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Abstract

Cryptographic hash functions are a useful building block for several cryptographic applications. The
most important are certainly the protection of information authentication and digital signatures. This
overview paper will discuss the definitions, describe some attacks on hash functions, and will give an
overview of the existing practical constructions.

1 Introduction

Hash functions are functions that map an input of arbitrary length to a string of fixed length, the hashcode.
If these mappings satisfy some additional cryptographic conditions, they can be used to protect the integrity
of information. Other cryptographic applications where hash functions are useful are the optimization of
digital signature schemes, the protection of passphrases and the commitment to a string without revealing
it.

Hash functions appeared in cryptographic literature when it was realized that encryption of information
is not sufficient to protect its authenticity. The simplest example is the encryption with a block cipher
in Electronic Code Book (ECB) mode, where every block is encrypted independently. It is clear that
an active attacker can easily modify the order of the ciphertext blocks and hence of the corresponding
plaintext blocks. It will be shown that cryptographic hash functions allow for efficient constructions to
protect authenticity with or without secrecy.

In a first part of this overview paper, the definitions of several types of hash functions will be given,
and the basic attacks on hash functions will be discussed. Then it will be explained briefly how they can
be used to protect the integrity of information. The protection of software integrity will be treated as an
example. Subsequently a general model is described and an extensive overview is given of the proposed
schemes. Here a distinction will be made between hash functions with an without a secret key. Finally the
conclusions will be presented.

It will be assumed that the reader is familiar with the basic concepts of cryptography as explained in
(39, 57, 84, 91, 93]. Other overview papers on hash functions and authentication are [2, 16, 43, 95, 107, 120].
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2 Definitions

In this section definitions will be given for hash functions that do not use a secret key (Manipulation
Detection Code or MDC) and for hash functions that use a secret key (Message Authentication Code
or MAC). According to their properties, the class of MDC’s will be further divided into one-way hash
functions (OWHF') and collision resistant hash functions (CRHF).

A brief discussion of the existing terminology can avoid the confusion that is present in the literature.
The term hash functions originates historically from computer science, where it denotes a function that
compresses a string of arbitrary input to a string of fixed length. Hash functions are used to allocate as
uniformly as possible storage for the records of a file. The name hash functions has also been widely adopted
for cryptographic hash functions or cryptographically strong compression functions, but the result of the
hash function has been given a wide variety of names in cryptographic literature: hashcode, hash total,
hash result, imprint, (cryptographic) checksum, compression, compressed encoding, seal, authenticator,
authentication tag, fingerprint, test key, condensation, Message Integrity Code (MIC), message digest, etc.
The terms MAC and MDC originated from US standards and are certainly not perfect (a MAC or an
MDC are actually no codes, and both can serve for message authentication), but the adoption of these
terms offers a practical solution to the momentary “Babel of tongues”. One example of the confusion is
that “checksum” is associated with the well known Cyclic Redundancy Checks (CRC) that are of no use
for cryptographic applications.

cryptographic hash function

N

MAC MDC

OWHF CRHF

Figure 1: A taxonomy for cryptographic hash functions.

In the following the hash function will be denoted with h, and its argument, i.e., the information to be
protected with X. The image of X under the hash function h will be denoted with h(X) and the secret
key with K. The general requirements are that the computation of the hashcode is “easy” if all arguments
are known. Moreover it is assumed that Kerckhoff’s principle? is valid, which means that in the case of an
MDC the description is public, and in the case of a MAC the only secret information lies in the key.

2.1 One-way hash function (OWHF)
The first informal definition of a OWHEF was apparently given by R. Merkle [88, 89] and M.O. Rabin [111].

Definition 1 A one-way hash function is a function h satisfying the following conditions:

1. The argument X can be of arbitrary length and the result h(X) has a fixed length of n bits (with
n>64).

2The Dutchman A. Kerckhoff (1853-1903) was the first to enunciate the principle that the security of a cipher must reside
entirely in the secret key.
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2. The hash function must be one-way in the sense that given a Y in the image of h, it is “hard” to
find a message X such that h(X) =Y and given X and h(X) it is “hard” to find a message X' # X
such that h(X') = h(X).

The first part of the second condition corresponds to the intuitive concept of one-wayness, namely that
it is “hard” to find a preimage of a given value in the range. In the case of permutations or injective
functions only this concept is relevant. The second part of this condition, namely that finding a second
preimage should be hard, is a stronger condition, that is relevant for most applications. The meaning
of “hard” still has to be specified. In the case of “ideal security”, introduced by X. Lai and J. Massey
[79], producing a (second) preimage requires 2" operations. However, it may be that an attack requires a
number of operations that is smaller than 2", but is still computationally infeasible.

2.2 Collision resistant hash function (CRHF)

The first formal definition of a CRHF was apparently given by I. Damgard [31, 32]. An informal definition
was given by R. Merkle in [89)].

Definition 2 A collision resistant hash function is a function h satisfying the following conditions:

1. The argument X can be of arbitrary length and the result h(X) has a fixed length of n bits (with
n > 128).

2. The hash function must be one-way in the sense that given a Y in the image of h, it is “hard” to
find a message X such that h(X) =Y and given X and h(X) it is “hard” to find a message X' # X
such that h(X') = h(X).

