the second row of A into the second

column of At, and so on. Formally,

at
ij = aji.

So 



1 2

3 4

5 6





t

=



 1 3 5

2 4 6



 .

Here’s a standard consequence of the non-commutatitivity of matrix multiplication: If

AB is defined, then (AB)t = BtAt (not AtBt as you might expect).

Example: If

A =



 2 1

3 0



 , and B =



 −1 2

4 3



 ,

then

AB =



 2 7

−3 6



 , so (AB)t =



 2 −3

7 6



 .

And

BtAt =



 −1 4

2 3







 2 3

1 0



 =



 2 −3

7 6





as advertised.

• Definition: A is square if it has the same number of rows and columns. An important

instance is the identity matrix In, which has ones on the main diagonal and zeros

elsewhere:
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Example:

I3 =





1 0 0

0 1 0

0 0 1




.

Often, we’ll just write I without the subscript for an identity matrix, when the dimen-

sion is clear from the context. The identity matrices behave, in some sense, like the

number 1. If A is n×m, then InA = A, and AIm = A.

• Definition: Suppose A and B are square matrices of the same dimension, and suppose

that AB = I = BA. Then B is said to be the inverse of A, and we write this as

B = A−1. Similarly, B−1 = A. For instance, you can easily check that


 2 1

1 1







 1 −1

−1 2



 =



 1 0

0 1



 ,

and so these two matrices are inverses of one another:


 2 1

1 1




−1

=



 1 −1

−1 2



 and



 1 −1

−1 2




−1

=



 2 1

1 1



 .

Example: Not every square matrix has an inverse. For instance

A =



 3 1

3 1





has no inverse.

Exercise: Show that the matrix A in the above example has no inverse. Hint: Suppose

that

B =



 a b

c d





is the inverse of A. Then we must have BA = I. Write this out and show that the

equations for the entries of B are inconsistent.

Exercise: Which 1 × 1 matrices are invertible, and what are their inverses?

Exercise: Show that if

A =



 a b

c d



 , and ad− bc 6= 0, then A−1 =
1

ad − bc



 d −b
−c a



 .
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If ad − bc = 0, then the matrix is not invertible. You should probably memorize this

formula.
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2 Matrices and systems of linear equations

You have all seen systems of linear equations such as

3x+ 4y = 5 (1)

2x− y = 0. (2)

This system can easily be solved: just multiply the 2nd equation by 4, and add the two

resulting equations to get 11x = 5 or x = 5/11. Substituting this into either equation gives

y = 10/11. In this case, a solution exists (obviously) and is unique (there’s just one solution,

namely (5/11, 10/11).

We can write this system as a matrix equation, that is in the form Ax = y.


 3 4

2 −1







 x

y



 =



 5

0



 . (3)

Here

x =



 x

y



 , and y =



 5

0



 .

This works because if we multiply the two matrices on the left, we get the 2 × 1 matrix

equation 

 3x+ 4y

2x− y



 =



 5

0



 .

And the two matrices are equal if both their entries are equal, which gives us the two

equations in (1).

Of course, rewriting the system in matrix form does not, by itself, simplify the way in which

we solve it. The simplification results from the following observation: the variables x and

y can be eliminated from the computation by simply writing down a matrix in which the

coefficients of x are in the first column, the coefficients of y in the second, and the right hand

side of the system is the third column:


 3 4 5

2 −1 0



 . (4)
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We are using the columns as ”place markers” instead of x, y and the = sign. That is, the

first column consists of the coefficients of x, the second has the coefficients of y, and the

third has the numbers on the right hand side of (1).

Definition: The matrix in (2) is called the augmented matrix of the system, and can be

written in matrix shorthand as (A|y).

We can do exactly the same operations on this matrix as we did on the original system1:


 3 4 5

8 −4 0



 : Multiply the 2nd eqn by 4



 3 4 5

11 0 5



 : Add the 1st eqn to the 2nd



 3 4 5

1 0 5
11



 : Divide the 2nd eqn by 11

The second equation now reads 1 · x + 0 · y = 5/11, and we’ve solved for x; we can now

substitute for x in the first equation to solve for y as above.

Even though the solution to the system of equations is unique, it can be solved in many

different ways (all of which, clearly, must give the same answer). Here are two other ways

to solve it, both using the augmented matrix. As before, start with


 3 4 5

2 −1 0



 ,



 1 5 5

2 −1 0



 : Replace eqn 1 with eqn 1 - eqn 2



 1 5 5

0 −11 −10



 : Subtract 2 times eqn 1 from eqn 2



 1 5 5

0 1 10
11



 : Divide eqn 2 by 11 to get y = 10/11

1The purpose of this lecture is to remind you of the mechanics for solving simple linear systems. We’ll

give precise definitions and statements of the algorithms later.
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Now the second equation tells us that y = 10/11, and we can substitute this into the first

equation x+ 5y = 5 to get x = 5/11. We could even take this one step further:


 1 0 5
11

0 1 10
11



 : We added -5*eqn 2 to eqn 1

Now the complete solution can just be read off from the matrix. What we’ve done is to

eliminate x from the second equation, (the 0 in position (2,1)) and y from the first (the 0 in

position (1,2)).

Exercise: What’s wrong with writing the final matrix as


 1 0 0.45

0 1 0.91



?

Exercise: (Do this BEFORE continuing with the text!) The system we just looked at con-

sisted of two linear equations in two unknowns. Each equation, by itself, is the equation of

a line in the plane and so has infinitely many solutions. To solve both equations simultane-

ously, we need to find the points, if any, which lie on both lines. There are 3 possibilities:

(a) there’s just one (the usual case), (b) there is no solution (if the two lines are parallel and

distinct), or (c) there are an infinite number of solutions (if the two lines coincide).

Given all this food for thought, what are the possibilities for 2 equations in 3 unknowns?

That is, what geometric object does each equation represent, and what are the possibilities

for solution(s)?

Let’s throw another variable into the mix and consider two equations in three unknowns:

2x− 4y + z = 1 (5)

4x+ y − z = 3

Rather than solving this directly, we’ll work with the augmented matrix for the system which

is 

 2 −4 1 1

4 1 −1 3



 .
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We proceed in more or less the same manner as above - that is, we try to eliminate x from

the second equation, and y from the first by doing simple operations on the matrix. Before

we start, observe that each time we do such an ”operation”, we are, in effect, replacing the

original system of equations by an equivalent system which has the same solutions. For

instance, if we multiply equation 1 by the number 2, we get a ”new” equation 1 which has

exactly the same solutions as the original. This is also true if we replace, say, equation 2

with equation 2 plus some multiple of equation 1. (Can you see why?)

So, to business:



 1 −2 1
2

1
2

4 1 −1 3



 : Mult eqn 1 by 1/2



 1 −2 1
2

1
2

0 9 −3 1



 : Mult eqn 1 by -4 and add it to eqn 2



 1 −2 1
2

1
2

0 1 −1
3

1
9



 : Mult eqn 2 by 1/9 (6)



 1 0 −1
6

13
18

0 1 −1
3

1
9



 : Add -2*eqn 2 to eqn 1 (7)

The matrix (4) is called an echelon form of the augmented matrix. The matrix (5) is called

the reduced echelon form. (Precise definitions of these terms will be given in the next lecture.)

Either one can be used to solve the system of equations. Working with the echelon form in

(4), the two equations now read

x− 2y + z/2 = 1/2

y − z/3 = 1/9.

So y = z/3 + 1/9. Substituting this into the first equation gives

x = 2y − z/2 + 1/2

= 2(z/3 + 1/9) − z/2 + 1/2

= z/6 + 13/18
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Exercise: Verify that the reduced echelon matrix (5) gives exactly the same solutions. This

is as it should be. All ”equivalent” systems of equations have the same solutions.

We see that for any choice of z, we get a solution to (3). If we take z = 0, then the solution

is x = 13/18, y = 1/9. But if z = 1, then x = 8/9, y = 4/9 is the solution. Similarly for

any other choice of z which for this reason is called a free variable. If we write z = t, a more

familiar expression for the solution is




x

y

z




=





t
6

+ 13
18

t
3

+ 1
9

t




= t





1
6

1
3

1




+





13
18

1
9

0




. (8)

This is of the form r(t) = tv + a, and you will recognize it as the (vector) parametric form

of a line in R3. This (with t a free variable) is called the general solution to the system

(3). If we choose a particular value of t, say t = 3π, and substitute into (6), then we have a

particular solution.

Exercises: Write down the augmented matrix and solve these. If there are free variables,

write your answer in the form given in (6) above. Also, give a geometric interpretation of

the solution set (e.g., the common intersection of three planes in R
3.)

1.

3x+ 2y − 4z = 3

−x− 2y + 3z = 4

2.

2x− 4y = 3

3x+ 2y = −1

x− y = 10

3.

x+ y + 3z = 4

12



It is now time to put on our mathematician’s hats and think about what we’ve just been

doing:

• Can we formalize the algorithm we’ve been using to solve these equations?

• Can we show that the algorithm always works? That is, are we guaranteed to get all

the solutions if we use the algorithm?

To begin with, let’s write down the different ”operations” we’ve been using on the systems

of equations and on the corresponding augmented matrices:

1. We can multiply any equation by a non-zero real number (scalar). The corresponding

matrix operation consists of multiplying a row of the matrix by a scalar.

2. We can replace any equation by the original equation plus a scalar multiple of another

equation. Equivalently, we can replace any row of a matrix by that row plus a multiple

of another row.

3. We can interchange two equations (or two rows of the augmented matrix); we haven’t

needed to do this yet, but sometimes it’s necessary, as we’ll see in a bit.

Definition: These three operations are called elementary row operations.

In the next lecture, we’ll assemble the solution algorithm, and show that it can be reformu-

lated in terms of matrix multiplication.
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3 Elementary row operations and their corresponding

matrices

As we’ll see shortly, each of the 3 elementary row operations can be performed by multiplying

the augmented matrix (A|y) on the left by what we’ll call an elementary matrix. Just so

this doesn’t come as a total shock, let’s look at some simple matrix operations:

• Suppose EA is defined, and suppose the first row of E is (1, 0, 0, . . . , 0). Then the first

row of EA is identical to the first row of A.

• Similarly, if the ith row of E is all zeros except for a 1 in the ith slot, then the ith row

of the product EA is identical to the ith row of A.

• It follows that if we want to change only row i of the matrix A, we should multiply A

on the left by some matrix E with the following property:

Every row except row i should be the ith row of the corresponding identity matrix.

The procedure that we illustrate below can (and is) used to reduce any matrix to echelon

form (not just augmented matrices).

Example: Let

A =



 3 4 5

2 −1 0



 .

1. To multiply the first row of A by 1/3, we can multiply A on the left by the elementary

matrix

E1 =




1
3

0

0 1



 .

The result is

E1A =



 1 4
3

5
3

2 −1 0



 .

You should check this on your own. Same with the remaining computations.
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2. To add -2*row1 to row 2 in the resulting matrix, multiply it by

E2 =



 1 0

−2 1





to obtain

E2E1A =



 1 4
3

5
3

0 −11
3

−10
3



 .

3. Now multiply row 2 of E2E1A by −3/11 using the matrix

E3 =



 1 0

0 − 3
11



 ,

yielding

E3E2E1A =



 1 4
3

5
3

0 1 10
11



 .

4. Finally, we clean out the second column by adding (-4/3)row 2 to row 1. We multiply

by

E4 =



 1 −4
3

0 1





obtaining

E4E3E2E1A =



 1 0 5
11

0 1 10
11



 .

Of course we get the same result as before, so why bother? The answer is that we’re in the

process of developing an algorithm that will work in the general case. So it’s about time to

formally identify our goal in the general case. We begin with some definitions.

Definition: The leading entry of a matrix row is the first non-zero entry in the row, starting

from the left. A row without a leading entry is a row of zeros.

Definition: The matrix R is said to be in echelon form provided that

1. The leading entry of every non-zero row is a 1.
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2. If the leading entry of row i is in position k, and the next row is not a row of zeros,

then the leading entry of row i+ 1 is in position k + j, where j ≥ 1.

3. All zero rows are at the bottom of the matrix.

The following matrices are in echelon form:



 1 ∗
0 1



 ,





1 ∗ ∗
0 0 1

0 0 0




, and





0 1 ∗ ∗
0 0 1 ∗
0 0 0 1




.

Here the asterisks (*) stand for any number at all, including 0.

Definition: The matrix R is said to be in reduced echelon form if (a) R is in echelon form,

and (b) each leading entry is the only non-zero entry in its column. The reduced echelon

form of a matrix is also called the Gauss-Jordan form.

The following matrices are in reduced row echelon form:



 1 0

0 1



 ,





1 ∗ 0 ∗
0 0 1 ∗
0 0 0 0




, and





0 1 0 0

0 0 1 0

0 0 0 1




.

Exercise: Suppose A is 3× 5. What is the maximum number of leading 1’s that can appear

when it’s been reduced to echelon form? Same questions for A5×3. Can you generalize your

results to a statement for Am×n?. (State it as a theorem.)

Once a matrix has been brought to echelon form, it can be put into reduced echelon form

by cleaning out the non-zero entries in any column containing a leading 1. For example, if

R =





1 2 −1 3

0 1 2 0

0 0 0 1




,
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which is in echelon form, then it can be reduced to Gauss-Jordan form by adding (-2)row 2

to row 1, and then (-3)row 3 to row 1. Thus




1 −2 0

0 1 0

0 0 1









1 2 −1 3

0 1 2 0

0 0 0 1



 =





1 0 −5 3

0 1 2 0

0 0 0 1



 .

and 



1 0 −3

0 1 0

0 0 1









1 0 −5 3

0 1 2 0

0 0 0 1



 =





1 0 −5 0

0 1 2 0

0 0 0 1



 .

Note that column 3 cannot be ”cleaned out” since there’s no leading 1 there.

There is one more elementary row operation and corresponding elementary matrix we may

need. Suppose we want to reduce the following matrix to Gauss-Jordan form

A =





2 2 −1

0 0 3

1 −1 2




.

Multiplying row 1 by 1/2, and then adding -row 1 to row 3 leads to

E2E1A =





1 0 0

0 1 0

−1 0 1









1
2

0 0

0 1 0

0 0 1









2 2 −1

0 0 3

1 −1 2




=





1 1 −1
2

0 0 3

0 −2 5
2




.

Now we can clearly do 2 more operations to get a leading 1 in the (2,3) position, and another

leading 1 in the (3,2) position. But this won’t be in echelon form (why not?) We need to

interchange rows 2 and 3. This corresponds to changing the order of the equations, and

evidently doesn’t change the solutions. We can accomplish this by multiplying on the left

with a matrix obtained from I by interchanging rows 2 and 3:

E3E2E1A =





1 0 0

0 0 1

0 1 0









1 1 −1
2

0 0 3

0 −2 5
2




=





1 1 −1
2

0 −2 5
2

0 0 3




.
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Exercise: Without doing any further computation, write down the Gauss-Jordan form for

this matrix.

Exercise: Use elementary matrices to reduce

A =



 2 1

−1 3





to Gauss-Jordan form. You should wind up with an expression of the form

Ek · · ·E2E1A = I.

What can you say about the matrix B = Ek · · ·E2E1?
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4 Elementary matrices, continued

We have identified 3 types of row operations and their corresponding elementary matri-

ces. If you check the previous examples, you’ll find that these matrices are constructed by

performing the given row operation on the identity matrix:

1. To multply rowj(A) by the scalar c use the matrix E obtained from I by multiplying

jth row of I by c.

