

This project has been funded with support from the European Commission.
This publication reflects the views only of the author, and the Commission
cannot be held responsible for any use which may be made of the
information contained therein.

Algorithmic ● Programming ● Didactics

Algorithmic and Programming
Training materials for Teachers

MARIA CHRISTODOULOU

ELŻBIETA SZCZYGIEŁ

ŁUKASZ KŁAPA

WOJCIECH KOLARZ

Algorithmic and Programming
Training materials for Teachers

MARIA CHRISTODOULOU

ELŻBIETA SZCZYGIEŁ

ŁUKASZ KŁAPA

WOJCIECH KOLARZ

Krosno, 2018

The Authors:

Maria Christodoulou, Elżbieta Szczygieł, Łukasz Kłapa, Wojciech Kolarz

Scientific reviewer: Marek Sobolewski PhD, Rzeszow University of Technology

Publishing house:

P.T.E.A. Wszechnica Sp. z o.o.

ul. Rzeszowska 10,

38-404 Krosno

Phone: +48 13 436 57 57

https://wszechnica.com/

Krosno, 2018

ISBN 978-83-951529-0-0

 Creative Commons Attribution-ShareAlike 4.0 International

Table of contents

Instead of the introduction ... 5

1 Introduction to algorithmic .. 7

1.1 Computer Programs ... 8

1.2 Algorithms and their importance ... 8

1.3 Algorithmic design ... 8

1.4 Algorithms, programs and programming languages .. 9

1.4.1 Syntax and semantics ... 10

1.4.2 Algorithmic Design: Stepwise refinement of algorithms 11

1.4.3 Algorithmic Design: Sequence ... 16

1.4.4 Algorithmic Design: Selection .. 16

1.4.5 Algorithmic Design: Iteration .. 18

1.4.6 Summary of most important algorithmic constructs 20

1.4.7 Algorithmic Design: Recursion .. 20

1.4.8 Differences between iterative and recursive algorithms 24

1.4.9 Algorithmic Design: Data structures ... 25

1.5 Bibliography ... 32

2 Introduction to programming.. 33

2.1 The definition of programming... 33

2.2 History of programming .. 35

2.3 Programmers skills and the process of developing them..................................... 36

2.4 Variables and constants ... 40

2.5 Objects ... 42

2.6 Operators .. 43

2.7 Decision statements ... 46

2.8 Loops ... 49

2.9 Functions .. 54

2.10 Bibliography.. 56

3 Didactics with the use of algorithmic and programming 58

3.1 Basic assumptions of algorithmic and programming in school teaching 58

3.2 Computational thinking concept in teaching of algorithmic thinking 60

3.3 Application of computational thinking in educational practice 63

3.4 Practical exercises of using of algorithmic and programming 67

3.5 Bibliography ... 81

5

Instead of the introduction

Ability to using algorithmic and programming is recognized by the European authorities

as one of the important, nowadays skill forming part of “digital competence” which

is one from eight key competences. In EURYDICE report (2012) a following statement

has been made: “The need to improve the quality and relevance of the skills

and competences with which young Europeans leave school has been recognised at EU

and national level. The urgency of addressing this issue is further underlined by

the current situation in which Europe faces high youth unemployment and, in some

cases, serious skills mismatches (…). The European Policy Network

on the Implementation of the Key Competences (KeyCoNet) analyses emerging

initiatives for the development of the key competences (…). One of them relates to the

need for a more strategic approach in supporting the key competences approach at

school. A second one is related to the efforts to enhance the status of the transversal

competences (digital, civic and entrepreneurship) as compared to the traditional

subject-based competences.”

Publication entitled: Algorithmic and Programming - Training materials for Teachers.

Algorithmic. Programming. Didactics. meets these recommendations. The main aim

of the publication is presenting the teachers of an idea of algorithmic and programming

along with their practical application in didactics. The publication is the first Intellectual

Output of the project entitled “CodeIT: Enhancing Teachers’ professional

development through algorithmic and programming”, which is realised

by the international consortium consist of six partners from five countries:

P.T.E.A. Wszechnica Sp. z o.o. (Krosno, Poland), M.K. INNOVATIONS LTD

(Nicosia, Cyprus), Danmar Computers Sp. z o.o. (Rzeszów, Poland), Istituto Superiore

E. Mattei (Fiorenzuola d’Arda, Italy), Liceul Pedagogic “Mircea Scarlat” Alexandria

(Alexandria, Romania) and Kekavas vidusskola (Kekava, Latvia). The project is realised

under the frame of Erasmus+, Strategic Partnership Programme.

The main aim of the project is to help teachers enhance their professional development

by raising programming competences through the development of innovative resources.

Primary target group are non-IT teachers from elementary schools (grades 4 and

higher) and gymnasiums (lower-secondary schools) with special attention to teachers

of Chemistry, Geography, Math and Physics. Secondary target group is students

abovementioned schools.

The publication consist of three chapters. The first chapter is devoted to the algorithmic

and it presents the idea of programs and programming languages, the importance

of algorithms and its design. The second chapter presents the definition

of programming, its history as well as programmers skills and the process of developing

them. In this chapter the information about principles of programming are also

6

consisted. The last one chapter is devoted to presentation of didactic elements with the

use of algorithmic and programming. In this chapter the information about basic

assumptions of algorithmic and programming in school teaching, as well

as computational thinking concept are presented. The final part of the publication

is devoted to presentation of practical application of computational thinking.

The Authors hope that the publication meets meet with interest from teachers and

brings them the useful knowledge in algorithmic and programming. The publication

initialized the set of educational materials for teachers and students, which will also

include:

 Virtual Learning Environment for Teachers containing training materials

in algorithmic and programming and its didactic in other than IT subjects,

 Model lesson plans incorporating programming for Chemistry, Geography, Maths

and Physics,

 Handbook entitled “Advance your teaching skills with the use of algorithmic and

programming”.

The Authors

7

1 Introduction to algorithmic
(Maria Christodoulou)

An algorithm is a description of how a specific problem should be solved.

If you have ever baked brownies, you know that first you have to gather ingredients,

then measure them, mix them together then prepare the pan, heat the oven and cook

them.

Figure 1 – Algorithmic description is like a recipe

Source: momsrecipesandmore.blogspot.gr

If you forget the sugar, they do not taste good and you have to start over.

Determining the right steps, following them correctly and completely and learning from

mistakes are all part of the process of algorithm design.

8

1.1 Computer Programs

In order to be executed by computers, algorithms need to be in the form of a ‘program’.

A program is written in a programming language, and the activity of expressing

an algorithm as a program is called programming.

In algorithms, steps are expressed in the form of an instruction or statement.

As a consequence, a computer program comprises a series of statements which indicate

to the computer which operation to perform.

The programming language used will dictate the nature of the statements in a program.

1.2 Algorithms and their importance

To use a computer for the purpose of executing processes, it is necessary to:

 design the algorithm to describe how the process will be performed;

 use a programming language to express the algorithm into a program;

 run the program on the computer.

To this end, it is important to understand that algorithms are independent of the

programming language used and each algorithm can be expressed in different

programming languages and executed on different computers. This is the reason why

the design of algorithms is a fundamental aspect of computer science. The design of an

algorithm is a demanding intellectual activity, significantly more difficult than

expressing the algorithm as a program.

Among the skills needed to design algorithms are creativity and insight

(Goldschlager and Lister, 1988) while there is no general rule, meaning there

is no algorithm for algorithm design!

1.3 Algorithmic design

Algorithm Design:

 comprises a set of instructions for completing a task,

 moves the problem from the modelling phase to the operation stage,

 the set of instructions should be sequential, complete, accurate and have a clear

end point,

9

 if intended for a computer the algorithm must comprise a series of tasks written

in a way that the computer is able to perform.

In this chapter we will look into algorithms, considering their structure, their

composition and their expression in an executable form.

1.4 Algorithms, programs and programming languages

As said an algorithm is a description of how to carry out a task or process and there are

algorithms for carrying out pretty much all kinds of tasks/processes. From building

a model plane to guiding an excavation machine.

Figure 2 – Algorithms, programs and programming languages

Source: shutterstock.com

More often than not, the process described by an algorithm interacts with its

environment, accepting input(s) and producing output(s) (Goldschlager and Lister,

1988). Processes executed on the computer more often require input in the form of data

and very often the output produced will also be in the form of data. As an example, think

about the process of calculating salaries which will require inputs such as daily cost,

days worked, etc. and will produce outputs such as salaries to be paid,

employees/employers contributions and taxes to be deducted.

Inputs and outputs are part of the specification of a process but are still

independent of the processor which carries out the process.

10

Another important aspect of processes is the termination. Process may terminate

or may never terminate. This is the reason that the termination or nonterminating

of a process is one of its important characteristics.

1.4.1 Syntax and semantics

A computer needs to be able to interpret an algorithm in order to execute the process

described by the algorithm. As such, the computer must be able to:

 understand in which form an algorithm is expressed;

 execute the operations described by the algorithm.

Figure 3 – Syntax and semantics

Source: shutterstock.com

In the present section we will look into the form in which algorithms are expressed.

The set of grammatical rules which govern how the symbols in a language may

be legitimately used is called the syntax of the language (Goldschlager and Lister, 1988).

A program which adheres to the syntax of the language in which it is expressed is said

to be syntactically correct. A deviation from the legitimate syntax of a language

is called a syntax error. Syntactic correctness is normally a prerequisite for a computer

to be in position to execute a program.

The meaning of particular forms of expression in a language is called the semantics

of the language. Detection of semantic inconsistencies relies on knowledge of the objects

being referred to and in particular on knowledge of the attributes of those objects, and

of the relationships between them. Consider for example (Goldschlager and Lister,

1988) a computer processor faced with the following command:

write down the name of the 13th month of the year

If the processor knows that there are only 12 months in the year it can detect

the semantic inconsistency in the command before trying to execute it. If it does not

know this, then it will attempt to execute it and most likely an exception will be raised.

11

More often, semantic inconsistencies and more subtle, being the result of executing

a previous part of the algorithm:

Think of a number from 1 to 13

Call this number N

Write down the name of the Nth month of the year

This algorithm contains a potential inconsistency which emerges only if execution

of the first line results to number 13. When an inconsistency is a result of executing

an algorithm there is in general no chance of detecting it before-hand.

In addition to syntactic and semantic errors, there are also logical errors. It is possible

that a program may be syntactically correct and contain no semantic inconsistencies, but

may still not lead to the intended process.

As an example (Goldschlager and Lister, 1988), consider the algorithm for computing

the circumference of a circle:

Compute the circumference by multiplying the radius by π

The algorithm is syntactically and semantically correct but it produces a wrong result

due to the logical error which is the omission of a factor of 2.

Unfortunately, logical errors are hard to be detected by computer processors prior

to executing the process and comparing the result with the desired outcome.

1.4.2 Algorithmic Design: Stepwise refinement of algorithms

The design of algorithms describing non-trivial processes is usually very difficult. Very

frequently the errors appearing in algorithms have to do with the process described

where the described process is very close to the intended process but not exactly.

Another common failure is when execution results in the intended process being carried

out, but in certain circumstances (unforeseen or overlooked by the designer) it does not.

Here is such an example (Goldschlager and Lister, 1988) which describes how

to calculate the flight time of an aircraft from an arrival timetable:

1. Look up departure time

2. Look up arrival time

3. Subtract departure time from arrival time

This algorithm will produce the correct result in most cases, but will fail to do

so if the departure point and the destination are in different time zones.

The conclusion is that the designer of an algorithm should ensure the algorithm

describes precisely the process that needs to be carried out while all possible

12

circumstances have been accounted for. If the process to be carried out is too complex

then the designer’s task is difficult.

This is why a methodical approach is needed. One such approach is the stepwise

refinement (or top-down design).

Stepwise refinement is a variation of the divide and conquer where the process

to be carried out are broken down into a number of steps, each of which can

be described by an algorithm which is smaller and simpler. Because each such sub-

algorithm is simpler than the entire process the designer usually has a clearer idea

of how to efficiently construct it, and can therefore sketch it in more detail than if he

tried to handle the whole algorithm at once. The sub-algorithms can themselves be

broken into smaller pieces which are even simpler and can again be expressed in even

more detail and precision. Refinement of the algorithm continues this way until each

of its steps is sufficiently detailed and precise to allow execution by the computer

processor.

EXAMPLE

Design an algorithm for a domestic servant robot to make a cup of instant coffee.

The initial version of the algorithm can be the following (Goldschlager and Lister, 1988):

(1) boil water

(2) put coffee in cup

(3) add water to cup

The steps in this algorithm are not detailed enough for the robot to be able to execute

them. Each step must therefore be refined into a sequence of simpler steps, each

specified in more detail than the original. Thus the step:

(1) boil water

might be refined into

(1.1) fill boiler with water

(1.2) switch on boiler

(1.3) wait until the water boils

(1.4) wait for the boiler to switch off

Similarly,

(2) put coffee in cup

might be refined into

(2.1) open coffee jar

(2.2) dip spoon and fill with coffee

(2.3) drop spoonful into cup

(2.4) close coffee jar

and

13

(3) add water to cup

might be refined into

(3.1) pour water from boiler into cup until cup is full

The last refinement does not actually increase the number steps in the algorithm, but

simply re-expresses an existing step in more detail.

At this stage the original algorithm has been refined into three sub-algorithms,

to be executed in sequence. If the robot can interpret all the steps in each sub-algorithm,

then the process of refinement can stop and the design of the algorithm is complete.

However, some steps may still be too complex for the robot to interpret and these steps

must be refined further. Thus the step:

(1.1) fill boiler with water

may need further refinement into

(1.1.1) put boiler under tap

(1.1.2) turn on water tap

(1.1.3) wait until boiler is full

(1.1.4) turn off water tap

Other steps may need similar refinement, though there may be some, such as:

(1.2) switch on boiler

which can already by executed by the robot without the need for further refinement.

Finally, after a number of refinements, every step of the algorithm will be understood

and executed by the robot. At this stage the algorithm is complete. The successive

refinements are shown in the Figure 4 below.

14

Original First refinement Second refinement

(1) boil water (1.1) fill boiler with water (1.1.1) put boiler under tap

 (1.1.2) turn on water tap

 (1.1.3)
wait until boiler is
full

 (1.1.4) turn off water tap

 (1.2) switch on boiler

 (1.3) wait until water boils (1.3.1)
wait until boiler
switches off

 (1.4)
Wait for boiler to switch
off

(2)
put coffee
in cup (2.1) open coffee jar lid (2.1.1)

take coffee jar from
shelf

 (2.1.2) remove lid from jar

 (2.2)
dip spoon and fill with
coffee

 (2.3)
drop spoon of coffee into
cup

 (2.4) close coffee jar lid (2.4.1) put lid on coffee jar

 (2.4.2)
replace coffee jar on
shelf

(3)
add water to
cup (3.1)

pour water form boiler
into cup until cup is
full

Figure 4 - Refinement of a coffee-making algorithm

Source: example based on (Goldschlager and Lister, 1988)

The final version of the algorithm is obtained by taking the last refinement of each step,

as shown in Figure 5.

15

{boil the water}

(1.1.1) put boiler under water tap

(1.1.2) turn on the water tap

(1.1.3) fill boiler until full

(1.1.4) turn off water tap

(1.2) switch on the boiler

(1.3.1)
wait for boiler to boil the
water

(1.4) switch off the boiler

{drop a spoon of coffee to a cup}

(2.1.1) pick up coffee jar

(2.1.2) remove lid

(2.2) fill in spoon with coffee

(2.3) drop spoon into cup

(2.4.1) close lid

(2.4.2) put coffee jar back

{poor water into cup}

(3.1)
poor boiled water from boiler
into the cup until full

Figure 5 – Final version of the coffee-making algorithm

 Source: example based on (Goldschlager and Lister, 1988)

Using stepwise refinement implies that the algorithm designer knows where to stop.

