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Lecture  contents  

• Coupled oscillators  

• Dispersion relationship 

• Acoustical and optical lattice vibrations  

• Acoustical and optical phonons 

• Phonon statistics 

• Acoustical phonon scattering 

 

 

 

 

 

 

 

 



NNSE 618    Lecture #11 

2 Few concepts from Solid State Physics 

1. Adiabatic approximation 

)()( RERH LL 

),(),( rRErRH 

• Mass of ions >1000 (for most 

semiconductors >102  times greater than 

mass of electrons  

• Ion velocities >100 times slower 

• Electrons adjust ‘instantaneously” to the 

positions of atoms 

When valence and core ectrons are separated, general Schrödinger equation for a 

condensed medium without spin 

0( , ) ( , ) ( )R r r R R  

• Separate ion and electron motion 

 (accuracy ~m/M) 

= HL + He 

),(),( RrERrH ee  
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Few concepts from Solid State Physics 

2. Phonons  
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Hamiltonian for lattice motion (harmonic oscillations) : 

Displacements show up as plane waves with weak 

interaction via anharmonicity: 

Phonon dispersion 

relation in GaAs 
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Energy in a mode: 

Equilibrium distribution (Bose Einstein): 
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Lattice vibrations 
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Lattice Hamiltonian: 

 

 

 

 

Expanding binding energy around the 

equilibrium position R0 : 

 

 

 

 

 

Linear term is zero at minimum 

 

 

Neglecting anharmonic terms: 

 

 

 

 

 with a force constant C 

 

Binding energy vs. interatomic distance in a crystal 
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Let’s consider diatomic chain to 

demonstrate acoustical and optical 

dispersion branches 

 

 

Masses are connected by springs with 

equal spring constants, C, for 

simplicity 

 Force =  - C .R 

 

 

With u and v, the displacements of 

respective atoms, we can write down 

classical equation of motion (second 

Newton law)   

 

 

The solution for displacements in the 

chain will be searched as traveling 

waves: 

 

Diatomic chain 

 sss
s uvvC

dt

ud
M 212
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From Singh, 2003 
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dt

vd
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6 Solution for diatomic chain 
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Solutions for small k : 

 

 

 

 

 

 

Solutions for the edge of Brillouin 

zone k=p/a : 

Dispersion relations for diatomic chain 

From Singh, 2003 
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Acoustical and optical waves 

For acoustical branch in long 

wavelength limit (at small k): 

 

 Sound velocity: 

 

 

For optical branch at  k=0 : 

(Two atoms vibrate against their 

center of masses) 
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Dispersion curves in semiconductor crystals 

InAs Si 

From Singh, 2003 

GaAs 

• For each wavevector there are 1 longitudinal mode 

and 2 transverse modes 

• The frequencies are determined by force constants 

• Usually longitudinal mode (LA) is stiffer    

• Energy scales (for similar crystals) as M-1/2 

• Atomic vibrations are in THz range 

Example: shell model 
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Anisotropy of phonon dispersion curves  

From Yu, Cordona, 2002 

Experimental (points) and calculated phonon dispersion curves for Si 
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Quantum harmonic oscillator: Hamiltonian  

 

 

Solution gives resonance frequency (as in 

classical mechanics) 

 

And quantum oscillation spectrum: 

(n  may be considered as number of 

“quasiparticles”) 

 

 

Quantum harmonic oscillator 
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For a single oscillator the frequency is fixed, but 

when many oscillators  interact we have a 

number of modes  (normal modes) 

 

 

Each mode is occupied by nk phonons 

 

 

 

For a 1D chain states are determined as: 

 

 

Occupancy of modes is given by Bose-statistics: 

 

Quantization of lattice vibrations: phonons 
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Bose-Einstein distribution 

function 
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Optical phonons: Raman scattering 

From Yu and Cordona, 2003 

GaAs 

• Inelastic light scattering = Raman scattering gives 

information on optically active vibrations in a 

material 

• Wavevector of photons is SMALL 

• Stokes (creation of vibration) and anti-Stokes 

(emission of vibration) 

• Symmetry and selection rules: Raman scattering 

intensity depends on geometry and polarization 
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Lattice scattering rate calculation  
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Goal: calculation of the scattering integral or relaxation time: 

 

 

 

 

Step 1. Determine scattering potential  

 

 

Step 2. Calculate matrix elements from k’ to k 

 

 

 

Step 3. Calculate transition rate from k’ to k using  

“golden Fermi rule” 

 

 

Step 4. Calculate state relaxation time 

 

 

 

Step 5. Average relaxation time 
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