2. To add crowj(A) to rowk(A), use the identity matrix with its kth row replaced by

(. . . , c, . . . , 1, . . .). Here c is in position j and the 1 is in position k. All other entries

are 0

3. To interchange rows j and k, use the identity matrix with rows j and k interchanged.

4.1 Properties of elementary matrices

1. Elementary matrices are always square. If the operation is to be performed on Am×n,

then the elementary matrix E is m×m. So the product EA has the same dimension

as the original matrix A.

2. Elementary matrices are invertible. If E is elementary, then E−1 is the matrix which

undoes the operation that created E, and E−1EA = IA = A; the matrix followed by

its inverse does nothing to A: Examples:

•

E =



 1 0

−2 1





adds (−2)row1(A) to row2(A). Its inverse is

E−1 =



 1 0

2 1



 ,

which adds (2)row1(A) to row2(A).
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• If E multiplies the second row by 1
2
, then

E−1 =



 1 0

0 2



 .

• If E interchanges two rows, then E = E−1.

Exercises:

1. If A is 3×4, what is the elementary matrix that (a) subtracts 7row3(A) from row2(A)?,

(b) interchanges the first and third rows? (c) multiples row1(A) by 2?

2. What are the inverses of the matrices in exercise 1?

3. Do elementary matrices commute? That is, does it matter in which order they’re

multiplied? Give an example or two to illustrate your answer.

4.2 The algorithm for Gaussian elimination

We can now state the algorithm which will reduce any matrix first to row echelon form, and

then, if needed to reduced echelon form:

1. Begin with the (1, 1) entry. If it’s some a 6= 0, divide through row 1 by a to get a 1

in the (1,1) position. If it is zero, then interchange row 1 with another row to get a

nonzero (1, 1) entry and proceed as above. If every entry in column 1 is zero, go to the

top of column 2 and, by multiplication and permuting rows if necessary, get a 1 in the

(1, 2) slot. If column 2 won’t work, then go to column 3, etc. If you can’t arrange for

a leading 1 somewhere in row 1, then your original matrix was the zero matrix, and

it’s already reduced.

2. You now have a leading 1 in some column. Use this leading 1 and operations of the

type (a)rowi(A) + rowk(A) → rowk(A) to replace every entry in the column below the
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location of the leading 1 by 0. In other words, the column will now look like




1

0
...

0




.

3. Now move one column to the right, and one row down and attempt to repeat the

process, getting a leading 1 in this location. You may need to permute this row with

a row below it. If it’s not possible to get a non-zero entry in this position, move right

one column and try again. At the end of this second procedure, your matrix might

look like 



1 ∗ ∗ ∗
0 0 1 ∗
0 0 0 ∗




,

where the second leading entry is in column 3. Notice that once a leading 1 has

been installed in the (1, 1) position, none of the subsequent row operations will change

any of the elements in column 1. Similarly, for the matrix above, no subsequent row

operations in our reduction process will change any of the entries in the first 3 columns.

4. The process continues until there are no more positions for leading entries – we either

run out of rows or columns or both because the matrix has only a finite number of

each. We have arrived at the row echelon form.

The three matrices below are all in row echelon form:





1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 ∗



 , or





1 ∗ ∗
0 0 1

0 0 0

0 0 0

0 0 0





, or





1 ∗ ∗
0 1 ∗
0 0 1



 (1)

Remark: The description of the algorithm doesn’t involve elementary matrices. As a practical

matter, it’s much simpler to just do the row operation directly on A, instead of writing down
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an elementary matrix and multiplying the matrices. But the fact that we could do this with

the elementary matrices will turn out to be very useful theoretically.

Exercise: Find the echelon form for each of the following:




1 2

3 4

5 6

7 8




,



 0 4

7 −2



 , (3, 4),



 3 2 −1 4

2 −5 2 6





4.3 Observations

• The leading entries progress strictly downward, from left to right. We could just as

easily have written an algorithm in which the leading entries progress downward as we

move from right to left.

• The row echelon form of the matrix is upper triangular: any entry aij with i > j

satisfies aij = 0.

• To continue the reduction to Gauss-Jordan form, it is only necessary to use each leading

1 to clean out any remaining non-zero entries in its column. For the first matrix in (1)

above, the Gauss-Jordan form will look like




1 ∗ 0 0 ∗
0 0 1 0 ∗
0 0 0 1 ∗





(Of course, cleaning out the columns may lead to changes in the entries labelled with

*.)

4.4 Application to the solution(s) of Ax = y

Suppose that we have reduced the augmented matrix (A
...y) to either echelon or Gauss-Jordan

form. Then
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1. If there is a leading 1 anywhere in the last column, the system Ax = y is inconsistent.

That is, there is no x which satisfies the system of equations. Why?

2. If there’s no leading entry in the last column, then at least one solution exists. The

question then becomes “How many solutions are there?” The answer to this question

depends on the number of free variables:

Definition: Suppose the augmented matrix for the linear system Ax = y has been brought

to echelon form. If there is a leading 1 in any column except the last, then the corresponding

variable is called a leading variable. For instance, if there’s a leading 1 in column 3, then x3

is a leading variable.

Definition: Any variable which is not a leading variable is a free variable.

Example: Suppose the echelon form of (A
...y) is



 1 3 3 −2

0 0 1 4



 .

Then the original matrix A is 2 × 3, and if x1, x2, and x3 are the variables in the original

equations, we see that x1 and x3 are leading variables, and x2 is a free variable.

• If the system is consistent and there are no free variables, then the solution is unique

— there’s just one. Here’s an example of this:




1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 ∗
0 0 0 0





• If the system is consistent and there are one or more free variables, then there are

infinitely many solutions. 



1 ∗ ∗ ∗
0 0 1 ∗
0 0 0 0




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Here x2 is a free variable, and we get a different solution for each of the infinite number

of ways we could choose x2.

• Just because there are free variables does not mean that the system is consistent.





1 ∗ ∗
0 0 1

0 0 0





Here x2 is a free variable, but the system is inconsistent because of the leading 1 in

the last column. There are no solutions to this system.
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5 Homogeneous systems

Definition A homogeneous (ho-mo-geen’-ius) system of linear algebraic equations is one in

which all the numbers on the right hand side are equal to 0:

a11x1 + . . .+ a1nxn = 0
...

...

am1x1 + . . .+ amnxn = 0

In matrix form, this reads Ax = 0, where A is m× n,

x =





x1

...

xn





n×1

,

and 0 is n × 1. The homogenous system Ax = 0 always has the solution x = 0. It follows

that any homogeneous system of equations is alwasy consistent. Any non-zero solutions, if

they exist, are said to be non-trivial solutions. These may or may not exist. We can find

out by row reducing the corresponding augmented matrix (A
...0).

Example: Given the augmented matrix

(A
...0) =





1 2 0 −1 0

−2 −3 4 5 0

2 4 0 −2 0




,

row reduction leads quickly to the echelon form





1 2 0 −1 0

0 1 4 3 0

0 0 0 0 0



 .

Observe that nothing happened to the last column — row operations don’t do anything

to a column of zeros. In particular, doing a row operation on a system of homogeneous

equations doesn’t change the fact that it’s homogeneous. For this reason, when working

with homogeneous systems, we’ll just use the matrix A. The echelon form of A is
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



1 2 0 −1

0 1 4 3

0 0 0 0




.

Here, the leading variables are x1 and x2, while x3 and x4 are free variables, since there are

no leading entries in the third or fourth columns. Continuing along, we obtain the Gauss-

Jordan form (You are working out all the details on your scratch paper as we go along, aren’t

you!?)





1 0 −8 −7

0 1 4 3

0 0 0 0



 .

No further simplification is possible; any further row operations will destroy the Guass-

Jordan structure of the columns with leading entries. The resulting system of equations

reads

x1 − 8x3 − 7x4 = 0

x2 + 4x3 + 3x4 = 0,

In principle, we’re done in the sense that we have the solution in hand. However, it’s

customary to rewrite the solution in vector form so that its properties are more clearly

displayed. First, we solve for the leading variables; everything else goes on the right hand

side of the equations:

x1 = 8x3 + 7x4

x2 = −4x3 − 3x4.

Assigning any values we choose to the two free variables x3 and x4 gives us a solution to the

original homogeneous system. This is, of course, whe the variables are called ”free”. We can

distinguish the free variables from the leading variables by denoting them as s, t, u, etc.
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Thus, setting x3 = s, x4 = t, we rewrite the solution in the form

x1 = 8s+ 7t

x2 = −4s− 3t

x3 = s

x4 = t

Better yet, the solution can also be written in matrix (vector) form as

x =





x1

x2

x3

x4




= s





8

−4

1

0




+ t





7

−3

0

1




(1)

We call (1) the general solution to the homogeneous equation. The notation is misleading,

since the left hand side x looks like a single vector, while the right hand side clearly represents

an infinite collection of objects with 2 degrees of freedom. We’ll address this later in the

lecture.

We won’t do it here, but If we were to carry out the above procedure on a general homoge-

neous system Am×nx = 0, we’d establish the following facts:

5.1 Properties of the homogenous system for Amn

• The number of leading variables is ≤ min(m,n).

• The number of non-zero equations in the echelon form of the system is equal to the

number of leading entries.

• The number of free variables plus the number of leading variables = n, the number of

columns of A.

• The homogenous system Ax = 0 has non-trivial solutions if and only if there are free

variables.
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• If there are more unknowns than equations, the homogeneous system always has non-

trivial solutions. Why? This is one of the few cases in which we can tell something

about the solutions without doing any work.

• A homogeneous system of equations is always consistent (i.e., always has at least one

solution).

Exercise: What sort of geometric object does xH represent?

There are two other fundamental properties:

1. Theorem: If x is a solution to Ax = 0, then so is cx for any real number c.

Proof: x is a solution means Ax = 0. But Acx = cAx = c0 = 0, so cx is also a

solution.

2. Theorem: If x and y are two solutions to the homogeneous equation, then so is x + y.

Proof: A(x + y) = Ax + Ay = 0 + 0 = 0.

These two properties constitute the famous principle of superposition which holds for homo-

geneous systems (but NOT for inhomogeneous ones).

Definition: if x and y are two vectors and s and t two scalars, then sx+ ty is called a linear

combination of x and y.

Example: 3x − 4πy is a linear combination of x and y.

We can restate the superposition principle as:

Superposition principle: if x and y are two solutions to the homogenous equation Ax = 0,

then any linear combination of x and y is also a solution.

Remark: This is just a compact way of restating the two properties: If x and y are solutions,

then by property 1, sx and ty are also solutions. And by property 2, their sum sx + ty is a
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solution. Conversely, if sx + ty is a solution to the homogeneous equation for all s, t, then

taking t = 0 gives property 1, and taking s = t = 1 gives property 2.

You have seen this principle at work in your calculus courses.

Example: Suppose φ(x, y) satisfies LaPlace’s equation

∂2φ

∂x2
+
∂2φ

∂y2
= 0.

We write this as

∆φ = 0, where ∆ =
∂2

∂x2
+

∂2

∂y2
.

The differential operator ∆ has the same property as matrix multiplication, namely: if

φ(x, y) and ψ(x, y) are two differentiable functions, and s and t any two real numbers, then

∆(sφ+ tψ) = s∆φ+ t∆ψ.

It follows that if φ and ψ are two solutions to Laplace’s equation, then any linear combination

of φ and ψ is also a solution. The principle of superposition also holds for solutions to the

wave equation, Maxwell’s equations in free space, and Schrödinger’s equation in quantum

mechanics.

Example: Start with ”white” light (e.g., sunlight); it’s a collection of electromagnetic waves

which satisfy Maxwell’s equations. Pass the light through a prism, obtaining red, orange,

. . . , violet light; these are also solutions to Maxwell’s equations. The original solution (white

light) is seen to be a superposition of many other solution, corresponding to the various

different colors. The process can be reversed to obtain white light again by passing the

different colors of the spectrum through an inverted prism.

Referring back to the example (see Eqn (1)), if we set

x =





8

−4

1

0




, and y =





7

−3

0

1




,
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then the susperposition principle tells us that any linear combination of x and y is also a

solution. In fact, these are all of the solutions to this system.

Definition: We write

xH = {sx + ty : ∀ real s, t}

and say that xH is the general solution to the homogeneous system Ax = 0.
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6 The Inhomogeneous system Ax = y, y 6= 0

Definition: The system Ax = y is inhomogeneous if it’s not homogeneous.

Mathematicians love definitions like this! It means of course that the vector y is not the zero

vector. And this means that at least one of the equations has a non-zero right hand side.

As an example, we can use the same system as in the previous lecture, except we’ll change

the right hand side to something non-zero:

x1 + 2x2 − x4 = 1

−2x1 − 3x2 + 4x3 + 5x4 = 2

2x1 + 4x2 − 2x4 = 3

.

Those of you with sharp eyes should be able to tell at a glance that this system is inconsistent

— that is, there are no solutions. Why? We’re going to proceed anyway because this is hardly

an exceptional situation.

The augmented matrix is

(A
...y) =





1 2 0 −1 1

−2 −3 4 5 2

2 4 0 −2 3




.

We can’t discard the 5th column here since it’s not zero. The row echelon form of the

augmented matrix is 



1 2 0 −1 1

0 1 4 3 4

0 0 0 0 1




.

And the reduced echelon form is




1 0 −8 −7 0

0 1 4 3 0

0 0 0 0 1




.
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The third equation, from either of these, now reads

0x1 + 0x2 + 0x3 + 0x4 = 1, or 0 = 1.

This is false! How can we wind up with a false statement? The actual reasoning that led us

here is this: If the original system has a solution, then performing elementary row operations

gives us an equivalent system of equations which has the same solution. But this equivalent

system of equations is inconsistent. It has no solutions; that is no choice of x1, . . . , x4 satisfies

the equation. So the original system is also inconsistent.

In general: If the echelon form of (A
...y) has a leading 1 in any position of the last column,

the system of equations is inconsistent.

Now it’s not true that any inhomogenous system with the same matrix A is inconsistent. It

depends completely on the particular y which sits on the right hand side. For instance, if

y =





1

2

2



 ,

then (work this out!) the echelon form of (A
...y) is





1 2 0 −1 1

0 1 4 3 4

0 0 0 0 0





and the reduced echelon form is





1 0 −8 −7 −7

0 1 4 3 4

0 0 0 0 0




.
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Since this is consistent, we have, as in the homogeneous case, the leading variables x1 and x2,

and the free variables x3 and x4. Renaming the free variables by s and t, and writing out

the equations solved for the leading variables gives us

x1 = 8s+ 7t− 7

x2 = −4s− 3t+ 4

x3 = s

x4 = t

.

This looks like the solution to the homogeneous equation found in the previous section except

for the additional scalars −7 and + 4 in the first two equations. If we rewrite this using

vector notation, we get

x =





x1

x2

x3

x4




= s





8

−4

1

0




+ t





7

−3

0

1




+





−7

4

0

0





Compare this with the general solution xH to the homogenous equation found before. Once

again, we have a 2-parameter family of solutions. We can get what is called a particular

solution by making some specific choice for s and t. For example, taking s = t = 0, we get

the particular solution

xp =





−7

4

0

0




.

We can get other particular solutions by making other choices. Observe that the general

solution to the inhomogeneous system worked out here can be written in the form x = xH+xp.