The designer must know when a specific step in the algorithm is sufficiently primitive

to be left without any further refinement. This necessitates some knowledge

by the designer about the sort of steps the computer processor can execute.

In our example, the designer knew that the robot can interpret switch on boiler

and no further refinement was applied but the robot cannot interpret fill boiler

and additional refinement was applied.

The conclusion is that stepwise refinement of an algorithm cannot take place

in a vacuum. The designer must be aware of the interpretive capabilities of the intended

processor so that he can push the refinement in particular directions and know when

to terminate the refinement of each part.

The good news is that the interpretive capabilities of computers are precisely defined:

a computer can interpret anything which is properly expressed in a programming

language. Thus, the designer refines the algorithm in such a way that the steps can

be expressed in an appropriate programming language, and terminates the refinement

when every step is expressed in the language of choice.

Each refinement implies a number of design decisions based upon a set of design

criteria. Among these criteria are efficiency, storage economy, clarity, and regularity

of structure. Designers must be taught to be conscious of the involved decisions and

16

to critically examine and to reject solutions, sometimes even if they are correct as far

as the result is concerned; they must learn to weigh the various aspects of design

alternatives in the light of these criteria. In particular, they must be taught to revoke

earlier decisions, and to back up, if necessary even to the top. Relatively short sample

problems will often suffice to illustrate this important point; it is not necessary

to construct an operating system for this purpose.

1.4.3 Algorithmic Design: Sequence

The coffee-making algorithm of the previous section involves simple steps

to be executed sequentially:

 steps are executed one at a time and not in parallel,

 each step is executed only once,

 execution order is the order in which steps are written,

 execution of the last step terminates the algorithm.

Such an algorithm is not flexible as it cannot be adapted to respond to different

circumstances. For example think about the unavoidable situation that at some point

the coffee jar is empty or the situation when the robot needs to handle several requests

for coffee or custom requests for milk or sugar.

The conclusion is that an algorithm which is merely a combination of steps in a sequence

will not get us far and more flexible structures are needed in order to design algorithms

capable of realistically depicting real life situations.

1.4.4 Algorithmic Design: Selection

A more advanced structure which provides flexibility is the selection. Using

the selection, we can refine step 2.1 of the previous coffee-maker algorithm example

as follows (Goldschlager and Lister, 1988):

(2.1.1) take coffee jar off the shelf

(2.1.2) if jar is empty

 then get new jar from cupboard

(2.1.3) remove lid from jar

We see the introduction of a condition in step 2.1.2. The condition is “jar is empty”. If the

condition is met, then a conditional instruction applies which is “get new jar from

cupboard”.

This is the general form in which the selection structure is expressed:

If condition

then step

17

The condition can be used to specify any kind of circumstance which when true needs

the execution of a certain step.

Off course, in real life there are alternatives in case a particular circumstance emerges.

To cope with such situations, the selection structure can be extended so as to provide

alternative steps to be executed.

Assume a simple algorithm for driving with a car to work which needs to cater for the

occasion that the car needs fuel:

(1) start car

(1.1) if fuel indicator on

then drive to the nearest gas station

else drive to work

In this case we can select between two alternative steps in which case the condition (fuel

indicator on or off) dictates which step is to be executed based on the situation we are

faced with.

Here is another example of how refinements and the use of selection can produce

a much more realistic algorithm capable of handling most circumstances without

unexpected outcomes:

(1) wash car

(1.1) if feeling lazy

 then drive to the car wash to get it washed

(1.2) wash it by hand

Step 1.1 can be further refined:

(1.1.1) buy a token

(1.1.2) wait in line

(1.1.3) have the car washed

Step 1.1.3 can be further refined:

(1.1.3.1) drive into the car wash

(1.1.3.2) check that all doors and windows are closed

(1.1.3.3) get out of the car

(1.1.3.4) put token to the machine

(1.1.3.5) wait until washing cycle and drying is finished

(1.1.3.6) get into the car

(1.1.3.7) drive away

More flexibility can be introduced to algorithms by taking advantage of nested selection.

Consider the following algorithm for a pedestrian crossing a street at the zebra crossing.

if light is green

 then proceed

 else stop

This example contains one selection and can be further improved as:

18

if no light or light is blinking green

 then proceed with caution

 else if light is red

 then stop

else proceed

This later example contains two selections. The second selection is nested inside the first

and is executed only if the light is red.

1.4.5 Algorithmic Design: Iteration

Iteration is the repetition of a process in a computer program. Iterations of functions

are common in computer programming, since they allow multiple blocks of data

to be processed in sequence. This is typically done using a "while loop" or "for loop".

These loops will repeat a process until a certain number or case is reached.

Simply put, iteration means repeating the same step several times.

Figure 6 – Iteration: Repeating the same step several times

Source: okclipart.com

Iterative algorithms should obey three important principles:

1. An iterative process repeats (iterates) a certain sub-process.

2. Each iteration should change at least one value.

3. There should be some condition under which the iteration terminates.

And the iteration should reach that state.

A very simple algorithm for eating breakfast cereal might consist of these steps (BBC

Bitesize KS3 Subjects: Iteration):

19

(1) put cereal in bowl

(2) add milk to cereal

(3) spoon cereal and milk into mouth

(3.1) repeat step 3 until all cereal and milk is eaten

(4) rinse bowl and spoon

What we see in step 3.1 is the introduction of a condition which is a situation that

is checked every time an iteration occurs. The condition is introduced with the words

repeat and until. Without the condition, the algorithm would not know when to stop.

The condition, in this case, will be to check if all the milk and cereals is eaten. If that

condition is False (there is still milk and cereals in the bowl), then another iteration

occurs. If the condition is True (there is no more milk and cereals in the bowl), then

no more iterations occur.

The general form is:

repeat

 part of the algorithm

until condition

This means that the part of the algorithm between repeat and until is executed

repeatedly until the condition specified after until holds true. The condition which

comes after until is called a terminating condition.

The occurrence of iteration is called a loop.

Iteration allows algorithms to be simplified by stating that certain steps

will repeat until told otherwise. This makes designing algorithms quicker and simpler

because they don’t need to include lots of unnecessary steps (BBC Bitesize KS3 Subjects:

Iteration).

A more advanced use of iteration is the use of nested loops. A nested loop is a loop

within a loop, an inner loop within the body of an outer one. How this works is that

the first pass of the outer loop triggers the inner loop, which executes to completion.

Then, the second pass of the outer loop triggers the inner loop again. This repeats until

the outer loop finishes.

When one loop is nested within another, several iterations of the inner loop

are performed for every single iteration of the outer loop.

Example: Suppose we have data in the form below, involving several ID strings.

For each ID string, a variable number of readings have been recorded; the number

of readings for each ID is shown in the howMany column:

20

ID howMany Readings

200 3 110 30 10

201 5 2 46 109 57 216

202 2 10 500

Our task is to read the data and display a summary chart showing the average of each

reading per ID as follows:

ID AVERAGE

200 50

201 86

202 255

This is how the algorithm could look like:

read first ID and howMany

 repeat

 display ID

 repeat

 read and sum up this ID’s howMany readings

 calculate and display average for ID

 until end of howMany readings

 read next ID

 until end of ID

Looking at the algorithm we easily observe that the outer loop controls the number

of lines and the inner loop controls the content of each line. So, 3 IDs leads to 3 rows and

each row will display just one average calculated by adding all readings to get their sum

and dividing by the number of readings to get the average.

1.4.6 Summary of most important algorithmic constructs

Sequence: A series of steps that are carried out sequentially in the order in which they

are written. Each step is carried out only once

Selection: One of two or more alternatives should be chosen.

Iteration: Part of the algorithm should be capable for repetition, either a defined

number of times or until a certain condition has been met.

1.4.7 Algorithmic Design: Recursion

Recursion is a powerful tool based on which the algorithm can be expressed in terms

of itself. It provides a simple, powerful way of approaching a variety of problems.

It is often hard to think about how a problem can be approached recursively. It is also

very easy to write a recursive algorithm that either takes too long to run or doesn't

properly terminate.

21

In the present sub-section we will look into the basics of recursion in order to provide

the reader with the opportunity to understand how complex problems may be solved

easily using recursive thinking.

The first thing to do is to answer the question: “what is recursion?”

Figure 7 – Recursion

Source: Shutterstock.com

Russian dolls offer a helpful analogy for understanding recursion. Suppose you have

an algorithm for opening each doll. Then, to get to the last doll which cannot be opened

any more to get a smaller version, you would execute the same algorithm each time until

there are no more dolls to open.

In algorithmic design, an algorithm is said to be recursive if it calls itself. Obviously

when dealing with an algorithm which calls itself there is a challenge in ensuring that

the algorithm will eventually terminate producing the correct result. The circularity

of recursive algorithms is avoided by ensuring that each time the input to the successive

execution is decreased by some number so that at some point it will eventually become

zero and the algorithm will terminate.

To implement a recursive algorithm, the problem must satisfy the following conditions:

 It can be broken down into a simpler version of the same problem

 It has one or more base cases whose values are known

Here is a real world example of recursion: Consider you are seated in the last row

of a cinema and you want to count the number of rows. You ask the person seated

22

in front of you to tell you how many rows are there in front of him. This person does

the same thing and asks the person who is seated in front of him and so on till

the person who is seated first row is asked the question. This person can answer zero

to the person behind him because he can see that there are no more rows in front of him.

This is the base case. The person in the second row adds 1 to the answer and tells it

to the person behind him in the third row and so on until the answer reaches you. Notice

that at each step the problem is reduced to a simpler version of the same problem.

Let’s see now an example using an algorithm. First, consider a module (in programming

languages it is called procedure or function or process or routine) which prints

the phrase "Hello CodeIT Enthusiasts" a total of X times:

module Hello(X)

if(X<1)

 return print("Hello CodeIT Enthusiasts!")

 Hello(X - 1)

Let’s simulate the execution by calling the module Hello with a value for X = 10. Since

X is not less than 1, we do nothing on the first line. Next, we print "Hello CodeIT

Enthusiasts!" once. At this point we need to print our phrase 9 more times. Since we now

have a Hello module that can do just that, we simply call Hello (this time with X set to 9)

to print the remaining copies. That instance of Hello will print the phrase once, and then

call another copy of Hello to print the remaining 8. This will continue until finally we call

Hello with X set to zero. Hello(0) does nothing; it just returns. Once Hello(0)

has finished, Hello(1) is done too, and it returns. This continues all the way back

to our original call of Hello(10), which finishes executing having printed out a total

of 10 "Hello CodeIT Enthusiasts!".

These are some key considerations in designing a recursive algorithm:

 It handles a simple generic situation without using recursion: In the example

above, the generic situation is Hello(0). If the module is asked to print zero

times then it returns without spawning any more "Hello CodeIT enthusiasts”.

 It avoids cycles. Imagine if Hello(10) called Hello(10) which called

Hello(10). You'd end up with an infinite cycle of calls and this usually would

result in a "stack overflow" error while running on a computer. In many recursive

programs, you can avoid cycles by having each module call be for a problem that

is somehow smaller or simpler than the original problem. In this case, for

example, X will be smaller and smaller with each call. As the problem gets simpler

and simpler (in this case, we'll consider it "simpler" to print something zero times

rather than printing it 5 times) eventually it will arrive at the generic situation

and stop recursion. There are many ways to avoid infinite cycles, but making sure

that we're dealing with progressively smaller or simpler problems is a good rule

of thumb.

23

 Each call of the module represents a complete handling of the given task.

Sometimes recursion seems to breaks down big problems in a magical way but

this is not what happens in reality. When our module is given an argument of 10,

we print "Hello CodeIT enthusiasts!" once and then we print it 9 more times.

We can pass a part of the job along to a recursive call, but the original function

still has to account for all 10 copies somehow.

One reason why recursion is a bit confusing is that it does not follow a direct natural

way of thinking as is the case with iteration.

A recursive algorithm implies that the recursive module part of the algorithm needs

to be invoked initially from outside the module, but then it keeps calling itself from

inside the module until it reaches a terminating condition. From a computer’s

perspective if a module calls itself or calls another module it is still a regular module call

as long as the required input parameters are provided.

Recursion follows the divide and conquer algorithm design technique which means

breaking a problem into sub problems of the same or related type until the sub problem

becomes simple enough to be solved directly. The solutions to the sub problems are then

combined to give a solution to the original problem. So, how divide and conquer relates

to a module calling itself? In the first call to the recursive module the full input value

is provided, the moment the module starts invoking itself, a lesser input is provided each

time in each call unit the input is simple enough to allow for a solution to be provided

in a single call.

As it turns out, for any algorithm which uses recursion there can be an equivalent

algorithm which uses iteration. So, recursion can be also seen as a different form

of iteration. Nevertheless, a recursive algorithm for describing a particular process

is often far more concise than an iterative one.

Perhaps the most famous example of a problem which can be solved with recursion

more efficiently than it can be understood and solved with iteration is the Towers

of Hanoi.

Lastly, as general knowledge, recursion is very big in game development. Here are some

frequent uses in game development (Quora.com):

 Body part destruction: Evaluate voxels around a sword cut to determine what

is still connected, and what should fall off

 Maze hallway creation: Use recursion to randomly wander a maze, adding

doorways at set intervals.

 Pathfinding: Construct a distance dictionary around a grid position to compare

path lengths between movement alternatives.

24

1.4.8 Differences between iterative and recursive algorithms

Both iteration and recursion are based on a control structure: Iteration uses a repetition

structure; recursion uses a selection structure. An Iterative algorithm will use looping

statements such as for loop, while loop or do-while loop to repeat the same steps while

a Recursive algorithm, a module (function) calls itself again and again till the base

condition(stopping condition) is satisfied.

An Iterative algorithm will be faster than the Recursive algorithm because of overheads

like calling functions and registering stacks repeatedly. Many times the recursive

algorithms are not efficient as they take more space and time.

Recursive algorithms are mostly used to solve complicated problems when their

application is easy and effective. For example Tower of Hannoi algorithm is made easy

by recursion while iterations are widely used, efficient and popular.

Recursive vs Iterative Algorithms:

 Approach: In recursive approach, the function calls itself until the condition

is met, whereas, in iterative approach, a function repeats until the condition fails.

 Programming Construct Usage: Recursive algorithm uses a branching

structure, while iterative algorithm uses a looping construct.

 Time & Space Effectiveness: Recursive solutions are often less efficient in terms

of time and space, when compared to iterative solutions.

 Termination Test: Iteration terminates when the loop-continuation condition

fails; recursion terminates when a base case is recognized.

 Infinite Call: An infinite loop occurs with iteration if the loop-continuation test

never becomes false; infinite recursion occurs if the recursion step does not

reduce the problem in a manner that converges on the base case.

A practical problem: The birthday guy cuts the birthday cake and has to ensure that

everyone in the room gets a slice.

Solution 1 - Iterative: The birthday guy uses a tray and goes around giving everyone

a slice.

serveslice (while there are people to serve or slices left give slice)

Solution 2 - Recursive: Take a slice of cake from the tray and pass the tray to the next

person who takes a slice from the tray and passes the tray to the next person, who takes

a slice from the tray and passes the tray to the next person…

Note that the same function is being performed every time.

takeslice(tray)

If there are people to serve or slices left

 take slice and call takeslice(tray)

else return

25

1.4.9 Algorithmic Design: Data structures

Until now, focus was on how to control algorithms by looking into constructs which

are used for controlling the order and circumstances in which the individual steps

of an algorithm will be executed. The reason is that the choice of the most appropriate

control structures is important for designing an efficient and effective algorithm.

However, algorithms are designed to handle inputs in the form of data and these inputs

need to be considered when designing an algorithm.

