
Chapter 1

Introduction to DBMS
Implementation

Databases today are essential to every business. They are used to maintain
internal records, to present data to customers and clients on the World-Wide-
Web, and to support many other commercial processes. Databases are likewise
found at the core of many scientific investigations. They represent the data
gathered by astronomers, by investigators of the human genome, and by bio-
chemists exploring the medicinal properties of proteins, along with many other
scientists.

The powci of databases comes from a body of knowledge and technology
that has developed over several decades and is embodied in specialized soft-
ware called a database management system, or DBMS, or more colloquially a
"database system." A DBMS is a powerful tool for creating and managing large
amounts of data efficiently and allowing it to persist over long periods of time,
safely. These systems are among the most complex types of software available.
The capabilities that a DBMS provides the user are:

1. Persistent storage. Like a file system, a DBMS supports the storage of
very large amounts of data that exists independently of any processes that
are using the data. However, the DBMS goes far beyond the file system in
providing flexibility, such as data structures that support efficient access
to very large amounts of data.

2. Programming interface. A DBMS allows the user to access and modify
data through a powerful query language. Again, the advantage of a DBMS
over a file system is the flexibility to manipulate stored data in much more
complex ways than the reading and writing of files.

3. Transaction management. A DBMS supports concurrent access to data,
i.e., simultaneous access by many distinct processes (called "transac-
tions") at once. To avoid some of the undersirable consequences of si-

1



2 CHAPTER 1. INTRODUCTION TO DBMS IMPLEMENTATION

Core Terminology Review

This book is designed for someone who has studied database systems from
the point of view of the user (e.g., SQL programming) at the level of
Ullman and Widom's A First Course in Database Systems, Prentice-Hall,
1997. The following terms should thus be familiar:

• Data: any information worth preserving, most likely in electronic
form.

• Database: a collection of data, organized for access and modification,
preserved over a long period.

• Query: an operation that extracts specified data from the database.

• Relation: an organization of data into a two-dimensional table,
where rows (tuples) represent basic entities or facts of some sort,
and columns (attributes) represent properties of those entities.

• Schema: a description of the structure of the data in a database,
often called "metadata."

multaneous access, the DBMS supports isolation, the appearance that
transactions execute one-at-a-time, and atomicity, the requirement that
transactions execute either completely or not at all. A DBMS also sup-
ports resiliency, the ability to recover from failures or errors of many
types.

1.1 Introducing: The Megatron 2000 Database
System

If you have used a DBMS, perhaps one supporting the common SQL query lan-
guage, you might imagine that implementing such a system is not hard. You
might have in mind an implementation such as the recent (fictitious) offering
from Megatron Systems Inc.: the Megatron 2000 Database Management Sys-
tem. This system, which is available under UNIX and other operating systems,
and which uses the relational approach, supports the SQL query language.

1.1.1 Megatron 2000 Implementation Details
To begin, Megatron 2000 uses the file system to store its relations. For ex-
ample, the relation Students (name, id, dept) would be stored in the file



1.1. INTRODUCING: THE MEGATRON 2000 DATABASE SYSTEM 3

/usr/db/Students. The file Students has one line for each tuple. Values of
components of a tuple are stored as character strings, separated by the special
marker character #. For instance, the file /usr/db/Students might look like:

Smith*123#CS
Johnson#522#EE

The database schema is stored in a special file named /usr/db/schema. For
each relation, the file schema has a line beginning with that relation name, in
which attribute names alternate with types. The character # separates elements
of these lines. For example, the schema file might contain lines such as

Students#name#STR#id#INT#dept#STR
Depts#name#STR#office#STR

Here the relation Students (name, id, dept) is described; the type of at-
tributes name and dept are strings while id is an integer. Another relation
with schema Depts(name, office) is shown as well.

Example 1.1: Here is an example of a session using the Megatron 2000 DBMS.
We are running on a machine called dbhost, and we invoke the DBMS by the
UNIX-level command megatron2000.

dbhost> megatron2000

produces the response

WELCOME TO MEGATRON 2000!