In fact, this is true in general:

Theorem: Let xp and yp be two solutions to Ax = y. Then their difference xp − yp is a
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solution to the homogeneous equation Ax = 0. The general solution to Ax = y can be

written as xp + xh where xh denotes the general solution to the homogeneous system.

Proof: Since xp and yp are solutions, we have A(xp − yp) = Axp − Ayp = y − y = 0. So

their difference solves the homogeneous equation. Conversely, given a particular solution

xp, then the entire set xp + xh consists of solutions to Ax = y: if z belongs to xh, then

A(xp + z) = Axp + Az = y + 0 = y and so xp + z is a solution to Ax = y.

Going back to the example, suppose we write the general solution to Ax = y in the vector

form

x = sv1 + tv2 + xp,

where

v1 =





8

−4

1

0




, v2 =





7

−3

0

1




, and xp =





−7

4

0

0





Now we e can get another particular solution to the system by taking s = 1, t = 1. This

gives

yp =





8

−3

1

1




.

We can rewrite the general solution as

x = (s− 1 + 1)v1 + (t− 1 + 1)v2 + xp

= (s− 1)v1 + (t− 1)v2 + yp

= ŝv1 + t̂v2 + yp

.
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As ŝ and t̂ run over all possible pairs of real numbers we get exactly the same set of solutions

as before. So the general solution can be written as yp + xh as well as xp + xh! This is a bit

confusing until you remember that these are sets of solutions, rather than single solutions;

(ŝ, t̂) and (s, t) are just different sets of coordinates. But running through either set of

coordinates (or parameters) produces the same set.

Remarks

• Those of you taking a course in differential equations will encounter a similar situation:

the general solution to a linear differential equation has the form y = yp + yh, where

yp is any particular solution to the DE, and yh denotes the set of all solutions to the

homogeneous DE.

xp + z

0

xp

xH

z

Figure 1: The lower plane (the one passing through 0)

represents xH . Given the particular solution xp and a

z in xH , we get another solution to the inhomogeneous

equation. As z varies in xH , we get all the solutions to

Ax = y.

• We can visualize the general solutions to the homogeneous and inhomogeneous equa-

tions we’ve worked out in detail as follows. The set xH is a 2-plane in R
4 which goes

through the origin since x = 0 is a solution. The general solution to Ax = y is ob-

tained by adding the vector xp to every point in this 2-plane. Geometrically, this gives

another 2-plane parallel to the first, but not containing the origin (since x = 0 is not
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a solution to Ax = y unless y = 0). Now pick any point in this parallel 2-plane and

add to it all the vectors in the 2-plane corresponding to xh. What do you get? You

get the same parallel 2-plane! This is why xp + xh = yp + xh.
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7 Square matrices, inverses and related matters

Square matrices are the only matrices that can have inverses, and for this reason, they are

a bit special.

In a system of linear algebraic equations, if the number of equations equals the number of

unknowns, then the associated coefficient matrix A is square. Suppose we row reduce A to

its Gauss-Jordan form. There are two possible outcomes:

1. The Guass-Jordan form for An×n is the n × n identity matrix In (commonly written

as just I).

2. The Gauss-Jordan form for A has at least one row of zeros.

The second case is clear: The GJ form of An×n can have at most n leading entries. If the

GJ form of A is not I, then the GJ form has n − 1 or fewer leading entries, and therefore

has a row of zeros.

In the first case, we can show that A is invertible. To see this, remember that A is reduced

to GJ form by multiplication on the left by a finite number of elementary matrices. If the

GJ form is I, then we have an expression like

EkEk−1 . . . E2E1A = I,

where Ei is the matrix corresponding to the ith row operation used in the reduction. If we

set B = EkEk−1 . . . E2E1, then clearly BA = I and so B = A−1. Furthermore, multiplying

BA on the left by (note the order!!!) E−1
k , then by E−1

k−1, and continuing to E−1
1 , we undo

all the row operations that brought A to GJ form, and we get back A:

(E−1
1 E−1

2 . . . E−1
k−1E

−1
k )BA = (E−1

1 E−1
2 . . . E−1

k−1E
−1
k )I or

(E−1
1 E−1

2 . . . E−1
k−1E

−1
k )(EkEk−1 . . . E2E1)A = (E−1

1 E−1
2 . . . E−1

k−1E
−1
k )

IA = (E−1
1 E−1

2 . . . E−1
k−1E

−1
k )

A = (E−1
1 E−1

2 . . . E−1
k−1E

−1
k )
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We summarize this in a

Theorem: The following are equivalent (i.e., each of the statements below implies and is

implied by any of the others)

• The square matrix A is invertible.

• The Gauss-Jordan or reduced echelon form of A is the identity matrix.

• A can be written as a product of elementary matrices

Example - (fill in the details on your scratch paper)

We start with

A =



 2 1

1 2



 .

We multiply row 1 by 1/2 using the matrix E1:

E1A =




1
2

0

0 1



A =



 1 1
2

1 2



 .

We now add -(row 1) to row 2, using E2:

E2E1A =



 1 0

−1 1







 1 1
2

1 2



 =



 1 1
2

0 3
2



 .

Now multiply the second row by 2
3
:

E3E2E1A =



 1 0

0 2
3







 1 1
2

0 3
2



 =



 1 1
2

0 1



 .

And finally, add −1
2
(row 2) to row 1:

E4E3E2E1A =



 1 −1
2

0 1







 1 1
2

0 1



 =



 1 0

0 1



 .

So

A−1 = E4E3E2E1 =
1

3



 2 −1

−1 2



 .
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Exercises:

• Check the last expression by multiplying the elementary matrices.

• Write A as the product of elementary matrices.

• The individual factors in the product of A−1 are not unique. They depend on how we

do the row reduction. Find another factorization of A−1. (Hint: Start things out a

different way, for example by adding -(row 2) to row 1.)

• Let

A =



 1 1

2 3



 .

Express both A and A−1 as the products of elementary matrices.

7.1 Solutions to Ax = y when A is square

• If A is invertible, then the equation Ax = y has the unique solution A−1y for any right

hand side y. For,

Ax = y ⇐⇒ A−1Ax = A−1y ⇐⇒ x = A−1y.

In this case, the solution to the homogeneous equation is also unique - it’s the trivial

solution.

• If A is not invertible, then there is at least one free variable. So there are non- trivial

solutions to Ax = 0. If y 6= 0, then either Ax = y is inconsistent (the most likely

case) or solutions to the system exist, but there are infinitely many.

Exercise: If the square matrix A is not invertible, why is it “likely” that the inhomo-

geneous equation is inconsistent? “Likely”, in this case, means that the system should

be inconsistent for a y chosen at random.

39



7.2 An algorithm for constructing A−1

The work we’ve just done leads us immediately to an algorithm for constructing the inverse

of A. (You’ve probably seen this before, but now you’ll know why it works!). It’s based on

the following observation: suppose Bn×p is another matrix with the same number of rows as

An×n, and En×n is an elementary matrix which can multiply A on the left. Then E can also

multiply B on the left, and if we form the partitioned matrix

C = (A
...B)n×n+p,

Then, in what should be an obvious notation, we have

EC = (EA
...EB)n×n+p,

where EA is n×n and EB is n×p. (Exercise: Check this for yourself with a simple example.

Better yet, prove it in general.)

The algorithm consists of forming the partitioned matrix C = (A
...I), and doing the row

operations that reduce A to Gauss-Jordan form on the larger matrix C. If A is invertible,

we’ll end up with

Ek . . . E1(A
...I) = (Ek . . . E1A

...Ek . . . E1I)

= (I
...A−1)

.

In words: the same sequence of row operations that reduces A to I will convert I to A−1.

The advantage to doing things this way is that you don’t have to write down the elementary

matrices. They’re working away in the background, as we know from the theory, but if all

we want is A−1, then we don’t need them explicitly; we just do the row operations.

Example:

Let A =





1 2 3

1 0 −1

2 3 1



 .
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Then row reducing (A
...I), we get

(A
...I) =





1 2 3 1 0 0

1 0 −1 0 1 0

2 3 1 0 0 1





r1 ↔ r2





1 0 −1 0 1 0

1 2 3 1 0 0

2 3 1 0 0 1





do col 1





1 0 −1 0 1 0

0 2 4 1 −1 0

0 3 3 0 −2 1





do column 2





1 0 −1 0 1 0

0 1 2 1
2

−1
2

0

0 0 −3 −3
2

−1
2

1





and column 3





1 0 0 1
2

7
6

−1
3

0 1 0 −1
2

−5
6

2
3

0 0 1 1
2

1
6

−1
3





So,

A−1 =





1
2

7
6

−1
3

−1
2

−5
6

2
3

1
2

1
6

−1
3




.

Exercise: Write down a 2 × 2 matrix and do this yourself. Same with a 3 × 3 matrix.
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8 Square matrices continued: Determinants

8.1 Introduction

Determinants give us important information about square matrices, and, as we’ll see in the

next lecture, are essential for the computation of eigenvalues. You have seen determinants

in your precalculus courses. For a 2 × 2 matrix

A =



 a b

c d



 ,

the formula reads

det(A) = ad− bc.

For a 3 × 3 matrix 



a11 a12 a13

a21 a22 a23

a31 a32 a33



 ,

life is more complicated. Here the formula reads

det(A) = a11a22a33 + a13a21a32 + a12a23a31 − a12a21a33 − a11a23a32 − a13a22a31.

Things get worse quickly as the dimension increases. For an n× n matrix A, the expression

for det(A) has n factorial = n! = 1 · 2 · . . . (n− 1) · n terms, each of which is a product of n

matrix entries. Even on a computer, calculating the determinant of a 10 × 10 matrix using

this sort of formula would be unnecessarily time-consuming, and doing a 1000×1000 matrix

would take years!

Fortunately, as we’ll see below, computing the determinant is easy if the matrix happens to

be in echelon form. You just need to do a little bookkeepping on the side as you reduce the

matrix to echelon form.
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8.2 The definition of det(A)

Let A be n× n, and write r1 for the first row, r2 for the second row, etc.

The determinant of A is a real-valued function of the rows of A which we write as

det(A) = det(r1, r2, . . . , rn).

It is completely determined by the following four properties:

1. Multiplying a row by the constant c multiplies the determinant by c:

det(r1, r2, . . . , cri, . . . , rn) = c det(r1, r2, . . . , ri, . . . , rn)

2. If row i is the sum of ri and yi, then the determinant is the sum of the two corresponding

determinants:

det(r1, r2, . . . , ri + yi, . . . , rn) = det(r1, r2, . . . , ri, . . . , rn) + det(r1, r2, . . . ,yi, . . . , rn)

(These two properties are summarized by saying that the determinant is a linear func-

tion of each row.)

3. Interchanging any two rows of the matrix changes the sign of the determinant:

det(. . . , ri, . . . , rj . . .) = − det(. . . , rj, . . . , ri, . . .)

4. The determinant of the n× n identity matrix is 1.

8.3 Some consequences of the definition

• If A has a row of zeros, then det(A) = 0: Because if A = (. . . , 0, . . .), then A also =

(. . . , c0, . . .) for any c, and therefore, det(A) = c det(A) for any c (property 1). This

can only happen if det(A) = 0.
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• If ri = rj, i 6= j, then det(A) = 0: Because then det(A) = det(. . . , ri, . . . , rj, . . .) =

− det(. . . , rj, . . . , ri, . . .), by property 3, so det(A) = − det(A) which means det(A) = 0.

• If B is obtained from A by replacing row i with row i+c(row j), then det(B) = det(A):

det(B) = det(. . . , ri + crj, . . .)

= det(. . . , ri, . . .) + det(. . . , crj, . . .)

= det(A) + c det(. . . , rj, . . .)

= det(A) + 0

The second determinant vanishes because both the ith and jth rows are equal to rj.

• Theorem: The determinant of an upper or lower triangular matrix with non-zero entries

on the main diagonal is equal to the product of the entries on the main diagonal.

Proof: Suppose A is upper triangular. This means all the entries beneath the main

diagonal are zero. This means we can clean out each column above the diagonal by

using a row operation of the type just considered above. The end result is a matrix

with the original non zero entries on the main diagonal and zeros elsewhere. Then

repeated use of property 1 gives the result.

Remark: This is the property we use to compute determinants, because, as we know,

row reduction leads to an upper triangular matrix.

Exercise: If A is an upper triangular matrix with one or more 0s on the main diagonal,

then det(A) = 0.

Examples

1. Let

A =



 2 1

3 −4



 .
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Note that row 1 = (2, 1) = 2(1, 1
2
), so that

det(A) = 2 det



 1 1
2

3 −4





= 2 det



 1 1
2

0 −11
2





= (2)(−11
2
) det



 1 1
2

0 1





= −11

Exercise: Justify each of the above steps.

2. We can derive the formula for a 2 × 2 determinant in the same way: Let

A =



 a b

c d





Then

det(A) = a det



 1 b
a

c d





= det



 1 b
a

0 d− bc
a





= a(d− bc
a
) = ad− bc

Exercises::

• Suppose a = 0 in the matrix A. Then we can’t divide by a and the above computation

won’t work. Show that it’s still true that det(A) = ad− bc.

• Show that the three types of elementary matrices all have nonzero determinants.

• Suppose that rowk(A) is a linear combination of rows i and j, where i 6= j 6= k: So

rk = ari + brj . Show that det(A) = 0.
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There are two other important properties of the determinant, which we won’t prove here

(you can find the proofs in more advanced linear algebra texts):

• The determinant of A is the same as that of its transpose At.

• If A and B are square matrices of the same size, then

det(AB) = det(A) det(B)

From the second of these, it follows that if A is invertible, then det(AA−1) = det(I) = 1 =

det(A) det(A−1), so det(A−1) = 1/ det(A).

Definition: If the (square) matrix A is invertible, then A is said to be non-singular. Other-

wise, A is singular.

Exercises:

• Show that A is invertible ⇐⇒ det(A) 6= 0. (Hint: use the properties of determinants

together with the theorem on GJ form and existence of the inverse.)

• A is singular ⇐⇒ the homogeneous equation Ax = 0 has nontrivial solutions. (Hint:

If you don’t want to do this directly, make an argument that this statement is logically

equivalent to: A is non-singular ⇐⇒ the homogeneous equation has only the trivial

solution.)

• Compute the determinants of the following matrices using the properties of the deter-

minant; justify your work:





1 2 3

1 0 −1

2 3 1




,





1 2 −3 0

2 6 0 1

1 4 3 1

2 4 6 8




, and





1 0 0

π 4 0

3 7 5





46



9 The derivative as a linear transformation

9.1 Redefining the derivative

Matrices appear in many different contexts in mathematics, not just when we need to solve

a system of linear equations. An important instance is linear approximation. Recall from

your calculus course that a differentiable function f can be expanded about any point a in

its domain using Taylor’s theorem. We can write

f(x) = f(a) + f ′(a)(x− a) +
f ′′(c)

2!
(x− a)2,

where c is some point between x and a. The remainder term f ′′(c)
2!

(x− a)2 can be thought of

as the “error” made by using the linear approximation to f at x = a,

f(x) ≈ f(a) + f ′(a)(x− a).

In fact, we can write Taylor’s theorem in the more suggestive form

f(x) = f(a) + f ′(a)(x− a) + ǫ(x, a),

where the error function ǫ(x, a) has the important property

lim
x→a

ǫ(x, a)

x− a
= 0.