3. The hash function must be collision resistant: this means that it is “hard” to find two distinct messages
that hash to the same result.

Under certain conditions one can argue that the first part of the one-way property follows from the collision
resistant property. Again several options are available to specify the word “hard”. In the case of “ideal
security” [79], producing a (second) preimage requires 2" operations and producing a collision requires
O(2"/?) operations (cf. section 3). This can explain why both conditions have been stated separately. One
can however also consider the case where producing a (second) preimage and a collision requires at least
O(2™?) operations, and finally the case where one or both attacks require less than O(2"/2) operations,
but the number of operations is still computationally infeasible (e.g., if a larger value of n is selected).

2.3 Message Authentication Code (MAC)

Message Authentication Codes have been used for a long time in the banking community and are thus
older than the open research in cryptology that started in the mid seventies. However, MAC’s with good
cryptographic properties were only introduced after the start of open research in the field.

Definition 3 A MAC is a function satisfying the following conditions:

1. The argument X can be of arbitrary length and the result h(K, X) has a fixed length of n bits (with
n>32...64).

2. Gwen h and X, it is “hard” to determine h(K, X) with a probability of success “significantly higher”
than 1/2"™. Even when a large number of pairs {X;, h(K, X;)} are known, where the X; have been
selected by the opponent, it is “hard” to determine the key K or to compute h(K, X") for any X' # X;.
This last attack s called an adaptive chosen text attack.
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Note that this last property implies that the MAC should be both one-way and collision resistant for
someone who does not know the secret key K. This definition leaves open the problem whether or not a
MAC should be one-way or collision resistant for someone who knows K. An example where this property
could be useful is the authentication of multi-destination messages [94].

3 Methods of attack

Three elementary attacks that are independent of the specific hash function will be described. For a more
extensive overview of attacks on hash functions the reader is referred to [102, 106].

In case of a random attack the opponent selects a random message and hopes that the modification
will remain undetected. For an ideally secure hash function, his probability of success equals 1/2". The
feasibility of this attack depends on the action taken in case of detection of an erroneous result, on the
expected value of a successful attack and on the number of attacks that can be carried out. For most
applications this implies that n = 32 bits is not sufficient. This is certainly true if an MDC is used and
hence the opponent can attack several messages off-line and in parallel. In that case the hashcode should
have a length of 64 bits or more.

The idea behind the birthday attack [126] is that for a group of 23 people the probability that at
least two people have a common birthday exceeds 1/2. Intuitively one would expect that the group should
be significantly larger. This can be exploited to attack a hash function in the following way: an adversary
generates r; variations on a bogus message and 7y variations on a genuine message. A second possibility
is that he collects a large number of messages and is able to divide them in two categories. This is the
only way in the case of a MAC, where the opponent is unable to generate (message, MAC) pairs. The
probability of finding a bogus message and a genuine message that hash to the same result is given by

1 —exp(—(ry-r9)/2"),

which is about 63 % when r = r; = r, = 22. The involved comparison problem does not require 72

operations: after sorting the data, which requires O(rlogr) operations, comparison is easy. If the hash
function can be called as a black box, the new algorithm of J.-J. Quisquater [109], requires /27 - 27/2
operations and negligible storage. The conclusion is that if the hash function has to be collision resistant,
n should be sufficiently large. In view of the fact that the speed of computers doubles every three years,
128 bits corresponding to 24 operations is sufficient for the next 10 years, but it will be only marginally
secure within 20 years.

In the case of a MAC, a third attack is relevant, namely an exhaustive search for the secret key K.
It is a known plaintext attack, where an attacker knows M plaintext-MAC pairs for a given key and will
try to determine the key by trying all possible keys. In order to determine the key uniquely, M has to be
slightly larger than k/n. The expected number of trials is equal 28~1 with k the size of the key in bits.

4 Applications of cryptographic hash functions

This section aims to illustrate briefly how cryptographic hash functions can be used to protect the authen-
ticity of information and to build digital signature schemes. In a second part the application to software
protection will be discussed.
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4.1 Information authentication and digital signatures

The protection of the authenticity of information includes two aspects:
e the protection of the originator of the information, or in ISO terminology [62] data origin authenti-
cation.

e the fact that the information has not been modified or in ISO terminology [62] the integrity of the
information.

There are two basic methods for protecting the authenticity of information.

e The first approach is analogous to the approach of a symmetric or asymmetric cipher, where the
secrecy of large data quantities is based on the secrecy and authenticity of a short key. In this case
the authentication of the information will also rely on the secrecy and authenticity of a key. To
achieve this goal, the information is compressed with a hash function, and the resulting hashcode is
appended to the information. The basic idea of the protection of the integrity is to add redundancy
to the information. The presence of this redundancy allows the receiver to make the distinction
between authentic information and bogus information.

In order to guarantee the origin of the data, a secret key that can be associated to the origin has to
intervene in the process. In the case of a MAC, the secret key is involved in the compression process,
while in the case of an MDC, the information and/or the hashcode will subsequently be encrypted
with a secret key.

e The second approach consists of basing the authenticity (both integrity and origin authentication)
of the information on the authenticity of the hashcode. A typical example for this approach is a
computer user who will calculate an MDC for all its important files. He can store this collection of
MDC’s on a floppy, that is locked in his safe, or he can write them down on a piece of paper. If he
has to transfer the files to a remote friend, he can simply send the files and communicate the MDC’s
via telephone. The authenticity of the telephone channel is offered here by voice identification.

