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Preamble

PREAMBLE
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Preamble Course schedule

Course syllabus

Schedule:
@ 10 lectures
@ 10 workshops

Assessment and exam:

activity percentage
homework 20%

bonus +1 if written in english
final exam (Dec. 5th) 80%
flash quiz +1 point on the final grade
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Preamble [OLIITIY

Online

This course is available on ENT/AmeTice:

Sciences & technologies » Polytech » Génie civil »
[16] - S5 - JGC51B - Mécanique des fluides (Maxime Nicolas)

with
@ slides
@ workshops texts
@ equation forms
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Working advices

personal work is essential
read your notes before the next class and before the workshop

be curious

work for you (not for the grade)
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Preamble Course outline

Course outline

@ Introduction and basic concepts vector calculus
@ Statics hydrostatic pressure, Archimede's principle
© Kinematics Euler and Langrage description, mass conservation
© Balance equations mass and momentum cons. equation
© Flows classification and Bernoulli Venturi effect
© The Navier-Stokes equation Poiseuille and Couette flows
@ The Stokes equation Flow Sedimentation
© Non newtonian fluids Concrete flows
© Flow in porous media Darcy
@ Surface tension effects Capillarity
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Introduction and basic concepts

INTRODUCTION AND BASIC CONCEPTS

Description of a fluid
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What is fluid mechanics? 'Y

Physics —_—

[~

continuum mech.

solid mech.

aerodynamics
. / .
supersonic flows viscous flows
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What is fluid mechanics?

oe

Fluid mechanics is the mechanical science for gazes or liquids, at rest or

flowing.
Large set of applications:
@ blood flow
atmosphere flows, oceanic flows, lava flows
pipe flow (water, oil, vapor)
flight (birds, planes)
pumping
dams, harbours
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Introduction and basic concepts

Large atmospheric phenomena
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Introduction and basic concepts

FM for civil engineering: dams

Hoover dam, 1935
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Introduction and basic concepts

FM for civil engineering: wind effects on structures

Wind Eflects
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from timberframehome.wordpress.com
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FM for civil engineering: harbor structures

from www.marseille-port.fr
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Introduction and basic concepts

FM for civil engineering: concrete flows

from http://www.chantiersdefrance.fr
M. Nicolas (Polytech Marseille GC3A)
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Desarpien ¢ & i
What is a fluid?

M. Nicolas (Polytech Marseille GC3A)

&
Fluid mechanics
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Desarpien ¢ & i
Main concepts

@ density

@ stresses and pressure
@ viscosity

@ superficial tension
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density

density = weight per unit volume

unit : kg-m*3
fluid density in kg-m™3
air 1.29
water 1000
concrete 2500
molten iron ~ 7000

Notice: density decreases with temperature increase
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Introduction and basic concepts Description of a fluid

Stress

—
Elementary force § F applying on an elementary surface §5.

Ratio is

the stress vector.

Standard unit: Pa (pascal). 1Pa=1Nm7?2=1kgmts?

september—december 2016 19 / 49
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Introduction and basic concepts Description of a fluid
Stress

The surface element §S is oriented by a unit vector 7.
— .

n is normal (perpendicular) to the tangential plane.

—
g

N
Ot

Il
S
+

with

stress vector = normal stress ( L) + shear stress (//)
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Introduction and basic concepts Description of a fluid

Pressure

The pressure is a normal stress.

Notation: p
S.I. unit: pascal (Pa) 1Pa=1Nm?2=1kgm?ls?

basic interpretation: normal force applied on a surface

The pressure in a fluid is an isotropic stress: its intensity does not depend
on the direction.
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Desarpien ¢ & i
Pressure examples

m= 1500 kg with load

p(H)

p(H)
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Introduction and basic concepts Description of a fluid
VISCOsIty

A macroscopic view on viscosity :

moving plate U

fixed boundary

Tangential (sheaUr) stress: oy =T = %
Shear rate: =3
For a newtonian fluid:

T=17
7 is the dynamic viscosity of the fluid
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Introduction and basic concepts Description of a fluid

viscosity
Standard unit: [n]=Pas 1 Pas=1 kg:m™L.
fluid n (Pa-s)
air 1.8107°
water 1073
blood 61073
honey 10

fresh concrete 5-25 A\ non-newtonian fluid

Also useful : kinematic viscosity

with [v]=m?s71

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016
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Desarpien ¢ & i
superficial tension

The superficial tension applies only at the interface between 2 different
fluids (e.g. water and air).

The molecules of a fluid like to be surrounded by some molecules of the
same kind.
qJ b s b
V » V.V A >

...... ©

A drop of liquid on a solid surface does not flatten completely under
gravity:

w -

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016 25 / 49




superficial tension and wettability

symbol: v

unit: [y]=N-m™1

order of magnitude: 0.02 to 0.075 N-m~*
MOost Common: Yyater/air = 0.073 N-m~!

When the fluid molecules are preferring the contact with a solid surface
rather than the surrounding air, it is said that the fluid is wetting the solid.

wetting non-wetting

e i
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Desarpien ¢ & i
drops and bubbles

When the water/air interface is curved, the surface tension is balanced
with a pressure difference, according to Laplace’s law:

1 1
Ap = Pint — Pext :’Y(Fl + E)

Apdrop = % Appubble = |
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Desarpien ¢ & i
capillary rise

The capillary rise is a very common phenomena (rise of water in sils, rocks
or concrete), and can be illustrated with a single tube:

Ah

wetting — curvature — pressure difference — rise

_ 4~ycost
pgd

Ah
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Introduction and basic concepts Description of a fluid

INTRODUCTION AND BASIC CONCEPTS

Maths for fluid mechanics
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Introduction and basic concepts Maths for fluid mechanics

Maths for fluid mechanics

scalar, vector, tensor

scalar fields f(x,y,z)

vector fieIdsZ(X,y,z)

differential operators: gradient, divergence, curl, laplacian

partial differential equations
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scalars and scalar field

A scalar is a one-value object. mass, volume, density, temperature. ..

A scalar field is a multi-variable scalar function p(x,y,z) = p(7)

Without time, stationary scalar field p(7)

With time, unstationary scalar field p(7,t)
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Introduction and basic concepts Maths for fluid mechanics

Scalar field mapping

AAMITHE TEONTS @ LOMAres U S702/2000 SNADTC (reeeds I8/12/208% Janamc)
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Vectors

A vector is a multi-value object. Useful to represent forces, velocities,
accelerations.
In 3 dimensions,
Ax
—_
A=(AGALA) =] A
Az

example of the gravity acceleration:
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Vector field

A vector field is a set of scalar functions, each function is a component of
a vector.

N Ax(x.y,2)
A(X,y,Z): Ay(X,y,Z)
Az(x.y,z)
and for an unstationary vector field
. Ax(x,y,2,t)
A(vavzat): Ay(Xa%Zat)
Az(x,y,2,t)

The value of the vector has to be computed at each space point and for
each time.
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Maths for fluid mechanics

Introduction and basic concepts

Vector field

(cosx,siny,0)

—

Plot of A
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Introduction and basic concepts Maths for fluid mechanics

Vector field
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Introduction and basic concepts Maths for fluid mechanics

Review of vector and differential calculus

derivative definition for a single variable function:

d f(t+0t)—f(t)
—f = —>
" (1) 5t , as 0t—>0

but many useful functions in fluid mechanics are multi-variables functions
(pressure, velocity).
Partial derivative:

af(X,}/aZat) _ f(X7y+5yazvt) B f(X7y7Z7t)

= as 0y -0
Dy Sy ) y
Important implication :
Pf  Of
Oxdy  OyOx
Example: compute 5 (x y+1)
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Introduction and basic concepts Maths for fluid mechanics

Integration of a partial derivative

Let’s define y
OMY2) .2
dy

Integrating along a single coordinate (here y) gives

f(x,y,z) = [ k(x,y,z)dy + C(x,z)

The integration constant C does not depend on the integration coordinate.