Usually, the data which will be processed by an algorithm comprises items which

are related in some way to each other rather than arbitrary collections of unrelated

items. Consider for example the metadata which makes up a user profile, such as name,

age, address, function, contact number. Etc. These items are logically connected

to one another and cannot be processed as a collection of unrelated items by

an algorithm but need to be processed as a record where each record comprises

information about a specific user.

Data which is organised in such a way so as to capture logical relationships between its

elements is referred to as structured data and its elements together with their

interrelationships form a data structure.

The most common type of data structure is perhaps the sequence which comprise a set

of items sorted in a way that every item apart from the last item in the sequence

has a successor and every item apart from the first one in the sequence has

a predecessor. These are some common examples of easily understood sequences:

 A number presented as a sequence of digits, e.g. 1512000 (1 is first, 0 is last)

 A word presented as a sequence of letters, e.g. sequence (s is first, e is last)

 A chain

 A denture

 A rolodex

Obviously, a sequence is an ideal structure for items which are to be processed

sequentially, one after another. The most common way of progressing through

a sequence is through the use of a looping structure such as a while loop or a repeat loop

with the difference being that a while loop is used when the number of items in the

sequence is not known while the repeat loop is used for a definitive iteration when the

number of items in the sequence is known.

Example algorithmic construct for navigating through a sequence is the following:

enter sequence

while not end of sequence do

 process next item in the sequence

Some sequences are so common and occur so often that have been given specific names:

26

Figure 8 – Array

Source: wikipedia.org, Row- and column-major order

Arrays: A sequence of fixed length where each element is identified by its position

in the sequence (Goldschlager and Lister, 1988). It is an indexed collection

of homogeneous elements. An Array sequence has the following properties:

 All elements of the array are of the same data type (homogeneous),

 Dimension: One dimensioned arrays have one dimension, two dimensioned

arrays have two dimensions, etc.,

 Each dimension has a size,

 The size of a particular dimension is constant. Consider a matrix. It has rows

and columns. The size of each row (number of columns), is the same for all rows,

 Each element of an array is identified by its position along each dimension (index,

e.g.: num[1], num[4], etc.).

Figure 9 – Vector

Source: wikibooks.org, A-level_Computing

27

Vectors: A Vector is similar to an array but with added functionality. Vectors keep track

of their size and they resize automatically when you add or delete an item.

On the positive side, vectors are easy to use, keep track of their size, they are resizable

and offer simple access like the normal arrays. On the down side, resizable vectors can

be slow (lots of new items and deletion of old items) so it is important to ensure

an efficient implementation.

Figure 10 – Stack

Source: Creative Commons Image

Stacks: A sequence of variable length in which items are added and removed only at one

end. Think of it as a container of elements that are inserted and removed according

to the last-in first-out (LIFO) principle because the order in which elements are removed

is the revers of that in which they are added:

 Two operations are allowed, push the item into the stack, and pop the item

out of the stack,

 Elements can be added and removed from the stack only at the top (think

of a stack of plates in a cupboard),

 Push adds an item to the top of the stack, pop removes the item from the top,

 It is a recursive data structure,

 It is either empty or it has a top followed by a stack.

28

Figure 11 –Queue

Source: Creative Commons Image

Queues: A sequence of variable length where items are always added on one end and

removed from the other end. Unlike stacks, a queue is open at both its ends and follows

the First-In-First-Out principle (FIFO), i.e., the data item stored first will be accessed first

because the order in which items are removed is the same of that in which they

are added. A queue comprises a:

 Rear, also referred to as tail which is where the first element is inserted from

one end.

 Front, also referred to as head which is where the first element is deleted from

the other end.

A real-world example of queue is a single-lane one-way road, where the vehicle which

enters the road first, exits first. Another simple example is any kind of service point, such

as a ticket counter where the first person to queue is the first person to get their ticket

from the counter.

Figure 12 –Linked List

Source: Creative Commons Image

Linked lists: A linked list is a data structure which consists of a group of nodes

in a sequence and is used to store elements when we don’t know how many elements

we are going to store. A linked list is basically a sequence of structures where each

element in the structure has a Node and a Link. The node contains the items stored

which may well be of different type and the link is a pointer which points to the next

node in the sequence. A linked list is a data structure capable of storing an arbitrarily

large ordered collection of items with a minimum of overhead because a great advantage

of linked lists is that insertion and deletion operations can be easily implemented.

29

A common use of linked lists is for implementing stacks and queues with the advantage

of allowing the insertion of elements at the beginning and end of the list while the size

of the linked list is not necessary to know in advance. So, they are easier to edit than

arrays and can be split and manipulated easily.

Figure 13 –Tree

Source: Creative Commons Image

Trees: A tree is a powerful data structure for organising items. Unlike Array and Linked

List, which are linear data structures, tree is hierarchical (or non-linear) data structure.

A tree is hierarchically arranged and is used for expressing hierarchical relationships,

such as an organisational structure. Its nodes are used for representing its data

or branching points. A tree node has a data part and references to its left and right child

nodes. The node at the highest level of the hierarchy is called a root while the nodes

at the lowest level, where the tree ends, are called leaves. The branches of the tree

represent logical relationships between items at one level of the hierarchy and other

items at the next level. A tree is structured in a way that every node is at the same time

the root of another tree (subtrees). So, hopefully by now, it has become apparent that

a tree is a recursive data structure as each tree can be defined in terms of other trees.

In terms of properties, a tree is either:

 empty (a tree with no nodes is called the null or empty tree), or

 a node and a set of branches each belonging to a tree (a tree that is not empty

consists of a root node and potentially many levels of additional nodes that form

a hierarchy)

The PDF is a tree based format. It has a root node followed by a catalogue node, followed

by a pages node which has several child page nodes.

30

Figure 14 – Hash Table

Source: Creative Commons Image

Hash Tables: Hash tables are key/value pairs. A hash table (also referred to as hash

map) is a data structure used to implement an associative array, a structure that

can map keys to values. It files items according to some property that is easy to find,

even if not directly relevant to the item, and not a complete description. The Hash table

helps reduce the possible places where an item can be found. A hash table is populated

through a 'Hashing function'. A hashing function is a way of mapping elements

to locations. As an example consider as a hashing function a function that will help you

decide (and later search/find) the shelf in which you are going to place a book. A hashing

function is a mathematical function which is given an item and provides the location

to store the item while at the same time it maps each item to the corresponding location.

Hash tables allow insertion/search and deletion of items by providing the associated

keys for each item. The keys are transformed into integers by a hash function and the

items are stored in an array using indexes corresponding to these integers (hashed

keys).

31

Figure 15 – Heaps

Source: Creative Commons Image

Heaps: A heap is a collection that allows items to be inserted and the smallest item

to be found and/or removed. Think of a heap data structure as an implementation

of a “priority queue” where instead of just joining a queue at its tail, a person or object

may be inserted further up the queue depending on their priority. Heaps are especially

useful when needing to query for the minimum value multiple times from a dynamic

collection of values.

Figure 16 – Graphs

Source: Creative Commons Image

Graphs: Graph data structures provide for an easy representation of real life

relationships between different types of data (nodes) and are thus used for representing

networks. A graph is made up of vertices, nodes, or points which are connected

32

by edges, arcs, or lines. A graph may be undirected (the relationship exists in both

directions, i.e. John is a friend of Paul means Paul is a friend of John), meaning that there

is no distinction between the two vertices associated with each edge, or its edges may

be directed (it can be a one way relationship or a two way relationship but it must

be explicitly stated) from one vertex to another. The link structure of a website can

be represented by a directed graph, in which the vertices represent web pages

and directed edges represent links from one page to another. There are different ways

to construct graphs in algorithmic design. The data structure used depends on both

the graph structure and the method used for manipulating the graph. Usually, graphs

are constructed by using a combination of list and matrix structures. The following

operations can be performed on graphs:

 Additions:

o Add vertices to the graph

o Create edges between two given vertices in the graph

 Removals:

o Remove vertices from the graph

o Remove edges between two given vertices in the graph

 Search

o Check if the graph contains a given value

o Check if a connection exists between two given nodes in the graph

1.5 Bibliography

BBC Bitesize KS3 Computer Science Algorithms [On-line source:

https://www.bbc.co.uk/education/topics/z7d634j] (available on: 8th February 2018)

Goldschlager L, Lister A., (1988), Computer Science: A Modern Introduction, Second

edition, Prentice Hall International Series in Computer Science.

Quora.com, Questions and Answers on “Data Structures”, “Algorithms”, “Programming”

[On-line source: http://quora.com] (available on: 8th February 2018)

33

2 Introduction to programming
(Elżbieta Szczygieł, Łukasz Kłapa)

2.1 The definition of programming

The intuitive definition of programming does not cause much difficulty and brings

to mind the introduction of commands in the form of a code, expressed in a specific

programming language. However, defining the exact essence of programming is a bit

more difficult. This results from the necessity of using several terms, which should

be defined beforehand (among others: algorithm, program, programming language)

and the degree of formalization of the transferred content.

The following definition of programming was adopted for the purposes of this

publication:

A set of activities related to the preparation of a program for a digital machine
(Encyclopedia, 1988).

Since the computer is the most common machine, the term will be used in the rest of this

handbook to indicate any kind of electronic digital machine. Under the term program

is meant the algorithm record of a specific task in the form of a sequence of declarations

and instructions in one of the programming languages (Encyclopedia, 1988).

The algorithm is defined as a description of the solution to a problem (task) expressed

by means of such operations that the algorithm performer understands and is able

to perform (Encyclopedia, 1988). Therefore, programming has to do with a task that

needs to be solved in a certain way. This method is expressed in a specific form, which

is the programming language. This language is intended for the recording of data

processing programs by computers (Encyclopedia, 1988). Bearing these assumptions

in mind, the concepts related to programming can be arranged in the following way

(Figure 17).

34

Figure 17 - Links between the terms of program, programming, algorithm and programming language

Source: own elaboration based on (Encyclopedia, 1988)

Programming will therefore be the recording of an algorithm, conveying the description

of a solution to a given problem, with the use of a description content medium –

the programming language. Programming languages will be introduced further

on in this handbook. It is worth mentioning, however, that like any language,

the programming language has its own alphabet, which are most often letters of the

Latin alphabet, Arabic numerals and signs of arithmetic and logic operations, as well as

special characters. Commands recorded by the programming language alphabet are

translated by the computer into its internal language, which takes the form of a binary

code. In such a record there are only two numbers "0" and "1" and it is through them

that information is transferred to the computer. Because with two symbols - i.e. "0" and

"1" – binary digits, you can pass on only two pieces of information, the binary system

combines binary digits into groups to transmit more detailed messages (Wałaszek,

2018). In this way, by means of a group of binary digits, expressed by a compound

numerical symbol, the computer can perform the requested operation. For example,

single letters of the alphabet will be saved as follows (BiMatrix, 2018):

„a” - 01100001

„b” - 01100010

An example word „hello” – will be marked „01001000 01100101 01101100 01101100

01101111”, and the phrase „hello there!” – „01001000 01100101 01101100 01101100

01101111 00100000 01110100 01101000 01100101 01110010 01100101 00100001”.

Using the programming language you can create any command, so that a computer can

proceed according to that instruction. It is important that the commands are algorithms

with (Encyclopedia, 1988):

• Programming - a set of
activities related to the
preparation of a program for
a digital device.

Program

• Program - algorithm
record of a specific task in
the form of a sequence of
declarations and instructions
in one of the programming
languages.

Algorithm
• Algorithm - description of

the solution to a problem
(task) expressed by means
of such operations that the
algorithm performer
understands and is able to
perform

Programming
language

• Programming language -
clearly defined set of signs
and rules and conventions
that determine how to create
specific language
expressions and how to use
them when writing programs
for your computer.

35

 a clearly defined beginning,

 an indicated operation – action where to start using the algorithm,

 precise instructions for performing further actions, given in exact order,

 ending date (deadline for algorithm realization).

It should be noted, however, that the introduction of a problem solving recording

to your computer is just coding, not programming (Soukup, 2015). Programming

is a much broader term and includes the analysis of the problem to be solved

and the idea to use available digital technologies in finding this solution.

2.2 History of programming

The history of programming goes back long before the first computer was built.

Key to its creation was the figure of a lady brought up in the home of one the greatest

poets of Romanticism, while the first programming language was recorded in a plain

diary. The history of programming and computers is related to the history

of mathematics, which does not seem so far away. Already in antiquity, various types

of abacus or plaques were created to facilitate calculations or measurements. In the 17th

century, J. Neper, the creator of the logarithm developed the so-called Napier's bones

used to calculate logarithms and significantly shortening the time of making calculations

(Encyclopedia, 1988). The following years brought the development of the first

calculating machines, constructed separately by W. Schickhard (in 1623), B. Pascal

(in 1645) and G. W. Leibniz (in 1671). Unfortunately, none of these machines could

be called automatic. J. M. Jacquard returned to the idea of constructing such a machine

at the beginning of the 19th century, presenting punch cards for controlling the weaving

loom at the exhibition in Paris (Heath, 1972). This technique was used by Ch. Babbage,

who is considered the inventor of an automatic machine. In 1833 he designed a punch

card-based analytical machine, which was de facto not created due to technical

and financial difficulties. Nevertheless, his ideas prompted A. A. Lovelance, the daughter

of the poet G. G. Byron, to develop the idea of creating interchangeable programs in this

type of machines. For this reason, on the basis of her notes, A. A. Lovelace is perceived

as the author of the first computer program. She herself speculated on the possibilities

of playing chess with digital machines, or the possibility of singing through them

(The history of computer programming). Further work on the development of digital

machines led to the creation of an electronic tabulation system, thanks to which

machines could read data. This was thanks to H. Hollerith, who developed and applied

this system in calculating machines. After successes in using his machines during the

census in the USA, he founded in 1996 the Tabulating Company Machine, which dealt

with the mass production of calculating machines. Many years later, this company

together with others gave birth to the IBM® concern. The subsequent development

of computer science and programming itself is multithreaded, although to a large extent

the story is related to the course of the Second World War and activities undertaken

36

in the scientific field to solve logistical and military problems. The development

of the operational research trend and the need to conduct increasingly complex

and extensive calculations caused that in 1942 the first digital computer (Atanasoff-

Berry Computer - ABC) was developed to calculate linear equations and - a year later -

the Colossus computer, used for decrypting German messages (The history of computer

programming). Subsequent programming works took place on the EDSAC device,

designed and created in 1949, the continuation and improvement of ENIAC and EDVAC

computer projects, developed just after the end of military actions (Encyclopedia, 1988).

A breakthrough event in programming history was the creation of the first high-class

programming language - Fortran, which was created in 1954 by J. Backus working for

IBM®. The development of programming theory and practice has introduced

an increasing number of languages in use. After the success of the Fortran language,

it was time for languages with higher degrees of universality, such as ALGOL 60, or with

specific implementation goals as COBOL. The popularization of personal computers

in the early 1980s turned out to be a breakthrough in this respect. The use of data

transfer floppy disks provoked very large changes in this respect, also

as to the development of their protection. In 1983, F. Cohen created the first computer

virus transferred by means of floppy disks, only to show this possibility. Not everything

in programming has been or currently is associated with positive goals.

Any development, also in terms of programming, is exposed to the impact of adverse

or even harmful factors. This is particularly visible nowadays, when computers

and various types of digital devices have massively entered everyday life, not necessarily

directly, but also as parts of other devices. Also the creation and development

of the Internet network forces constant changes in the area of programming, and hence -

in the way of thinking and looking at the emerging problems in the digital world.