We are now talking to the Megatron 2000 user interface, to which we can type
SQL queries1 in response to the Megatron prompt (&). A # ends a query. For
instance,

& SELECT *
FROM Students #

produces as an answer the table

name id \ dept
Smith 123 CS
Johnson 522 EE

Megatron 2000 also allows us to execute a query and store the result in a
new file, if we end the query with a vertical bar and the name of the file. For
instance,

1There is a brief review of SQL in Section 1.4.2.



4 CHAPTER 1. INTRODUCTION TO DBMS IMPLEMENTATION

& SELECT *
FROM Students
WHERE id >= 500 I Highld #

creates a new file /usr/db/Highld in which only the line

Johnson#522#EE

appears. D

1.1.2 How Megatron 2000 Executes Queries
Let us consider a common form of SQL query:

SELECT * FROM R WHERE <Condition>

Megatron 2000 will do the following:

1. Read the file schema to determine the attributes of relation R and their
types.

2. Check that the <Condition> is semantically valid for R.

3. Display each of the attribute names as the header of a column, and draw
a line.

4. Read the file named R, and for each line:

(a) Check the condition, and
(b) Display the line as a tuple, if the condition is true.

To execute

SELECT * FROM R WHERE <condition> I T

Megatron 2000 does the following:

1. Process query as before, but omit step (2), which generates column head-
ers and a line separating the headers fiom the tuples.

2. Write the result to a new file /usr/db/T.

3. Add to the file /usr/db/schema an entry for T that looks just like the
entry for R, except that relation name T replaces R. That is, the schema
for T is the same as the schema for R.

Example 1.2: Now, let us consider a more complicated query, one involving
a join of our two example relations Students and Depts:



1.1. INTRODUCING: THE MEGATRON 2000 DATABASE SYSTEM 5

SELECT office
FROM Students, Depts
WHERE Students.name = 'Smith' AND

Students.dept = Depts.name #

This query requires that Megatron 2000 "join" relations Students and Depts.
That is, the system must consider in turn each pair of tuples, one from each
relation, and determine whether:

a) The tuples represent the same department, and

b) The name of the student is Smith.

The algorithm can be described informally as:

for(each tuple s in Students)
for(each tuple d in Depts)

i f(s and d satisfy the WHERE-condition)
display the office value from Depts;

n

1.1.3 What's Wrong With Megatron 2000?
It may come as no surprise that a DBMS is not implemented like our imaginary
Megatron 2000. There are a number of ways that the implementation described
here is inadequate for applications involving significant amounts of data or
multiple users of data. A partial list of problems follows:

• The tuple layout on disk is inadequate, with no flexibility when the
database is modified. For instance, if we change EE to ECON in one
Students tuple, the entire file has to be rewritten, as every subsequent
character is moved two positions down the file.

• Search is very expensive. We always have to read an entire relation, even
if the query gives us a value or values that enable us to focus on one
tuple, as in the query of Example 1.2. There, we had to look at the
entire Student relation, even though the only one we wanted was that for
student Smith.

• Query-processing is by "brute force," and much cleverer ways of perform-
ing operations like joins are available. For instance, we shall see that in a
query like that of Example 1.2, it is not necessary to look at all pairs of
tuples, one from each relation, even if the name of one student (Smith)
were not specified in the query.

• There is no way for useful data to be buffered in main memory; all data
comes off the disk, all the time.



6 CHAPTER 1. INTRODUCTION TO DBMS IMPLEMENTATION

• There is no concurrency control. Several users can modify a file at the
same time with unpredictable results.

• There is no reliability; we can lose data in a crash or leave operations half
done.

• There is little security. Presumably the underlying operating system con-
trols access in some coarse manner, e.g., different users are either permit-
ted or forbidden to access the file holding a given relation, but one cannot
be given access, say. to certain attributes of a relation and not others.

It is the purpose of this book to introduce the reader to better ways of building
a database management system. We hope you will enjoy the study.

