Lecture 5

Equilibrium

Static deals primarily with the description of the force conditions necessary and sufficient to
maintain the equilibrium of engineering structures.
When body is equilibrium, the resultant of all forces acting on it is zero. Thus, the resultant force

R and the resultant couple m are both zero, and we have the equilibrium equations

These requirements are both necessary and sufficient conditions for equilibrium.

All physical bodies are three-dimensional, but we can treat many of them as two-dimensional
when the forces to which they are subjected act in a single plane or can be projected onto a single plane.
When this simplification is not possible, the problem must be treated as three

System Isolation And The Fee- body Diagram

Before we apply EQs.3/1, we must define unambiguously the particular body or mechanical
system to be analyzed and represent clearly and completely all forces actins oz the body. Omission of a
force which acts on the body in question, or inclusion of a force which does not act on the body, will give
erroneous results. A mechanical system is defined as a body or group of bodies which can be
conceptually isolated from all other bodies. A system may be a single body or a combination of connected
bodies. The bodies may be rigid or non rigid. The system may also be an identifiable fluid mass, either
liquid or gas, or a combination of fluids and solids. In statics we study primarily forces which act on rigid
bodies at rest, although we also study forces actins on fluids in equilibrium. Once we decide which body
or combination of bodies to analyze, we then treat this body or combination as a single body isolated
from all surrounding bodies. This isolation is accomplished by means of the free body diagram, which is
a diagrammatic representation of the isolated system treated as a single body. The diagram shows all
forces applied to the system by mechanical contact with other bodies, which are imagined to be removed
If appreciable body forces are present. Such as gravitational or magnetic attraction, then these forces
must also be shown on the free-body diagram of the isolated system.

Only after such a diagram has been carefully drawn should the equilibrium equations be written.

Because of its critical importance, we emphasize here that

t.hﬁ Faa -hody: d.l,a.g‘l:am is the most trnportant Eurtg’l'e -F:h"p
i 1he solution of pmh]ﬂnl_l-l in mB{ hu.tuts ; :

C—

Before attempting to &aw a free-body dlagram we must recall the basic characteristics of force. These
chrematistics were described in Art. 2/2, with primary attention focused on the vector properties of force.
Forces can be applied either by direct physical contact or by remote action. Forces car be either internal
or external to the system under consideration. Application of force is accompanied by reactive force, and

both applied and reactive forces may be either concentrated or distributed. The principle of
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transmissibility permits the treatment of force as a sliding vector as far as its external effects on a rigid
body are concerned.
We will now use these force characteristics to develop conceptual models of isolated mechanical systems.

These models enable us to write the appropriate equations of equilibrium, which can then be analyzed.

Modeling the Action of Forces
Figure 1 shows the common types of force application on mechanical systems for analysis in two

dimensions. Each example shows the force exerted on the body to be isolated, by the body to be removed.
Newton's third law, which notes the existence of an equal and opposite reaction to every action, must be
carefully observed. The force exerted on the body in question by a contacting or supporting member is
always in the sense to oppose the movement of the isolated body which would occur if the contacting or

supporting body were removed.

E\.—IU‘UH‘[NL“ THE ACTION OF FORCES IN T\’-"U-n]_f-rENSION.'—'lL_ ._BNALYS 2
Type of Contact and Fores Origin Action on Body to Be Isolated

1. Flexible cable, belt,
chaim, or rope e Force exerted by

- = n flexihle cable i3

i c"g-:;jﬁ-fl;ib]f 5 3 ] wlwars a tension awaag
b [ = ) | from the hody in the

Weight of eable b = 2 £ direction of the cable,

not negligible

2. Bmooth surfaces
Coantact force is
eompreseive and is
normal to the surface,

Rough surfaces are
capahle of supportiog
n tangential compo-
nent F (irictionsl
force) as well as a
normal eomponent

M of the resultant
eontact foree R

3. Roagh surfaces

4. Boller support x (|
— Roller, rocker, or ball
e i support tranamite a
compressive force
normal to the
supporting surface.

5, Freely sliding guide e
move along smooth

only

- 1 : v
= RS e : e i guides; can support
5 — G e DL L forea pormal to guide

n

D

&, Pin connection Pin Pin A Freely hinged pin
Free not free connection is capable
to turn.  to turn of supporting a force

in any direction in tig
P plene normal to the
e axiz; waually shown
x

M as two components &)
and K, A pin not fred
to burn may also
support a couple A4

A built-in or fixed
suppart is capahla of
supporting an mxi
force F, a transverse
farce ¥V (shear force),
and a couple M
Ipending moment) to
prevent rotation.

