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UNIT I - SYSTEM CONCEPTS

1.1  Basic Concept of Control System

System: A combination or arrangement of a number of different physical components to

forma whole unit such that that combining unit performs to achieve a certain goal.
Control: The action to command, direct or regulate a system.

Plant or process: The part or component of a system that is required to be controlled.

Input: It is the signal or excitation supplied to a control system.
Output: It is the actual response obtained from the control system.

Controller: The part or component of a system that controls the plant.

Disturbances: The signal that has adverse effect on the performance of a control system.

Control system: A system that can command, direct or regulate itself or another system
toachieve a certain goal.

Automation: The control of a process by automatic means
Control System: An interconnection of components forming a system configuration that

willprovide a desired response.

Actuator: It is the device that causes the process to provide the output. It is the device
thatprovides the motive power to the process.

Design: The process of conceiving or inventing the forms, parts, and details of system to
achieve a specified purpose.

Simulation: A model of a system that is used to investigate the behavior of a system by

utilizing actual input signals.

Optimization: The adjustment of the parameters to achieve the most favorable or

advantageous design.

Feedback Signal: A measure of the output of the system used for feedback to control the

system.

Negative feedback: The output signal is feedback so that it subtracts from the input signal.
Block diagrams: Unidirectional, operational blocks that represent the transfer functions

of the elements of the system.



Signal Flow Graph (SFG): A diagram that consists of nodes connected by several

directed branches and that is a graphical representation of a set of linear relations.

Specifications: Statements that explicitly state what the device or product is to be and to
do.It is also defined as a set of prescribed performance criteria.

Open-loop control system: A system that utilizes a device to control the process without
using feedback. Thus the output has no effect upon the signal to the process.

Closed-loop feedback control system: A system that uses a measurement of the output

andcompares it with the desired output.

Regulator: The control system where the desired values of the controlled outputs are more
orless fixed and the main problem is to reject disturbance effects.

Servo system: The control system where the outputs are mechanical quantities like
acceleration, velocity or position.

Stability: It is a notion that describes whether the system will be able to follow the input
command. In a non-rigorous sense, a system is said to be unstable if its output is out of

control or increases without bound.

Multivariable Control System: A system with more than one input variable or more

than one output variable.
1.2 Classification of Control Systems
Natural control system and Man-made control system:

Natural control system: It is a control system that is created by nature, i.e. solarsystem,

digestive system of any animal, etc.

Man-made control system: It is a control system that is created by humans, i.e.

automobile, power plants etc.
Automatic control system and Combinational control system:

Automatic control system: It is a control system that is made by using basic theoriesfrom

mathematics and engineering. This system mainly has sensors, actuators and responders.

Combinational control system: It is a control system that is a combination of naturaland

man-made control systems, i.e. driving a car etc.



Time-variant control system and Time-invariant control system:

Time-variant control system: It is a control system where any one or moreparameters of

the control system vary with time i.e. driving a vehicle.

Time-invariant control system: It is a control system where none of its parametersvary

with time i.e. control system made up of inductors, capacitors and resistors only.
Linear control system and Non-linear control system:

Linear control system: It is a control system that satisfies properties of homogeneityand
additive.

Non-linear control system: It is a control system that does not satisfy properties of

homogeneity.

Continuous-Time control system and Discrete-Time control system:

Continuous-Time control system: It is a control system where performances of all of its

parameters are function of time, i.e. armature type speed control of motor.

Discrete -Time control system: It is a control system where performances of all of its

parameters are function of discrete time i.e. microprocessor type speed control of motor.
Deterministic control system and Stochastic control system:

Deterministic control system: It is a control system where its output is predictableor

repetitive for certain input signal or disturbance signal.

Stochastic control system: It is a control system where its output is unpredictable ornon-

repetitive for certain input signal or disturbance signal.

Single-input-single-output (SISO) control system and Multi-input-multi-output
(MIMO) control system:

SISO control system: It is a control system that has only one input and one output.

MIMO control system: It is a control system that has only more than one input andmore

than one output.
Open-loop control system and Closed-loop control system:

Open-loop control system: It is a control system where its control action onlydepends

on input signal and does not depend on its output response.



Closed-loop control system: It is a control system where its control action dependson

both of its input signal and output response.

1.3 Open-loop control system and Closed-loop control system

Open-loop control system:

It is a control system where its control action only depends on input signal and does
not depend on its output response as shown in Fig.1.1.
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Fig.1.1 An open-loop system
Examples: traffic signal, washing machine, bread toaster, etc.
Advantages:
o Simple design and easy to construct
o Economical

° Easy for maintenance

. Highly stable operation

Dis-advantages:

. Not accurate and reliable when input or system parameters are variable innature
. Recalibration of the parameters are required time to time

Closed-loop control system:

It is a control system where its control action depends on both of its
input signal andoutput response as shown in Fig.1.2.
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Fig.1.2. A closed-loop system



Examples: automatic electric iron, missile launcher, speed control of DC motor, etc.

Advantages:

- More accurate operation than that of open-loop control system

- Can operate efficiently when input or system parameters are variable
innature

Less nonlinearity effect of these systems on output response

- High bandwidth of operation

- There is facility of automation

- Time to time recalibration of the parameters are not required

Dis-advantages:
- Complex design and difficult to construct

- Expensive than that of open-loop control system
- Complicate for maintenance
- Less stable operation than that of open-loop control system

Comparison between Open-loop and Closed-loop control systems:

It is a control system where its control action depends on both of its input signal and
output response.

Table 1. Comparison between Open-loop and Closed-loop control systems

Sl.

No Open-loop control systems Closed-loop control systems
1 No feedback is given to the control system| A feedback is given to the control
system
2 Cannot be intelligent Intelligent controlling action
There is no possibility of undesirable Clos_ed_ _Ioop contro_l introduces the
3 system oscillation(hunting) pos§|b |I_|ty of . undesirable system
oscillation(hunting)
The output will not very for a constant In the system the output may vary for a
4 input, provided the system parameters constant input, depending upon the
remain unaltered feedback
e e o | Sysem oo vraion e vriaion
X inparameters of the system is less.
the output very in an uncontrolled way
6 Error detection is not present Error detection is present
7 Small bandwidth Large bandwidth
8 More stable Less stable or prone to instability
9 Affected by non-linearities Not affected by non-linearities
10 Very sensitive in nature Less sensitive to disturbances
11 Simple design Complex design
12 Cheap Costly




1.3 Transfer Function
Definition: It is the ratio of Laplace transform of output signal to Laplace transform of
inputsignal assuming all the initial conditions to be zero, i.e.

T(s) is the transfer function of the system. It can be mathematically represented as follows.

T(S)=C(S)/R(S) with zero initial conditions
Example 3.1: Determine the transfer function of the system shown below
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Fig.1.3 a system in time domain
Solution:

Fig.1.3 is redrawn in frequency domain as shown in Figl1.4
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Fig.1.4. a system in frequency domain
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Description of physical system
Components of a mechanical system: Mechanical systems are of two types, ie. (1)
translational mechanical system and (ii) rotational mechanical system.
Translational mechanical system

There are three basic elements in a translational mechanical system, i.e. (a) mass, (b)
spring and (¢) damper.

(a) Mass: A mass is denoted by M. If a force [ is applied on it and it displays

2

distance x, then f =M j—f as shown in Fig.4.1.
I

X

Force applied on a mass with displacement in one direction

If a force fis applied on a massM and it displays distance x;in the direction of fand

d’ 4%
distance x; in the opposite direction, then =M [ df] - a';‘] as shown in Fig.4.2.
2
Xz Xy
M e

Force applied on a mass with displacement two directions

(b) Spring: A spring 1s denoted by K. If a force f is applied on it and it displays
distance x, then [ = Kx as shown in Fig.4.3.

" Force applied on a spring with displacement in one direction

If a force f1s applied on a springK and it displays distance x;in the direction of fand
distance x; in the opposite direction, then f =K (x, —x,)



Xy =X

Force applied on a spring with displacement in two directions

(c) Damper: A damper is denoted by D. If a force fis applied on it and it displays
distance x, then f :D%

Force applied on a damper with displacement in one direction

If a force f"is applied on a damperD and it displays distance x;in the direction of / and

distance x> in the opposite direction, then f = D(% = _d;z ]
Xy =X

D

Rotational mechanical system

There are three basic elements in a Rotational mechanical system, i.e. (a) inertia, (b)
spring and (c) damper.

(a) Imertia: A body with aninertia is denoted by J. If a torqueT is applied on it and it

displays distance®, then T =J ‘;;? . If a torqueT 1s applied on a body with inertia
2
J and it displays distance ©; in the direction of T and distance ©; in the opposite
d*6, d’e,
direction, then 7'=.J —a L
dt dt”

(b) Spring: A spring is denoted by K. If a torqueT is applied on it and it displays
distance@, then T = K@ . If a torqueT is applied on a body with inertia J and it
displays distance @; in the direction of T and distance @: in the opposite
direction, then 7 =K [ﬂ, -6, } :

(¢) Damper: A damper 1s denoted by D. If a torqueT 1s applied on it and it displays

distance@, then T:D%. It a torqueT 1s applied on a body with ineriia J and it

displays distance &; in the direction of T and distance &: in the opposite
direction, then 7" = D[ﬂ—ﬂ}
dt dt



Write the differential equations governing the mechanical system shown infig 1. and determine the transfer function.

% X
K, B
M, sl M,
— )
> . Ry
777777777777 777777777 77777
B, 8

SOLUTION
~ Inthe given system, applied force '(t)'is the input and displacement x'is the output
Let, Laplace transform of f(t) = LIf(t)} =F(s)

Laplace transform of x = L{x} =X(s)

Letthe displacement of mass M, be x,. The free body diagram of mass M, is shown in fig Theonposmgforoesacting
onmass M, are marked as f £, . f, and f,

‘M‘Ml d2X1 ' fm=B|-&l ; fu'-‘K,x,; [

S-Ba(x, X & =Kix-x) ::
By Newton's second law, _ M, Ef.

byt by +h+he 46 =0 | b

‘ dle ‘—-—fl

e B’ B--(x, i e Fig . : Free body diagram

OnmldngLaplaceuansfamofaboveequaumMMeminiﬁaloondiﬁonsmget of mags U, (node
Mis?Xi(5) +BisX,(5) + Bs [X,(s) - X(5)) + KX s) +K [Xi(5) - X(s)] =0
Xi(s) (Ms? + (B, + B)s + (K, + )} - X(s) [Bs +K] =0
Xi(s) Ms” + (B, +B)s + (K, +K)) = X(5) (Bs +K]

Bs+K
WiG:Bsk

- X{8)=X(s)
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The tree body diagram of mass M,is showninfig* The opposing forces acting on M, are marked asf_, f

m2' e,
andf,.
—p X
ek e
p 1)
Q’Ba'(x"xﬂ b k=Kix-x) —f,
M le—if,
By Newton's second faw, —
be ko th +E =H1) —r
) . Free body diagram
M, %t';*az %B:; (= x3) #K(x - x,) =) Aman il e
Ontaking Laplace transform of above equation with zero initial conditions we get,
M?X(s) + B/SX(s) + BofX(s) - X s)] + KIX(5) - X,(s)) =F(s)
X(s) [M;s” + (B, +B)s +K)- X,(s)[Bs +K] = F(s) wfl
Mngfmx,(s)mmﬁmmhmﬁm(z)mgen
g (Bs K" <
X(s) [Ms* + (B, +B)s + K] - Xs) M§,+(81+B)s+(K‘+K)-F(s)
(&) [[Mzsz +(B, +B)s K] M2 + (B, + B)s +(K, +K}]-'(Bs+t<)2}= Fs)
Ms“ +(B,+B)s+ (K, +K)
L X(s) _  Ms® +(B, +B)s+(K, +K)
T F(s)  IMs® +(By+B)s+(K; +K)] M;S® + (B, +B)s + K] - (Bs + K)?
RESULT

The differential equations governing the system are,

1 m%+&%+%m—x}+mmm—xi=o

. dx . dc:d
2 My +By— 4B li-x) +Kt-x) =10
The transfer function of the systemiis,

X(s) _ Ms® +(B, +B) s+ (K;+K) .
F8) ~ [Ms?+(B,+B) s+ (K +K)| [M;s* + (B, + B) s +K|- (Bs +K)’

11



Determine the transfer function -YFZ((—S))- oflhesysﬁamshownmﬁg
SOLUTION
Let,  Lapiace transform of f(t) = LIf{1)} =F(s)
Laplace transformof y, = L{y } =Y (s)
Laplace transformof y, = L{y,} =Y,(s)

The system has two nodes and they are mass M, and M,. The differential
equations governing the system are the force balance equations at these nodes.

it

M, nER

TY}

The free body diagram of mass M, is shown in fig 2.
The opposing forces are marked asf_, 1.1, andf,,

d’y.

L =M, i h= B V=K L e =Kalys-y2)

By Newton's second law, f,,, + f, +t.,+f.a =f{t)

-'-Mudf;ygl*' B%—*'(%* Kalyr = y2) =)

On taking Laplace transform of equation (1) with zero initial condition we get,
M:s2Yi(s) + BsYy(s) + K,Yy(s) + K;[Yi(s) - Yy(s)) = F(s)
Yy(s)Ms? + Bs + (K; +Ky)] - Yo(8)K, = F(s)

o
Tz = My c::);:g s fuo = Koz — W)

By Newton's second law, f.o + iz =0

Mz%y} +Kalyz -y1) =0

On taking Laplace transform of above equation we get,
M;52Y,(8) + K [Y,(5) - Yy(8)) = 0
Yy(s) [M;s? +K;) - Yi(s) K, = 0

~Yys)= Y (s) —=——= Mzs B

o=y 2

|__>y‘

—pf(1)

+—f.,

[ fu

—h

— f.q

1

)

SubstnuungforY.(s)fmneqwnon(:&)mequaﬁon(Z)weget.

2
Yals) [.Min.ISlJ [M s +Bs+(K, + Kz)]— Y,(s) K, = F(s)

Kz
L Yals) - Ky
" F(s) [M§2+Bs+(K,+K,)J[M,s +Ky| K3

e [(Mzsz +Ky) Mis? + 85 + (K, + K )] - K:}___ f6)

12



RESULT
The differential equations govemning the system are,

oMY, g

a2 dt + Ky + Ko(y: —y2) = (1)

dy.
2. M, ::;2 +Koyz —y) =0

The transfer function of the systemis,
Yi8) _ Kz
Fis)  [Ms?+Bs+ (K, +Ky)]| [Ms? +K,]|-K2

Wite the differential equations governing the mechanical rotational system shown in ig 1. Obtain the transfer function

ofthe system.
| 1 /
R S # !}_E
?;: K g —B
(Applied Torque) (Output)
SOLUTION

It ghvensysten, appiedtoue Tis einputandanguirdspacementdis bt
Let, Laplace transformof T = £(T)=T(s)
Laplace transtormot 6 = £{6) =6(s
Laplace ransfom of 6, = £(6,} =6,

Hence the required transfer function is %
The system has two nodes and they are masses with moment of inertia J, and J,. The differential equations goveming

the system are given by torque balance equations at these nodes.

I -s’l’:‘l{s} + B s as)+ Ko(s) — Ko (s} = O

13



Letthe angular displacement of mass with moment of inertia J, be 6. The free body diagram of J, is showninfig. The
opposing torques acting on J, ammarkedasTl,andT..

¢’
T,tth'd?l v T =K(6,-8)

By Newton's secondlaw, T,,+T, =T Ta T
d%. D0 1 L
=+ K(B,-0)=T
1“7'(” +K(B,-8) e
W L (1) Free body diagram of mass with
dt : moment of inertia J,.