(The existence of this limit is another way of saying that the error function “looks like”

(x− a)2.)

This observation gives us an alternative (and in fact, much better) definition of the derivative:

Definition: The real-valued function f is said to be differentiable at x = a if there exists a

number A and a function ǫ(x, a) such that

f(x) = f(a) + A(x− a) + ǫ(x, a),

where

lim
x→a

ǫ(x, a)

x− a
= 0.
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Theorem: This is equivalent to the usual calculus definition.

Proof: If the new definition holds, then

lim
x→a

f(x) − f(a)

x− a
= A+ lim

x→a

ǫ(x)

x− a
= A+ 0 = A,

and A = f ′(a) according to the standard definition. Conversely, if the standard definition of

differentiability holds, then define ǫ to be the error made in the linear approximation:

ǫ(x, a) = f(x) − f(a) − f ′(a)(x− a).

Then

lim
x→a

ǫ(x, a)

x− a
= lim

x→a

f(x) − f(a)

x− a
− f ′(a) = f ′(a) − f ′(a) = 0,

so f can be written in the new form, with A = f ′(a).

Example: Let f(x) = 4 + 2x− x2, and let a = 1. Then we can get a “linear approximation”

by taking any number, say 43, and using it for A, writing f(x) = f(1) + 43(x− 1)+“error

term”, where by definition, the error term is what’s left: that is,

f(x) − f(1) − 43(x− 1) = 4 + 2x− x2 − 5 − 43(x− 1) = 42 − 41x− x2.

But you can see that if we were to define

ǫ(x) = 42 − 41x− x2 (= 42(1 − x) + x(1 − x)),

then

lim
x→1

ǫ

x− 1
= −42 − 1 = −43,

which, you will notice, is not 0. The error term, instead of being purely quadratic in x− 1

(as required by the definition of differentiability), has a linear term: Using Taylor’s theorem

to expand ǫ(x) about x = 1, we get (exercise)

ǫ = 42 − 41x− x2 = −43(x− 1) − (x− 1)2

The only choice for the linear approximation in which the error term is purely quadratic is

f(x) ≈ f(1) + f ′(1)(x− 1).

Exercise: Interpret this geometrically in terms of the slope of various lines passing through

the point (1, f(1)).
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9.2 Generalization to higher dimensions

Our new definition of derivative is the one which generalizes to higher dimensions. We start

with an

Example: Consider a function from R2 to R2, say

f(x) = f



 x

y



 =



 u(x, y)

v(x, y)



 =



 2 + x+ 4y + 4x2 + 5xy − y2

1 − x+ 2y − 2x2 + 3xy + y2





By inspection, as it were, we can separate the right hand side into three parts. We have

f(0) =



 2

1





and the linear part of f is the vector



 x+ 4y

−x+ 2y



 ,

which can be written in matrix form as

Ax =



 1 4

−1 2







 x

y



 .

By analogy with the one-dimensional case, we might guess that

f(x) = f(0) + Ax + an error term of order 2 in x, y.

where A is the matrix

A =





∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y



 (0, 0).

And this suggests the following
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Definition: A function f : Rn → Rm is said to be differentiable at the point x = a ∈ Rn if

there exists an m× n matrix A and a function ǫ(x, a) such that

f(x) = f(a) + A(x − a) + ǫ(x, a),

where

lim
||x−a||→0

ǫ

||x− a|| = 0.

The matrix A is called the derivative of f at x = a, and is denoted by Df(a).

Generalizing the one-dimensional case, it can be shown that if

f(x) =





u1(x)
...

um(x)




,

is differentiable at x = a, then the derivative of f is given by the m × n matrix of partial

derivatives

Df(a) =





∂u1

∂x1
· · · ∂u1

∂xn
...

...
...

∂um

∂x1

· · · ∂um

∂xn





m×n

(a).

Conversely, if all the indicated partial derivatives exist and are continuous at x = a, then

the approximation

f(x) ≈ f(a) +Df(a)(x − a)

is accurate to the second order in x − a.

Exercise: Find the derivative of the function f : R
2 → R

3 at a = (1, 2)t, where

f(x) =





(x+ y)3

x2y3

y/x




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10 Subspaces

Definitions:

• A linear combination of the vectors v1,v2, . . . ,vm is any vector of the form c1v1 +

c2v2 + . . .+ cmvm, where c1, . . . , cm ∈ R.

• A subset V of R
n is a subspace if, whenever v1,v2 ∈ V , and c1, and c2 are any real

numbers, the linear combination c1v1 + c2v2 ∈ V .

Remark: Suppose that V is a subspace, and that x1,x2, . . . ,xm all belong to V . Then

c1x1+c2x2 ∈ V . Therefore, (c1x1+c2x2)+c3x3 ∈ V . Similarly, (c1x1+. . . cm−1xm−1)+

cmxm ∈ V . We say that the subspace V is closed under linear combinations.

Examples:

• The set of all solutions to the homogeneous equation Ax = 0 is a subspace of R
n if A

is m× n.

Proof: Suppose x1 and x2 are solutions; we need to show that c1x1 + c2x2 is also

a solution. Because x1 is a solution, Ax1 = 0. Similarly, Ax2 = 0. Then for any

scalars c1, c2, A(c1x1 + c2x2) = c1Ax1 + c2Ax2 = c10 + c20 = 0. So c1x1 + c2x2 is

also a solution. The set of solutions is closed under linear combinations and so it’s a

subspace.

Definition: This important subspace is called the null space of A, and is denoted

Null(A)

• The set V of all vectors in R
3 which are orthogonal (perpendicular) to the vector

v =





2

−1

3





is a subspace of R
3.
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Proof: x is orthogonal to v (x ⊥ v) means that x•v = 0. So suppose that x1 and x2

are orthogonal to v. Then, using the properties of the dot product, for any constants

c1, c2, we have

(c1x1 + c2x2)•v = c1(x1•v) + c2(x2•v) = c10 + c20 = 0.

And therefore (c1x1 + c2x2) ⊥ v, so we have a subspace.

• The set consisting of the single vector 0 is a subspace of R
n for any n: any linear

combination of elements of this set is a multiple of 0, and hence equal to 0 which is in

the set.

• R
n is a subspace of itself since any linear combination of vectors in the set is again in

the set.

• Take any finite or infinite set S ⊂ R
n

Definition: The span of S is the set of all finite linear combinations of elements of S:

span(S) = {x : x =
n∑

i=1

civi, where vi ∈ S, and n <∞}

Exercise: Show that span(S) is a subspace of R
n.

Definition; If V = span(S), then the vectors in S are said to span the subspace V . (So

the word “span” is used in 2 ways.)

Example: Referring back to the section on solutions to the homogeneous equation, we

had an example for which the general solution to Ax = 0 took the form

xH = {sx1 + tx2, t, s ∈ R}

So xH = span(v1,v2). And, of course, xH = Null(A) is just the null space of the

matrix A. (We will not use the obscure notation xH for this subspace any longer.)

How can you tell if a particular vector belongs to span(S)? You have to show that you

can (or cannot) write it as a linear combination of vectors in S.

52



Example:

Is v =





1

2

3





in the span of 








1

0

1




,





2

−1

2









= {x1,x2}?

Answer: It is if there exist numbers c1 and c2 such that v = c1x1 + c2x2. Writing this

out gives a system of linear equations:

v =





1

2

3




= c1





1

0

1




+ c2





2

−1

2




.

In matrix form, this reads





1 2

0 −1

1 2







 c1

c2



 =





1

2

3





As you can (and should!) verify, this system is inconsistent. No such c1, c2 exist. So

v is not in the span of these two vectors.

• The set of all solutions to the inhomogeneous system Ax = y, y 6= 0 is not a subspace.

To see this, suppose that x1 and x2 are two solutions. We’ll have a subspace if any

linear combination of these two vectors is again a solution. So we compute

A(c1x1 + c2x2) = c1Ax1 + c2Ax2

= c1y + c2y

= (c1 + c2)y,

Since for general c1, c2 the right hand side is not equal to y, this is not a subspace.

NOTE: To show that V is or is not a subspace does not, as a general rule, require any

prodigious intellectual effort. Just assume that x1,x2 ∈ V , and see if c1x1 + c2x2 ∈ V
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for arbitrary scalars c1, c2. If so, it’s a subspace, otherwise no. The scalars must be

arbitrary, and x1,x2 must be arbitrary elements of V . (So you can’t pick two of your

favorite vectors and two of your favorite scalars for this proof - that’s why we always

use ”generic” elements like x1, and c1.)

• Definition: Suppose A is m × n. The m rows of A form a subset of R
n; the span of

these vectors is called the row space of the matrix. Similarly, the n columns of A form

a set of vectors in R
m, and the space they span is called the column space of the matrix

A.

Example: For the matrix

A =





1 0 −1 2

3 4 6 −1

2 5 −9 7




,

the row space of A is span{(1, 0,−1, 2)t, (3, 4, 6,−1)t, (2, 5,−9, 7)t}2, and the column

space is

span










1

3

2




,





0

4

5




,





−1

6

−9




,





2

−1

7










Exercises:

• A plane through 0 in R
3 is a subspace of R

3. A plane which does not contain the origin

is not a subspace. (Hint: what are the equations for these planes?)

• When is a line in R
2 a subspace of R

2?

2In many texts, vectors are written as row vectors for typographical reasons (it takes up less space). But

for computations the vectors should always be written as colums, which is why the symbols for the transpose

appear here
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11 Linear dependence and independence

Definition: A finite set S = {x1,x2, . . . ,xm} of vectors in R
n is said to be linearly dependent

if there exist scalars (real numbers) c1, c2, . . . , cm, not all of which are 0, such that c1x1 +

c2x2 + . . .+ cmxm = 0.

Examples:

1. The vectors

x1 =





1

1

1



 , x2 =





1

−1

2



 , and x3 =





3

1

4





are linearly dependent because 2x1 + x2 − x3 = 0.

2. Any set containing the vector 0 is linearly dependent, because for any c 6= 0, c0 = 0.

3. In the definition, we require that not all of the scalars c1, . . . , cn are 0. The reason for

this is that otherwise, any set of vectors would be linearly dependent.

4. If a set of non-zero vectors is linearly dependent, then one of them can be written as a

linear combination of the others: (We just do this for 3 vectors, but it is true for any

number). Suppose c1x1 + c2x2 + c3x3 = 0, where at least one of the c′s is not zero. If,

say, c2 6= 0, then we can solve for x2:

x2 = (−1/c2)(c1x1 + c3x3).

And similarly if some other coefficient is not zero.

5. In principle, it is an easy matter to determine whethera set S is linearly dependent:

We write down a system of linear algebraic equations and see if there are solutions.

For instance, suppose

S =










1

2

1




,





1

0

−1




,





1

1

1









= {x1,x2,x3}.
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By the definition, S is linearly dependent ⇐⇒ we can find scalars c1, c2, and c3, not

all 0, such that

c1x1 + c2x2 + c3x3 = 0.

We write this equation out in matrix form:





1 1 1

2 0 1

1 −1 1









c1

c2

c3




=





0

0

0





Evidently, the set S is linearly dependent if and only if there is a non-trivial solution

to this homogeneous equation. Row reduction of the matrix leads quickly to





1 1 1

0 1 1
2

0 0 1




.

This matrix is non-singular, so the only solution to the homogeneous equation is the

trivial one with c1 = c2 = c3 = 0. So the vectors are not linearly dependent.

Definition: the set S is linearly independent if it’s not linearly dependent.

What could be clearer? The set S is not linearly dependent if, whenever some linear combi-

nation of the elements of S adds up to 0, it turns out that c1, c2, . . . are all zero. In the last

example above, we assumed that c1x1 + c2x2 + c3x3 = 0 and were led to the conclusion that

all the coefficients must be 0. So this set is linearly independent.

The ”test” for linear independence is the same as that for linear dependence. We set up a

homogeneous system of equations, and find out whether or not it has non-trivial solutions

Exercises:

1. A set S consisting of two different vectors u and v is linearly dependent ⇐⇒ one of

the two is a nonzero multiple of the other. (Don’t forget the possibility that one of
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the vectors could be 0). If neither vector is 0, the vectors are linearly dependent if

they are parallel. What is the geometric condition for three nonzero vectors in R
3 to

be linearly dependent?

2. Find two linearly independent vectors belonging to the null space of the matrix

A =





3 2 −1 4

1 0 2 3

−2 −2 3 −1




.

3. Are the columns of A (above) linearly independent in R
3? Why? Are the rows of A

linearly independent in R
3? Why?

11.1 Elementary row operations

We can show that elementary row operations performed on a matrix A don’t change the row

space. We just give the proof for one of the operations; the other two are left as exercises.

Suppose that, in the matrix A, rowi(A) is replaced by rowi(A)+c·rowj(A). Call the resulting

matrix B. If x belongs to the row space of A, then

x = c1row1(A) + . . .+ cirowi(A) + . . .+ cjrowj(A) + cmrowm(A).

Now add and subtract c · ci · rowj(A) to get

x = c1row1(A) + . . .+ cirowi(A) + c · cirowj(A) + . . .+ (cj − ci · c)rowj(A) + cmrowm(A)

= c1row1(B) + . . .+ cirowi(B) + . . .+ (cj − ci · c)rowj(B) + . . .+ cmrowm(B).

This shows that x can also be written as a linear combination of the rows of B. So any

element in the row space of A is contained in the row space of B.

Exercise: Show the converse - that any element in the row space of B is contained in the

row space of A.
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Definition: Two sets X and Y are equal if X ⊆ Y and Y ⊆ X.

This is what we’ve just shown for the two row spaces.

Exercises:

1. Show that the other two elementary row operations don’t change the row space of A.

2. **Show that when we multiply any matrix A by another matrix B on the left, the rows

of the product BA are linear combinations of the rows of A.

3. **Show that when we multiply A on the right by B, that the columns of AB are linear

combinations of the columns of A

58



12 Basis and dimension of subspaces

12.1 The concept of basis

It follows from what we’ve said above that if S = {e1, . . . , em} spans the subspace V 3 but

is linearly dependent, we can express one of the elements in S as a linear combination of the

others. By relabeling if necessary, we suppose that em can be written as a linear combination

of the others. Then

span(S) = span(e1, . . . , em−1). Why?

If the remaining m−1 vectors are still linearly dependent, we can repeat the process, writing

one of them as a linear combination of the remaining m− 2, relabeling, and then

span(S) = span(e1, . . . , em−2).

We can continue this until we arrive finally at a ”minimal” spanning set, say {e1, . . . , ek}.
Such a set will be called a basis for V :

Definition: The set B = {e1, . . . , ek} is a basis for the subspace V if

• span(B) = V .

• B is linearly independent.

Remark: In definitions like that given above, we really should put ”iff” (if and only if) instead

of just ”if”, and that’s the way you should read it. More precisely, if B is a basis, then B

spans V and is linearly independent. Conversely, if B spans V and is linearly independent,

then B is a basis.

Examples:

3We use the word span in two ways: if V = spanS, then we say that S spans the subspace V .
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• In R
3, the set

B =










1

0

0




,





0

1

0




,





0

0

1









= {e1, e2, e3}

is a basis..

Why? (a) Any vector

v =





a

b

c





in R
3 can be written as v = ae1 + be2 + ce3, so B spans R

3. And (b): if c1e1 + c2e2 +

c3e3 = 0, then 



c1

c2

c3



 =





0

0

0



 ,

which means that c1 = c2 = c3 = 0, so the set is linearly independent.