The resultant of
pravitational
attraction on all
wlementa of a body of
maes e is the weight
W= rrigr and acts
tosward the center of
the earth through the
center mass (7.

9. Spring action i B e Spring foree is tensile
Neutral s ST e if spring is stretched
and eompressive it

Harderning F [Tl prossed. For a
4 2 Linearly elastic spring
A [ . = the stiffness & is the

fores required bo
deform the epring a

Softening
it unit distanes,

Figurel
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Typical examples of actual supports that are referenced to Fig.1 are shown in the following sequence of

photo

The cable exerts a force on the bracket This utility building is pin supported at
in the direction of the cable. the top of the column. (8)

The floor beams of this building are
welded together and thus form fixed
connections, (10)

In Fig. 1, Example 1 depicts the action of a flexible cable, belt, rope, or chain on the body to
which it is attached. Because of its flexibility, a rope or cable is unable to offer any resistance to bending,
shear, or compression and therefore exerts only a tension force in a direction tangent to the cable at its
point of attachment. The force exerted by the cable on the body to which it is attached is always away
from the body. When the tension T is large compared with the weight of the cable, we may assume that
the cable forms a straight line. When the cable weight is not negligible compared with its tension, the sag
of the cable becomes, important, and the tension in the cable changes direction and magnitude along its
length.

When the smooth surfaces of two bodies are in contact. as in Example2 The force exerted by one on the
other is normal to the tangent
to the surfaces and is compressive, Although no actual surfaces are perfectly smooth, we can assume this

to be so for practical purposes in many instances.
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When mating surfaces of contacting bodies are rough, as in Example3 , the force of contact is not
necessarily normal to the tangent to the surfaces, but may be resolved into a tangential or frictional
component F and a normal component N.

Example 4 illustrates a number of forms of mechanical support which effectively eliminate tangential
friction forces. In these cases the net reaction is normal to the supporting surface Example 5 shows the

action of a smooth guide on the body it supports. There cannot be any resistance parallel to the guide

Example 6 illustrates the action of a pin connection. Such a connection can support force in any
direction normal to the axis of the pin We usually represent this action in terms of two rectangular
components. The correct sense of these components in a specific problem depends on how the member is
loaded. when not otherwise initially known, the sense is arbitrarily assigned and the equilibrium equation
are then written. If the solution of these equations yields a positive algebraic sign for the force
component, the assigned sense is correct. A negative sign indicates the sense is opposite to that initially
assigned.

If the joint is free to turn about the pin, the connection can support only the force R. If the joint is
not free to turn, the connection can also support a resisting couple M. The sense of M is arbitrarily shown
here, but the true sense depends on how the member is loaded.

Example 7 shows the resultants of the rather complex distribution of force over the cross section
of a slender bar or beam at a built-in or fixed support. The sense of the reactions F and V and the bending
couple M in a given problem depends of course, o how the member is loaded.

One of the most common forces is that due to gravitational attraction, Example 8. This force
affects all elements of mass in a body and is, therefore. distributed throughout it. The resultant of the
gravitational forces on all elements is the weight W = mg of the body, which passes through the center of
mass G and is directed toward the center of the earth for earthbound structures The location of G is
frequently obvious from the geometry of the body, particularly where there is symmetry. When the
location is not readily apparent, it must be determined by experiment or calculations.

Similar remarks apply to the remote action of magnetic and electric forces. These forces of remote
action have the same overall effect on a rigid body as forces of equal magnitude and direction applied by
direct.

Example 9 illustrates the action of a linear elastic spring and of a nonlinear spring with either
hardening or softening characteristics. The force exerted by a linear spring, in tension or compression, is
given by F = kx, where K is the stiffness of the spring and x is its deformation measured from the neutral
or unreformed position.

The representations in Fig. 1 are not free-body diagrams, but are merely elements used to
construct free body diagrams. Study these nine conditions and identify them in the problem work so that

you can draw the correct free-body diagrams.
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Construction of Free-Body Diagrams

The full procedure for drawings a free-body diagram which isolates a body or system consists of the
following steps

Step 1. Decide which system to isolate The system chosen should usually involve one or more of the
desired unknown quantities.