Ontaking Laplace transform of equation (1) with zero initial conditions we get,
3,87 6,(5) + K (s) - K(s) = T(s)

(4, 8% +K) B,(s) - K 8(s) = T(s) wl2)

The free body diagram of mass with momentof inertia J, is shown infig  The oppasing torques acting on J, are marked
asT, T andT,.
@ p S Ty

ds a0
Tﬂ“j?a? ’ TDHB-&-‘- v Te=K(0-0,) Tg LT,
By Newton's second law, Tp + To + Tk =0 ) ———— Jz %’
8 .
. d% _d8
"J?EF"BT.T'K(O'O‘)’ 0 Free body diagram of mass with
moment of inertia J.
d a6
J2F+BE+K9-K01'—'0
On taking Laplace transform of above equation with zero initial conditions we get,
(J> s® + Bs + K) 6(s) — KO,(s)=0
0.(s) — (_iz s2 -:(BS-!—K) ocs) 3

Substituting for 6,(s) from eguation (3) in eguation (2) we get,

(3,82 = Ky &=57 =19 o(s) — Ka(s) = T(s)
- =2 - =2 R
(J.s2 + K) (stK-;- Bs + K)— K ] o(s) — T(=)
- B(s) [0S -

TTTCS) (OS2 K) (JosS2 = Bs = K) - K2

RESULT
The differental eguations governing the system are,

=2,
1. J,%t%-‘—&KO,—Ke=T

R e

The mansfer function of the system is,
o(s) - =<

T(S) (Js°2 = K) (JosS=2 + Bs = K) — K2

14



_ Wmeuwdiﬂemnﬂalequaﬂmsgwemmmmedmcalmﬁonalsymmmg1.anddemmineﬂwtrarsfet
function 8(s)/T(s).

SOLUTION ' o B e
: N J }-—?

Inthe given system, the torque T is the input - ?? ' ] : ?_11] /

and the angular displacement & is the output. T 6, = B, (] 2

Let, Laplace transform of T= L{T} =T(s)
Laptace transform of 6 = £(8} =6(s)

Laplace transform of 6, = L{6),} =6 (s)
Hence the required transfer function is ——— _?8 v

_ mesystemmsumodesandmyammvdmﬂmmofmmJ andJ,. The differential equations goveming
!esysaemaregtva\bytorquebalanceequaﬂonsawmenodes

Letﬂ\emgthrdsplawwnofmaswmmmofwﬁu be,. The free body diagramof J,is showninfig2. The
aoposingtorques acting on J, aremarked as T, T, . and T, . P
i b

d%, -
Ty J'dl’ ; TMI':BI?aT(Qt'e) : T.=*.((9,-6) 7\‘-9-— 3 %

Te L |

Wmemediﬂemequalmsgoveinmﬂwmdmmﬁomlsymnshmhﬁg and determine the transfer
function B(s)T(s).

SOLUTION N gy B 1 L
Inthe given system, the torque T s the input. [??: d _{:}_ S }'—*f
andthe angular displacement & is the output. T 6 B, 0 /

Let, Laplace transform of T = £{T) =T(s)
Laplace transformof @ = £{8} =6(s)

Laplace transform of 6, = L{8,} =6 (s)
Hence the required transfer function is ;’,((s))
ThesystemhasmnodesandﬂveyaranmwlﬂlmemdmmaJ andJ Thedﬂamma!eqwnonsgwemm
Be system are given by torque balance equations at these nodes.

Lmu\earugtlardspbwrwdmaswmmmofnemaJ bed,. The free body diagramof J,is shownin fig2. The
£pposing torques acting on J ,aremarkedasT T, andT,. T
n "

% ) ) ; 53
Th=J1Et'2"‘ ; _Tbu=3125(91"9) , Tx"i((er‘e) J .

T o, L]

15



d%,
dt?

Ontaking Laplace fransform of above equation with zero initial conditions we get,
J%0,(8) +5 By [0y(s) — 0(s)] + K8(s) - Ke(s) = T(s)

0,(s) ;8% + 5By, + K] 8(s) [sBy, + K] = T(s) (1)

The free body diagram of mass with moment ofinertia J, is shown infig. The opposingtorques aremarkedas T, T, ,
T,and T,

J— +B,2 (51—Bj+K('E},—B}=T

d’ d T Teli T,
To=b— ; Tp=B,—(0-90
p=drgr ¥ Tre=Cag0-0) S BANS
N FEAER,
L=B— i T=K@-8) B
Free body diagram of mass with
By Newton's second law, T¢+T,,2+',l',,+T,( =0 moment of inertia J,
d%
Jz~7+312—(9 91)+B—-+K(9 8,)=0

d%
;—5- 812 d! !(8n+8)+K9-K9,=0

On taking Laplace transform of above equation with zero initial conditions we get,
J55%0(s) - B,80,(s) + s0(s) [B,; + B] + K6(s) - Ko (s) = 0
8(s) [sJ, + 5(B; + B)+ K] -6,(s) [sB,, +K] = 0

(5%, < (B +B)+ K]
Bt - |

B4(s)=

Substituting for 8, (s) from eguation (2} in equation (1) we get,

fJs? + sB,, +K] .52 + s(By, + B) + K] 8(s)

— (88, + K) 8(s) = T(s)

(5B +~ K)
| (Jys? + 8By + K) [J:8% + 8(By, + B) + K] — (5B, + r!:]“] P
[ 5B, + 1K) s = T{s)
. Bs) (s8,, + K}

T(S)  (4sT -8By + K) [1sT + (B, + B) + K] — (5B, + K)*
RESULT
The difterential equations governing the systerm are,

%0, e _
| P Moo nZ Bz (81— 8) < K(9, - @) =

2 2,52 5,8 Fip, .8+ KO-0)=0

The transfer function of the systemis,

e(s) _ (5B4z + )
T(s) (5% + 5By = ) [J257 + S(By + B) + K] —{sB,; ~ K)*

16



1.4 Signal Flow Graph

It is a pictorial representation of a system that graphically displays the signal transmission
init.
Mason's gain formula states the overall gain of the system

. _1
Overall gain, T—E ; P Ay

T(s) = Transfer function of the system
Px = Forward path gain of K* forward path

where, T

K = Number of forward paths in the signal flow graph
A = |—(Sum of individual loop gains) '
N [Sum of gain products of all possible )
combinations of two non - touching loops
Sum of gain products of all possible
) (combinations of three non - touching loops}

i)

Ag A for that part of the graph which is not touching K forward path -

Find the overall transfer function of the system whose signal flow graph is shown in fig 1.

R(s) ;
o » » o
1 1 8
Forward Path Gains
There are two forward paths. - K=2
Let forward path gains be Phand P? :
Ris} 1 G-, Gz G; G, G:. 1 Cis)
— b S o + o & ———————— ———O
1 2 3 4 5 6 7 &
Fig 2 : Forward path-1.
R(s) 1 G, G, 1 Cls)
L =] B > o ¥ < - ]
1 2 3 4 5 6 7 8
G, Forward path-2.

G,G,G G

Gain of forward path-1, P, S,

=03
] 1 X
Gain of forward path-2, P_= G GG,

F
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Individual Loop Gain

There are three individual loops. Let individual loop gains be Pr, Px and Pa.

‘ Nl
Laap-f Loop-3.

Loop gain ofindividual loop-1, Py =-GaHs
Loop gain of individual loop-2, Px =-GaGaHa
Loop gain of individual loop-3, Pa =-GsHs
Gain Products of Two Non-touching Loops

There are two combinations of two non-touching loops. Let the gain products of two non touching loops ba Prand Pz,

First combination of 2 non-touching loops. - Second Mm'f’fmﬂ onof. 2 WWE-‘””E IWPF

Gain product of first combination

of two non tu-u::hmg Im-ps } P:lz = PIP:“ = {MEEHF} {_G‘SHJ} = GEGSH#{}

Gain product of second combination
=PPy=(- = G,GyGHAH
of two non touching loops }Pzz PPy = (-G, GyH,) (-GsHy) = GGyGgHH,

Calculation of A and A,

A = 1« (P + P21 + Pn) + (Puz # Paa)
= 1-(-GeHr GeGaHz - GsHa) + (GaGsHiH+ G2GaGeHzH3)
=1+ GeHi+GeGsHz + GsHy + G2GsHiHs + G2GsGsHaHs
Ay = 1, Since there is no part of graph which is not touching with first forward path,
-The part of the graph which is non touching with second forward path is shown in fig 9.

Az = 1-Pu=1-(-GaHi) = 1+Geth 3w4
Transfer Function, T H

=M

By Mason's gain formula the transfer function, T is given by,
1 1
T= ;;E PoA, e (P +P,4;)  (Number of forward paths is 2 and so K = 2)
K

G,G,G,G,Gs + G,G:G; (1+G,H,)
1+GH, +G,GyH; + GgH, + GoGHH; + G;GyGeHH,
- GG2G3G,G;s +G,G:G; + G,G,G:G;H,
1+ GgH, + GyG:H, + GeH; + G,GsHH, + G,GyGsHH,
G,G,Cs [GG; + G5 / G, + GeH|
1+GH, + G;G3H, + GgHy + G,GHH; + G,G,GH.H,
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Find the overall gain C{s)/R(s) for the signal fiow graph shown infig .

SOLUTION
I. Forward Path Gains
There are two forward paths. .. K=2. Letthe forward path gains be P, and P,.

R(S) T G1 G‘E Gsl Gl C{S}
o - o - = - O -
1 2 3 4 s
Forward path-1
R} a G, C(s)
1 % 2 3 4 5

Forward path-2

Gain of forward path-1, 2 P,=G,G6.G6,G,
Gain offorward path-2, P,=G GG,

Individual Loop Gain
There are five individual loops. Let the individual loop gains be p,., p,,. Py, P,, a0d P,

loop-3

Loop gain of individual loop-1, P, =-G,GH,
Loop gain ofindividual loop-2, P, =-H,G,
Loop gain of individual loop-3, P, =-G,GH,
Loop gain ofindividualloop4, P, =-G,G,G H,
Loop gain of individual loop-5, P, =G,
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Gain Products of Two Non-touching Loops

There are two combinations of two non-touching loops.
Letthegamproductsoftwonon-tomtingloopsbep andP,,.

7 (R Rt (8

F irst combination of Second combination of
two non-touching loops two non-touching loops
+ Gain product of first combination 4
b i otkchlig loog } Pra = PPy = (-G H,) (Gs) = G,GgH,
Gain product of second combination
of two ion touching loops } Pr = PyPy; = (-GGt (Gs) = -GGGty

Calculation of A and A,

A =1=(Py; + Py + Py + Py + Pey) + (P + Py)
=1-(-G;G3H, - H,G; - G;G,GH; + G5 - G,GgH;)
+(-GH,Gs - G,GsGgHs)

' Since there is no part of graph which is not touching forward path-1, A:= 1
- The pant of graph which is not touching forward path-2 is shown in fig
| - 82=1-Gs

Transfer Function, T

By Masonfs gain formula the transfer function, T is given by,
. 3 S P
A K

| - g
- <[P+ 2] - 1 + [6,6,6,6, x14+GG:G,(1-Gy)

G,GZG,G +G,G,G, - G,G,G,Gq
" T+G,GyH, + H,G, +G,G,G,H, - G, +G,G,H, - G,H,G, - G,0,G.H,

20



Find the transfer function for the given signal flow graph.

-H’
8, 4 G, G G G, 1 C®
1 2 g - 5 6
-H,
-1
SOLUTION
I. Forward Path Gains
Thereisonly one forward path. .. K=1.
Letthe forward path gain be P,.
R g TR G, G, G. 1 [Cs
1 SRR S AT 4 ORGSO 7
Forward path-1

Gain of forward path-1, P,= G,G,G,G,
Il. Individual Loop Gain

There are three individual loops. Letthe loop gainsbe P, P, P,

S T e v S

4

5
i(
(2]
(AY.
.0
£
w»
N,
W
A
Load
Y
w»
Y

loop-1 loop-2

Loop gain of individual loop-1, P, =-G,G H,
Loop gain of individual loop-2, P,,=-G,GH,
Loop gain of individual loop-3, P, =-G,G,G,G,

lll. Gain Products of Two Non-touching Loops

There are no possible combijnations of two non-touching loops, three non-touching loops, etc

IV. Calculation of A and A,

A=1-(P;;+P,y +Py)
=1-(-GyGH, - G;G3H, - G(G;G,G,)
=1+ Gan_H-' =+ GQG3H2 + G1GQG3G4
Since no part of the graph is non-touching with forward path-1,A, = 1.
Transfer Function, T

By Mason's gain formula the transfer function, T is given by,
_C(s) 1

1
Ris) A Z F’.{AK=3— P; 4, (Number of forward path is 1and so K = 1)
K

- G{G,G,G,
s, 1+ G3GyH, + G,GqH, + GG.G.G,
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1.5 Block Diagram Reduction Technique

Procedure for reduction of Block Diagram model:
Step 1: Reduce the cascade blocks.
Step 2: Reduce the parallel blocks.

Step 3: Reduce the internal feedback loops.
Step 4: Shift take-off points towards right and summing points towards left.
Step 5: Repeat step 1 to step 4 until the simple form is obtained.

Step 6: Find transfer function of whole system

Procedure for finding output of Block Diagram model with multiple inputs:

Step 1: Consider one input taking rest of the inputs zero, find output using the procedure

described in section 4.3.

Step 2: Follow step 1 for each inputs of the given Block Diagram model and find their

corresponding outputs.

Step 3: Find the resultant output by adding all individual outputs.

RULES OF BLOCK DIAGRAM ALGEBRA

Rule-1 : Combining the blocks in cascade

AGG,

A AG,
> A GG

Rule-2 : Combining Parallel blocks (or combining feed forward paths)

AG,G,

AG,
' |
AG*AG,= A(G#+G
AL AG, tﬁi =AGHE) = A &G A(G+G,)

Rule-3 : Moving the branch point ahead of the block

A AG ' A

——{E—> . RS,
A | AG‘A

22



Rule-4 : Moving the branch point before the block

AG e A - AG -
=
i SN o N CHN
Rule-5 : Moving the summing point ahead of the block
B8

' a -A+BG =
A A‘Q‘B( )

B

AG AGHB

A LGSR

Ruie-7 : Interchanging summing péfnr
B ) : B

Rule-8 : Splftting summing points
B ' B

A A+B-C —

c

Rule-9 : Combining summing peints

Rule-10 : Elimination of (négative) feedbacff loop
(R-CH) (R-CH)G

1+ GH |

Proof:
C={R-CH)G = C=RG-CHG =  C+CHG=RG
C G

#CU+HG)=RG = —=——Cf

" Rule-11 : Elimination of (positive) feedback loop

R C
Q5 A [T ¢
Bt —¥ 3 GH_'
———{He— —
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Reduce the block diagram shown'in fig 1 and find C/R.

Step 1: Move the branch point after the block.

Step 4:Combining blocks in cascade

e

R G,

[ .G3 ; c
_..._..!......_’. P’Gz-z———i—h
: 1+GH G,

C_{_G Vg G (G |(CG:+G)_ GG +Gs
R |1+GH 27 G, 1+GHJI G, T 1+ GH

i C_GG,*+G
The overall transfer function of the system, —= —1-2 3

R 1+GH

24



Using block diagram reduction technique find closed loop transfer function of the system whose block diagram
infig 1.

SOLUTION
Step 1:Moving the branch point before the block

25



Step 5: Eliminating the feedback path and combining blocks in cascade

G(G,G, +Gy) GG,G, + GG,

1 + 6162H1 2, s 1+ G1G2H1 2 G1GzG3 4+ G«lG‘
1+GGH, G, 1+ GGoH, '
Step 7-Eliminating the feedback path
R GGGy + GGy C

T 1+ G‘GzH1 + GzG3H2 + G‘HZ ‘ 5
GGG, + GGy |

C_ 1:GGH +GGH +GH, _ GG,G,+GG, -
R GGGy + GG, 1+ GGgH, + G,G;H, + GH, + GGG, + GG,

1
F17GGH, + G,GgHp + Gy

RESULT

The overall transfer function is given by,

o GG,G; + GG,
R 1+GGH, + G,GaH, + GH, + GG,Ge + GGy
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Convert the given block diagram to signal flow graph and determine C(s)yR(s).

R(s)

L Fii
H | &

I

SOLUTION

The nodes are assigned at input, output, at every summing point & branch point as shown in fig 2.

