
Physical Chemistry I

Andrew Rosen

August 19, 2013

Contents

1 Thermodynamics 5
1.1 Thermodynamic Systems and Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.1 Systems vs. Surroundings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Types of Walls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Thermodynamic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 The Mole . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Ideal Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.1 Boyle’s and Charles’ Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4.2 Ideal Gas Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Equations of State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 The First Law of Thermodynamics 7
2.1 Classical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 P-V Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Heat and The First Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Enthalpy and Heat Capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 The Joule and Joule-Thomson Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 The Perfect Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7 How to Find Pressure-Volume Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7.1 Non-Ideal Gas (Van der Waals Gas) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7.2 Ideal Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.7.3 Reversible Adiabatic Process in a Perfect Gas . . . . . . . . . . . . . . . . . . . . . . . 11

2.8 Summary of Calculating First Law Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8.1 Constant Pressure (Isobaric) Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8.2 Constant Volume (Isochoric) Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.8.3 Reversible Isothermal Process in a Perfect Gas . . . . . . . . . . . . . . . . . . . . . . 12
2.8.4 Reversible Adiabatic Process in a Perfect Gas . . . . . . . . . . . . . . . . . . . . . . . 12
2.8.5 Adiabatic Expansion of a Perfect Gas into a Vacuum . . . . . . . . . . . . . . . . . . . 12
2.8.6 Reversible Phase Change at Constant T and P . . . . . . . . . . . . . . . . . . . . . . 12

2.9 Molecular Modes of Energy Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.9.1 Degrees of Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1



2.9.2 Classical Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.9.3 Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.9.4 Classical Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.9.5 Determining Number of Atoms in a Molecule Given Cv,m,class. . . . . . . . . . . . . . 14

3 Heat Engines 14
3.1 The Carnot Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Carnot Refrigerators, Freezers, Air Conditioners, and Heat Pumps . . . . . . . . . . . . . . . 16
3.3 The Otto Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4 Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 The Second Law of Thermodynamics 17
4.1 Definition of the Second Law of Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Calculation of Entropy Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3.1 Cyclic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.2 Reversible Adiabatic Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.3 Reversible Isothermal Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3.4 Reversible Phase Change at Constant T and P . . . . . . . . . . . . . . . . . . . . . . 17
4.3.5 Cautionary Note on Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.6 Constant Pressure Heating with No Phase Change . . . . . . . . . . . . . . . . . . . . 18
4.3.7 Change of State of a Perfect Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.8 General Change of State Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.9 Irreversible Phase Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3.10 Mixing of Different Inert Perfect Gases at Constant P and T . . . . . . . . . . . . . . 19
4.3.11 Joule Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Entropy, Reversibility, and Irreversibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5 Material Equilibrium 20
5.1 Entropy and Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 The Gibbs and Helmholtz Energies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.1 Derivation of A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 Derivation of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2.3 Connection with Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.3 Thermodynamic Relations for a System in Equilibrium . . . . . . . . . . . . . . . . . . . . . . 21
5.3.1 Basic Thermodynamic Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.3.2 The Gibbs Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.3 The Maxwell Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3.4 Dependence of State Functions on T, P, and V . . . . . . . . . . . . . . . . . . . . . . 23
5.3.5 Remaining Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4 Calculation of Changes in State Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.1 Calculation of ∆S . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.2 Calculation of ∆H and ∆U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.4.3 Calculation of ∆G and ∆A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.5 Chemical Potentials and Material Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.6 Reaction Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2



6 Standard Thermodynamic Functions of Reaction 26
6.1 Standard Enthalpy of Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.2 Hess’ Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 The Six-Step Program for Finding ∆H◦f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4 Calorimetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.4.1 Cautionary Calorimetry Calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.5 Calculation of Hideal −Hreal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.6 Temperature Dependence of Reaction Heats . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.7 Conventional Entropies and the Third Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.8 Standard Gibbs Energy of Reaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7 Reaction Equilibrium in Ideal Gas Mixtures 30
7.1 Chemical Potentials in an Ideal Gas Mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.2 Ideal-Gas Reaction Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.3 Qualitative Discussion of Chemical Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.4 Temperature Dependence of the Equilibrium Constant . . . . . . . . . . . . . . . . . . . . . . 32
7.5 Ideal-Gas Equilibrium Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
7.6 Equilibrium Shifts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

8 One-Component Phase Equilibrium and Surfaces 34
8.1 Qualitative Pressure Dependence of Gm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.2 The Phase Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3 One-Component Phase Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.4 The Clapeyron Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

8.4.1 General Clapeyron Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.4.2 Liquid-Vapor and Solid-Vapor Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 35
8.4.3 Effects of Pressure on Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.4.4 Solid-Liquid Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
8.4.5 Effects of Pressure on Vapor Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

9 Solutions 36
9.1 Solution Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
9.2 Partial Molar Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
9.3 Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9.3.1 Positive Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.3.2 Negative Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9.4 Finding Partial Molar Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.4.1 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.4.2 Theoretical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9.5 Mixing Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
9.6 Ideal Solutions and Thermodynamic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.7 Ideally Dilute Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
9.8 Thermodynamic Properties of Ideally Dilute Solutions . . . . . . . . . . . . . . . . . . . . . . 40

3



10 Nonideal Solutions 41
10.1 Activities and Activity Coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.2 Determination of Activities and Activity Coefficients . . . . . . . . . . . . . . . . . . . . . . . 42

10.2.1 Convention I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.2.2 Convention II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4



1 Thermodynamics

1.1 Thermodynamic Systems and Properties

1.1.1 Systems vs. Surroundings

• System: The macroscopic part of the universe under study in thermodynamics

• Surroundings: The parts of the universe that can interact with the system

• Open System: One where transfer of matter between system and surroundings can occur

• Closed System: One where transfer of matter between system and surroundings cannot occur

• Isolated System: One in which no interaction in any way with the system can occur

1.1.2 Types of Walls

1. Rigid or nonrigid

2. Permeable or impermeable

3. Adiabatic (does not conduct heat) or nonadiabatic/thermally conductive (conducts heat)

1.1.3 Equilibrium

• An isolated system is in equilibrium when its macroscopic properties remain constant with time

• A nonisolated system is in equilibrium when the the system’s macroscopic properties remain constant
with time but also need to have no change with removal of the system from contact with its surroundings

◦ If removal of the system does change the macroscopic properties, it is in a steady state

• Mechanical Equilibrium: No unbalanced forces act on or within the system

• Material Equilibrium: No net chemical reactions are occurring in the system nor is there any net
transfer of matter from one part of the system to another

• Thermal Equilibrium: No change in the properties of the system or surroundings when they are
separated by a a thermally conductive wall

• Thermodynamic Equilibrium: Must be in mechanical, material, and thermal equilibrium

1.1.4 Thermodynamic Properties

• The definition of pressure, P , is as follows and relates to force, F , and area, A:

P ≡ F

A

• Pressure is uniform and equal to the surroundings in mechanical equilibrium

• An extensive property is equal to the sum of its values for the parts of the system (eg: mass)

• An intensive property does not depend on the size of the system (eg: density)

• If the intensive macroscopic properties are constant in the system, it is homogeneous; otherwise, it
is heterogeneous
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◦ A homogeneous part of a system is a phase

• The definition of density, ρ, is as follows and relates to mass, m, and volume, V :

ρ ≡ m

V

• State Functions: Values that are functions of the system’s state that doesn’t depends on the system’s
past history

1.2 Temperature

• Temperature is common for systems in thermal equilibrium and is symbolized by θ

• Zeroth Law of Thermodynamics: Two systems that are found to be in thermal equilibrium with
a third system will be found to be in thermal equilibrium with each other

• A reference system (thermometer), r, is used to create a temperature scale

1.3 The Mole

• The molar mass, Mi, of a substance is as follows and relates to mi, the mass of a substance i in a
sample and where ni is the number of moles of i in the sample:

Mi ≡
mi

ni

• The number of molecules in species i, Ni, is as follows and relates to Avogadro’s Constant, NA, and
ni:

Ni = niNA

• The mole fraction, xi, is defined as follows and relates to ni and the total moles, nt:

xi ≡
ni
ntot

1.4 Ideal Gases

1.4.1 Boyle’s and Charles’ Laws

• Boyle’s Law is as follows when θ and m are constant:

PV = k

• Gasses are ideal in the zero-density limit

• The SI units for pressure can be expressed as either of the following

1Pa ≡ 1
N

m2

• Some alternate rearrangements of the pressure equation are as follows:

P =
F

A
=
mg

A
=
ρV g

A
= ρgh

• Charles’ Law is as follows when P and m are constant:

V = a1 + a2θ

◦ Alternatively, it can be written as
V

T
= k

• The absolute ideal-gas temperature is represented as T

6



1.4.2 Ideal Gas Equation

• The ideal-gas law is
PV = nRT

• This can be rearranged to make the following two equations where M is molar mass:

PV =
mRT

M
→ P =

ρRT

M

• The partial pressure, Pi, of a gas i in a gas mixture is defined as:

Pi ≡ xiP

• For an ideal gas mixture,

Pi =
niRT

V

1.5 Equations of State

• The van der Waals equation accounts for intermolecular forces, with a and b as constants defined
for each gas: (

P +
an2

V 2

)
(V − nb) = nRT

• An approximate equation of state for most liquids and solids is1:

Vm = c1 + c2T + c3T
2 − c4P − c5PT

• The thermal expansivity, α, is defined as2

α(T, P ) ≡ 1

Vm

(
∂Vm
∂T

)
P

• The isothermal compressibility, κ, is defined as

κ(T, P ) ≡ − 1

Vm

(
∂Vm
∂P

)
T

• These can be combined as, (
∂P

∂T

)
Vm

=
α

κ

2 The First Law of Thermodynamics

2.1 Classical Mechanics

• Work is simply a force acting over a distance, which can be mathematically expressed as follows if
considering the displacement in the x direction:

dw ≡ Fx dx
1All variables that are not listed can be found in Ira N. Levine’s Physical Chemistry, 6th edition
2Calculus Note: The total differential, dz, for z(x, y) is defined as dz =

(
∂z

∂x

)
y

dx +

(
∂z

∂y

)
x

dy
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◦ If we integrate both sides, we get

w =

ˆ x2

x1

F (x) dx

◦ Work is measured in joules, where a joule is equivalent to a N ·m

• Power is simply
dw

dt
and is usually measured in watts

• The kinetic energy, or energy of motion, of a particle is

K ≡ 1

2
mv2

• The work-energy theorem states that w = ∆K as well

2.2 P-V Work

• A reversible process is one where the system is always infinitesimally close to equilibrium, and an
infinitesimal change in conditions can reverse the process to restore both system and surroundings to
their initial states

• P-V Work is the work done in a volume change, and it can be expressed as

dwrev = −P dv

2.3 Heat and The First Law of Thermodynamics

•
dq

dt
= UA∆T , where U is conductance and A is area

◦ Conductance be defined as U =
k

r
as well, where k is thermal conductivity and r is thickness of

the layer

• |q| ≡ m1c1 (Tf − Ti) = m2c2 (Tf − Ti)

◦ When q > 0, heat flows from the surroundings to the system

◦ When w > 0, work is done on a system by the surroundings

• The equation for heat at constant pressure is dqp = mcpdT , which is usually seen as

qp = mcp∆T

• Total energy, E, is defined as the following (V is potential energy)

E = K + V + U

The First Law for Closed Systems:

1. ∆E = q + w

2. ∆Esys + ∆Esurr = 0

(a) When K = V = 0, we have the equation ∆U = q + w

i. For an infinitesimal change, dU = dq + dw

(b) For a cyclic process, ∆U = 0
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2.4 Enthalpy and Heat Capacity

• The definition of enthalpy is
H ≡ U + PV

◦ Similarly, ∆H = ∆U + P∆V at constant pressure and ∆H = ∆U + ∆(PV ) for any process

◦ For a process with constant moles, ∆H = ∆U + nR∆T

Now for a little derivation:

∆U = U2 − U1 = q + w = q −
ˆ v2

v1

P dv = qp − P
ˆ v2

v1

dV = qp − P (V2 − V1)→

qp = U2 + PV2 − U1 − PV1 = (U2 + P2V2)− (U1 + P1V1) = H2 −H1

∴ ∆H = qp

Also,
(dH)p = dqp

• For a constant volume process, du = dq + dw, but dw = 0 because dw = −P dV . Therefore,

(dU)v = dqv

• Heat capacity is defined as

Cprocess ≡
dqprocess
dT

• For constant pressure,

CP ≡
dqP
dT

=
dHP

dTP
=

(
∂H

∂T

)
P

• For constant volume,

CV ≡
dqV
dT

=
dUV
dTV

=

(
∂U

∂T

)
V

• The difference between CP and CV is equivalent to

CP − CV =

[(
∂U

∂V

)
T

+ P

](
∂V

∂T

)
P

◦ The term in the brackets has units of pressure and is called the “internal pressure.” It has to do
with interaction among the particles of a gas.

2.5 The Joule and Joule-Thomson Experiments

• The Joule expansion states that when a gas expands into a vacuum, the work done is zero

◦ Note that the Joule Thomson experiment does have work done

• The goal of the Joule experiment was to find departures from the ideal gas behavior in the
(
∂U

∂V

)
T

term by measuring
(
∂T

∂V

)
U
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• The goal of the Joule-Thomson Experiment was to find
(
∂H

∂P

)
T

by measuring
(
∂T

∂P

)
H

• The Joule coefficient is defined as
µJ ≡

(
∂T

∂V

)
U

• The Joule-Thomson coefficient is defined as

µJT ≡
(
∂T

∂P

)
H

◦ Resultantly,
(
∂H

∂P

)
T

= −CPµJT

◦ Also,
(
∂U

∂V

)
T

= −CV µJ

• ∆T = 0 for a perfect gas in the Joule Experiment because µJ = 0 for a perfect gas

2.6 The Perfect Gas

• A perfect gas is defined as one that follows PV = nRT and
(
∂U

∂V

)
T

= 0

◦ This is to assure that U is dependent only on temperature. Since H is also dependent only on

temperature for a perfect gas,
(
∂H

∂P

)
T

= 0 =

(
∂U

∂V

)
T

• For a perfect gas,
CP − CV = nR (perf. gas)

• Additionally3,
CP,m − CV,m = R (perf. gas)

• For a perfect gas,
dU = CV dT (perf. gas)

• For a perfect gas,
dH = CP dT (perf. gas)

2.7 How to Find Pressure-Volume Work

2.7.1 Non-Ideal Gas (Van der Waals Gas)

• Rearrange the van der Waals equation to solve for P =
nRT

V − nb
− a

n2

V 2
and substitute this into

w =
´ V2

V1
P dV

2.7.2 Ideal Gas

• Rearrange the ideal-gas equation to solve for P =
nRT

V
and substitute into the work equation to get

w = −nR
ˆ V2

V1

T

V
dV (perf. gas)

◦ If it’s isothermal, temperature is constant, so

w = −nRT ln

(
V2

V1

)
(isothermal)

3C ≡ nCm
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2.7.3 Reversible Adiabatic Process in a Perfect Gas

• Assuming that CV,m does not change much with temperature,

T2

T1
=

(
V1

V2

)R/CV,m
(adiabatic)

• Alternatively,
P1V

γ
1 = P2V

γ
2 (adiabatic)

• In the above equation, γ is the heat-capacity ratio and is defined

γ ≡ CP
CV

• If you’re still not happy, you can use(
P1

P2

)R
=

(
T1

T2

)CP,m
(adiabatic)

• Since dU = CV dT , it is safe to use ∆U = w = CV ∆T

2.8 Summary of Calculating First Law Quantities

• Always start with writing these three equations down4:

1. w = −
´ V2

V1
p dV

2. ∆U = q + w

3. ∆H = ∆U + ∆ (PV )

• If it’s a perfect gas, write these three down as well:

1. dU = CV dT

2. dH = CP dT

3. CP − CV = nR

• If the pressure is equal to zero, w = 0

• If the volume change is equal to zero, w = 0

2.8.1 Constant Pressure (Isobaric) Heating

1. P is constant, so w = −P∆V

2. ∆H = qP =
´ T2

T1
CP dT

2.8.2 Constant Volume (Isochoric) Heating

1. w = 0

2. ∆U =
´ T2

T1
CV dT = qV

3. ∆H = ∆U + V∆P

(a) Alternatively, ∆H = qP =
´ T2

T1
CP dT

4Whenever you compute work, make sure the units work out. For instance, at constant pressure and using w = −P∆V , one
might obtain units of L · atm. However, this is not a Joule, so a conversion factor needs to be set up.
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2.8.3 Reversible Isothermal Process in a Perfect Gas

