
Notes on Thermodynamics

The topic for the last part of our physics class this quarter will be thermodynam-
ics. Thermodynamics deals with energy transfer processes. The key idea is that
materials have ”internal energy”. The internal energy is the energy that the
atoms and molecules of the material possess. For example, in a gas and liquid the
molecules are moving and have kinetic energy. The molecules can also rotate and
vibrate, and these motions also contribute to the gases total internal energy. In a
solid, the atoms can oscillate about their equilibrium position and also possess energy.
The total internal energy is defined as:

The total internal energy of a substance = the sum of the energies of the
constituents of the substance.

When two substances come in contact, internal energy from one substance can de-
crease while the internal energy of the other increases. The first law of thermody-
namics states that the energy lost by one substance is gained by the other. That is,
that there exists a quantity called energy that is conserved. We will develop this idea
and more over the next 4 weeks.

We will be analyzing gases, liquids, and solids, so we need to determine which
properties are necessary for an appropriate description of these materials. Although
we will be making models about the constituents of these materials, what is usually
measured are their macroscopic quantities or ”large scale” properties of the sys-
tems. We have already some of these when we studied fluids in the beginning of the
course:

Volume (V ): The volume that the material occupies. Volume is a scalar.

Pressure (P ): The pressure equals the force/area if a surface is placed in the liquid
or gas. Pressure is also a scalar.

Both these quantities are state variables. State variables are quantities (macro-
scopic) that only depend on the state of the system and not on how the system was
formed. The systems total internal energy (U) defined above is also a state variable.
We will be interested in the relationships between the state variables of a system.
One of the most important concepts in thermodynamics is that of temperature. Our
first task will be to determine a consistent way to quantify it, that is find a way to
measure it and assign a number value to the temperature of a system.
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Temperature and Thermometers

We have a general idea of what temperature is: hot things have a higher temper-
ature than colder ones. However, Physics is an exact quantitative science, so we need
to be precise with temperature. In order for a system to have a unique temperature
it needs to be in thermal equilibrium.

Thermal Equilibrium: A system is in thermal equilibrium if the macroscopic state
variables do not change in time.

Before we can assign a number value to the temperature we need to have a qual-
itative understanding of what temperature is. Temperature is some sort of measure
of which way energy will be transfered when two systems are in contact. Energy will
flow from a system that has a higher temperature to one that has a lower one. For
two systems to have the same temperature, it means that when they are placed in
contact there will not be any energy transfer from one to the other. That is, when
they are placed in contact with each other, the macroscopic quantities stay the same,
i.e. they are in thermal equilibrium. The ”Zeroth law” of thermodynamics includes
a third system:

Zero’th Law of Thermodynamics: If system A and system B are in thermal equi-
librium with system C (i.e. they have the same temperature as C), they they are in
thermal equilibrium with each other (i.e. they have the same temperature).

This property of nature enables one to assign a number value to temperature. We
just need to choose two reference values, and use a substance with a macroscopic
quantity that varies with ”our preception of temperature”. The substance we call a
thermometer.

The Celsius choice of reference values is to assign the triple point of water (where
H2O exists in solid, liquid and vapor forms) to be zero degrees. The other reference
value is assigned to be 100 degrees where water and steam co-exist at one atmosphere
pressure. Suppose we have a third substance at an unknown temperature T . How
do we determine T? One way is to pick a substance to be a thermometer and define
T to be proportional to a macroscopic quantity of the substance. Let’s demonstrate
this with an example.

We will find the value of T of an object using three different substances for ther-
mometers: liquid mercury, a resistor and a dilute gas. As our parameter we will
choose the volume of mercury, the resistance of the resistor and the pressure of the
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dilute gas. Here is our (made-up) data:

Temperature Height of Hg Resistance Pressure of Dilute Gas
100 8.0 cm 3.40 mV 1.37× 105 Pa
T 6.5 cm 3.24 mV 1.23× 105 Pa
0 4.0 cm 3.00 mV 1.00× 105 Pa

The ”unknown” temperature T of the object is determined for each thermometer by
having the temperature be proportional to the parameter that is changing. So using
the mercury thermometer,

T = 100(
6.5− 4.0

8.0− 4.0
) = 62.5◦ (1)

Using the resistance thermometer,

T = 100(
3.24− 3.0

3.4− 3.0
) = 60.0◦ (2)

Using the dilute gas thermometer,

T = 100(
1.23− 1.0

1.37− 1.0
) = 62.2◦ (3)

The data was ”made-up”, however if real data were used the results would be sim-
ilar: in general the temperature T can depend on the type of thermometer used.
This is because temperature is defined to make the parameter of the thermometer
proportional to T . All thermometers will agree at the two reference temperatures.
However, in general, the parameters for each thermometer do not have exactly the
same behavior between the reference points.

You might ask, which substance is the best to use as a thermometer? Is it possible
to define temperature such that the equations of thermodynamics have a simple form
for all substances? It would be nice if there were a class of substances that all give the
same value for T . There is. After trying different types of thermometers we would
discover the following property about the dilute gas thermometer above: we get the
same value for T for any gas that we use! That is, if we use air, or H2, or O2, or
He, etc. the value of T for our object, obtained by measuring the pressure of the
gas, would be the same in each case. There are many proerties that all dilute gases
have in common. Thus, if we quantify temperature using the constant volume dilute
gas thermometer, there is a good chance that this method gives a useful definition of
temperature. This will be our first way to quantify temperature.
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You might be thinking: How small should the density of the gas be for it to be
delute enough? The common properties converge only in the limit as the density of
the gas goes to zero. We define an ideal gas:

Ideal Gas: The limit as the density of the gas approaches zero of a dilute gas.

We will call the thermometer a constant volume ”ideal gas thermometer”, and the
parameter is the pressure of the gas. Using the references of the Celsius scale, we
find that the pressure of the gas would be zero at around −273◦C. It will be useful to
choose the value of temperature when the pressure of an ideal gas is zero to be zero
degrees. With this choice we have:

T ∝ P (4)

So temperature is defined to be proportional to the pressure of an ideal gas. The
constant of proportionality is chosen such that the change of one degree is the same
as the change of one degree Celsius. That is, the difference in temperature between
boiling water and the triple point is 100◦. For this choice, the proportionality constant
becomes 273.16◦ at the triple point of water.

T ≡ P

Ptp
273.16 (5)

where Ptp is the pressure of the gas at the triple point of water. It is important to
note that both pressures must be measured at the same volume of the gas
(Constant Volume Thermometer). The unit of this definition of temperature is the
Kelvin (K). To measure temperature in the lab or in our homes we can’t carry around
a dilute gas and water at the triple point. Commercial thermometer are calibrated
against this standard thermometer and have a range of validity.