R(s)

—

el
R(s) 1 1 G, G, 1 )
© > - > = > o
1 2\_3‘_/4 ' ° ®
: _H Fig 3
l. Forward Path Gains
There are two forward paths. .. K=2
Let the forward path gains be'F'i andP,.
R(s) 1 . 1 -G G, 1 G
o > O > OO0 3 o P
1 2 3 4 5 6
Fig 4 : Forward path-1
R(® 1 1
o - O -
1 - 2 3 4 5 6

‘Fig 5 : Forward path-2
Gain of forward path-1, P=G.G, :
Gain of forward path-2, P,=-G,

Individual Loop Gain 5 =1~ :é E‘
There is only one individual loop. Let the individualloop gainbe P,,.
Loop gain of individual loop-, P,,=-G,H. _ ~H
Gain Products of Two Non-touching Loops : Fig 3 : loop-1

There are no combinations of non-touching Loops.

Calculation of A and A

A=1-[P,] =1+GH
Siﬁce there are no part of the graph which is non-touching with forward path-1and 2,
A=A,=1
Transfer Function, T

By Mason's gain formula the transfer function, T is given by,

1 _ 1 . - GG, -G,
T=Ez‘(: P = Z[P131+P2¢2] = W
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Question Bank

© © N o gk~ wDdhPE

o =
A b P o

15.

16.
17.
18.
19.
20.

Part— A
What is control system?
Define open loop control system.
Define closed loop control system.
Define transfer function.
What are the basic elements used for modelling mechanical rotational system?
Name two types of electrical analogous for mechanical system.
What is block diagram?
What is the basis for framing the rules of block diagram reduction technique?
What is a signal flow graph?
What is transmittance?
What is sink and source?
Define non- touching loop.
Write Masons Gain formula.
Write the analogous electrical elements in force voltage analogy for the elements of
mechanical translational system.
Write the analogous electrical elements in force current analogy for the elements of
mechanical translational system.
Write the force balance equation of m ideal mass element.
Write the force balance equation of ideal dashpot element.
Write the force balance equation of ideal spring element.
What is servomechanism?

Why is negative feedback invariably preferred in closed loop system?

Part B

Explain open loop and closed loop control system with example.

Obtain the transfer function of translational mechanical system shown in Fig 1

i t)

L =" 3 - %2
= I }—l Ik =
- r
! B|
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3. Simplify the block diagram and obtain the closed loop transfer function C(S)/R(S) for Figure

shown below.

1

=]

SR, — < @ C(s)
@h

4, Obtain the transfer function C(S) / R(S) of the signal flow graph shown below.

G 7
1 Gl G2 G3 G4 G5 1
o) Q Q o 0 Q
v
H1

H

NS

H2
H3

5. Draw the signal flow graph and determine the transfer function C/R for the
Block diagram shown below.

o3

Ces)

Convertthe given block diagram to signal flow graph and determine C(s)yR(s).

I
-

(G, ]
R—*%%‘S} r—-—-i—‘ R—

12 ]
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UNIT Il - TIME RESPONSE ANALYSIS OF CONTROL SYSTEMS

2.1 Time Domain Analysis of Control Systems

Time response

Time response c(t)is the variation of output with respect to time. The part of time
response that goes to zero after large interval of time is called transient response C(t).
The part of timeresponse that remains after transient response is called steady-state

response Css(t).

Clt) ,

0 < N 6 N 10 ";_' 14 16 18 20 t
| Transient state Steady state
Gis (t) Css (t)

Fig.2.1. Time response of a system

2.2 Standard Test Signals

The standard input signals are

o Impulse

o Step

« Ramp

« Parabolic
« Sinusoidal

By using above standard test signals of control systems, analysis and design of control

systems are carried out, defining certain performance measures for the system.



Impulse Signal
In below an impulse signal is shown in Fig.2.2

fm‘
(A)

Fig. 2.2 Impulse signal

The impulse function is zero for all t not equal to 0 and it is infinity att = 0. It rises to
infinity at t = 0 and comes back to zero at t = 0" enclosing a finite area. If this area is A it is
called as an impulse function of strength A. If A = 1 it is called a unit impulse function. Thus

an impulse signal is denoted by f(t) = A (t).

Step Signal
In below a step signal is shown in Fig.2.3
A
f(t)
0 —»1
Fig.2.3 Step Signal

It is zero fort < 0 and suddenly rises to a value A att =0 and remains at this value

for t > 0: It is denoted by f(t) = Au (t). If A=1, itis called a unit step function.

Ramp signal
In below a ramp signal is shown in Fig.2.4

(1) |
1.0 —*t

Fig.2.4 Ramp signal
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It is zero fort< 0 and uniformly increases with a slope equal to A. It is denoted
by f(t) = At.
If the slope is unity, then it is called a unit ramp signal.

Parabolic signal

In below a parabolic signal is shown in Fig.2.5

02 |

f(t)

1.0 —>t

Fig.2.5 Parabolic signal

A parabolic signal is denoted by f (t) = At/2. If A is equal to unity then it is known as

a unit parabolic signal.

Sinusoidal Signal
A sinusoidal x(t) is mathematically defined as follows.

x(1)=sinwt
Laplace transform of sinusoidal signal is

«@

X(_s'):je”'sin(z)tdt: < .
o S @

amplitude



http://www.electronicsengineering.nbcafe.in/wp-content/uploads/2015/08/parabolic.png

Steady-state error:

A simple closed-loop control system with negative feedback is shown as follows.

A

H(s)

»C(s)

A simple closed-loop control system with negative feedback

Here,

E(s)=R(s)—B(s)
B(S}:C(S)H(S)

C(s)=£E(s)G(s)
E(s)=R(s)-C(s)H(s)
E(s)=R(s)—E(s)G(s)H(s)

=[1+G(s)H(s)]E(s)=R(s)

__ R(s)
i 1+G(s)H (s)

e, =lime(t)=limsE(s)

f—»mo s—0

R
s =linésE(s)=lim sR(s)

Types of input and steady-state error are summarized as follows.

Error Constant Equation Steady-state error (eg)
Position Error Constant (Kp) K, =lim G'(s }H ( S) . A
s—0 g
1+ K,
Velocity Error Constant (Ky/) K, = lim SG(S}H(S) A
s—0 €., = “K_
¥
Acceleration Error Constant (K.,) T SZG(S)H{S] A
A P es: — K—
A




Steady-state error and error constant for different types of input are summarized as follows.

Step input Ramp input Parabolic input
Type
Kp Cas KV Css KA Cae
Type0 | K A 0 0
i 1+ K * *
Type 1 o0 0 K A 0 a0
yp 1%
A
Type 2 o0 0 o0 0 K x

2.3 Response of first order System for unit step input

The closed loop order system with unity feedback is

R(s) 1] C(s) R(s) 1 C(s)

1+ Ts
=

Closed loop for first order system.

The closed loop transfer function of first order system, ) e, 1

R(s) 1+Ts
L 1
If the input is unit step then, n(t)=1 and R(s) = =,

1
*. The response’in s- domain, C(s) = R(s) A . J X .
R pe 4 (1+Ts) s(1+Ts) sT(_%H) {H

Bwv partial fraction expansion,
1

C(5)=._T_=i+ L,

1 s 1
s+ — il
{7 (=++)

1
_ T
A —C{S)X#S_c —s( 1 > P
S+ —
s=0
B is obtained by multiplving C(s) by (s+1/T) and letting s = —1/T.
1 1 E
2 1 = 1 = T ol
G W e R T
T T P T
= "
N T
1 1
.‘-C(s)=; — 1
s+?

The response in time domain is given by.

T
c() =L '{C(s)} =" 2 ll = i—e T
s
s+-_:-[-_



When, t = 0, c(t) =1 —e”=0
When, t = 1T, c(t) =1 —e!'=0.632
WVWhen, t = 2T, c(t) =1 —e2=0.865
When, t = 3T, c(t) =1 —e2=0.95
When, t = 4T, c() =1 —e=* = 09817
When, t = 5T. c(t) =1—e*=0.993
When, Tt = oo, c(t) =1 —e==1
04 s
l ------------------
. o e e -
0.865F=x======5 N
0.632}+== ; I
w0 . 0T zr 3¢ 4
Unit step input. ' Response for Unit step inpul.

Response of first order system t Unil step input.
SECOND ORDER SYSTEM

The closed loop second order system is

R(s) . o? C(s) R(s) 02 |
% s%+ 20,8 3 = s+ 20,5+ 07

Closed loop for second order system.
The standard form of closed loop transfer function of second order system is given by,

Cls) ’

n
e
R(s) - s° +20os+0,

where, ©_= Undamped natural frequency, rad/sec.
€ = Damping ratio.

The damping ratio is defined as the ratio of the actual damping to the critical damping. The
response c(t) of second order system depends on the value of damping ratio. Depending on the value of
&, the system can be classified into the following four cases,

Casel : Undamped system, =0
Case2 : Under damped system, 0<f<1
Case3 : Critiéally damped system, (=1
Case4 : Over damped system, £>1



RESPONSE OF UNDAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT

The standard form of closed loop transfer function of second order system is,

Cls) _ mi

Rs) s +20.5+0.

For undamped system, z = 0.

O _ o
"R §+o;

!
When the input is unit step, 1(t) =1 and Ris) = -

1 1
o, 1 o
ol s & ro;

- The response in 5-domain, C(s) = R(s)

By partial fraction expansion,
o N, B
s(F+0°) 5 .&+0;

A is obtained by multiptying C(s) by s and letting s =0.

2 2 2
{1 [i1] ]

A=ng =,._..u—-n—x = 2 ] ;.l-_n:_]_
()X S s +07) 3{ s‘+m§m o

B is obtained by multiplying C(s) by (s* + 0} ) and letting s = -0’ or s = Jo,.

Cls)=

o il 2
B=CE)x(f+0l) =—stx(@rep) =—Y  =—k=-jo,=-s
o (s +00) e Bl M
sjo - ls=ion
A B 1 s
L Q==+ == - ]
= fiol 5 s+l I{l}*; Leos ot} =

Time domain response, c{t]=f‘{C(s}}=£'Ll- : 2}=l—msmnt
s 50y




1(t)a o ¢

0 %
Input.

—
t
Response.

Response of undamped second order system for unit step input,

RESPONSE OF UNDERDAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT
The standard form of closed loop transfer function of second order system is,
C(s) 0

RE) & +20s+0]

For underdamped system, 0 < ¢ <1 and roots of the denominator (characteristic equation) are
complex conjugate.

The roots of the denominator are, s=-to, imn\/ﬁz_-l

SinceG<1, C*isalsolessthen 1, andso 1-¢7 isalways positive.
5 5==L0, imnm=—§m" ijwn@
The damped frequency of oscillation, o, = mnﬁ
25={0, * jo,

2
The response in s-domain, C(s)=R(s) 3—(’]'!—2

5"+ 200,540,
For unit step input, r(t) = 1 and R(s) = 1.

2
- Ofs) s ———.

) s(s2 +2§mns+mﬁ}

2
By partial fraction expansion, C(s)=—— 2 A BstC

= m—

? 7
s(szntxmﬂsﬂui) 3 5+ sto,




A is obtained by multiplying C(s) by s and letting s = 0.
ol .0

s(s2 +2§m,s+co§) B E

To solve for B and C, cross multiply

o A=sxCs)|, _ =sx

On cross multiplication

0l =5 +20,5+0: +(Bs+C)s
0l =5 + %o s+0l +Bs +Cs

Equating coefficients of s we get, 0=1+B sB=<i
Equating coefficient of s we get, 0=2{a_+C +C==20n,
.. C) 1 s+2o

s ¢ +2£,',u),s+m

Let us add and subtract C’o ? to the denominator of second term

s )___ s+2t;a: = _[_ s+20m,
s 420, s+0 400 -0l s (5 + 2o s+ 0d) + (0 - Co?
_l_ s+ 200, =l_ s+20o, |
s (s#Co,) +03(1-C) s (s+50,)’ +0; 04 =0, 1-C
Jl_s+le, o, | |

s (s+00,) +0) (s+4o,) +0]

Let us multiply and divide by o, in the third term of the equation

P 5"';0’11 _le 04 L "l

o 0= s (3+Cmn)2+mi @4 (S+§0)n)2+®3 {} .
The response in time domain is given by, £l “sinot}= (s+a) +0°
, 1 st¢bo,  Gog 04 Llecostt)mrsd
o0 = L{eo}- f{s (s+o,) +0; o4 (s+(;m,)2+o>,,} o) (s+2) +o

A : O .
s e-{untm t— it C")n Cﬂn'smdt =]- e'@’n' mdt + C S 4t ; 2
d 0)' ] = 42 O)d =

=I-J;%(‘f_ cosw,,t+§smm,,t) 1“%(”‘%“‘4""’“%‘* l—cz)

Let us express ¢(t) in a standard form as shown below.

Note : On constructing right angle
triangle with { and \1-3* , we get

S sin(w,t +6) 3 3 s“‘°"r"—‘;
N-¢ f—
O=tan™" i' ¢ -tz

g2 e s

~Sogt
o) = |—7°;_—Cz-(sim4tx cosh + cosw 4t x sind)

10



The equation: is the response of under damped closed loop second order system for unit step
input. For step input of step value, A, the equation (2.28) should be multiplied by A.

. For closed loop under damped second order system, !

P

!I ~L@gt _p2
| Unit step response =1-- = sin (@4t +6) ; o=tan V25
i : J1=E

|

: J— =Swpt - 2
Step response = All Vo sin (w,t+06); 0= tan“—"“':

1-¢ ¢

Using equation the response of underdamped second order system for unit step input is
sketched and observed that the response oscillates before settling to a final value. The oscillations depends
on the value of damping ratio.

rt) 4 clt) 4
1 1+ see\--- -7/-
R ooonidans o »
0 t 0 t
Fig 2.10.a : Input. Fig 2.10.b : Response.

Fig 2.10 : Response of under damped second order system for unit step input.
RESPONSE OF CRITICALLY DAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT
The standard form of closed loop transfer function of second order system is,

Cs)_ o
R(s) s*+2lo,s+0;

For critical damping £ = 1.

O e ey
TR(s) st+2ags+el (s+e,)

When input is unit step, n(t) = 1 and R(s) = 1/s.

.. The response in s-domain,
mi - 1 mﬁ _ mﬁ

{s+mn]|2 ;{s+mm}2 s(5+mn’12

C(s) = R(s)

By partial fraction expansion, we can write,

2
B C
Cls) w—1o1 zz.i.,. -
s(s+m,) 5 (s+w,) s+o,

2 2

m“ = m'ﬂ

A=st{5]L=D= - ==
m =0

B={s+mn}zxcis]lp =0 ==,

=ig ]

d —c&ﬁ
&= ~my 5= —og

5= -y
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.'.C{s)=§~+ o -+ C =.l. & On 5 = 1
s (s+w,) s+o, s (s+o,) s+, I ]
|cfi}==
The response in time domain, {1} s

- 1
Lite™ =
o(t) = fl{c(s)} 2 L—i{l__m—n_ 1 } _ { } _2

s (s+w.) s+o,

t
i —at e e
c(t)=1-o te ®of -0 {c } 5+a
() =1-e @ (1+w,t)
The equation is the response of critically damped closed loop second order system for unit
ep input., For step input of step value, A, the equation should be multiplied by A.
. For closed loop critically damped second order system,
Unit step response = 1—-¢ ™ (1+w t)
Step response = A[l—e“"ﬂ'(] +w,,a)]
Using equation the response of critically damped second order system is sketched as shown
tfig 2.11 and observed that the response has no oscillations.
r(t) & o(t) 4
1 " (.
i T 0 i
Fig 2.11.a : Input. Fig 2.11.b : Response.

RESPONSE OF OVER DAMPED SECOND ORDER SYSTEM FOR UNIT STEP INPUT

The standard form of closed loop transfer function of second order system is,
Cs) o

R(S) s +200,5+0°

For overdamped system C > 1. The roots of the denominator of transfer function are real and
istinct. Let the roots of the denominator be s , s,

8=~ 0o, 20y -1 == [f0, 20,/ -1

Let 5, =-s,ands,=-s, .5 =00, -0, -1
5, =lo, +0,4C -1
The closed loop transfer function can be written in terms of s, and s, as shown below.