Hash functions play also an important role in digital signature schemes. A digital signature is a
cryptographic technique that produces the electronic equivalent of a manual signature. This means that
a digital signature can prohibit the forging of a message by anybody else but the sender. Moreover the
receiver is given guarantee of the message’s authenticity, in the sense that he can subsequently prove to
a third party that the message is authentic even if its originator revokes it. The concept of a digital
signature was suggested in 1976 by W. Diffie and M. Hellman [45]: the sender transforms the information
with a secret key, and the receiver can verify the signature by applying the corresponding public key.
The first practical scheme was the RSA cryptosystem [112]. Other efficient schemes include the scheme of
ElGamal [46], the proposed NIST digital signature standard [51], and the schemes based on zero-knowledge
techniques: Fiat-Shamir [47], Guillou-Quisquater [108], and Schnorr [117]. For a more detailed discussion
the reader is referred to [95].

Most digital signature schemes can be optimized in the following way: the signature scheme is not
applied to the message but to the hashcode of the message. Note that this corresponds to the second
approach for authentication, i.e., replace the message by a short hashcode. The advantages are that the
signature has a fixed short length and that the computational requirements are minimized (most signature
schemes are rather slow). Moreover the security level of the signature scheme can be increased. In other
signature schemes, like the zero-knowledge based schemes and many theoretical constructions, a OWHF
forms an integral part of the signature scheme.

Now the choice between a OWHF and a CRHF will be discussed. It is clear from the definition that a
CRHF is stronger than a OWHF', which implies that using a CRHF is playing safe. On the other hand,
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it should be noted that designing a OWHEF is easier, and that the storage for the hashcode can be halved
(64 bits instead of 128 bits). A disadvantage of a OWHF is that the security level degrades proportional
to the number of applications of h: an outsider who knows s hashcodes has increased his probability to
find an X’ with a factor s. This limitation can be overcome through the use of a parameterized OWHF.

In order to understand when a CRHF is required, the following attack is considered. Assume that the
hash function is not collision resistant: an attacker will thus be able to find a collision, i.e., two plaintexts
X and X’ such that h(X) = h(X’). Subsequently he will protect the authenticity of X through h(X), and
later he can substitute X’ for X. Therefore the use of a CRHF is recommended for any application where
the attacker has complete control over the argument of the hash function, which implies he can select X,
or he is an insider to the system.

However, one can certainly imagine applications where this attack is not relevant. If the attacker is
an outsider, he can not choose X, and will be restricted to observe X and h(X). Subsequently he will
try to come up with an X’ such that h(X) = h(X’). Examples of applications where a OWHF would be
sufficient are the following:

1. The parties involved completely trust each other, which is trivially the case if there is only one party.
One could think of someone who protects the integrity of his computer files (which he only can
generate) through the calculation and storage of an MDC.

2. The computation of the h(X) involves a random component, that can not be controlled by the insider
[89]: X can be randomized before applying h through encryption of X with a good block cipher using
a truly random key, that is added to the resulting ciphertext [88], or through the selection of a short
random prefix to X [31]; h itself can be randomized through randomly choosing h from a family of
functions indexed by a certain parameter.

One can conclude that the choice between a CRHF and a OWHF is application dependent.

4.2 Software protection

To illustrate the use of a MAC, MDC, and a digital signature scheme, it will be explained how these
three techniques can be applied to protect the integrity of software [92]. The two parties involved in the
application are the software vendor (who is also supposed to be the author of the software) and the user.
The attacker will try to modify the software: this can be a computer virus [21], a competitor or even one
of the parties involved. For this application there is clearly no need for secrecy. The three approaches will
be discussed together with their advantages and disadvantages.

MAC: the software vendor will use his secret key to compute the MAC for the program and append the
MAC to the program. The main problem here is the distribution of the secret key to the user through
a channel that protects both its secrecy and its authenticity, which induces a significant overhead.
This secret key has to be protected carefully by both software vendor and user: if a compromise at
one place occurs, the protection is lost. Both software vendor and user can modify the program and
the corresponding MAC, and thus in the case of a dispute, a third party can not make any distinction
between them. The vulnerability of the secret key implies that it is mandatory that every user shares
a different key with the software vendor. The advantage of this approach is that the secret storage
is independent of the number of programs to be protected, but depends on the number of users (for
the software vendor) and on the number of different software vendors (for the user).

MDC: the software vendor will compute the MDC for the program. The main problem here is the
distribution of the MDC to the user through a channel that protects the authenticity of the MDC.
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This is easier than the distribution of a secret key, but for every update of the program or for
every new program a new transmission of an MDC is necessary. If the authenticity of the MDC is
compromised, the protection is lost: the software vendor, the user and any third party can modify
the program and the corresponding MDC. If a dispute occurs, one has to show to a judge that the
value of an MDC is authentic: it is generally not possible to prove to the judge who actually modified
the authentic channel and the program. The main advantage is that this approach requires no secret
storage. Every program needs an authentic storage both at the user’s site and at the vendor’s site.

digital signature: the software vendor will append to the program a digital signature that is computed
with his secret key. The main problem here is the distribution of the corresponding public key
to the user through a channel that protects its authenticity. The secrecy and authenticity of the
secret key have to be protected carefully by the software vendor: if it is compromised, anyone can
modify programs and update the corresponding signature. If the authenticity of the public key is
compromised, the protection is also lost: anyone can replace it with the public key corresponding
to his secret key. The difference with the previous approaches is the asymmetry: only the software
vendor can generate a signature, but anyone can verify it. This implies that the vendor can be held
liable to a third party if the program contains a virus. The only way he can escape is by claiming
that his secret key was stolen. However, if he can not repeat this type of fraud, as he will loose
quickly the trust of his customers. Every vendor has to store one secret key, while every user needs
an authentic storage for the public key of every vendor.