Are the units of temperature derivable from other fundamental units such as
length, time, mass, ...? Or is temperature a fundamental physical quantity? Later in
the course we will consider these questions and discuss better ways to define temper-
ature that do not require a thermometer substance at all. One way uses a ”Carnot
cycle” and the other way is a statistical approach developed by Boltzmann. However,
the ideal gas thermometer gives the same value for T as these other approaches. Until
we develop the physics behind these other approaches, we will define temperature via
the ideal-gas constant-volume thermometer.

Thermal Expansion
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When the internal energy of a substance increases, the atoms and molecules gain
energy, tend to vibrate with larger amplitudes and the substance usually increases
in size. In addition to increasing in size, an increase in internal energy usually is
accompanied by an increase in temperature. To a good approximation the fractional
increase in size is proportional to the change in temperature.

Consider first a long rod made of a solid material. As long as the change in
temperature, ∆T , is not too large, the fractional change in length is proportional to
∆T :

∆L

L0

is proportional to ∆T (6)

where L0 is the original length before the increase in temperature. The proportionality
constant for linear expansion is usually called α:

∆L

L0

= α∆T (7)

where α depends on the type of material. If we call L the final length of the rod after
the increase in temperature, we have:

L− L0

L0

= α∆T (8)

or

L = L0(1 + α∆T ) (9)

A rectangular object will expand in the same fractional way. If the original sides
of the rectangle are a0 and b0, then after a temperature increase of ∆T , side a will
increase to a0(1 + α∆T ) and side b will increase to b0(1 + α∆T ). The new area A
will be:

A = ab = a0(1 + α∆T )b0(1 + α∆T ) (10)

multiplying out the terms gives

A = a0b0(1 + 2α∆T + (α∆T )2) (11)

Since α∆T is small, the last term is on the right is much smaller than the middle
term, so to a good approximation we have:

A ≈ a0b0(1 + 2α∆T ) (12)
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Since the original area A0 = a0b0, the equation for ”area” expansion is

A ≈ A0(1 + 2α∆T ) (13)

Using similar reasoning, one obtains the volume expansion formula

V ≈ V0(1 + 3α∆T ) (14)

These formulas are not fundamental laws of nature, but rather empirical results
and have a limited range of validity. If the temperature keeps increasing, the solid
does not keep getting bigger and bigger, but eventually melts.

Energy Transfer Processes

The study of energy transfer processes assumes that all ”systems” possess ”internal
energy”. By internal energy we mean the sum of the kinetic and potential energies
of the consitituents of the ”system”. In this course we will consider systems that are
bulk materials like gases, liquids, and solids. One can extend these ideas to smaller
systems like molecules, atoms or nuclei. Exeriments verify that objects are made up
of atoms and molecules and contain internal energy.

The constituents of a system can gain energy or lose energy, and consequently the
total interal energy of a system can change. U is denoted as the total internal energy,
and

∆U is defined as the change in the total internal energy of a system

U can change in different ways, but we divide the possibilities into two catagories:
those due to mechanical work and those only due a temperature difference:

W is defined as the mechanical work done by a substance

Note the preposition by in the defination of W . If W is positive then the system
loses internal energy, since the system is doing work. If W is negative then
the system gains internal energy, since work is done on the system. This is the
convention chosen by scientists. It will make sense when we use a P − V diagram.

Q is defined as the energy tranfered to the system by processes that don’t
involve mechanical work
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Note that Q is the energy transfered to the system, so if Q is positive then so is ∆U .
Q is also defined as energy that is transfered as a result of a temperature difference
only. Q is also called heat. Heat is a transfer of energy.

Both W and Q have units of energy. The metric unit of energy is the Joule.
However, experiments with heat processes were done before it was realized that heat
processes could be related to mechanical energy. The unit of the Calorie was used.
The conversion from calorie to the Joule, the mechanical equivalent of heat, is 4.186
Joules = 1 calorie. The ”calorie” listed on food packages is equal to 1000 calories or
4186 Joules.

In general both types of processes can occur at the same time, so the change in
U is the sum of these two energy transfer processes:

∆U = Q−W (15)

The minus sign on W is due to the definition of W as the work done by the sys-
tem. This equation is called the first law of thermodynamics. It is a statement
recognizing the existence of internal energy and its conservation.

Some Heat Processes

When a system gains (or loses) internal energy, the temperature of the system
usually changes. It is interesting to measure how much the temperature changes
for a certain amount of internal energy change. Here we consider how much the
temperature changes due to heat processes.

Suppose we have a particular substance, whose mass is m. If we transfer an
amount of energy Q into the substance, keeping its volume constant, the temperature
of the substance will in general change. Call the change in temperature ∆T . How is
Q related to m and ∆T? If m is doubled, we will need twice the amount of energy
transfered (2Q). This is true, since doubling the mass is the same has having two
identical samples. Twice the energy is needed. So for the same ∆T , Q ∝ m. Also,
if ∆T is not too large, if we want twice the temperature change, we will need twice
the energy transfer. So for a fixed mass, Q ∝ ∆T . Combining these two proportions
gives:

Q ∝ m∆T (16)

We can make this an equal sign by adding a constant of proportionality:

Q = cvm∆T (17)
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The parameter cv is called the specific heat capacity for the process in which the
volume is held constant. Note that this is not a new fundamental law of nature, but
rather a phenomenological equation. cv will depend on the type of substance and can
also depend on temperature. If ∆T is so large that cv changes with T , then one has
to integrate:

Q =
∫ Tf

Ti
cv(T )m dT (18)

where Ti and Tf are the initial and final temperatures respectively. An important
feature of specific heat capacities is that they are measureable quantities. The chal-
lenge we have as a physicist is to understand cv from the microscopic structure of the
substance. In this course we will do this for gases.

If the heat capacity of a substance is large, it means that it takes a lot of energy
transfer to increase the temperature a little. Likewise, if a substance has a high heat
capacity, it has to lose a lot of internal energy for a small temperature change. It
stays ”hot” for a long time. The cheese on a pizza has a higher heat capacity than
the bread crust.

Latent Heat

Latent heat is the amount of energy transfer (per mass) that is needed to change
the phase of a substance. For example, if you heat up water on the stove the tem-
perature rises until it reaches 100◦C. As more energy is transfered to the water the
temperature does not increase any more. Rather, the water evaporates and changes
its state from liquid to vapor. The amount of energy transfer that is required for this
phase change (per unit mass) is called the latent heat. Tt takes twice the amount of
energy to change the phase of twice the mass. So, we have:

Q = mL (19)

where Q is the amount of energy tranfered (heat) to change the phase of a substance
of mass m. The proportionality constant L is called the latent heat and has units
of Joules/Kg, or cal/g. If the phase change is from solid to liquid (or liquid to solid)
L is called the latent heat of fusion. If the phase change is from liquid to vapor (or
vapor to liquid) L is called the latent heat of vaporization.