)~ o o
R(s) 52+2Cmns+m§ (s+3)) (s+s;)

12



For unit step input 1(t) = 1 and R(s) = 1/s.

2 2
O,

- C(s)=R(s)- n -
(3+5) (s*s;) s(s+5)(s+s;)

By partial fraction expansion we can write,

2
C(s)= 22 =i+ - + &
s(s+s8)(s+s;) s s5+§ s+s
2 2
A =sxC(8)ug=5 O l =2s

e, e

2 2 2
= @Dy e Oy =2n_=1
[Cw,, o E -1 l{cm.. roi-1| Goi-oid-1) o
o’ ‘ o’
B‘(S"' S])XC(S)'L e ) . S(s+ SZ) - - -S,(—S, +32)
2 2
= i = s L T 1
5 [—;mn +mn,k2 -1+8o, +coﬂ/g’ ~1 [Zm,‘lcz - 1] S ZJC’ -1 %
2 2
C=C()x(s+sy)] __ =——2 GO -
TR s(srs)|, ., S(S+s)
©l ol o,

The response in time domain, ¢(t) is given by,

c(t)y=L" WL R e S AT
s o1 s GFs) 2 fii1 8 ()
@, i Oy, _l_ o2t

oft) =1~ — ey
) z;k’-] S 2;]&—1 S

oD = il [E-_s"_ _°’SZ']
2J2-1\ s S2

where, s, = o, —mn\fgg -1

s, =Cm,+0, Cz—l

r(t) & cft) &
1 | TSRSt

b
»

’ 2 t
Fig 2.12.b : Response.

0

0

t
Fig 2.12.a ; Input.

Fig 2.12 : Response of over damped second order system for unit step inpul.
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2.4 Time Domain Specifications

Control systems are generally designed with damping less than one, i.e., oscillatory step
response. Higher order control systems usually have a pair of complex conjugate poles with
damping less than unity that dominate over the other poles. Therefore, the time response of
second- and higher-order control systems to a step input is generally of damped oscillatory

nature as shown in Figure.

In specifying the transient-response characteristics of a control system to a unit step

input, we usually specify the following:

Delay time,
Rise time,

Peak time,

1

2

3

4.  Peakovershoot,
5 Settling time,
6

Steady-state error,

c(t) A

Peak overshoot
Mp

Altowable tolerance

t
1
1
|
1.0 :
S TSNP DI, Y 4N _J__M ______
1 N e
g/ e 5
d ]
o5 T/ 5
' : 1
P : X ; !
o ' :
dLl 1 | >
1] t
A s

Fig.2.13 Time Domain Specifications

1. Delaytime, : Itis the time required for the response to reach 50% of the final value in first
attempt.

2. Risetime, : Itisthetime required for the responseto rise from 0 to 100% of the final value for
the underdamped system.

14



Peaktime, : Itisthetimerequiredfortheresponsetoreachthepeak oftimeresponseorthepeak
overshoot.

Settling time, : It is the time required for the response to reach and stay within a specified
tolerance band (2% or 5%) of its final value.

Peak overshoot, : It is the normalized difference between the time response peak and the steady
output and is defined as,

Steady-state error, : It indicates the error between the actual output and desired output as ‘t” tends
to infinity.

The response of a servomechanism is, cff) = 1+ 0.2 ¢ - 1.2 ™ when subject to a unit step input. Obtain an
expression for closed loop transfer function. Determine the undamped natural frequency and damping ratio.
SOLUTION

Giventhat, c{t)=1+0.2¢%-1.2e™
On taking Laplace transform of c(t) we get,

T 1 (5+860) (s+10)+0.25 (s+10)=1.25 (5+60)
== = o -
Gt s (s+60) (s+10) s (s+60) (s+10)
_s?+705+600+02s°+2s-126°-72s . 600 1 600
) s (s+60) (s+10) s(5+60)(s+10) s (s+60)(s+10)
Since input s unitstep, R(s) = 1/s.
60 600
- Cls)= =R(
Hy=ay (s+60) (s+10) ) 7705+ 600

Cls) 600
Ris) s2+70s+600

The damping ratio and natural frequency of oscillation can be estimated by comparing the system transfer function with
standard form of second order fransfer function.

. The closed loop transfer function of the system,

G of 60
On comparing we get,
o; =600 Lo, =70
vl 0 70
_ B _ o e =14
©o,=B00=2449radisec | s (=geegg =l
RESULT :
Cls) 600

function of the system, -
The closed loop transfer function of the syste Ris)  s2+70s+600

Natural frequency of oscillation, o =24.49 rad/sec
Damoina ratio. £=143
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The unity feedback system is characterized by an open loop transfer function G(s) =K/ (5 +10). Determine the gain K,
s0thatthe system will have a damping ratio of 0.5 for this value of K. Determine peak overshoot and time at peak overshootfor

aunitstep input.

SOLUTION R(s) g‘ Si)
The unity feedback system is shown in fig 1.
Cls) _ _Gls) '
ThREnMe ke R o g Rs) 1+G(s) Fig 1 : Unity feedback system.
Giventhat, G(s) =K/s (s +10)
K
 Cs) _ s(s+10) K K
R(s) s(s+10)+K §°+10s+K
s(s+10)

The value of K can be evaluated by comparing the system transfer function with standard form of second order transfer
function. '

. Cls) _ (oﬁ K
" Re) Le2osiol £+10s4K
On comparing we get,
0l=K | Zo,=10 K=100
20,=4K | Put¢=05anda,=vK o, = 10rad/sec
2 2x05xyK =10
JK=10

The value of gain, K=100.

Percentage peak overshoot, %M, = e“’\r“? x100 -
394"5"@7 x100=0163x100 =16.3%

T s R
Peak time, t, = —= = =().363 sec
’ g co-,,,h-g’ 1041057

RESULT |
The value of gain, . K = 100
Percentage peak overshoot, WMo= 163%
Peak time. t = 0363sec.
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3 : 10(s+2)
For a unity feedback control system the open loop transfer function, G(s) =

—5——~ .Find
) s(s+1)

a) the position, velocity and acceleration error constants,

b) the steady state error when the inputis R(s), where R(s):%-;25+é-

SOLUTION

a) To find static error constants
For a unity feedback system , H(s)=1

N i _ 10(s+2) _
Position error constant, K Lt G(s)H(s) Lt G(s) Lto 26t 1)
= 1t 53008%2
Velocity error constant, K, = Lt sG(s)l-Ks) = Lt sG(s) ’Et m =
Acceleration error constant, K, = Lt s*G(s)H(s) = ‘EtoszG(s)
. 2 10(5"‘2)=10x2
o s’(s+1) 1

=20

b)

The error signal in s -domain, E(s) =- R(s)

1+ G(s)H(s)
Given that, R(s)=--sl+§15- a(s)= 10((8 2)) H(s)=1

3.2 1 3 ¢..1
s o 3 . PR B §
10(s+2) s*(s+1)+10(s+2)
s’(s+1) s’(s+1)

~Es)=2
1+

3 ss+) 2 fs+l) ], 1] s+
s|s2(s+9)+10(s+2)| & |si(s+1)+10(s+2)] 3s°|s%(s+1)+10(s+2)
The steady state error e, can be obtained from final value theorem.
Steady state error, &, = ;!‘.t., et) = Hos E(s)

gl fed Tl e Tl e
- s(s+1)+10(s+2) |- 7| s%(s+1)+10(s+2)| 38’ | s%(s+1)+10(s+2)
Lt.{ 3s%(s+1) 25(s+1) | (s+1) }=o..o+_1.
20 |s2(s+1)+10(s+2) si(s+1)+10(s+2) 3s%(s+1)+30(s+2) 60

L
60

17



2.5 Stability

Concept of stability Stability is a very important characteristic of the transient
performance of a system. Any working system is designed considering its stability. Therefore,

all instruments are stable with in a boundary of parameter variations.

A system is said to be stable, if its output is under control. Otherwise, it is said to be

unstable. A stable system produces a bounded output for a given bounded input.

The following figure shows the response of a stable system.

c(t)
A

~ Vv

This is the response of first order control system for unit step input. This response has
the values between 0 and 1. So, it is bounded output. We know that the unit step signal has
the value of one for all positive values of t including zero. So, it is bounded input. Therefore,
the first order control system is stable since both the input and the output are bounded.

Types of Systems based on Stability

We can classify the systems based on stability as follows.

e Absolutely stable system
« Conditionally stable system
o Marginally stable system

Absolutely Stable System

If the system is stable for all the range of system component values, then it is known

as the absolutely stable system. The open loop control system is absolutely stable if all the

18



poles of the open loop transfer function present in left half of ‘s’ plane. Similarly, the closed
loop control system is absolutely stable if all the poles of the closed loop transfer function

present in the left half of the ‘s’ plane.
Conditionally Stable System

If the system is stable for a certain range of system component values, then it is known

as conditionally stable system.
Marginally Stable System

If the system is stable by producing an output signal with constant amplitude and
constant frequency of oscillations for bounded input, then it is known as marginally stable
system. The open loop control system is marginally stable if any two poles of the open loop
transfer function is present on the imaginary axis. Similarly, the closed loop control system is
marginally stable if any two poles of the closed loop transfer function is present on the

imaginary axis.

CONTROLLERS

A controller is a device introduced in the system to modify the error signal and to produce a control
signal. The manner in which the controller produces the control signal is called the control action, The
controller modifies the transient response of the system. The electronic controllers using operational
amplifiers are presented in this section,

The following six basic control actions are very common among industrial analog controllers.

Two-position or ON-OFF control action.

Proportional control action,

Integral control action.

Proportional- plus- integral control action.
Proportional-plus-derivative control action.
Proportional-plus-integral-plus-derivative control action,

Proportional Controller

The proportional controller produces an output, which is proportional to error signal.
Therefore, the transfer function of the proportional controller is Kp. Where, U(s) is the Laplace
transform of the actuating signal u(t) E(s) is the Laplace transform of the error signal e(t) KP
is the proportionality constant The block diagram of the unity negative feedback closed loop

control system along with the proportional controller is shown in the following figure.

19



£ U
R(s) +® (s) - (s) - C(ﬂ

u(t) o< e(t)

= u(t) = Kpe(t)
Apply Laplace transform on both the sides -
U(s) = KpE(s)

Us) .
Es O F

Derivative Controller

The derivative controller produces an output, which is derivative of the error signal.

E v
R(s) + (s) s (5); P C(sz
de(t)
u(t) = K
(t) = Kp e

Apply Laplace transform on both sides.
U(s) = KpsE(s)

U(s)
— KDS
Efs)
Therefore, the transfer function of the derivative controller is KDs. Where, KD is the
derivative constant. The block diagram of the unity negative feedback closed loop control

system along with the derivative controller is shown in the above figure.

20



Integral Controller

The integral controller produces an output, which is integral of the error signal.

£(s) ——U(s) ¢
o Ky/s » G(s) (SZ

u(t) = Ky /.e(t)dt

Apply Laplace transform on both the sides -

U(s) = KIE“(S)
Us) _ K
E(s) s

K,
Therefore, the transfer function of the integral controller is TI

Proportional Derivative (PD) Controller

The proportional derivative controller produces an output, which is the combination
of the outputs of proportional and derivative controllers. Therefore, the transfer function of
the proportional derivative controller is KP+KDs. The block diagram of the unity negative
feedback closed loop control system along with the proportional derivative controller is shown
in the following figure. The proportional derivative controller is used to improve the stability
of control system without affecting the steady state error.

u
R(s) +<E(s) e (s)= -~ C(sl

21



de(t)
dt

u(t) = Kpe(t) + Kp

Apply Laplace transform on both sides -
U(s) = (Kp + Kps)E(s)
Ul(s)

,(3

= Kp + Kps

Proportional Integral (PI) Controller

The proportional integral controller produces an output, which is the combination of

outputs of the proportional and integral controllers. The block diagram of the unity negative

feedback closed loop control system along with the proportional integral controller is shown

in the following figure.

E U(s)
R(s) + (s) P K s: o(e) C(sz

u(t) = Kpe(t) + K; '/-e{i)dt

Apply Laplace transform on both sides -

L‘T{S} — (I\—P -+ —I\‘I ) E{S}
g
Uls) . K
E(s) =itp s

Therefore, the transfer function of proportional integral controller is Kp + %

Proportional Integral Derivative (PID) Controller

The proportional integral derivative controller produces an output, which is the

combination of the outputs of proportional, integral and derivative controllers. The block

diagram of the unity negative feedback closed loop control system along with the proportional

integral derivative controller is shown in the following figure.
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E v
R(s) + (s) P (S)_ — C(i)

de(t)
dt

u(t) = Kpe(t) + K; / e(t)dt + Kp
Apply Laplace transform on both sides -
Us) = (Kp + % +Kps> E(s)

Uls) K
() —KP+T + Kps

Therefore, the transfer function of the proportional integral derivative controller
is Kp + XL + Kps.
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Question Bank

A

© o N o O

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24,
25.
26.
27.

28.

Part— A
Name the standard test signals used in control system?
Define damping ratio.
Define delay time, rise time, peak time.
The damping ratio of a system is 0.5. Its natural frequency of oscillation is 10 rad /sec.
Determine the rise time and the peak time.
What are the static error constants?
Give the correlation between static and dynamic error coefficient.
Define delay time, rise time, peak time.
What is transient and steady state response?
Give the closed loop transfer function of a second order system.
Determine the % of peak overshoot for a damping ratio of 0.6.
What is time response?
What is transient and steady state response?
What is test signal? What is its significance?
Name the standard test signals used in control system?
What is a step signal? Give its functional representation.
What is a ramp signal? Give its functional representation.
What is a parabolic signal? Give its functional representation.
What is a impulse signal? Give its functional representation.
Define the order of a system.
Define damping ratio.
Give the closed loop transfer function of a second order system.
How the second order system is classified based on the value of damping ratio?
What will be the nature of response of a second order system with different types of
damping.
Sketch the response of a second order system under damped condition.
Compare the step responses of first order and second order system.
What is damped frequency of oscillation?
A second order system has damping ratio of 0.3 and natural frequency of oscillation 5
rad/ sec. Determine the damped frequency of oscillation.
The closed loop transfer function of a second order system is given as 20/(S?+6S+10).

Determine the damping ratio, natural frequency of oscillation and type of damping.
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29. List the time domain specifications.

30. Determine the % of peak overshoot for a damping ratio of 0.6.

Part B
la. Derive the expression for peak overshoot and settling time.
1b. A positional control system with velocity feedback is as shown. What is the

response of the system for unit step input for Fig 5 shown below,

100 gy

B(5+2)

2. Aclosed loop transfer function is evaluated by the differential equation,
d’c +8dc = 64e, where ¢ is the displacement of output shaft displacement
dt?  dt
of input shaft and e =r - ¢, determine (i) Undamped natural frequency,

(it) Damping ratio, (iii) Percentage maximum overshoot for unit step input.

3. What is the advantage of using generalized error coefficients. Derive from first principle,
the expression for generalized error coefficients. How will you evaluate them

mathematically?

4.  Derive the expression for the response of second order system for underdamped

condition, when input is unit step.
5a. Explain the time domain specifications.

5b. A unity feedback system is charactertised by an open loop transfer function
G(S) = K/ S(S+10).  Determine the gain K, so that the system will have a damping
ratio of 0.5 for this value of K. Determine settling time, peak overshoot and time to peak

overshoot for a unit step input.

6.  Explain the design procedure for PID controller.
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UNIT 111 - FREQUENCY RESPONSE AND STABILITY ANALYSIS OF
CONTROL SYSTEMS

3.1  Stability

Stability is an important concept. In this chapter, let us discuss the stability of system
and types of systems based on stability. What is Stability? A system is said to be stable, if its
output is under control. Otherwise, it is said to be unstable. A stable system produces a
bounded output for a given bounded input. The following figure shows the response of a stable

system.