Definition: The set {e1, e2, e3} is called the standard basis for R
3.

• Exercise: Any 4 vectors in R
3 are linearly dependent and therefore do not form a basis.

You should be able to supply the argument, which amounts to showing that a certain

homogeneous system of equations has a nontrivial solution.

• Exercise: No 2 vectors can span R
3. Why not?

• If a set B is a basis for R
3, then it contains exactly 3 elements. This is a consequence

of the previous two statements.

Exercise: Prove that any basis for R
n has precisely n elements.

• Example: Find a basis for the null space of the matrix

A =





1 0 0 3 2

0 1 0 1 −1

0 0 1 2 3




.
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Solution: Since A is already in Gauss-Jordan form, we can just write down the general

solution to the homogeneous equation. These are the elements of the null space of A.

We have, setting x4 = s, and x5 = t,

x1 = −3s− 2t

x2 = −s + t

x3 = −2s− 3t

x4 = s

x5 = t

,

so the general solution to Ax = 0 is given by KA = {sv1 + tv2 s, t ∈ R}, where

v1 =





−3

−1

−2

1

0





, and v2 =





−2

1

−3

0

1





.

It is obvious by inspection of the last two entries in each that the set B = {v1,v2} is

linearly independent. Furthermore, by construction, the set B spans the null space.

So B is a basis.

12.2 Dimension

As we’ve seen above, any basis for R
n has precisely n elements. Although we’re not going

to prove it here, the same property holds for any subspace of R
n: the number of elements in

any basis for the subspace is the same. Given this, we make the following

Definition: Let V 6= {0} be a subspace of R
n for some n. The dimension of V , written

dim(V ), is the number of elements in any basis of V .

Examples:

• dim(Rn) = n. Why?
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• For the matrix A above, the dimension of the null space of A is 2.

• The subspace V = {0} is a bit peculiar: it doesn’t have a basis according to our

definition, since any subset of V is linearly independent. We extend the definition of

dimension to this case by defining dim(V ) = 0.

Exercises:

1. Show that the dimension of the null space of any matrix R in reduced echelon form is

equal to the number of free variables in the echelon form.

2. Show that the dimension of the set

{(x, y, z) such that 2x− 3y + z = 0}

is two.
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13 The rank-nullity (dimension) theorem

13.1 Rank and nullity of a matrix

Definition: The nullity of the matrix A is the dimension of the null space of A, and is denoted

by N(A).

Examples: The nullity of I is 0. The nullity of the 3 × 5 matrix considered above is 2. The

nullity of 0m×n is n.

Definition: The rank of the matrix A is the dimension of the row space of A, and is denoted

R(A)

Examples: The rank of In×n is n; the rank of 0m×n is 0. The rank of the 3 × 5 matrix

considered above is 3.

Definition: The matrix B is said to be row equivalent to A if B can be obtained from A by

a finite sequence of elementary row operations. In pure matrix terms, this means precisely

that

B = EkEk−1 · · ·E2E1A,

where E1, . . . , Ek are elementary row matrices. We can now establish two important results:

Theorem: If B is row equivalent to A, then Null(B) =Null(A).

Proof: Suppose x ∈ Null(A). Then Ax = 0. Since B = Ek · · ·E1A, it follows that Bx =

Ek · · ·E1Ax = Ek · · ·E10 = 0, so x ∈ Null(B), and therefore that Null(A) ⊆ Null(B).

Conversely, if x ∈ Null(B), then Bx = 0. But B = CA, where C is invertible, being

the product of elementary matrices. Thus Bx = CAx = 0. Multiplying by C−1 gives

Ax = C−10 = 0, so x ∈ Null(A), and Null(B) ⊆ Null(A). So the two sets are equal, as

advertised.

Theorem: If B is row equivalent to A, then the row space of B is identical to that of A
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Proof: Suppose first that B = EA, where E is the matrix of some elementary row operation.

If E interchanges rows, then the span of the new set of rows is the same as the span of the

old set, so the row space doesn’t change. Similarly if E multiplies one row by a nonzero

scalar. Finally, if E is the operation corresponding to rowi(A) → rowi(A)+ c · rowj(A), then

the span of the rows of the new matrix is the same as the span of the rows of A (why?).

Since the theorem is true for any single row operation, it’s true for any finite number of

them, which completes the proof.

Summarizing these results: Row operations do not change either the row space or the null

space of A.

Corollary 1: If R is the Gauss-Jordan form of A, then R has the same null space and row

space as A.

Corollary 2: If B is row equivalent to A, then R(B) = R(A), and N(B) = N(A).

Exercise: R(A) is equal to the number of leading 1’s in the echelon form of A.

The following result may be somewhat surprising:

Theorem: The number of linearly independent rows of the matrix A is equal to the number

of linearly independent columns of A. In particular, the rank of A is also equal to the number

of linearly independent columns.

Proof (sketch): As an example, suppose that columns i, j, and k are linearly independent,

with

coli(A) = 2colj(A) − 3colk(A).

You should be able to convince yourself that doing any row operation on the matrix A

doesn’t affect this equation. Even though the row operation changes the entries of the

various columns, it changes them all in the same way, and this equation continues to hold.

The span of the columns can, and generally will change under row operations (why?), but

this doesn’t affect the result.
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The actual proof would consist of the following steps: (1) identify a maximal linearly in-

dependent set of columns of A, (2) argue that this set remains linearly independent if row

operations are done on A. (3) Then it follows that the number of linearly independent

columns in the reduced echelon form of A is the same as the number of linearly independent

columns in A. The number of linearly independent columns of A is then just the number of

leading entries in the reduced echelon form of A which is, as we know, the same as the rank

of A.

13.2 The rank-nullity theorem

This is also known as the dimension theorem, and version 1 (we’ll see another later in the

course) goes as follows:

Theorem: Let A be m× n. Then

n = N(A) +R(A),

where n is the number of columns of A.

Let’s assume, for the moment, that this is true. What good is it? Answer: You can read

off both the rank and the nullity from the echelon form of the matrix A. Suppose A can be

row-reduced to 



1 ∗ ∗ ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 ∗



 .

Then it’s clear (why?) that the dimension of the row space is 3, or equivalently, that the

dimension of the column space is 3. Since there are 5 columns altogether, the dimension

theorem says that n = 5 = 3 + N(A), so N(A) = 2. We can therefore expect to find two

linearly independent solutions to the homogeneous equation Ax = 0.

Alternatively, inspection of the echelon form of A reveals that there are precisely 2 free

variables, x2 and x5. So we know that N(A) = 2 (why?), and therefore, rank(A) = 5−2 = 3.
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Proof of the theorem: This is, at this point, almost trivial. We have shown above that the

rank of A is the same as the rank of the Gauss-Jordan form of A which is clearly equal to

the number of leading entries in the Gauss-Jordan form. We also know that the dimension

of the null space is equal to the number of free variables in the reduced echelon (GJ) form

of A. And we know further that the number of free variables plus the number of leading

entries is exactly the number of columns. So

n = N(A) +R(A),

as claimed.
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14 Change of basis

When we first set up a problem in mathematics, we normally use the most familiar coordi-

nates. In R
3, this means using the Cartesian coordinates x, y, and z. In vector terms, this

is equivalent to using what we’ve called the standard basis in R
3; that is, we write





x

y

z




= x





1

0

0




+ y





0

1

0




+ z





0

0

1




= xe1 + ye2 + ze3,

where {e1, e2, e3} is the standard basis.

But, as you know, for any particular problem, there is often another coordinate system that

simplifies the problem. For example, to study the motion of a planet around the sun, we put

the sun at the origin, and use polar or spherical coordinates. This happens in linear algebra

as well.

Example: Let’s look at a simple system of two first order linear differential equations

x′1 = 3x1 + x2

x′2 = x1 + 3x2

. (1)

Here, we seek functions x1(t), and x2(t) such that both equations hold simultaneously. Now

there’s no problem solving a single differential equation like

x′ = 3x.

In fact, we can see by inspection that x(t) = ce3t is a solution for any scalar c. The difficulty

with the system (1) is that x1 and x2 are ”coupled”, and the two equations must be solved

simulataneously. There are a number of straightforward ways to solve this system which

you’ll learn when you take a course in differential equations, and we won’t worry about that

here.

But there’s also a sneaky way to solve (1) by changing coordinates. We’ll do this at the end

of the lecture. First, we need to see what happens in general when we change the basis.
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For simplicity, we’re just going to work in R
2; generalization to higher dimensions is (really!)

straightforward.

Suppose we have a basis {e1, e2} for R
2. It doesn’t have to be the standard basis. Then, by

the definition of basis, any vector v ∈ R
2 can be written as a linear combination of e1 and e2.

That is, there exist scalars c1, c2 such that v = c1e1 + c2e2.

Definition: The numbers c1 and c2 are called the coordinates of v in the basis {e1, e2}. And

ve =



 c1

c2





is called the coordinate vector of v in the basis {e1, e2}.

Theorem: The coordinates of the vector v are unique.

Proof: Suppose there are two sets of coordinates for v. That is, suppose that v = c1e1+c2e2,

and also that v = d1e1 + d2e2. Subtracting the two expressions for v gives

0 = (c1 − d1)e1 + (c2 − d2)e2.

But {e1, e2} is linearly independent, so the coefficients in this expression must vanish: c1 −
d1 = c2 − d2 = 0. That is, c1 = d1 and c2 = d2, and the coordinates are unique, as claimed.

Example: Let us use the basis

{e1, e2} =








 1

2



 ,



 −2

3








 ,

and suppose

v =



 3

5



 .

Then we can find the coordinate vector ve in this basis in the usual way, by solving a system

of linear equations. We are looking for numbers c1 and c2 (the coordinates of v in this basis)

such that

c1



 1

2



 + c2



 −2

3



 =



 3

5



 .
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In matrix form, this reads

Ave = v,

where

A =



 1 −2

2 3



 , v =



 3

5



 , and ve =



 c1

c2



 .

We solve for ve by multiplying both sides by A−1:

ve = A−1v = (1/7)



 3 2

−2 1







 3

5



 = (1/7)



 19

−1



 =



 19/7

−1/7





Exercise: Find the coordinates of the vector v = (−2, 4)t in this basis.

14.1 Notation

In this section, we’ll develop a compact notation for the above computation that is easy to

remember. Start with an arbitrary basis {e1, e2} and an arbitrary vector v. We know that

v = c1e1 + c2e2,

where 

 c1

c2



 = ve

is the coordinate vector. We see that the expression for v is a linear combination of two

column vectors. And we know that such a thing can be obtained by writing down a certain

matrix product:

If we define the 2× 2 matrix E = (e1
...e2) then the expression for v can be simply written as

v = E · ve.

Now suppose that {f1, f2} is another basis for R
2. Then the same vector v can also be

written uniquely as a linear combination of these vectors. Of course it will have different
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coordinates, and a different coordinate vector vf . In matrix form, we’ll have

v = F · vf .

Exercise: Let {f1, f2} be given by








 1

1



 ,



 1

−1








 .

If

v =



 3

5



 ,

(same vector as above) find vf and verify that v = F · vf = E · ve.

Remark: This works just the same in R
n, where E = (e1

... · · · ...en) is n× n, and ve is n× 1.

Continuing along with our examples, since E is a basis, the vectors f1 and f2 can each be

written as linear combinations of e1 and e2. So there exist scalars a, b, c, d such that

f1 =



 1

1



 = a



 1

2



+ b



 −2

3





f2 =



 1

−1



 = c



 1

2



+ d



 1

2





We won’t worry now about the precise values of a, b, c, d, since you can easily solve for them.

Definition: The change of basis matrix from E to F is

P =



 a c

b d



 .

Note that this is the transpose of what you might think it should be; this is because we’re

doing column operations, and it’s the first column of P which takes linear combinations of

the columns of E and replaces the first column of E with the first column of F , and so on.

In matrix form, we have

F = E · P
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and, of course, E = F · P−1.

Exercise: Find a, b, c, d and the change of basis matrix from E to F .

Given the change of basis matrix, we can figure out everything else we need to know.

• Suppose v has the known coordinates ve in the basis E, and F = E · P . Then

v = E · ve = F · P−1ve = F · vf .

Remember that the coordinate vector is unique. This means that

vf = P−1ve.

If P changes the basis from E to F , then P−1 changes the coordinates from ve to vf
4.

Compare this with the example at the end of the first section.

• For any nonsingular matrix P , the following holds:

v = E · ve = E · P · P−1 · ve = G · vg,

where P is the change of basis matrix from E to G: G = E · P , and P−1 · ve = vg are

the coordinates of the vector v in this basis.

• This notation is consistent with the standard basis as well. Since

e1 =



 1

0



 , and e2 =



 0

1



 ,

we have E = I2, and v = I2 · v

Remark: When we change from the standard basis to the basis {e1, e2}, the corre-

sponding matrices are I (for the standard basis) and E. So according to what’s just

been shown, the change of basis matrix will be the matrix P which satisfies

E = I · P.

In other words, the change of basis matrix in this case is just the matrix E.

4Warning: Some texts use P
−1 instead of P for the change of basis matrix. This is a convention, but you

need to check.
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First example, cont’d We can write the system of differential equations in matrix form as

v̇ =



 1 3

3 1



v = Av, ((2)

where the dot indicates d/dt. We change from the standard basis to F via the matrix

F =



 1 1

1 −1



 .

Then, according to what we’ve just worked out, we’ll have

vf = F−1v, and taking derivatives, v̇f = F−1v̇.

So using v = Fvf and substituting into (2), we find

F v̇f = AFvf , or v̇f = F−1AFvf .

Now an easy computation shows that

F−1AF =



 4 0

0 −2



 ,

and in the new coordinates, we have the system

v̇f1 = 4vf1

v̇f2 = −2vf2

In the new coordinates, the system is now decoupled and easily solved to give

vf1 = c1e
4t

vf2 = c2e
−2t,

where c1, c2 are arbitrary constants of integration. We can now transform back to the original

(standard) basis to get the solution in the original coordinates:

v = Fvf =



 v1

v2



 =



 1 1

1 −1







 c1e
4t

c2e
−2t



 =



 c1e
4t + c2e

−2t

c1e
4t − c2e

−2t



 .
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A reasonable question at this point is ”How does one come up with this new basis F ? It

clearly was not chosen at random. The answer has to do with the eigenvalues and eigenvectors

of the coefficient matrix of the differential equation, namely the matrix

A =



 1 3

3 1



 .

All of which brings us to the subject of the next lecture.
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15 Matrices and Linear transformations

We have been thinking of matrices in connection with solutions to linear systems of equations

like Ax = b. It is time to broaden our horizons a bit and start thinking of matrices as

functions. In particular, if A is m× n, we can use A to define a function fA from R
n to R

m

which sends v ∈ R
n to Av ∈ R

m. That is, fA(v) = Av.

Example: Let

A2×3 =



 1 2 3

4 5 6



 .

If

v =





x

y

z




∈ R

3,

then

fA(v) = Av =



 1 2 3

4 5 6









x

y

z




=



 x+ 2y + 3z

4x+ 5y + 6z





sends the vector v ∈ R
3 to Av ∈ R

2.

Definition: A function f : R
n → R

m is said to be linear if

• f(v1 + v2) = f(v1) + f(v2), and

• f(cv) = cf(v) for all v1,v2 ∈ R
n and for all scalars c.