Example: k = % = xy?, please find f(x,y)
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Introduction and basic concepts Maths for fluid mechanics

A very useful differential operator

Let’s define for (x,y,z) coordinates

9
%

@ nabla or del
oz

—
v:

A\it is not a true vector, but we will often treat it as a vector
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gradient

The gradient operator applies to a scalar function:

of
gradf = Vf = %—f
of
0z

grad
scalar —— vector
Consequence: the gradient of a scalar field is a vector field.

Example: compute ?(xzyz +2)
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divergence

The divergence of a vector field is a scalar field:

== A
- — — 9x x 0A, O0A, OA
-A=divA=] 5 [ ] A i Y z
\% iv %y Ay o + By + pe
0z z

Example 1: compute v -
Example 2: compute v
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H .
Why V is not a true vector?

- —

- —
Let's compare V- A and A -V

- . - .
- A (the divergence) of A is a scalar
—>

\Y

| <

is an scalar differential operator:

- - 0 0 0
A V=A—+A —+A,—
v 8X+ y8y+ 0z

Obviously v - A # A v
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Introduction and basic concepts Maths for fluid mechanics

curl

The curl of a vector field is

B S S I % AX
VxA=VadA-=arA-=-mtA=| Z [x| A
il A,
0z
0A; _ 9Ay
Jdy 0z
— —>
_ 0Ax _ 0A;
VxAS= 95 Ox
9hy _ DA«
ox dy

curl
vector — vector
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Introduction and basic concepts Maths for fluid mechanics

curl

Alternate method:

— — —
€x €, €;
—
FxAodet| 2 2 2
A« A, A
— —>
Example: calculate V x A for
X2~ y?
7\’_ 2 2
722 -x?
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Introduction and basic concepts Maths for fluid mechanics

laplacian

The laplacian is the divergence of the gradient:
Af=V V=V

and for a (x,y,z) coordinate,

82f 0°f 827‘
Af = —
ox2 dy? "oz
A
scalar — scalar
But a laplacian can also apply to a vector:

[ DA
AA=| DA,
AA,

A
vector — vector
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Introduction and basic concepts Maths for fluid mechanics

Useful formulae

The curl of a gradient is always zero:
VxVf=0
Prove it!
The divergence of a curl is always zero:
v- (? x ,_4>) =0

The double curl: e o N
VxVxA=V(V-A)-AA
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Introduction and basic concepts Maths for fluid mechanics

Memo

grad

scalar —— vector
v

vector — scalar
—

curl
vector — vector
scalar — scalar
vector — vector
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Introduction and basic concepts Maths for fluid mechanics

Other coordinate systems

The cartesian (x,y,z) is not always the best.

Flow in a pipe: V(7 ,t) and p(7,t)

V(r0,zt), p(rf,zt)

In this course, only the cartesian and cylindrical coordinate systems will be
used.
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Introduction and basic concepts Maths for fluid mechanics

Differential operators in cylindrical coordinates

of
Tro| 10
rj@
T A= (a1 2 O

o0 oz

"oR! okl

_OPf 19f  10°F  9Pf

Af = — -z .z
or? " r8r+r2892+822
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N —
Lecture 2 outline

@ Force balance for a fluid at rest

© Pressure forces on surfaces

© Archimedes
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Force balance for a fluid at rest

Force balance for a fluid at rest

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016 3/24



Cube at equilibrium

Hypothesis: homogeneous fluid at rest under gravity.

Imagine a cube of virtual fluid immersed in the same fluid:

m -

X

W/+T—')p=0
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Force balance for a fluid at rest

Continuous approach

weight of an infinitesimal volume of fluid §V of mass m:

W= smg = fj-avp?dv

pressure forces acting on surface 5, boundary of V:

Fp=- ffﬁs p(M)dST

' - ﬁ é -
at equilibrium, W + F , =0, written as

MVpEdV— ff55 p(M)dST =0
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Force balance for a fluid at rest

Useful theorem

The gradient theorem

[fsfdsﬁsz‘/?fdv

Thus
Z v—f/f Fp(M)dV =
ffprgd WVP( )dV =0
and .
/Z[W(png—Vp(M)dV):O
finally
Vp-pg =0
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Force balance for a fluid at rest

integration

for g = (0,0-g) and p = p(2),
-pg——=0
PE oz
which gives
p(z) = po - pgz

with po the reference pressure at z = 0.

if z =0 is the free water/air surface, then py = patm, and the relative
pressure is

Prel = P — Patm = —p8&Z

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016 7 /24



The hydrostatics « paradox »

Pressure does not depend on the volume.

[ \ \ I el

PA=PB =PC =PD = PE = PF

what do you think of pressure at M?
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numerical example

for z=-10 m,

Prel = P — Patm = pgz = 103 x10x 10 = 10° Pa

o
Fluid mechanics

absolute pressure is ~ 210° Pa (twice the atmospheric pressure)
M. Nicolas (Polytech Marseille GC3A)
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pressure measurements: the manometer

/

A

Calculate py in the tank.
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Pressure forces on surfaces

Pressure forces on surfaces
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Pressure force on a arbitrary surface

The total pressure force acting on a surface S in contact with a fluid is

Fo= —f[sp(/w)—n’ds

— . . .
/A\remember 1 is an outgoing unit vector

p ;”M

7

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016 12 / 24



Pressure forces on surfaces

Pressure force on a vertical wall

H: height of the wetted wall, L= width of the wetted wall

M. Nicolas (Polytech Marseille GC3A)

o
Fluid mechanics

=

september—december 2016
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Pressure forces on surfaces

pressure center

definition: the pressure center C is defined by
o_c’x?,,:—ffso‘/\’ﬂx(pﬁ)ds, MPeS

applying T—zp on P does not induce rotation of the surface.

0C x l_-_)p and OM x (pn) are both torques.
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Pressure forces on surfaces

Pressure center on a vertical wall

z

P

atm
—

| I z Paim

H: height of the wetted wall, L= width of the wetted wall

M. Nicolas (Polytech Marseille GC3A)
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Pressure forces on surfaces

Pressure center on a vertical wall

z P,

atm
—

| I z Paim

H: height of the wetted wall, L= width of the wetted wall

pressure center located at 2/3 of the depth

h-2H
3

M. Nicolas (Polytech Marseille GC3A)
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Pressure forces on surfaces

pressure center and barycenter

the pressure center is always below the gravity center (barycenter). It can
be proved that
/

HgS

HC:HG+

with
@ Hc: depth of the pressure center
@ Hg: depth of the gravity center
@ S: wetted surface
@ /: moment of inertia

see Workshop #2
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Archimedes’ principle
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The buoyancy principle

In Syracuse (now Sicily), in -250 (est.), Archimedes writes:
A body immersed in a fluid experiences a buoyant vertical force upwards.
This force is equal to the weight of the displaced fluid.

z

-

Fy

This force applies at the buoyancy center: barycenter of the immersed
volume.
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Modern formulation of the principle

the pressure force acting on the surface S of a fully immersed body is

Fo=- ffs pTdS
from the gradient theorem,

T:)p:—[/\/?pdv

and combining with the hydrostatics law ?p = pg, we have

Fo=-J[[ 08 dv--mE-Fa
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Archimedes

a density difference

Writing ps the solid density of the body, its weight is

W:[[VpsEdV

and the weight + the pressure force is

R=W+Fa=(ps—p)VE

this R force may be positive or negative (the sign of the density difference
Ps = p)-

M. Nicolas (Polytech Marseille GC3A)
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pressure center of an immersed body

the buoyancy center B of the fully immersed body is the barycenter G.
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Archimedes

Example: how to avoid buoyancy

Consider a hollow sphere made of steel, outer radius R and wall width w.
Find the width w for which the sphere does not sink nor float.