»
L

0 t
Fig.3.1 Response of a stable system

This is the response of first order control system for unit step input. This
response has the values between 0 and 1. So, it is bounded output. We know that the unit step
signal has the value of one for all positive values of t including zero. So, it is bounded input.
Therefore, the first order control system is stable since both the input and the output are
bounded. Types of Systems based on Stability We can classify the systems based on stability

as follows.
e Absolutely stable system
e Conditionally stable system
e Marginally stable system

Absolutely Stable System

If the system is stable for all the range of system component values, then it is known
as the absolutely stable system. The open loop control system is absolutely stable if all the
poles of the open loop transfer function present in left half of ‘s’ plane. Similarly, the closed
loop control system is absolutely stable if all the poles of the closed loop transfer function

present in the left half of the ‘s’ plane.



Conditionally Stable System

If the system is stable for a certain range of system component values, then it is known

as conditionally stable system.
Marginally Stable System

If the system is stable by producing an output signal with constant amplitude and
constant frequency of oscillations for bounded input, then it is known as marginally stable
system. The open loop control system is marginally stable if any two poles of the open loop
transfer function is present on the imaginary axis. Similarly, the closed loop control system is
marginally stable if any two poles of the closed loop transfer function is present on the
imaginary axis. In this chapter, let us discuss the stability analysis in the ‘s’ domain using the
Routh-Hurwitz stability criterion. In this criterion, we require the characteristic equation to
find the stability of the closed loop control systems.

3.2  Routh-Hurwitz Stability Criterion

Routh-Hurwitz stability criterion is having one necessary condition and one sufficient
condition for stability. If any control system doesn’t satisfy the necessary condition, then we
can say that the control system is unstable. But, if the control system satisfies the necessary
condition, then it may or may not be stable. So, the sufficient condition is helpful for knowing

whether the control system is stable or not.
Necessary Condition for Routh-Hurwitz Stability

The necessary condition is that the coefficients of the characteristic polynomial should
be positive. This implies that all the roots of the characteristic equation should have negative
real parts. Consider the characteristic equation of the order ‘n’ is —

s —Hln_lsl +a.ﬂsﬁ =0

agp™ Fais™ da™
Note that, there should not be any term missing in the n order characteristic equation.

This means that the n™ order characteristic equation should not have any coefficient that is of
zero value. Sufficient Condition for Routh-Hurwitz Stability The sufficient condition is that
all the elements of the first column of the Routh array should have the same sign. This means
that all the elements of the first column of the Routh array should be either positive or negative.



Routh Array Method

If all the roots of the characteristic equation exist to the left half of the ‘s’ plane, then
the control system is stable. If at least one root of the characteristic equation exists to the right
half of the ‘s’ plane, then the control system is unstable. So, we have to find the roots of the
characteristic equation to know whether the control system is stable or unstable. But it is
difficult to find the roots of the characteristic equation as order increases. So, to overcome this

problem there we have the Routh array method.

In this method, there is no need to calculate the roots of the characteristic equation.
First formulate the Routh table and find the number of the sign changes in the first column of
the Routh table. The number of sign changes in the first column of the Routh table gives the
number of roots of characteristic equation that exist in the right half of the ‘s’ plane and the

control system is unstable.

Follow this procedure for forming the Routh table.

e Fill the first two rows of the Routh array with the coefficients of the characteristic
polynomial as mentioned in the table below. Start with the coefficient of Sn and continue
up to the coefficient of SO.

e Fill the remaining rows of the Routh array with the elements as mentioned in the table

below. Continue this process till you get the first column element of row SO.

Note —

If any row elements of the Routh table have some common factor, then you can divide
the row elements with that factor for the simplification will be easy. The following table shows

the Routh array of the nth order characteristic polynomial.
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Using Routh criterion, determine the stability of the system represented by the characteristic equation, s4+8s%+18s?
+16s +5=0. Comment on the location of the roots of characteristic equation.

SOLUTION .
The characieristic equation of the system is, s*+8s3+1882+16s+5=0.

The given cﬁaracteﬁsﬁcequaﬁon is 4" order equation and so it has 4 roots. Since the highest power of s is even number,
form the first row of routh array using the coefficients of even powers of s and form the second row using the coefficients of odd
powersof s.

Foho A BOE B (2. 1x18-2x1 1x5-0x1
s? g 8 16 ... Row-2 ’ 1 1
* : p &5
The elements of s° row can be divided by 8 to simplify the s 16 5
_ computations. e v R 16x2-5x1
st V17 18 5 ..Rowt ’ T
& tg b o Bowa s': 1.6875~1.7
i I
& 18! 5 ...Row-3 0. 17x5-0x16
s V170 ...Row-4 ' 17
s i -1 &: 5
s? 151 ... Row-5
8 + 4

——Column-1 }
On examining the elements of first column of routh array itis observed that all the e&mms are positive and there is no
sign change. Hence all the roots are lying on the left half of s-plane and the system is stable.

RESULT

1. Stable system
2. Altthe four roots are lying on the left half of s-plane.



Construct Routh array and determine the stability of the system whose characterisitc equation is s5+25%+ 854412542082
+16s+16=0. Also determine the number of roots lying on right half of s-plane, left half of s-plane and on imaginary axis.

SOLUTION

The characteristic equation ofthe systemis, s%+2s5+8s*+12s3+ 2052+16s +16 =0,

The given characteristic polynomial is 6* order equation and so it has 6 roots. Since the highest power of s is even
number, form the first row of routh anayuslngmecoeﬂidemsofevenpowersofsandfofmmeseoopd row using the coefficients
of odd powers of s. ¢

s 1 8 20 16  ...Row-1
g 3 2 2 16 .... Row-2
The elements of s° row can be divided by 2 to simplify the calculations.

s :7T78 2 16 ..Row1
f-:'4'g 8 Row-2 o2 1x8-6x1 1x20-8x1 1x16-0x1
ol ¢ I o 1 1
? £ % a6 "8 «.Row-4 . ezt @ 12 16
‘g o X divide by 2 :
B e, ..ROW-4 a0 Y ; . .
i ) .
¥ < 1 : ’ HHOn 3. 1x6-6x1 1x8-8x1
# .3 ,8 ..Row-5 8 1 1
g e ..Row-8 s 0 0
3 : | g The auxiliary equation is, A = s*+6s%48. On
L g i ~Row-7 differentiating A with respectto's we get,
- Column-1 dA 5
On examining the elements of 1% column of routh array itis observed 'd?=45 +12s

that there is no sign change. The row with all zeros indicate the possibility

of roots on imaginary axis. Hence the system is limitedly or marginally dA
stable. . , ‘ Thecoemdemsofgareusedtofmms’mw.
The auxiliary polynomial is, 2 4 12
§+65248=0 : divide by 4
g ) 3
i ; 3. 1x6=3x1 1x8-0x1
X6 +8=0 .2 1 1
-
§+6°-4x8 S g
The roots of quadraticare, X=——5 3 3x3-8x1
=-3+1=-20r -4 3
=3 s': 033
The roots of auxiliary polynomial is, ) 033x8-0x3

' 033
§=#Jx =+J/-2 and +J4

=+jy2,-¥2,+[2 and - j2

st 8

The roots of auxiliary polynomial are also roots of characteristic equation. Hence 4 roots are lying on imaginary axis and the
remaining two roots are lying on the left half of s-plane.

RESULT
1. The systemis limitedly or marginally stable.
2. Fourroots are lying on imaginary axis and remaining two roots are lying on left half of s-plane.



Use the routh stability criterion to determine the focation of roots on the s-plane and hence the stability for the system
represented by the characteristic equation s° + 4s* + 8s% + 857+ 75 +4 = 0.

SOLUTION
The characteristic equation of the systemis, s°+4s*+8s>+8s?+ 75 +4 =0,

The given characteristic polynomial is 5* order equation and so it has 5 roots. Since the highest power of s is odd
number, fo:mtheﬁrstrowofroumnayusmgmeooeﬁmemsofodd powers of s and form the second row using the coefficients

of even powers of s.
ss . 1 8 7 ROW'1 83' 1)(8-2)(1 1X7-1X1'
ety S 1
¢ : 4 8 4  ..Rw 26 i
Divide s* row by 4 to simplify the calculations. Divide by 6
¢ 21118 7 ... Row-1 ' o 1
$ 1112 1 ..Row2 2. 1x2-1x1 1x1-0x1
1 i ' 1 1
g : 1 :1 ... ROW-3 52: 1 1
32 :l 1 |1 .ROW'4 s1' 1)(1—1)(1
I ! . Pl
s' 1 E ...: Row-5 1
TR ' s':0
ik ¢ pln Lot0e
__—Column-1 &
When & — 0, there is no sign change in the first column of 5 exi-0x}
routh array. But we have a row of all zeros (s' row or row-5) and s0 §:— z
there is a possibility of roots on imaginary axis. This can be found from g
the roots of auxiliary polynomial. Heretheawallarypoiynomiahsgwen ' 5.
by s? row.
The auxiliary polynomial is, s?+1=0; L 8¥=-1 or s =sf-1=4]t

The roots of auxiliary polynomial are +1and -1, lying on imaginary axis. The roots of auxiiary polynomial are also roots
of characteristic equation. Hence two roots of characteristic equation are lying on imaginary axis and so the system is limitedly
or marginally stable. The remaining three roots of characteristic equation are lying onthe left half of s-plane.

RESULT

(8) Thesystemislimitedly ormarginally stable.
(b) Two rootsare lying on imaginary axis and three roots are lying on left half of s-plane.

3.3 Root Locus

The root locus is a graphical representation in s-domain and it is symmetrical about
the real axis. Because the open loop poles and zeros exist in the s-domain having the values
either as real or as complex conjugate pairs. In this chapter, let us discuss how to construct
(draw) the root locus.



Rules for Construction of Root Locus
Follow these rules for constructing a root locus.
Rule 1 — Locate the open loop poles and zeros in the ‘s’ plane.

Rule 2 — Find the number of root locus branches. We know that the root locus branches start
at the open loop poles and end at open loop zeros. So, the number of root locus branches N is
equal to the number of finite open loop poles P or the number of finite open loop zeros Z,

whichever is greater.

Mathematically, we can write the number of root locus branches N as
N=P if P>Z
N=Z if PZ,

Rule 3 — Identify and draw the real axis root locus branches. If the angle of the open loop
transfer function at a point is an odd multiple of 180°, then that point is on the root locus. If
odd number of the open loop poles and zeros exist to the left side of a point on the real axis,
then that point is on the root locus branch. Therefore, the branch of points which satisfies this

condition is the real axis of the root locus branch.
Rule 4 — Find the centroid and the angle of asymptotes.

o If P=Z, then all the root locus branches start at finite open loop poles and end at finite

open loop zeros.

o If P>Z, then Z number of root locus branches start at finite open loop poles and end at
finite open loop zeros and P—Z number of root locus branches start at finite open loop

poles and end at infinite open loop zeros.

o If P<Z, then P number of root locus branches start at finite open loop poles and end at
finite open loop zeros and Z—P number of root locus branches start at infinite open

loop poles and end at finite open loop zeros.
So, some of the root locus branches approach infinity, when P#Z. Asymptotes give the
direction of these root locus branches. The intersection point of asymptotes on the real axis

is known as centroid.



We can calculate the centroid a by using this formula,

3" Real part of finite open loop poles —%_ Real part of finite open loop zeros
P-Z

a =

The formula for the angle of asymptotes O is

_ (2g +1)180°
- P-Z

Where,

q:Dl.2 ..... .[:P_Z)_l

Rule 5 — Find the intersection points of root locus branches with an imaginary axis. We can

calculate the point at which the root locus branch intersects the imaginary axis and the value

of K at that point by using the Routh array method and special case (ii).

If all elements of any row of the Routh array are zero, then the root locus branch

intersects the imaginary axis and vice-versa.

Identify the row in such a way that if we make the first element as zero, then the elements

of the entire row are zero. Find the value of K for this combination.

Substitute this K value in the auxiliary equation. You will get the intersection point of
the root locus branch with an imaginary axis. Rule 6 — Find Break-away and Break-in

points.

If there exists a real axis root locus branch between two open loop poles, then there will

be a break-away point in between these two open loop poles.

If there exists a real axis root locus branch between two open loop zeros, then there will

be a break-in point in between these two open loop zeros.

Note — Break-away and break-in points exist only on the real axis root locus branches.
Follow these steps to find break-away and break-in points.

Write K in terms of s from the characteristic equation 1+G(s)H(s)=0.

Differentiate K with respect to s and make it equal to zero. Substitute these values of ss

in the above equation.

The values of ss for which the K value is positive are the break points. Rule 7 — Find



the angle of departure and the angle of arrival. The Angle of departure and the angle of
arrival can be calculated at complex conjugate open loop poles and complex conjugate

open loop zeros respectively. The formula for the angle of departure ¢d is

#g = 180° — &
The formula for the angle of arrival @, is
ba = 180° + &

Where,

if*:z':ﬁf'—z'ﬁz

A unity feedback control system has an open loop transfer function, qs)zs—(sr—?is_ﬁ)_ . Sketch the root locus:
+45+

SOLUTION
Step 71 - To locate poles and zeros
The poles of open loop transter function are the roots of the equation, s (s*+4s+13)=0.

2—
443, 0

2

The roots of the quadratic are, s =

-~ The poles arelyingats=0, -2+j3 and -2 -j3.
Letus denote the poles as P,, P, and P,.
Here, P, =0, P,=~2 +j3 and P,=-2-j3.
The poles are marked by X (cross) as shown in fig 4.22.1.
Step 2 : To find the root locus on real axis

There is only one pole on real axis at the origin. Hence if we choose any test point on the negative real axis then to the
right of that point the total number of real poles and zeros is one, which is an odd number. Hence the entire negative real axis

will be part of root locus. The root locus on real axis is shown as a bold line in fig 4.22.1.

Note : For the given transfer function one root locus branch will start at the pole at the origin and meet the zero st
infinity through the negative real axis.
Step 3 : To find angles of asymptotes and centroid

Since there are 3 poles, the number of root locus branches are three. There Is no finite zero. Hence all the three root
locus branches ends atzeros at infinity. The number of asymptotes required are three.

+180° (2q+1) 5wl

Anglesofasymptom=—-———n_—m— 3 Wy I— n-m

Heren=3,andm=0. ..g=0,1,23.

When q=0, Angles=:—-§-=160°

When q=1, Angles=t1ao.%3=:180°
When q=2, Angles=~t180;><5=1300°=$60°
180 x7

When q=3, Angles=iT:i420°=160°

Note : It is enough if you calculate the required number of angles. Here itis given by first three values of angies. The
remaining values will be repetitions of the previous vaiues.

Sum of poles - Sum ofzeros 0-2+3-2-13~-0
n-m - 3

=-133

Centroid = :31

10



The centroid is marked on real axis and from the centroid the angles of asymptotes are marked using a protractor. The
asymplotes are drawn as dotted linss as shown infig 4.22.1.

Root hocus on real
-2

-1.33/

cantroid

Figure showing the asymptote, root locus on
real axis and location of poles and centroid

Step 4 : To find the breakaway and breakin points

R
The closed loop @_'G(s) _ s(sT+4s5+13) . K g
wransfer function| R(s) 1+G(s) , - K s (s? + 45 +13)+K

Y vrer )

The characteristic equation Is, s(s?+4s+13)+K=0
. §°+ 482 +13s +K=0 = K=-5’-45?-13s

On differentiating the equation of K with respect to s we get,
%=4w+&+13)

dK
t —=
Pu ‘0

5 —(3s%+85+13)=0 =  (3s%+8s+13)=0

2
-y 8482 -4x13x3 =-133:]16 ;

2x3
Check for K: When, s =-1.33 + 1.6, the value of K is given by,
K=~(s* +457 +135) m~[(-1.3341.6)' + 4 (-1.33 +{1.6)* + 13(~1.33 +1.6))
+ positive and real,
Also it can be shown that whens=-1.33-j1.6me\nlueatms‘l'mquamm!wposm.