Step 2. Next isolate the chosen system by drawing a diagram which represent its complete external
boundary. This boundary defines the isolation of the system from all other attracting or contacting bodies,
which are considered removed This step is often the most crucial of all. Make certain that you have
completely isolated the system before proceeding with the next step.

Step 3. Identify{y all forces which act oz the isolated system as applied by the removed contacting and
attracting bodies, and represent them in their proper positions on the diagram of the isolated system Make
a systematic traverse of the entire boundary to identify all contact forces. Include body forces such as
weights, where appreciable. Represent . all known forces by vector arrow, each with its! Proper
magnitude, direction, and sense indicated. Each unknown force should be represented by a vector arrow
with the unknown magnitude or direction indicated by symbol. if the sense of the vector is also unknown,
you must arbitrarily assign a sense. The subsequent calculations with the equilibrium equations will yield
a positive quantity if the incorrect sense was assumed and a negative quantity if the incorrect sense was
assumed. it is necessary to be consistent with the assigned characteristics of unknown forces throughout
all of the calculations. If you are consistent, the solution of the equilibrium equations will reveal the
correct senses.

Step 4. Show the choice of coordinate axes directly on the diagram Pertinent dimensions may also be
represented for convenience. Note, however., that the free-body diagram serves the purpose of focusing
attention on the action of the external forces, and therefore the diagram should not be cluttered with
excessive extraneous information. Clearly distinguish force arrows from arrows representing quantities
other than forces. for this purpose a colored pencil may be used.

Completion of the foregoing four steps will produce a correct free-body diagram to use in applying the
governing equations, both in statics and in dynamics. Be careful not to omit from the free-body diagram
certain forces which may not appear at first glance to be needed in the calculations. It is only through
complete isolation and a systematic representation of all eternal forces that a reliable accounting of the
effects of all applied and reactive forces can be made. very often a force which at first glance may not
appear to influence a desired result does indeed have an influence. Thus. the only safe procedure is to
include on the free-body diagram all forces whose magnitudes are not obviously negligible. The free-
body method is extremely important in mechanics because it ensures an accurate definition of a
mechanical system and focuses

attention on the exact meaning and application of the force laws of statics and dynamics. Review the
foregoing four steps for constructing a free-body diagram while studying the sample free-body diagrams

shown in Fig. 2.
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Examples of Free-Body Diagrams

Figure 2 gives four examples of mechanisms and structures together with their correct free-body
diagrams. Dimensions and magnitudes are omitted for clarity. In each case we treat the entire system as a
single body, so that the internal forces are not shown The characteristics of the various types of contact

forces illustrated in Fig 1 are used in the four examples as they apply

SAMPLE FREE-BODY DIAGRAMS
Mechanical System Free-Body Diagram of Isolated Body

1. Plane truss
Weight of truss P

assumed negligible y
compared with P 7 ' |
|
=

=l
1z

2. Cantilever beam

3. Beam

Smooth surface
contact at A.
Mass m

4. Rigid system of interconnected bodies
analyzed as a single unit

P o5 Weight of mechanism
<O neglected

Figure 2
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Examples
Example 1

Determine the magnitudes of the forces C and T, which, along with the other Forces shown, act on the

bridge-truss joint.

Solution
The given sketch constitutes the free-body diagram of the isolated
section of the joint in question and shows the five forces which ere

in equilibrium

Solution 1 (scalar algebra): for the x-y axes as shown we have

Solution | {scafﬂr algebra). Fur the x-y axes as shown we have

ZF, = 0] : 8+Tcos4ﬂ°¢Csan2l}°-16-D
; 07667 + 0342C =8 | @),
SF, = 0] R e
06437 — 0.940C =3 - . (B

Simﬁltanecius sohltion, of Egs. (@) and (b) produces

T =909kN | €= 3.03kN " Ans:

Solution IV (geumetrrc] The polygon representmg the zero vector sum of the
five forces is shown. Equations (a) and (b) are seen immediately to give the pro-
jections of the vectors onto the x- and y-direc.ions. Similar ly, projections onto .
the x'- and y'-directions give the alternative equations in Solution IL. -

A graphical soution is easily obtained, The known vectors are laid off head-
to-tail to some convenient scale, and the divections of T and C are then drawn
to close the polygon. The resulting intersection at point P completes the solution, -
thus enabling us to measure the magnltudes of T and C directly from the drawing
to whatever degree of aceuracy we incorporate in the construction,

8 EN

13 kN
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Example 2

Calculate the tension t in the cable which supports the 500-kg mass
with the pulley arrangement shown. Each pulley is free to rotate about
its bearing, and the weights of all parts are small compared with the
load. Find the magnitude of the totl force on the bearing of pulley C.