The selection of a particular solution will depend on one hand on the number of users, vendors and
programs, and on the other hand on the availability of authentic and/or secret storage and communication.
The digital signature is clearly the only solution that can protect the users against a malicious software
vendor.

A similar verification process can be executed when the program is loaded from disk to the Central
Processing Unit. If the disk is not shared, non-repudiation is not required, but it is still attractive to
use a digital signature scheme: the CPU has to know only the public key corresponding to the disk. An
alternative is to provide for authentic storage of the MDC of a file that contains the MDC’s of all programs.
In [36] a scheme is described that combines a digital signature for checking new software with a MAC for
verification at run-time.

5 An overview of MDC proposals

5.1 A general model

Before discussing a small fraction of the large number of proposals for MDC’s, the general scheme for
describing a hash function will be sketched. All known hash functions are based on a compression function
with fixed size input; they process every message block in a similar way. This has been called an “iterated”
hash function in [79]. The information is divided into ¢ blocks X through X;. If the total number of bits is
no multiple of the block length, the information can be padded to the required length. The hash function
can then be described as follows:

HO - [V
H,L' — f(XiaHifl) Z: 1,2,t
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The result of the hash function is denoted with h(X) and IV is the abbreviation for Initial Value. The
function f is called the round function. Two elements in this definition have an important influence on the
security of a hash function: the choice of the padding rule and the choice of the I'V. It is recommended
that the padding rule is unambiguous (i.e., there exist no two messages that can be padded to the same
message), and that it appends at the end the length of the message. The IV should be considered as part
of the description of the hash function. In some cases one can deviate from this rule, but this will make
the hash function less secure and may lead to trivial collisions or second preimages.

The research on hash functions has been focussed on the question: what conditions should be imposed
on f to guarantee that h satisfies certain conditions ? The two main results on this problem will be
discussed. The first result is by X. Lai and J. Massey [79] and gives necessary and sufficient conditions for
f in order to obtain an “ideally secure” hash function h.

Proposition 1 Assume that the padding contains the length of the input string, and that the message
X (without padding) contains at least 2 blocks. Then finding a second preimage for h with a fived IV
requires 2" operations if and only if finding a second preimage for f with arbitrarily chosen H;_1 requires
2" operations.

A second result by I. Damgard [33] and independently by R. Merkle [89] states that it is sufficient for f to
be a collision resistant function.

Proposition 2 Let f be a collision resistant function mapping l to n — 1 bits (withn —1 > 1). If an
unambiguous padding rule is used, the following construction will yield a collision resistant hash function:

Hy = f(0"" [ a)
Hi = f(Hi—l ||1||CE1) fOTi:2,3,...t.

In the following four types of schemes will be briefly discussed: hash functions based on a block
cipher, hash functions based on modular arithmetic, hash functions based on knapsacks and dedicated
hash functions. For a more detailed discussion, the reader is referred to [106].

5.2 Hash function based on a block cipher

Two arguments can be indicated for designers of hash functions to base their schemes on existing encryption
algorithms. The first argument is the minimization of the design and implementation effort: hash functions
and block ciphers that are both efficient and secure are hard to design, and many examples to support this
view can be found in the literature. Moreover, existing software and hardware implementations can be
reused, which will decrease the cost. The major advantage however is that the trust in existing encryption
algorithms can be transferred to a hash function. It is impossible to express such an advantage in economical
terms, but it certainly has an impact on the selection of a hash function. It is important to note that for
the time being significantly more research has been spent on the design of secure encryption algorithms
compared to the effort to design hash functions. It is also not obvious at all that the limited number
of design principles for encryption algorithms are also valid for hash functions. The main disadvantage
of this approach is that dedicated hash functions are likely to be more efficient. One also has to take
into account that in some countries export restrictions apply to encryption algorithms but not to hash
functions. Finally note that block ciphers may exhibit some weaknesses that are only important if they
are used in a hashing mode.

A distinction will be made between hash functions for which the size of the hashcode equals the block
length of the underlying block cipher and hash functions for which the size of the hashcode is twice this
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length. This is motivated by the fact that most proposed block ciphers have a block length of only 64 bits,
and hence an MDC with a result twice the block length is necessary to obtain a CRHF. Other proposals
are based on block ciphers with a large key and on a block cipher with a fixed key.

The encryption operation E will be written as Y = E(K, X). Here X denotes the plaintext, Y the
ciphertext and K the key. The corresponding decryption operation will be denoted with X = D(K,Y).
The size of the plaintext and ciphertext or the block length will be denoted with r, while the key size will
be denoted with k. In the case of the well known block cipher DES, r = 64 and k& = 56 [48]. It will be
assumed that the reader is familiar with the basic modes of operation of a block cipher as described in
[49, 66, 91]. The rate of a hash function based on a block cipher is defined as the number of encryptions
to process r plaintext bits.