M. Nicolas (Polytech Marseille GC3A)
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Archimedes

Buoyancy of a partially immersed body

—
e it - o=t
1 2

/\the buoyancy center B is the barycenter of the immersed volume V; and
is in general different from G.
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Example: stability of a diaphragm wall

dry sand

saturated sand

b

H w: concrete width

Find h for which the structure starts to uplift.
Use H=8m, L=30m, /=20 m, w=0.6 m,
p =1000 kg-m~3, ps = 2500 kg-m~3

M. Nicolas (Polytech Marseille GC3A)
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N —
Lecture 3 outline

@ Eulerian and Lagrangian descriptions

© Mass conservation
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Eulerian and Lagrangian descriptions

Eulerian and Lagrangian descriptions
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Fluid particle

A fluid particle is a mesoscopic scale containing a very large number of
fluid molecules, but much smaller than the macroscopic flow scale.

a nice view of Stockholm

macro scale meso scale micro scale
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The travel of a fluid particle

Lagrange's description of the path of a fluid particle:

—r) = —r)(—r)Oat)

;)

0
BUT TOO MANY FLUID PARTICLES TO FOLLOW

except for diluted gas, sprays.
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The travel of a fluid particle

Eulerian description: the motion of the fluid is determined by a velocity

field
T =u(7,t)
with
- _d7
Cdt

Integration of 7 gives 7 (if needed)

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics
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Steady flow

Eulerian and Lagrangian descriptions

A steady flow is such 7 (7) only: no time dependence.
/\steady # static!

photo A. Duchesne, MSC lab, Paris

- .- ——
unsteady flow when 4 is time-dependent: 0 (7 ,t)

Fluid mechanics

=] 5

DA

7/32
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Eulerian and Lagrangian descriptions

Flow example of the day

Consider the 2D steady flow

- _Xy
L\ o

where Up is a characteristic velocity, and L a characteristic lengths (both
space and time constants)
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Flow example of the day

U vector field (python code available on Ametice)

OrFF FF F ¥ ¥ ¥ ¥ N U X
A EEEERR RS
Pl A VNN
AT AnAn Al AR A N
& & 4 F F 7 Y U U NN N Y
o5L 4« « « 4 » 7 v O A AN N N
%030 15 10 —05 00 05 10 15 20
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Flow example of the day

iso-velocity lines (| 7/ || =constant)

207

>

/ -

7
1 /

R RN KN

v
/
For o
/Z
»

¥ ¥
V4
'
VA

4
/
LSt/ Y
4
#

b L) L P &~

A= ' 4 A\ Q N =™
0.5} 1 ]

- P /\\ > = =
0 . . L L ——

0 ' -
-20 -15 -1.0 -05 00 05 1.0 15 20
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Acceleration

from t to t + Jt, the particle moves from 7 to a new position 7 + 67 and
has a new velocity 0 + 80

T +07 = (x+0x,y +0y,z+02), U +06U = (ux +Sux,uy, + Suy,uy +Juy)

The acceleration (change of velocity) has two origins:
@ variation of velocity at the same location
@ variation of velocity by a change of location
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Eulerian and Lagrangian descriptions

Acceleration

since each velocity component is a 4 variables function
Ux = UX(X7Y7Zat)

its total derivative is

Suy = auxc5x+ %6y+ aux52+ Ouy

ot
ox oy 0z ot i

the same for uy, and u,:

%5x+%5y+%62+%6t+...

ouy = Ox Oy 0z ot

du, = %5x+ auz<5y+ 8u252+ Ou;

_ 5
ax oy YT % e 0t
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Acceleration

alternate writing:

Ouy Ouy Ouy Ouy

duy =90 ) 1) ot

e X Yy T T e
and the x-acceleration is

Oy _, Ot Oux  Oux Oux

5t Ox Y Oy 20z Ot
or

%-(ui+u3+u3+ﬁ)u

ot \Tox Yoy ‘oz ot) "
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Eulerian and Lagrangian descriptions

particular derivative

the particular derivative is an operator with two terms:

b_o. 23
Dt Ot

and the particular acceleration is

DT 0T . —
e "o TV
7P iu, L,

- Yox Yoy Coz
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particular derivative for a steady flow

in the case of a steady flow /' (7), the particular derivative reduces to

Du

Plane flow: U = (ux(y,2),0,0), then

(F-V)T =0
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Eulerian and Lagrangian descriptions

Flow example of the day

the acceleration is:
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Flow example of the day

acceleration vector field (in blue)

2.0 ] ] ] : ]

SRRRRRREEES
1.5} 4
e R REREEEES
N2>2>2 2 b4 € LK<
0-5_}> > 2 2 3> ) 4 ( € L I s
= = = = > » ¢ < E ¥ <& =K =
0'92.0L —fs 4—|1.0‘ —6.5 ol.o o|.5 15 A1I.5A 2

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016

.0

17 / 32



Eulerian and Lagrangian descriptions

Streamlines

Def: In every point of the flow field, the tangent to a streamline is given by
the velocity vector 4.

a streamline is not the path of a single fluid particle

with d/ a curve element, and v the fluid velocity, d/ and v must be

colinear: R
_
dl x =0

SO
b _dy _dz

Uy Uy Uy
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Eulerian and Lagrangian descriptions

Flow example of the day

X
72
L\ o
the streamline equation is
dx dy
U uy
o)
dx  dy
Xy

september—december 2016 19 / 32
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Flow example of the day

streamline y = C/x for C = 1:

2.0

1.5

(L U U N N N
A Y X X XN\
" X X X XN
Y % R R OWCE
~ - w w ¥

> 1.0}
0.5} ’
- P 3 3
0.0 —— — | Y d 1 1 | . P
-20 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

T
M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016 20 / 32



Stream tubes

a stream tube
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Flow rate

The volume flow rate:
dQ=TU-"ndS

this is the volume of fluid crossing dS during a unit time.

Integration over a surface give the flow rate
szfsdQ:ffS_J-_n)dS inm3.s7!
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Eulerian and Lagrangian descriptions

Example of a river flow rate

[(Velence) Grachiques des DEBITS en e, Gemides valeur 803 mVs lo 24002015 4 1600 _

3 00y PSIOLE (€S CEBITS S 13 IS (ad/e)
180

1 b 1 ey £
160 . + et W
1 &0 . s - Nl
1 200 8 T . A
1 000 - N Ao A
s " -
&0 - ‘__F,"/
e —
B - - - - - - -
=s;g§;§§s;:~§s§t§§s;s g2g:gcegezt
gdujdgdaugigayNgaaugdgagagagag
Rhéne river in Valence, data from rdbrmc
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Eulerian and Lagrangian descriptions

syringe
U
Ipiston I EL S, ,_|?2—2>
flowrate is

Q=U15=U:5

since S, «< 51, Uy > Uy and the fluid has a large kinetic energy !
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Mass conservation

Mass conservation
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Mass conservation

Mass conservation equation

the mass variation in a reference volume is due to the flow (in/out)
through the surface of this volume:

%ffvpdvz—ffspﬂ’-ﬁ’ds

using Ostrogradski,

fffvgfdv‘ ff\ﬁ)'(p?)dv
/ff[ +V- (pU)]dV 0

then
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Mass conservation

Mass conservation

local mass conservation:

8,0 — —>)=0

aﬁ“v'(l)u

since R R R
V-(pu)=1d-Vp+pV- -0,

the mass conservation equation is

8p - = -
— + . Vp + pv T — 0
ot
or
Dp -
—+pV-1u=0
Dt
M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016
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Mass conservation

Mass conservation for a incompressible flow

Aall fluids are compressible
Xair = 6.610° Pa™l, Y ater = 4.610710 Pa’?

but the flow may be incompressible = no significant variation of p during
the flow.

A flow is seen as incompressible when

@ the characteristic velocity of the flow is much lower than the sound
velocity: V' <« Csound-

Cair =340 m-s1 Cpater = 1500 m-s7!

@ the relative pressure is << than absolute pressure (105)
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Mass conservation for a incompressible flow

if p is a constant during the flow,

o _
ot

and the mass conservation equation reduces to

0 and ?p: 0,

V-7 =0
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Flow example of the day

Mass conservation for

oW
L\ o
v ":%(1—1):0

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016 30/ 32



Mass conservation

WS2 preparation
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WS2 preparation

Three hydrostatics problems:
@ pressure force on a dam
@ uplift of an empty swimming pool
o tunnel

30m

100 m
A C
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.
Lecture 4 outline: conservation equations

© A general transport law
© Mass conservation equation
© Momentum conservation equation

@ Newton's law for a fluid
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N —
Introduction

s AXIOMS CONCERNING LAWS OF
——— MOTION, in Principia Mathematica (1687)
AXIOMATA
SIVE
| LEGESMOTUS
- Mutationem motus proportionalem esse vi
motrici impressae, & fieri secundum lineam

rectam qua vis illa imprimitur.