I have included a nice schematic of the energy transfers involved for water at one
atmosphere as it gains or loses energy. See the attached figure. The three different
states of water go from left to right, and the temperature goes up and down. Similar
schematics can be drawn for other substances.
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Thermal Conductivity

Before we carry out a microscopic analysis of a dilute gas, we mention one rela-
tionship that pertains to (one dimensional) thermal conduction. Consider a rod of
length l and area A. Let the left end be in contact with a large object that is at
a temperature TA. Let the right end be in contact with a large object that is at a
temperature TB. What is the rate H at which energy is transfered through the rod?
The units of H are energy/time. What does H depend on?

Area: The larger the area A, the faster energy can be transfered, so H ∝ A.

Length: The longer the length l that the rod is, the slower is the energy transfer, so
we will guess that H ∝ 1/l.

Temperature difference: The larger that TA − TB is, the faster the energy will be
transfered, so H ∝ (TA − TB).

Putting these ideas together we have

H ∝ (TA − TB)A

l
(20)

Changing the proportionality by an equal sign brings in a constant k:

H = k
(TA − TB)A

l
(21)

where k is called the thermal conductivity.
It is interesting to include both the properties of heat capacity and thermal con-

ductivity in one application. Suppose the object at the left end of the rod has a mass
m and a specific heat capacity of cv. Let the temperature on the right, TB, be held
constant, but let the temperature of the object on the left decrease as it loses energy.
Let T be the temperature of the object on the left at time t. Then we have:

H = k
(T − TB)A

l
(22)

where H is the energy loss per second of the left object. The amount of energy, Q,
the object loses in a time ∆t is

Q = H∆t = k
(T − TB)A

l
∆t (23)
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Since Q = mcv∆T , we have

mcv
∆T

∆t
= −k (T − TB)A

l
(24)

Taking the limit as ∆t goes to zero results in a simple differential equation:

dT

dt
= −k (T − TB)A

mcvl
(25)

Since TB is a constant, dT/dt = d(T −TB)/dt. If we define the temperature difference
between the left and right sides, (T − TB), as δT , we have:

d(δT )

dt
= − kA

mcvl
(δT ) (26)

This is a simple differential equation whose solution is an exponentially decaying
function:

δT = (δT )0e
− kA

mcvl
t (27)

where (δT0 is the initial temperature difference between the left and right side. Thus
the temperature decreases exponentially to its final value. This type of cooling is
called Newton’s cooling.

Convection: Energy transfered by a movement of mass is called convection. Some
demonstrations of convection will be presented in class, but we will not do a quanti-
tative analysis of convection.

Radiation Energy can also be tranfered through a vacuum (as well as air). Objects
naturally ”radiate” electro-magnetic energy. The electro-magnetic interaction will be
covered next quarter. Here we present the formula, without derivation, of the amount
of electro-magnetic energy radiated from an object at a temperature T :

P = σAeT 4 (28)

where P is the energy/sec (power) radiated, A is the area of the object, e is the
emissivity, and T is the temperature in K. σ is a constant, the Stefan-Boltzmann
constant and is equal to 5.669 × 10−8 K4 W/m2. The emissivity depends on the
properties of the object and takes values between zero and one.

Ideal Gases
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Experiments on an Ideal Gas

Our discussion so far has been phenominological. That is, we have been finding
empirical formulas that relate (and define) certain quantities. Now we would like to
do some physics. We would like to understand the relationships between macroscopic
quantities from a microscopic model of the substance. In physics we usually start
with the simplest systems first, then extend our ideas to more complicated situations.
Due to the universality of ideal gases in defining temperature, we suspect that an
ideal gas might be a system for which a simple model will explain many properties.
For the rest of the course we will mainly analyze ideal gases and see what they can
teach us about energy transfer processes.

Let’s first summarize the experimental data on ideal gases. Remember an ideal
gas is a dilute gas in the limit that the density approaches zero. Think of an ideal
gas as a very dilute gas. The main macroscopic measureable quantities that describe
an ideal gas are:

Volume (V): the volume of the container that confines the gas.

Pressure (P): The pressure in the gas. If the gas is in equilibrium then the pressure
is the same everywhere (neglecting gravity).

Temperature (T): We have used ideal gases to define temperature. If the gas is in
equilibrium, the temperature is the same everywhere.

Mass or Number of Molecules (N): The mass of a gas can be measured, and we
assume that N , the number of molecules, is proportional to its mass. We will use the
parameter N , although difficult to measure, could be determined using Avogadro’s
number.

How are these four quantities related to each other. We need to keep two fixed
and experimentally determine how the other two depend on each other.

N and V held constant
How does T depend on P? We defined temperature to be proportional to P , so

T ∝ P (29)

Although we defined T so this proportionality is true, the fact that we get the same
value for T no matter what the gas is something special. It is a nice experimental
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result.

N and T held constant
How does P depend on V ? If the volume of a gas is increases with constant temper-
ature, the pressure is reduced. We will show in lecture that:

P ∝ 1

V
(30)

This is a really nice and simple experimental result! Why is it so simple? What can
we learn from this relationship?

T and V held constant
How does P depend on N? We will show in lecture that:

P ∝ N (31)

We can combine the results of these three experiments into one equation:

P ∝ NT

V
(32)

N and P held constant
How does V depend on T in this case? From the above equation we must have V ∝ T ,
which is verified experimentally.

We can replace the proportionality sign with an equal sign by adding a propor-
tionality constant:

P =
NkT

V
(33)

where the constant k is called Boltzmann’s constant. We will discuss its value later.
This equation is also written in terms of the number of moles of the gas by multiplying
and dividing by Avogadro’s number, NA:

Nk = (
N

NA

)(NAk)

= nR

where n is the number of moles of the gas, and R is called the gas constant. Note
that R = NAk. The equation of state for an ideal gas is often written as:
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PV = nRT (34)

The constant R is measureable, once we have decided on how much mass a mole is
and our temperature scale (i.e. ∆T between boiling water and the triple point). We
need to measure the pressure, volume and Temperature for a known number of moles.
The resuls is:

R ≈ 8.34
Joules

mole ◦K
(35)

Once Avagadro’s number is known to be 6.02× 1023 then k = 1.38× 10−23 J/◦K.
Our task now is to come up with a microscopic model to explain this equation of

state. There are other experimental quantites to compare with, cv being one of them.
First, we will try to understand the equation of state.

Kinetic Theory: A model for ideal gases

Consider a dilute gas that is contained in a box with sides of equal length L. Our
model of a gas is that it consists of a large number N of molecules that are ”bouncing
around” inside the container. We will assume that the molecules bounce off each
other and the sides of the container elastically. That is, the molecules do not lose
kinetic energy in the collisions. We will also neglect the gravitational potential energy
of the molecules, mgy. This will be OK if the kinetic energy of each molecule is much
larger than mgL. As we will see, this is a good approximation.

Pressure is force/area. How are the molecules applying a force to the sides? By
bouncing off, their momentum is changed. Force is change in momentum per time.
Let’s determine the change in momentum of a molecule as it bounces off a side of the
box, a side in the y-z plane.