5.2.1 Size of hashcode equals block length

From Definition 2 it follows that in this case the hash function can only be collision resistant if the block
length 7 is at least 128 bits. Many schemes have been proposed in this class, but the first secure scheme
was not proposed until 1985. Seven years later, the author has suggested a synthetic approach: we have
studied all possible schemes which use exclusive ors and with an internal memory of only 1 block. As a
result, it was shown that 12 secure schemes exist, but up to a linear transformation of the variables, they
correspond essentially to 2 schemes: the 1985 scheme by S Matyas, C. Meyer and J. Oseas [85]:

f=FE®(s(Hi-1), X)

(here s() is a mapping from the ciphertext space to the key space and E®(K, X) = E(K, X)® X), and the
variant that was proposed by the author in 1989 [102] and by Miyaguchi et al. [96] for N-hash and later

for any block cipher [69]
f=FE®(s(Hi1), X;) ® Hiy .

The first scheme is currently under consideration for ISO standardization as a one-way hash function [67].
The 12 variants have slightly different properties related to weaknesses of the underlying block cipher [106].
One of those variants that is well known is the Davies-Meyer scheme [38, 125]:

f=E%X;, H;_1).

It was also shown by the author that the security level of these hash functions is limited by min(k,r), even
if the size of some internal variables is equal to max(k, ).

5.2.2 Size of hashcode equals twice block length

This type of functions has been proposed to construct collision resistant hash functions based on block
ciphers with a block length of 64 bits like DES. A series of proposals attempted to double the size of the
hashcode by iterating a OWHF (e.g., [73, ?] and [83]); all succumbed to a ‘divide and conquer’ attack
[24, 55, 95]. The scheme by Zheng, Matsumoto and Imai [128] was broken in [?]. A new scheme that was
broken by the author and independently by I. Damgard and L. Knudsen [35] is the Algorithmic Research
hash function [70].

An interesting proposal was described by R. Merkle [89]. A security “proof” was given under the
assumption that DES has sufficient random behaviour. However the rate of the most efficient proposal
equals about 3.6. The proof for this proposal only showed a security level of 52.5 bits; however this has
been improved to 56 bits in [106].
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Two more efficient schemes were proposed by D. Coppersmith, S. Pilpel, C. Meyer, S. Matyas, M. Hy-
den, J. Oseas, B. Brachtl, and M. Schilling [27]. The authors of the first papers that referred to these hash
functions are C. Meyer and M. Schilling, C. Meyer, and S. Matyas [92, 93, 86]. For this scheme a security
proof is lacking for the time being. MDC-2 can be described as follows:

Hl, = 1V; H2y = 1V,
T, = FE*(H1l,_\,X;)=LT1;| RT1; T2 = E*(H2;,,X;)=LT2; | RT2;

In order to protect these schemes against attacks based on semi-(weak) keys the second and third key bits
are fixed to 10 and 01 for the first and second encryption. This scheme with rate 2 is currently under
consideration for ISO standardization as a collision-resistant hash function [67]. One iteration of MDC-4
consists of the concatenation of two MDC-2 steps, where the plaintexts in the second step are equal to
H2; 1 and H1;_;. The rate of MDC-4 is equal to 4.

Subsequently many attempts were made to improve the efficiency of these proposals. Some of them
failed (like the scheme suggested in [101], for which the first weakness was identified in [79], and that was
finally broken by the author in [106]). One of the remaining schemes is the scheme by J.-J. Quisquater
and M. Girault (Q-G) [110]. In order to thwart certain attacks, additional redundancy is inserted in the
message: one adds the message blocks X;,; = GBf:l X; and Xy = (Zle Xi) mod 2¥ — 1. The iteration
procedure can be described as follows:

T1, = E(X1,Hl 1)

T2, = E(X2,T1,® H2 1)
Hl, = Hl,_{®H2;_{ T2
H2, = Hl, ®H2_ ,®TI1,;.

A related scheme was proposed by L. Brown, J. Pieprzyck, and J. Seberry, [13], who called it LOKI Double
Hash Function (DBH). It is not secure in combination with the proposed block cipher [7, 41, 106].

The analysis of all these schemes is rather involved and depends partially on the properties of the
underlying block cipher. Moreover, it can be expected that more efficient schemes are generally more
vulnerable. The number of operations to find a second preimage and a collision for the most important
schemes are summarized in Table 1. If an attacker can modify the specified initial values, these attacks
require in general less operations.

Merkle | MDC-2 | MDC-4 | G-Q | LOKI-DBH
(2nd) preimage 1.2108 1 2.982 | 1.2109 19,98 2. 281
collision (fixed V) | 1-2% | 2.2% | 4.25 | 2.26 2. 204

Table 1: Number of operations for preimage and collision attacks on the scheme by Merkle, MDC-2,
MDC-4, G-Q, and LOKI-DBH.
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5.2.3 Size of key equals twice block length

Some block ciphers have been proposed for which the key size is approximately twice the block length.
Examples in this class are FEAL-NX [97] and IDEA [80]. Triple DES with 2 keys has a key size of 112
bits and a block length of 64 bits and could hence also be considered to belong to this class.