1.2 Overview of a Database Management
System

In Fig. 1.1 we see an outline of a complete DBMS. Single boxes represent system
components, while double boxes represent in-memory data structures. The solid
lines indicate control and data flow, while dashed lines indicate data flow only.
Since the diagram is complicated, we shall consider the details in several stages.
First, at the top. we suggest that there are two distinct sources of commands
to the DBMS:

1. Conventional users and application programs that ask for data or modify
data.

2. A database administrator: a person or persons responsible for the struc-
ture or schema of the database.

1.2.1 Data-Definition Language Commands
The second kind of command is the simpler to process, and we show its trail
beginning at the upper right side of Fig. 1.1. For example, the database ad-
ministrator, or DBA, for a university registrar's database might decide that
there should be a table or relation with columns for a student, a course the
student has taken, and a grade for that student in that course. The DBA
might also decide that the only allowable grades are A, B, C, D, and F. This
structure and constraint information is all part of the schema of the database.
It is shown in Fig. 1.1 as entered by the DBA, who needs special authority
to execute schema-altering commands, since these can have profound effects
on the database. These schema-altering DDL commands ("DDL" stands for
"data-definition language") are parsed by a DDL processor and passed to the
execution engine, which then goes through the index/file/record manager to
alter the metadata, that is, the schema information for the database.





8 CHAPTER 1. INTRODUCTION TO DBMS IMPLEMENTATION

1.2.2 Overview of Query Processing
The great majority of interactions with the DBMS follow the path on the left
side of Fig. 1.1. A user or an application program initiates some action that
does not affect the schema of the database, but may affect the content of the
database (if the action is a modification command) or will extract data from
the database (if the action is a query). There are two paths along which user
actions affect the database:

1. Answering the query. The query is parsed and optimized by a query
compiler. The resulting query plan, or sequence of actions to be taken
to answer the query, is passed to the execution engine. The execution
engine issues a sequence of requests for small pieces of data, typically
records or tuples of a relation, to a resource manager that knows about
data files (holding relations), the format and size of records in those files,
and index files, which help find elements of data files quickly. The re-
quests for data are translated into pages and these requests are passed
to the buffer manager. We shall discuss the role of the buffer manager
in Section 1.2.3, but briefly, its task is to bring appropriate portions of
the data from secondary storage (disk, normally) where it is kept perma-
nently, to main-memory buffers. Normally, the page or "disk block" is
the unit of transfer between buffers and disk. The buffer manager com-
municates with a storage manager to get data from disk. The storage
manager might involve operating-system commands, but more typically,
the DBMS issues commands directly to the disk controller.

2. Transaction processing. Queries and other actions are grouped into trans-
actions, which are units that must be executed atomically and in isolation,
as discussed in the introduction to this chapter; often each query or mod-
ification action is a transaction by itself. In addition, the execution of
transactions must be durable, meaning that the effect of any completed
transaction must be preserved even if the system fails in some way right
after completion of the transaction. We divide the transaction processor
into two major parts:

(a) A concurrency-control manager, (or scheduler), responsible for as-
suring atomicity and isolation of transactions, and

(b) A logging and recovery manager responsible for the durability of
transactions.

We shall consider these components further in Section 1.2.4.

1.2.3 Main-Memory Buffers and the Buffer Manager
The data of a database normally resides in secondary storage; in today's com-
puter systems "secondary storage" generally means magnetic disk. However,
to perform any useful operation on data, that data must be in main memory.



OVERVIEW OF A DATABASE MANAGEMENT SYSTEM 9

Thus, a DBMS component railed the buffer manager is responsible for partition-
ing the available main memory into buffers, which are page-sized regions into
which disk blocks can be transferred. Thus, all DBMS components that need
information from the disk will interact with the buffers and the buffer manager,
either directly or through the execution engine. The kinds of information that
various components may need include:

1. Data: the contents of the database itself.

2. Metadata: the database schema that describes the structure of, and con-
straints on, the database.

3. Statistics: information gathered and stored by the DBMS about data
properties such as the sizes of, and values in, various relations or other
components of the database.

4. Indexes: data structures that support efficient access to the data.

A more complete discussion of the buffer manager and its role appears in Sec-
tion 6.8.

1.2.4 Transaction Processing
As we mentioned, it is normal to group one or more database operations into
a transaction, which is a unit of work that must be executed atomically and
in apparent isolation from other transactions. In addition, a DBMS offers the
guarantee of durability: that the work of a completed transaction will never be
lost. The transaction manager therefore accepts transaction commands from an
application, which tell the transaction manager when transactions begin and
end, as well as information about the expectations of the application (some may
not wish to require atomicity, for example). The transaction processor performs
the following tasks:

1. Logging: In order to assure durability, every change in the database is
logged separately on disk. The log manager follows one of several policies
designed to assure that no matter when a system failure or "crash" occurs,
a recovery manager will be able to examine the log of changes and restore
the database to some consistent state. The log manager initially writes
the log in buffers and negotiates with the buffer manager to make sure that
buffers are written to disk (where data can survive a crash) at appropriate
times.

