
TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

Subject Name: Software Engineering & Project

Management

Subject Code: CS-403

Semester: 4
th

Unit-3

Software Design Process

The design phase of software development deals with transforming the customer requirements as

described in the SRS documents into a form implementable using a programming language.

The software design process can be divided into the following three levels of phases of design:

1. Interface Design

2. Architectural Design

3. Detailed Design

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

Interface Design:
Interface design is the specification of the interaction between a system and its environment. this

phase proceeds at a high level of abstraction with respect to the inner workings of the system i.e,

during interface design, the internal of the systems are completely ignored and the system is

treated as a black box. Attention is focussed on the dialogue between the target system and the

users, devices, and other systems with which it interacts. The design problem statement produced

during the problem analysis step should identify the people, other systems, and devices which are

collectively called agents.

Interface design should include the following details:

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

 Precise description of events in the environment, or messages from agents to which the

system must respond.

 Precise description of the events or messages that the system must produce.

 Specification on the data, and the formats of the data coming into and going out of the

system.

 Specification of the ordering and timing relationships between incoming events or

messages, and outgoing events or outputs.

Architectural Design:
Architectural design is the specification of the major components of a system, their

responsibilities, properties, interfaces, and the relationships and interactions between them. In

architectural design, the overall structure of the system is chosen, but the internal details of major

components are ignored.

Issues in architectural design includes:

 Gross decomposition of the systems into major components.

 Allocation of functional responsibilities to components.

 Component Interfaces

 Component scaling and performance properties, resource consumption properties,

reliability properties, and so forth.

 Communication and interaction between components.

The architectural design adds important details ignored during the interface design. Design of the

internals of the major components is ignored until the last phase of the design.

Detailed Design:
Design is the specification of the internal elements of all major system components, their

properties, relationships, processing, and often their algorithms and the data structures.

The detailed design may include:

 Decomposition of major system components into program units.

 Allocation of functional responsibilities to units.

 User interfaces

 Unit states and state changes

 Data and control interaction between units

 Data packaging and implementation, including issues of scope and visibility of program

elements

 Algorithms and data structures

Introduction to design process

 The main aim of design engineering is to generate a model which shows firmness, delight and

commodity.

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

 Software design is an iterative process through which requirements are translated into the blueprint

for building the software.

Software quality guidelines

 A design is generated using the recognizable architectural styles and compose a good design

characteristic of components and it is implemented in evolutionary manner for testing.

 A design of the software must be modular i.e the software must be logically partitioned into

elements.

 In design, the representation of data , architecture, interface and components should be distinct.

 A design must carry appropriate data structure and recognizable data patterns.

 Design components must show the independent functional characteristic.

 A design creates an interface that reduce the complexity of connections between the components.

 A design must be derived using the repeatable method.

 The notations should be use in design which can effectively communicates its meaning.

Quality attributes

The attributes of design name as 'FURPS' are as follows:

Functionality:

It evaluates the feature set and capabilities of the program.

Usability:

It is accessed by considering the factors such as human factor, overall aesthetics, consistency and

documentation.

Reliability:

It is evaluated by measuring parameters like frequency and security of failure, output result accuracy,

the mean-time-to-failure(MTTF), recovery from failure and the the program predictability.

Performance:

It is measured by considering processing speed, response time, resource consumption, throughput

and efficiency.

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

Supportability:

 It combines the ability to extend the program, adaptability, serviceability. These three term defines

the maintainability.

 Testability, compatibility and configurability are the terms using which a system can be easily

installed and found the problem easily.

 Supportability also consists of more attributes such as compatibility, extensibility, fault tolerance,

modularity, reusability, robustness, security, portability, scalability.

Design concepts

The set of fundamental software design concepts are as follows:

1. Abstraction

 A solution is stated in large terms using the language of the problem environment at the highest

level abstraction.

 The lower level of abstraction provides a more detail description of the solution.

 A sequence of instruction that contain a specific and limited function refers in a procedural

abstraction.

 A collection of data that describes a data object is a data abstraction.

2. Architecture

 The complete structure of the software is known as software architecture.

 Structure provides conceptual integrity for a system in a number of ways.

 The architecture is the structure of program modules where they interact with each other in a

specialized way.

 The components use the structure of data.

 The aim of the software design is to obtain an architectural framework of a system.

 The more detailed design activities are conducted from the framework.

3. Patterns
A design pattern describes a design structure and that structure solves a particular design problem in

a specified content.

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

4. Modularity

 A software is separately divided into name and addressable components. Sometime they are called

as modules which integrate to satisfy the problem requirements.

 Modularity is the single attribute of a software that permits a program to be managed easily.

5. Information hiding
Modules must be specified and designed so that the information like algorithm and data presented in

a module is not accessible for other modules not requiring that information.