2.3 Programmers skills and the process of developing them

Defining skills requires distinguishing them from the concept of competence with

which they tend to be identified. The latter is defined as the ability to do something,

depending on knowledge, skills, abilities and the degree of belief in the need to make use

of this ability (Jurgielewicz-Wojtaszek, 2012). It is a broad piece of terminology,

encompassing the concept of skills. They can be defined as practical knowledge

and proficiency in something (Dictionary, 2018) or a coherent set of abilities to do

something (Routier, Mathieu, Secq, 2001). Skills are one of the components

of competence and affect the ability to complete an action based on the received task

(Figure 18).

37

Figure 18 - Competence definition in the behavioural approach

Source: (Adamczyk, 2014)

As R. Boyatzis (1982) wrote that a programmer working in the comfort of his home

will need different skills than a neurosurgeon who performing complicated surgery

together with other doctors. Although both should have the ability to diagnose

a problem, logical thinking or to seek additional information in problem solving, the first

should have the ability to experiment and communicate with the program user, while

the second must be able to make quick decisions and communicate well with his team.

This means that each of them will have in addition to common skills, also those specific

ones that they should develop. Figure 19 illustrates the links between a programmer

and the product of is work, the device and the user.

Figure 19 - Links between a programmer and program user

Source: own elaboration based on (Rogalski, Samurçay, 1990)

Defining the skills that a programmer needs, you can indicate the areas (competencies)

that these skills will apply to. In the literature on the subject, a number of classifications

of both competences and specific skills within each of them, was developed. Taking

the current state of knowledge as a basis, research is often conducted to verify which

of them are the most important in the programmer's work and which should

be developed. Table 1 presents a summary of the most popular competencies among

programmers and their groups of skills. For example, one of the last studies (Manawadu,

Johar, Perera, 2015) indicated that out of the seven areas of competence, programmers

TASK

ACTION

RESULT

KNOWLEDGE

SKILLS ATTITUDES

COMPETENCE

PROGRAM

USER COMPUTER

PROGRAMMER

38

will have to primarily develop: User Requirements, Software Development Process, and

System Analysis and Design.

Table 1. List of programmers' competencies and skills

Adamczyk, 2014 Turley, Bieman, 1994 Manawadu, Johar, Perera, 2015

Source code management
(Using proper naming and
comments, using ready-made
libraries and striving to achieve the
highest possible portability):
 Applying patterns
 The use of libraries
 The use of algorithms
 Using the IDE (Integrated
Development Environment)
 Use of portability
Knowledge management
(Both effectively acquiring
knowledge yourself and sharing
it with others):
 Applying code writing rules
 Learning from others
 Effective knowledge acquisition
 Sharing knowledge
Managing your own work
(Self-organization of work,
manifesting itself in meeting the
established deadlines):
 Organization of own work
 The use of versioning
 Using tests
Requirements management
(Customer orientation and creation
of all solutions guided by the
expectations of the end user):
 Customer orientation

Task Accomplishment:
 Leverages/Reuses Code
 Methodical Problem Solving,
 Skills/Techniques,
 Writes/Automates Tests with

Code,
 Experience,
 Obtains Necessary,
 Training/Learning,
 Uses Code Reading,
 Use of New Methods or Tools,
 Schedules and Estimates Well,
 Use of Prototypes,
 Knowledge,
 Communication/Uses

Structured Techniques for
Communication,

Personal Attributes:
 Driven by Desire to Contribute
 Pride in Quality and Productivity
 Sense of Fun
 Lack of Ego
 Perseverance
 Desire to Improve Things
 Pro-active/Initiator/Driver
 Breadth of View & Influence
 Desire to Do
 Thoroughness
 Sense of Mission
 Strength of Convictions
 Mixes Personal and Work Goals
 Pro-active Role with

Management
Situational Skills:
 Quality
 Focus on User or Customer

Needs
 Thinking
 Emphasizes Elegant and Simple

Solutions
 Innovation
 Attention to Detail
 Design Style
 Response to Schedule Pressure.

Interpersonal Skills:
 Seeks Help
 Helps Others
 Team Oriented:
 Willingness to Confront Others

Programming
The ability of writing computer
programs for multi platforms,
devices and channels with ability
to adapt with any programming
language.
Computer Science
Ability to integrate the principles
of computer science in order to
produce tangible, physical artefacts.
Systems Analysis & Design
Ability to examines complicated
industrial and business operations
in order to find ways of improving
or solving them systematically
Software Development Process
Ability to effectively use a software
development process or life cycle
which is a structure imposed on
the development of a software
product.
User Requirements
Ability to understand
the expectations of the users
of software and deliver them
as expected.
Software Tools Usage
Ability to use an array of software
tools or build your own tools
to bring productivity into tasks
done in software engineering.
Delivering Quality Code
Ability to deliver quality code
adhering to best practices
and principles with abstraction
in mind and ensuring defects
are not injected.

Source: own elaboration based on (Adamczyk, 2014; Turley, Bieman, 1994; Manawadu, Johar, Perera, 2015)

39

S. Goel (2010) indicates that currently employees working in the IT sector should have

skills in the following areas:

1) Problem solving,

2) Analysis/Methodological skills,

3) Basic engineering proficiency,

4) Development know-how,

5) Teamwork skills,

6) English language skills,

7) Presentation skills,

8) Practical engineering experience,

9) Leadership skills,

10) Communication.

It is worth paying attention to the knowledge of English, a non-technical skill, but a key

factor when working in the IT environment. This author of Curriculum Guidelines

for Degree Undergraduate Programs in Software Engineering (2004) points out that

a programmer should be able to:

1) show mastery of the software engineering knowledge and skills, and professional

issues necessary to begin practice as a software engineer,

2) work as an individual and as part of a team to develop and deliver quality

software artefacts,

3) reconcile conflicting project objectives, finding acceptable compromises within

limitations of cost, time, knowledge, existing systems, and organizations,

4) design appropriate solutions in one or more application domains using software

engineering approaches that integrate ethical, social, legal, and economic

concerns,

5) demonstrate an understanding of and apply current theories, models,

and techniques that provide a basis for problem identification and analysis,

software design, development, implementation, verification, and documentation,

6) demonstrate an understanding and appreciation for the importance

of negotiation, effective work habits, leadership, and good communication with

stakeholders in a typical software development environment,

7) learn new models, techniques, and technologies as they emerge and appreciate

the necessity of such continuing professional development.

The indicated areas of competence of programmers and specific skills that they should

possess relate to various aspects of the work of software developers. It is clear that

the work of a professional programmer is far from the stereotypical image of a man

leaning over the keyboard, working alone, who only communicates with the computer.

In this respect, the development of the skills of programmers is indispensable, all

the more that their work environment changes very quickly. At the moment, the skill

of writing codes (colloquially, translating commands related to the task into computer

language) is not enough, but strong communication skills are required to understand

40

the need and be able to transmit a specific command to a program responding to it.

Similarly, due to the turbulences of the environment, the multitude of tasks and needs,

the programmer should have good time management skills and be flexible in regards

to the tasks being performed. Emphasizing soft skills in the work of a programmer does

not equal the reduction in relevance of technical skills, but indicates an increasing need

for employees with good programming skills.

The already mentioned document: Curriculum Guidelines for Undergraduate Degree

Programs in Software Engineering (2004) and its later version (2014), as well as

Curriculum Guidelines for Graduate Degree Programs in Software Engineering (2010),

are interesting proposals of programs educating future programmers and are developed

by IEEE Computer Society (https://www.computer.org/) together with the Association

for Computing Machinery (https://www.acm.org/). These programs are based on

The Guide to the Software Engineering Body of Knowledge (SWEBOK Guide) and describe

the current state of knowledge in the 15 areas of competence related to software

engineering. They can be the basis for supplementing the already existing qualifications

by programmers or - due to their construction - should be taken into account

in the process of formal education of programmers.

2.4 Variables and constants

The programming can be seen as a way of “translating” the real world cases to a form

of a software code. For this process, however, there is a need to model and mimic what

is known from the surrounding environment. There is a need for the code to be able

to name specific things and perform various operations on these characteristics. Let us

assume for a moment, that we are dealing with the application that is expected to store

basic information about your friends including their first name, last name and birthday

date. Not focusing too much on details, we would need appropriate places in the code

that are able to store this information and be able to perform various operations on a set

of data. If we are considering the aforementioned three characteristics, it is safe

to assume that they will vary from person to person. In other words, they will have

a variable characters, and this is precisely what variables are used for.

In computer programming, a variable is a location capable of storing temporary data

within a program. This data can then be modified, stored, or displayed whenever needed

(https://www.computerhope.com/jargon/v/variable.htm).

Coming back to our example, variables can therefore be used to store first name, last

name and birthdate as explained above. As a result, if we were to enter a new person,

the software would need to ask us for this information, storing them internally

as variables. Perhaps you are wondering, why are we considering things such

as a birthday date as something that is variable? You should not be mistaken by the fact

41

that the birth date cannot change in real life. The “variability” here relates strictly to

the way the code handles the information.

Variables can be named differently, but it is a general rule that their names should start

with a letter, and not a digit (there are few exceptions but since it is beyond the scope

of this handbook, feel free to discover this subject on your own!). In addition to that,

each programming language might have different conventions regarding how

the variables can be named, which names are reserved (and therefore cannot be used),

if the variables are preceded by any special character (like $) and other useful

information in this respect.

For now, and also for future chapters of this handbook, we will use a so-called

pseudocode, which is the code that is not the actual programming language, but rather

mimics its semantics. Going back to our example with people and their birth dates,

we might conclude that our code (or rather pseudocode) that does the assignment

of the variables could be structured as follows:

firstname = “John”

lastname = “Doe”

birthday = “1998-02-20”

From the above example we can see, that an equal sign was used to perform the actual

assignment. Starting from the left, we have a variable name, then the equal sign and then

the value. Doing so will allow us to use firstname in other places of the code,

for example to show a message that <firstname> <lastname> has birthday at

<birthday>.

At this stage it is worth to mention, that variables can be named very differently, as there

are different conventions imposed by the programming language, but also different

approaches towards naming the variables. Other examples of firstname variable could

be $firstname, firstName, first_name, FirstName and so on. In any case,

it is important that the variable does inform what information it is holding.

The variables in the above example could have been named as a, b and c, but it would

be then difficult to figure it out in other part of the code.

The other important aspect regarding the variables is that in some of the programming

languages you are required to specify their type as well. The type can be understand

for example as text, number, date or Boolean. The Boolean variables can store only two

values: true or false. It is one of the most frequently used type of variables.

For example, we could have a variable named birthdaytoday, which would be true

if someone from our list have their birthday today, or false otherwise.

There is also a special variable that is called an array. It represents a collection

of various elements, and can be very simple such as fruits = [apple, pear, plum],

or more complex:

food = [

42

 fruits => [apple, pear, plum],

 vegetables => [asparagus, potato, tomato]

]

With the use of arrays we can store elements in hierarchical ways, and then use them

in our code by writing food[fruits][0] which has the value apple. This is because

we have referred to the first element from the fruits array contained in our food array.

You might have noticed that the index we have used is equal to 0. This is because

in programming we usually keep the numbering that is referred to as 0-based indexing.

At this stage it is enough for you to remember about arrays and their basic structure.

For more information, make sure to have a look at our “Further reading” section.

Now that we have touched briefly the variables, it is time for us to move to constants.

The constants can be seen as variables with one important exception. Although they

share similar concepts (naming conventions, types and so on), their purpose is to hold

the same value across the whole code execution. In other words, they do not change.

The constants are usually written in capital letters, so if we were to limit the maximum

number of birthday entries our code can store, we could have used a MAX_RECORDS =

100 constant for that. The use of constants simplifies the process of writing the code.

Taking the example of MAX_RECORDS, this constant will be used probably many times

across our code. If, at any time in the future, we decide to raise the limit of the records

to 200, we only need to change the value of that constant, and the required changes

will be immediately available in all other places of the code.

2.5 Objects

When we are talking about objects in the programming, we are referring to them in

the scope of a so-called object oriented programming. Put simply, a programming object

carries information about object from reality, and it can be virtually anything.

In the subchapter where we discussed variables, we were only talking about things such

as first name, last name and birthday date. These obviously describe a person. Can

it then be, that a person can become an object when we are talking about programming?

Well, definitely! A person can become an object that has its own properties. These

properties of an object are kind of variables that are associated with this specific object.

We can add more properties, such as for example height, weight, gender of a specific

person. Whichever characteristics of a person are needed in our software can

be implemented with the use of properties. This brings us to a question – why can’t we

simply use variables? What is the reason for creating objects?

Without a doubt, the object-oriented programming revolutionised the way we write the

code today. This concept dates back to the 1960s and Simula 67 programming language

created by Ole-Johan Dahl and Kristen Nygaard from the Norwegian Computing Center

in Oslo. These researchers needed a way to simulate multiple objects from real-life in

a way that these objects can be responsible for their own behaviour. While the expected

43

outcome could have been achieved simply by using variables, that proved to be highly

inefficient. This brings us back to the very core of object-oriented programming in which

objects can not only have their own properties, but, unlike variables, are able to take

specific actions.

Let us move back to our example, when a person is turned to an object

in a programming sense. What actions can you think of when you are considering

interacting with a person in real life situation? What about something as simple

as introducing your name to other people (other objects)? The simplest way

of explaining the concept is to add an action (also referred to as method) named

introduce that would enable the object to say Hello! My name is <firstname>.

Now you can probably see the connection between the property of an object (firstname)

and the method (introduce). Inside our code, if we had an object representing a

person, we are able to interact with it with the use of methods. More examples of

methods? Sure! How about whenIsYourBirthday that would say My birthday is at

<birthday>. Too easy? Well, now we can also add a new method

isYouBirthdayToday? This method would need to perform one additional operation.

It would sort of interact with the environment by first checking what date it is today.

Then it would need to compare this date with object’s own property birthday.

Depending on the resulting match, the object could say Today is my birthday!, It

is not by birthday today, or, to complicate things, My birthday will be in X

days from today, X being the calculated difference between today’s date and object’s

birthday property.

Object oriented programming does bring an extra layer of complexity to the code, but

as a reward it gives a great flexibility on how we can reflect the real world objects in our

code. There is also a number of other concepts connected with object oriented

programming that we will not cover in this handbook, but if you are interested, please

make sure to have a look at “Further reading” section which contains top picks of books

on this subject.

2.6 Operators

It is time for us to move to a bit more serious code. In this subchapter we will discuss

operators that are used to compare two elements. Is 4 greater than 5? Is 3 greater than

or equal to 1? What is the outcome if we multiply 5 by 4, and what if we divide 10 by 2?

Is the today’s date equal to my birthday date? All these questions (and an infinite

number of other examples) can be answered with the use of operators.

The operators can generally be divided into three groups that we will briefly describe.

We have arithmetic, relational and logical operators.

44

One more important clarification before we move forward relates to the operands.

The operators are in the middle between two elements, as such: a operator b. In this

case, a and b are so-called operands, and the operator is in the middle. For the purpose

of clarity, the two operands are referred to as the left operand (in this case: a) and

the right operand (in this case: b). What is this operator that sits between two operands?

Let us find out!

The first type, arithmetic operator, is a simple mathematical operation that we all know

from our early education, such as addition, subtraction, multiplication, division and

the remainder. These are the most popular arithmetic operators that are additionally

presented in table 2 below.

Table 2. List of the most popular arithmetic operators – part I

Operator Description
Left operand

(a)
Right operand

(b)
Outcome

+ Adds two operands 4 5 4 + 5 = 9

-
Subtracts right operand from the left
operand

4 5 4 – 5 = -1

* Multiplies both operands 4 5 4 * 5 = 20

/
Divides left operand by the right
operand

18 3 18 / 3 = 6

%
Calculates the remainder of dividing the
left operand by the right operand

20 3 20 % 3 = 2

Source: own elaboration

Where these arithmetic operators can be used? In plenty of cases! If I decide to read

10 pages of a book on object-oriented programming each day, how many pages

am I going to read in one month? And what about in one year? What is the sum of all

expenses I made last week? All of these operators can be used together in one equation,

just like you would do on a paper. We will get back to this later, but first let us go

through the remaining operators.