1. ∆U = ∆H = 0

2. Rearrange the ideal-gas equation to solve for P =
nRT

V
and substitute into the work equation to get

w = −nRT ln

(
V2

V1

)
= nRT ln

(
P2

P1

)
3. q = −w

2.8.4 Reversible Adiabatic Process in a Perfect Gas

1. q = 0 and ∆U = w

2. ∆U =
´ T2

T1
CV dT

3. ∆H =
´ T2

T1
CP dT

4. The final state of the gas can be found by P1V
γ
1 = P2V

γ
2

2.8.5 Adiabatic Expansion of a Perfect Gas into a Vacuum

1. q = w = ∆U = ∆H = 0

2.8.6 Reversible Phase Change at Constant T and P

1. q is the measured latent heat of the phase change

2. w = −P∆V

(a) ∆V can be calculated from the densities of the two phases

(b) If one phase is a gas, PV = nRT can be used

3. ∆H = qp

4. ∆U = q + w

2.9 Molecular Modes of Energy Storage

2.9.1 Degrees of Freedom

• Every free particle has three degrees of freedom manifested in each dimension of space

• Bound particles have some changes with respect to degrees of freedom

2.9.2 Classical Mechanics

1. Translation

(a) E =
1

2
mv2 in each dimension

2. Rotation

(a) E =
1

2
Iω2
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3. Vibration

(a) E =
1

2
mv2 +

1

2
kx2

• The degrees of freedom of a molecule must be 3N , where N is the number of nuclei or atoms in the
molecule

• For an N atom linear molecule, there are three translational degrees of freedom, 2 rotational, and
3N − 5 vibrational

• For an N atom nonlinear molecule, there are 3 translational degrees of freedom, 3 rotational, and
3N − 6 vibrational

• Equipartition Principle states that each degree of freedom gets
1

2
RT of energy per quadratic term in

its energy expression

◦ Translational energy gets
1

2
RT , rotational gets

1

2
RT , and vibrational gets

2

2
RT

2.9.3 Quantum Mechanics

• The classical result for H2 would be Um =
3

2
RT +

2

2
RT +

2

2
RT =

7

2
RT

◦ This would predict Cv,m =

(
∂u

∂T

)
V

=
7

2
R

∗ This does not agree with the experimental value of
5

2
R with weak T dependence. This is

because energy is not quantized in classical mechanics, and if spacings are large compared to
RT , equipartition will not hold

∗ The translational and vibrational terms are fairly consistent between quantum and classical
mechanics (small spacing); however, there is a big discrepancy for vibrational motion where
there is large energy spacing

• Both classical and quantum mechanical systems must obey the Boltzmann Distribution Law that states
ni
nj

= e−(Ei−Ej)/kT , where Ei and Ej are molecular energies and k is the Boltzmann constant

◦ An analogous equation is
ni
nj

= e−(Ei,m−Ej,m)/RT and uses molar energies and the ideal-gas

constant

• Contributions to U and H come from two sources:

◦ Degrees of freedom of individual molecules (translational, rotational, vibrational, and electronic)

◦ Interactions between molecules, of which pairwise interactions are most important in gases, but
at smaller spacings, higher-order interactions also become important (clusters of more than 2
molecules)

• Umolecular = ΣiUi, where i is all the degrees of freedom

◦ Therefore, Umolecular = Utrans + Urot + Uvib

• Translation: Uq.m. ≈ Ucl, Rotational: Uq.m. ≈ Ucl, Vibrational: Uq.m. � Ucl, Electronic: Uqm ≈ 0

13



2.9.4 Classical Equations

Utrans = ntrans · 1 ·
kT

2
=

3

2
kT

Urot = nrot · 1 ·
kT

2
=

2

2
KT = kT (linear)

Urot =
3

2
kT (nonlinear)

Uvib = nvib · 2 ·
kT

2
= (3N − 5)

2

2
kT = (3N − 5) kT (linear)

Uvib = (3N − 6) kT (nonlinear)

If scaled up to a mole so that K → R:

Um,class. =
RT

2
(6N − 5) + Uint (linear)

Um,class. =
RT

2
(6N − 6) + Uint (nonlinear)

CV,m,class. =

(
∂Um
∂T

)
V

2.9.5 Determining Number of Atoms in a Molecule Given Cv,m,class.

For a linear molecule with N atoms,

CV,m,class. =
R

2
(6N − 5)

For a nonlinear molecule with N atoms,

CV,m,class. =
R

2
(6N − 6)

However, all of these theoretical values do not match experimental results due to the necessary quantum
mechanical effects. In reality,

Uq.m. =
5

2
RT + small terms (linear molecules)

Uq.m. = 3RT + small terms (nonlinear molecules)

3 Heat Engines

3.1 The Carnot Engine

• A heat engine converts some of the random molecular energy of heat flow into macroscopic mechanical
energy known as work

• The essentials of a heat engine cycle is the absorption of heat, qH , by the working substance from a hot
body, the performance of work, −w, by the working substance on the surroundings, and the emission
of heat, −qC , by the working substance to a cold body, with the working substance returning to its
original state at the end of the cycle

• The efficiency of a heat engine is defined as:

e =
work output per cycle
energy input per cycle

=
−w
qH

=
|w|
qH
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• Alternatively,

e = 1− TC
TH

• For a cycle, ∆U = 0, so −w = qH + qC

◦ Therefore, efficiency is also defined as:

e =
−w
qH

= 1 +
qC
qH

◦ Because qC is negative and qH is positive, efficiency is always less than 1

• Combining the last two definitions of efficiency, we get

−TC
TH

=
qC
qH

• All reversible heat engines have the same efficiencies if the temperatures are the same

• If two Carnot cycle heat engines operating reversible between the same two temperature can have
different efficiencies, then they can be linked together in such a way as to transfer heat from a cold
object to a hot object without any work being done from the outside to make the flow occur. This is
goes against Clausius’ version of the Second Law

• A Carnot cycle can be graphed as follows:

Step 1 to 2:

• This is an isothermal process, so ∆U = 0, q = nRTH ln

(
V2

V1

)
, and w = −nRTH ln

(
V2

V1

)
Step 2 to 3:

• This is an adiabatic process, so ∆U = CV (TC − TH), q = 0, and w = CV (TC − TH)

◦ Note: Since TC is the second temperature state, ∆T is equal to TC − TH

Step 3 to 4:

• This is an isothermal process, so ∆U = 0, q = nRTC ln

(
V4

V3

)
, and w = −nRTC ln

(
V4

V3

)

◦ Alternatively, q = −nRTC ln

(
V2

V1

)
and w = nRTC ln

(
V2

V1

)
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Step 4 to 1:

• This is an adiabatic process, so ∆U = CV (TH − TC), q = 0, and w = CV (TH − TC)

Overall Cycle:

• This is a cycle, so ∆U = 0, q = nR (TH − TC) ln

(
V2

V1

)
and w = −nR (TH − TC) ln

(
V2

V1

)
• For a closed system undergoing a Carnot cycle,˛

dqrev
T

=
qC
TC

+
qH
TH

= 0

3.2 Carnot Refrigerators, Freezers, Air Conditioners, and Heat Pumps

The following equation holds true, where U is conductance and A is area,

dq

dt
= UA∆T

ηref,AC ≡ Coeff. of Performance =
dq/dt

dw/dt
=
qc
w

=
qc

− (qH + qc)
=

Tc
TH − Tc

ηHeat Pump =
−qH
w

=
TH

TH − TC

3.3 The Otto Engine

1. Step 1→ 2 is adiabatic compression

2. Step 2→ 3 is isochoric heating

3. Step 3→ 4 is adiabatic expansion

4. Step 4→ 1 is isochoric cooling

• There are no isotherms

For an Otto engine,

e =
−w
Qin

= 1− T1

T3
= 1−

(
V2

V1

)R/CV,m
Compression Ratio ≡ cr ≡ V1

V2

Efficiency is maximized with an infinite compression ratio, but of course there are practical volume limits

3.4 Historical Perspective

• Knocking or pinging is detonation of a fuel charge that occurs too early

• Straight-chain hydrocarbons knock at low compression ratios and vice versa

• To prevent knocking, antiknock components are added

◦ From the 1930s to 1970s, Pb(Et)4 was used, but it caused mental disorders and death due to the
lead

◦ From the 1970s to the 1990s, MTBE was used, but it was carcinogenic
◦ Currently, EtOH is used, which was ironically used before Pb(Et)4
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4 The Second Law of Thermodynamics

4.1 Definition of the Second Law of Thermodynamics

• According to the Kelvin-Planck statement of the second law, it is impossible for a system to undergo
a cyclic process whose sole effects are the flow of heat into the system from a heat reservoir and the
performance of an equivalent amount of work by the system on the surroundings

• According to the Clausius statement, it is impossible for a system to undergo a cyclic process whose
sole effects are the flow of heat into the system from a cold reservoir and the flow of an equal amount
of heat out of the system into a hot reservoir