6. Functional independence

 The functional independence is the concept of separation and related to the concept of modularity,

abstraction and information hiding.

 The functional independence is accessed using two criteria i.e Cohesion and coupling.

Cohesion

 Cohesion is an extension of the information hiding concept.

 A cohesive module performs a single task and it requires a small interaction with the other

components in other parts of the program.

Coupling
Coupling is an indication of interconnection between modules in a structure of software.

7. Refinement

 Refinement is a top-down design approach.

 It is a process of elaboration.

 A program is established for refining levels of procedural details.

 A hierarchy is established by decomposing a statement of function in a stepwise manner till the

programming language statement are reached.

8. Refactoring

 It is a reorganization technique which simplifies the design of components without changing its

function behaviour.

 Refactoring is the process of changing the software system in a way that it does not change the

external behaviour of the code still improves its internal structure.

9. Design classes

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

 The model of software is defined as a set of design classes.

 Every class describes the elements of problem domain and that focus on features of the problem

which are user visible.

Unified Modeling Language (UML) | An Introduction

Unified Modeling Language (UML) is a general purpose modelling language. The main aim of

UML is to define a standard way to visualize the way a system has been designed. It is quite

similar to blueprints used in other fields of engineering.

UML is not a programming language, it is rather a visual language. We use UML diagrams to

portray the behavior and structure of a system. UML helps software engineers, businessmen

and system architects with modelling, design and analysis. The Object Management Group

(OMG) adopted Unified Modelling Language as a standard in 1997. Its been managed by OMG

ever since. International Organization for Standardization (ISO) published UML as an approved

standard in 2005. UML has been revised over the years and is reviewed periodically.

UML is linked with object oriented design and analysis. UML makes the use of elements and

forms associations between them to form diagrams. Diagrams in UML can be broadly classified

as:
1. Structural Diagrams – Capture static aspects or structure of a system. Structural Diagrams

include: Component Diagrams, Object Diagrams, Class Diagrams and Deployment Diagrams.

2. Behavior Diagrams – Capture dynamic aspects or behavior of the system. Behavior diagrams

include: Use Case Diagrams, State Diagrams, Activity Diagrams and Interaction Diagrams.

The image below shows the hierarchy of diagrams according to UML 2.2

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

Object Oriented Concepts Used in UML –

1. Class – A class defines the blue print i.e. structure and functions of an object.
2. Objects – Objects help us to decompose large systems and help us to modularize our system.

Modularity helps to divide our system into understandable components so that we can build our

system piece by piece. An object is the fundamental unit (building block) of a system which is used

to depict an entity.

3. Inheritance – Inheritance is a mechanism by which child classes inherit the properties of their

parent classes.

4. Abstraction – Mechanism by which implementation details are hidden from user.

5. Encapsulation – Binding data together and protecting it from the outer world is referred to as

encapsulation.

6. Polymorphism – Mechanism by which functions or entities are able to exist in different forms.

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

Structural UML Diagrams –

1. Class Diagram – The most widely use UML diagram is the class diagram. It is the building block

of all object oriented software systems. We use class diagrams to depict the static structure of a

system by showing system’s classes,their methods and attributes. Class diagrams also help us

identify relationship between different classes or objects.
2. Composite Structure Diagram – We use composite structure diagrams to represent the internal

structure of a class and its interaction points with other parts of the system. A composite structure

diagram represents relationship between parts and their configuration which determine how the

classifier (class, a component, or a deployment node) behaves. They represent internal structure of a

structured classifier making the use of parts, ports, and connectors. We can also model

collaborations using composite structure diagrams. They are similar to class diagrams except they

represent individual parts in detail as compared to the entire class.

3. Object Diagram – An Object Diagram can be referred to as a screenshot of the instances in a

system and the relationship that exists between them. Since object diagrams depict behaviour when

objects have been instantiated, we are able to study the behaviour of the system at a particular

instant. An object diagram is similar to a class diagram except it shows the instances of classes in

the system. We depict actual classifiers and their relationships making the use of class diagrams. On

the other hand, an Object Diagram represents specific instances of classes and relationships

between them at a point of time.

4. Component Diagram – Component diagrams are used to represent the how the physical

components in a system have been organized. We use them for modelling implementation details.

Component Diagrams depict the structural relationship between software system elements and help

us in understanding if functional requirements have been covered by planned development.

Component Diagrams become essential to use when we design and build complex systems.

Interfaces are used by components of the system to communicate with each other.

5. Deployment Diagram – Deployment Diagrams are used to represent system hardware and its

software.It tells us what hardware components exist and what software components run on

them.We illustrate system architecture as distribution of software artifacts over distributed targets.

An artifact is the information that is generated by system software. They are primarily used when a

software is being used, distributed or deployed over multiple machines with different

configurations.