The next group considers relational operators, and, as the name suggests, these are used

to compare two operands. By using relational operators you are able to tell what

is the relation between two operands. These can be treated as asking a question to get

a yes/no answer, which in programming is expressed as a Boolean value (just as

a reminder, they return either true or false). Is person a older than person b? Is

the number of people from our code whose name starts with letter C greater than those

whose name starts with letter D? Let us first look at the table 3 below which summarises

the most frequently used operators.

45

Table 3. List of the most popular relational operators – part II

Operator Description
Left operand

(a)
Right operand

(b)
Outcome

== Checks if both operands are equal 4 5
4 == 5

false

!= or <>
Checks if both operands differ from each
other

4 5
4 != 5

true

>
Checks if the left operand is greater than
the right operand

4 5
4 > 5

false

<
Checks if the left operand is smaller than
the right operand

4 5
4 < 5

true

>=
Checks if the left operand is greater than
or equal to the right operand

4 4
4 >= 4

true

<=
Checks if the left operand is smaller than
or equal to the right operand

3 4
3 <= 4

true

Source: own elaboration

The last type of operators are logical ones. In this category we can include three most

popular logical operators that are present in almost every programming code. We have

also promised to get back to more complex operations that the operators are capable of,

so there we go! First, let us have a look at the table 4.

Table 4. List of the most popular logical operators – part III

Operator Description
Left operand

(a)
Right operand

(b)
Outcome

&&
Checks if both operands
are true (logical AND)

true false true && false false

||
Checks if at least one of
the operands is true
(logical OR)

true false true || false true

!

Reverses the logical
value of the operand, so
true becomes false and
false becomes true
(logical NOT)

true false
!(true && false)

true

Source: own elaboration

Please pay special attention to the last example, in which we have used true && false

at the first place. That would, according to the first example, result in false. However,

with the use of a logical operator NOT, we changed false to true. Coming back to our

example, that could be useful in case we are looking for people who are older than

20 years old, but do not have their birthday today. Such people would be marked as true

Boolean value. How could we possibly write such code using the operators we know

so far? Let us try!

46

!(olderthan20 && birthdaytoday)

Of course we would need to include two Boolean variables here, named as olderthan20

and birthdaytoday. Now you can also see that we are using round brackets to group

operators. This allows us to precisely evaluate even more complex examples. How about

selecting people who are older than 20 AND their first name starts with A, OR are older

than 25 AND their first name starts with B?

(olderthan20 && startswithA) || (olderthan25 && startswithB)

Using round brackets gives us unlimited possibilities of playing with different Boolean

values to achieve the condition that is required. That would be more or less it when

it comes to very basic introduction to various operators. Please note, however, that

the results of using the operators is a different aspect. We do not calculate or evaluate

the statements just for the sake of doing it. Instead, we use them to tell our code what

should be done given specific circumstances. This is what is referred to as decision

statements, described in the next subchapter.

2.7 Decision statements

We make various decisions on a regular basis. When it is raining, we take our umbrella

with us before going out. In other words, based on different information that we have,

we might act differently. This is precisely what decision statements are used for in our

code. If the person A has their birthday today, we should wish them happy birthday,

right? In the previous sentence we have already used a conditional statement, which

in most programming languages is expressed by IF. This IF statement is evaluated

logically, so in our code we could write something such as:

if (personAHasBirthday)

 happybirthday()

What does it say? It can actually be read as-is, so if person A has birthday, “do”

happybirthday. Do not worry about the round brackets after happybirthday.

For now just note that it is a function that is called and is expected to do something.

We will get back to functions soon. The code also carries important information.

The conditional IF statement assumes, that the happybirthday will only be “executed”

if the condition that is evaluated is true. In other words, if person A does not have their

birthday today, the code will not wish happy birthday. That should be logical. Usually

only the next line of code after the if statement is executed. But wait, what if we really

wanted to give this person a small gift? That would mean that we need to not only wish

them happy birthday, but also give a small gift. This can be achieved using curly

brackets, like shown on the sample code below.

47

if (personAHasBirthday) {

 happybirthday()

 giveSmallGift()

}

Now you can clearly see, that the conditional if statement, and hence our code, is indeed

going to make these two actions. Not only the wishes will be passed on, but also a small

gift.

Should our code be that impolite to all those people, who are not lucky to celebrate their

birthday today? In its current shape, the code cares only about birthday people.

The others are left with nothing. This can be changed, with the use of ELSE instruction.

Let us have a look at our updated code.

if (personAHasBirthday) {

 happybirthday()

 giveSmallGift()

} else {

 howareyou()

}

Now it looks better! If the person that we (or rather our code) are considering does not

have their birthday, simply ask them how they are doing today. Hopefully that is polite

enough!

Although usually the ELSE keyword does not need the curly brackets right now (as it has

only one instruction to execute), it is usually a good practice to include it for clarity.

Let us now have a look at more complex case. We would like to make groups of people

we considered earlier based on their age. There will be four groups based on the age:

 Group A – people aged 21

 Group B – people aged 22

 Group C – people aged 23

 Group D – all the other people

So far we have learned about operators and now we are learning about conditional

statements. We have a list of people, and now we need to make the proper assignments

to groups based on their age. Please have a look at the below sample code for details.

48

if (age == 21) {

 assignToGroupA()

} else if (age == 22) {

 assignToGroupB()

} else if (age == 23) {

 assignToGroupC()

} else {

 assignToGroupD()

}

It would be a good idea to stop at this point for a while. What you see above is the set

of 4 conditional statements. When the code is being executed, it starts from the top

and evaluates the age of a person against the conditions expressed as relational and

logical operators. If the first condition is not met (in other words the person

is for example 23 years old), the code moves to the next statement. Please note, that

because we wanted to consider all these conditional statements as one big statement,

we used else if. This instruction, unlike simple else, allows us to give more statements

to be evaluated. The “single” else condition has been moved to the very end of the code

in order to match all the people who were not falling in the age ranges defined

in previous conditional statements.

We have to agree however, that even though there are only four statements, the code

does not look too clear. What if we had even more complex case to be solved? What if we

had 10, or 20 cases? Great, we have just introduced another very useful word: a case!

Cases can also be used to organise your code if these are connected with a so-called

switch instruction!

The switch-case construction is used specifically for this purpose when we have

to evaluate a number of conditions. The equivalent piece of code to the one we discussed

above could be written as presented below.

switch(age) {

 case 21:

 assignToGroupA()

 break

 case 22:

 assignToGroupB()

 break

 case 23:

 assignToGroupC()

 break

 default:

 assignToGroupD()

}

Now we are telling our code to perform the required assignments using a switch-case

construction. At the very top we are explaining that we are going to “switch” the code

based on the age. Then, below, there are cases. If the age matches given case, this case

code (here – the assignment to the group) is executed. You probably noticed the break

49

instruction. This instruction is telling our code to stop there and forget about other

cases. Why is that so? How would you understand the following piece of code?

case 21:

case 22:

case 23:

assignToGroupX()

break

With cases constructed in such a way, our code will assign to group X people, who

are aged 21, 22 or 23. This is because we have not provided any other instructions under

the first two cases, and we have not used the break instruction either. This might

be useful as well, depending on what we are trying to achieve. In our case, however,

we do need to use the break instruction to be able to assign people to the required

groups.

The conditional statements are relatively simple to understand, but only through hands-

on experience you will get more confidence even with the most complex code. It is time

for us to move further, starting with loops described in the next subchapter.

2.8 Loops

Loops in programming can greatly simplify the code. These instructions are used to run

the same block of code multiple times, depending on the needs. If you are inviting

all your friends to your place, you would need to individually greet all those who arrive.

Our code could do it very easily, by calling a function (please be patient, functions are

described in the next subchapter) shown below.

greetAPerson()

This is great, but can you imagine the code if you had 30 people to greet?

greetAPerson()

greetAPerson()

(27 more lines hidden)

greetAPerson()

If you think, that there must be a better way to do it, you are right! This is a perfect

example where we can use loops.

In programming languages there are different types of loops. They differ from each

other when it comes to the construction, but in principle they are designed to do

the same – repeat execution of the same block of code. Each such execution is referred to

as iteration. As a start, let us consider a simple FOR loop.

A FOR loop is used to execute a specific code as long as the condition that is evaluated

equals to Boolean true. Please consult the example shown below for details.

50

for (i = 0; i < 30; i++) {

greetAPerson()

}

As there are new elements, we will go through them one by one. In the first line you can

see that this loop is defined by three blocks separated by semicolons. The first one

is evaluated when the loop is about to be executed. In this case, the variable i will get

value equal to 0. This variable will be used to evaluate whether the loop should continue

or stop. According to the code, the loop will continue until i reaches 30. The evaluated

expression, i < 30 will be evaluated as true for i equal to 0, 1, …, 29, but when

i reaches 30 it will become false, as 30 < 30 statement is not true. In other words,

thirty is not less than thirty. How does the loop know about the value of i? It is the third

block which says i++. This is a post-increment expression which increases value of i by

1, and, coming back to arithmetic expressions, is equivalent to i = i + 1.

Important information regarding the for loop and also other loops is that in many cases

so-called steering variables are used, and it is a common practice to name them as short,

one letter variables like i, j and k.

The FOR loop is useful if we precisely know how many iterations do we need. In our

example we knew that we were expecting 30 people who should be greeted. The loops,

however, can also be combined with other instructions. What if we wanted to iterate

over the list of people, and stop at certain point that is not known before we actually run

the code? Let us assume, that we want to iterate again through the list of 30 people,

and stop if we find a specific person whose name is Jane.

for (i = 0; i < 30; i++) {

 if (firstName == “Jane”) {

 break;

 }

}

The break instruction is the same that we discusses while explaining the switch-case

statement. The code will stop at the first person whose first name is Jane. This will allow

us to stop iterating unnecessarily through other people, as we have already found Jane.

Another example might again consider Jane. We are still greeting all the people, but

when we are greeting Jane, we want to give her a small gift, as she has her birthday

today. A sample code might look as the one presented below.

for (i = 0; i < 30; i++) {

 greetAPerson()

 if (firstName == “Jane”) {

 giveSmallGift()

 }

}

This code greets anyone, but for Jane another action is expected – presenting her a small

gift.

51

Last example will illustrate the situation in which we know that Jane is unfortunately

not coming. In this case, we would like to be able to skip greeting her.

for (i = 0; i < 30; i++) {

 if (firstName == “Jane”) {

 continue

 }

 greetAPerson()

}

As you can see inside the piece of code that is executed at each iteration, we have

a conditional statement. If the person that we are considering right now is indeed Jane,

we tell our loop to continue. This is the way to tell the loop to forget the remaining code

and move on to another person. If the first name is not Jane, this conditional statement

will be evaluated as Boolean false, and as a result, greetAPerson will be executed,

and this is precisely what we wanted to achieve.

You might be wondering if FOR is the only loop you can include in your code. The answer

is no! It should be pointed out, however, that not all types of loops are present in each

programming language. Anyway, let us look at two more loops: WHILE and FOREACH.

The WHILE loop will execute the same block of code for as long as the condition that is

being checked evaluates to Boolean true. In other words, we are telling our code to act

in a following way: IF <condition> REPEAT <code> AND go back to beginning.

As the condition that is to be evaluated is of Boolean type, it means that we need to get

either true or false value that will tell us if the code block inside the WHILE loop needs

to be executed. For example something like that:

while (! allPeopleArrived) {

 keepGreetingPeople()

}

Assume that we have a allPeopleArrived variable that is set to false. New people

are coming to our place, but this variable will be false up to a moment where all guests

have arrived. So basically our simple loop is executing the keepGreetingPeople

function UNTIL all people have arrived – and that would be reflected

by allPeopleArrived changing its Boolean value from false to true. You must have

also noticed the exclamation mark before the variable name. As you remember, this

is a NOT logical operator which reverses (or flips) the value from true to false

and from false to true. When we are starting our loop and the allPeopleArrived

variable is false, we need to negate it in order to be true, as only this will make

the block of the code being executed. Finally, when allPeopleArrived changed its

value to true, along with the negation the whole expression will evaluate to false.

This will result in WHILE loop not being executed any longer – so precisely what was

needed.

52

There are also other ways of writing the WHILE loop, but it depends on the specific

programming language. Some of them follow the structure WHILE <condition> DO

<code>, so there is one extra “do” word that explicitly says how the code should behave.

From this point we can also mention very briefly the other construction, which, instead

of WHILE <condition> DO <code> inverses its behaviour, so it becomes DO <code>

WHILE <condition>. Our example could therefore be modified slightly as such:

do {

 keepGreetingPeople()

} while (! allPeopleArrived)

Principally, the behaviour is very similar to the one we discussed above. We would like

to greet our guests up to the time when all of them have arrived, as it is indicated by our

expression that is being evaluated to be either true or false. There is one important

exception. The do-while construction will be executed at least one time,

as the condition is evaluated only after the block of the code! This might be confusing.

Imagine, that all our guests have arrived. Now, accidentally, the same code is being

executed. Remember, that the allPeopleArrived variable has the value true, as all

our guests are there. Looking at the first while example, what is going to happen?

The expression will be evaluated to false (allPeopleArrived is true, but together

with the NOT logical operation we are going to get false). False value will therefore

prevent the while loop to execute the block of the code, so we are not going to greet

people for the second time.

The second example, however, will actually DO greet people, only to notice after the first

greeting that it was not necessary. So this is the main difference between two while

loops types.

The DO-WHILE construction might be useful in other cases. Let us assume that you know

that there is one person who has birthday today, and you would like to ask all your

guests, one by one, if this is their special day or not. We will talk to each person one

by one. The following code could illustrate this situation:

do {

 askTheQuestion()

} while (! personFound)

Before we even start talking to people, our variable personFound will be false. We ask

the first person if this is their birthday today. If not, we are not changing the value

of the personFound variable, but instead we are going to the next person. At some point

we will get the positive answer to our question, and we will change the value

of personFound from false to true. As a result, right after we have the answer

(and the person we were looking for), the while statement will be evaluated to false

(personFound with value of true together with NOT logical operator will give

us false), and that would stop the while loop from next iterations. It might also be, that

the first person we ask is the one we are looking for. In that case, the question will

53

be asked and immediately after the very first iteration we will be able to stop asking

other people the same question.

The last type of loop we would like to have a quick look at is the FOREACH loop. This loop

is meant to be executed against a collection of elements, and the code is expected

to do something for each element found. We are still with our guests, and we would like

to iterate through all of them just to see if the phone number we have in our address

book is still valid or needs to be updated. Let us assume that our guests will be present

in one allGuests variable. The sample code is presented below.

foreach (allGuests as aGuest) {

 verifyPhoneNumber()

}

What can be seen here is that we are indeed going through all our guests, but in each

iteration we are looking only at one specific guest that will be assigned to the aGuest

variable. It means that out of a bigger collection of all guests we can focus on one specific

person. For now we will simply assume that the verifyPhoneNumber function checks

if the phone we have is correct and update it if necessary. If someone does not have

a phone number, we can exclude such people with the use of continue statement as you

have already learned. Please consult the example presented below.

foreach (allGuests as aGuest) {

 if (aGuest hasPhoneNumber) {

 verifyPhoneNumber()

 } else {

 continue

 }

}

In the above example someone has a phone number, we are going to verify it,

and continue to the next person otherwise. If you think that the continue statement

is not quite needed here, you are right. It would be enough to wrap

the verifyPhoneNumber function in an if statement and the code would work

in the same way. In some cases though it is needed to continue immediately to the next

iteration of the foreach loop, and this is what the continue statement can be used for.

