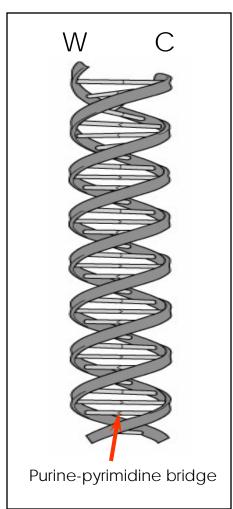
Lecture 1: Biological Genetics and Evolution


Suggested Reading

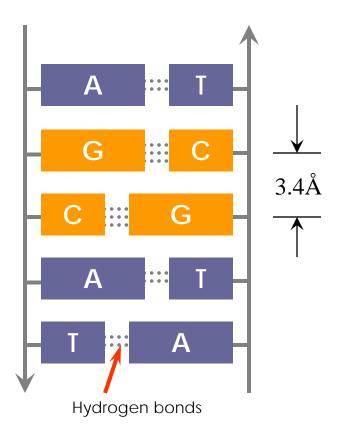
■ James F. Crow, *Genetic Notes: An Introduction to Genetics*, 8th Edition

Structure of DNA (Deoxyribonucleic Acids)

- Discovered by James Watson and Francis Crick in 1953
- DNA has double-helical structure
- The longitudinal strands made of phosphate and 5-carbon sugar called deoxyribose
- The linkages between two strands are purine-pyrimidine bridges
- Helix makes 360° turn every 10 steps
- W&C for Watson and Crick, who discovered this structure

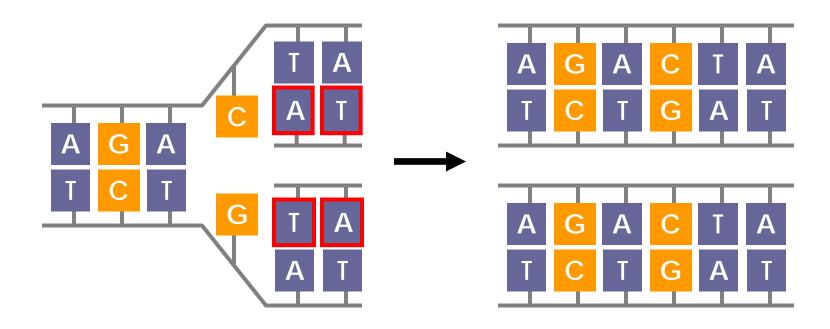
The Purine-Pyrimadine Bridge

- Types of Purines
 - □ Adenine (A) (paired with T)
 - ☐ Guanine (G) (paired with C)
- Types of Pyrimidine
 - ☐ Thymine (T) (paired with A)
 - □ Cytosine (C) (paired with G)



The Purine-Pyrimidine Bridge

- Result 4 Letter Alphabet
 - \square AT
 - \Box TA
 - \Box GC
 - \Box CG


Note: AT isn't TA

- Sequence carries information
 - □ 1000 steps can carry 4¹⁰⁰⁰ different messages

DNA Replication

DNA Amounts in Humans

- Humans have 3.4x10⁶ base pairs (haploid)
- Total length in diploid cells is 2 m (average chromosome length is about 4 cm)
- Arrangement within nucleus is a mess
- How this sorts itself out not understood

DNA in Different Species

■ E. Coli: 1 (per unit)

■ Yeast: 4

■ Drosophilae: 20

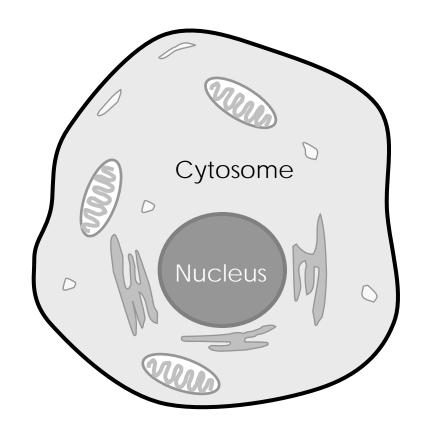
■ Silk Moth: 60

■ Carp: 500

■ Human: 1000

■ Newt: 10,000

■ Lily: 50,000


Cells and Cell Division

■ Cell Structure:

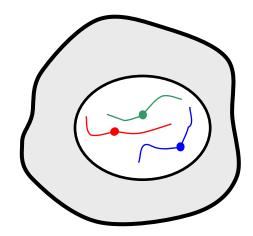
- □ Nucleus
- ☐ Cytosome (Cytoplasm)

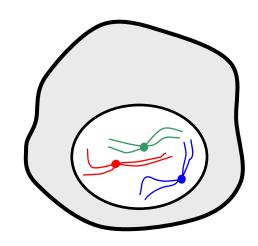
Cell Size:

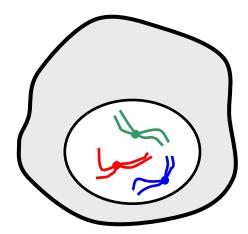
- □ Ostrich egg is single cell
- \square E-coli is 2 μ by 0.5 μ
- Whale and Giraffe nerve cells are several feet long
- ☐ Humans have 10¹⁴ cells

Chromosomes in Cell Nucleus

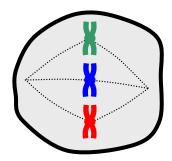
- Humans are diploid
- Wasps, bees, and ants are haploid
- Potatoes are tetraploid
- Wheat is hexaploid
- Strawberries are octaploid

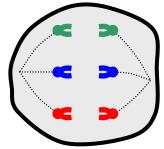

Mitosis (Nuclear Division)


- Cytoplasm divides more or less equally between cells
- Chromosomes undergo precise process that insures that an equal number of chromosomes is distributed to each of the new cell

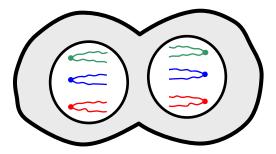

Mitosis

■ Interphase:


Prophase

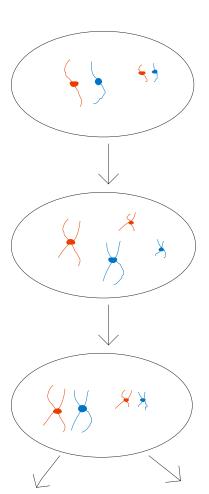


Mitosis


Metaphase

Anaphase

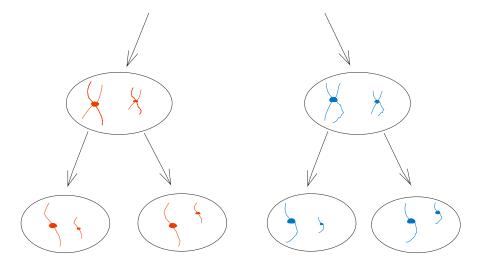
Telophase



Meiosis (Formation of Gametes)

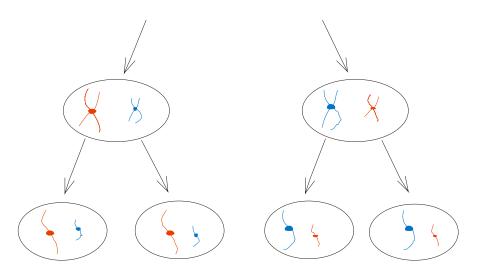
Original cell

Chromosome doubling


Chromosome pairing (note: crossover occurs here)

Meiosis (Formation of Gametes)

- Cell Division (Possibility 1)
- Another Division


■ Each sperm or egg has ½ normal number of chromosomes

Meiosis (Formation of Gametes)

Cell Division(Possibility 2)

Another Division

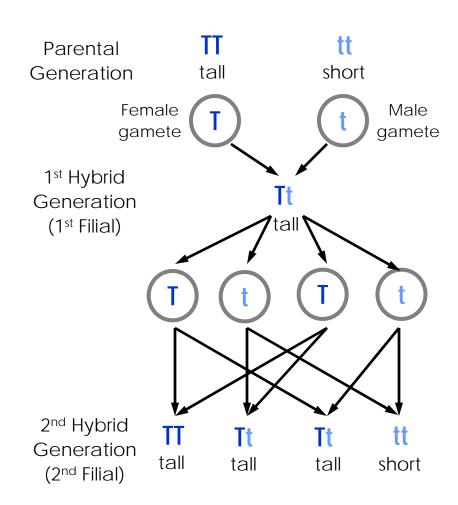
Mendelian Inheritance

- Gregor Johann Mendel
 - □ 1822-1884
 - Austrian Roman Catholic Monk and Botanist
 - □ Performed experiments with peas in 1860s
 - □ Reported work in 1866
 - Work remained unknown for 35 years