If the size of the hashcode equal the block length, two proposals exist, the scheme by R. Merkle [88]
and the scheme by X. Lai and J. Massey [79]:

f = E(Hi—l || X“[V) and f = E(Hi—l || Xia Hi—l) .

These constructions can only yield a CRHF if the block length is larger than 128 bits (R. Merkle suggested
100 bits in 1979), and if the key size is equal to 256 bits. For smaller block lengths, a OWHF can be
obtained.

In order to obtain a CRHF based on a 64-bit block cipher, a different construction is required, where
the size of the hashcode is twice the block length. The first two schemes in this class were recently proposed
by X. Lai and J. Massey [79]. Both try to extend the Davies-Meyer scheme and have a rate of 2. The
schemes are called “Tandem Davies-Meyer” and “Abreast Davies-Meyer”:

E = E<H2Z,1HX“H1171) and Hll = E(H2171HXZ,H1171) @Hlifl
le p— ’I‘Z fan) Hli—l HQZ = E(H21_1||X7,, H2i—1) D H2i—1 .
H2, = EX;||T;,H2;—1)® H2,4

It is claimed that these schemes are ideally secure. It remains an open problem is whether any weaknesses
of the underlying block cipher yield weaknesses of the hash function.

5.2.4 Schemes with a fixed key

All previous schemes modify the key of the block cipher during the iteration phase. Several arguments can
be given to keep the key fixed: the key scheduling process is generally slower than the encryption, many
attacks exploit the fact that the key can be manipulated, and this construction makes it possible to build
a hash function based on any one-way function with small dimensions.

In [104] the author has proposed such a scheme with the advantage that a tradeoff is possible between
security level and speed. The more efficient schemes with a security level of more than 60 bits have a
rate equal slightly higher than 4 and need an internal memory of about 3 - 64 bits. The size of the final
hashcode can be reduced by applying a stronger but slower scheme to the final result.

5.3 Hash functions based on modular arithmetic

These schemes are designed to use available hardware for modular arithmetic to produce digital signa-
tures. Their security is partially based on the hardness of certain number theoretic problems and they
are easily scalable. The disadvantage is that precautions have to be taken against attacks that exploit the
mathematical structure like fixed points of modular exponentiation [10] (trivial examples are 0 and 1),
multiplicative attacks and attacks with small numbers, for which no modular reduction occurs.

5.3.1 Schemes with a small modulus

A first type of schemes uses only a small modulus (about 32 bits). R. Jueneman proposed a first version
in [71, 72], but several attacks resulted in several new versions [73, 74, 75]. The last scheme was broken
by D. Coppersmith in [25].
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5.3.2 Schemes with a large modulus

A second class of schemes uses a large modulus (the size of the modulus n is typically 512 bits or more).
In this case the operands are elements of the ring corresponding to an RSA modulus, i.e., the product of
two large primes, or of a Galois Field GF(p) or GF(2"). For convenience these schemes will be denoted
as schemes with large modulus, although this terminology applies strictly speaking only to RSA based
schemes. The latter class can be divided into practical schemes and scheme that are provably secure.
In the case of an RSA modulus, one has to solve the following practical problem: the person who has
generated the modulus knows its factorization, and hence he has a potential advantage over the other
users of the hash function. The solution is that the modulus can be generated by a trusted third party
(in that case one can not use the modulus of the user), or one can design the hash function in such a way
that the advantage is limited.

The most efficient schemes are based on modular squaring. Moreover some theoretical results suggest
that inverting a modular squaring without knowledge of the factorization of the modulus is a difficult
problem. Again one can study all possible schemes which use a single squaring and exclusive ors and with
an internal memory of only 1 block. Several schemes of this type have been evaluated in previous papers
[54, 99, 100]. It can be shown [106] that the optimal scheme is of the form:

f=(X;®Hi_)’mod N & H,.
Most existing proposals use however the well known Cipher Block Chaining (CBC) mode:
f=(X;® H;i1)’ mod N .

In order to avoid the vulnerabilities (one can go backwards easily), additional redundancy is added to the
message. The first proposal was to fix the 64 most significant bits to 0 [38]. It was however shown in
[54, 76] that this is not secure. In a new proposal, that appeared in national and international standards
(the informative annex D of CCITT-X.509 [18] and the French standard ETEBAC 5 [19]) the redundancy
was dispersed. D. Coppersmith showed however that one can construct two messages such that their
hashcode is a multiple of each other [26, 77]. If the hash function is combined with a multiplicative
signature scheme like RSA [112], one can exploit this attack to forge signatures. As a consequence, new
methods for adding redundancy were specified in [58, 77, 64, 68|, but these methods are still under study.

Other schemes based on squaring that are insecure are the scheme by I. Damgard [33] that was broken
by B. den Boer [40] and the scheme by Y. Zheng, T. Matsumoto and H. Imai [128], that is vulnerable to
the attack described in [54]. 1. Damgard [34] has identified several weaknesses in an MDC (and a MAC)
based on arithmetic in GF(25%) [1].

Stronger schemes have been proposed that require more operations. Examples are the use of two
squaring operations [54]:

f = (Hit @ (X,)?) mod N

and the replacement of the squaring by a higher exponent (3 or 2! + 1) in the previous schemes. This
allows to simplify the redundancy [16, 54].