4.2 Entropy

• The definition of entropy, S, is the following for a closed system going through a reversible process

ds ≡ dqrev
T

• According to the fundamental theorem of calculus,

∆S = S2 − S1 =

ˆ q2

q1

dqrev
T

• The molar entropy of a substance is

Sm =
S

n

4.3 Calculation of Entropy Changes

4.3.1 Cyclic Process

• ∆S = 0 since it is a state function

4.3.2 Reversible Adiabatic Process

• Since dqrev = 0, ∆S = 0

4.3.3 Reversible Isothermal Process

∆S =
qrev
T

(isothermal)

4.3.4 Reversible Phase Change at Constant T and P

• At constant temperature, ∆S =
qrev
T

• qrev is the latent heat of the transition in this case

• Since P is constant, qrev = qP = ∆H. Therefore,

∆S =
∆H

T
(rev. phase change at const. T and P )

17



4.3.5 Cautionary Note on Units

Question: The melting point of water is 0◦C at the interested state. What is ∆S for the melting of two
moles of water if heat of fusion is 6 kJ/mol

Answer:5

∆S =
(6 kJ/mol) (2mol)

0◦C + 273.15
= 0.044 kJ/K

4.3.6 Constant Pressure Heating with No Phase Change

∆S =

ˆ T2

T1

CP (T )

T
dT (Const. P , no phase change)

If CP is not temperature dependent,

∆S = CP ln

(
T2

T1

)
(Const. P and CP , no phase change)

4.3.7 Change of State of a Perfect Gas

∆S =

ˆ T2

T1

CV (T )

T
dT + nR ln

(
V2

V1

)
(perf. gas)

If CV is not temperature dependent,

∆S = CV ln

(
T2

T1

)
+ nR ln

(
V2

V1

)
(perf. gas)

Alternatively,

∆S = CV ln

(
T2

T1

)
+ nR ln

(
P1T2

P2T1

)
(perf. gas)

4.3.8 General Change of State Process

Take the example of converting a mole of ice at 0◦C and 1 atm to water vapor at 100◦C and 0.5atm

• Change the phase at constant pressure and temperature

• Heat the water at constant pressure

• Vaporize the liquid at constant pressure and temperature

• Isothermally expand the vapor (assume it’s a perfect gas change of state) to drop the pressure

4.3.9 Irreversible Phase Change

Consider the transformation of 1 mole of supercooled liquid water at −10◦C and 1 atm to 1 mole of ice at
the same P and T

• We first reversibly warm the supercooled liquid to 0◦C and 1 atm

• We then reversibly freeze it at this T and P

• Finally, we cool it reversibly back down to the ice at the original conditions
5Note: Be careful of units! To get ∆S, which is not on a mole basis, one must multiply the heat of fusion by how many

moles are melting
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4.3.10 Mixing of Different Inert Perfect Gases at Constant P and T

The general equation can be written as,

∆S = n1R ln

(
Vf
V1

)
+ n2R ln

(
Vf
V2

)
+ ...

For a perfect gas at constant temperature and pressure,

∆Smix = −n1R ln (x1)− n2R ln (x2)− ...

• The entropy of a perfect gas mixture is equal to the sum of the entropies each pure gas would have if
it alone occupied the volume of the mixture at the temperature of the mixture

4.3.11 Joule Expansion

∆S 6= 0 for a Joule Expansion. Instead, the following is true, where V is the amount of expansion

∆S = n

ˆ
dqrev
T

=
n

T

ˆ
P dV = nR

ˆ
dV

V
= nR ln

(
V2

V1

)
(Joule Expansion)

Bringing the system back to its original state will cause nR ln

(
V2

V1

)
to be ∆Ssurr

4.4 Entropy, Reversibility, and Irreversibility

For a reversible process,

dSuniv = dSsyst + dSsurr = 0 ∴ ∆Suniv = 0 (Rev. Process)

For an irreversible adiabatic process in a closed system, ∆Ssyst > 0. this is also true for an irreversible
process in an isolated system

∆Suniv > 0 (Irrev. Process)

Removing the constraint of an irreversible process has,

∆Suniv ≥ 0

• As a result, entropy can be created but not destroyed (there is no conservation of entropy)

• ∆S 6= 0 for a Joule expansion. ∆S = nR ln

(
V2

V1

)
for a Joule Expansion

• S = k ln Ω, where Ω is the number of microstates

• For an isolated system, thermodynamic equilibrium is reached when the system’s entropy is maximized
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5 Material Equilibrium

5.1 Entropy and Equilibrium

• Material equilibrium means that in each phase of a closed system the number of moles of each substance
present remains constant

• Thermodynamic equilibrium in an isolated system is reached when the system’s entropy is maximized

• The condition for material equilibrium in a system is the maximization of the total entropy of the
system plus its surroundings

• For the surroundings, dSsurr =
dqsurr
T

. Also, dqsurr = −dqsyst

◦ For the system, dSsyst >
dqsyst
T

• At material equilibrium, dS =
dqrev
T

• For a material change in a closed system in mechanical and thermal equilibrium, dS ≥ dq

T
, where the

equality only holds when the system is in material equilibrium

• For an irreversible chemical reaction in thermal and mechanical equilibrium, dS > dqirrev/T

• For a closed system of material change in mechanical and thermal equilibrium, dU ≤ T dS+dw, where
the equality only holds at material equilibrium

5.2 The Gibbs and Helmholtz Energies

5.2.1 Derivation of A

1. If we rearrange dU , we can get dU ≤ T dS+S dT −SdT +dw, where the first summed terms are d(TS)

2. d (U − TS) ≤ −S dT + dw

(a) This is a new state function, where A is Helmholtz Free Energy

A ≡ U − TS

3. Substituting yields, dA ≤ −S dT + dw

4. If only PV work is done at constant temperature and volume,

dA = 0 (eq., const. T ,V )

A is a kind of potential where the system is in equilibrium when A is a minimum

For a reversible process at constant temperature, dA = dw. For an irreversible process, ∆A < wirrev
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5.2.2 Derivation of G

1. If we consider material equilibrium for constant T and P , we can substitute dw = −P dV

(a) dU ≤ T dS + SdT − S dT − P dV + V dP − V dP

2. Grouping gets dU ≤ d(TS)− S dT − d(PV ) + V dP

3. Algebra yields d(U + PV − TS) ≤ −S dT + V dP

(a) This is a new state function, where G is Gibbs’ Free Energy

G ≡ PV − TS = H − TS

4. Substituting yields, dG ≤ −S dT + V dP

5. If temperature and pressure are constant, dG = 0

G is a kind of potential where the system is in equilibrium when G is a minimum
For a reversible process at constant temperature and pressure, dG = dWnon−PV . For an irreversible process,
∆G < wnon−PV

5.2.3 Connection with Entropy

In a closed system capable of doing only PV work, the constant T and V material equilibrium condition is
the minimization of A, and the constant T and P material equilibrium condition is the minimization of G

Since −∆Hsys

T
= ∆Ssurr at constant T and P ,

∆Suniv =
−∆Gsyst

T

Due to the Second Law, entropy of the universe must increase for an irreversible process, so ∆Gsyst must
decrease

5.3 Thermodynamic Relations for a System in Equilibrium

5.3.1 Basic Thermodynamic Quantities

The basic thermodynamic relationships are:

H ≡ U + PV

A ≡ U − TS

G = H − TS

CV =

(
∂U

∂T

)
V

CP =

(
∂H

∂T

)
P
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Additionally, for a closed system in equilibrium,

CV = T

(
∂S

∂T

)
V

(Closed, Eq.)

CP = T

(
∂S

∂T

)
P

(Closed, Eq.)