A linear function f is also known as a linear transformation.
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Examples:

• Define f : R
3 → R by

f





x

y

z




= 3x− 2y + z.

Then f is linear because for any

v1 =





x1

y1

z1



 , and v2 =





x2

y2

z2



 ,

we have

f(v1 + v2) = f





x1 + x2

y1 + y2

z1 + z2




= 3(x1 + x2) − 2(y1 + y2) + (z1 + z2).

And the right hand side can be rewritten as (3x1 − 2y1 + z1) + (3x2 − 2y2 + z2), which

is the same as f(v1) + f(v2. So the first property holds. So does the second, since

f(cv) = 3cx− 2cy + cz = c(3x− 2y + z) = cf(v).

• Notice that the function f is actually fA for the right A: if A1×3 = (3,−2, 1), then

f(v) = Av.

• If Am×n is a matrix, then fA : R
n → R

m is a linear transformation because fA(v1+v2) =

A(v1 + v2) = Av1 + Av2 = fA(v1) + fA(v2). And A(cv) = cAv ⇒ fA(cv) = cfA(v).

(These are two fundamental properties of matrix multiplication.)

• Although we don’t give the proof, it can be shown that any linear transformation can

be written as fA for a suitable matrix A.

• The derivative (see Lecture 9) is a linear transformation. Df(a) is the linear approxi-

mation to f(x) − f(a).

• There are many other examples of linear transformations; some of the most interesting

ones do not go from R
n to R

m:
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1. If f and g are differentiable functions, then

d

dx
(f + g) =

df

dx
+
dg

dx
, and

d

dx
(cf) = c

df

dx
.

Thus the function D(f) = df/dx is linear.

2. If f is continuous, then we can define

If(x) =

∫ x

0

f(s) ds,

and I is linear, by well-known properties of the integral.

3. The Laplace operator, ∆, defined before, is linear.

4. Let y be twice continuously differentiable and define

L(y) = y′′ − 2y′ − 3y.

Then L is linear, as you can (and should!) verify.

Linear transformations acting on functions, like the above, are generally known as linear

operators. They’re a bit more complicated than matrix multiplication operators, but

they have the same essential property of linearity.

Exercises:

1. Give an example of a function from R
2 to itself which is not linear.

2. Identify all the linear transformations from R to R.

3. If f : R
n → R

m is linear then

Ker(f) := {v ∈ R
n such that f(v) = 0}

is a subspace of R
n, called the kernel of f .

4. If f : R
n → R

m is linear, then

Range(f) = {y ∈ R
m such that y = f(v) for some v}

is a subspace of R
m called the range of f .
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Everything we’ve been doing regarding the solution of linear systems of equations can be

recast in the framework of linear transformations. In particular, if fA is multiplication by

some matrix A, then the range of fA is just the set of all y such that the linear system

Av = y has a solution (i.e., it’s the column space of A). And the kernel of fA is the set of

all solutions to the homogeneous equation Av = 0.

15.1 The rank-nullity theorem - version 2

Recall that for Am×n, we have n = N(A)+R(A). Now think of A as the linear transformation

fA : R
n → R

m. The domain of fA is R
n; Ker(fA) is the null space of A, and Range(fA) is the

column space of A. We can therefore restate the rank-nullity theorem as the

Dimension theorem: Let fA : R
n → R

m. Then

dim(domain(fA) = dim(Range(fA)) + dim(Null(fA)).

15.2 Choosing a useful basis for A

We now want to study square matrices, regarding an n×nmatrix A as a linear transformation

from R
n to itself. We’ll just write Av for fA(v) to simplify the notation, and to keep things

really simple, we’ll just talk about 2 × 2 matrices – all the problems that exist in higher

dimensions are present in R
2.

There are several questions that present themselves:

• Can we visualize the linear transformation x → Ax? One thing we can’t do in general

is draw a graph! Why not?

• Connected with the first question is: can we choose a better coordinate system in which

to view the problem?
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The answer is not an unequivocal ”yes” to either of these, but we can generally do some

useful things.

To pick up at the end of the last lecture, note that when we write fA(v) = y = Av, we are

actually using the coordinate vector of v in the standard basis. Suppose we change to some

other basis {e1, e2} using the invertible matrix E. Then we can rewrite the equation in the

new coordinates and basis:

We have v = Eve, and y = Eye, so

y = Av

Eye = AEve, and

ye = E−1AEve

That is, the matrix equation y = Av is given in the new basis by the equation

ye = E−1AEve.

Definition: The matrix E−1AE will be denoted by Ae and called the matrix of the linear

transformation in the basis E.

We can now restate the second question: Can we find a nonsingular matrix E so that E−1AE

is particularly useful?

Definition: The matrix A is diagonal if the only nonzero entries lie on the main diagonal.

That is, aij = 0 if i 6= j.

Example:

A =



 4 0

0 −3





is diagonal. This is useful because we can (partially) visualize the linear transformation

corresponding to multiplication by A: a vector v lying along the first coordinate axis is

mapped to 4v, a multiple of itself. A vector w lying along the second coordinate axis is

also mapped to a multiple of itself: Aw = −3w. It’s length is tripled, and its direction is

78



reversed. An arbitrary vector (a, b)t is a linear combination of the basis vectors, and it’s

mapped to (4a,−3b)t.

It turns out that we can find vectors like v and w, which are mapped to multiples of them-

selves, without first finding the matrix E. This is the subject of the next few sections.

15.3 Eigenvalues and eigenvectors

Definitions: If a vector v 6= 0 satisfies the equation Av = λv, for some real number λ,

then λ is said to be an eigenvalue of the matrix A, and v is said to be an eigenvector of A

corresponding to λ.

Example: If

A =



 2 3

3 2



 , and v =



 1

1



 ,

then

Av =



 5

5



 = 5v.

So λ = 5 is an eigenvalue of A, and v an eigenvector corresponding to this eigenvalue.

Remark: Note that the definition of eigenvector requires that v 6= 0. The reason for this is

that if v = 0 were allowed, then any number λ would be an eigenvalue since the statement

A0 = λ0 holds for any λ. On the other hand, we can have λ = 0, and v 6= 0. See the

exercise below.

Exercises:

1. Show that 

 1

−1





is also an eigenvector of the matrix A above. What’s the eigenvalue?
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2. Eigenvectors are not unique. Show that if v is an eigenvector for A, then so is cv, for

any real number c 6= 0.

3. Suppose λ is an eigenvalue of A.

Definition:

Eλ = {v ∈ R
n such that Av = λv}

is called the eigenspace of A corresponding to the eigenvalue λ.

Show that Eλ is a subspace of R
n. (N.b: the definition of Eλ does not require v to be

an eigenvector of A, so v = 0 is allowed; otherwise, it wouldn’t be a subspace.)

4. E0 = Ker(fA) is just the null space of the matrix A.

Example: The matrix

A =



 0 −1

1 0



 =



 cos(π/2) − sin(π/2)

sin(π/2) cos(π/2)





represents a counterclockwise rotation through the angle π/2. Apart from 0, there is no

vector which is mapped by A to a multiple of itself. So not every matrix has eigenvectors.

Exercise: What are the eigenvalues of this matrix?
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16 Computations with eigenvalues and eigenvectors

How do we find the eigenvalues and eigenvectors of a matrix A?

Suppose v 6= 0 is an eigenvector. Then for some λ ∈ R, Av = λv. Then

Av − λv = 0, or, equivalently

(A− λI)v = 0.

So v is a nontrivial solution to the homogeneous system of equations determined by the

square matrix A−λI. This can only happen if det(A−λI) = 0. On the other hand, if λ is a

real number such that det(A−λI) = 0, this means exactly that there’s a nontrivial solution

to (A − λI)v = 0. So λ is an eigenvalue, and v 6= 0 is an eigenvector. Summarizing, we

have the

Theorem: λ is an eigenvalue of A if and only if det(A− λI) = 0.

For a 2 × 2 matrix

A =



 a b

c d



 ,

we compute

det(A− λI) = det



 a− λ b

c d− λ



 = λ2 − (a+ d)λ+ (ad− bc).

This polynomial of degree 2 is called the characteristic polynomial of the matrix A, and is

denoted by pA(λ). By the above theorem, the eigenvalues of A are just the roots of the

characteristic polynomial. The equation for the roots, pA(λ) = 0, is called the characteristic

equation of A.

Example: If

A =



 1 3

3 1



 .

Then

A− λI =



 1 − λ 3

3 1 − λ



 , and pA(λ) = (1 − λ)2 − 9 = λ2 − 2λ− 8.
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This factors as pA(λ) = (λ− 4)(λ+ 2), so there are two eigenvalues: λ1 = 4, and λ2 = −2.

We should be able to find an eigenvector for each of these eigenvalues. To do so, we must

find a nontrivial solution to the corresponding homogeneous equation

(A− λI)v = 0. For λ1 = 4, we have the homogeneous system


 1 − 4 3

3 1 − 4



v =



 −3 3

3 −3







 x1

x2



 =



 0

0



 .

This leads to the two equations −3x1 + 3x2 = 0, and 3x1 − 3x2 = 0. Notice that the first

equation is a multiple of the second, so there’s really only one equation to solve.

Exercise: What property of the matrix A − λI guarantees that one of these equations will

be a multiple of the other?

The general solution to the homogeneous system can be written as


 x1

x2



 = c



 1

1



 , where c is arbitrary.

This one-dimensional subspace of R
2 is what we called E4 in the last section.

We get an eigenvector by choosing any nonzero element of E4. Taking c = 1 gives the

eigenvector

v1 =



 1

1





Exercises:

1. Find the subspace E−2 and show that

v2 =



 1

−1





is an eigenvector corresponding to λ2 = −2.

2. Find the eigenvalues and corrsponding eigenvectors of the matrix

A =



 1 2

3 0



 .
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3. Same question for the matrix

A =



 1 1

0 1



 .

16.1 Some observations

What are the possibilities for the characteristic polynomial pA? It’s of degree 2, so there are

3 cases:

1. The two roots are real and distinct: λ1 6= λ2, λ1, λ2 ∈ R. We just worked out an

example of this.

2. The roots are complex conjugates of one another: λ1 = a + ib, λ2 = a− ib.

Example:

A =



 2 3

−3 2



 .

Here, pA(λ) = λ2 − 4λ+ 13 = 0 has the two roots λ± = 2 ± 3i. Now there’s certainly

no real vector v with the property that Av = (2 + 3i)v, so there are no eigenvectors

in the usual sense. But there are complex eigenvectors corresponding to the complex

eigenvalues. For example, if

A =



 0 −1

1 0



 ,

pA(λ) = λ2 + 1 has the complex eigenvalues λ± = ±i. You can easily check that

Av = iv, where

v =



 i

1



 .

We won’t worry about complex eigenvectors in this course.

3. pA(λ) has a repeated root. An example is

A =



 1 0

0 1



 = I2.
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Here pA(λ) = (1 − λ)2 and λ = 1 is the only eigenvalue. The matrix A − λI is the

zero matrix. So there are no restrictions on the components of the eigenvectors. Any

nonzero vector in R
2 is an eigenvector corresponding to this eigenvalue.

But for

A =



 1 1

0 1



 ,

as you saw in the exercise above, we also have pA(λ) = (1 − λ)2. In this case, though,

there is just a one-dimensional eigenspace.

16.2 Diagonalizable matrices

Example: In the preceding lecture, we showed that, for the matrix

A =



 1 3

3 1



 ,

if we change the basis using

E = (e1
...e2) =



 1 1

1 −1



 ,

then, in this new basis, we have

AE = E−1AE =



 4 0

0 −2



 .

The matrix AE is called a diagonal matrix; the only non-zero entries lie on the main diagonal.

Definition: Let A be n×n. We say thatA is diagonalizable if there exists a basis {e1, . . . , en} of R
n,

with corresponding change of basis matrix E = (e1
... · · · ...en) such that

AE = E−1AE

is diagonal.
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In the example, our matrix E has the form E = (e1
...e2), where the two columns are two

eigenvectors of A corresponding to the eigenvalues λ = 4, and λ = 2. In fact, this is the

general recipe:

Theorem: The matrix A is diagonalizable ⇐⇒ there is a basis for R
n consisting of eigen-

vectors of A.

Proof: Suppose {e1, . . . , en} is a basis for R
n with the property that Aej = λjej, 1 ≤ j ≤ n.

Form the matrix E = (e1
...e2

... · · · ...en). We have

AE = (Ae1
...Ae2

... · · · ...Aen)

= (λ1e1
...λ2e2

... · · · ...λnen)

= ED,

where D = Diag(λ1, λ2, . . . , λn). Evidently, AE = D and A is diagonalizable. Conversely, if

A is diagonalizable, then the columns of the matrix which diagonalizes A are the required

basis of eigenvectors.

So, in R
2, a matrix A can be diagonalized ⇐⇒ we can find two linearly independent

eigenvectors. (To diagonalize a matrix A means to find a matrix E such that E−1AE is

diagonal.)

Examples:

• Diagonaize the matrix

A =



 1 2

3 0



 .

Solution: From the previous exercise set, we have λ1 = 3, λ2 = −2 with corresponding

eigenvectors

v1 =



 1

1



 , v2 =



 −2

3



 .
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We form the matrix

E = (v1
...v2) =



 1 −2

1 3



 , with E−1 = (1/5)



 3 2

−1 1



 ,

and check that E−1AE = Diag(3,−2). Of course, we don’t really need to check: the

result is guaranteed by the theorem above!

• The matrix

A =



 1 1

0 1





has only the one-dimensional eigenspace spanned by the eigenvector



 1

0



 .

There is no basis of R
2 consisting of eigenvectors of A, so this matrix cannot be diago-

naized.

This can only happen in the case of repeated or complex roots because of the following

Theorem: If λ1 and λ2 are distinct eigenvalues of A, with corresponding eigenvectors v1, v2,

then {v1,v2} are linearly independent.

Proof: Suppose c1v1 + c2v2 = 0, where one of the coefficients, say c1 is nonzero. Then

v1 = αv2, for some α 6= 0. (If α = 0, then v1 = 0 and v1 by definition is not an eigenvector.)

Multiplying both sides on the left by A gives

Av1 = λ1v1 = αAv2 = αλ2v2.

On the other hand, multiplying the same equation by λ1 and then subtracting the two

equations gives

0 = α(λ2 − λ1)v2

which is impossible, since neither α nor (λ1 − λ2) nor v2 = 0.
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It follows that if A2×2 has two distinct eigenvalues, then it has two linearly independent

eigenvectors and can be diagonalized. In a similar way, if An×n has n distinct eigenvalues, it

is diagonalizable.

Exercises:

1. Find the eigenvalues and eigenvectors of the matrix

A =



 2 1

1 3



 .

Form the matrix E and verify that E−1AE is diagonal.

2. List the two reasons a matrix may fail to be diagonalizable. Give examples of both

cases.

3. An arbitrary 2 × 2 symmetric matrix (A = At) has the form

A =



 a b

b c



 ,

where a, b, c can be any real numbers. Show that A always has real eigenvalues. When

are the two eigenvalues equal?
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17 Inner products

Up until now, we have only examined the properties of vectors and matrices in R
n. But

normally, when we think of R
n, we’re really thinking of n-dimensional Euclidean space - that

is, R
n together with the dot product. Once we have the dot product, or more generally an

”inner product” on R
n, we can talk about angles, lengths, distances, etc.