2. Concurrency control: Transactions must appear to execute in isolation.
But in most systems, there will in truth be many transactions executing
at once. Thus, the scheduler (concurrency-control manager) must assure
that the individual actions of multiple transactions are executed in such
an order that the net effect is the same as if the transactions had in



10 CHAPTER I. INTRODUCTION TO DBMS IMPLEMENTATION

The ACID Properties of Transactions

Properly implemented transactions are commonly said to meet the "ACID
test," where:

• "A" stands for "atomicity," the all-or-nothing execution of trans-
actions.

• "I" stands for "isolation," the fact that each transaction must appear
to be executed as if no other transaction is executing at the same
time.

• "D" stands for "durability," the condition that the effect on the
database of a transaction must never be lost, once the transaction
has completed.

The remaining letter, "C," stands for "consistency." That is, all databases
have consistency constraints, or expectations about relationships among
data elements (e.g., a certain attribute is a key, students may not take
more than 8 courses at a time, and so on). Transactions are expected to
preserve the consistency of the database. We discuss this matter in more
detail in Section 9.1.

fact executed in their entirety, one-at-a-time. A typical scheduler does
its work by maintaining locks on certain pieces of the database. These
locks prevent two transactions from accessing the same piece of data in
ways that interact badly. Locks are generally stored in a main-memory
lock table, as suggested by Fig. 1.1. The scheduler affects the execution of
queries and other database operations by forbidding the execution engine
from accessing locked parts of the database.

3. Deadlock resolution: As transactions compete for resources through the
locks that the scheduler grants, they can get into a situation where none
can proceed because each needs something another transaction has. The
transaction manager has the responsibility to intervene and cancel ("ab-
ort") one or more transactions to let the others proceed.

1.2.5 The Query Processor
The portion of the DBMS that most affects the performance that the user sees
is the query processor. In Fig. 1.1 the query processor is represented by two
components:

1. The query compiler, which translates the query into an internal form called
a query plan. The latter is a sequence of operations to be performed on



1.3. OUTLINE OF THIS BOOK 11

the data. Often the operations in a query plan are implementations of
"relational algebra" operations, which are discussed in Section 6.1 and
with which you may be familiar already. The query compiler consists of
three major units:

(a) A query parser, which builds a tree structure from the textual form
of the query.

(b) A query preprocessor, which performs semantic checks on the query
(e.g., making sure all relations mentioned by the query actually ex-
ist) , and performing some tree transformations to turn the parse tree
into a tree of algebraic operators representing the initial query plan.

(c) A query optimizer, which transforms the initial query plan into the
best available sequence of operations on the actual data.

The query compiler uses metadata and statistics about the data to decide
which sequence of operations is likely to be the fastest. For example, the
existence of an index can make one plan much faster than another.

2. The execution engine, which has the responsibility for executing each of
the steps in the chosen query plan. The execution engine interacts with
most of the other components of the DBMS, either directly or through
the buffers. It must get the data from the database into buffers in order
to manipulate that data. It needs to interact with the scheduler to avoid
accessing data that is locked, and with the log manager to make sure that
all database changes are properly logged.

1.3 Outline of This Book
The subject of database system implementation can be divided roughly into
three parts:

1. Storage management: how secondary storage is used effectively to hold
data and allow it to be accessed quickly.

2. Query processing: how queries expressed in a very high-level language
such as SQL can be executed efficiently.

3. Transaction management: how to support transactions with the ACID
properties discussed in Section 1.2.4.

Each of these topics is covered by several chapters of the book.