P peackaat
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N —
Introduction

Newton's second law from Principia Mathematica (1687)

The rate of change of the momentum of a body is directly
proportional to the net force acting on it, and the direction of
the change in momentum takes place in the direction of the net
force.

Modern formulation: J
F= E(mv)

where F is a force, and mv a momentum.
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N —
Introduction

Newton's second law for a rigid body

m
v w

How to transpose this law to a fluid particle (infinitesimal volume)?

- dtffvadV FV+F

M. Nicolas (Polytech Marseille GC3A)

Fluid mechanics

[m] = =
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A general transport law

A general transport law
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A general transport law

control volume

the mass inside the control volume is constant

f(7,t) is a scalar function transported by the flow-field 7.
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A general transport law

control volume

We aim to calculate the variation of f during the transport:

%/ffv(t) F(7,t)dV

difficulty: the integration volume evolves with time.
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A general transport law for a scalar

The variation of f in V has two terms:
o the local variation of f (at a fixed location)
@ the flux of f through S, the surface of V

dtf[ Fav fffvng+ffsf‘u’-‘n’ds

using the divergence theorem,

%fffvfdvszfv(%+$-[f7])dv

known as Reynolds's theorem.
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A general transport law

Vector transport law

With a vector A = (Ax,A,,A;) transported by the flow-field @, each
component (scalar) follows

dt[f ArdV fff(—+€ A"])dv
It follows that

%ff‘/A ff —dV+/57\’(7-7)d5
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Mass conservation equation

Mass conservation equation
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Mass conservation equation

Mass conservation as a transport law

Taking f = p, we write

%/[VpdV:/]fv(%+$-[p_u)]) dv

The mass conservation is

this implies

or

M. Nicolas (Polytech Marseille GC3A)

%ﬂ/pdeO
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Reminder

Mass conservation equation from lecture 3:

Dp
V-T=0
Dt 7
For an steady incompressible flow:
V-U=0
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Momentum conservation equation

Momentum conservation equation
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ﬁ
Transport of p u

. . —> —_
With the momentum density A = pud

g Ml v o= [l s [Joo@ Pas

We know that
ou 0p

(p ) = Py T U,

and the divergence theorem gives

[fspv(v.mds:[[ﬁ.(pmmdv

NEW CONCEPT!

U ® U is a rank 2 tensor (= a matrix)
The symbol ® means a tensor product
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Momentum conservation equation

Maths: tensor product

— —
For two 3-components vectors ¢ and Vv':

Uy Vy UxVx UxVy UxVy
u, & vy |=] uvx uyv, uyv,
Uy, Vy UrVi UzVy  UzVy
and for our need
2
Ui UxlUy  Uxly
— _ 2
Uu® u=| uux U, Ul

UzUyx Uzl ug

Note that & ® U is symmetric.
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Momentum conservation equation

Maths: divergence of a tensor

Let A be a rank 2 tensor. Its divergence i

)

VA=

<l {ll éli
)>l\<)>l N

N

with ZX = (Axx,Axy,Axz) the x-line of A.

2-tensor (matrix) I, 1_tensor (vector)
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Momentum conservation equation

Maths: divergence of 7 ® U
Write on the board: .
V- (U®

and therefore

september—december 2016 18 /29
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H
back to the p u transport law

%f/vf’“ /ffvat(ﬂu)dv+[[pu(u-n)d5
alllemo = I3

+ (V- [pT]) +p(

/f[‘u’ +v(pu)

(5
+p(8a—‘:+("ﬁ’) )] dv
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Momentum conservation equation

back to the pU/ transport law

Since 5
8’?+V (pd)=0
and
ou - = D
E (U'V) —E
then

= fllrs
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Newton's law for a fluid

Newton’s law for a fluid
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Newton's law for a fluid

Newton's law

What does Newton says: The variation of momentum is balanced by the
sum of forces applying on the volume V bounded by a surface S.

dt/f pTdV = /[fp—dV gij?,-

Two kinds of forces:
@ volume forces

@ surface forces
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Newton's law for a fluid

volume force

the weight is the only volume force for a dielectric and non-magnetic fluid.

?V=W=[f ZdV
P&
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Newton's law for a fluid

surface forces

We write the total surface forces as the sum of local forces applying on
surface S:

— — N

F.- ffs T (M, 7)dS

=2 —>\ - . —
where T (M, n) is a stress vector for all M € S, for a unit vector 7 on

each element of S.
N

—
T=0n

STOP | 2-tensor x vector (see next slide)

and using (again) the divergence theorem

[fs?(/\//,—n’)dsszsa—n’d5=[fv§’-adv
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Maths: product of a 2-tensor with a vector

We need to calculate

on
Oxx Oxy Oxz Nx OxxNx t OxyNy + OxzNz
ny Uyy Uyz ny = O'anX+O'yyny+O'yznz
Ozx Ozy Ozz nz OzxNx + OzyNy + 077Nz
which is a vector
M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016
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Newton's law

]f p—dV W+ F.
ff dv = ff png+ffs—T’(/v/n)d5
ff dv = ff png+ffV§’ odV

and locally,

For each component (i = x,y,z),

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016
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Newton's law for a fluid

Lecture abstract

Mass conservation equation:

Dp -
il T =0
o +pV - U

Momentum conservation equation:

Du .9
_ = o
Dt PE
remember that
— E — u .
Dt Ot
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The fluid stress tensor

The fluid stress tensor gathers all the information about surface forces:
o=-pl+D
pressure and shear

| is the unity tensor
the tensor D has the information about the rheology of the fluid.

moving plate U

_F . ._U
D = 5, a function of =

fixed boundary
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Basic rheology

shear stress D, as a function of the shear rate ¥

D=f(%)

D

§

<

3 slope=viscosity

=

shear-thinning
inviscid fluid: idealized fluid of zero viscosity y

shear rate
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N —
Lecture 5 outline: Inviscid flows

© Flash test

© Flows classification

© Bernoulli's theorem
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Flash test

Flash test
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Flash test rules

@ b5 questions

@ 15 min to answer

e work for yourself

o NO CHEATING PLEASE!
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Flash test: 5 questions

©e0 © o

what is the Archimede's force of a 1 m3 sphere of concrete under
water?

calculate the relative pressure at a 2 meters depth under fresh
concrete

calculate V f with f = (y - z)/x?

o U 2x
u = T 2y
-4z

is this an incompressible flow?

calculate D4 /Dt with
T8
-7l
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Flows classification

Last lecture abstract

Mass conservation equation:

Dp -
il T =0
o +pV - U

Momentum conservation equation:

remember that
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The fluid stress tensor

The fluid stress tensor gathers all the information about surface forces:
o=-pl+D
pressure and shear

| is the unity tensor
the tensor D has the information about the rheology of the fluid.

moving plate U

_F . ._U
D = 5, a function of =

fixed boundary

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016 7/21



Flows classification

introducing a useful dimensionless number

Momentum conservation equation:

8_U) I o = —
EJFP(U'V)U:Pg—VPJFV'D
Inertia term:
1 U?
Io(@- DTN e p(Up)U = o

rheology (viscous) term:

—
I¥-Dl « ug
To compare:
—
lo(T-¥)T| _ pUL
Iv-oj 7
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Flows classification

The Reynolds number

this dimensionless number is named the Reynolds number (symbol: Re)
[1883 by Osborne Reynolds|

L
Rez&, 0<Re< o
n

with
p fluid density
U characteristic velocity
L characteristic length
71 fluid dynamic viscosity

Re is used to classify the different possible flows
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Flows classification

Flows classification: Re << 1

Flow is dominated by viscous
(stress) effects (low velocity or
small size flow or large viscosity
— Lecture 7).
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Flows classification: Re > 1

Flow is dominated by inertia effects (high velocity or large size or low
viscosity).