An Experiment with Tall and Short Pea Plants

- When tall plant crossed with short plant, he always got a tall plant
- This was true regardless of which parent (male or female) was tall
- This confirmed earlier observations that both parents contribute equally
- He then allowed hybrids to self pollinate. He ended up with 787 tall plants and 277 short plants

Mendel's First Law: Law of Segregation


Heredity characteristics (tallness or shortness) occur in pairs and these pair segregate such that only one member of the pair is used in a gamete

- Heredity characteristic unit now known as gene
- Mendel also developed concept of dominance and recessiveness
- Tested theory using genetic ratios of various mating combinations

Explanation of Results

- Results
 - □ ¼ Short
 - □ ¾ Tall
 - Of the tall, 1/3 produced only tall plants when self-fertilized
 - Of the tall, 2/3 produced tall and short plants when self-fertilized

Additional Vocabulary

- Homozygote: zygote with identical genes (TT or tt)
- Heterozygote: zygote with different genes (Tt)
- Alleles: alternate forms of a gene (T or t)
- Genotype: genetic makeup (TT, Tt, tt)
- Phenotype: characteristic determined by genotype (tall or short)

Incomplete Dominance

- Consider color pattern in cattle
- One pair of alleles determines color (complete dominance)
 - □ BB: black
 - ☐ Bb: black
 - □ bb: red
- Another pair determines extent of color (incomplete dominance)
 - □ RR: solid color
 - □ Rr: speckled with white
 - □ rr: no color

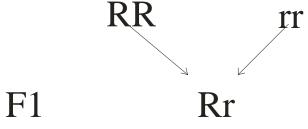
Mechanism for Dominance

- Genes result in production of enzymes
- For complete dominance, one allele produces enough to achieve a desired effect
- Often, there will be subtle differences between homozygous and heterozygous phenotypes (a few white hairs on a black mouse)

Mendel's 2nd Law: Law of independence

The members of one pair of alleles segregate independently of other pairs

• (This is only true if they are on separate chromosomes)


Mendel's 2nd Law: An Example

- Round (R) vs Wrinkled (r) seeds
- Yellow (Y) vs Green (y) seeds
- Round and Yellow are dominant
- Step 1: Cross strain producing round yellow seeds with strain producing wrinkled green seeds
- Result: The F1 seeds are round and yellow
- Step 2: Self fertilize F1 plants
- Result:
 - \square 9/16 of plants are round and yellow
 - □ 3/16 of plants are wrinkled and yellow
 - \square 3/16 of plants are round and green
 - □ 1/16 of plants are wrinkled and green

Expected Ratios

Consider shape (if independent)

- Likewise for color (if independent)
 - □ ¾ yellow
 - □ ¼ green

F2 RR Rr Rr rr 3/4 round 1/4 wrinkled

Expected Ratios

- Thus, if independent we should have
 - \square 9/16 round yellow
 - \square 3/16 round green
 - □ 3/16 wrinkled yellow
 - □ 1/16 wrinkled green
- This is what is observed

Gene Interactions: The Punnett Square

Consider the comb shape in poultry

Genotype

Phenotype

R- P-

walnut

R-pp

rose

rr P-

pea

rr pp

single

The Punnett Square

	Sperm from RrPp (walnut)				
Egg from RrPp (walnut)		RP	Rp	rP	rp
	RP	RRPP	RRPp	RrPP	RrPp
	Rp	RRPp	RRpp	RrPp	Rrpp
	rP	RrPP	RrPp	rrPP	rrPp
þ	rp	RrPp	Rrpp	rrPP	rrpp