1.3.1 Prerequisites
Although this book assumes you have no prior knowledge of DBMS implemen-
tation, it is intended as the text for a "second course" in a sequence of courses



12 CHAPTER 1. INTRODUCTION TO DBMS IMPLEMENTATION

revering databases, or as part of a comprehensive, one-semester course. In par-
ticular, it is a follow-on to the text A First Course m Database Systems by Jeff
Ullman and Jennifer Widom. The latter book covers:

1. Database design: the informal, high-level, specification of the schema of a
database, using notations such as the entity/relationship model or ODL
(Object Description Language), and the implementation of designs in the
data-definition portion of SQL.

2. Database programming: writing queries and database modification com-
mands using appropriate languages, especially SQL.

The impact of database-design technology on DBMS implementation is
small, but you should have familiarity with the relational model and how data is
represented by relations, since much of what we say in this book addresses how
one stores relations, optimizes queries about relations, and how one controls
access to relations by methods such as locking. Further, in order to appreci-
ate the technology behind query processing, you should be familiar with SQL
programming. A brief review of these topics is in Section 1.4.

Additionally, we assume you are familiar with files (named storage aieas in
which data can be kept). We expect that you are familiar with the architecture
of a conventional file system, i.e., the part of an operating system that manages
its files. The way a DBMS manages files is rather different, and we cover the
basics of this important topic.

1.3.2 Storage-Management Overview
This book begins with chapteis on storage management. Chaptei 2 introduces
the memory hierarchy. However, since secondary storage, especially disk, is so
central to the way a DBMS manages data, we examine in the greatest detail
the way data is stored and accessed on disk. The "block model" for disk-based
data is introduced; it influences the way almost everything is done in a database
system.

Chapter 3 relates the storage of data elements — relations, tuples, attribute-
values, and their equivalents in other data models — to the requirements of the
block model of data. Then we look at the important data structures that are
used for the construction of indexes. Recall that an index is a data structure
that supports efficient access to data. Chapter 4 covers the important one-
dimensional index structures — indexed-sequential files, B-trees, and hash ta-
bles. These indexes are commonly used in a DBMS to support queries in which
a value for an attribute is given and the tuples with that value are desired.
Chapter 5 discusses multidimensional indexes, which are data structures for
specialized applications such as geographic databases, where queries typically
ask for the contents of some region. These index structures can also support
complex SQL queries that limit the values of two or more attributes, and some
of these structures are beginning to appear in commercial DBMS's.



1.3. OUTLINE OF THIS BOOK 13

1.3.3 Query-Processing Overview
Chapter 6 introduces the relational algebra as a way to describe the execution
of queries. This chapter then covers the basics of query execution, including
a number of algorithms for efficient implementation of key operations such as
joins of relations.

In Chapter 7 we consider the architecture of the query compiler and opti-
mizer. We begin with the parsing of queries and their semantic checking. Next,
we consider the conversion of queries from SQL to relational algebra and the
selection of a logical query plan, that is, an algebraic expression that represents
the particular operations to be performed on data and the necessary constraints
regarding order of operations. Finally, we explore the selection of a physical
query plan, in which the particular order of operations and the algorithm used
to implement each operation have been specified.

1.3.4 Transaction-Processing Overview
In Chapter 8 we see how a DBMS supports durability of transactions. The
central idea is that a log of all changes to the database is made. Since anything
that is in main-memory but not on disk can be lost in a crash (say, if the power
supply is interrupted), we have to be careful to move from buffer to disk, in
the proper order, both the database changes themselves and the log of what
changes were made. There are several log strategies available, but each limits
our freedom of action in some ways.

Then, we take up the matter of concurrency control — assuring atomicity
and isolation — in Chapter 9. We view transactions as sequences of operations
that read or write database elements. The major topic of the chapter is how
to manage locks on database elements: the different types of locks that may
be used, and the ways that transactions may be allowed to acquire locks and
release their locks on elements. Also studied are a number of ways to assure
atomicity and isolation without using locks.

Chapter 10 concludes our study of transaction processing. We consider the
interaction between the requirements of logging, as discussed in Chapter 8, and
the requirements of concurrency that were discussed in Chapter 9. Handling of
deadlocks, another important function of the transaction manager, is covered
here as well. The extension of concurrency control to a distributed environment
is also considered in Chapter 10. Finally, we introduce the possibility that
transactions are "long," taking hours or days rather than milliseconds. A long
transaction cannot lock data without causing chaos among other potential users
of that data, which forces us to rethink concurrency control for applications that
involve long transactions.