The beauty of the programming is that the same goal can be achieved in a number

of ways. If we go back for example to the sample code in which we asked people if they

have their birthday today using a do-while construction, we could approach

it in a similar way using different loops, such as foreach.

foreach (allGuests as aGuest) {

 if (aGuest hasTheirBirthday) {

 personFound = true

 break

 }

}

54

In this case we are iterating through all our guests, but once the person we are checking

in the current iteration has their birthday today, we will set personFound variable

to true and quit the whole foreach loop using break statement.

This is something that you should keep in mind. The programming gives you the ability

to solve the same problem using a number of methods. Some of them are better suited

for specific purposes, some of them can be executed faster, and obviously they have their

own advantages and disadvantages. Only through devoting your time to learning

the very nitty gritty of the programming and actually experimenting on your own you

are able to become fluent in the programming language of your choice.

2.9 Functions

In this subchapter we will focus on functions that were mentioned above a few times.

Functions are isolated parts of the code that are meant to be executed to perform

specific action. They may take some data as input parameters, process them and finally

return a result. In other words, we can have the input and the output to and from

the function. If it is not immediately clear, we can use an example.

One of the functions we have used in the previous subchapters was greetAPerson().

How could we possibly write such function?

function greetAPerson() {

 say Hello!

 say How are you doing?

 say Come on in!

}

Now we can easily say what is hidden in this function. Each time this function is invoked,

it will say these three phrases.

Functions are used mainly to organise the code, and to divide it into logical pieces that

can be invoked from different places of our code. Functions can also take input

parameters that are called arguments. What does it mean? It means that we can pass

a variable to the function and use it internally. How about greeting people by their first

name? Surely this is what would normally be done, but in its current shape, our function

is not aware of the person we are greeting – let us change that!

function greetAPerson(aPerson) {

 say Hello aPerson->firstName!

 say How are you doing?

 say Come on in!

}

In the above example, we are passing an argument as aPerson variable. Thanks to that,

inside our function we can refer to our guests by their first name. Please not that

we have used -> sign that is expected to get the first name of the person that our

55

function just got as the parameter. At this point we could mention that there

are different ways of accessing the first name, depending on the variable we are dealing

with. Usually, the -> sign will be used to access properties of an object. In other cases

it might be that we will use aPerson[‘firstname’], or aPerson::firstname – it all

depends on the programming language you are working on and also on the type

of variable.

Functions can also return values, which is of great help to the programmers. Let’s have

a look at our verifyPhoneNumber() function, with the following implementation:

function verifyPhoneNumber(aGuest) {

 if (aGuest->hasPhoneNumber) {

 currentNumber = aGuest->phoneNumber

 if (currentNumber != theNumberIHave) {

 updateEntry()

 return true

 }

 }

 return false

}

The new thing that you probably spotted is that there is a new word named return.

The return statement is used to return the value from the function to whatever piece

of code called this specific function. In this case we are only returning true or false

Boolean variables, and these are used to let our code know if we updated the entry

(true) or not (false). Please note, however, that in order to use the value that is being

returned, you would need to assign the called function to a variable. Having in mind

the above example, let us consider the next sample code.

wasUpdateNeeded = verifyPhoneNumber(aGuest)

In this case, we are getting the return variable back from the function. Once the function

is executed, the wasUpdateNeeded variable will tell us if we needed to update

our address book (the variable will have the Boolean value true), or our entry did not

need any amendments (the variable will have the Boolean value false).

To wrap up, functions can be used to save our time and increase the clarity of our code.

If you go through the presented examples once again, you would probably notice that all

of these instructions contained within verifyPhoneNumber() function could have been

implemented directly inside the code as we were going through allGuests in our

foreach loop. Then, however, the code would become too clumsy and not easy

to be read. In programming you should always focus on your code, as it has to be clear

not only to you, but also to other people. As this is very broad topic that unfortunately

goes beyond the scope of this handbook, please be invited to explore this area on your

own. A good starting point might be the “Further reading” section.

56

2.10 Bibliography

Adamczyk M., (2014), Rozwój kompetencji zawodowych programistów w gospodarce

opartej na wiedzy, [‘Development of professional competence of programmers in

a knowledge-based economy’], „Zeszyty Studenckiego Towarzystwa Naukowego”

Akademia Górniczo-Hutnicza, w Krakowie, ISSN: 1732-0925

Boyatzis R.E., (1982), The Competent Manager: A Model for Effective Performance, New

Jersey: John Wiley & Sons, Hoboken,.

BiMatrix, (2018), Tłumacz tekstu i kodu binarnego,

[http://dbm.org.pl/strony/kod_binarny.php]

Goel S., (2010), Design of interventions for instructional reform in software development

education for competency enhancement, Jaypee Institute of Information Technology,

Heath F. G., (1972), Origins of the Binary Code, “Scientific American”, Vol. 227, No. 2.

IEEE & ACM, (2004), Curriculum Guidelines for Undergraduate Degree Programs in

Software Engineering.

IEEE & ACM (2014), Curriculum Guidelines for Undergraduate Degree Programs in

Software Engineering.

Jurgielewicz-Wojtaszek M., (2012), Ocena poziomu kompetencji trenerów zarządzania

w zakresie nauczania osób dorosłych, [‘Assessment of the level of competences of

management trainers in the field of adult education’] [in:] Kuźniak A. (ed.), Vedemecum

Trenera II. Tożsamość Zawodu Trenera Zarządzania, Kraków: Księgarnia Akademicka.

Encyklopedia szkolna – Matematyka. [‘School Encyclopedia - Mathematics‘] (1988),

Waliszewski W. (ed.), Warszawa: Wydawnictwa Szkolne i Pedagogiczne, ISBN 83-02-

02551-8.

Manawadu C.D. Johar M.G.M., Perera S.S.N, (2015), Essential Technical Competencies for

Software Engineers: Perspectives from Sri Lankan Undergraduates, “International Journal

of Computer Applications” Vol. 113, No. 17.

Rogalski J., Samurçay R., (1990), Acquisition of Programming Knowledge and Skills, [in:]

Hoc J.M., Green T.R.G., Samurçay R., Gilmore D.J. (ed.), Psychology of Programming, New

York: Academic Press Ltd., doi:10.1016/B978-0-12-350772-3.50015-X

Routier J.C., Mathieu P., Secq Y., (2001), Dynamic Skills Learning: a Support to Agent

Evolution, [w:] Proceedings of the first international joint conference on Autonomous

agents and multiagent systems: part 1, New York: ACM (Association for Computing

Machinery).

Słownik Języka Polskiego [‘The Polish language dictionary’]. (2018), Warszawa:

Wydawnictwa Naukowe PWN, (on-line: https://sjp.pwn.pl/)

Soukup B, (2015), Nauka programowania zamiast przedmiotu informatyka w szkołach

Podstawowych [‘Learning of programming instead of IT subject in primary schools’], [in:]

57

J. Morbitzer, D. Morańska, E. Musiał (ed.) Człowiek –- Media – Edukacja, Dąbrowa

Górnicza: Wyższa Szkoła Biznesu w Dąbrowie Górniczej, ISBN 978-83-64927-39-3.

The history of computer programming, graphic material

[https://visual.ly/community/infographic/technology/history-computer-

programming]

Wałaszek J., (2018), Binarne Kodowanie Liczb [‘Coding of Binary Numbers’], [Online

source: http://eduinf.waw.pl/inf/alg/006_bin/0009.php] (available on: 8th February

2018) GNU Free Documentation License

58

3 Didactics with the use of algorithmic and programming
(Wojciech Kolarz)

3.1 Basic assumptions of algorithmic and programming in school teaching

Modern school should, among other things, prepare a young person for life in a changing

technological world, at the same time in a world based on the unchanging laws of nature.

The ability to function in society is also important. In connection with the above, it will

be necessary to be able to communicate, cooperate in a team, as well as the ability

to describe phenomena, the ability to solve problems, including through the creation and

use of models.

Today it is not a problem to get to the information. The ubiquitous technology gives you

the opportunity to search information quickly and effectively. The problem is its creative

use, the ability to build knowledge, and thus the ability to use it in solving problems,

including atypical ones, deviating from standards.

An extremely important task of the school is to develop students' learning skills, creative

thinking skills, overcoming the barrier of "intellectual laziness".

New technologies enable the use of new means of describing reality, and IT provides

tools for computer modelling of reality and for solving problems. Knowledge

of algorithms, basics of programming, programming language has become almost

as important as knowledge of a foreign language.

In the current teaching model, two main trends clash: behaviourism and constructivism.

The creator of behaviourism was John B. Watson. This trend has dominated

the pedagogical sciences. Many behaviourist views deviate far from the requirements

of today's school, today's education. However, this trend cannot be completely ignored

because some of its assumptions are still effective, of course often in a modified form,

adequate to today's reality. Above all, the question is raised by the fact that

behaviourism treats the student as a blank sheet of paper, on which the teacher writes

down, in order that he has planned, content. Through appropriate selection

of the consequences of behaviour, i.e. rewards and punishments, strengthens

or weakens the student's behaviour. As a result, this approach leads to programmed

teaching (based on an unchanging, rigid curriculum) and directive (frequent use of the

method of giving, criticizing student's failures, appealing to authorities, giving guidance).

59

The basic assumption of constructivism is to treat the student as an active person who

is the creator of his own knowledge. Knowledge cannot be passed on to the student

(information can be provided), the student must build his / her own knowledge.

The student's activity in the process of building one's own knowledge is important.

Constructivism indicates that a student is not an empty vessel, which is filled

by a teacher, but a person actively constructing his knowledge.

Constructionism is one of the trends of constructivism (it is a learning strategy as well as

an educational strategy). Constructionism assumes that in the learning process, students

actively engage in creating their own objects, events, ideas, ideas, which within

the content they teach can be shared with others for the purpose of joint analysis

and reflection. For constructionism, the social aspect is not insignificant - learning

through team cooperation, discussion, exchange of views. As constructionism envisages

the construction of material, external (existing outside of reason) representation

of abstraction, it is particularly important that the external form of knowledge

representation, proof of understanding issues and phenomena, is a computer program,

and in principle an algorithm. In addition, by including the above in the reverse cause-

and-effect hierarchy, the very process of creating an algorithm (computer program)

requires deepening and understanding the problem (phenomenon). The process

of creating an algorithm (program) is a process in which a person who creates

an algorithm also creates his / her knowledge of the analysed problem (phenomenon),

so we can talk about learning by creating algorithms, learning through programming.

Eight great ideas of constructionism according to Seymour Papert, South African

mathematician and computer scientist, among others author of the LOGO programming

language:

"The first great idea is learning through creation. We learn better when learning is part

of doing something that really interests us. We learn the most effectively when we can

use what we have learned to satisfy our needs or desires.

The second big idea is technology as a material. With technology you can create much

more interesting things and create them you can learn a lot more. This particularly

applies to digital technology.

The third idea is the idea of a lot of fun. We learn and work best when we enjoy it.

But "we are happy", it does not mean "it is easy". The hardest fun gives you the most

satisfaction. Our sport heroes work very hard to be the best in their discipline. The best

carpenter finds joy in carpentry. The most effective businessman enjoys the difficult

whipping of business.

The fourth big idea is the idea of learning how to learn. Many students believe that the

only way to learn is that someone has to teach you. This is the reason for failures

at school and in life. No one can teach you everything you need to know. You must take

responsibility for your learning yourself.

60

The fifth great idea - give yourself time to do the job. Many students get the habit out

of school that someone speaks every five minutes or every hour: do it, do that and now.

If someone does not dictate to them what to do, they start to get bored. In life,

it is completely different to create something really important; you have to learn how

to manage your own time. This is the most difficult lesson for many students.

The sixth idea is the most important of all: there is no success without failures. Nothing

really important works right away. The only way to success is to carefully analyse what

and why it does not work properly. To succeed, you must free yourself from the fear

of mistakes.

The seventh great idea - practice it yourself, what you recommend to students. We've

been learning all our lives. Although we have extensive experience of working

on projects, everyone is different and usually realizing the next one we cannot predict

with all details in advance how it will work. We enjoy what we do, but we know that

hard work awaits us. Every difficulty is an opportunity to learn. The best lesson we

can give to our students is to teach them how we learn.

The eighth great idea: we are entering a digital world in which knowledge of digital

technology is as important as reading and writing. So learning about computers

is crucial for the future of our students. But the most important goal is to use them NOW

to learn other things." (Walat, 2007b)

The use of algorithms in teaching undoubtedly fits in with the constructionist

educational strategy. The algorithm itself is inextricably linked with technology, as well

as stimulates creative thinking and the need to search for optimal solutions.

3.2 Computational thinking concept in teaching of algorithmic thinking

Algorithms and programming in teaching are also the implementation of the concept

of teaching algorithmic thinking, computational thinking.

In 2006, Jeannette Wing, Avanessians Director of Data Sciences Institute at Columbia

University and Professor of Computer Science, began to promote his idea

of computational thinking (Sysło, 2012):

"Computer-related thinking, accompanying the processes of solving problems using

computers, can be characterized by the following features:

 the problem is formulated in a form that allows and enables using IT methods

and a computer or other devices for automated information processing;

 the problem lies in the logical organization of data and drawing conclusions from

them;

 abstract the data representation, for example in the form of a model

or simulation;

61

 the solution to the problem is in the form of a sequence of steps, so it can

be obtained as a result of an algorithmic approach;

 design, analysis and computer implementation (implementation) of the solution

to the problem lead to obtaining the most effective solution and the best use

of the computer's capabilities and resources;

 the experience gained in solving one problem can be used to solve other

problems, related as well as other areas."

Computational thinking, as understood by the Center for Citizenship Education, consists

of the following “skills” and “attitudes and habits” (Computational thinking):

Skills

1. Formulating problems. Identifying, naming problems, asking the right questions;

2. Data collection. Determining the reliability of data and the reliability

of information sources;

3. Unloading into parts. Organizing data, dividing tasks into smaller ones;

4. Pattern recognition. Classification (creation of sets), recognition of similarities,

finding significant and irrelevant differences, generalization;

5. Abstraction and creation of models. Removing unnecessary information,

simplifying, creating models;

6. Creating algorithms. Setting the next steps and creating rules, sequence,

recursion (repeatability of procedures and activities);

7. Detecting and diagnosing errors. Searching, finding and analysing errors;

8. Comprehensible and effective communication. Formulating understandable

messages, adapted to the recipient (computer or other people), coding, depicting

(symbols and signs).

Evaluation

Recognition of evaluation criteria, determination of priorities, evaluation of prototypes

and solutions.

Logical thinking

Drawing conclusions, recognizing logic errors, submitting.

Attitudes and habits

1. Search. Experimenting, free and open search for solutions, playing with solutions;

2. Creativity and ingenuity. Developing and using imagination, coming up with new

solutions;

3. Improving. A critical approach to the effects of your work and focusing on their

continuous improvement and improvement;

4. Perseverance and patience. Enduring the pursuit of the goal, mastering

in anticipation of the effects, awareness of the need to make an effort;

62

5. Cooperation. Work in a group and in pairs;

6. A healthy distance to technology. Reflecting on the limitations of technology

and the critical attitude towards it.

The failures and problems of today's school cause many factors, both resulting from

the negative luggage behaviourism that the teacher is burdened with, as well as being

the result of changes in the way of thinking of new generations, often caused

by the negative impact of technology. The negative impact of technology usually has its

source in the teaching and upbringing process itself.

One of the typical problems we encounter in teaching, especially mathematics and other

exact science is the student's excessive expectations for the teacher to indicate specific

provisions to solve the problem - waiting for a step-by-step guide. Today's students,

people belonging to the Z generation, expect immediate information that indicates how

to solve the problem, expect quick results, are not prone to mental effort,

have a problem with referring to the reality surrounding objective tasks. On the other

hand, the teacher, who in most of his work uses a behavioural learning model, boils

down to providing information and practicing the discussed content on typical tasks.