Epistasis: Genes Masking Other Genes

- Consider mouse coat patterns
- Allele C necessary for any pigment
- Genotype BB and Bb produce black; bb is brown
- Thus
 - □ C- B- black
 - □ C- bb brown
 - □ cc B- white
 - □ cc bb white
- Allele cc masks the color gene

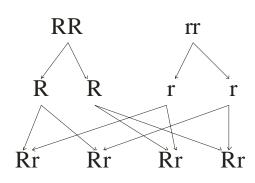
Mutation

- Occasionally a gene mutates to another allele
- A typical mutation rate for a given gene is one in 10⁵ generations
- Since there are many genes (say 10⁴) per cell, mutation is pretty common
- In evolutionary terms
 - ☐ A high rate weakens population
 - ☐ A low rate keeps population from responding to change

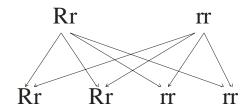
Mendel's Insight

- Used sharply contrasting traits
- Used plants that can be self fertilized
- Used plants that produce large sample sizes
- He was lucky (genes are only independent when on different chromosomes)
- His luck didn't hold he tried (unsuccessfully) moving on to hawkweed which has both sexual and asexual reproduction which wasn't understood for long after his death
- The greatest barrier to acceptance of his theory were traits that are caused by many traits and influenced by environment (example human height and shape)

- Linkage : Genes on the same chromosome tend to stay together in inheritance
- Consider Poultry
 - □ Leg length
 - C creeper (dominant, note CC is lethal)
 - c normal (recessive)
 - □ Comb type
 - R rose comb (dominant)
 - \blacksquare r single comb (recessive)

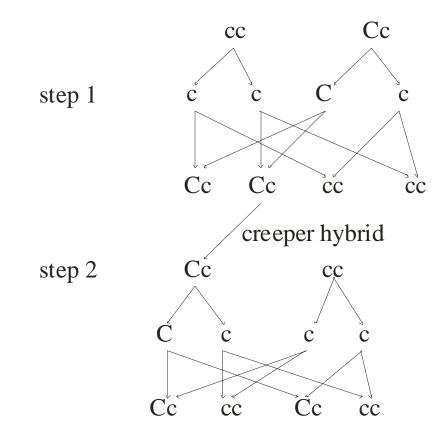

Experiment

- □ Step 1: A homozygous rose-combed, normal-legged mated with a single-combed, short-legged strain
- □ Step 2: The resulting creeper hybrids test-crossed with single-combed, normal legged strain



What should happen (comb)

step 1


step 2

■ Thus 50% rose, 50 % single

■ What should happen (legs)

■ Thus 50 % short legged, 50 % long legged

- Thus, by Mendelian principles
 - □ 25% short-legged rose-combed
 - □ 25% normal-legged rose-combed
 - □ 25% short-legged single-combed
 - □ 25% normal-legged single-combed

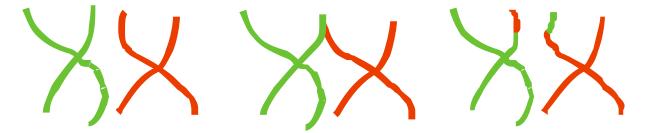
Actual results

1069 normal rose

1104 short single

6 short rose

4 normal single


■ Explanation: The two alleles were on the same chromosome and did not act independently

M

Linkage and Chromosome Mapping

- Question:
 - □ What about the 6 short rose and 4 normal single?
- Answer:
 - □ Crossover
- During meiosis the chromosomes can line up side by side and the following can happen:

- Importance of crossover
 - Crossover prevents a beneficial gene from being inseparably linked to deleterious one
 - Crossover provides means for two good genes to get together
 - ☐ Extends benefits of sexual reproduction

Inheritance of Quantitative Traits

- Example: height in humans
- Genes that control this are
 - □ essentially identical to other genes, but not phenotypically identifiable
 - □ cumulative in effect
 - □ often influenced by the environment
- This class of traits is said to be polygenic

Inheritance of Quantitative Traits

■ Example: Seed color is some species

Genotype Phenotype

A'A'B'B' very dark red

A'A'B'B,A'AB'B' dark red

AA'BB',A'A'BB,AAB'B' medium red

A'ABB,AAB'B light red

AABB white