Wind over a small-scale house in a wind tunnel. Photo from Leibniz Institut

www.atb-postdam.de
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Flows classification

The fluid stress tensor for an inviscid flow

Assume Re > 1

In this particular case (no D), the stress tensor reduces to

o=-pl
and
— —
V-o=-Vp
only pressure gradient remains
M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016
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Conservation eq. for inviscid flows

under the assumptions of inviscid, steady an incompressible flow, the
conservation equations are

and
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Bernoulli's theorem

The famous Bernoulli’s theorem
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rewriting the momentum cons. eq.

With a little chunk of maths, we write

2
(—Jﬁ’)—u’z%’(%) (T )T

so that the momentum conservation equation is now

I
x|
|

—>U2 — — —
ey +(Vxd)xu

I
I
<
K

|
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along a streamline

—
Following a streamline, with d/ a small oriented line element of the
streamline

> (u?\ — - . = o = 1/ —
V(u—)-d/+[(qu)xu]-dl = g-d->(Vp)-d
2 p
Since T//dl, [(VxT)xT] di=0
(2 — o = 1/ —
V(?)-dl - g-dl—;(Vp)-dl
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Bernoulli's theorem

along a streamline

meaning that

or

p3+pg2+p:C

this was first proved by Daniel Bernoulli in 1738.
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Bernoulli's theorem

Bernoulli's theorem

Under the assumptions of
@ inviscid flow
@ steady flow
@ incompressible flow

the quantity
2

p+p%+pgz=C

is constant along a streamline.

the constant C is named the force potential (charge in french). Unit: Pa
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Bernoulli's theorem

Understanding Bernoulli

Along a streamline, the energy density (energy per unit volume) is
conserved.

Multiplying by a volume V transported along the streamline:

1
Equz +pV +pVgz=CV
or

1
Emu2 +pV+mgz=CV
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Bernoulli's theorem

Example: emptying a water tank

M. Nicolas (Polytech Marseille GC3A)

Fluid mechanics

[m] = =

DA
20 / 21
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Example: emptying a water tank

output velocity:
ug =+\/2gAh

known as the Toricelli's formula (1608-1647)
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.
Lecture 6 outline: the Navier-Stokes equation

@ The Navier-Stokes equation

© Known solutions of steady NS

© CFD
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N —
Flash test stats

Bonus stats:

Bonus | number
0.0 1
0.2 8
0.4 11
0.6 19
0.8 13
1.0 2

Mean bonus is 0.55

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016 3/32



N —
Last lecture abstract

Mass conservation equation:

Du 2.3
—_ = o
P Dt PE
with
o=-pl+D
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The Navier-Stokes equation

The Navier-Stokes equation
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Newtonian fluids

The Navier-Stokes equation is the momentum conservation equation for
3D newtonian fluids:

linearity between shear stress and shear rate
D

slope=viscosity

shear stress

shear rate
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The Navier-Stokes equation

tensor D

for an incompressible flow

D =29E
with
E’./ — 1 % + %
2 8)9 8x,-
example:
EX — 1 (% + %)
2\ 0y Ox

Note: the E tensor will be presented extensively in Elasticity class (6th

semester).
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the divergence of D

We write D
Oux Oux  Oux % Oux , Ouy
8X+é9_x gerg)x 592+8X
_ Quy , Ouy  Ouy  Ouy  Ouy  Qu,
D=n|l 3+ o ta o "o
Ouy + Ouy % + Ou;  Ouz + Oug
0z ox 0z Jdy 0z 0z
and
_
(V-D)x=n(..)
which is

(§> : D)X = "7AUx
and finally the divergence of D is

V- D=nAT
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The Navier-Stokes equation

The Navier-Stokes equation

Now we write the Navier-Stokes equation for the incompressible flow of a

newtonian fluid:

_— = j— u
Py “PE-VPHI
or
0T
8;’ +(T-V)U=pg -Vp+nAT
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What is needed to solve NS?

NS is a set of 3 partial differential equations (PDEs) coupled with the
mass conservation equation.

As any differential equation, the complete solving needs:
@ boundary conditions (BC) for velocity and/or stress
@ boundary conditions for pressure
@ initial conditions for @ and p (unsteady flows only)
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Velocity and stress continuity

The velocity must be continuous at an interface:

The tangential stress must be continuous at an interface:

ou ou
m .- =12 5=
8)/ y=0+ 6)/ y=0-
y
velocity
fluid 1 and stress
/cominuity
fluid 2
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Example of BC

N
Example: T = Usjig at a solid non-deformable surface.

fluid . .
no-slip no-slip

condition condition

If the solid is at rest (left), then T =0 at the interface.
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Known solutions of steady NS

Known solutions of steady NS
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Steady NS analytical solutions

Main classification:

plane cylindrical

Boundary-driven Example 1 | Example 4

Pressure-driven Example 2 | Example 3
Boundary-driven + pressure-driven WS6
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Example 1: plane boundary-driven flow

Flow: T = ux(y), no pressure gradient
Boundary conditions: ¥ =0at y=0, o =Uaty=h
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Plane boundary-driven flow

Solution: y
ux(y) = UF’ p = constant
moving plate U
—_—>
fixed plate

Pure shear flow: Couette flow (from Maurice Couette 1858-1943)
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Example 2: plane pressure-driven flow

Flow: U = ux(y), constant pressure gradient along x: 9p/dx = K
Boundary conditions: 7 =0 aty=0andaty =h
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Known solutions of steady NS

Plane pressure-driven flow

Solution: »
p
(y)==——((—-h
ux(y) 2 dx(y )y

fixed plate

pressure grad ient
——

P

fixed plate
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Example3: cylindrical pressure-driven flow

Flow: T = u,(r), constant pressure gradient dp/dx = K
Boundary conditions: ¥ =0 at r = R

A =0 on the boundary

............... pressuregradient ...\ J
Py -~ P
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Known solutions of steady NS

Cylindrical pressure-driven flow
We need to write:

2
u, Qe 4 Vg Qur  Our _ U

+u - 0
ar r_ 00 Z 0z r
- =\
(T V)T =| y %y w00y, 0 wus =] 0
uz , Ug Ouy Uy 0
Urar 7 90 T Uz7g;
9 0
0,
=, | 1% |_
Ve=| 735 | = 0
P op
0z 0z
QPup 1 Pur  Pur  10u, _ 2 0ug _ up 0
Qﬂ r2 1292 8222 r Or r2 00 r2
A—) — 0 ug 10 ug 0 ug 1 8ug 2 Juy ug — 0
u a2 T2 a2 Tror TR0 T 2
r r2 00 (22 r. Or r? 00 r
82“2 10%u, 821-12 10u, lg[rauZ]
arr Y22 Yoz trar ror L ar
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Cylindrical pressure-driven flow

Solution:

u (r)=-

1dp

R2_ 2
417dz( )

=0 on the boundary

parabolic Poiseuille flow (Jean-Léonard-Marie Poiseuille, 1797-1869)
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Cylindrical pressure-driven flow

1 dp
uz(r) = —%E(W -r)

flow-rate through the pipe:

R d,
q=[/ud5=27rf uz(r)rdr:—l_pR“
s 0 8n dz

1
o9 __1ldppo

TR?2  8ndz

mean velocity:
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stresses on the wall

Because of the non-slip condition on the wall, the fluid exerts a stress on
the wall. The local shear stress at r = R is

-02)
- nar r=R

Then the total viscous force on a pipe of length L is

dP ~R21 9P dp

z dz

F, = / dz27Rodz = 27LR x
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Example 4: Cylindrical BC flow

Axisymmetric Couette flow between 2 coaxial cylinders:

T
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Example 4: Cylindrical BC flow

velocity field:
_
u = (Urvueauz)

Mass conservation eq.:

$>‘_)_0_8Ur+1%+8uz
YTy T o0 T oz

o = (0,up(r),0)
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Example 4: Cylindrical BC flow

NS:
op
0 = -——
or
- 1op 10(rup)
0 = roo " Or[r or
_ o
rg = py
with BC:

up(R1) =QR; and wy(R2)=0
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Example 4: Cylindrical BC flow

solution: QR? ,
R Rs —r
UG(r) = R2 1R2 ( 2 )
2~ g r
10 T T T 1 I
' N
0.8} [~a& i
*\
0.6} A ]
S
0.4} -
0.2} TT .
00 1 TT*\ 1
1.0 1.2 . 1.8 2.2

r
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CFD

CFD
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CFD

beyond the analytical solutions

when no analytical solution is available, Computational Fluid Dynamics

(CFD) helps a lot!