What often results in the fact that in the case of difficulties in understanding

the material, the teacher too quickly takes steps to indicate to the student further steps,

ways to solve the problem, "telling" students what to do, how they should act.

In addition, teachers prefer to exercise and master small, isolated skills and facts, use

tasks in which one or two simple skills should be applied. The nature of the Z generation

and the traditional teaching model strengthen the student's habits to such a state

of affairs hat when he finds himself in a difficult situation - then the teacher will show

the way to the solution. Students are more and more often showing reluctance to mental

effort, reluctance to seek solutions, analyse, make attempts to explore the topic and

are increasingly inclined to often search for ready-made solutions. This is because,

as already mentioned, the exercise of their skills consisted in solving very typical,

uniform problems (tasks), so when they do not find adequate, ready-made patterns,

they come to the conclusion that tasks cannot be solved.

If, on the other hand, the students are forced to follow the necessity of approaching

the solution themselves, they often fall into the extreme of mindless application

of any previously known models or models.

The technology gives the possibility of trial and error. Although this method is one

of the basic methods of creative thinking, it should be remembered that in the healthy

application of this method - after selecting the solution variant there is an in-depth

analysis, validation of the method, and reaching constructive conclusions. Today,

the student expects and through the new technology he is accustomed to an immediate

response to its operation (trial). Computer educational games give the answer

immediately, the use of the trial and error method is painless for the student, simple,

because he is able to check hundreds of variants of solutions in a relatively short time.

63

Students' activities are deprived of basic and important elements in the process

of building knowledge such as: hypothesis, checking the hypothesis, drawing

conclusions (including gaining experience) and setting a new hypothesis that takes into

account previous conclusions. This is because new technologies provide the possibility

of instant confirmation or denial of a given hypothesis, the student ceases to consider

the premises of correctness of the hypothesis, does not analyse failures, mindlessly tests

another idea to solve the problem.

3.3 Application of computational thinking in educational practice

In schools, however, it does not really learn to use new technologies to solve problems -

new technologies are usually used for quick information retrieval, supporting

the didactic process - as a modern medium of information transfer as a tool supporting

typical office work. In most cases, the use of new technologies boils down to passively

using their functionality.

Thus, in today's education, the ways of teachers' actions resulting from the traditional

behavioural approach to the expectations and capabilities of the Z generation clash.

Not without reason, the generation of the young is said to be "digital natives", while

in the teachers we meet people who are so-called. "Digital immigrants". And even

if the teacher is a young person, he was often taught the methods of "digital immigrants".

The opinion of Andrzej Walat (2007b) also seems important. “A lot of students, not only

in Poland, are convinced that if they cannot recall the algorithm - a formula for solving

a task, they will not come up with it themselves, and further dealing with the problem

is just a waste of time. Many also think that school tasks usually "do not make sense",

so they do not even try to use reason - You need to use learned methods, thinking can

only harm. It is difficult not to ask the question: Why is this so? and How to change it?

Undoubtedly, the formation and consolidation of beliefs, in particular the belief that:

 you can come up with an algorithmic solution to the problem yourself,

 many tasks have many different correct solutions and usually there are many

fundamentally different approaches to the problem,

 it is worth first looking for a solution to the problem in your own head, and only

then in the book,

 do not give up after the first failures, usually finding a solution to an interesting

task requires many attempts.”

With the teacher's appropriate strategy, learning by creating algorithms (through

algorithmic thinking) can overcome the above drawbacks, because even the adoption

of the trial and error method can be targeted so that already at the stage of making

the hypothesis enter the analysis of the problem based on already acquired knowledge.

In addition, just checking the hypothesis (analysis of the finished algorithm, checking its

64

logical and substantive correctness) entails the necessity of re-reading information

and knowledge about the subject of the problem. Another analysis of the topic, occurring

in the process of testing (testing) the solution is extremely important, because

it is an element that strengthens the already acquired knowledge, as well as contributes

to the acquisition of further elements of experience related to the topic of the problem.

It is also a moment when you can, and sometimes even need to, expand the information

acquired so far, because testing the solution may indicate lack of knowledge or incorrect,

incomplete understanding of the subject. Table 5 presents the linkage between

activities, computational thinking and elements of constructionist ideas.

Table 5. Linkage between activities, computational thinking and elements of constructionist ideas

Teacher / student activities
Elements of computational

thinking
Elements of great

constructionist ideas
Introduction
1. Clearly presented problem

(task) to be solved, paying
special attention to:

a) input data - that is, a clear
description of the initial
situation, the initial data set,

b) output data - defining the
expected final situation,
final data set, determining
what should be the solution.

It is also necessary to define the
limits and remind the elements
of basic knowledge related to the
topic.

1. Formulating the problem.
2. Determination of input data -

initial state.
3. Determination of output data

- final state, effect.
4. Possible identification of

information sources.

The implementation of the
problem solution requires the
creation of an algorithm and
program.
The problem formulated in a way
that meets the student's needs -
play, competition, the content
of the problem is in the interests
of students, is a challenge for
them.
To solve the problem it is
necessary to use technology so
that thinking is no longer a
chore, it has become easier and
more effective.
We use technology to learn -
learning by creating an algorithm
(program).

Main phase
1. Directing students' actions

aimed at solving the task -
building an algorithm,
sequence of actions solving
the problem (task)1.

2. Finding/investigating a
solution.

3. Creating the solution.

1. Breakdown of the problem
into smaller parts, easy and
possible to solve. Search for
similarities to existing
patterns. If the task
(problem) is solved by the
project method or in student
groups, it is also possible to
suggest the division of duties
(scope of work) into

1. Introducing the idea of hard
fun3.

2. Giving the students of a time4.

1 It should be emphasized here that the teacher's work should focus only on directing students' actions
in situations where their thinking is far from expected. It should be remembered not to build artificial
limitations of the students 'thought process, the teacher should interfere when students' actions - their
thinking begins to be inappropriate due to non-use, deviating from the knowledge gained so far. However,
it is not always necessary for the teacher to intervene when the reasoning of students is incorrect due
to lack of knowledge (the process of solution creation still applies to learners, eg. lack of information),
in such cases the information may be supplemented when the pupils themselves will find that their
strategy for solving the problem has been stuck because of too little knowledge, possibly a return
to the initial state and re-creative work on solving the problem - in cases when the necessary teacher
interference would concern information (knowledge) far beyond the scope provided for a given
educational stage. You cannot put a hard border here, a teacher who knows his students, their abilities
and capabilities decide how to divide the problem into smaller parts, easy and possible to solve. Search for
similarities to existing patterns.

65

individual persons.
2. Creative investigation into a

solution2.
3. Creating models and

simulations, simplifying.
Closing phase
1. Presentation of solutions,

discussion on their
correctness.

2. Testing, checking on different
data sets, in different
situations.

3. Doing possible correction
(improvement) of the
algorithm (program).

Searching for the optimal
solution, testing, searching,
finding and analysing errors.

There is no success without
failures. Independent search,
creativity and creativity in
solving tasks having many
different variants of solutions,
error helps to better understand
the core of the phenomenon,
problem, tasks.

Source: own elaboration

The method of interpretation and action presented above gives the opportunity

to formulate problems, tasks whose solving requires the use of many different skills,

different ideas. It supports the construction of reasoning and building meanings

and connections.

The use of algorithms and programming (computational thinking) can be an important

and fascinating addition to subject activities. The approach consisting of decomposing

the problem (creating algorithms, procedures for sub-problems) is conducive to finding

solutions based on the knowledge that we have so far. It allows recognizing patterns,

finding similarities and differences, developing the ability to predict a solution.

On the other hand, the generalizations we use when creating algorithms (programs)

allow to learn and assimilate general principles, assertions.

Algorithmic thinking, understood not as the ability to perform an algorithm, but

as an ability to analyse a problem, to analyse a task in order to develop a solution

described as a set of steps favours an in-depth understanding of the problem. Creating

an algorithm is a way of learning, it helps to know and understand many areas from

various fields of mathematics and other science.

The knowledge acquired "by the way" of creating an algorithmic solution (program

writing) is usually deeper and more durable. Learning to get involved in other goals -

like creating a program - is more effective.

3 If the problem is formulated with regard to satisfying the student's needs, it will not be a boring problem.
Usually, pupils do not manage at school, because something is too difficult, students cannot cope at school,
because the way the content is transferred is boring. If we are in a state of determination, fascinating with
the problem, with interest in the problem, because it is in the area of satisfying our needs, then working on
its solution does not cause us any problems. We are ready to give more. Effort during exciting, addictive
fun is not good, it's fun. The road to the destination begins to be more exciting than the effect of achieving
it.
4 Let them come to solutions at their own pace. Success in solving a task requires time, often many trials,
exploring the problem, sought after, drilling from various directions.
2 It is the most important moment, primarily because during the process of creating a solution (algorithm),
students effectively acquire knowledge (combine information with context and experience).

66

In addition, Kazimierz Mikulski (2017) wrote: “Today's language of creativity

is programming that gives children and young people the opportunity to creatively

approach IT goods and develop positive traits of activities, helping them in their future

careers. Programming teaches young people logical thinking, problem solving and above

all, working in a group.”

Tomasz Kopczyński (2016) wrote also: "The role of the modern teacher is to prepare

students to acquire key competences and master them to the extent that they can cope

in the real social world in the future. This programming helps to learn and understand

many interesting and important areas from various fields of knowledge that the student

could learn in the process of learning at school.

The use of new technologies at school is not an end in itself. Digitization aims to support

the process of learning and teaching, in which the student is not only a participant,

but also a creator and an important link. It enables individualisation of the education

process and preparation for independent use of educational resources, and above all

in a longer perspective to prepare for adult life, in which also students will have

to constantly develop, acquire new competences and skills, continually education

to perform professionally chosen occupation or even get a new one. Therefore, what we

really want to teach children is not the programming itself, but the skills that it requires,

among others logical thinking, solving tasks. There is no the need to educate all future IT

specialists or programmers, but to develop the habits of thought that facilitate

functioning in the modern world."

Several areas of algorithmic and programming can be distinguished:

 as one of the elements from the assumption supporting the acquisition of new

knowledge, in cases when new knowledge and skills are a priori algorithmic,

 as an activity supporting the introduction of new content, new concepts, where

computational thinking and algorithmic is one of the tools,

 as an activity during which students "by the way" practice the application

of acquired knowledge in various problems, including atypical ones, and acquire

new ones or broaden the already acquired knowledge and skills.

It is also worth paying attention to a slightly different division of the application

of programming:

 a tool for solving computational tasks

 tool for solving control tasks (simulations, creating a model of reality)

The practical introduction of computational thinking, algorithms and programming

often raises many fears and doubts, mainly because teachers of non-IT subjects are not

always able to see such a possibility in the currently processed material. Often you have

to get through many problems yourself in order to learn to recognize areas of your own

subject in which algorithmic and programming can be used.

67

It should also be borne in mind that there should be close cooperation between

a teacher of non-IT subject and an IT teacher, because many problems will also contain

purely IT sub-problems. On the other hand, the IT teacher should also be aware that

the use of algorithms and programming on other objects shows students that the digital

world is not detached from other disciplines, that IT really surrounds us everywhere.

The first algorithmic problems with which students will meet on non-IT subjects

will be difficult for them at the beginning. Realization of constructionism assumptions

will not occur automatically, in the first phase the teacher should choose very easy

problems, target the students more, make them gain some experience, learn some

patterns of "approach to the subject".

3.4 Practical exercises of using of algorithmic and programming

In a few examples, let's look at how you can use algorithmic and programming

in teaching of non-IT subjects.

EXAMPLE 1.5

Write a program that meets the following assumption:

There is a point in the center of the screen. In the right upper part of the screen,

the program randomly draws a geometrical figure (triangle, quadrilateral). The player's

task is to draw a figure in the lower left part of the screen so that after turning

180 degrees it will cover as accurately as possible with the figure drawn by

the computer.

After decomposing the problem, we get a set of sub-problems related to the graphic part.

These sub-problems will not be more difficult (eg. in Scratch they are quite simple

to solve).

From the point of view of non-formal learning, we will be interested in the mathematical

sub-problem - finding the coordinates of the vertices of the figure after rotation

on a semi-solid angle. This problem can be used by the mathematician to introduce

the concept of axial symmetry and central symmetry (turning over a semi-double angle

is the middle symmetry).

5 All examples were prepared on the base on: Kolarz & Tluczykont, 2018.

68

The mathematical sub-problem can be further decomposed until the set of activities

is understandable and easily possible for the student to perform. We assume that

the student does not yet know the concepts of symmetry.

So let's consider the following problem - how to create an image that mirrors

the original image. In addition, the issue will be simplified by "enlarging" the plane,

so that it can operate on individual pixels, analyzing the arrangement of four pixels.

It is also an important moment of our activity with the students because

our considerations will be carried out by modeling the reality in a simplified way.

Imagine that on the plane we have four elements and visible edges of mirrors aligned

at right angles.

The plane consists of individual pixels, whose position can be determined by means

of coordinates (traditionally, the horizontal axis ox, vertical oy). The thickness

of the mirror coincides with dimension of the pixel. In the picture, thick black lines

are the edges of mirrors. The red figure on which we will be experimenting consists

of four pixels.

In the first place, let's deal with the mirror image relative to the horizontal line.

9

8

7

6

5

4

3

2

1

 1 2 3 4 5 6 7 8 9

69

Students will easily arrange the image that will be created after mirroring the red figure.

9

8

7

6

5

4

3

2

1

 1 2 3 4 5 6 7 8 9

Let us now try to find regularities and to save in an algorithmic way the transformation

of the red figure into its mirror image (blue figure). We will use a table for analysis

(the first two lines contain the coordinates of the pixels that make up the red figure:

X Y X Y X Y
2 2
3 2
3 3
3 4

After arranging the mirror image of the red figure, the students supplement

the coordinates of the blue elements in the table. Then they try to analyze and find

regularities, in order to algorithmically save the way of transformation (mirror

reflection).

X Y X Y X Y
2 2 2 8
3 2 3 8
3 3 3 7
3 4 3 6

1) Select the item.

2) Leave the ox coordinates of the selected element unchanged.

3) Calculate the oy coordinate as follows:

y blue = (y edge – y red) + y edge = 2 × y edge - y red

4) If there is any irrelevant element go to point 1)

Let's try to experiment with the "mirror", the edge of which runs vertically, we

will be particularly interested in the image of the image created in the previous

reflection.

We already have a ready algorithm, just swap the x places with y.

70

Select the item.

Leave the oy coordinate of the selected element unchanged.

Calculate the ox coordinate as follows:

x green = (x edge - x blue) + x edge = 2 × x edge - x blue

If there is any irrelevant element go to point 1)

Now the students should realize the above algorithm first by completing the coordinates

in the table, and then, according to the "green" coordinates, arrange the elements

on the plane.

X Y X Y X Y
2 2 2 8 8 8
3 2 3 8 7 8
3 3 3 7 7 7
3 4 3 6 7 6

9

8

7

6

5

4

3

2

1

 1 2 3 4 5 6 7 8 9

Time for analysis and tested solutions.

What is, for the selected red element, the value derived from the calculation

of the expression (y edge - y red), of course the distance of this element from

the edge of the mirror expressed in pixels. Thus, increasing the resolution

of the dependencies used will also be true. Is increasing the resolution to infinity, and

so really switching to the Cartesian system, in which, you can say, the size of the pixel

is infinitesimal (real numbers) also will be possible?

Mirror reflection is, after all, an axial symmetry whose properties were discovered

by the students. And the assembly of two axial symmetries with axes perpendicular

to each other is nothing more than a central symmetry - a rotation by a semi-solid angle.