One can conclude that it would be desirable to find a secure redundancy scheme for a hash function
based on modular squaring and to replace the CBC mode by a more secure mode. If a slower scheme is
acceptable, the exponent can be increased.

This section will be concluded with provably secure schemes. I. Damgard [31, 32] has suggested con-
structions for which finding a a collision is provably equivalent to factoring an RSA modulus or finding a
discrete logarithm modulo a large prime. The construction of J.K. Gibson [53] yields a collision resistant

Appeared in Proceedings of the 6th International Computer Security and Virus Conference (ICSVC 1993), 19 pages, 1993.



13

function based on the discrete logarithm modulo a composite. Both the factoring and the discrete loga-
rithm problem are known to be difficult number theoretic problems. The disadvantages of these schemes
is that they are very inefficient.

5.4 Schemes based on knapsacks

The knapsack problem is a well known NP-complete problem. In cryptography, a special case is considered,
namely given a set of n b-bit integers {aj, as, ...,a,}, and an s-bit integer S (with s ~ b+ log, n), find a
vector X with components z; equal to 0 or 1 such that

n
Z(IZZL}:S
i=1

The first application of this function was the 1978 Merkle-Hellman public key scheme [87]. Almost all
schemes based on the knapsack problem have been broken [12, 44], which has given the knapsack a bad
reputation. It is an open problem whether the knapsack problem is only hard in worst case, while the
average instance is easy. If this would be true the knapsack problem would be useless for cryptography.
The attractivity of the problem lies in the fact that implementations in both hardware and software are
much faster than schemes based on number theoretic problems.

In the case of additive knapsacks, several constructions have been suggested and broken (e.g., the
scheme by I. Damgard [33] was broken by P. Camion and J. Patarin [15]). Other results can be found in
[56, 61]. It is for the time being an open problem whether a random knapsack with n = 1024 and b = 512
is hard to solve.

The first multiplicative knapsack proposed by J. Bosset [11] was broken by P. Camion [14]. An new
scheme by G. Zémor is also based on the hardness of finding short factorizations in certain groups [127].
For the suggested parameters it can be shown that two messages with the same hashcode will differ in at
least 215 bits. It remains an open problem whether it is easy to find factorizations of a ‘reasonable size’.

5.5 Dedicated hash functions

In this section some dedicated hash functions will be discussed, i.e., algorithms that were especially designed
for hashing operations.

MD2 [78] is a hash function that was published by R. Rivest of RSA Data Security Inc. in 1990. It
makes use of a random 8-bit permutation and although it is software oriented, it is not too fast in software.
The evaluation by the author [106] suggests that 16 rounds are sufficient, but only offer a marginal security.
No other evaluations of MD2 have been published.

A faster algorithm by the same designer is MD4 [113, 114]. This algorithm uses standard 32-bit logic
and arithmetic operations and is very efficient in software. The number of rounds, which corresponds to
the number of times a single message bit is processed, is equal to 3. It was however shown by R. Merkle
in an unpublished result and by B. den Boer and A. Bosselaers [40] that omitting the third respectively
the first round yields a weak scheme, which suggests that the security offered by MD4 is only marginal
(although the scheme is not broken for the time being).

In consequence of these attacks, R. Rivest realized that the security level of MD4 was not as large as he
intended, and he proposed in 1991 a strengthened version of MD4, namely MD5 [115, 116]. An additional
argument was that although MD4 was not a very conservative design, it was being implemented fast into
products. An additional round was added, and several operations were modified to make the previous
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attacks more difficult. It was however shown by B. den Boer and A. Bosselaers [42] that with respect to
certain criteria MD5 is weaker than MDA4.

On January 31, 1992, NIST (National Institute for Standards and Technology, USA) published in the
Federal Register a proposed Secure Hash Standard (SHS) [52] that contains the description of the Secure
Hash Algorithm (SHA). This hash function is designed to work with the Digital Signature Algorithm (DSA)
proposed in the Digital Signature Standard (DSS) [51]. The algorithm is clearly inspired by MD4, but it
is a strengthened version. The two most remarkable changes are the increase of the size of the hashcode
from 128 to 160 bits and the fact that the message words are not simply permuted but transformed with
a cyclic code. Another improved version of MD4 called RIPEMD was developed in the framework of the
EEC-RACE project RIPE. HAVAL was proposed by Y. Zheng, J. Pieprzyk and J. Seberry at Auscrypt’92
[129]; it is an extension of MD5. The most important properties are a variable number of rounds, a variable
size of the hashcode and the use of highly nonlinear Boolean functions. This concludes the variants on
MD4.

N-hash is a hash function designed by S. Miyaguchi, M. Iwata and K. Ohta [96, 98]. Serious weaknesses
have been identified in this scheme by B. den Boer [41] and E. Biham and A. Shamir [6]. A new version of
N-hash appeared in a Japanese contribution to ISO [69]. It was shown that this scheme contains additional
weaknesses [9, 106].

FFT-Hash I and IT are MDC'’s suggested by C.P. Schnorr [118, 119]. The first version was broken inde-
pendently by J. Daemen, A. Bosselaers, R. Govaerts and J. Vandewalle [?] and by T. Baritaud, H. Gilbert
and M. Girault [4]. The second version was broken three weeks after its publication by S. Vaudenay [122].