ﬁncehqvahnsofoa,s=—-1.3&ti1.6.amnotrealandpndﬁve.mmmnotanama!bmdawayorbream

Step 5 : To find the angle of departure

Let usconsider the complex-pole p, shown in fig 4.22.2, Draw vectors from &ll other poles to the pole p, as shown in
fig Let the angles of these vectors be 8, and 8,

Here, 8 =180°-tan(3/2)=123.7° ; 6,=90°

Angié of departure from the complex pole p, = 180°— (6, +6.)
v : =180° - (123.7° +90°)

=-33.7°

11
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Theangle of departure at complex pole p, is negative of the angle of departure at ‘
complexpole A, ' D, J0A

" Angle of departure at pole p=+337 : T
Mark the angles of departure at complex poles using protractor, i
Step 6 : To find the crossing point on imaginary axis 2
The characteristic equation s given by.
s’+4s2+13s+K=0 5
Puts=jo

(jo) + 4(jof + 13(j0) + K =0 -0’ -4o?+ 13jo +K=0 ‘
On equating imaginary partto zero, we get, On equating real partto zero, we get,

-0 +130=0 4ot +K = 0
~0* =-130 K =4
@ =13 » 0=4/13=136 = 4xf3 = 52

The crossing pointof rootlocusis % j3.6. The value of K atthis crossing pointis K= 52, (Thisis the limiting value of K
for the stability of the system).

The complete rootlocus sketchis shown infig .Theroctloctshasmreebrandnesonebfanmstansatb‘lepole
atorigin and trave! through negative real axis to meet the zero at infinity, The other two rootlocus branches starts atcomplex

poles (along the angle of departure), crosses the imaginary axis at +]3.6 and travel parallelto asymptotes to meet the zeros
atinfinity.

The open loop transfer function of a unity feedback systemis given by, G(s)=;(—s§—£~s£;92—10.8ketdmemotloms
ofthe system.
- SOLUTION
Step 1: To locate poles and zeros
The poles of open Iooptransferﬁxncﬁonammerootsofmeequaﬂons. (s*+4s+11)=0.

4342 - 4x 11

=21 j264
7 j

The roots of the quadratic are, s =

13



- Thepolesarelyingat s =0,-2+j2.64, -2 -j2.64
The zeros are lying at, s = ~9 and infinity. '
Letus denote the poles as p,, p,, p, finite zero by z,,
Here, p,=0, p,=-2+j2.64, p,=-2-2.64 and 2= -8
The peles are marked by X(cross) and zeros by "0" (circle) as shown in fig 4.24.1.
Step 2 : To find the root locus on real axis.

One pole and one zero lie on real axis,

cmoseatestpoimmmelenofs=o.memomeﬁgmmmmmewmmmmammismwmchis'
an odd number. Hence the portion of real axis from s = 010 s = -9 will be a part of root locus.

lfwechoosealestpdmwmeleﬂoisthmbmeﬁQNOfmspoﬁtmm number of poles and zeros is two, which
is an even number. Hence the real axis from s = -9 10 —c will not be a part of root locus.

The root locus on real axis is shown as a boid line In fig 4.24.1.
Step 3 : To find angles of asymptotes and centroid

Since there are 3 poles, the number of root locus branches are three. One root locus branch starts at the pole at origin
mdtraveldongnogaﬁvemalaadstomemezematsv—s.Theoﬂ\ofn«omotloq:sbrand\esmmezerosatmnity.m

number of asymptotes required are two.
£180° (2q+1) .
n-m g

Angles of asymptotes =

Here,n=3andm=0. ~q=01,23.

Gl

When q=0, Angles=t_—w—:—=‘160°

When q=1, Angles-13§-°°2-"-§=iz70°=:90°

180° x5

When q=2, Angles=% = +450°= 390

Note : Itis enough if you calculste the required number of angles. Here it is given by firsttwo values of angles. The
remaining values will be repetitions of the previous vaiues.
| Sum of poles - Sum of zeros _0-2+2.64-2-1264-(-9) _ .
n-m 2 A
Thecemrqldisnarkedandfmmmecemid.ﬂ:ewlesofasynmmemrkedwmapmm.Theasympmm
are drawn as dotted lines as shown 4.24.1.

Centroid =

14



Step 4 : To find the breakaway and breakin points

From the location of poles and zero and from the knowledge of typical sketches of root locus, itcan be concluded that

there is no possibiiity of breakaway or breakin points.
Step § : To find the angle of departure

Letus consider the complex pole p, as shown infig 4.24.2. Draw vectors fromall other poles and zero to the pole p, as

shown in fig4.24.2. Let the angles of these vectors be d,, 6, and6,.

P

+12.64

1264
ez 127.1°
2

T

2.64

Here,d, = 180°- tan
6, =

1
q, :an"%‘i: 207 :

Mg ol e mm} =180 - (B, +6,)+0,

the complex pole p,

)D..ez_.-p.st

=180 - (1271°+90°) + 207" = ~164° x

The angle of departure at the complex pole p, is negative of

the angle of departure at complex pole p,,

. Angle of departure at pole p, = ~(~16.4) = +16.4°
Mark the angles of departure at complex poles using protractor,

Step 6 : To find the crossing point of imaginary axis

_Ks+9)
Thecbsedloop} Cls)__Gls) __s(s“+ds+19) _ Kis+9)
transfer function| R(s) 1+G(s) Kis+9) (s’ +ds+11)+K(s+9)
1\"s(s +4s4+1)

The characteristic equation is the denominator polynormial of C(sWR(S).
 The characteristic equations,
s(s’+4s+11)+K(5+9)=0 = (s*+4s°+115)+Ks+9K=0

puts =jo
(jo) +4(jof +1%j0) +K(je) +*K=0 =  —jo’-4o?+]1T+ Ko +9K=0
On equating imaginary partto zero, On equating real part to zero,
-l + Ko =0 = ~jod =-fl1e ~ Ko ~40?+K=0 = HK=4o’
s el=11+K Put, 0% =114K 9K =4(11+K)= 44+ 4K
PutK=88, -o’=11+88=108 9K - 4K =44 u
0=+/198 =144 (K= 5 K===88

The crossing point of rootlocus is £j4.4. The value of K atthis crossing pointis K = 8.8 (This is the fimiting value of K for

the stability of the system).
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The complete root locus sketch is shown in fig 4.24.3, The rootlocus has three branches. One bfanch starts at pole at
origin and travel through negative real axis to meet the zero ats = -9,

The other two root locus branches starts at complex poles (along the éngleof departure) crosses the imaginary axis at
4j4.4 and travel parallel to asymptotes to meetthe zeros atinfinity.

Stability Analysis using Bode Plots

From the Bode plots, we can say whether the control system is stable, marginally

stable or unstable based on the values of these parameters.

e Gain cross over frequency and phase cross over frequency
e Gain margin and phase margin

Phase Cross over Frequency

The frequency at which the phase plot is having the phase of -180° is known as phase

cross over frequency. It is denoted by wpc. The unit of phase cross over frequency is rad/sec.
Gain Cross over Frequency

The frequency at which the magnitude plot is having the magnitude of zero dB is
known as gain cross over frequency. It is denoted by wgc. The unit of gain cross over

frequency is rad/sec.

The stability of the control system based on the relation between the phase cross over

frequency and the gain cross over frequency is listed below.

e [f the phase cross over frequency wpc is greater than the gain cross over frequency wgc, then

the control system is stable.

e If the phase cross over frequency wpc is equal to the gain cross over frequency wgc, then

the control system is marginally stable.

o [f the phase cross over frequency wpcis less than the gain crosses over frequency mgc, then

the control system is unstable.
Gain Margin
GM is equal to negative of the magnitude in dB at phase cross over frequency.
GM=20l0g|G(jw)| o= opc

The unit of gain margin (GM) is dB.

17



Phase Margin
The formula for phase margin, PM=1800-+¢gc

Where, ¢gc is the phase angle at gain cross over frequency. The unit of phase margin

IS degrees.

CORRELATION BETWEENTIME AND FREQUENCY RESPONSE

The correlation between time and frequency response has an explicit form only for first and second
order systems. The correlation for second-order system is discussed here.

Consider the magnitude and phase of a closed loop second order system as a function of normalized
frequency, as given by equations
s 4

Magnitude of closed loop system, M =|M(jo):=
(1-v'Y' + 2L

Phase of closed loop system, o= ZM(jo) = -tan™ ‘2-@—2

1-u
The magnitude and phase angle characteristics for normalized frequency u, for certain values of
are shown in fig The frequency at which M has a peak value is known as the resonant

frequercy. The peak value of the magnitude is the resonant peak M, . At this frequency the slope of the
magnitude curve is zero. The frequency corresponding to M is u, which is the normalized resonant
frequency.

From equations

1
Resonant peak, M, = —=
_ rh-g

Resonant frequency, o, =m,,\f -2
When =0, m,:m,ﬂh-zcz =0,

1
When¢=0, M =

i ¢ QCJ‘]__C{

=00
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Skemm bodepimfammmaguMWonMMMplmem@nmmmrm
75 (140.2s)

we)= s(s’+1se+1oo)

SOLUTION

On comparing the quadratic factor in the denominator of G{s) with standard form of quadratic factor we can estimate
fando,.

58% 41654100 = 8%+ 20, 8+0!
On comparing we get,
02=100 = o,=10
Zp, =16 = [Se—za——_=(8
®
Let us convert the given s-domain transfer function into bode form or time constant form.

__ 75(1+025) - 75(1+025) - 0.75(1+02s)
s(s”+165+100) s° 165 ) s(1+001s?+0.18s]
SxIOO[WerH]
The sinusoldal transfer function G(je) is obtained by replacing s by jo in G(s).
___075(1+02jw)  __ 0.75(1+)0.20)
jo (140.01(je)” +0.16j0) Jo{1-001 +]0.160)

MAGNITUDE PLOT

The comer frequencies are, m¢,=5'5a5radlsec and wd=o)n=10kad/sec

Nots : For the quadratic factor the comer frequency s ®,.

The various terms of G(jo) are listed in table-1 in the Increasing order of their comer frequencies. Also the table shows
the slope contributed by each term and the change in slope at the comer frequency.

TABLEA

Term Corner frequency Siope Change in slope
rad/sec db/dec dbldec

Q_75 m .,

Jo \”"R.,
1 1 5 A

+p.20 (D.‘B—-—'_', m _20+ =o

a"02 - M%‘i
go  rw fpami e amgaf oo R a4y P -
1-0.0%° + 0.160 B =0,=10 - 4(_1~~ 0540=-40

Choose 2 low frequency o, such that o, <, and choose a high frequency o, such thate, > o,
Let, o= 0.5 rad/sec and w, = 20 rad/sec.

Let, A=[G(jo)| indb,

19



Letus calculate Aato, o, 0 8nd .

0.75 0.75
! - 320 —
A, o=a, A 20!047”—{ og =35

A, ©=o,, A!N%:Nbggg-sq—m.sw

A 6=og A=[s'ooefmmwﬂ 10 0% log %ﬁ]w...m
et

=0 x |og-'59+(-165)=-16.5db

A 0 =0, A‘-[sbpofrom 0 to @y bg&}*’\(uma)
. Qd
=40 log%+(—16.5)'-28.5db

Letthe points 3, b, ¢ and d be the points comesponding to frequencies o, o.,, o, and o, respectively on the magnitude
plothasmﬂoggnmmmdmseascdeoﬂunhsmmmmmdesmmatkedhdecadesmojlo100
radisec on logarithmic scales in x-axis. Fix the points a,b,c and d on the graph. Join the points by straight ines and mark the slope

onthe respective region, o=t TR R
PHASE PLOT phase varies from 0° to 180°. But

The phase angle of G(ic) as a function of s given by, calculator calculates tan" only
between 0° to 90°. Hence a

4= £G{o) = tan"0.20 9o--m~'1°‘-)‘g';2 rwco, | comectionof 180°shoufbe added
T tophase aftero,
b= ZGljo) = tan0.20 - 90 ~(mn-‘r_°;o‘§‘;?+1w) for o >0,

The phase angle of G(jo) are calculated for various values of w and listed in Table-2.

TABLE-2
w an~'020 M"T%% ¢ = £G(jo) Points in
rad/sec deg deg deg phase plot

05 57 46 -88.9~-88 e

1 13 92 -87.9=-88 f
SR 45 ; 4638 -91.85-92 g

10 634 % 1166 =-116 h

2 759 -46.8+180=133.2 -147.3 »-148 i

50 843 -18.4+180=1616 -167.3 x-168 ol
100 87.1 -92+180=170.8 -173.7=-174 k

On the same semilog graph sheet choose a scale of Tunit = 20° on the y-axis on the right side of semilog graph sheet.
Mark the calculated phase angle on the graph shaet. Join the points by a smooth curve.

20



DOS/PRI UL — O

TR
il
dkt
o
e
|
&:r.
il
]
! 1
|
i
|
Ak ¢
|

68L9 S ¥ E T

1689 ¢ ¢

0s

I

i [l

=

U

o1

il

i

4

168L9S ¥ €

=

—

Z

4

[

e

!
|

oy —
.-

=
AT

£

1

il

€=

0g-
$8T—

§¢-

0z-
s 91—
ci-

01-

| ===

168096 ¥ £ T

[68L9 S ¢ €

4

21



Letg,, be the phase of G(jo) at gain cross-over frequency, o,
Fromthefig 3.2.1.WBgelt,‘¢w=88’
- Phase margin, g = 180° + ¢ = 180° - 88° = 02°

The phase plot crosses ~180° only at infinity. The [G(jo)| atinfinityis - db.
Hence gain margin is +co.

Plot the Bode diagram for the following transfer function and obtain the gain and phase cross over frequencies.
¥ 10
GO = S (045 (1+0.19)
SOLUTION
The sinusoidal transfer function of G(jo) is obtained by replacing s by jo in the given transfer function,

280 10
= Glo)= 3 i 0 de) (1+ 0. )

MAGNITUDE PLOT

The comer frequencies are,

m¢,=6%=2.5raa/sec ar-dma=-0’_—1-1orgd/sec

The various terms of G(jo) are listed in table-1 in the increasing order of their comer frequencies. Also the table shows
the slope contributed by each term and the change in slope at the comer frequency.

TABLEA
Term Corner frequency Slope Change in siope
rad/sec db/dec db/dec
- J_O_ Y 20
jo 3 i
! 0y =me=25 0 | p0-26e-40
1+j0.40 LA T R S e
1 1 !
=——.-_'1 . - - =
1+ 0% 2 =53~ 10 . N A

Choose a low frequency o, such that o, < _, and choose a high frequency o, suchthato, > o,
Let, o, =0.1 rad/sec, and o, =50 rad/sec.

Let, A=|G(i@)|in db.
Letus calculate Aato, o, 0 and o,

10 10
At =, A-mmHamm-(ﬁ:wdb
10 10
Atw=m¢,A'20IogiTm—l=20log—i—s—=12db |
Atm=md.A=[premmcoc,mmexloggﬂ] i )=—40xbg—1—0-+12=-—12db
Oy e S o 25

© 50
Ato =0, A=[Slopefromwamo,xb9;t] "A(at,=,a)"6°*'°9-ﬁ*(—12)'-54db -
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Letﬁnpolntsa,b,canddbeﬁ\epohhconespumgmﬁeqmdesq.m 0, 8nd &, respectively on the
momasamnoggrapngneetmooseasweoﬂmm-wdbonymmmqé'enc‘i’esar:'mammaemdosmmw
100rad/sgcml09ariﬂmcswesmx-axis.mepdms a, b, candd on the graph. Join the points by a straight line and mark
the slope in the respective region.

PHASE PLOT

The phase angle of G(joo) as a function of o is given by,
¢=-90°~tan"' 0.40 - tan-' 0.10

The phase angle of Gjo) are caleulated for various values of o and fisted in tabje-2.

o tan' 0.4 o tan”' 0.1 0 ¢ = £G(jo) Points in
rad/sec deg deg deg phase plot

0.1 229 0.57 -92.86~-92 e

1 21.80 5.1 ~117.5 »-118 f

25 450 140 ~-149 »-150 g

4 57.99 218 ~169.792-170 h

10 75.96 450 ~210.86=-210 i

20 82.87 6343 ~236.3 =236 j

Onmewnesemiloggmhm(moseasmleof1unit=20°onmey-mdaonmerigmsideofsmﬂoggaphm
Mark the calculated phase angle on the graph sheet. Join the points by a smooth curve.