Definition: An inner product on R
n is a function

( , ) : R
n × R

n → R

with the following properties:

1. It is bilinear, meaning it’s linear in each argument:

• (c1x1 + c2x2,y) = c1(x1,y) + c2(x2,y), and

• (x, c1y1 + c2y2) = c1(x,y1) + c2(x,y2).

2. It is symmetric: (x,y) = (y,x), ∀x,y ∈ R
n.

3. It is non-degenerate: If (x,y) = 0, ∀y ∈ R
n, then x = 0.

The inner product is said to be positive definite if, in addition

4. (x,x) > 0 whenever x 6= 0.

Examples of inner products

• The dot product in R
n given in the standard basis by

(x,y) = x•y = x1y1 + x2y2 + · · ·+ xnyn

The dot product is positive definite - all four of the properties above hold (exercise).

R
n with the dot product as an inner product is called n-dimensional Euclidean space,

and is denoted E
n.
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• In R
4, with coordinates t, x, y, z, we can define

(v1,v2) = t1t2 − x1x2 − y1y2 − z1z2.

This is an inner product too. But for x = (1, 1, 0, 0)t, we have (x,x) = 0, so it’s

not positive definite. R
4 with this inner product is called Minkowski space. It is

the spacetime of special relativity (invented by Einstein in 1905, and made into a

nice geometric space by Minkowski several year later). It is denoted M
4, and if time

permits, we’ll look more closely at this space later in the course.

• Let G be an n× n symmetric matrix (G = Gt), with det(G) 6= 0. Define

(x,y)G = xtGy.

It is not difficult to verify that this satisfies the properties in the definition. For

example, if (x,y)G = xtGy = 0 ∀y, then xtG = 0, because if we write xtG as the

row vector (a1, a2, . . . , an), then xtGe1 = 0 ⇒ a1 = 0, xtGe2 = 0 ⇒ a2 = 0, etc. So

all the components of xtG are 0 and hence xtG = 0. Now taking transposes, we find

that Gtx = Gx = 0. Since G is nonsingular by definition, this means that x = 0,

(otherwise the homogeneous system Gx = 0 would have non-trivial solutions and G

would be singular) and the inner product is non-degenerate.

In fact, any inner product on R
n can be written in this form for a suitable matrix G:

* x•y = xtGy with G = I. For instance, if

x =





3

2

1




, and y =





−1

2

4




,

then

x•y = xtIy = xty = (3, 2, 1)





−1

2

4



 = −3 + 4 + 4 = 5

* The Minkowski inner product has the form xtGy with G = Diag(1,−1,−1,−1)
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Remark: If we replace y by x in all of the above, we get what’s called a quadratic form,

which is a function of just the single vector variable x. Its general form is xtGx. It’s

no longer linear in x, but quadratic (hence the name).

Exercise**: Show that under a change of basis matrix E, the matrix G of the inner product

becomes GE = EtGE. For instance, if G = I, so that x•y = xtIy, and

E =



 1 3

3 1



 , then x•y = xt
EGEyE , with GE =



 10 4

4 10



 .

This is different from the way in which an ordinary matrix (which can be viewed as a linear

transformation) behaves. Thus the matrix representing an inner product is a different object

from that representing a linear transformation.

17.1 Euclidean space

We now restrict attention to Euclidean space E
n. We’ll always be using the dot product,

whether we write it as x•y or (x,y).

Definition: The norm of the vector x is defined by

||x|| =
√

x•x.

In the standard coordinates, this is equal to

||x|| =

(
n∑

i=1

x2
i

)1/2

.

Example:

If x =





−2

4

1




, then ||x|| =

√
(−2)2 + 42 + 12 =

√
21
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Proposition:

• ||x|| > 0 if x 6= 0.

• ||cx|| = |c|||x||, ∀c ∈ R.

Proof: Exercise

As you know, ||x|| is the distance from the origin 0 to the point x. Or it’s the length of the

vector x. (Same thing.) The next few properties all follow from the law of cosines:

For a triangle with sides a, b, and c, and angles opposite these sides ofA,B, and C,

c2 = a2 + b2 − 2ab cos(C).

This reduces to Pythagoras’ theorem if C is a right angle, of course. In the present context,

we imagine two vectors x and y with their ”tails” located at 0. The vector going from the

tip of x to the tip of y is x − y. If θ is the angle between x and y, then the law of cosines

reads

||x − y||2 = ||x||2 + ||y||2 − 2||x||||y|| cosθ. (1)

On the other hand, from the definition of the norm, we have

||x − y||2 = (x − y)•(x − y)

= x•x − x•y − y•x + y•y or

||x − y||2 = ||x||2 + ||y||2 − 2x•y

(2)

Comparing (1) and (2), we conclude that

x•y = cos θ||x|| ||y||, or cos θ =
x•y

||x|| ||y|| (3)

Since | cos θ| ≤ 1, taking absolute values we get

Theorem:
|x•y|

||x|| ||y|| ≤ 1, or |x•y| ≤ ||x|| ||y|| (4)
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The inequality (4) is known as the Cauchy-Schwarz inequality.

Exercises:

1. Find the angle θ between the two vectors v = (1, 0,−1)t and (2, 1, 3)t.

2. When does |x•y| = ||x|| ||y||? What is θ when x•y = 0?

Using the Cauchy-Schwarz inequality, we (i.e., you) can prove the triangle inequality:

Theorem: For all x, y, ||x + y|| ≤ ||x|| + ||y||.
Proof: Exercise (Expand the dot product ||x+y||2 = (x+y)•(x+y), use the Cauchy-Schwarz

inequality, and take the square root.)

Exercise: The triangle inequality as it’s usually encountered in geometry courses states that,

in ∆ABC, the distance from A to B is ≤ the distance from A to C plus the distance from

C to B. Is this the same thing?
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18 Orthogonality and related notions

18.1 Orthogonality

Definition: Two vectors x and y are said to be orthogonal if x•y = 0. (This is the fancy

version of ”perpendicular”.)

Examples: The two vectors 



1

−1

0




and





2

2

4





are orthogonal, since their dot product is (2)(1) + (2)(−1) + (4)(0) = 0. The standard basis

vectors e1, e2, e3 ∈ R
3 are mutually orthogonal. That is ei•ej = 0 whenever i 6= j. The

vector 0 is orthogonal to everything.

Definition: A unit vector is a vector of length 1. If its length is 1, then the square of its

length is also 1. So v is a unit vector if v•v = 1.

If w is an arbitrary nonzero vector, then a unit vector in the direction of w is obtained by

multiplying w by ||w||−1: ŵ = (1/||w||)w is a unit vector in the direction of w. The caret

mark over the vector will always be used to indicate a unit vector.

Examples: The standard basis vectors are all unit vectors. If

w =





1

2

3



 ,

then a unit vector in the direction of w is

ŵ =
1

||w||w =
1√
14





1

2

3




.
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The process of replacing a vector w by a unit vector in its direction is called normalizing

the vector.

For an arbitrary nonzero vector in R
3





x

y

z




,

the corresponding unit vector is

1√
x2 + y2 + z2





x

y

z





In physics and engineering courses, this particular vector is often denoted by r̂. For instance,

the gravitational force on a particle of mass m sitting at (x, y, z)t due to a particle of mass

M sitting at the origin is

F =
−GMm

r2
r̂,

where r2 = x2 + y2 + z2.

18.2 Orthonormal bases

Although we know that any set of n linearly independent vectors in R
n can be used as a

basis, there is a particularly nice collection of bases that we can use in Euclidean space.

Definition: A basis {v1,v2, . . . ,vn} of E
n is said to be orthonormal if

1. vi•vj = 0, whenever i 6= j. That is, they are mutually orthogonal, and

2. vi•vi = 1 for all i. They are all unit vectors.
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Examples: The standard basis is orthonormal. The basis







 1

1



 ,



 1

−1










is orthogonal, but not orthonormal. We can normalize these vectors to get the orthonormal

basis 






 1/
√

2

1/
√

2



 ,



 1/
√

2

−1/
√

2










You may recall that it’s quite tedious to compute the coordinates of a vector w in an arbitrary

basis. The advantage of using an orthonormal basis is

Theorem: Let {v1, . . . ,vn} be an orthonormal basis in E
n. Let w ∈ E

n. Then

w = (w•v1)v1 + (w•v2)v2 + · · · + (w•vn)vn.

That is, the ith coordinate of w in this basis is given by w•vi, the dot product of w with

the ith basis vector.

Proof: Since we have a basis, there are unique numbers c1, . . . , cn such that

w = c1v1 + c2v2 + · · ·+ cnvn.

Take the dot product of both sides of the equation with v1: using the linearity of the dot

product, we get

v1•w = c1(v1•v1) + c2(v1•v2) + · · ·+ cn(v1•vn).

Since the basis is orthonormal, all these dot products vanish except for the first, and we have

(v1•w) = c1(v1•v1) = c1. An identical argument holds for the general vi.

Example: Find the coordinates of the vector

w =



 2

−3





in the basis

{v1,v2} =








 1/
√

2

1/
√

2



 ,



 1/
√

2

−1/
√

2








 .
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Solution: w•v1 = 2/
√

2 − 3/
√

2 = −1/
√

2, and w•v2 = 2/
√

2 + 3/
√

2 = 5/
√

2. So the

coordinates of w in this basis are

1√
2



 −1

5



 .

Exercises:

1. Let

{e1(θ), e2(θ)} =








 cos θ

sin θ



 ,



 − sin θ

cos θ








 .

What’s the relation between {e1(θ), e2(θ)} and {i, j} = {e1(0), e2(0)}?

2. Let

v =



 2

−3



 .

Find the coordinates of v in the basis {e1(θ), e2(θ)}

• By writing v = c1e1(θ) + c2e2(θ) and solving for c1, c2.

• By using the theorem above.

18.3 Orthogonal projections

It is frequently useful to decompose a given vector v as v = v|| + v⊥, where v|| is parallel to

a vector w, and v⊥ is orthogonal to w.

Example: Suppose a mass m is at the end of a rigid, massless rod (a pendulum, approxi-

mately), and the rod makes an angle θ with the vertical. The force acting on the pendulum

is the gravitational force −mge2. Since the pendulum is rigid, the force directed along the

rod’s direction doesn’t do anything (i.e., doesn’t cause the pendulum to move). Only the

force orthogonal to the rod produces motion. The magnitude of the force parallel to the

pendulum is mg cos θ, and the orthogonal force has magnitude mg sin θ. If the pendulum
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mg sin(θ)

The pendulum bob makes an angle θ
with the vertical. The magnitude of the
force (gravity) acting on the bob is mg.

The component of the force acting in
the direction of motion of the pendulum
has magnitude mg sin(θ).

mg

θ

has length l, Newton’s law (F = ma) reads

mlθ̈ = −mg sin θ,

or

θ̈ +
g

l
sin θ = 0.

This is the differential equation for the motion of the pendulum. For small angles, we have,

approximately, sin θ ≈ θ, and the equation can be linearized to give

θ̈ + ω2θ = 0, where ω =

√
g

l
.

18.4 Algorithm for the decomposition

We want to write v = v|| + v⊥, where v|| is in the direction of w. See the figure. Suppose θ

is the angle between w and v. We assume for the moment that 0 ≤ θ ≤ π/2. Then

||v|||| = ||v|| cos θ = ||v||
(

v•w

||v|| ||w||

)
=

v•w

||w|| ,

or

||v|||| = v• a unit vector in the direction of w
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is ||v|| cos(θ).

v

w
θ

v||

If the angle between v and w

||v|| cos(θ)

projection of v onto w
is θ, then the magnitude of the

And v|| is this number times a unit vector in the direction of w:

v|| =
v•w

||w||
w

||w|| =
( v•w

w•w

)
w.

In other words, if ŵ = (1/||w||)w, then v|| = (v•ŵ)ŵ.

The vector v|| is called the orthogonal projection of v onto w. The nonzero vector w also

determines a 1-dimensional subspace, denoted W , consisting of all multiples of w, and v|| is

also known as the orthogonal projection onto the subspace W .

Since v = v|| + v⊥, we have

v⊥ = v − v||.

Example: Let

v =





1

−1

2




, and w =





1

0

1




.

Then ||w|| =
√

2, so ŵ = (1/
√

2)w, and

(v•ŵ)ŵ =





3/2

0

3/2



 .

Then

v⊥ = v − v|| =





1

−1

2




−





3/2

0

3/2




=





−1/2

−1

1/2




.

98



and you can easily check that v||•v⊥ = 0.

Remark: Suppose that, in the above, π/2 < θ ≤ π, so the angle is not acute. In this case,

cos θ is negative, and cos θ||v|| is not the length of v|| (since it’s negative, it can’t be a

length). It has to be interpreted as a signed length, since the correct projection points in the

opposite direction from that of w. In other words, the formula is correct, no matter what

the value of θ.

Exercise: This refers to the pendulum figure. Suppose the mass is located at (x, y) ∈ R
2.

Find the unit vector parallel to the direction of the rod, say r̂, and a unit vector orthogonal

to r̂, say θ̂, obtained by rotating r̂ counterclockwise through an angle π/2. Express these

orthonormal vectors in terms of the angle θ. And show that F•θ̂ = −mg sin θ as claimed

above.
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19 Orthogonal projections and Gram-Schmidt

19.1 Orthogonal matrices

Suppose we take an orthonormal (o.n.) basis {e1, e2, . . . , en} of R
n and form the n×n matrix

E = (e1
... · · · ...en). Then

EtE =





et
1

et
2

...

et
n




(e1

... · · · ...en) = In,

because

(EtE)ij = et
iej = ei•ej = δij ,

where δij are the components of the identity matrix:

δij =





1 if i = j

0 if i 6= j

Since EtE = I, this means that Et = E−1.

Definition: A square matrix E such that Et = E−1 is called an orthogonal matrix.

Example:

{e1, e2} =








 1/
√

2

1/
√

2



 ,



 1/
√

2

−1/
√

2










is an o.n. basis for R
2. The corresponding matrix

E = (1/
√

2)



 1 1

1 −1





is easily verified to be orthogonal. Of course the identity matrix is also orthogonal. As a

converse to the above, if E is an orthogonal matrix, the columns of E form an o.n. basis of

R
n.
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Exercises:

• If E is orthogonal, so is Et, so the rows of E also form an o.n. basis.

• If E and F are orthogonal and of the same dimension, then EF is orthogonal.

• Let

{e1(θ), e2(θ)} =








 cos θ

sin θ



 ,



 − sin θ

cos θ








 .

Let R(θ) = (e1(θ)
...e2(θ)). Show that R(θ)R(τ) = R(θ + τ).

• If E and F are the two orthogonal matrices corresponding to two o.n. bases, then

F = EP , where P is the change of basis matrix from E to F . Show that P is also

orthogonal.

19.2 Construction of orthonormal bases

It is not obvious that any subspace V of R
n has an orthonormal basis, but it’s true. Here

we give an algorithm for constructing such a basis, starting from an arbitrary basis. This

is called the Gram-Schmidt procedure. We’ll do it first for a 2-dimensional subspace of R
3,

and then do it in general at the end:

Let V be a 2-dimensional subspace of R
3, and let {f1, f2} be a basis for V . We want to

construct an o.n. basis {e1, e2} for V .

• The first step is easy. We define e1 = 1
||f1||

f1 by normalizing f1.