6. Package Diagram – We use Package Diagrams to depict how packages and their elements have

been organized. A package diagram simply shows us the dependencies between different packages

and internal composition of packages. Packages help us to organise UML diagrams into meaningful

groups and make the diagram easy to understand. They are primarily used to organise class and use

case diagrams.

Behavior Diagrams –

1. State Machine Diagrams – A state diagram is used to represent the condition of the system or part

of the system at finite instances of time. It’s a behavioral diagram and it represents the behavior

using finite state transitions. State diagrams are also referred to as State machines and State-chart

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

Diagrams . These terms are often used interchangeably.So simply, a state diagram is used to model

the dynamic behavior of a class in response to time and changing external stimuli.
2. Activity Diagrams – We use Activity Diagrams to illustrate the flow of control in a system. We

can also use an activity diagram to refer to the steps involved in the execution of a use case. We

model sequential and concurrent activities using activity diagrams. So, we basically depict

workflows visually using an activity diagram.An activity diagram focuses on condition of flow and

the sequence in which it happens. We describe or depict what causes a particular event using an

activity diagram.

3. Use Case Diagrams – Use Case Diagrams are used to depict the functionality of a system or a part

of a system. They are widely used to illustrate the functional requirements of the system and its

interaction with external agents(actors). A use case is basically a diagram representing different

scenarios where the system can be used. A use case diagram gives us a high level view of what the

system or a part of the system does without going into implementation details.

4. Sequence Diagram – A sequence diagram simply depicts interaction between objects in a

sequential order i.e. the order in which these interactions take place.We can also use the terms event

diagrams or event scenarios to refer to a sequence diagram. Sequence diagrams describe how and in

what order the objects in a system function. These diagrams are widely used by businessmen and

software developers to document and understand requirements for new and existing systems.

5. Communication Diagram – A Communication Diagram(known as Collaboration Diagram in

UML 1.x) is used to show sequenced messages exchanged between objects. A communication

diagram focuses primarily on objects and their relationships. We can represent similar information

using Sequence diagrams,however, communication diagrams represent objects and links in a free

form.

6. Timing Diagram – Timing Diagram are a special form of Sequence diagrams which are used to

depict the behavior of objects over a time frame. We use them to show time and duration

constraints which govern changes in states and behavior of objects.

7. Interaction Overview Diagram – An Interaction Overview Diagram models a sequence of actions

and helps us simplify complex interactions into simpler occurrences. It is a mixture of activity and

sequence diagrams.

Software Engineering | Architectural Design

Introduction: The software needs the architectural design to represents the design of software.

IEEE defines architectural design as “the process of defining a collection of hardware and

software components and their interfaces to establish the framework for the development of a

computer system.” The software that is built for computer-based systems can exhibit one of these

many architectural styles.

Each style will describe a system category that consists of :

 A set of components(eg: a database, computational modules) that will perform a function

required by the system.

 The set of connectors will help in coordination, communication, and cooperation between

the components.

 Conditions that how components can be integrated to form the system.

 Semantic models that help the designer to understand the overall properties of the system.

The use of architectural styles is to establish a structure for all the components of the system.

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

Taxonomy of Architectural styles:

1. Data centred architectures:
 A data store will reside at the center of this architecture and is accessed frequently by

the other components that update, add, delete or modify the data present within the

store.

 The figure illustrates a typical data centered style. The client software access a central

repository. Variation of this approach are used to transform the repository into a

blackboard when data related to client or data of interest for the client change the

notifications to client software.

 This data-centered architecture will promote integrability. This means that the

existing components can be changed and new client components can be added to the

architecture without the permission or concern of other clients.

 Data can be passed among clients using blackboard mechanism.

2. Data flow architectures:
 This kind of architecture is used when input data to be transformed into output data

through a series of computational manipulative components.

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

 The figure represents pipe-and-filter architecture since it uses both pipe and filter and

it has a set of components called filters connected by pipes.

 Pipes are used to transmit data from one component to the next.

 Each filter will work independently and is designed to take data input of a certain

form and produces data output to the next filter of a specified form. The filters don’t

require any knowledge of the working of neighboring filters.

 If the data flow degenerates into a single line of transforms, then it is termed as batch

sequential. This structure accepts the batch of data and then applies a series of

sequential components to transform it.

3. Call and Return architectures: It is used to create a program that is easy to scale and

modify. Many sub-styles exist within this category. Two of them are explained below.

 Remote procedure call architecture: This components is used to present in a main

program or sub program architecture distributed among multiple computers on a

network.

 Main program or Subprogram architectures: The main program structure

decomposes into number of subprograms or function into a control hierarchy. Main

program contains number of subprograms that can invoke other components.

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

4. Object Oriented architecture: The components of a system encapsulate data and the

operations that must be applied to manipulate the data. The coordination and

communication between the components are established via the message passing.