The idea behind this exercise is that the pupils themselves experience certain

regularities and dependencies, and only then find out that their "discoveries" are already

defined.

71

EXAMPLE 2.

The equation is the following:

a = b/c

you must calculate c.

It is possible for students to present a method, often called a magic triangle, by writing

the arguments of the equation as follows:

Covering the searched one, we get a transformed pattern. The student will learn this

method very easily, even without the teacher's help he will find it on the Internet.

The method can be written in the form of an algorithm. But what will be the effect?

The student will get the information (recipe) to transform the pattern, but it has nothing

to do with gaining knowledge. Information on how to do it (recipe) will be used only for

designs in such and no other form. The student will transform the pattern without

thinking. We can handle unusual situations (more complicated pattern).

Let's analyze the transformation of the pattern in the form:

a = bc + d

Before attempting to solve the problem, students should be reminded of the rules:

1) you can add (subtract) any expression to both sides of the equation,

2) both sides of the equation can be multiplied (divided) by any expression (in

the case of division, of course, dividing by zero should be excluded).

Step A.1.: Let's decompose the problem, the equation will be easier:

a = x + d

Our input data is the above form of the pattern. The output is a pattern in the form x=?

Step A.2.: What can you do using rules 1) or 2) to make x appear on the left and

"disappear" on the right? It is necessary to x deduct both sides of the equation:

a – x = x + d - x

which will give us:

a – x = d

c

a b

72

Step A.3.: On the left side of the equation is unnecessary a. What can you do to get rid

of the equation on the left? You must use the method from Step A.1. (this is an example

for looking for patterns, similarities) and subtracting from both sides the equation:

a – x – a = d - a

which will give us:

(– x) = d - a

Step A.4.: How to eliminate minus from x?

You need to multiply (-x) by (-1), remembering that multiply by (-1) you need both

sides of the equation:

(-x) × (- 1) = (d - a) × (- 1)

which will give us:

x = (-d) + a [i.e.: x = d – a]

Step A.5.: Let us analyze the course of action (Steps 2 to 4) for the optimization

of activities. Let's put together the original form of patterns (Step A.1.) With the figure

obtained in Step A.2.:

a = x + d

a - x = d

Step A.6.: Conclusion - by moving the expression from one side to the other, we change

the sign to the opposite one.

We create an algorithm after optimizing activities.

Step B.1.: Input data - equation in the form:

a = x + d

The output in the form:

x = ?

Step B.2.: Move x to the left, changing the sign to the opposite:

a - x = d

Step B.3.: Move a to the right side by changing the sign to the opposite:

(-x) = d - a

Step B.4.: Multiply both sides of the equation by (-1):

(-x) × (- 1) = (d - a) × (- 1)

which will give us:

x = a – d

73

Steps from B.1. to B.4. (algorithm) we can call: TRANSFORM(𝑥,𝑎,𝑑). In this step, we have

defined a procedure that you can use from now on.

Let's get back to the right problem. By creating an algorithm for transforming a formula:

a = b/c + d

we are doing the same in the case of the above-mentioned sub-problem, discussing each

step with the students, each case reaching the final form of the algorithm:

search

Search
for d Replace b/c by y

CONVERT
(d, c, y)

(d c y)c y)

Replace y by b/c

Search
for c?

?

Multiply both sides
by c

divide both sides
by a

Replace b/c
by y

CONVERT
(y, a, d)

Replace y
by b/c

Multiply both
sides by c

Transformed
equation

END

START

74

Figure 20 – An algorithm for example 2

Source: own elaboration

Please, note that the above solution is obviously correct, but you can discuss further

optimization, further exploring the topic. A careful reader will probably pay attention

to the fact that during the transformation of the equation:

a = x + d

you can first move d to the left to get:

a – d = x

and then write the equation in the form:

x = a - d

Paying attention to this fact is an opportunity to discuss that since a – d = x is

x = a - d, but also the above can be broken down into.

Step C.1.:

(-x) = -(a - d)

Step C.2.: We also multiply on both sides by (-1) getting:

x = a - d

The presented example shows how sometimes a problem, trivial for the teacher, can

be very profoundly filtered. The actions aimed at the algorithmic approach

to the solution provide the possibility of a thorough discussion, and thus a proper

understanding of the topic. Testing the solution, trying to optimize, become

an important element that fosters the creation of proper cause-and-effect relationships

while building generalizations and simplifications. Patterns and methods are built

correctly in the correct way, because acquiring them is associated with the process

of understanding.

EXAMPLE 3.

Task for students

Create a game that will consist in the fact that the player adjusting the starting speed

of the ball (speed in the horizontal direction) will cause the ball to fall into the basket.

The movement of the ball should reflect reality.

The task is formulated very generally, it is a typical divergent problem. The task can

be implemented in groups. Give students time to think about and work out an overall

strategy. Suggest that they write different ideas of the game, ideally like in groups, using

brainstorming, students can write down ideas using a mind map.

75

If necessary, the teacher should guide the students indicating what physical laws should

be applied.

Let us assume that as a result of the analysis of ideas, the students chose the following

option:

On the left side of the screen, there is a ball at random height (oy coordinate).

On the other side of the screen, there is a basket at random height. The player with

a choice of different speed balls (horizontally) tries to hit the basket. The forces

of gravity act on the ball - they must be predicted so that the movement of the ball

is a reflection of the movement of the ball in reality. Any frictional resistance

will be neglected.

It should be noted what will be the input data and what is the output:

• input data - position (oy coordinate) of the ball, and the basket,

76

• output data - the final position of the ball, assuming that the program will end its

operation when the ball:

o falls out of the screen;

o falls into the basket (according to the design, it touches the right edge

of the basket);

o hits the basket, but it doesn’t fall into it (according to the design it touches

the left edge of the basket).

Decomposing the problem

Students should consider and define sub-problems. Apart from trivial and perhaps

insignificant, from the point of view of the subject being taught, sub-problems, such

as graphical development of the ball, basket, arrow representing the velocity vector,

control method, should pay special attention to the movement of the ball (trajectory

of movement). The key will be independent, possibly with the help of a teacher, acting

only as a guide, to conclude that the movement of the ball will consist of horizontal

and vertical movement. The teacher can achieve the right effect by asking the students

the right questions.

The first question from the teacher

Let's try to ask for the problem if we only consider the movement of the ball on a flat

surface. Assuming that the ball at the beginning has some speed set by the player,

neglecting the friction resistance, what would the movement be like?

Expected students’ response: straight linear motion.

The second question from the teacher

If such a move had to be presented in the form of animation, what would it consist in?

Expected students’ response: at the performance of successive phases of movement

at short intervals.

The third question from the teacher

Can we calculate the position of the ball after the end of the time? How to draw next

phases of movement on a piece of paper? What do you need to calculate? What could

the algorithm look like, every now and again, on the screen object symbolizing the ball,

moving in a uniformly rectilinear motion? What would a simple program implementing

such an algorithm look like? What equation to use for this?

Expected students’ response: the equation of the straight linear motion described

by the equations: s = V × t, or on the ox axis: x = V × t. Therefore, the algorithm

and the example program in Scratch would be as follows:

77

1) Enter V

2) t = 0

3) x = V × t

4) set the object to position x

5) increase t by 1 point

6) Repeat from 3)

The fourth question from the teacher

What to do to make the ball always move from the left side of the screen? What should

the ball do to stop at the right side of the screen?

Expected students’ response: the algorithm and program will be the following:

1) Set the object to position x = -200, y = 0

2) Enter V

3) t = 0

4) x = -200 + V × t

5) set the object to position x

6) increase t by 1 point

7) Repeat from 4) until x is greater than 200

78

The fifth question from the teacher

Let's put aside the problem of horizontal motion. What causes the ball to move down?

What is the type of traffic? Do we know the equations describing this movement?

Will the experience gained in considering horizontal traffic be useful? Can vertical

movement animations (falling down) be carried out in a similar way, what differences

will be possible? How could the algorithm and program look like?

Expected students’ response: the algorithm and program will be the following:

1) Set the object to position x = 0, y = 150

2) t = 0

3) y = 150 – 0,5 × 9.81 × t2

4) set the object to position y

5) increase t by 1 point

6) Repeat from 3) until y is less than 150

The only thing that remains is to experiment with the above algorithms to create a final

version, though perhaps not final:

1) Set the object to position x = -200, y = 150

2) Enter V

3) t = 0

4) x = -200 + V × t

5) y = 150 – 0.5 × 9.81 × t2

6) set the object to position x, y

7) increase t by 1 point

8) Repeat from 4) as long as y is not less than 150 or x will not be greater

than 200

In the above example, you can find important elements of commutative thinking and

the idea of constructionism. The problem has been formulated in a very general way,

which promotes the development of creative thinking skills in order to seek solutions

to differential problems. When solving the problem, we try to determine what the input

data is (the status at the beginning) and the output data (state at the end, the goal

to achieve). We determine possible limitations. By speaking in a computer language,

we define the input specification, output specifications and boundary conditions

(restrictions). The problem is divided into sub-problems. When looking for solutions,

79

we use patterns, we discover patterns (correctness, a pattern for the implementation

of point 5 will be points 3 and 4). The solution is a list of steps (algorithm, program).

The solution (including also sub-problems’ solutions) is tested and improved. We teach

by creating using technology as a material. We use the idea of harsh play, of course,

hoping that the problem of programming the game will involve more students than

considering often torn away from reality, often boring to students typical tasks. In fact,

we create simulations of a physical phenomenon, and by the way, we learn how to learn

- the implementation of even simple issues requires getting into the topic, analyzing and

effectively helps to understand the phenomenon. At first glance, the presented

algorithms may not cover many aspects that will occur when creating and testing

the program. One can get the impression that the problem is limited to the use

of appropriate equations physical. Attention should be paid to several other aspects that

will come to light when testing the presented programs. At this stage of creating

the algorithm, we did not say anything about units, however, the students will notice

in the testing process that "something is wrong", taking a change of time by 1 gives

a good visual effect in the case of horizontal movement, while in the case of vertical

movement it will turn out that the effect is too short - the time step is too big.

This is an excellent opportunity to discuss the units, scale, selection of the time step -

what actually means t = 1. It is also an excellent opportunity to familiarize students

with the subject of computer simulation, pointing out that in the majority of simulations

we consider changing values in time, that time "does not run" continuously, but is

subject to discretization. In addition, students gain valuable experience related

to typically programming skills. It is also worth noting that we are building a certain

area of knowledge that did not occur until the program was implemented. In this

example, students did not have to know anything before the program was realized that

the movement, considered in the coordinate system, can be broken down into

components. Knowing the dependencies associated with horizontal and vertical

movement, students can experiment by combining both algorithms, thus realizing that

motion along any trajectory can be represented as the assembly of motions along

the axis of the reference system.

The investigation into the correct solution will not happen without many failures, the

seemingly correct algorithm, the correct program, does not give the expected effect,

which in turn prompts further analysis of the problem. Keep in mind to give students

time, let them experiment, use guides and guiding questions skillfully when they

are really stuck (Walat, 2007b). "The student writing simulation programs undoubtedly

deepens his knowledge about the nature of matters controlling complex processes. This

activity is of great importance for the personalization of knowledge. "In addition, when

looking for solutions to interesting mathematical problems, as well as problems in other

subjects, you can learn programming much more effectively than in lessons whose only

goal is to learn programming".

The use of algorithmic thinking, commutative thinking and programming in the teaching

of mathematics and other science subjects gives the opportunity to effectively acquire

80

knowledge and learn how to learn. Important is the fact that such a way of working with

the student gives the opportunity to use the relevant, from the point of view

of education, ways to deal with the problem (Kopczyński, 2016):

1. Experimental approach (trial and error method, containing hypotheses, analysis

of solutions) - teaches the consequences in proceedings, builds the experience

of "causes and effects".

2. Designing and formulating - includes elements of form selection, evaluation

of things and methods necessary for solution, it is a process of active

implementation of set goals.

3. Correcting (learning from mistakes) - it often takes more time than creating

an algorithm or program, but it is an important part of deepening the knowledge.

It requires determining the initial state, diagnosing errors (misunderstandings,

knowledge gaps), locating the cause to the current situation, the attempt to fix

or eliminate errors, checking the correctness after removing the errors.

4. Consequence - it carries an important element of perseverance, which

is necessary when searching for and fixing errors of the algorithm (program).

It contributes to the systematization of knowledge, creates good habits.

5. Cooperation - develops the ability to work in a group, promotes one

of the elements of learning - students learn from themselves, enables efficient

implementation of more complex tasks, is an essential element of the work.

Education with the use of algorithms and programming is an effective way of teaching

and learning, it is a response to the educational requirements of today's school,

inscribing into modern paradigms and educational strategies, and it is an indispensable

element of the interdisciplinary preparation of a young person to functioning in

the digital world.

81

3.5 Bibliography

Computational thinking within the meaning of the Center for Citizenship Education.

[Online source: http://www.ceo.org.pl/sites/default/files/news-

files/elementy_myslenia_komputacyjnego_wedlug_ceo.pdf] (available on: 8th February

2018)

Jelińska A., (2017). Kompetencje przyszłości. Po co nauczycielom przedmiotów

nieinformatycznych programowanie? [‘The competences of the future. For what purpose

teachers of non-IT subject needs programming?’] [in:] Kwiatkowska A. B., Sysło M. M.

(ed.) Information Technology in Education. Toruń: Scientific Publisher of the Mikołaj

Kopernik University.

Kolarz W., Tluczykont K., Kodowanie z matą [‘Coding with mat’]. Katowice: Computer

and Business Association "KISS", in preparation.

Kopczyński T., (2016), Myślenie komputacyjne jako imperatyw XXI wieku w kontekście

nadmiaru łatwej do pozyskania informacji [‘Computational thinking as the imperative of

the 21st century in the context of an excess of easy-to-obtain information’] [in:] Mitasa

A. W. (ed.) System komplementarnego nauczania algorytmiki w aspekcie myślenia

komputacyjnego [‘A system of complementary teaching of algorithms in the aspect of

computational thinking’], Goleszów: “Galeria na Gojach” A.B.K. Heczko.

Mikulski K., (2017), Programowanie elementem kreatywnej pedagogiki, [‘Programming

as an element of creative pedagogy’] [in:] Kwiatkowska A. B., Sysło M. M. (ed.)

Information Technology in Education. Toruń: Scientific Publisher of the Mikołaj Kopernik

University.

Sysło M. M., (2014). Myślenie komputacyjne. Nowe spojrzenie na kompetencje

informatyczne [‘Computational thinking. A new look at IT competences’] [in:]

Kwiatkowska A. B., Sysło M. M. (ed.) Information Technology in Education. Toruń:

Scientific Publisher of the Mikołaj Kopernik University.

Walat A., (2007a). O konstrukcjonizmie i ośmiu zasadach skutecznego uczenia się według

Seymoura Paperta [‘About the constructionism and eight principles of effective learning

according to Seymour Papert’] “Meritum” Vol. 4(7).

Walat A., (2007b). Zarys dydaktyki informatyki [‘Outline of IT didactics’]. Warsaw:

Ośrodek Edukacji Informatycznej i Zastosowań Komputerów [‘Center for IT Education

and Computer Applications’].

82

Ability to using algorithmic and programming is recognized by the European

authorities as one of the important, nowadays skill forming part of “digital

competence” which is one from eight key competences. Publication entitled:

Algorithmic and Programming - Training materials for Teachers. Algorithmic.

Programming. Didactics. meets EURYDICE recommendations in this scope. The

main aim of the publication is presenting the teachers of an idea of algorithmic and

programming along with their practical application in didactics.

[excerpt of Introduction]

ISBN 978-83-951529-0-0