1.3.5 Information Integration Overview
Much of the recent evolution of database systems has been toward capabilities
that allow different data sources, which may be databases and/or information



14 CHAPTER 1. INTRODUCTION TO DBMS IMPLEMENTATION

resources that are not managed by a DBMS, to work together in a larger whole.
Thus, Chapter 11 is devoted to a study of important aspects of this new tech-
nology, called information integration. We discuss the principal modes of in-
tegration, including translated and integrated copies of sources called a data
warehouse, and virtual "views" of a collection of sources, called a mediator.

1.4 Review of Database Models and Languages
In this section, we shall give the reader a brief review of SQL and the relational
model. We also review the notion of objects as in an object-oriented database.
The examples are taken from Ullman and Widom's, A First Course in Database
Systems.

1.4.1 Relational Model Review
A relation is a set of tuples, which in turn are lists of values. All tuples of a
relation have the same number of components, and corresponding components
from different tuples are of the same type. We display a relation by listing each
of its tuples as a row. Column headers called attributes represent the meaning
of each component of the tuples. The relation name and its attribute names
and types are the schema for the relation.

Example 1.3 : The relation Movie, which we use fiequently in examples, might
consist of the following:

title________ year \ length
Star W a r s 1 9 7 7 1 2 4
Mighty Ducks 1991 104
Wayne's World 1992 95

The schema for the relation is

Movie(title, year, length)

The attributes are title, year, and length, which we may suppose are of types
string, integer, and integer, respectively. Each of the three rows below the line
is a tuple. For instance, the fiist tuple says that "Star Wars" was made in 1977
and is 124 minutes long. O

A database schema is a collection of relation schemas. In our running ex-
ample of movies, we shall often use relations

Movie(title, year, length, studioName)
MovieStar(name, address, gender, birthdate)
Starsln(title, year, starName)
Studio(name, address)



1.4. REVIEW OF DATABASE MODELS AND LANGUAGES 15

The first is like the Movie relation from Example 1.3, although it adds the name
of the producing studio when we need some additional connections in examples.
The second gives information about movie stars, and the third connects movies
to their stars. The fourth gives some information about movie studios. The
intent of the various attributes should be clear from their names.

1.4.2 SQL Review
The database language SQL has a large number of capabilities, including state-
ments that query and modify the database. Database modification is through
three commands, called INSERT, DELETE, and UPDATE, whose syntaxes we shall
not review here. Queries are generally expressed with a "select-from-where"
statement, which actually has the general form shown in Fig. 1.2. Only the
first two lines (clauses), the ones introduced by the keywords SELECT arid FROM,
are required.

SELECT <attribute list>
FROM <relation list>
WHERE <condition>
GROUP BY <attribute list>
HAVING <condition>
ORDER BY <attribute list>

Figure 1.2: General form of an SQL query

Although better ways exist, the result of such a query can be computed by:

1. Taking all possible combinations of tuples from the relations in the FROM
clause,

2. Throwing away any that do not meet the condition of the WHERE clause,

3. Grouping the remaining tuples according to their values in the attributes
mentioned in the GROUP BY clause (if any),

4. Testing each group according to the condition in the HAVING clause (if
any), and rejecting all groups that do not meet this condition,

5. Computing tuples from specified attributes and aggregations of attributes
(e.g., sum within a group) as specified by the SELECT clause, and finally

6. Ordering the resulting tuples according to values in the list of attributes
in the ORDER BY clause.

Example 1.4: Figure 1.3 is a simple SQL query with only the first three
clauses. It asks for the names of stars that starred in movies made by Paramount



16 CHAPTER 1. INTRODUCTION TO DBMS IMPLEMENTATION

Studios, and the titles of the movies that they starred in. Note that title and
year together are the key for Movie, since there could be two movies of the
same title (but not in the same year, we hope). D

SELECT starName, Movie.title
FROM Movie, Starsln
WHERE Movie.title = Starsln.title AND

Movie.year = Starsln.year AND
studioName = 'Paramount';

Figure 1.3: Finding the Paramount stars

Example 1.5: Figure 1.4 is a more complicated query. It asks us first to
find the stars who starred in at least three movies. That part of the query
is accomplished by grouping the Starsln tuples by the name of the star (the
GROUP BY clause) and then filtering out the groups that have two or fewer tuples
(the HAVING clause).