R. Merkle suggested in 1989 a software oriented one-way hash function that he called Snefru [90]. Tt
is based on large random substitution tables (2 Kbyte per pass). E. Biham and A. Shamir showed several
weaknesses of Snefru [7]. A weaker attack was found independently by J. Williams [124]. As a consequence
of theses attacks, it is recommended to use 6 and preferably 8 passes, possibly combined with an increased
size of the hashcode. However, these measures increase the size of the substitution tables and decrease the
performance.

The scheme by I. Damgard [33] based on cellular automata has been broken in [28]. J. Daemen,
J. Vandewalle and R. Govaerts subsequently proposed Cellhash, a new hash function based on a cellular
automaton [28] and an improved version Subhash [30]. Both schemes are hardware oriented.

6 An overview of MAC proposals

The general model for an iterated MAC is similar as the model for an MDC. The basic difference is that
the round function f and in some cases the initial value I'V depend on the secret key K.

In contrast with the variety of MDC proposals, very few algorithms exist. This can perhaps be explained
by the fact that the existing standards are still widely accepted. The ANSI standard [3] specifies that the
resulting MAC contains 32 bits. It is clear that a result of 32 bits can be sufficient if a birthday attack
(cf. section 3) is not feasible and if additional protection is present against random attacks (cf. section 3),
which is certainly the case in the wholesale banking environment. In other applications, this can not be
guaranteed. Therefore, certain authors recommend also for a MAC a result of 128 bits [74, 75].

The most widespread method to compute a MAC are the Cipher Block Chaining (CBC) and Cipher
FeedBack (CFB) mode of DES [3, 50, 63, 65, 91]. The descriptions and standards differ because some of
them select one of the two modes, suggest other padding schemes or leave open the number of output bits
that is used for the MAC.

CBCf:E(K,Hlfl@XJ and CFBf:E(K,HZ,1>@Xl
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In the case of CFB it is important to encrypt the final result once more, to avoid a linear dependence of
the MAC on the last plaintext block.

In the case of DES, an attack based on exhaustive key search (cf. section 3) or differential attacks [8]
can be thwarted by encrypting only the last block with triple DES; at the same time this can block the
following chosen plaintext attack [41] (it will be described for the case of CBC): let H and H’ be the
CBC-MAC corresponding to key K and plaintext X and X’ respectively. The attacker appends a block
Y to X and obtains with a chosen plaintext attack the new MAC, that will be denoted with G. It is
then clear that the MAC for the concatenation of X’ and Y’ =Y & H @& H' will also be equal to G. An
alternative way to block this attack is to encrypt the result with a key derived from K.

If both authenticity and secrecy are protected using the same block cipher, the keys for both operations
have to be different [72, 91, 106].

A new mode to compute a MAC was suggested by the author:

f=EK X, ®H,_1)®X,.

It has the advantage that the round function is harder to invert.

The Message Authentication Algorithm (MAA) is a dedicated MAC. It was published in 1983 by
D. Davies and D. Clayden in response to a request of the UK Bankers Automated Clearing Services
(BACS) [37, 39]. In 1987 it became a part of the ISO 8731 banking standard [63]. The algorithm is
software oriented and has a 32-bit result, which makes it unsuitable for certain applications.

A new non-iterative MAC based on stream ciphers was proposed recently by X. Lai, R. Rueppel and
J. Woollven [81]. Further study is necessary to assess its security.

The DSA algorithm (Decimal Shift and Add, not to be confused with the Digital Signature Algorithm)
was designed in 1980 by Sievi of the German Zentralstelle fiir das Chiffrierwesen, and it is used as a
message authenticator for banking applications in Germany [39]. Weaknesses of this algorithm have been
identified in [59, 106]. The scheme by F. Cohen [22] and its improvement by Y. Huang and F. Cohen [60]
proved susceptible to an adaptive chosen message attack [103]. Attacks were also developed [5, 106] on
the weaker versions of this algorithm that are implemented in the ASP integrity toolkit [23]. Finally it
should be noted that several MAC algorithms exist that have not been published, such as the SW.LF.T
authenticator and Dataseal [?].

This section will be concluded with a discussion of provably secure and efficient MAC’s based on
universal hash functions [17, 20, 121, ?]. The advantage is that one can prove based on information theory
that an attacker can do no better than guess the MAC: the security is hence independent of the computing
power of the opponent. The disadvantage is that the message size is limited, and the key material can be
used only once. For the most efficient construction [20], a security level of S bits for an m-bit message
can be obtained with a key of 2(.S + log, 3m) bits per message and a MAC of S + log, 3m bits. For most
applications with a large number of messages, the huge amount of key material that has to be exchanged
securely will be prohibitive.

7 Conclusions

Cryptographic hash functions are a useful tool in the protection of information integrity. Therefore the
need exist for provably secure and efficient constructions. For the time being only a limited number of
provably secure constructions exist, that are very inefficient. Some theoretical results are available to
support practical constructions, but most of our knowledge on practical systems is originating from trial
and error procedures. Therefore it is important that new proposals are evaluated thoroughly by several
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independent researchers and that they are not implemented too quickly. Moreover implementations should
be modular such that upgrading of the algorithm is feasible. The choice between different algorithms will
also depend on the available hardware.
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