Themagnitudeandphasoplotsarewowninﬁg

From the graph, the gain and phasa cross over fraquencies are found to be 5 rad/sec.
RESULT

Gain cross-over frequency = 5 radisec. -

Phase cross-over frequency =5 radisec.

Question Bank
Part— A

1. What is the necessary and sufficient condition for stability?

2.  Define ‘Bounded Input and Bounded Output’ stability.

3. What will be the nature of impulse response when the roots of the characteristic’s
equation are lying on the imaginary axis?

4.  What are asymptotes? How will you find the angle of asymptotes?

5. Give some typical sketches of root locus plots.

6. How to determine the angle of departure and angle of arrival?
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10.
11.
12.
13.
14.
15.
16.

17.

18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

What is break in and breakaway point?

What are the two special cases in applying routh Hurwitz criterion?

The characteristics equation of a system, S2-55+2 = 0, Whether it is stable, Unstable or
limitedly stable.

What is characteristics equation?

How the roots of characteristics equation are related to stability?

What is the necessary condition for stability?

Define ‘Bounded Input and Bounded Output’ stability.

What is the requirement for BIBO stability?

What is impulse response?

What will be the nature of impulse response when the roots of the characteristic’s
equation are lying on the imaginary axis?

What will be the nature of impulse response if the roots of the characteristic’s equation
are lying on the right half of S-plane?

What is the necessary and sufficient condition for stability?

Explain the use of Routh’s Criteria?

What are asymptotes? How will you find the angle of asymptotes?

What is break in and breakaway point?

What are frequency domain specification?

Define corner frequency.

What are the advantages of Bode plot?

Define gain margin and phase margin.

What are the advantages of frequency response analysis?

What is phase and gain cross over frequency.

What is frequency response?

What are the advantages of frequency response analysis?

What are frequency domain specification?

Define resonant peak, resonant frequency, Band width and cut off rate.

What is phase and gain cross over frequency.

Give the expression for resonant peak and resonant frequency.

What are the various graphical techniques available for frequency response analysis?
What is Bode plot?

Define corner frequency.

What are the advantages of Bode plot?
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38.
39.
40.

What is approximate Bode plot?
Sketch a bode plot showing positive gain margin and positive phase margin.

Sketch a bode plot showing negative gain margin and negative phase margin.

Part B

State and explain the rules for sketching the root locus for the system.

a. What should be the value of K whose characteristic equation is given by
s3+3Ks?+(k+2)+4 = 0 to be stable?
b. Write short notes on BIBO stability.
Use Routh’s criteria and determine the stability of the following system
Whose characteristics equation are i) (s+1) (s+2) (s+10) +100=0
i) (s+4) (s+6) +12s=0

Using root locus method find C(s)/R(s) for the system whose
G(S) = k(s+3)/s?>+2s+2 and H(s) = 1/s for the damping factor & = 0.5.

Plot the root loci for G(S)H(s) = K/s(s+2)(s+4) And evaluate the value of K at the point

when the root loci crosses the imaginary axis.

Sketch the root of the system whose characteristic equation is s?+s+10k(s+1) = 0. After

obtaining all the information to make the sketch also comment about the stability of the

system.

Explain in detail the correlation between time and frequency response for a second

order system.

Plot the bode diagram for the following transfer function and obtain the gain and phase

crossover frequency G(S) = 10/ S(0.5S+1) (1+0.1S)
Sketch the bode plot for the given transfer function and determine the gain

margin and phase margin over frequency. G(S) =1/s(1+0.5s)(1+0.15s)
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UNIT IV - CLASSIFICATION OF SIGNALS

Continuous time signals (CT signals) and Discrete time signals (DT signals) - Basic operations
on signals elementary signals- Step, Ramp, Pulse, Impulse, Exponential - Classification of CT
and DT signals - Periodic, aperiodic signals-Deterministic and Random signals-even and odd

signals - Real and Complex signals - Energy and power signals.

Signal: Signals are represented mathematically as functions of one or more independent
variables. It mainly focuses attention on signals involving a single independent variable. For
convenience, this will generally refer to the independent variable as time. It is defined as
physical quantities that carry information and changes with respect to time.

EX: voice, television picture, telegraph.

Continuous Time signal — If the signal is defined over continuous-time, then the signal is a

continuous- time signal.

Ex: Sinusoidal signal, Voice signal, Rectangular pulse function

Discrete Time signal — If the time t can only take discrete values, such as t=kTs is called

Discrete Time signal

>
l discrete time

Fig.4.1 Discrete Time Signal



Unit Step Signal:
The Unit Step Signal u(t) is defined as

1, £>0
ﬂﬂ:{ﬂ.fgﬂ

Graphically it is given by
&

1
u(t)
2 1 0o 1 2t
Fig.4.2 Unit Step Signal
Ramp Signal:
t. t>=0
dﬂ_{ﬂ.fiﬂ
Graphically it is given by
r(f)
I I f —
1 21

Fig.4.3 Ramp Signal

Pulse Signal:
A signal is having constant amplitude over a particular interval and for the remaining

interval the amplitude is zero.

Impulse Signal:
] 0, n#0
d[n] - 1, n=20



Impulse Signal DT representation

1 §[n]

o0 © o0 @ — =
2 3

Fig.4.4 Impulse Signal DT Signal

Impulse Signal CT representation

Fig.4.5 Impulse Signal CT Signal

Exponential Signal:

Exponential signal is of two types. These two types of signals are real exponential signal
and complex exponential signal which are given below.
Real Exponential Signal: A real exponential signal is defined as x(t)=Aeot

Complex exponential Signal: The complex exponential signal is given by x(t)=AeSt where

s=6+j®

Basic Operations on signals:
Several basic operations by which new signals are formed from given signals are familiar

from the algebra and calculus of functions.



1. Amplitude Scaling :y(t)= a x(t), where a is a real (or possibly complex) constant. C x(t)

is a amplitude scaled version of x(t) whose amplitude is scaled by a factor C.

a2 x(t)
0.5 x (t)
A

£ 4

L
W
L4

2. Amplitude Shift: y(t)= x(t)+ b, where b is a real (or possibly complex) constant

3. Signal Addition: y(t)= x1(t) + x2(t)

X1 (t)
.
1
>
-3 3 t
+
F.3
2 P2
10 w
ATt
, a2
y J— [
> t
10 -3 3 10



As seen from the diagram above,

-10 <t < -3 amplitude of z(t) = x1(t) + x2(t) =0+2=2
-3 <t < 3 amplitude of z(t) = x1(t) + x2(t)=1+2=3
3 <t <10 amplitude of z(t) = x1(t) + x2(t)=0+2=2

4. Signal Multiplication: y(t)= x1(t). x2(t)

T
-3
2
-10
2
-10 -3

As seen from the diagram above,

N

X1 (t)
N

h x2 (t)

Nz (1)

10

10

-10 <t < -3 amplitude of z (t) = x1(t) xx2(t) =0 x2 =0

-3 <t< 3 amplitude of z (t) = x1(t) xx2(t) =1 %x2=23

<t <10 amplitude of z (t) = x1(t) x x2(t) =0x2=0

5. Time Shift:

If x(t) is a continuous function, the time-shifted signal is defined as

y) =x(t-t,).



If to > 0, the signal is shifted to the right, and if to< 0, the signal is shifted to the left.
X(t £ to) is time shifted version of the signal x(t).

X (t + ty) —>— negative shift and X (t - ty) —— positive shift

xt) | x(t -tg) | x(t +t5) |

/\ ANEVAN

tEI _t':I

W

Time Reversal: If x(t) is a continuous function, the time-reversed signal is defined as

y(t) = x(-t). x(-t) is the time reversal of the signal x(t).

x(ty | x(-t) |
2 2 ]

Time Scaling: If x(t) is a continuous function, a time-scale version of this signal is
defined as y(t)= x(at). If a>1, the signal y(t) is a compressed version of x(t), i.e., the
time interval is compressed to 1/a.
If O<a< 1, the signal y(t) is a stretched version of x(t), i.e., the time interval is stretched
by 1/a.
When operating on signals, the time-shifting operation must be performed first, and then
the time-scaling operation is performed. xX(At) is time scaled version of the signal x(t).
where, A is always positive.

|A| > 1 —— Compression of the signal

|A| <1 —— Expansion of the signal



X(t) x(2t)

W
W

X(t/2)

1. Atriangular pulse signal x(t) is depicted below.

2.

X
1

-1 ) 1 1

Sketch each of the following signals:

(@) x(3t)
(b) x(3t + 2)
@ x(=2t -1)

(d) x(0.5t-1)

Draw the waveform x(-t) and x(2-t) of the signal x(t)=t 0<t<3

X(t)

0 t3

X(-t)

u
N
W
~
A
A

=
N
X
»
»

v

W



Classification of DT and CT Signals:

Even and Odd signal
Deterministic and Random Signal
Periodic and Aperiodic signal
Energy and Power signal

P wbdPRE

Even and Odd Signal:

An even signal is any signal X' such that x(t) = x(-t). Odd signal is a signal 'x' for
which x(t) = -x(-t).

The even and odd parts of a signal are given by

1
x (2)= ?[x(r]—i—x(—.f]]

() :L[:r(r)—x{—r}]
2

Here Xe(t) denotes the even part of signal X(t) and Xo(t) denotes the odd part of signal X(t).
Deterministic Signal:

Deterministic signals are those signals whose values are completely specified for any
given time. Thus, a deterministic signals can be modeled exactly by a mathematical formula
are known as deterministic signals.

Random (or) Nondeterministic Signals:

Non deterministic signals and events are either random or irregular. Random signals are
also called non deterministic signals are those signals that take random values at any given
time and must be characterized statistically. Random signals, on the other hand, cannot be
described by a mathematical equation they are modeled in probabilistic terms.

Periodic signal:

A CT signal x(t) is said to be periodic if it satisfies the following property: x(t)=x(t+T)
at all time t, where T=Fundamental Time Interval (T=2n/®)

Ex:

1. x(t)=sin(4nt). It is periodic with period of 1/2
2. x(t)=cos(3nt). It is periodic with period of 2/3



Aperiodic Signal:

A CT signal x(t) is said to be periodic if it satisfies the following property: x(t)#x(t+T) at all
time t, where T=Fundamental Time Interval

Energy Signal:

The Energy in the signal is defined as

E = J.| x[r_}|2dr.

Power Signal:

The Power in the signal is defined as

1 7 >
Pt 57 [

If 0<E<co then the signal x(t) is called as Energy signal. However there are signals where
this condition is not satisfied. For such signals we consider the power. If 0<P<co then the
signal is called a power signal. Note that the power for an energy signal is zero (P=0) and that
the energy for a power signal is infinite (E=o0). Some signals are neither energy nor power

signals.

Real and Complex signals:

Exponential signal is of two types. These two type of signals are real exponential signal and

complex exponential signal which are given below.

Real Exponential Signal:

A real exponential signal is defined as x(t)=Aeot

Complex exponential Signal:

The complex exponential signal is given by x(t)=AeSt where s=c+jo

10



1. Draw the signal x(n) = u(n) — u(n-3)

u(n)
2 0 0
0 12 3 4 5 6 7 n
u(n-3)
1

rrrretey,

0 123 4 5 6 7 8 9 n

X(n)=u(n)-u(n-3)

1

v

|TT

0 12 n

2. What is the total energy of the discrete time signal x(n) which takes the value of unity at
n=-1,0,1?
Energy of the signal is given as,

11



3. Determine if the following signals are Energy signals, Power signals, or neither, and

evaluate E and P for each signal.

o

T|n(r)|3 dr = [ |3sin(27t)* dr
J

= QT %n’r —Q.T cos( 4t )dt

[1—cos(47r)]dt

mln—~

= o0 J

1 . 1 i
P =—\la®t) dr =|3sin(2mt) |~ dr
a 1J|r:> [13sin(27)

0

I\J

= Jl [1—cos(4mt)]dt
0
1

—9[—dr -9 A7t )dt
!‘2 t Jcos( at)

o [9 . 1
=— —[—5111{4::'1'?@
4

0

So, the energy of that signal is infinite and its average power is finite (9/2). This means that

it is a power signal as expected. It is a power signal.

4.  Determine whether or not each of the following signals is periodic. If a signal is periodic,
determine its fundamental period.

(a) x(t)= cos(z + %] (b)y x(t)=sin ZTEE

(c) x()= cos% t+ sing t (d) x(f)=cost + sin w‘Er

12



(a) x(£)=cos(.'+g =08 mnr+§ =, =1

x(1)1s periodic with fundamental period Iy = 21/, = 27

i n
b) x(t)=sin—I—=wy=—
(b) x(t) e
x(t)1s periodic with fundamental period T, = 2/, = 3.

(c) x(r)= cns%f + singf = x50+ X%(1)

where x (1) = cos(a/3)f = cos w1 is periodic with T, = 2a/w, = 6 and x,(f) = sin(x/4)t = sin w,{ is periodic
with T, = 22/, = 8. Since T,/ T, = g = 43 is a rational number, x(f) 1s periodic with fundamental period
T,=4T = 3T, =24,

(d) x(f)=cost+ sin 1,&{ = x(n +x(1)

where x,(1) = cos I = cos ! is periodic with T, = 2/w, = 2w and x,(1) = sin \'Ef = sin w,! is periodic
with T, = 27/a, = \Em Since T, /T, = /2 is an irrational number, x(r) is nonperiodic.

Questions for Practice

PART - A

1. For the signal shown in Fig. 1, find x (2t + 3).

2 z(8)
4
« o 1 a.—’e
2. Sketch the following signals
DX(t)=4(t+3) i)x(t) = -2r(t)
3. Define continuous time complex exponential signal.
4. Define unit impulse and unit step signal.
5. State the relationship between step, ramp and delta function (CT).

13



Define even and odd signal?

Determine whether the following signal is energy or power? x(t) = e-2t u(t)

Find the fundamental period of the given signal x(n)=sin((6nn/7)+1).

© © N o

Check whether the discrete time signal sin3n is periodic.
10. Define a random signal.
11. Determine the power and RMS value of the following signals x(t)=10cos5tcos10t.

12. Determine whether the following signal is energy or power? x(n) = u(n)

PART -B

1. Find the time period T of the following signal
(i) X(n) = cos(nn/2) — sin(nnt/8) + 3 cos{ (nm/4) + (n/3) }

(ii)Define and plot the following signals. Ramp, Step, Pulse, Impulse and
Exponential signal.

2. (i) What is the periodicity of the signal x(t) = sin 100zt + cos 150 mt?
(i)What are the basic continuous time signals? Draw any four Waveforms and write
their equations.

3. Determine the energy of the discrete time signal.
X(n)={(1/2)" , n=0
3n , h<0
4. Determine the even and odd component for the following signals.

1)X(t) = cost + sint + cost sint
ix(n) =4{-2,1,2,-1, 3}

5. Determine whether the following signals are periodic or not.
1) X(t) = 2cos(10t+1) — sin(5t-1)
ii)x(n) = 12cos(20n)

6. Identify which of the following signals are energy signals, power signals and neither
power nor energy signals.
ix(t) = e3tu(t)
i)x(t) = cost
ii)x(t) =tu(t)

14
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UNIT V - FOURIER TRANSFORM AND LAPLACE TRANSFORM

Continuous time Fourier Transform -Properties of CTFT-Inverse Fourier transform-
unilateral and bilateral Laplace Transform analysis with examples - Basic properties -
Parseval’s relation - Convolution in time and frequency domain-Inverse Laplace transform
using partial fraction expansion method - Relation between Fourier transform and Laplace

transform-Fourier series analysis.