5.3.2 The Gibbs Equations

dU = T dS − P dV

dH = T dS + V dP

dA = −P dV − S dT

dG = V dP − S dT

(
∂U

∂S

)
V

= T and
(
∂U

∂V

)
S

= −P(
∂G

∂T

)
P

= −S and
(
∂G

∂P

)
T

= V

Furthermore,

α (T, P ) ≡ 1

V

(
∂V

∂T

)
P

and κ (T, P ) ≡ − 1

V

(
∂V

∂P

)
T

Procedure:

1. Write out the corresponding Gibbs Equation

2. Set the designated variable as constant

3. Solving for the desired relation

5.3.3 The Maxwell Relations

The Maxwell Relations can be derived by applying the basic Euler’s Reciprocity to the derivative forms of
the equations of state. The Euler Reciprocity is6,

d2z

dx dy
=

d2z

dx dy

For instance,
∂2G

∂T ∂P
=

(
∂

∂T

(
∂G

∂P

)
T

)
P

=

(
∂

∂T
V

)
P

=

(
∂V

∂T

)
P

This must equal
∂2G

∂P ∂T
= −

(
∂S

∂P

)
T

via the Euler Reciprocity

6It is important to note that the operator in the denominator of the derivative is performed right to left
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Some relationships are shown below:

∂2U

∂S∂V
:

(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

and
∂2H

∂S∂P
:

(
∂T

∂P

)
S

=

(
∂V

∂S

)
P

∂2A

∂T∂V
:

(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

and
∂2G

∂T∂P
:

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

5.3.4 Dependence of State Functions on T, P, and V

1. Start with the Gibbs equation for dU , dH, dA, or dG

2. Impose the conditions of constant T , V , or P

3. Divide by dPT , dVT , dTV , or dTP

4. Use a Maxwell relation or heat-capacity equation to eliminate any terms with entropy change in the
numerator

Here are a few examples: (
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− P =
αT

κ
− P

(
∂H

∂P

)
T

= −T
(
∂V

∂T

)
P

+ V = −TV α+ V

(
∂S

∂P

)
T

= −
(
∂V

∂T

)
P

= −αV

5.3.5 Remaining Quantities

µJT =

(
V

CP

)
(αT − 1)

µJ =

(
P − αTκ−1

)
CV

CP − CV =
TV α2

κ

Be careful with molar quantities and these equations. To use molar quantities for the second equation, for

instance, it’d be CP,m − CV,m =
TVmα

2

κ
Using the following relationship may also be useful,

VM =
M

ρ
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5.4 Calculation of Changes in State Functions

5.4.1 Calculation of ∆S

The differential equation for entropy is given as,

dS =

(
∂S

∂T

)
P

dT +

(
∂S

∂P

)
T

dP =
CP
T
dT − αV dP

This equation is equivalent to the following when integrated,

∆S =

ˆ T2

T1

CP
T
dT −

ˆ P2

P1

αV dP

Since it’s easy to break a process into individual paths:

1. We can analyze a change from T1 to T2 at constant P

∆Sa =

ˆ T2

T1

CP
T

dT (Const. P )

2. Next, P1 goes to P2 at constant T

∆Sb = −
ˆ P2

P1

αV dP = −
ˆ P2

P1

αVmndP (Const. T )

3. The total entropy change for a P and T change is ∆S = ∆Sa + ∆Sb

5.4.2 Calculation of ∆H and ∆U

∆H =

ˆ T2

T1

CP dT +

ˆ P2

P1

(V − TV α) dP

Since it’s easy to break a process into individual paths:

1. We can analyze a change from T1 to T2 at constant P

∆Ha =

ˆ T2

T1

CP dT (Const. P )

2. Next, P1 goes to P2 at constant T

∆Hb =

ˆ P2

P1

(V − TV α) dP (Const. T )

3. The total enthalpy change for a P and T change is ∆H = ∆Ha + ∆Hb

(a) ∆H values for phase changes must be added if a phase change occurs

4. ∆U can be calculated from ∆H using ∆U = ∆H −∆ (PV )

5. Important Note: If you’re looking for ∆Hm, for instance, you should make it CP,m and Vm
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5.4.3 Calculation of ∆G and ∆A

To calculate ∆G directly, we can use the following formula for isothermal conditions

∆G = ∆H − T∆S (Const.T )

Alternatively, here are three ways to calculate ∆G:

∆G =

ˆ P2

P1

V dP =

ˆ P2

P1

m

ρ
dP =

ˆ P2

P1

nVm dP (Const. T, V )

At constant T and P ,
∆G = 0 (rev. proc. at const. Tand P )

To calculate ∆A directly, we can use the following formula for isothermal conditions

∆A = ∆U − T∆S (Const. T )

Alternatively,

∆A = −
ˆ V2

V1

P dV (Const. T ,P )

If the phase change goes from solid to liquid, ∆A can be calculated by using densities to find ∆V . If the
phase change goes from liquid to gas, one can assume ∆V ≈ Vgas

5.5 Chemical Potentials and Material Equilibrium

The Gibbs Equations previously defined are not useful for a system with interchanging of matter with the
surroundings or an irreversible chemical reaction

The chemical potential (an intensive state function) of a substance is defined as

µi ≡
(
∂G

∂ni

)
T,P,nj 6=i

(one-phase)

Alternatively,

µi =

(
∂A

∂ni

)
T,V,nj 6=i

(one-phase)

Gibbs’ Free Energy can now be defined as,

dG = −S dT + V dP +
∑
i

µdni (one-phase, Thermal/Mech. Eq.)

Substituting this equation for dG into dU yields,

dU = T dS − P dV +
∑
i

µi dni

We can now write two more extensions to the Gibbs Equations:

dH = T dS + V dP +
∑
i

µi dni

dA = −S dT − P dV +
∑
i

µi dni
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For a multiple-phase system, let α denote one of the phase of the system. Therefore,

µαi ≡
(
∂Gα

∂nαi

)
T,P,nαj 6=i

dG = −S dT + V dP +
∑
α

∑
i

µαi dn
α
i

At material equilibrium,
dG =

∑
α

∑
i

µαi dn
α
i = 0 (mat. eq., const. T/P )

dA =
∑
α

∑
i

µαi dn
α
i = 0 (mat. eq., const. T/V)

For a pure substance, µi is the molar Gibbs free energy

µ = Gm ≡
G

n
(One-phase pure substance)

5.6 Reaction Equilibrium

• An equilibrium will shift to go from a location of higher chemical potential to a lower one

• Let νi be the unitless stoichiometric number, which are negative for reactants and positive for products

• The extent of reaction is given by the symbol ξ

ξ =
∆ni
νi

• For a chemical-reaction in equilibrium in a closed system,∑
i

νiµi = 0

• Gibbs’ Free Energy can be expressed as the following, which is zero at equilibrium,

dG

dξ
=
∑
i

νiµi (const. T/P )

6 Standard Thermodynamic Functions of Reaction

6.1 Standard Enthalpy of Reaction

• The standard state of a pure substance is defined at pressure of 1 bar (P ◦ ≡ 1 bar)

◦ Gases are assumed to have ideal behavior and partial pressures of 1 bar

• The standard enthalpy of formation, ∆fH
◦
T , is the change of enthalpy for the process in which one

mole of the substance in its standard state is formed from the corresponding separated elements, each
element being in its reference form

• For an element in its reference form, the enthalpy of formation is zero
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6.2 Hess’ Law

• One can oxidize the reactants completely to CO2 and H2O and then make products by the reverse of
oxidation

• One can also convert all reactants to elements in their standard states and then make products from
elements in these standard states

• However, the most efficient and accepted method is to use the previously defined heat of formation

• The standard enthalpy change is given as the following for the reaction aA+ bB → cC + dD

∆H◦ =
∑
i

νi∆fH
◦
T,i

6.3 The Six-Step Program for Finding ∆H◦
f

1. If any of the elements involved are gases at T and 1 bar, we calculate ∆H for the hypothetical
transformation of each gaseous element from an ideal gas to a real gas under the same conditions

2. We measure ∆H for mixing the pure elements at these conditions

3. We utilize ∆H =
´ T2

T1
CP dT+

´ P2

P1
(V − TV α) dP to find ∆H for bringing the mixture from the original

T and 1 bar to the conditions used to carry out the experiment

4. A calorimeter is used to measure ∆H of the reaction

5. ∆H is found for bringing the compound from the step in which it is formed back to T and 1 bar

6. If there is a compound that is a gas, we calculate ∆H for the hypothetical transformation from a real
gas back to an ideal gas

6.4 Calorimetry

• If there are conditions of constant volume, ∆U can be measured. If there are conditions of constant
pressure, ∆H can be measured

∆rU298 = −Cavg∆T

• We know ∆H = ∆U + ∆ (PV ), and the following assumption can be used by ignoring volume changes
of liquids and solids

∆ (PV ) ≈ ∆ngas ·RT

• Therefore,
∆H◦T = ∆U◦T + ∆ngRT

• For the above equation, be careful of what you’re solving for. Look at the example below as cautionary
measure

6.4.1 Cautionary Calorimetry Calculation

Question: If the standard enthalpy of combustion at 25◦C of liquid (CH3)2CO to CO2 gas and H2O liquid
is −1790 kJ/mol, find ∆fH

◦
298 and ∆fU

◦
298 of (CH3)2CO liquid

Solution:

1. Write out the reaction with correct stoichiometry: (CH3)2CO(l) + 4O2(g)→ 3CO2(g) + 3H2O(l)
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2. Use tabulated values to solve−1790 kJ/mol = 3∆fH
◦
298,CO2(g)+3∆fH