BC

cell

grid

fluid domain is discretized on grid
NS is solved on each grid cell

BC and IC

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics
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CFD

CFD basic principle

Equations are discretized on a grid.

Example for a 1D-domain (hydrostatics)

0=-pg-—

dp  p(z+dz)-p(2) _ piv1—pi
dz dz dz

pi+1 = pi — pgdz
BC: p=patmatz=0

p(~dz) = patm + pgdz
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CFD

CFD softwares

@ home-made codes

@ open-source codes

@ commercial softwares
o Autodesk CFD
e ComSol

o Fluent
StarCCM+
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Example of CFD result

Fire simulation
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.
Lecture 7 outline: the Stokes equation

@ The Stokes equation
© Properties of the Stokes equation

© Drag force on a sphere

@ Sedimentation
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The Stokes equation

The Stokes equation
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From Navier-Stokes to the Stokes equation

Navier-Stokes:

Reynolds number:

oo 0T DT Jo(T-T)T|_puL
|V -D| [nAd| n

Hypothesis:
@ very low Reynolds numbers Re - 0
e steady flow: 90 /0t =0
Within this frame , the NS equation reduces to

—

O=pg —$p+77A_u>
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The Stokes equation

From NS to the Stokes equation

Writing the pressure as

gives

named the Stokes equation.

N

M. Nicolas (Polytech Marseille GC3A)

p=p -pgz
Vp =nAT

George Gabriel Stokes
(1819-1903), English physicist
and mathematician
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Properties of the Stokes equation

Properties of the Stokes equation
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Properties of the Stokes equation

The stokes equation ?p' =nATU has 4 interesting properties:
@ Unicity of the solution
@ Linearity
© Reversibility
@ Minimum of energy dissipation
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Properties of the Stokes equation

Unicity of the solution

Assume that the BC are known (either at infinite or at finite distance from
an interface).

If (u1,p}) is a solution and (u3,p5) is another solution, it can be proved
that

(u1,py) = (U3,P5)

meaning that the solution is unique.
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Properties of the Stokes equation

Linearity

Suppose two solutions of the Stokes equation:
o (u1,p)) for BC1
o (u3,p}) for BC2

The flow
(MU1 + XU , A1py + Aopy)

is also a solution for the boundary conditions BC1+BC2
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Reversibility

No time variable in the Stokes eq.

@ the flow is instantaneous: no delay between the driving BC or driving
force and the flow

o the flow is reversible
Experimental evidence of the reversibility:

A movie featuring G.l. Taylor illustrating low-Reynolds number flows
www . youtube . com/watch?v=QcBpDVzBPMk
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Properties of the Stokes equation

Reynolds numbers for swimming

Let's calculate a few Re numbers:

animal speed (m/s) | size (m) | n (Pa.s) | Re
mako shark 14 4 1073 107
human 2.5 2 1073 100
goldfish 1.5 0.05 1073 10*
E. Coli 4x107° | 3x10°| 103 |107*
sperm 5x107° 6x107° 50 1078
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Consequence of the reversibility

How do small animals or living cells swim?

The simple swimming motion:

N -

4

flagelles

Y

(a) (b) (©)
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Properties of the Stokes equation

Swimming at low Re

flagella ad cilia — helicoidal motion (like a corkscrew)
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Properties of the Stokes equation

Minimum of energy dissipation

The loss of energy is due to the viscous forces of the flow.

It can be proved that the solution of the Stokes equation (for a given set
of BC) is the flow which minimizes the loss of energy.

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016 14 / 34



Drag force on a sphere

Drag force on a sphere
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Drag force on a sphere

Drag force on a sphere

In 1853, G. Stokes derived the exact expression for the drag force of a
sphere moving at velocity Up in a viscous fluid at rest (or the drag force of
a steady sphere in flow of velocity Uy far from the sphere).

— —
F stokes = —6mmaUog
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Drag force on a sphere

Problem formulation

Solve
—>
p'=nAT
V-7 =0

in spherical coordinates

with BC:
@ U =0 at the sphere surface r = a
° U= Ug far from the sphere (r — c0)

then calculate the drag force as

F Stokes = pressure T F. shear
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A few steps to the solution (1/6)

1] Flow symmetry:

u(r,0)

_U) = U@(f,@) ’ p, = p’(r70)
0

2] Mass conservation eq. (incompressible flow)

V-T=0
leads to a stream function 1 such as
1 oy 1 o0y

tr= r2sinf 06’ ue__rsinea
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Drag force on a sphere

A few steps to the solution (2/6)

3] The Stokes equation may be rewritten as

-V x(VxT)=Vp/

which gives
ap op
8r_r25|no989( ¥), 00 rS|n08r( ¥)
with an operator
228_2+sm08( 1 3)
S ar2 r2 90 \sind 00

september—december 2016 19 / 34

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics



A few steps to the solution (3/6)

4] Writing
Y ="F(r)siné
leads to a 4th order differential equation
0*f 0? of
4 2 _
r w—‘lr W+8r5—8f—0

With the test solution f = r¥, the characteristic polynome is

k(k-1)(k-2)(k-3)-4k(k-1)+8k-8=0

or
(k=1)(k-2)(k+1)(k-4)=0
So that A
f(r) ==+ Br+Cr*+ Dr*
r
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A few steps to the solution (4/6)

5] Using the 4 BC, we find the stream function

3 3
a> 3a a 3a .
ur=Up —3——+1 cosf, ug=1Up —3———1 sinf

2r>  2r 4r3>  A4r

and the pressure is
3a Uo
p =- 772 cosf
2r
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A few steps to the solution (5/6)

6] the shear stress of the fluid on the sphere is
[r 0 (ue) . 18u,]
To=-n|r—{—|)+-
0= "o r 06

Feheor = 2ma’ fo Tr95in% 0d = 4ran Uy

and the shear force

7] The pressure force is

s
Foressure = 27ra’ [0 psinfcosfdf =2manl
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A few steps to the solution (6/6)

And the total drag force on the sphere is

Fdrag = Fshear + Fpressure =4manlpy + 2mranly = 6manly

Obviously the drag force is opposed to the motion:

— —
F stokes = —-6mna Uo

and this is the (long) way to prove the Stokes drag force!
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Sedimentation

Sedimentation
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What is sedimentation

Motion of solid particles under gravity in a fluid.