Continuous Time Fourier Transform

Any continuous time periodic signal x(t) can be represented as a linear combination
of complex exponentials and the Fourier coefficients ( or spectrum) are discrete. The Fourier
series can be applied to periodic signals only but the Fourier transform can also be applied to
non-periodic functions like rectangular pulse, step functions, ramp function etc. The Fourier
transform of Continuous Time signals can be obtained from Fourier series by applying
appropriate conditions. The Fourier transform can be developed by finding Fourier series of a

periodic function and the tending T to infinity.

Representation of aperiodic signals: Starting from the Fourier series representation for

the continuous-time periodic square wave:

(1) = ‘il._ |.f| <7
o, <l <T/2°

2
~

- 2T

The Fourier coefficients ax for this square wave are

| |
T-n 1, T
2

-~
F

g 2sm(kw,1;)
' ko,0

or alternatively



Ta, = 2sm(w7))
@®

w=F,

Where, 2 sin(wT1) / w represent the envelope of Tak

When T increases or the fundamental frequency w o 2p / T decreases, the envelope is
sampled with a closer and closer spacing. As T becomes arbitrarily large, the original
periodic square wave approaches a rectangular pulse.

Tax becomes more and more closely spaced samples of the envelope, as T —oo, the
Fourier series coefficients approaches the envelope function.

Tayg
- l1"'-l-3'|;| 4W|]
ﬂ 1
b}
Tay
—Buiaig / Baayg
(L1}
(1]
(]

Fig. 5.1 Aperiodic Signals

This example illustrates the basic idea behind Fourier’s development of a
representation for aperiodic signals. Based on this idea, we can derive the Fourier transform
for aperiodic signals. From this aperiodic signal, we construct a periodic signal (t) , shown in
the figure below.



x(t)

n

-Ty Ty t
{a)

%(t)

Al -7 -T, 0 T, T 2T t
(b)

Fig. 5.2 Periodic Signals

As T — . X() = x(7). for any infinite value of 7

The Fourier series representation of X(7) is

- o
()= D ae™,

k=—u

1 (702 i
— 3 — et
a, = TLﬂx(t}e dt.

Since X(t)=x(f) for [ff <T/2.and also. since x(f)=0 outside this interval, so we have

1 712 — ikt 1 p= _
a, = FL@xU}e R0t it = EL:IH}E 0t it

Define the envelope X (jw ) of Tax as,

. _ (e — jint
X(jw) = J_m.r(t}e dr .
we have for the coefficients a,.

1 .
a, = ?X(kan}



Then X(f) can be expressed in terms of X(jm). that 1s

_ =1 . 1 & .
i)=Y =X (jkay)e™™ = — > X(jkay)e™ w;.
,!.:—J:T T k=—m

As T — w0. X(t) = x(f) and consequently.

Equation 2.8 becomes representation of x(t). In addition the right hand side of equation
becomes an integral.

This results in the following Fourier Transform.

1 B
x(7) = Efw X(jw)e™dw Inverse Fourier Transform

and

X(jw)= f; x(He’™dr  Fourier Transform

Convergence of Fourier Transform

If the signal x(t ) has finite energy, that is, it is square integrable,

[ Je dt <.

Then we guaranteed that X( jw ) is finite or equation 2.10 converges. Ife(t) = x(f) — x(7).

We have

[" o) dr=0.

An alternative set of conditions that are sufficient to ensure the convergence:

Contitionl: Over any period, x(t ) must be absolutely integrable, that is
| |x)ldt <.

Condition 2: In any finite interval of time, x(t ) have a finite number of maxima and
minima.
Condition 3:

In any finite interval of time, there are only a finite number of discontinuities.
Furthermore, each of these discontinuities is finite.



Examples of Continuous-Time Fourier Transform

consider signal x(t)=e™™u(t). a>0.
@
- ® _a -jor 1 ~(at jw)t 1
X(_}ﬂ}]=J eedt=———e " =——  a>0
0 a+ jo , a+tjo

If a is complex rather than real, we get the same result if Re{a}>0

The Fourier transform can be plotted in terms of the magnitude and phase, as shown
in the figure below.

: 1 : q| @
‘XU&?)Fﬁ ﬁ(]ﬂ)z—lﬂll — .
va +0° a
IX{a) il
_________________ B O
E— ]
1
| a
- 1| =
T
__________________ o S gy
L]
] (b)

Fig. 5.3 Magnitude and Phase plot



Example:

Calculate the Fourier transform of the rectangular pulse signal

l <T X G
“(f‘) > {'[ H 1 . | joa
10 H>T
x(1)
1
- T T
W—— — — L sin@l;
X(jo)=| x(t)e” dt=[ le?™dt=2 -
=2 T ©

The inverse Fourier Transform of the sinc function is

sin ¥t
Tt

1 (  iox
xir) _Ej‘—ﬂ"e dw =
Comparing the results we have,

FT
Square wave — >  Sine Function
‘—

FT*

This means a square wave in the time domain, its Fourier transform is a sine function.
However, if the signal in the time domain is a sine function, then its Fourier transform is a

square wave. This property is referred to as Duality Property.

We also note that when the width of X( jw) increases, its inverse Fourier transform
x(t) will be compressed. When W — oo, X( jw) converges to an impulse. The transform pair

with several different values of W is shown in the figure below.



Lo
W
Wy'e afl)
Wy'n
=W, =Wy iy =W,
Xy [ Xgllosh Kyfjuel
1 1 ;
W Wy L] Wy W, =Wy Wy

Fig. 5.4 Transform Pairs

The Fourier series representation of the signal x(f) 1s

L=}
x(t) = Zake“m”’ :

k=—=

It’s Fourier transform is
X(jw)= > 2na,6(0—ka,).
k=—x

Properties of Fourier Transform
1. Linearity
If x(t)«—F—->X(jw) y{t)«—F->Y(jw)
then
ax(t) + by(ty«—F—aX (jw) + bY (jw)
2. Time Shifting
If X(t)«—F—X( jw)
Then

x(t-tq,)F_,e‘jW‘oX(jw)



3. Conjugation and Conjugate Symmetry

F
If x(1) «—» X(w)
Then
* F *
x (1) «— X (5w

4. Differentiation and Integration

| dx(¢0) F . .
X(Gw) then —— o jwX(jw)

. x(t
It x(t) o

t

jx(r:}dr {i}im X(jw) + mX(0)6(w)

-0

5. Time and Frequency Scaling

F |
X(t) < X(jw)

then.
F 1 Je
X ( EUH mx (:)

From the equation we see that the signal is compressed in the time domain, the
spectrum will be extended in the frequency domain. Conversely, if the signal is extended, the
corresponding spectrum will be compressed.

If a =-1, we get from the above equation,
F - - .
Xi-t)—= X (jew)
That is reversing a signal in time also reverses its Fourier transform.
6. Duality

The duality of the Fourier Transform can be demonstrated using the following
example.



_ (1, t<<T, F (jeo) _2sin wTy
X1(0)= [D. t>1, X1 -

_sinwTy F . 1, lw|< W
== [ﬂ lw| > W
K1[ﬂ' xﬂi”]
1
-, T
Kalt) Holjus)

Fig. 5.5 Dual Pairs

For any transform pair, there is a dual pair with the time and frequency variables

interchanged.

dX (jw)
_ dw
|/ x(£) £ X(j(w — ®,))

— ety >

o 17_,1-(;) + m({))ﬁ(r)@fm x(mdan
F -

Parseval’s Relation

F
If x(t) < X(jw),

We have,

oo

[ x@rar =5 [ 1xgwl? de
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Parseval®s relation states that the total energy may be determined either by computing
the energy per unit time x(t) % and integrating over all time or by computing the
energy per unit frequency x(jw) 2/2mr and integrating over all frequencies. For this

reason, (jw) 2 is often referred to as the energy density spectrum.

The Parseval's theorem states that the inner product between signals is preserved in
going from time to the frequency domain. This is interpreted physically as “Energy

calculated in the time domain is same as the energy calculated in the frequency domain”

The convolution properties
- r o F " " - - w
y(t) = h(t) = x(t) « Y(jw) = Hjw)X(jw)
The equation shows that the Fourier transform maps the convolution of two signals
into product of their Fourier transforms.

H(jw), the transform of the impulse response is the frequency response of the LTI
system, which also completely characterizes an LTI system.

Example

The frequency response of a differentiator.

dx (t)

yit)=—_—

From the differentiation property,
Y(jw)= jowX jw

The frequency response of the differentiator is

¥ijaw) .
=Ju
(-Ir j

Hljw)=¢23
The Multiplication Property
1 e
(#) = s pD)<«——> R(jw) = ;f_m S(jO)IP(jlw —6))do

Multiplication of one signal by another can be thought of as one signal to scale or
modulate the amplitude of the other, and consequently, the multiplication of two signals is

often referred to as amplitude modulation.

11



Laplace Transform

The Laplace Transform is the more generalized representation of CT complex
exponential signals. The Laplace transform provide solutions to most of the signals and
systems, which are not possible with Fourier method. The Laplace transform can be used to
analyze most of the signals which are not absolutely integrable such as the impulse response
of an unstable system. Laplace Transform is a powerful tool for analysis and design of
Continuous Time signals and systems. The Laplace Transform differs from Fourier Transform

because it covers a broader class of CT signals and systems which may or may not be stable.

Till now, we have seen the importance of Fourier analysis in solving many problems
involving signals. Now, we shall deal with signals which do not have a Fourier transform. We
note that the Fourier Transform only exists for signals which can absolutely integrated and
have a finite energy. This observation leads to generalization of continuous-time Fourier
transform by considering a broader class of signals using the powerful tool of "Laplace
transform". With this introduction let us go on to formally defining both Laplace transform.

Definition of Laplace Transform

The Laplace transform of a function x(t) can be shown to be,

o0

L{x()}=X(s) = [x(t)g "dt

—o0

This equation is called the Bilateral or double sided Laplace transform equation.

x(t) = I,\'L.\'r(J"t!x'

This equation is called the Inverse Laplace Transform equation, x(t) being called the

Inverse Laplace transform of X(s). The relationship between x(t) and X(s) is
LT
X(t)—=X(s)

Region of Convergence (ROC):

The range of values for which the expression described above is finite is called as the
Region of Convergence (ROC).

12



Convergence of the Laplace transform

The bilateral Laplace Transform of a signal x(t) exists if
X(s)=[" x(t)e~*tdt

Substitute s=0 + jw
= [ ey —ot —jet
X(s)=[__x(t)e e dt
Relationship between Laplace Transform and Fourier Transform
The Fourier Transform for Continuous Time signals is in fact a special case of

Laplace Transform. This fact and subsequent relation between LT and FT are explained

below. Now we know that Laplace Transform of a signal 'x'(t)' is given by
Now we know that Laplace Transform of a signal 'x'(t)' is given by:

+

X(s) = J'x{.t]ea'"ﬂdi
The s-complex variable is given by s=g+)8

But we consider o = 0 and therefore “s” becomes completely imaginary. Thus we have
s=jQ. This means that we are only considering the vertical strip at o = 0.

+Ho

X = J‘ x(£)e ™44t

-

From the above discussion it is clear that the LT reduces to FT when the complex
variable only consists of the imaginary part. Thus LT reduces to FT along the jQ axis.
(imaginary axis).

Fourier Transform of x(t) = Laplace Transform of x(t) s=ja

Laplace transform becomes Fourier transform

if 0=0 and s=jw.

X(s)|jo=FTix(t);

13



Example of Laplace Transform

Find the Laplace transform and ROC of x(t) = e 2t u(t)
We notice that by multiplying by the term u(t) we are effectively considering the

unilateral Laplace Transform whereby the limits tend from 0 to +oo

Consider the Laplace transform of x(t) as shown below

st (/[

X(s) = ]'.\'(z)()'

. —(s+a)t
= je e dt

0

. : for (s+a) > 0
S-+a

(1) Find the Laplace transform and ROC of x(t)=-e-¢tu(—t)

o0

X(s) = .f _\‘(r)()ﬂ' dt

— 00

0 o
- J‘_ C)ﬂu ()—,\r (/I

= : for (s+a) < 0
S+a

14



If we consider the signals e'atu(t) and -e‘atu(-t), we note that although the signals
are differing, their Laplace Transforms are identical which is 1/( s+a). Thus we conclude

that to distinguish L.T's uniquely their ROC's must be specified.

Properties of Laplace Transform

1. Linearity

L L
If x;(t) < X, (s) with ROC R1 and x,(t) < X;(s) with ROC R2, then
axy (t) +ba, () (iaXl (s) +bX; (s) with ROC containing Ry N R,

The ROC of X(s) is at least the intersection of Ry and Rz, which could be empty,
in which case x(t) has no Laplace Transform.

2. Differentiation in the time domain

If x(r)HX (s) withROC =R then & )HsX (s) with ROC =R.
This property follows by mtegratlon by parts.

(

Hence, =IOPA sX(s) The ROC of sX(s) includes the ROC of X(s) and may be larger.

3. Time Shift
If x(t)> X (s) with ROC = R then
X(t-to) > e=st0 X (5) with ROC = R

4. Time Scaling

If x(1)<> X (s) with ROC = R, then

x(at) i»%x(g),- ROC=2ie, ZcR
5. Multiplication

X(t) X y(t) < 2= [X(S) + Y(S)]

6. Time Reversal
When the signal x(t) is time reversed(180° Phase shift)

X(-t) < X(—s)
7. Frequency Shifting

L
e x(t) < X(s — Sg)

8. Conjugation symmetry

. L
X' X" (—5)

15



9. Parseval’s Relation of Continuous Signal

It states that the total average power in a periodic signal x(t) equals the sum of
the average in individual harmonic components, which in turn equals to the

squared magnitude of X(s) Laplace Transform.

oo 1 og+joo
[ x@rac= o [ ixas
0 j o—joo

10. Differentiation in Frequency

When x(t) is differentiated with respect to frequency then,
4t x(t) SAL(O)

11. Integration Property

When a periodic signal x(t) is integrated, then the Laplace Transform becomes,

[;x&ﬁﬁeiéX6D+5£3%?£E
12. Convolution Property

X(t) * y(t) © X(). Y(5)
13. Initial Value Theorem

The initial value theorem is used to calculate initial value x(0*) of the given
sequence X(t) directly from the Laplace transform X(S). The initial value theorem
does not apply to rational functions X(S) whose numerator polynomial order is

greater than the denominator polynomial orders.

The initial value theorem states that,

lim SX § = X(0%)

S—00

14. Final Value Theorem

It states that,

lim SX S = X(o0)

S—00

16



Questions for Practice
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Part A

Determine the Fourier transform of unit impulse signal.
Find the Fourier transform of signum function.

Find the Laplace transform of hyperbolic sine function.
What is Fourier series representation of a signal?

Write discrete time Fourier series pair.

List out the properties of Fourier series.

What is the need for transformation of signal?

Define Fourier Transform.

Define Laplace Transform.

Mention the properties of Laplace Transform.

How do we fine Fourier series coefficient for a given signal.
State time shifting property of CT Fourier series.

State time shifting property of DT Fourier series.
Determine the Fourier series coefficient of sinwon.
State conjugate symmetry of CT Fourier series.
Determine the Fourier series coefficient of coswon.
Determine the Fourier Transform of x(t)=sin wo t.
Determine the Fourier Transform of x(t)=cos wot.
Determine the Fourier Transform of Step signal

Find the Laplace transform of the signal x(t) = et

Part B

State Parseval’s theorem for discrete time signal.

Find the FT of the following and sketch the magnitude and phase spectrum
(i) x(t) = 6(t)

(i) x(t) = e @t u(t)

(i) x(t) =et

(iv)x(t)=e*ut

17



Find the Laplace transform

of i) x{t)=46t

(i) x(t) = u(t)

(i) x(t) =cos Qo t

(iv) x(t) = sin weu(t)

Determine initial and final value of a signal x(t) = sin 2t u(t)

Determine the initial and final value of signal x(t) whose unilateral Laplace
Transform is, X(S) = (2S5+5)/S(S+3)

State and prove the properties of Fourier Transform.

State and prove the properties of Laplace Transform.

18
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