◦
298,H2O(l)−∆fH

◦
298,(CH3)2CO(l)−

4∆fH
◦
298,O2(g) for for the desired heat of formation

(a) ∆fH
◦
298,(CH3)2CO(l) = −248 kJ/mol via this calculation

3. Since we want ∆fU
◦
298, we must write out the formation reaction. We cannot use the stoichiometry of

the combustion reaction

(a) This is 3C(graphite) + 3H2(g) + 1
2O2(g)→ (CH3)2CO(l)

4. Find ∆ng/mol. Here it is −3.5

5. Use ∆fH
◦
298,(CH3)2CO(l) = ∆fU

◦
298,(CH3)2CO(l) + ∆ngRT and solve for ∆U◦f

(a) ∆fU
◦
298,(CH3)2CO(l) = −239 kJ/mol via this calculation

6.5 Calculation of Hideal −Hreal

1. First, convert the real gas at P ◦ to a real gas at 0 bar

2. Then convert this gas to an ideal gas at 0 bar

3. Then convert this ideal gas to one at P ◦

• To perform Step 1 and 3, there is a pressure change under isothermal conditions

• For the overall process, the equation is,

∆H = Hid(T, P
◦)−Hre(T, P

◦) = ∆H1 + ∆H2 + ∆H3

• The enthalpy change for Step 1 is calculated as follows,

∆H1 =

ˆ 0

P◦
(V − TV α) dP

• The enthalpy change for Step 2 is ∆H2 = 0

◦ The reason for this is because ∆ (PV ) is zero and ∆U is just Uintermolec, which is zero as pressure
goes to zero

• The enthalpy change for Step 3 is ∆H3 = 0

◦ The reason for this is because H of an ideal gas is independent of pressure

• The enthalpy change for the entire process is calculated as follows,

∆H = Hid −Hre =

ˆ P◦

0

[
T

(
∂V

∂T

)
P

− V
]
dP (Const. T )

◦ As previously mentioned, α ≡ 1

V

(
∂V

∂T

)
P
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6.6 Temperature Dependence of Reaction Heats

• The standard heat-capacity change is defined as,

∆C◦P ≡
∑
i

νiC
◦
P,m,i =

d∆H◦

dT

• Alternatively,

∆H◦T2
−∆H◦T1

=

ˆ T2

T1

∆C◦P dT

• The standard-state molar heat capacity is typically expressed as,

C◦P,m = a+ bT + cT 2 + dT 3

• The Debye approximation states C◦P,m ≈ C◦V,m = aT 3 since a solid has only vibrational motion and
contributes very little until kT gets larger

6.7 Conventional Entropies and the Third Law

• The entropy for all pure, perfectly crystalline (ordered) substances is zero at absolute zero temperature

◦ This does not hold for substances that are not in internal equilibrium

◦ For instance, in a crystal of C−−−O, there can be random interactions of the individual molecular
dipoles

∗ This is called residual entropy due to the slight amount of disorder

• The following equation can be used to find the standard entropy change of a reaction

∆S◦T =
∑
i

νiS
◦
m,T,i

• Alternatively,

∆S◦T2
−∆S◦T1

=

ˆ T2

T1

∆C◦P
T

dT

• A general equation for molar entropy can be written as,

S◦m,T =

ˆ Tfus

0

C◦p,m(s)

T
dT+

∆fusH
◦
m

Tfus
+

ˆ TV

Tfus

C◦P,m(l)

T
dT+

∆vapH
◦
m

Tvap
+

ˆ T

Tvap

C◦P,m(g)

T
dT+(Sm,ideal − Sm,real)

• Using the Debye approximation will solve the issue of the previous equation being divided by zero for
the first term. The result is,

ˆ Tfus

0

C◦P,m
T

dT =
C◦P,m(atT )

3
+

ˆ Tfus

Tlowest

a+ bT + cT 2 + dT 3

T
dT

• The correction for nonideality of entropy is,

Sm,id − Sm,re =

ˆ 1 bar

0

[(
∂Vm
∂T

)
P

− R

P

]
dP

29



6.8 Standard Gibbs Energy of Reaction

• The standard Gibbs energy change can be found as,

∆G◦T =
∑
i

νiG
◦
m,T,i

• An easier way to calculate this is,
∆G◦T =

∑
i

νi∆fG
◦
T,i

◦ ∆fG
◦values can be obtained from ∆G = ∆H − T∆S for an isothermal process

• Using the Gibbs equations, one can state that(
d∆Grxn
dT

)
P

= −∆Srxn

7 Reaction Equilibrium in Ideal Gas Mixtures

7.1 Chemical Potentials in an Ideal Gas Mixture

∆µ = µ(T, P2)− µ(T, P1) = RT ln

(
P2

P1

)
(Pure Ideal Gas, Const. T )

• We know that
(
∂G

∂P

)
T

= V , so
(
∂µ

∂P

)
T

= Vm =
RT

P
for an ideal gas

• At constant T , we can say that
´ P
P◦
dµ =

´ P
P◦
Vm dP . This yields,

µ = µ◦ +RT ln

(
P

P ◦

)
• The chemical potential of component i of an ideal gas mixture at T and P equals the chemical potential
of pure gas i at T and Pi

◦ This is true for U , H, S, G, and CP for an ideal gas mixture

7.2 Ideal-Gas Reaction Equilibrium

• Assume the following definition of the standard equilibrium constant for the reaction aA + bB 

cC + dD,

K◦P ≡

(
PC,eq
P ◦

)c(
PD,eq
P ◦

)d
(
PA,eq
P ◦

)a(
PB,eq
P ◦

)b
• Standard change in Gibbs Free Energy can then be expressed as,

∆G◦ = −RT ln (K◦P )

• Assume the following mathematical definition,

n∏
i=1

ai ≡ a1a2...an
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• With this, K◦P can be defined as,

K◦P ≡
∏
i

(
Pi,eq
P ◦

)νi
• Using the rules of logarithms,

K◦P = e
−∆G◦
RT

• K◦P is only a function of temperature and is independent of all other states

• If ∆G◦ � 0, then KP is very small. Conversely, if ∆G◦ � 0, then KP is very large

• It is typically easier to write this without the standard restriction as,

KP ≡
∏
i

(Pi,eq)
νi

• The molar concentration, ci, of a species is,

ci ≡
ni
V

• Therefore,
Pi = ciRT

• Assuming c◦i = 1mol/L = 1M ,
K◦c =

∏
i

(ci,eq
c◦

)νi
• Therefore,

K◦c = K◦P

(
P ◦

RTc◦

)∆n/mol

• A mole fraction equilibrium constant, Kx, is defined as,

Kx ≡
∏
i

(xi,eq)
νi

• A helpful relationship is simply,

K◦P = Kx

(
P

P ◦

)∆n/mol

• Kx depends on P and on T unless ∆n = 0, so it is not as useful

7.3 Qualitative Discussion of Chemical Equilibrium

• While K◦P is always dimensionless, KP is only dimensionless when ∆ngas = 0 and typically has units
of Pressure∆ngas

• For a reaction not necessarily at equilibrium,

QP ≡
∏
i

(Pi)
νi

• If QP < Kp, the reaction will proceed to the right: ξ > 0

• If QP = KP , the reaction is already at equilibrium: ξ = 0
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• If QP > KP , the reaction must go in the reverse: ξ < 0

• If ∆G◦ is large and negative, K◦P is very large and little reactant is left at equilibrium

• If ∆G◦ is large and positive, K◦P is very small and there is little product present at equilibrium

• Typically, values of e−12 are considered very small and e12 are considered very large. With this
approximation, reactions at 298K with ∆G◦ < −30 kJ/mol go to completion, and reactions at 298K
with ∆G◦ > 30 kJ/mol don’t proceed at all

• Remember, at the molecular level kT is used for energy comparison, and RT is used at the molecular
level

• At low temperature ∆G◦ ≈ ∆H◦, and at high temperature, ∆G◦ ≈ −T∆S◦

7.4 Temperature Dependence of the Equilibrium Constant

• Differentiation of the equation for K◦P will yield,

d ln (K◦P )

dT
=

∆G◦

RT 2
− 1

RT

d (∆G◦)

dT

• Using various mathematical equalities that I will not write out, one yields the van’t Hoff equation

d ln (K◦P )

dT
=

∆H◦

RT 2

• This can be rearranged to
d ln (K◦P )

d (1/T )
= −∆H◦

R

• Therefore, for a plot of ln(K◦P ) against 1/T , the slope is
−∆H◦

R
, and if ∆H◦ is approximately tem-

perature independent, the plot produces a straight line

• Using the equation for CP in 6.6 yields,

∆H◦T = A+BT + CT 2 +DT 3 + ET 4

• Consequently, if ∆H◦ 6= constant, then

∆H◦ = ∆H◦(T1) + ∆a(T − T1) +
∆b

2
(T 2 − T 2

1 ) +
∆c

3
(T 3 − T 3

1 )