So!ufmn The free -body diagram of each pulley is drawn inits: relatwe p051t10n

to the others. We hegm with pulley A, which includes the only known force. With

the unspemﬁed pulley radius designated by 7, the ethhrmm of moments about
its center O and the equilibrium of forces in the vertlcal rhrectmn requlre ;

| BMp = 0] : P ST Tz
BE, 01 Tk Ty~ 500(9.81) <0 2’1‘1—500 981) Tl—T2—245GN

From the example of pulley A we may write. the equlhhrlum of farces on pulley
B hy mSpectmn as ;

e TQ/z - 1996 N

Far pulley Cthe angle 6 = 30° in no way aﬂ‘ects the moment of T about the /

center of the pulley, so that moment equﬂlbrlum reqques ;

T'= Ty or:: T-—1226N : i

.Ethbrlum of the pu]_ley in the x and - dlrectmns rEqmres

BRI sty 0 R 0N

.D:F": 0 T, 199 sin30° - 19260 F, = 613N _
[F = m} = \JM= URENG i A

41
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Example 3

Determine the magnitude T of the tension in supporting cable and the magnitude of the force on pin at A
for the jip crane shown. The beam AB is a standarad 0.5-m I-beam with a mass of 95 kg per meter of

length.

A!gebmrc solution. The system is symmetrical about the vertical +-y plane
throtigh the center of the beam, so the problem may be analyzed as the equilib-
rium of a coplanar foree system. The free-body diagram of the beam is shown in
the ﬂgure with the pin reaction at A represented in terms of its two rectangular
components. The weight of the beam is 95(107%)(5)9.81 = 4.66 kN and acts
through its center. Note that there are three unknowns A, A, and 7 which may
be found from the three equations of equilibrium. We begin with a moment

equation about A, which eliminates two of the three unknowns from the equa-
tion. In applying the moment equation about A4, it is smlpler to consider the
moments of the x- and y-components of T than it 15 50 compute. the perpendicular '

distance from T to A, Hence, with the cuunterc]uckmse sense as positive we write

[EMy = 0] . (T cos 25°)D 25 + (T sin 25"}(5 = 012)
= 1006 = 15 o L 466{25 =:012).=0

from which el ..-'T—lgﬁlkN _ A Ans,
Equating the sums Jf forces in the x- and y- dn:ectmns to zero gwes. |

BF = 'A,u1961eoszs°—o A-?t—lTTTkN-
BR20 A+ 1961 25 — 466~ 1020 A, = 637KN

A= JAZ+ A% A= JTITR+ 6378 —1888KN 0 Ams

Graphical selution. The principle that three forces in '_equilibri.um' must be
concurrent is utilized for 4 graphical solution by combining the two known ver-

tical forces of 4,66 and 10 kN into a single 14,66-kN_fdrce, located as shown.on

the modified free-body diagram of the beam in the lower figure. The position of
this resultant load may easily be determined graphlcally or. algebraically, The

intersection of the 14.66-kN force with the line of action of the unknown tension

T defines the point of concurrency O through which the pin reaction A must

pass. The unknown magnitudes of T and A may now be found by adding the
forces head-to-tail to form the closed equilibrium polygon of forces, thus satis-

fying their zero vector sum. After the knowm vertical load is laid off to a conve-
nient scale, as shown in the lower part of the figure, a line representing the given
direction of the tension T is drawn’ through the tip of the 14.66-kN vector. Like-
wise a line representing the direction of the pin reaction A, determined from the

coneurrency established with the free-body diagram, is drawn through the tail

of the 14.66-kN vector. The intersection of the lines répresentmg vectors T and
A establishes the magnitudes 7’ and A necessary to make the vector surm of the
forces equal to zero. These magnitudes are scaled from the diagram. The %~ and
y-components of A may be constructed on the torce polygon if deared

42
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Example 4

The link shown in Fig. a is pin-connected at A and rests against a smooth support at B. Compute the
horizontal and vertical components of reaction at pin A.