SELECT starName, MIN(year) AS minYear
FROM Starsln
GROUP BY starName
HAVING COUNT(*) >= 3
ORDER BY minYear;

Figure 1.4: Finding earliest years of stars appearing in at least three movies

Next, from each of the surviving groups, the SELECT clause tells us to pro-
duce the name of the star and the earliest year that star appeared in a movie.
The second component of the select-list, which is MIN(year), is given the at-
tribute name minYear. Last, the ORDER BY clause says that the output tuples
are to be listed in increasing order of the value of minYear; that is, the stars
appear in the order of their first movie, n

Subqueries

One of the powerful features that SQL provides is the ability to use subquenes
within a WHERE, FROM, or HAVING clause. A subquery is a complete select-from-
where statement whose value is tested in one of these clauses.

Example 1.6 : In Fig. 1.5 is an SQL query with a subquery. The overall query
finds the title and year of the movies made not in Hollywood. The subquery



1.4. REVIEW OF DATABASE MODELS AND LANGUAGES 17

SELECT title, year
FROM Movie
WHERE studioName IN (

SELECT name
FROM Studio
WHERE address NOT LIKE ''/.Hollywood'/,'

);

Figure 1.5: Finding the movies not made in Hollywood

SELECT name
FROM Studio
WHERE address NOT LIKE ''/.Hollywood'/,'

produces a one-column relation consisting of the names of all the studios that
do not have "Hollywood" somewhere in their address. This subquery is then
used in the WHERE clause of the outei query to identify those movies whose
studio appears in this set of studio names. D

Views

Another important capability of SQL is the definition of views, which are de-
scriptions of relations that are not stored, but constructed as needed from stored
relations.

Example 1.7: Figure 1.6 shows the definition of a view; it is the title and year
of movies made by Paramount studios. The definition of view ParamountMovie
is stored as part of the schema of the database, but its tuples are not computed
at this time. If we use ParamountMovie as a relation in a query, then its tuples,
or the necessary subset of its tuples if the query does not need the whole relation,
will be constructed logically by folding the view definition into the query. Thus,
these tuples are never actually stored in the database. D

CREATE VIEW ParamountMovie AS
SELECT title, year
FROM Movie
WHERE studioName = 'Paramount';

Figure 1.6: View for only the movies made by Paramount



18 CHAPTER 1. INTRODUCTION TO DBMS IMPLEMENTATION

1.4.3 Relational and Object-Oriented Data
Most of what is discussed in this book assumes that the database is relational:
data is modeled by tables, data items are tuples or rows of the table, and
tuples have a fixed number of components, each of a fixed type determined by
the relation's schema. This view of data was suggested in Example 1.3. At a
different level, we can think of a tuple as a "struct" (the C term) or record,
with one field for the value of each attribute.

There is another model of data that is used in some database systems: data
as objects. In this model, the elementary data item is an object. Objects are
grouped into classes, and each class has a schema that is a list of of properties:

1. Some of those properties are attributes, which can be represented like
attributes of a relational tuple.

2. Other properties are relationships, which connect an object to one or more
other objects. We can think, at an implementation level, of a relationship
as a list of pointers to these objects.

3. Still other properties are methods, that is, functions that can be applied
to objects of the class.

While the code for methods will typically be stored outside of the objects,
the rest of the object-oriented formulation of data fits well into our general
framework. That is, we shall generally think of "files" as the largest units
of data. Files are simply named collections of data, and files are generally
composed of smaller units, for which the following terminology is used:

a) In the earliest databases, files were composed of records, which were com-
posed of fields. A record is analogous to a "struct" in C and its descendant
programming languages such as C++ or Java.

b) In relational databases, files are relations; they are composed of tuples,
which are composed of attributes.

c) In object-oriented databases, files are the extents of classes, that is, the set
of currently existing objects of one class. Extents are composed of objects,
and the objects have fields or "instance variables," whose values represent
either attributes of the object or the set of related objects according to
some relationship.