1. Momentum Change per bounce: Momentum is m~v. When a molecule bounces
elastically off a side (in the y-z plane), the x-component of its velocity gets reversed.
The x-component of its momentum changes from mvx to −mvx. This is a net change
of

2mvx

2. Force of one molecule on side: The force the side feels from this one molecule
will be: (the number of times the molecule hits the side per second) times 2mvx, since
force is (momentum change)/time. The number of times the molecule hits the side
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per second is vx/(2L). So the force of one molecule on the side is: (2mvx)(vx/(2L) or

mv2x/L

3. Average Pressure one molecule exerts on one side: Since pressure is
force/area, the pressure is just (mv2x/L)/L2 or mv2x/L

3. As the molecules bounce off
each other they will have collisions at different angles and their speeds will change.
At any time the speeds of the molecules in a gas will have a range of values. To find
the average pressure, we should take the average value of v2x which we write as v̄2x. So
the average pressure that one molecule exerts on a side (in the y-z plane) is

mv̄2x
L3

(36)

4. Average Pressure for N molecules: If there are N molecules in the gas, then
the average pressure on a side is:

P =
Nmv̄2x
L3

(37)

Similarly, the average pressure on a side in the x-y plane is P = Nmv̄2z/L
3 and on a

side in the x-z plane is P = Nmv̄2y/L
3. If a molecule is equally likely to move in any

direction, then v̄2x = v̄2y = v̄2z . Since the magnitude of the velocity is v2 = v2x + v2y + v2z ,

we have v̄2x = v̄2/3. Substituting this into the equation above we have:

P =
Nmv̄2

3L3
(38)

However, V = L3, so the equation can be written

P =
N

V
(
mv̄2

3
) (39)

Wow, the model is consistent with the data. The equation states that pressure is
proportional to N and inversely proportional to V as demonstrated by experiment.
The terms on the right side deserve some comment.

Why 1/L3? Pressure is Force/Area, and Area goes as L2. The other factor of L in the
denominator is because the larger L is, the molecules will have fewer collisions/sec

15



with the sides. Hence, the pressure is proportional to 1/L2 times 1/L.

Why v̄2?: One power of v is because momentum is proportional to velocity. The other
power of v is because the faster the molecule travels the more often it will hit the
side. Hence, pressure is proportional to the average of v2.

Why N? The pressure is proportional to N because the number of collisions with the
wall per sec is proportional to the number of molecules in the container.

In addition to understanding the data, the above equation gives us an expres-
sion relating temperature and the average kinetic energy of a molecule in the gas.
The Kinetic Theory gives (PV/N) = mv̄2/3, and experiment yields (PV/N) = kT .
Equating the right sides of these equations gives:

kT =
mv̄2

3
(40)

Remembering that the kinetic energy equals mv2/2, we can write the right side in
terms of the average kinetic energy of a gas molecule:

kT =
2

3
K.E. (41)

where K.E is the average kinetic energy of a molecule in the gas.

Temperature Revisited: The temperature T used in these equations was defined
using an ideal-gas constant-volume thermometer. The kinetic theory model gives
PV = (2/3)NK.E.. Thus, if V is held constant then P is proportional to the av-
erage kinetic energy of a molecule. The constant volume thermometer defines T
proportional to P . So, using an ideal-gas constant-volume thermometer is essentially
defining temperature to be proportional to the average K.E. per molecule. With
this definition of T , it doesn’t matter which type of gas is used. This explains the
universal nature of an ideal-gas thermometer.
Note: For the ideal gas, it is OK to think of temperature as the average kinetic energy
per molecule. However, this is not true in general. We will discuss a broader con-
cept of temperature later. Nonetheless, kT has units of energy, and temperature does
not require a new unit. It can always be coupled with k and hence the units of energy.

R.M.S. Velocity: From our model, we can calculate the average speed of a gas
molecule. The easiest ”speed” to calculate is the root-mean-square speed or RMS
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speed. The RMS speed is the square-root of the average speed-squared: vrms ≡
√
v̄2.

From our equation above,

vrms =

√
3kT

m
=

√
3RT

M
(42)

where M is the molar mass of the gas. Remember T must be in Kelvin. Let’s calcu-

late vrms for N2 at room temperature of T = 293◦K. vrms =
√

3(8.34)293/(0.028 kg) ≈
510m/s. The air molecules are hitting you with an average speed of 510m/s. Our
assumption that the kinetic energy is much greater than mgL is OK.

Internal Energy of an Ideal Gas

From the kinetic theory model we can obtain an expression for the total internal
energy U of an ideal gas. The simplest form would be the sum of the kinetic energies
of the molecules. If the gas contains N molecules:

U = N
mv̄2

2
(43)

Using mv̄2 = 3kT , U can be expressed in terms of N and T :

U =
3

2
NkT =

3

2
nRT (44)

This is result is due to our definition of T and the properties of an ideal gas. If the
number of molecules are fixed, the total energy U only depends on the temperature
T . Another way of writing the equation is to use P and V . Since NkT = PV , we
have U = (3/2)PV . However, it is nicer to recognize that U depends on only one
parameter T .

Heat Capacity of an Ideal Gas at Constant Volume: Heat capacity relates
the temperature increase to the energy transfered to the substance. For gases it is
convenient to consider the heat capacity per mole of the gas. If the volume is held
fixed during the process, no work is done by the gas, so Q = ∆U , so we have

Q = ∆U =
3

2
nR∆T (45)

So, cv = (3/2)R = 12.5 Joules/◦C per mole of the gas. The measured values of cv
for the nobel gases (e.g. He, Ne, A, and Kr) are very close to this value for all
temperatures where the elements are gases. The measured values of cv per mole for
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other gases are also close to 12.5 Joules/◦C for low temperatures.

Since the kinetic theory explains many properties of gases, we are now ready to
examine some thermodynamic processes for ideal gases. We first consider monatomic
gases, since they are the simplest.

Processes for a Monatomic Ideal Gas

By a ”process” we mean that some of the parameters of a gas (V , P , and/or T )
are varied as the gas changes from one state to another. For most of the processes
we consider, N will not change. Many kinds of processes are possible. Here we will
consider some simple ones. We will mainly analyze processes that are ”reversible” or
equivalently ”quasi-static”:

Reversible Processes: A slow or ”quasi-static” process in which the system is al-
ways in equilibrium.

In a process, the internal energy U can change. This change is due to work done by
the gas W , and energy transfered due to temperature differences Q. Processes can
be graphically represented by a plot in the P − V plane. The pressure P is plotted
on the vertical axis, and the volume V is plotted on the horizontal axis. The work
done by the gas is easily determined in the P − V plane.

Work done by a gas

Work is force times displacement. The work done by a gas is the force it exerts
times the distance the force acts. However, force is pressure times area. Thus, the
work done by the gas is the pressure P times area times the distance the area moves.
Area times distance is the change in the volume of the gas, ∆V . So if the volume of
a gas changes by an amount ∆V , the gas does work W equal to P∆V :

Wby gas = P∆V (46)

If the pressure changes as the volume changes, then one needs to integrate PdV :

Wby =
∫
PdV (47)

In the P − V plane, the work is just the area under the curve representing the
process. Using this equation for Wby, and the relationship ∆U = (3/2)nR∆T , we can
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determine these two quantites and Q for any process involving ideal monatomic gases.