Solution

Equations of Equilibrium. Summing moments about A, we obtain
z direct solution for Ng,

S3M,=0; —90N.m — 60 N(1 m) + Nz(0.75 m) =0

Np=200N
Using this result,
=2F,. = 0; A,—200smn30°N =0

A, =100 N Ans.
~T3F, =0; A, — 200 cos 30° N =60 N =0

A, =233 N Ans.
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Problems

Three cables are joined at the junction ring C. De-
termine the tensions in cables AC and BC caused by
the weight of the 30-kg cylinder.

The 450-kg uniform I-baam supports the lead shown.
Dietermine the reactions at the supporte,

The 20-kg homogeneous smooth sphere rests on the
two inclines as shown, Determine the contact forees at

FEAR0-E, Ans. N, = 101L6N, N = 1962 N

The 100-kg wheel rests on a rough surface and bears
agajnutth&mﬂerﬂwhanth&mupleﬂlsnpp]iﬂilf
M = 60 N-m and the wheel does not slip, compute
the reaction on the roller A. Angs, Fy = 251N

Find the angle of tilt 8 with the horizontal so that
the contact foree at 8§ will be one-half that at A fom
the amooth orlinder. Ans. § = 18.4%

The uniform beam hag a mass of 50 kg per meter of
lenpth. Compute the reactions at the support 0, The
foree loads shown lie in & vertical plane.

1.4 kN
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To accommodate the rise and fall of the tide, a walk-
way from a pier to a float is supported by two rollers
a3 shown. If the mass center of the 300-kg wallowsay
is at 7, caleulate the tension T in the horizontal cable
which is attached to the cleat and find the foree un-
der the roller at A.

Ang. T = 850N, A = 14T2 N

1f the screw B of the wood clamp is tightened so that
the two blocks are under a compression of 500 N,
determine the force in screw A. (Note: The foree sup-
ported by each screw may be taken in the direction

o Shes scrwe:) Ans. A = 1250 N

The spring of modulus k = 3.6 kN/m is stretched
10 mm when the disk center O is in the leftmost po-
sition ¥ = 0. Determine the tension T required to
position the disk center at x = 150 mm. At that po-
sition, what foree N is exerted on the horizontal slot-
ted guide? The mass of the disk iz 3 kg.

Ans. T = 828N, N = 203 N up

i A block placed under the head of the claw hammer
as shown greatly facilitates the extraction of the nail,
If & 200-M pull on the handle is required to pull the
nail, ealeulats the tenaion T in the nail and the mag-
nitude A of the force exerted by the hammer head on
the block. The contacting surfaces at A are suffi-
ciently rough to prevent slipping.
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The uniform 15-m pole has a mass of 150 kg and is In a procedure to evaluate the strength of the triceps
supported by its smooth ends against the vertical muscle, a person pushes down on a load cell with the

walls and by the tengion T in the vertical cable. Com- palm of his hand as indicated in the figure. If the
pute the reactions at A and B load-cell rending is 160 N, determine the vertical ten-
: gile force F' generated by the triceps muscle. The

mass of the lower arm is 1.5 kg with mass center at

(7. State any assumplions. Ans. F = 1832 N

§ The indicated location of the center of mass of the
1600-kg pickup truck is for the unladen condition. If
a load whose center of mass is + = 400 mm behind
the rear axle is added to the truck, determine the
masg m; of the load for which the normal forees un-

der the front and rear wheels are equal With his weight W equally distributed on both feet,

Ans. my, = 244 kg a min begins to slowly rize from a squatting position
as indicated in the figure. Determine the tensile force
F in the patellar tendon and the magnitude of the
foree reaction at point 3, which is the contaet area
between the tibia and the femur. Note that the line
of action of the patellar tendon foree is along its mid-
line. Neglect the weight of the lower leg,

— Quadriceps muscla

The eoncrete hopper and its load have s combir 7T : s
mass of 4 metric tona (1 metric ton equals 1000 ] S 4 Al
with mass center at & and is being elevated at o g

stant welocity along its wertical guide by the ca ;

tensiom T, The design calls for two sets of guide 1 | Patella

ers at A, one on each side of the hopper, and two s )ﬁ 4

at B, Dotermine the force supported by each of | " PHI:EEEM
Le

twao pins at 4 and by each of the teo pins at B.

Determine the external reactions at A and F for the
roof truss loaded as shown. The vertical loada rep-
resent the effect of the supported roofing materials,
while the 400-N force representa a wind load.

00 M
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