Sedimentation occurs in
@ geophysical flows
@ transport then settling of particles in rivers
@ industrial mixtures

@ building materials (concrete)
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Simple sedimentation of a sphere

@ the particle is at rest at t =0
® pp>p

Consider a sphere of density p, immersed in a fluid (, p). We suppose
@ Rex1

We aim to compute the sphere motion. ..
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Sedimentation

Sedimentation
Motion equation:

or

4
3

or

M. Nicolas (Polytech Marseille GC3A)

d’z 4 5 dz
m—3 =737 (pp—p)g - 67”735
du 4
3 3
mapp s =372 (pp—p)g —6mnal
dU _ (pp—p 9 7
Fra e G v
Pp aPp
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Sedimentation

Sedimentation

A dimensional analysis gives

[ n ]_ MLAT

_ -1
a2p, | L2ML-3 =7

so we can define a Stokes time
_2 a*pp
=3 ;

T
and the motion equation is

aju__(pe=r),_ Y
dt Pp £° 7T
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Sedimentation

This last equation solution is

U= _UStokes(]- - e—t/T)’ Ustokes = =

USivkrug
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Validity of the Stokes equation

Remember that we made the hypothesis that Re << 1. Comparison with
experiments (Cp = Fd,ag/(0.57r32pU2)):

o ] v ¢
10 10 10 10 10

(Maxworthy, 1964, experiments with a saphire sphere)

The Stokes drag force should not be applied for Re > 1
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Sedimentation in a finite volume

:

| ?%?3

b
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Sedimentation in a finite volume

Non-permeable boundaries of the tank induce a back-flow, hindering the
settling of the particles.
An important parameter is the volume fraction

b= volume occupied by the partic/es, 0<p<1
total volume

10
?
Jo

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016 32 /34




Sedimentation in a finite volume

On average, the settling velocity of the particles is

Us = UStokesF(d))

with an empirical hindering function (Richardson & Zaki, 1954):

F(¢)=(1-¢)"

The exponent n (close to 4.5) may decrease with increasing Reynolds
number.
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The Boycott effect

When the vessel is inclined (even slightly), the settling velocity of the

particles is enhanced.
back-flow
channel
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Lecture 8 outline: introduction to non newtonian fluid
mechanics

@ The rheology zoo
© The Rabinovitch-Mooney formula
© Flow of Bingham fluids
@ Practical cases
@ Pumping concrete

@ Vertical coating

© Homework 2016
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The rheology zoo

The rheology zoo

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016 3/33



Stress-strain relation

slope=viscosity

shear stress

shear-thinning

inviscid fluid: idealized fluid of zero viscosity y

shear rate
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Power-law fluids

T=ky

Depending on the exponent n, the behavior is
@ n <1 Shear-thinning fluids (shampoo, paint)
e n =1 newtonian fluids (air, water, honey)
@ n > 1 Shear-tickenning fluids
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The rheology zoo

Shear-thinning fluids = fluides rhéofluidifiants

1000
oo |
%2; O Exterior Flat
.\4\% @ Interior Flat
: x | Stormer
100 o ‘ shear stress
2 y
2 Sagging X (-L\ Brushing/rolling
nz.‘- stresses | shear stresses
2 . T
§ ¢ 'l : ICI Cone-Plate
£ 104 | ‘ Leveling : shear stress
: | stresses .
' i
1 1
10 100 1000 10000

Shear stress, dyne/cm?

100000

from R. R. Eley, Rheology Reviews 2005, pp 173 - 240

For paints n~ 0.5, with k ~ 103 Pa-s?.
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Shear-tickenning fluids = fluides rhéoépaississants

Easy kitchen experiment:
@ 50 % corn starch (Maizena)
@ 50 % water

Mix and play!
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Yield stress fluids = fluides a seuils

In general
T=T10+F(%)

means that a minimal stress must be applied to trigger the motion.

The simplest yield stress model is the Bingham model:
T =70+ Napp”Y

with an apparent viscosity 1spp and a yield stress 7.
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The rheology zoo

Generalized Stokes equation

Do _ 2.3 1+D
— = o, O=-
P =P : p
or R
Du ,
—— =-Vp+V:-D
Dt P

For any steady and parallel flow, one can write a balance between the
pressure gradient and the shear stress

-

sz?-D
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The Rabinovitch-Mooney formula

The Rabinovitch-Mooney formula
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Flow in a pipe

For a cylindrical pipe, the force balance for a cylindrical element of fluid is

op'mr? = —2wrdxr

For r =R, 7(R) = 7, so that
r
w R
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The Rabinovitch-Mooney formula

Flow in a pipe

The flow-rate R
Q=/0 2mruy(r)dr

can be expressed as

_ 2 R R 2dUZ
Q—w[r uz(r)]0 —ﬂfo r Fdr

The first term is zero, then, using

) du, T
= , r=R—
" dr Tw

0=r )" (r%) 19(w7)
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The Rabinovitch-Mooney formula

Finally,
3
Q= i [ 7'21(7') dr
73 Jo

w

known as the Rabinovitch-Mooney formula, valid for any rheology.

@ newtonian: 7 = I

)l/n

power-law fluid: ¥ = (

>§

—70
"73 pp

Bingham fluid: 4 =

Herschel-Bulkley : 4 = (T To)l/n
many other models ...
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The Rabinovitch-Mooney formula

The Rabinovitch-Mooney formula

Let's check the RM formula for a newtonian fluid

7TR3 Tw 2
Q=— ) d

Tw = —KE
2
. T
()=~
U
We find -
Q=-—KR*
81

as in Lecture #6 (p. 23)
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Flow of Bingham fluids

Flow of Bingham fluids
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Flow of Bingham fluids

Flow of Bingham fluids in a pipe

Bingham rheology
du
T=T0— nappd_rz

We assume there exists a radius ry which separates a shear zone (7 > 7p)
and a non-shear zone (7 < 79) with

T(fo) =170
r du,
G T ey

easily integrated to get u,(r)
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Flow of Bingham fluids

Flow of Bingham fluids in a pipe

BC:
e at the wall: u,(R)=0
@ at r:rO:—z%:TzTo

After a few lines, we find

1 K
uy(r) = [To(r—R)+—(r2—R2)], r>rn
Napp 4
K 2 2
u(r) =uz = [To(ro—R)+—(r0 -R )], r<ry
Napp 4
or 9
1 |
Uz = — S+ oR+—R?
Napp
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View of the flow field

A characteristic flow field is

R T
To I _
« 0 —
—r | |
R .
0 Uz
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Limit cases

In the limit of 79 — 0, the Poiseuille flow is found.

R

With a high yield stress 75 — K§R

R

The flow is called a plug-flow: no-shear except at the wall.
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Flow rate

Using the RM formula

R [
Q= 7T—3 f 24(7) dT
T, 0

Tw = —KE
2
with a Bingham rheology
§(7) = —(r-m)
Napp
We find 3
Q- R (0, 1R)
Napp \ 3 8

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016

20 / 33



Practical cases

Practical cases
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Concrete pump
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Concrete pump: tech.spec.

Pump specifications:

Technical data

Model BSA1005D BSA1005E
Material number 102310.000 | 102311.000
QOutput mé/h 52 48
Delivery pressure bar 70

Delivery cylinder @ mm 180

Neliverv rvl <trnke mm 10NN

Concrete rheology:
70 = 200 Pa, 1,pp = 400 Pas

What is the maximum length of the pipe?
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Vertical coating

A vertical fluid coating is applied on a vertical wall:
z

coating free

surface

o fluid of rheology 7(7¥)
@ no stress at the free surface 7(y = h) =0
@ no-slip condition at the wall: u,(y =0) =0
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Vertical coating

coating free
surface
dy
+d)
6 (y+dy)
dz
w

y

h

Force balance on a small fluid element:

(dzdx)[-7(y +dy) +7(y)] - dy(dzdx)pg =0
dr

d—y——Pg
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Vertical coating

Integration with stress BC:

7(y) =pg(h-y)

Maximum stress at the wall: 7,2« = pgh Critical thickness: hy = T0/pg

Bingham rheology:
@ If Tmax <70 (or h < hg), the fluid is at rest (no flow)
@ If Tax > 70 (or h> hg), the fluid flows downwards.
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Vertical coating

Bingham rheology:

du,
T=To+77d—y:Pg(h—)/)

uz(y) = % [pg (h - %) - 7'0]

integrates to

with a BC u,(0) =0

Maximum velocity u,p is reached at

yo=h-"%=h—hq
PE

and is 1
gy = —%(h ho )2
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Vertical coating

Stress and velocity field:

™

(y)
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Homework 2016

Homework 2016
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The context: slipforming of a road barrier

slipforming = coffrage glissant
Recent tools to produce elongated concrete structures on-site.