Isometric Process: An isometric process is a process in which the volume is
constant, ∆V = 0. P and T will change. In this case, W = 0. Q = ∆U =
(3/2)nR∆T . If the initial pressure is Pi and the final pressure is Pf , Q = (3/2)nR(Tf−
Ti) = (3/2)(PfV − PiV ). So Q = (3/2)V (Pf − Pi). The chart below summarizes our
results:

Wby Q ∆U
0 3

2
nR∆T or 3

2
V (Pf − Pi) 3

2
nR∆T

Isobaric Process: An isobaric process is one in which the pressure is held con-
stant. V and T will change. So the work done by the gas is: Wby = P∆V , or
Wby = P (Vf − Vi). Since PV = nRT , the work done by the gas can also be written
in terms of the initial and final temperatures: Wby = nR(Tf − Ti) = nR∆T for the
isobaric process. The change in internal energy ∆U is determined by the change in
temperature, so ∆U = (3/2)nR∆T . Q for the isobaric process can be determined
from:

∆U = Q−Wby (48)

or

Q = ∆U +Wby

=
3

2
nR∆T + nR∆T

Q =
5

2
nR∆T

The factor (5/2)nR is a heat capacity for a constant pressure process. The heat
capacity at constant pressure per mole of a monatomic gas is cp = (5/2)R = 20.8J/◦K.
Note: cp > cv. It takes more heat to raise the temperature for an isobaric process
than an isometric process. This is because in an isobaric process some energy is used
by the gas as it does work expanding. The experimental data for cp agree well with
this value for the nobel gases at all temperatures.

Wby Q ∆U
P (Vf − Vi) or nR∆T 5

2
nR∆T 3

2
nR∆T
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Isothermal Process: An isothermal process is one in which the temperature is
held constant. P and V will change. Since U is proportional to T , if ∆T = 0 then
∆U = 0. This means that

Q = Wby (49)

Consider an isothermal process in which the volume increases from Vi to Vf . From the
ideal gas law: P = nRT/V , so the pressure decreases as V increases if T is constant.
Since the pressure changes, to find the work done by the gas, we need to integrate:

Wby =
∫ Vf

Vi
PdV (50)

Since P = nRT/V during the isothermal volume expansion,

Wby =
∫ Vf

Vi

nRT

V
dV (51)

the nRT factors out of the integral and we have

Wby = nRT
∫ Vf

Vi

dV

V
(52)

The integral is easily solved to give

Wby = nRTln(
Vf
Vi

) (53)

and so Q = Wby = nRTln(Vf/Vi).

Wby Q ∆U
nRT ln(Vf/Vi) nRT ln(Vf/Vi) 0

Adiabatic Process: An adiabatic process is one in which Q = 0. In this case,
∆U = −Wby. Suppose a gas starts out with a initial volume Vi and pressure Pi. If
the volume is then increased slowly to a value V > Vi, what is the pressure? Since the
temperature will change in this process, P does not equal ViPi/V . That is, although
PV = nRT at any moment of the process, T is changing and so is the product PV .
To determine how P changes with V , we start with:

∆U = −Wby = −P∆V (54)

Since U = (3/2)nRT = (3/2)PV for a monatomic gas, we have
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3

2
∆(PV ) = −P∆V (55)

Using the product rule for differentials

3

2
(P∆V + V∆P ) = −P∆V (56)

Rearrainging terms:

3

2

∆P

P
= −5

2

∆V

V
(57)

Taking the limit at ∆P → 0 and ∆V → 0 gives

3

2

∫ dP

P
= −5

2

∫ dV

V
(58)

After integrating, the equation becomes

3

2
lnP +

5

2
lnV = ln(P 3/2V 5/2) = Const (59)

If we define the parameter γ ≡ 5/3, then during the adiabatic process

PV γ = PiV
γ
i (60)

The work is found by integrating
∫
PdV :

Wby =
∫ Vf

Vi

PiV
γ
i

V γ
dV (61)

which, after some algebra, is

Wby =
PiVi
γ − 1

(1− (
Vi
Vf

)γ−1) (62)

This work done by the gas will decrease the internal energy. It is interesting to
calculate the change in temperature in adiabatic process. Since PV γ = const,

PiV
γ
i = PfV

γ
f (63)

Using P = (nRT )/V we have

TiV
γ−1
i = TfV

γ−1
f (64)
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or

Tf = Ti(
Vi
VF

)γ−1 (65)

For a monatomic gas, γ = 5/3, so γ−1 = 2/3. If the volume decreases by a factor
of 2, then the final temperature in Kelvin increases by a factor of 22/3 = 1.59. A
volume change by 5 gives 52/3 = 2.92, and a ten-fold change gives 102/3 = 4.64. The
work done ”on” the gas increases the internal energy. That the temperature is correctly
predicted by our model supports the hypothesis of the first law of thermodynamics: that
mechanical work can be directly converted into internal energy.

Closed Cycle Processes

By a closed cycle process we mean a process which ends at the same state that it
started. If the final state is the same as the initial state, then Uf = Ui and ∆U = 0
for the closed cycle. However, the work done in the closed cycle will not be zero, but
rather the area enclosed by the process in the P − V plane. We will demonstrate
these ideas with an example, which uses specific values for the states.

Our system will be 2 moles of He, which is a monatomic gas.

State a: Volume = 2 liters; Pressure = 400× 103Pa.
State b: Volume = 4 liters; Pressure = 200× 103Pa.
State c: Volume = 2 liters; Pressure = 200× 103Pa.

Note: With this information, we can calculate the temperatures of the different states.
Since T = (PV )/(nR), we have Ta = (400×103)(2×10−3)/((2)(8.314)) = 48◦K. Here
we have used the conversion 1 liter = 10−3m3. Similarily, Tb = 48◦K and Tc = 24◦K.
The gas changes from state a → b → c → a. We will calculate ∆U , Q, and Wby for
each leg of the process. The results are:

Process Wby (Joules) Q (Joules) ∆U (Joules)
a→ b (isothermal) 553 553 0
b→ c (isobaric) −400 −998 −598
c→ a (isometric) 0 598 598

Whole Cycle 153 153 0

We could repeat this cycle over and over again. What is happening per cycle?
153 Joules of energy is added to the system, and the system does 153 Joules of work.
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This is what an engine is supposed to do. A closed clockwise cycle will function as
an engine. A closed counter-clockwise cycle will function as a refrigerator. For our
engine cycle, a net Qin = 553 + 598 = 1151 Joules is transfered into the gas, and a
net Qout = 998 Joules is transfered out of the gas. The difference Wby = Qin − Qout

is the work done by the gas.
What we would like to have happen is for most of the Qin to be converted to work,

and little transfered out: Qout. We define the efficiency, ε, of a ”heat-engine” to be:

ε ≡ Wby

Qin

(66)

This equation can also be written as

ε ≡ 1− Qout

Qin

(67)

since Wby = Qin − Qout. For our example, ε = 153/1151 ≈ 0.13, or a 13% efficiency.
How can we make the efficiency large? What kind of cycle is the best? The answers
to these important engineering questions require some thought and lead to some new
ideas: the second law of thermodynamics and entropy. We will tackle these problems
for the monatomic ideal gas, since we have a nice working model and it is a simple
system. Then we will generalize our results.