• Integrating the van’t Hoff equation yields,

ln

(
K◦P (T2)

K◦P (T1)

)
=

ˆ T2

T1

∆H◦T
RT 2

dT

• An easier to calculate quantity is the following where ∆H◦ is assumed to be independent of temperature,

ln

(
K◦P (T2)

K◦P (T1)

)
≈ ∆H◦

R

(
1

T1
− 1

T2

)
• If the K◦P at some arbitrary temperature is needed, one can easily find K◦P,298 with corresponding
T = 298.15K and ∆H◦ from tabulated values with Hess’ Law

• If ∆H◦ cannot be assumed to be independent of temperature but C◦P can, one can use the equation in
6.6 to find ∆H◦T by finding ∆H◦298 and ∆C◦P from tabulated values with Hess’ Law
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7.5 Ideal-Gas Equilibrium Calculations

1. Calculate ∆rG
◦ from tabulated data

2. Calculate K◦P using ∆rG
◦ = −RT ln(K◦P )

3. Use the stoichiometry of the reaction to express mole numbers in terms of initial mole number and
equilibrium extent of reaction

(a) This is simply the creation of an I.C.E. table

4. Analyze reaction conditions

(a) If the reaction is at fixed temperature and pressure, use Pi = xiP =
ni
ntot

P

i. A simplified equation under constant temperature and pressure for an ideal system is the
following, where all moles and mole fractions are amounts at equilibrium:

K◦P =
(xC)c(xD)d

(xA)a(xB)b
·
(
P

P ◦

)νi
=

(nC)c(nD)d

(nA)a(nB)b
·
(

P

nTotal · P ◦

)νi
(Derived by me)

A. Note: If νi = 0, you don’t even need the pressure!

(b) If the reaction is at fixed temperature and volume, use Pi =
niRT

V
i. A simplified equation under constant temperature and volume for an ideal system is, where

all moles are amounts at equilibrium:

K◦P =
(nC)c(nD)d

(nA)a(nB)b
·
(
RT

P ◦V

)νi
(Derived by me)

5. Substitute the Pi values into the equilbrium-constant expression and solve for ξeq

6. Calculate the equilibrium mole numbers from ξeq and the expressions for ni

7.6 Equilibrium Shifts

1. Increasing pressure at constant volume by adding inert gas will not change the equilibrium composition
since partial pressures are the same

2. Adding an inert gas while holding temperature and pressure constant will shift the reaction to the side
of greater moles

(a) This is analogous to decreasing pressure at constant temperature

3. Adding a reactant or product gas at constant temperature and volume will shift the equilibrium to the
side opposite of the addition since other partial pressures don’t change

4. Adding a reactant or product gas at constant temperature and pressure changes other partial pressures,
so there is no simple rule

(a) For example, if we have N2(g) + 3H2(g) 
 2NH3(g), we can establish equilibrium at constant
temperature and pressure. Then, we can add some N2 at constant total pressure. The partial
pressure of N2 will go up while the other partial pressures go down. Under certain conditions,
equilibrium will shift to the left to produce more of the added gas even though this goes against
intuition

5. Decreasing volume at constant temperature will be the same as increasing the pressure at constant
temperature. It will shift the reaction to the side of lower moles of gas

6. An increase in temperature at constant pressure will shift the equilibrium to the direction in which the
system absorbs heat from the surroundings via the van’t Hoff equation
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8 One-Component Phase Equilibrium and Surfaces

8.1 Qualitative Pressure Dependence of Gm

• Typical values for Vm are 19.65cm3 for solids, 18cm3 for liquids, and 22400cm3 for gases. Also,(
∂Gm
∂P

)
T

= Vm > 0

• The gas phase Gm is most sensitive to pressure. Next is liquid and then solid (except for water)

8.2 The Phase Rule

• The number of independent intensive variables (degrees of freedom) is the following, where c is the
number of different chemical species, p is the number of phases present, and r is the number of
independent chemical reactions,

f = c− p+ 2− r

• For a additional restrictions on the mole fractions,

f = c− p+ 2− r − a

• Additionally,
cind ≡ c− r − a ∴ f = cind − p+ 2

• There are no degrees of freedom at the triple point; therefore, it has a definite T and P

8.3 One-Component Phase Equilibrium

• The stable phase at any point in a one-component P-T phase diagram is where Gm, also µ, is lowest

• At any temperature above the critical point temperature, liquid and vapor phases cannot coexist in
equilibrium

• The Trouton’s Rule approximation states that

∆vapSm,,nbp =
∆vapHm,nbp

Tnbp
≈ 10.5R

• Trouton’s Rule fails for highly polar liquids and temperatures below 150K or above 1000K. The fol-
lowing is a better approximation,

∆vapSm,,nbp ≈ 4.5R+R ln (Tnbp)

8.4 The Clapeyron Equation

8.4.1 General Clapeyron Equation

• For a pure phase, the Gibbs Equation derived earlier is,

dGm = VmdP − SmdT

• Using the fact that dG1
m = dG2

m (∆G = 0) at equilibrium,

∆VmdP = ∆SmdT
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• Rearranging this equation yields,

dP

dT
=

∆Sm
∆Vm

=
∆S

∆V

• The Clapeyron Equation states that for one component two-phase equilibrium system,

dP

dT
=

∆Hm

T∆Vm
=

∆H

T∆V

• For phase transitions from solid to liquid, solid to gas, and liquid to gas, ∆Vm > 0, ∆Hm > 0, and(
dP

dT

)
> 0

◦ An exception to this is substances that have ∆Vm < 0, such as water, when going from solid to

liquid. This changes it to
(
dP

dT

)
< 0

◦ Also, if ∆Vs→l = 0, then
dP

dT
=∞. This implies that ∆T is very small for large changes in P

8.4.2 Liquid-Vapor and Solid-Vapor Equilibrium

• If the assumption is made that ∆V ≈ Vgas,(
dP

dT

)
vap or sub

=
∆Hm

TVm,gas

• Using Vgas ≈
RT

P
, the Clausius-Clapeyron Equation is obtained

(
dP

dT

)
vap or sub

=
P∆Hm

RT 2

• Integration the above separable differential equation yields

d lnP

dT
≈ ∆Hm

RT 2

• An approximation, albeit a very crude one7, is that
∆P

∆T
≈ dP

dT
∴ ∆T =

∆PRT 2

P∆Hm

• To obtain a better approximation, begin by substituting d(1/T ) = −(1/T 2),

d lnP

d(1/T )
≈ −Hm

R

• If ∆Hm is independent of temperature, the above equation can be integrated to yield

ln

(
P2

P1

)
= −∆H

R

(
1

T2
− 1

T1

)
• In handbooks, A and B constants can be found8 to make,

lnP ≈ A

T
+B

7It is not recommended to use this approximation
8Crude form of the Antoine Equation

35



8.4.3 Effects of Pressure on Phase Transitions

• Higher altitudes cause boiling point decreases since the pressure is lower

• For small variations in pressure,

∆Tbp = Tboil
∆Vvap
∆Hvap

∆P

• For larger variations in P , the following is true where nbp stands for normal boiling point,

ln

(
P

1 atm

)
=

∆H

R

(
1

Tnbp
− 1

T

)

8.4.4 Solid-Liquid Equilibrium

• Since the solid-liquid transitions doesn’t involve a gas phase, ∆V ≈ Vgas is unreasonable.