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016 30/ 33



HW2016: Part 1: hydrostatics

@ Pressure profile on the form
@ Total pressure force Fp/L
© pressure center
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Homework 2016

HW2016: Part 2: Bingham flow in a pipe

oil

p+Ap R concrete p p+Ap

. p
concrete r

{

()

@ Flow-rate @ without lubrication
@ Flow-rate Q> with lubrication
© Effect of the oil layer thickness
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Advices

@ do not loose time finding the solution on the internet

@ try to work for yourself to learn something and improve your skills
@ do not detail all the calculations

@ if you introduce assumptions or hypothesis, write them clearly

Due December 9th during the final exam
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.
Lecture 9 outline: Flow in porous media

@ Flow in porous media
@ Darcy’s law
@ Measuring the permeability

© Flow through an earth dam
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Flow in porous media

Flow in porous media
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Porous material

A porous material has a complex but continuous pore space.
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porous media: geometric description

Each point of the volume is occupied by
@ solid phase
o fluid phase

Solid volume fraction:

volume occupied by the solid

¢ =

total volume

Porosity:

volume occupied by the fluid
e=1-¢=

total volume
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Flow in porous media Darcy's law

Darcy’s law

with k the intrinsic permeability.

or
__Q_ kAp
CATT L
by Henri Darcy (1803-1858). .
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Permeability

Dimension and unit:

the S.I. unit of k is m2.

A practical unit is the darcy:

1 darcy =1 d = (1 pm)? = 10712 m?

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016

7/ 22



Permeability of soils and rocks

order of magnitude for common soil materials:

material permeability (darcy)

gravel, pebble bed 10°
highly fracturated rock 10°
sand and gravel mixture 102

oil reservoir rock 10 to 1071
fine sand, silt 1073
sandstone 1073
granite 1076
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Modeling the permeability

model of porous media: network of parallel tubes (radius a, length L).

flow rate for a single tube (Poiseuille flow, see Lecture # 6):

™ Ap’
_ T Ak 4

50 =
Q877L

ac__————

=

c—————

With n the cross-section density of tubes (number of tubes per unit
surface), the porosity is

€= n7T32
and the permeability is
2
a
k=e—
8
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Daieys (£
Modeling the permeability

With a tortuous tube model, we introduce the tortuosity factor 7:

Liupe = T % Lsample

Lube

L sample

522

T8

k
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Modeling the permeability

Model of a porous media made of grains:

With a network of tubes with changing radius:

________ unitcell

_J 2a l—iﬁa l_
' 1 2

_] Ly § | L, ! ,_
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Flow in porous media Darcy's law

Flow through a heterogeneous porous media

1. Parallel permeabilities

Q__kbp @ kdp

Al n L A n L
Total flow rate:
Ap
Q=01+ Q=-(kiA1 + szz)H

Effective permeability:

A1 Ao )
k = ki + k
parallel (Al N AZ) 1 (Al N A2 2
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Flow in porous media Darcy's law

Flow through a heterogeneous porous media

2. Serial permeabilities

Q_ _kAp Q_ kAp

A n L1’ A n L2
Total pressure drop:

Q L+l
Dp=Dpy+Apy=—2ytt 2
A kserial
Effective permeability:
L1+ Ly
Kserial = m
ki ke
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Daieys (£
Flow through a heterogeneous porous media

If kl > kz,

k ~ —1 k
parallel 1
aralle 11 12

the flow is governed by the larger permeability

L1 + L2
Ly

the flow is governed by the smaller permeability

ko

Kserial #
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Flow in porous media Measuring the permeability

Constant pressure permeameter

A simple design to measure the permeability of a soil sample:
0=01 0, == 1
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Constant pressure permeameter

Darcy:
k A
Q=mR2=EP
n H
Pressure drop:
Ap = pgAz
Intrinsic permeability:
_n & H
pg TR?2 Az
or hydraulic permeability
K="Ex
n
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Nlzesuiing die permztiiy
Hydraulic permeability

Dimension:

Unit: K in ms™! (as a velocity)
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Wiezsinng iie paimeztiiy
Flow through an earth dam

Earth dam are used to protect from floods
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Flow through an earth dam

Flow through an earth dam
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Flow through an earth dam

Flow through an earth dam
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flow through an earth dam

g & \
)

0

flow rate (per unit of dam length):

h(x) 2
L 0 2n  dx

the free surface of water in the dam is

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016 21 /22



Flow through an earth dam

flow through an earth dam

0

The minimum width x* of the dam to avoid leakage is thus
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N —
Lecture 10 outline

© Capillary effects

© Course summary

© Open discussion
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Capillary effects

Capillary effects
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Rise of water in a capillary tube

Observing a simple experiment: vertical tubes in a tank of liquid

= — 2
e - e
—— i — o

- [ —

[ —_— i Ll = Oum
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Capillary effects

Jurin

The rise of the liquid in the tube follows a law established by Jurin:

_ 2ycost
Rpg

Ah

where
@ v is the interfacial tension between liquid and air
@ 0 is the wetting angle between liquid and tube material
@ R is the tube radius
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superficial tension

The superficial tension applies only at the interface between 2 different
fluids (e.g. water and air).

The molecules of a fluid like to be surrounded by some molecules of the
same kind.
J b s b
V » V.V A >

faids

A drop of liquid on a solid surface does not flatten completely under
gravity:
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Capillary effects

Superficial tension

For water, the interfacial tension with air is

Ywater/air = 73 mN-m
The Laplace pressure scales as y/d where d is a characteristic length.
Comparing with hydrostatic pressure p = pgd leads to

g |7

PE

For water d ~ 2.7 mm.
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Contact angle

A puddle of water on a solid substrate is either flat or round. The contact
angle represents the hydrophilic/hydrophobic nature of the surface.

hydrophilic hydrophobic
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Walk on water with surface tension
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How to float on water

Despite psteel > Pwater, the paper clip floats!
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Hydrophobic natural surfaces

Water drops on a lotus leaf
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Capillary effects

Hydrophobic artificial surfaces

Hydrophobic glass

ws BIOCLEAN

apeés & mois sans nettoyage
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Capillary rise in porous materials

The capillary rise occurs naturally in
@ sugar cube with coffee (or any other liquid)
@ soils: from saturated zone to dry zone
@ concrete: rise from ill-drained foundation

[m] = = =
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Course summary

Course summary
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Problem solving method

Before attempting to solve any problem, a few questions have to be
addressed:

geometry and symmetry

steady or not steady

dominant forces (inertia or viscous force)
relevance of hydrostatics

rheology of the liquid

boundary conditions

000000

initial conditions (for unsteady flows only)
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Course summary

General equations

A minimal set® of general equations is
mass conservation eq.:

= — . .
V - u =0, incompressible flow
momentum conservation eq.:

—_
DU - =

—_— = +V-0, o=-pl+D
Dr P& p

The tensor D expresses the rheology of the fluid

1. without temperature or reactive effects

M. Nicolas (Polytech Marseille GC3A) Fluid mechanics september—december 2016 16 / 26



Course summary

Navier-Stokes equation

For a newtonian fluid of viscosity 7, the needed equations are

Nt 0

—_
Du - = —

Dt

with only a few analytical solutions for small Re:
o BC driven flow: Couette flows
@ pressure-driven flow: Poiseuille flow
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Velocity and stress continuity

fluid
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Cylindrical pressure-driven flow

Poiseuille flow:
%=0 on the boundary

1 dp
() = = (R =1)
Q__lﬁ 4
© 8ndz
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Course summary

Plane pressure-driven flow

fixed plate

pressure gradient
-

P

fixed plate

1 dp
ux(y) = %& y—h)y
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Plane boundary-driven flow

Couette flow:
moving plate U

fixed plate

ux(y) = U%, p = constant
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Re > 1 and steady flows

Bernoulli's equation: along a streamline,

1
§pv2+pgz+p:C
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Stress-strain relation

slope=viscosity

shear stress

shear-thinning

inviscid fluid: idealized fluid of zero viscosity y

shear rate
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The Rabinovitch-Mooney formula

Finally,
7R3 7w .
Q=— f 24(7) dr
T, 0

w

known as the Rabinovitch-Mooney formula, valid for any rheology.

@ newtonian: 7 = %

@ power-law fluid: 4 = (%)1/’7
@ Bingham fluid: 4 = T;]TO
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Open discussion

Open discussion
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Is there any muddy points?
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