Entropy

When ∆U was summed up for a closed cycle the net change was zero. This is
because U is a state function of the system. It only depends on the state itself, and
not how the state was formed. We represent the sum of ∆U for a closed cycle as the
integral

∮
dU . Since U is a state function

∮
dU = 0. Examples of other state functions

are V , P , and T . Q and W are not state functions.
∮
dQ is not zero as demonstrated

by our last example.
∮
dW =

∮
pdV is also not equal to zero in general, but is the

area enclosed by the path of the cyclic process.
We would like to have a state function involving dQ. Equivantly, we need to find

an expression with dQ such that when integrated over a complete cycle gives zero.
Then we will have something absolute about Q, which will help us determine the
maximum energy efficiency. We shall show that

∮
dQ/T is zero for any closed cycle

for an ideal gas. First we will do a specific closed cycle example and calculate
∫
dQ/T

to show that
∮
dQ/T = 0. Then we will prove it for the general case of an ideal gas.

Consider a closed cycle process for an ideal monatomic gas that is bounded by
two isothermal processes and two isometric processes. We will calculate the following
table in lecture for the 4 legs:
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Process W Q ∆U
∫
dQ/T

a→ b 0 (3/2)nR(TH − TC) (3/2)nR(TH − TC) (3/2)nR ln(TH/TC)
b→ c nRTH ln(V2/V1) nRTH ln(V2/V1) 0 nR ln(V2/V1)
c→ d 0 −(3/2)nR(TH − TC) −(3/2)nR(TH − TC) (3/2)nR ln(TC/TH)
d→ a nRTC ln(V1/V2) nRTC ln(V1/V2) 0 nR ln(V1/V2)

cycle nR(TH − TC) nR(TH − TC) 0 0
ln(V2/V1) ln(V2/V1)

where a → b and c → d are isometric (constant V ) processes, and b → c and d → a
are isothermal (constant T ) processes.

Note that
∮
dQ/T = 0 for any value of V1, V2, TH , or TC . Is this true for any

closed cycle? The answer is yes. We can prove it for a monatomic ideal gas:

0 =
∮ dV

V
(68)

For any closed cycle, the above integral is just lnVi/Vi = ln(1) = 0. Using the
equation for an ideal gas,

0 =
∮ pdV

nRT
(69)

However, pdV equals dQ− dU from the first law of thermodynamics.

0 =
∮ dQ− dU

nRT
(70)

For a monatomic gas, U = (3/2)nRT . With this substitution we have

0 =
∮ dQ

nRT
− 2

3

∮ dU

U
(71)

The second integral is zero, since
∮
dU/U = ln(Ui/Ui) = ln(1) = 0. Canceling out

the nR

0 =
∮ dQ

T
(72)

Although this derivation was for the monatomic gas, the same line of reasoning will
work for any ideal gas. The only difference in the derivation will be that U = f(T ),
that is U is only a function of T . This is the key property of the system. If U
only depends on T , U(T ), then then the integral of

∫
dU/T =

∫
(U ′(T )/T )dT , where
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U ′(T ) = dU/dT . This integral will be zero over a closed cycle, since the integrand
only depends on T.

The above result has profound consequences. It means that if ∆Q/T is summed
up from one state a to another state b, the integral

∫ b
a dQ/T is the same for any

process that changes the system from a → b. The quantity
∫ b
a dQ/T only depends

on the initial state a and final state b. This integral we call the entropy difference
between the two states. Entropy is given the symbol S:

S(b)− S(a) =
∫ b

a

dQ

T
(73)

Entropy is a ”state function” of a system, just like U , V , T , and P . Before we
try and identify what S depends on for a gas, we should remind ourselves on how
it was discovered using a thermodynamics approach. The important step in making∮
dQ/T = 0, was

∮
dU/T = 0. This was made possible by our definition of temper-

ature, which ended up being (for an ideal gas) proportional to the average kinetic
energy per molecule and hence proportional to U . We can turn the argument around,
and say that it is possible to define temperature T such that

∮
dQ/T = 0

for any cyclic process. This definition of temperature is independent of any ther-
mometer, and this statement recognizes the existance of the entropy state function.

Other Topics

Diatomic and other ideal gases

For all gases, the equation of state PV = nRT is valid in the limit of an ideal gas
(i.e. in the limit as the density goes to zero). The next most complicated gas after
a monatomic gas is a diatomic gas, whose molecule has two atoms, e.g. H2, O2, N2.
The energy U for n moles of a monatomic gas was found to be (3/2)nRT . We can
determine how the energy of a diatomic gas depends on temperature by measuring
the heat capacity (per mole) for a constant volume process.

In a constant volume process, ∆U = Q = cv∆T . A graph of cv for H2 as a function
of temperature will be shown in lecture. At low temperatures, cv = (3/2)R which is
the same as the monatomic gas. However, as the temperature increases, cv jumps up
to (5/2)R at around 150◦K. After a further increase in T , cv jumps up to (7/2)R at
around 3000◦K. This behavour is strange for two reasons: 1) the sudden increase (or
jump) of cv as a function of T , and 2) the first increase from (3/2)R to (5/2)R. The
understanding of these features required ”new” physics, quantum mechanics, which
we cover in our modern physics course (Phy235).
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Qualitatively, we understand the sudden increase in U for a diatomic molecule as
rotational energy and vibrational energy. A diatomic molecule can translate (like a
monatomic gas) in 3 different directions, rotate in 3 different directions and vibrate
(two degrees of freedom). There is a theorum, the equipartition theorum, which
states that for every degree of freedom that contributes quadratically to the energy,
the average energy is (RT )/2 per mole. If only translation is allowed, U = (3/2)RT ,
since there are three directions, each of which contribute (RT )/2. Rotations should
add 3 × (1/2)RT = (3/2)RT , but they only seem to add RT to the energy/mole.
These descrepancies are resolved using quantum mechanics.

For our applications here, we just need to know cv for the conditions of our gas.
Then,

∆U = ncv∆T (74)

At room temperature, 300◦K, N2, O2 and H2 have cv = (5/2)R. The heat capacity
at constant pressure is found in terms of cv as:

cp = cv +R (75)

This can be shown as follows:

∆U = Q− p∆V
ncv∆T = Q− p∆V

Now for a constant pressure process, p∆V = ∆(pV ). So we have

ncv∆T = Q−∆(pV )

= Q−∆(nRT )

n(cv +R)∆T = Q

which gives cp = cv +R.