• The applicable equation for solid-liquid equilibrium is9,
ˆ P2

P1

dP =

ˆ T2

T1

∆fusS

∆fusV
dT =

ˆ T2

T1

∆fusH

T∆fusV
dT

• Using the approximation
∆P

∆T
≈ dP

dT
for small pressure changes or assuming

∆fusS

∆fusV
is constant yields,

∆P =
∆T∆fusS

∆fusV
=

∆T∆fusH

T1∆fusV

• For larger changes in P for solid-liquid transitions, assume ∆fusH and ∆fusV are constant to make,

∆P ≈ ∆fusH

∆fusV
ln

(
T2

T1

)

8.4.5 Effects of Pressure on Vapor Pressure

• For phase equilibrium, µg = µcond

• At constant temperature, the system will go to a new vapor pressure where the gas has a higher µ and
vapor pressure with applied external pressure

• At constant volume and vapor pressure, T would fall with an applied external pressure

9 Solutions

9.1 Solution Composition

• The definition of molarity is,
ci ≡

ni
V

• The definition of mass concentration is,
ρi ≡

mi

V

• The definition of molality of solute B is the following where solvent mass is wA and MA is the solvent
molar mass,

mB ≡
nB
wA

=
nB

nAMA

9Fusion is defined as going from solid to liquid
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9.2 Partial Molar Quantities

• From now on, V ∗ is the total volume of unmixed components, where ∗ denotes a property of pure,
unmixed substances. As such,

V ∗ =
∑
i

niV
∗
m,i

• ∆mixV = V − V ∗ = 0 for ideal solutions and ∆mixV 6= 0 for real solutions

◦ Ideality also implies that, for a solution of B and C, the B-B interactions, B-C interactions, and
C-C interactions are all the same

• The total differential can be applied knowing that V (T, P, ni, ..., nr)

dV =

(
∂V

∂T

)
P,ni

dT +

(
∂V

∂P

)
T,ni

dP +
∑
i

V̄idni

• The partial molar volume is

V̄j ≡
(
∂V

∂nj

)
T,P,ni6=j

• Additionally,

V̄i =
RT

P
(Ideal Gas Mixture)

• The partial molar volume of a pure substance is equal to its molar volume,

V̄ ∗j = V ∗m,j

• As a result,
V =

∑
i

V̄ini =
∑
i

xiV̄intot

• Also,
∆mixV =

∑
i

ni
(
V̄i − V ∗m,i

)
• For a multi-component system,

n1dV̄1 + n2dV̄2 + ... = 0 = x1dV̄1 + x2dV̄2 + ...

• Therefore, for a two component system,

x1dV̄1 = −x2dV̄2 and dV̄1 =
−x2

x1
dV̄2

n1dV̄1 = −n2dV̄2 and dV̄1 =
−n2

n1
dV̄2

• Moreover10, (
∂V̄1

∂n1

)
n2

= −n2

n1

(
∂V̄2

∂n2

)
n2

10I do not get this. How can you hold n2 constant and have it be changing by an infinitesimal amount, ∂n2?
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• The other thermodynamic functions can be defined similarly to V̄i, for instance H̄i, by taking the partial
derivative of the thermodynamic function and dividing it by ∂ni while holding T, P, nj 6=i constant. The
arbitrary variable Y can then be used to state,

Ȳi ≡
(
∂Y

∂ni

)
T,P,nj 6=i

and Y =
∑
i

niȲi

• The relationship for Gibbs’ Free Energy is notable,

Ḡi ≡
(
∂G

∂ni

)
T,P,nj 6=i

≡ µi

9.3 Deviations

9.3.1 Positive Deviations

• This occurs when the dissolution process is not energetically favorable

∆Vmix > 0, ∆Hmix > 0

9.3.2 Negative Deviations

• This occurs when the dissolution process is very energetically favorable (A-B interactions is stronger
than A-A or B-B)

∆mixV < 0, ∆mixH < 0

Pi < Pi,ideal

9.4 Finding Partial Molar Volumes

9.4.1 Experimental

• Fix nA, vary nB , and measure Vtot as nB increases

• Plotting Vtot against nB will yield a plot with slope of V̄B at xB =
nB

nA + nB

9.4.2 Theoretical

• As already derived,(
∂µi
∂T

)
P,nj

≡
(
∂Ḡi
∂T

)
P,nj

= −S̄i and
(
∂µi
∂P

)
T,nj

≡
(
∂Ḡi
∂P

)
T,nj

= V̄i

9.5 Mixing Quantities

• Here is a moderately useless derivation for you to enjoy,(
∂∆mixG

∂P

)
T,nj

=
∂

∂P

∑
i

ni
(
Ḡi −G∗m,i

)
=
∑
i

ni

[(
∂Ḡi
∂P

)
T,nj

−
(
∂G∗m,i
∂P

)
T

]
=
∑
i

ni
(
V̄i − V ∗m,i

)
∴

(
∂∆mixG

∂P

)
T,nj

= ∆mixV
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• Similarly, (
∂∆mixG

∂T

)
P,nj

= −∆mixS

9.6 Ideal Solutions and Thermodynamic Properties

• An ideal solution is one where the molecules of the various species are so similar to one another that
replacing molecules of one species with molecules of another species will not change the spatial structure
or the intermolecular interaction energy in the solution

• When substances are mixed,

∆mixG = RT
∑
i

ni lnxi = −T∆mixS

∆mixS = −R
∑
i

ni lnxi

• With respect to chemical potential,∑
i

niµi =
∑
i

ni (µ∗i +RT lnxi)

µi = µ∗i +RT lnxi and µ◦i ≡ µ∗i

• Therefore, a solution is ideal if the chemical potential of every component in solution obeys the above
equation for all solution compositions and for a range of temperature and pressure

◦ As xi approaches zero, µ∗i approaches −∞

• Also,
∆mixV = ∆mixH = ∆mixU = 0 (Ideal soln, Const. T/P)

• In equilibrium,
µli = µvi

• Raoult’s Law states,
Pi = xliP

∗
i

• Alternatively,
xviPtot = xliP

∗
i

9.7 Ideally Dilute Solutions

• In an ideally dilute solution, solute molecules (i) interact essentially only with solvent molecules (A)

µi = RT lnxi + fi (T, P )

• fi (T, P ) is some function of T and P

• Also,
µA = µ∗A +RT lnxA

39



9.8 Thermodynamic Properties of Ideally Dilute Solutions

• Since µ◦i ≡ fi (T, P ),
µi = RT lnxi + µ◦i

• Additionally,

µA = µ◦A +RT lnxA

µ◦A ≡ µ∗A

Pi
xliP

◦ = exp

(
µ◦li − µ◦vi
RT

)
• A new (Henry’s) constant can be defined as,

Ki ≡ P ◦ exp

(
µ◦li − µ◦vi
RT

)
• Finally, Henry’s Law can be expressed as,

Pi = Kix
l
i

• Furthermore, Raoult’s Law applies as,
PA = xlAP

∗
A

• For an ideal solution, the solute obeys Henry’s Law, and the solvent obeys Raoult’s Law

• For an application of external pressure,

P ′ = P0e
V̄ P
RT

• For a gas dissolved in liquid,

xli =
Pi
Ki

• Therefore, solids dissolve in liquids better at higher temperatures while gases dissolved in liquids better
at lower temperatures

◦ Classic example is the dissolution of carbon dioxide in soda - it goes flat at higher temperatures
(less CO2 dissolved)

• Since this is an ideally dilute solution,

Pi = Ki,mmi = Ki,cci

• Henry’s Law does not apply to strong electrolytes

• If KHenry > P ∗, then Pideal > P ∗ and µ◦ = µideal > µ∗

• If KHenry < P ∗, then µ◦ = µideal < µ∗
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10 Nonideal Solutions

10.1 Activities and Activity Coefficients

• The activity of a substance is defined as,

ai ≡ exp

(
µi − µ◦i
RT

)
• Rearranging this to a familiar form yields,

µi = µ◦i +RT ln ai

• Then, for an ideal or ideally dilute solution, ai = xi

• The difference between the real and ideal µi is,

µi − µidi = RT ln

(
ai
xi

)
• The activity coefficient, γi, is defined so that,

ai = γixi

• The new µi equation is now,
µi = µ◦i +RT ln (γixi)

• Substitution of µideali = µ◦i +RT lnxi yields,

µidi +RT ln γi

• There are two conventions for the standard state

Convention I The standard state of each solution component i is taken as pure liquid i at the temperature
and pressure of the solution such that,

µ◦I,i ≡ µ∗i (T, P )

• Additionally, γI,i → 1 as xi → 1 for each chemical species i

• Use this convention if the mole fractions vary widely and both components are liquids

Convention II This convention treats the solvent differently from the other components. The standard
state of the solvent A is pure liquid A at the temperature and pressure of the solution such that,

µ◦II,A = µ∗A (T, P )

• Additionally, γII,i → 1 as xA → 1 for each i 6= A

◦ Note that this means xi → 0

• Choose this convention if solids or gases are in dilute concentrations in a liquid
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10.2 Determination of Activities and Activity Coefficients

10.2.1 Convention I

• Raoult’s Law is now,
Pi = aI,iP

∗
i

• The following then can be stated,
Pi = xviPtot = γI,ix

l
iP
∗
i

• If component i has Pi > P idi , then γI,i > 1 and vice versa

• If γI is less than 1, it means that the chemical potentials are less than the ideal chemical potentials.
This means that G is lower than Gid, and, thus, the solution is more stable

10.2.2 Convention II

• Raoult’s Law is now,
PA = aII,AP

∗
A = γII,Ax

l
AP
∗
A

• Henry’s Law is now,
Pi = KiaII,i = KiγII,ix

l
i

• γI measures deviations from ideal-solution behavior while γII measures deviations from ideally dilute
solution behavior
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