5. Layered architecture:
 A number of different layers are defined with each layer performing a well-defined

set of operations. Each layer will do some operations that becomes closer to machine

instruction set progressively.

 At the outer layer, components will receive the user interface operations and at the

inner layers, components will perform the operating system

interfacing(communication and coordination with OS)

 Intermediate layers to utility services and application software functions.

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

Software Engineering | User Interface Design

User interface is the front-end application view to which user interacts in order to use the

software. The software becomes more popular if its user interface is:

 Attractive

 Simple to use

 Responsive in short time

 Clear to understand

 Consistent on all interface screens

There are two types of User Interface:

1. Command Line Interface: Command Line Interface provides a command prompt, where

the user types the command and feeds to the system. The user needs to remember the

syntax of the command and its use.

2. Graphical User Interface: Graphical User Interface provides the simple interactive

interface to interact with the system. GUI can be a combination of both hardware and

software. Using GUI, user interprets the software.

User Interface Design Process:

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

The analysis and design process of a user interface is iterative and can be represented by a spiral

model. The analysis and design process of user interface consists of four framework activities.

1. User, task, environmental analysis, and modeling: Initially, the focus is based on the

profile of users who will interact with the system, i.e. understanding, skill and knowledge,

type of user, etc, based on the user’s profile users are made into categories. From each

category requirements are gathered. Based on the requirements developer understand how

to develop the interface. Once all the requirements are gathered a detailed analysis is

conducted. In the analysis part, the tasks that the user performs to establish the goals of the

system are identified, described and elaborated. The analysis of the user environment

focuses on the physical work environment. Among the questions to be asked are:

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

 Where will the interface be located physically?

 Will the user be sitting, standing, or performing other tasks unrelated to the interface?

 Does the interface hardware accommodate space, light, or noise constraints?

 Are there special human factors considerations driven by environmental factors?

2. Interface Design: The goal of this phase is to define the set of interface objects and actions

i.e. Control mechanisms that enable the user to perform desired tasks. Indicate how these

control mechanisms affect the system. Specify the action sequence of tasks and subtasks,

also called a user scenario. Indicate the state of the system when the user performs a

particular task. Always follow the three golden rules stated by Theo Mandel. Design issues

such as response time, command and action structure, error handling, and help facilities are

considered as the design model is refined. This phase serves as the foundation for the

implementation phase.

3. Interface construction and implementation: The implementation activity begins with the

creation of prototype (model) that enables usage scenarios to be evaluated. As iterative

design process continues a User Interface toolkit that allows the creation of windows,

menus, device interaction, error messages, commands, and many other elements of an

interactive environment can be used for completing the construction of an interface.

4. Interface Validation: This phase focuses on testing the interface. The interface should be

in such a way that it should be able to perform tasks correctly and it should be able to

handle a variety of tasks. It should achieve all the user’s requirements. It should be easy to

use and easy to learn. Users should accept the interface as a useful one in their work.

Software Engineering | Function Oriented Design

The design process for software systems often has two levels. At the first level the focus is on

deciding which modules are needed for the system on the basis of SRS (Software Requirement

Specification) and how the modules should be interconnected.

Function Oriented Design is an approach to software design where the design is decomposed

into a set of interacting units where each unit has a clearly defined function.

Generic Procedure:
Start with a high level description of what the software / program does. Refine each part of the

description one by one by specifying in greater details the functionality of each part. These

points lead to Top-Down Structure.

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

Problem in Top-Down design method:
Mostly each module is used by at most one other module and that module is called its Parent

module.

Solution to the problem:
Designing of reusable module. It means modules use several modules to do their required

functions.

Function Oriented Design Strategies:
Function Oriented Design Strategies are as follows:

1. Data Flow Diagram (DFD):
A data flow diagram (DFD) maps out the flow of information for any process or system. It

uses defined symbols like rectangles, circles and arrows, plus short text labels, to show data

inputs, outputs, storage points and the routes between each destination.

2. Data Dictionaries:
Data dictionaries are simply repositories to store information about all data items defined in

https://www.geeksforgeeks.org/levels-in-data-flow-diagrams-dfd/

TRINITY INSTITUTE OF TECHNOLOGY AND RESEARCH
BHOPAL

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Prepared by : URMILA MAHOR

DFDs. At the requirement stage, data dictionaries contains data items. Data dictionaries

include Name of the item, Aliases (Other names for items), Description / purpose, Related

data items, Range of values, Data structure definition / form.

3. Structure Charts:
It is the hierarchical representation of system which partitions the system into black boxes

(functionality is known to users but inner details are unknown). Components are read from

top to bottom and left to right. When a module calls another, it views the called module as

black box, passing required parameters and receiving results.

Pseudo Code:
Pseudo Code is system description in short English like phrases describing the function. It

use keyword and indentation. Pseudo codes are used as replacement for flow charts. It

decreases the amount of documentation required.