The main difference between ideal gases and ideal monatomic gases (in our treat-
ment) is that cv and hence cp depend on energy and might be different than the
monatomic values of (3/2)R and (5/2)R respectively. This results in γ being differ-
ent also, since γ ≡ cp/cv.

Efficiency and the Carnot Cycle
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Using
∮
dQ/T = 0, we can determine an upper limit for efficiency of an engine.

Consider a closed cycle (for an ideal gas) that acts like an engine. That is, the path
is clockwise in the P − V plane. Divide the path into small segments. For each
segment, energy will either enter the system as heat (∆Q(in) or leave the system as
heat ∆Q(out). ∆Q could also be zero. Label the segments for which energy enters
as i, and those for which energy leaves as j, where both i and j are summed. From∮
dQ/T = 0 we have:

∑
i

Qi(in)

Ti
−

∑
j

Qj(out)

Tj
= 0 (76)

where we have taken Qj(out) to be the absolute value of Qj(out). The equation can
be re-written

∑
i

Qi(in)

Ti
=

∑
j

Qj(out)

Tj
(77)

Let Thottest be the largest value of the temperature during the cycle, and let Tcoldest
be the lowest value of the temperature during the cycle. Then we have:

∑
i

Qi(in)

Ti
≥ 1

Thottest

∑
i

Qi(in) (78)

or

∑
i

Qi(in)

Ti
≥ Qin

Thottest
(79)

where Qin is the sum of energy entering the gas via heat. Similarly,

∑
i

Qj(out)

Tj
≤ 1

Tcoldest

∑
i

Qj(out) (80)

or

∑
i

Qj(out)

Tj
≤ Qout

Tcoldest
(81)

where Qout is the sum of energy leaving the gas via heat. Putting these equations
together gives

Qin

Thottest
≤

∑ Qi(in)

Ti
=

∑ Qj(out)

Tj
≤ Qout

Tcoldest
(82)
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This inequality can be re-written

Qout

Qin

≥ Tcoldest
Thottest

(83)

Since the efficiency ε = 1−Qout/Qin, we have

ε ≤ 1− Tcoldest
Thottest

(84)

From these inequalities, one can see how to obtain the maximum efficiency. The
equal sign will hold if all the energy transfered in (Qin) is done so at the hottest tem-
perature, and all the energy transfered out (Qout) is done at the lowest temperature.
The cycle that accomplishes this is a cycle that has two isothermal processes and two
adiabatic processes. Such a cycle is called a Carnot Cycle. For a Carnot cycle, the
efficiency εCarnot is

εCarnot = 1− Tcold
Thot

(85)

where Thot is the temperature of the hot isothermal and Tcold is the temperature of
the cold isothermal. Q = 0 on the adiabatic legs of the cycle. The Carnot cycle is
the most efficient engine operating between the hottest and coldest temperatures.

The meaning of entropy

Previously we derived an expression for the difference in entropy between two
states:

S(b)− S(a) =
∫ b

a

dQ

T
(86)

Note: the integral gives the same value for any path taken from state a to b. Although
we derived this for an ideal gas, it holds for any substance. In evaluating the right side,
usually T changes as energy is added or subtracted from the system, so one usually
needs to integrate. Since ∆Q is related to ∆T via the heat capacity C: dQ = CdT ,
the entropy difference equation can be written as

S(b)− S(a) =
∫ b

a

C(T )dT

T
(87)

where C(T ) is the heat capacity and may depend on the temperature T . If the system
changes from a → b such that C is a constant, then C(T ) = C factors out of the
integral:
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S(b)− S(a) = C
∫ b

a

dT

T
= C ln(

Tb
Ta

) (88)

For solids and liquids, C = mcv where cv is the specific heat capacity. For gases
C = ncv or C = ncp depending if the process is isometric or isobaric.

Since entropy is heat/temperature, is there a simple connection between the di-
rection of energy flow and entropy change? Yes there is. Consider two systems, one
at temperature TH (hot) and the other at temperature TC (cold), where TH > TC .
If a small amount of energy ∆Q flows from the hot system to the colder one, the
hot system loses entropy equal to ∆Q/TH . The cold system gains entropy equal to
∆Q/TC . The net entropy change of the two systems together is

∆Snet =
∆Q

TC
− ∆Q

TH
> 0 (89)

The sum is greater than zero since TC < TH . If on the other hand, energy were to
flow from the cold system to the hot one, the net entropy change of the two systems
together would be

∆Snet =
∆Q

TH
− ∆Q

TC
< 0 (90)

Thus, it appears that when energy is transfered in the form of heat, the direction
of the transfer is such that the net entropy of the two (or more) systems increases.
Entropy somehow is related to the direction of energy transfer. The second law of
thermodynamics states this more precisely:

Second Law of Thermodynamics: When an isolated system undergoes a change,
the entropy of the system can only increase or remain the same.

We know that entropy is a state function and that it is somehow related to the
direction of thermodynamic change, but specifically what is it a measure of? Since we
have a working model of a monatomic gas, lets determine how the entropy depends
on its macroscopic quantities. Suppose we have n moles of a monatomic gas. Let
state a have a pressure Pa, a volume Va, and a temperature Ta = (PaVa)/(nR). Let
state b have a pressure Pb, a volume Vb, and a temperature Tb = (PbVb)/(nR). Let
the process from a→ b be in two parts: an isothermal followed by an isometric. For
the isothermal, the temperature is constant at Ta:

∆Sisothermal =
∫ dQ

T
=
Q

Ta
(91)
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since Ta factors out of the integral. Q is the net heat, and is equal to the work W
done since ∆U = 0 for an isothermal process. So we have

∆Sisothermal =
W

Ta

=
1

Ta

∫
PdV

=
1

Ta

∫ nRTadV

V

∆Sisothermal = nR ln
Vb
Va

For the isometric leg, ∆Q = (3/2)nR∆T . The entropy change for this section is

∆Sisometric =
∫ 3nR

2

dT

T

=
3nR

2
ln
Tb
Ta

Adding the two pieces together, we have for the entropy difference between the states
a and b for an ideal monatomic gas:

S(b)− S(a) = nR(ln
Vb
Va

+
3

2
ln
Tb
Ta

) (92)

Since the temperature is proportional to the total internal energy U , (Tb/Ta) =
(Ub/Ua):

S(b)− S(a) = nR(ln
Vb
Va

+
3

2
ln
Ub
Ua

) (93)

in terms of the energy U . We can examine this equation to see what the entropy
depends on for a monatomic gas:

Energy dependence: The entropy is proportional to the log of the energy U of the gas
(if n and V are constant). Entropy increases with energy, via the log.

Volume dependence: The entropy is proportional to the log of the volume V of the
gas (if n and U are constant).
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The energy dependence gives us a relationship between entropy, energy and temper-
ature. If we differentiate S with respect to U ,

∂S

∂U
=

3nR

2U
∂S

∂U
=

1

T

since U = (3/2)nRT for a monatomic gas. As we mention in the last paragraph
(without proof), this relationship can be derived using statistical physics and can be
used to define temperature.