• We now need a vector orthogonal to e1 which lies in the plane spanned by f1 and f2.

We get this by decomposing f2 into vectors which are parallel to and orthogonal to e1:

we have f2|| = (f2•e1)e1, and f2⊥ = f2 − f2||.

• We now normalize this to get e2 = (1/||f2⊥||)f2⊥.
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• Since f2⊥ is orthogonal to e1, so is e2. Moreover

f2⊥ = f2 −
(

f2•f1
||f1||2

)
f1,

so f2⊥ and hence e2 are linear combinations of f1 and f2. Therefore, e1 and e2 span the

same space and give an orthonormal basis for V .

Example: Let V be the subspace of R
2 spanned by

{v1,v2} =










2

1

1




,





1

2

0









.

Then ||v1|| =
√

6, so

e1 = (1/
√

6)





2

1

1




.

And

v2⊥ = v2 − (v2•e1)e1 =





1

2

0




− (2/3)





2

1

1




= (1/3)





−1

4

−2




.

Normalizing, we find

e2 = (1/
√

21)





−1

4

−2




.

Exercise: Let E3×2 = {e1
...e2}, where the columns are the orthonormal basis vectors found

above. What is EtE? What is EEt? Is E an orthogonal matrix? Why or why not?

Exercise: Find an orthonormal basis for the null space of the 1 × 3 matrix A = (1,−2, 4).

Exercise: Let {v1,v2, . . . ,vk} be a set of (non-zero) orthogonal vectors. Prove that the set

is linearly independent. (Hint: suppose that some linear combination is zero and show that

all the coefficients must vanish.) Did you really need this hint?
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19.3 Orthogonal projection onto a subspace V

Suppose V ⊆ R
n is a subspace, and suppose that {e1, e2, . . . , , ek} is an orthonormal basis

for V . For any vector x ∈ R
n, we define

ΠV (x) =

k∑

i=1

(x•ei)ei.

ΠV (x) is called the orthogonal projection of x onto V . This is the natural generalization

to higher dimensions of the projection of x onto a one-dimensional space considered before.

Notice what we’re doing: we’re projecting x onto each of the 1-dimensional spaces determined

by the basis vectors and then adding them all up.

Example: Let V be the column space of the matrix

A =





2 1

1 2

1 0




.

As we found above, an orthonormal basis for V is given by

{e1, e2} =





(1/

√
6)





2

1

1




, (1/

√
21)





−1

4

−2









.

So if x = (1, 2, 3)t,

ΠV (x) = (x•e1)e1 + (x•e2)e2

= (7/
√

6)e1 + (1/
√

21)e2

= (7/6)





2

1

1




+ (1/21)





−1

4

2





Exercises:

• Show that the function ΠV : R
n → V is a linear transformation.
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• (Extra credit): Normally we don’t define geometric objects by using a basis. When we

do, as in the case of ΠV (x), we need to show that the concept is well-defined. In this

case, we need to show that ΠV (x) is the same, no matter which orthonormal basis in

V is used.

1. Suppose that {e1, . . . , ek} and {ê1, . . . , êk} are two bases for V . Then êj =
∑k

i=1 Pijei for some k × k matrix P . Show that P is an orthogonal matrix.

2. Use this result to show that
∑

(x•ei)ei =
∑

(x•êj)êj , so that ΠV (x) is independent

of the basis.

19.4 Orthogonal complements

Definition: V ⊥ = {x ∈ R
n such that x•v = 0, for all v ∈ V } is called the orthogonal

complement of V in R
n.

Exercise: V ⊥ is a subspace of R
n.

Example: Let

V = span










1

1

1









.

Then

V ⊥ =





v ∈ R

3 such that v•





1

1

1




= 0





=










x

y

z




such that x+ y + z = 0






This is the same as the null space of the matrix A = (1, 1, 1). (Isn’t it?). So writing

s = y, t = z, we have

V ⊥ =










−s− t

s

t




= s





−1

1

0




+ t





−1

0

1




, s, t ∈ R





.
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A basis for V ⊥ is clearly given by the two indicated vectors; of course, it’s not orthonormal,

but we could remedy that if we wanted.

Exercises:

1. Let {w1,w2, . . . ,wk} be a basis for W . Show that v ∈W⊥ ⇐⇒ v•wi = 0, ∀i.

2. Let

W = span










1

2

1




,





1

−1

2










Find a basis for W⊥. Hint: Use the result of exercise 1 to get a system of two equations

in two unknowns and solve it.

19.5 Gram-Schmidt - the general algorithm

Let V be a subspace of R
n, and {v1,v2, . . . ,vm} an arbitrary basis for V . We construct an

orthonormal basis out of this as follows:

1. e1 = v̂1 (recall that this means we normalize v1 so that it has length 1. Let W1 be the

subspace span{e1}.

2. Take f2 = v2 − Π
W1

(v2); then let e2 = f̂2. Let W2 = span{e1, e2}.

3. Now assuming that Wk has been constructed, we define, recursively

fk+1 = vk+1 − Π
Wk

(vk+1), ek+1 = f̂k+1, and Wk+1 = span{e1, . . . , ek+1}.

4. Continue until Wm has been defined. Then {e1, . . . , em} is an orthonormal set in V ,

hence linearly independent, and thus a basis, since there are m vectors in the set.
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20 Approximations - the method of least squares (1)

In many applications, we have to consider the following problem:

Suppose that for some y, the equation Ax = y has no solutions. It could be

that this is an important problem and we can’t just forget about it. We could

try to find an approximate solution. But which one? Suppose we choose an x

at random. Then Ax 6= y. In choosing this x, we’ll make an error e = Ax − y.

A reasonable choice (not the only one) is to seek an x with the property that

||Ax − y||, the magnitude of the error, is as small as possible. (If this error is

0, then we have an exact solution, so it seems like a reasonable thing to try and

minimize it.) Since this is a bit abstract, we can look at a familiar example:

Example: Suppose we have a bunch of data in the form of ordered pairs:

{(x1, y1), (x2, y2), . . . , (xn, yn)}. These data might come from an experiment; for instance, xi

might be the current through some device and yi might be the temperature of the device while

the given current flows through it. The n data points correspond to n different experimental

observations.

The problem is to ”fit” a straight line to this data. Another way to put this is: find the

linear model that ”best” predicts y, given x. Clearly, this is a problem which has no exact

solution unless all the data points are collinear - there’s no single line which goes through all

the points. So how do we choose? The problem is to find m and b such that y = mx+ b is,

in some sense, the best possible fit. The first thing to do is to convince ourselves that this

problem is a special case of finding an approximate solution to Ax = y:
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Suppose we fix m and b. If the resulting line were a perfect fit, we’d have

y1 = mx1 + b

y2 = mx2 + b
...

yn = mxn + b.

Put

y =





y1

y2

· · ·
yn




, A =





x1 1

x2 1

· · · · · ·
xn 1




, and x =



 m

b



 .

Then the linear system above takes the form y = Ax, where A and y are known, and the

problem is that there is no solution x = (m, b)t.

20.1 The method of least squares

We can visualize the problem geometrically. Think of the matrix A as defining a linear

function fA : R
n → R

m. The range of fA is a subspace of R
m, and the source of our problem

is that y /∈ Range(fA). If we pick an arbitrary point Ax ∈ Range(fA), then the error we’ve

made is e = Ax − y. We want to choose Ax so that ||e|| is as small as possible.

Exercise: This could clearly be handled as a calculus problem. How?

Instead of using calculus, we can do something simpler. We decompose the error as e =

e|| + e⊥, where e|| ∈ Range(fA) and e⊥ ∈ Range(fA)⊥. See the figure on the next page.

Then ||e||2 = ||e||||2 + ||e⊥||2 (by Pythagoras’ theorem!). Changing our choice of Ax does

not change e⊥, so the only variable at our disposal is e||. We can make this 0 by choosing

Ax so that Π(y) = Ax, where Π is the orthogonal projection of R
m onto the range of fA.

And this is the answer to our question. Instead of solving Ax = y, which is impossible, we

solve for x in the equation Ax = Π(y), which is guaranteed to have a solution. So we have
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0

e⊥

e||

Ax

e

y

Figure 2: The plane is the range of fA. To minimize ||e||,
we make e|| = 0 by choosing x̃ so that Ax̃ = ΠV (y). So

Ax̃ is the unlabeled vector from 0 to the foot of e⊥.

minimized the squared length of the error e, thus the name least squares approximation. We

collect this information in a

Definition: The vector x̃ is said to be a least squares solution to Ax = y if the error vector

e = Ax̃ − y is orthogonal to the range of fA.

Example (cont’d.): Note: We’re writing this down to demonstrate that we could, if we had

to, find the least squares solution by solving Ax = Π(y) directly. But this is not what’s

done in practice, as we’ll see in the next lecture. In particular, this is not an efficient way to

proceed.

That having been said, let’s use what we now know to find the line which best fits the data

points. (This line is called the least squares regression line, and you’ve probably encountered

it before.) We have to project y into the range of fA), where

A =





x1 1

x2 1

· · · · · ·
xn 1




.
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To do this, we need an orthonormal basis for the range of fA, which is the same as the column

space of the matrix A. We apply the Gram-Schmidt process to the columns of A, starting

with the easy one:

e1 =
1√
n





1

1

· · ·
1




.

If we write v for the first column of A, we now need to compute

v⊥ = v − (v•e1)e1

A routine computation (exercise!) gives

v⊥ =





x1 − x̄

x2 − x̄

· · ·
xn − x̄




, where x̄ =

1

n

n∑

i=1

xi

is the mean or average value of the x-measurements. Then

e2 =
1

σ





x1 − x̄

x2 − x̄

· · ·
xn − x̄




, where σ2 =

n∑

i=1

(xi − x̄)2

is the variance of the x-measurements. Its square root, σ, is called the standard deviation

of the measurements.

We can now compute

Π(y) = (y•e1)e1 + (y•e2)e2

= routine computation here . . .

= ȳ





1

1

· · ·
1




+

1

σ2

{
n∑

i=1

xiyi − nx̄ȳ

}





x1 − x̄

x2 − x̄

· · ·
xn − x̄





.
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For simplicity, let

α =
1

σ2

{
n∑

i=1

xiyi − nx̄ȳ

}

.

Then the system of equations Ax = Π(y) reads

mx1 + b = αx1 + ȳ − αx̄

mx2 + b = αx2 + ȳ − αx̄

· · ·
mxn + b = αxn + ȳ − αx̄,

and we know (why?) that the augmented matrix for this system has rank 2. So we can

solve for m and b just using the first two equations, assuming x1 6= x2 so these two are not

multiples of one another. Subtracting the second from the first gives

m(x1 − x2) = α(x1 − x2), or m = α.

Now substituting α for m in either equation gives

b = ȳ − αx̄.

These are the formulas your graphing calculator uses to compute the slope and y-intercept

of the regression line.

This is also about the simplest possible least squares computation we can imagine, and it’s

much too complicated to be of any practical use. Fortunately, there’s a much easier way to

do the computation, which is the subject of the next lecture.
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21 Least squares approximation - II

21.1 The transpose of A

In the next section we’ll develop a equation, known as the normal equation, which is much

easier to solve than Ax = Π(y), and which also gives the correct x. Of course, we need a

bit of background first.

The transpose of a matrix, which we haven’t made much use of until now, begins to play a

more important role once the dot product has been introduced. If A is an m×n matrix, then

as you know, it can be regarded as a linear transformation from R
n to R

m. Its transpose,

At then gives a linear transformation from R
m to R

n, since it’s n×m. Note that there is no

implication here that At = A−1 – the matrices needn’t be square, and even if they are, they

need not be invertible. But A and At are related by the dot product:

Theorem: x•Aty = Ax•y

Proof: (Notice that the dot product on the left is in R
n, while the one on the right is in R

m.)

The proof is a ”straightforward” computation:

Ax•y =
∑m

j=1(Ax)jyj

=
∑m

j=1 (
∑n

i=1Ajixi)yj

now we reverse the order of summation to get

=
∑n

i=1 xi

(∑m
j=1Ajiyj

)

and since Aji = At
ij , we get

=
∑n

i=1 xi(A
ty)i

= x•Aty

What this says in plain English: we can ”move” A from one side of the dot product to the

other by replacing it with At. So for instance, if Ax•y = 0, then x•Aty = 0, and conversely.

In fact, pushing this a bit, we get an important

Theorem: Ker(At) = (Range(A))⊥.
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Proof: Let y ∈ (Range(A))⊥. This means that for all x ∈ R
n, Ax•y = 0. But by the

previous theorem, this means that x•Aty = 0 for all x ∈ R
n. But any vector in R

n which is

orthogonal to everything must be the zero vector. So Aty = 0 and y ∈ Ker(At). Conversely,

if y ∈ Ker(At), then for any x ∈ R
n,x•Ayy = 0. And again by the theorem, this means that

Ax•y = 0 for all such x, which means that y ⊥ Range(A).

We have shown that (Range(A))⊥ ⊆ Ker(At), and conversely, that Ker(At) ⊆ (Range(A))⊥.

So the two sets are equal.

21.2 Least squares approximations – the Normal equation

Now we’re ready to take up the least squares problem again. Recall that the problem is

to solve Ax = Π(y). where y has been projected orthogonally on to the range of A. The

problem with solving this, as you’ll recall, is that finding the projection Π is tedious. And

now we’ll see that it’s not necessary.

We write y = Π(y) + y⊥, where y⊥ is orthogonal to the range of A. Now suppose that

x is a solution to the least squares problem Ax = Π(y). Multiply this equation by At to

get AtAx = AtΠ(y). So x is certainly also a solution to this. But now we notice that, in

consequence of the previous theorem,

Aty = At(Π(y) + y⊥) = AtΠ(y),

since Aty⊥ = 0. (It’s orthogonal to the range, so the theorem says it’s in Ker(At).)

So x is also a solution to the normal equation

AtAx = Aty.

Conversely, if x is a solution to the normal equation, then

At(Ax − y) = 0,
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and by the previous theorem, this means that Ax − y is orthogonal to the range of A. But

Ax−y is the error made using an approximate solution, and this shows that the error vector

is orthogonal to the range of A – this is our definition of the least squares solution!

The reason for all this fooling around is simple: we can compute Aty by doing a simple

matrix multiplication. We don’t need to find an orthonormal basis for the range of A to

compute Π. We summarize the results:

Theorem: x̃ is a least-squares solution to Ax = y ⇐⇒ x̃ is a solution to the normal

equation AtAx = Aty.

Example: Find the least squares regression line through the 4 points (1, 2), (2, 3), (−1, 1), (0, 1).

Solution: We’ve already set up this problem in the last lecture. We have

A =





1 1

2 1

−1 1

0 1




, y =





2

3

1

1




, and x =



 m

b



 .

We compute

AtA =



 6 2

2 4



 , Aty =



 7

7





And the solution to the normal equation is

x = (AtA)−1Aty = (1/20)



 4 −2

−2 6







 7

7



 =



 7/10

7/5



 .

So the regression line has the equation y = (7/10)x+ 7/5.

Exercises:

1. For these problems, think of the row space as the column space of At. Show that v is

in the row space of A ⇐⇒ v = Aty for some y. This means that the row space of

A is the range of f
At

(analogous to the fact that the column space of A is the range of

fA).
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2. Show that the null space of A is the orthogonal complement of the row space. (Hint:

use the above theorem with At instead of A.)
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