It is useful to draw the following analogies:

1. A file, relation, and extent are similar concepts; they are each values
consisting of some smaller elements that have a common schema (records,
tuples, or objects).

2. The schema of a file or relation and the definition of a class are similar
concepts; each describes the elements of a file, relation, or an extent (of
the class).



1.5. SUMMARY OF CHAPTER 1 19

3. Records, tuples, and objects are similar concepts. Each is often imple-
mented as if they were "structs" in C.

1.5 Summary of Chapter 1
4- Database Management Systems: These systems are characterized by their

ability to support efficient access to large amounts of data, which persists
over time. They are also characterized by their support for powerful query
languages and for durable transactions that can execute concurrently in
a manner that appears atomic and independent of other transactions.

4 Comparison With File Systems: Converntional file systems are inadequate
as database systems, because they fail to support efficient search, efficient
modifications to small pieces of data, complex queries, controlled buffering
of useful data in main memory, or atomic and independent execution of
transactions.

4- Components of a DBMS: The major components of a database man-
agement system are the storage manager, the query processor, and the
transaction manager.

4- The Storage Manager: This component is responsible for storing data,
metadata (information about the schema or structure of the data), indexes
(data structures to speed the access to data), and logs (records of changes
to the database). This material is kept on disk. An important storage-
management component is the buffer manager, which keeps portions of
the disk contents in main memory.

4 The Query Processor: This component parses queries, optimizes them by
selecting a query plan, and executes the plan on the stored data.

4 The Transaction Manager: This component is responsible for logging
database changes to support recovery after a system crashes. It also sup-
ports concurrent execution of transactions in a way that assures atomicity
(a transaction is performed either completely or not at all), and isolation
(transactions are executed as if there were no other concurrently executing
transactions).

4 SQL: This query language, based on the relational model, is an important
standard. Both the language and the relational model are central to large
portions of this book.

4 Data Concepts: File systems, conventional programming languages like
C, the relational model, and object-oriented data models share many com-
mon notions, often with different terminology. There are analogies among
structs, tuples, and objects, and among files, relations, and classes.



20 CHAPTER 1. INTRODUCTION TO DBMS IMPLEMENTATION

1.6 References for Chapter 1
Today, on-line searchable bibliographies cover essentially all recent papers con-
cerning database systems. Thus, in this book, we shall not try to be exhaustive
in our citations, but rather shall mention only the papers of historical impor-
tance and major secondary sources or useful surveys. One searchable index
of database research papers has been constructed by Michael Ley [6]. Alf-
Christian Achilles maintains a searchable directory of many indexes relevant to
the database field [1].

The background assumed for this text is obtainable from [8]. The SQL2
and SQL3 standards are obtainable on-line by anonymous FTP from [5]. We
suggest [4] for those wanting an SQL2 manual.

While many prototype implementations of database systems contributed to
the technology of the field, two of the most widely known are the System R
project at IBM Almaden Research Center [2] and the INGRES project at Berke-
ley [7]. Each was an early relational system and helped establish this type of
system as the dominant database technology.

The 1998 "Asilomar report" [3] is the most recent in a series of reports on
database-system research and directions. It also has references to earlier reports
of this type.

1. http://www.ira.uka.de/bibliography/Database.

2. M. M. Astrahan et al., "System R: a relational approach to database
management," ACM Trans. on Database Systems 1:2 (1976), pp. 97-137.

3. P. A. Bernstein et al., "The Asilomar report on database research,"
http://s2k-ftp.cs.berkeley.edu:8000/postgres/papers/Asilomar_
Final.htm .

4. Date, C. J. and H. Darwen, A Guide to the SQL Standard, Fourth Edition,
Addison-Wesley, Reading, MA, 1997.

5. ftp://jerry.ece.umassd.edu/isowg3.

6. http://www.informatik.uni-trier.de/~ley/db/index.html. A mir-
ror site is found at http://www.acm.org/sigmod/dblp/db/index.html.

7. M. Stonebraker, E. Wong, P. Kreps, and G. Held, "The design and im-
plementation of INGRES," ACM Trans. on Database Systems 1:3 (1976),
pp. 189-222.

8. J. D. Ullman and J. Widom, A First Course in Database Systems, Prent-
ice-Hall, Englewood Cliffs NJ, 1997.