The volume dependence is interesting. If the volume of the gas gets larger, with no
change in the energy, the entropy increases. Consider a container insulated from the
”outside” with two chambers inside. Suppose the gas can travel from one chamber
to the other only through a valve. Suppose the gas starts in one chamber with the
valve closed, and the other chamber is a vacuum. If the valve is opened, the gas can
move to the other chamber and after a while both chambers will be occupied by the
gas. The energy of the gas did not change ∆U = 0. The temperature didn’t change.
However, the entropy increased by an amount nR ln2.

For a monatomic gas, entropy has something to do with the volume that the
gas can move around in. The true meaning of entropy was discovered by Ludwig
Boltzmann (1844-1906). He realized that entropy is related to the number of possi-
ble configurations of a system. He started a new field of physics called Statistical
Physics, and revolutionized our treatment of thermodynamics. Statistical physics is
a course of its own and usually taught in the senior year (Phy407).

Boltzmann defined a function Ω(U), which equals the number of different ways
that a system can arrange itself with total energy U . Entropy S is related to Ω as

S = k ln(Ω) (94)

where k is Boltzmann’s constant. In statistical mechanics, the temperature of a
system is defined by

1

T
≡ ∂S

∂U
(95)

This definition of temperature is universal. It works for any system. For an ideal
gas, this definition for temperature results in temperature being proportional to U .
Serendipitously one obtains the same temperature using a constant-volume ideal-gas
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thermometer, for which temperature was initially defined proportional to pressure
and later (using the kinetic theory) found to also be proportional to U .

Summary of Some Processes

The simplist way to find ∆U , Q, Wby, and ∆S for a reversible process is to
do the following. First determine ∆U , which equals ∆U = (3/2)nR∆T or ∆U =
(3/2)∆(PV ) for a monatomic gas. For a diatomic gas at room temperature just
replace the (3/2) with (5/2). Second determine Wby by finding the area under the
curve in the P-V plane. Wby is the same for any type of gas. Third find Q, which
is just Q = ∆U + Wby. This is true for any type of gas. Finally determine ∆S by
carrying out the integral ∆S =

∫
(dQ)/T , where T is the temperature (in Kelvin) at

which the incremental heat energy dQ is transfered.

Isothermal Process

For an isothermal process, ∆T = 0 and hence ∆U = 0. This is true for both a
monatomic and diatomic gas. If the process is reversible, then PV = nRT0 during
the process, where T0 is the constant temperature. The work done by the gas is then
Wby =

∫
PdV = nRT0

∫
(dV )/V . The integral of

∫
dV/V = ln(V ), and taking the

limits from the initial volume Vi to the final volume Vf gives Wby = nRT0ln(Vf/Vi).
This is the work for both a monatomic and a diatomic gas. Since ∆U = Q −Wby,
we have Q = Wby = nRT0ln(Vf/Vi). To find the change in entropy for an isothermal
process, we need to do the integral ∆S =

∫
(dQ)/T = (1/T0)

∫
dQ = Q/T0, since the

temperature is constant. Using the expression for Q, we have ∆S = nRln(Vf/Vi).
We can summarize our results in the following chart:

Process Wby Q ∆U ∆S
Isothermal nRT0 ln(Vf/Vi) nRT0 ln(Vf/Vi) 0 nR ln(Vf/Vi)

for both monatomic and diatomic gases.

Isometric Process

For an isometric process, ∆V = 0, and hence Wby = 0. Since Wby = 0, ∆U = Q.
The change in internal energy ∆U will depend on ∆T . For a monatomic gas, ∆U =
(3/2)nR∆T and for a diatomic gas (at room temperature) ∆U = (5/2)nR∆T . We
can also express ∆U in terms of the change in the product of PV , since nRT = PV .
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In terms of PV , we have ∆U = (3/2)∆(PV ) for a monatomic gas, and ∆U =
(5/2)∆(PV ) for a diatomic gas at room temperature.

To find the change in entropy for an isometric process, we need to carry out the
integral ∆S =

∫
(dQ)/T . For a monatomic gas, ∆Q = (3/2)nR∆T . Thus, ∆S =

(3/2)nR
∫

(dT )/T = (3/2)nR ln(Tf/Ti). For a diatomic gas, ∆Q = (5/2)nR∆T . In
this case, the change in entropy is ∆S = (5/2)nR ln(Tf/Ti). We can summarize these
results in the following charts:

Process Wby Q ∆U ∆S
Isometric 0 (3/2)∆(PV ) (3/2)∆(PV ) (3/2)nR ln(Tf/Ti)

for a monatomic gas. For a diatomic gas, the results are

Process Wby Q ∆U ∆S
Isometric 0 (5/2)∆(PV ) (5/2)∆(PV ) (5/2)nR ln(Tf/Ti)

Adiabatic Processes

For an adiabatic process there is no ”heat” exchange, Q = 0. Thus, ∆S = 0,
and Wby = −∆U . For a monatomic gas, ∆U = (3/2)nR∆T = (3/2)∆(PV ) For a
diatomic gas, ∆U = (5/2)nR∆T = (5/2)∆(PV ). These results can be summarized
in following charts:

Process Wby Q ∆U ∆S
Adiabatic −(3/2)∆(PV ) 0 (3/2)∆(PV ) 0

for a monatomic gas. For a diatomic gas, the results are

Process Wby Q ∆U ∆S
Adiabatic −(5/2)∆(PV ) 0 (5/2)∆(PV ) 0

Isobaric Processes

For an isobaric process, all the quantities ∆U , Q, Wby, and ∆S are non-zero.
Let the pressure be P0, and the initial and final volumes be Vi and Vf . Then
∆U = (3/2)nR∆T = (3/2)∆(PV ) = (3/2)P0(Vf − Vi). Wby = P0(Vf − Vi). The
”heat” energy transfer is Q = ∆U +Wby = (5/2)P0(Vf −Vi), since (3/2) + 1 = (5/2).
The change in entropy is ∆S =

∫
(dQ)/T =

∫
(5/2)nR(dT )/T . Evaluating the inte-

gral gives ∆S = (5/2)nR ln(Tf/Ti), which equals ∆S = (5/2)nR ln(Vf/Vi), since
(Tf/Ti) = (Vf/Vi) for an isobaric process. These results can be summarized in the
following charts:
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Process Wby Q ∆U ∆S
Isobaric P0(Vf − Vi) (5/2)P0(Vf − Vi) (3/2)P0(Vf − Vi) (5/2)nR ln(Vf/Vi)

for a monatomic gas. For a diatomic gas, the results are

Process Wby Q ∆U ∆S
Isobaric P0(Vf − Vi) (7/2)P0(Vf − Vi) (5/2)P0(Vf − Vi) (7/2)nR ln(Vf/Vi)
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