

1

Introduction to
Computers and C++
Programming

1.1 Computer Systems 2

Hardware 2
Software 7
High-Level Languages 8
Compilers 9
History Note 12

1.2 Programming and Problem-Solving 13

Algorithms 14
Program Design 15
Object-Oriented Programming 17
The Software Life Cycle 18

1.3 Introduction to C++ 19

Origins of the C++ Language 19
A Sample C++ Program 20

Pitfall:

Using the Wrong Slash in

\n

 24

Programming Tip:

Input and Output Syntax 25
Layout of a Simple C++ Program 25

Pitfall:

Putting a Space before the

include

 File Name 27
Compiling and Running a C++ Program 28

Programming Tip:

Getting Your Program to Run 28

1.4 Testing and Debugging 31

Kinds of Program Errors 32

Pitfall:

Assuming Your Program Is Correct 33

Chapter Summary 34
Answers to Self-Test Exercises 35
Programming Projects 37

CH01.fm Page 1 Thursday, July 24, 2003 2:43 PM

1

Introduction to Computers
and C++ Programming

The whole of the development and operation of analysis are now capable of being
executed by machinery ... As soon as an Analytical Engine exists, it will
necessarily guide the future course of science.

C

HARLES

 B

ABBAGE

 (1792–1871)

Introduction

In this chapter we describe the basic components of a computer, as well as the basic
technique for designing and writing a program. We then show you a sample C++
program and describe how it works.

1.1 Computer Systems

A set of instructions for a computer to follow is called a

program.

The collection of
programs used by a computer is referred to as the

software

for that computer. The
actual physical machines that make up a computer installation are referred to as

hardware.

 As we will see, the hardware for a computer is conceptually very simple.
However, computers now come with a large array of software to aid in the task of
programming. This software includes editors, translators, and managers of various
sorts. The resulting environment is a complicated and powerful system. In this book
we are concerned almost exclusively with software, but a brief overview of how the
hardware is organized will be useful.

Hardware

There are three main classes of computers:

PCs

,

workstations

, and

mainframes

. A

PC

(

personal computer

) is a relatively small computer designed to be used by one
person at a time. Most home computers are PCs, but PCs are also widely used in
business, industry, and science. A

workstation

 is essentially a larger and more
powerful PC. You can think of it as an “industrial-strength” PC. A

mainframe

 is an
even larger computer that typically requires some support staff and generally is
shared by more than one user. The distinctions between PCs, workstations, and
mainframes are not precise, but the terms are commonly used and do convey some
very general information about a computer.

software

hardware

PCs,
workstations, and
mainframes

CH01.fm Page 2 Thursday, July 24, 2003 2:43 PM

1.1 Computer Systems

3

A

network

 consists of a number of computers connected, so they may share
resources, such as printers, and may share information. A network might contain a
number of workstations and one or more mainframes, as well as shared devices such
as printers.

For our purposes in learning programming, it will not matter whether you are
working on a PC, a mainframe, or a workstation. The basic configuration of the com-
puter, as we will view it, is the same for all three types of computers.

The hardware for most computer systems is organized as shown in Display 1.1.
The computer can be thought of as having five main components: the

input
device(s)

, the

output device(s)

, the

processor

 (also called the

CPU

), the

main mem-
ory

, and the

 secondary memory

. The processor, main memory, and sometimes even
secondary memory are normally housed in a single cabinet. The processor and main
memory form the heart of a computer and can be thought of as an integrated unit.

Display 1.1 Main Components of a Computer

Main memory

processor (CPU)

Secondary
memory

Input
device(s)

Output
device(s)

network

CH01.fm Page 3 Thursday, July 24, 2003 2:43 PM

4

1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

Other components connect to the main memory and operate under the direction of
the processor. The arrows in Display 1.1 indicate the direction of information flow.

An

input device

 is any device that allows a person to communicate information
to the computer. Your primary input devices are likely to be a keyboard and a mouse.

An

output device

is anything that allows the computer to communicate informa-
tion to you. The most common output device is a display screen, referred to as a

mon-
itor.

 Quite often, there is more than one output device. For example, in addition to the
monitor, your computer probably has a printer for producing output on paper. The
keyboard and monitor are sometimes thought of as a single unit called a

terminal

.
In order to store input and to have the equivalent of scratch paper for performing

calculations, computers are provided with

memory

. The program that the computer
executes is also stored in this memory. A computer has two forms of memory, called

main memory

 and

secondary memory

. The program that is being executed is kept in
main memory, and main memory is, as the name implies, the most important mem-
ory.

Main memory

 consists of a long list of numbered locations called

memory
locations

; the number of memory locations varies from one computer to another,
ranging from a few thousand to many millions, and sometimes even into the billions.
Each memory location contains a string of zeros and ones. The contents of these
locations can change. Hence, you can think of each memory location as a tiny black-
board on which the computer may write and erase. In most computers, all memory
locations contain the same number of zero/one digits. A digit that can assume only
the values zero or one is called a

binary digit

 or a

bit.

 The memory locations in
most computers contain eight bits (or some multiple of eight bits). An eight-bit por-
tion of memory is called a

byte,

 so we may refer to these numbered memory loca-
tions as

bytes

. To rephrase the situation, you can think of the computer’s main
memory as a long list of numbered memory locations called

bytes

. The number that
identifies a byte is called its

address.

 A data item, such as a number or a letter, can
be stored in one of these bytes, and the address of the byte is then used to find the
data item when it is needed.

If the computer needs to deal with a data item (such as a large number) that is
too large to fit in a single byte, it will use several adjacent bytes to hold the data item.
In this case the entire chunk of memory that holds the data item is still called a

memory location.

 The address of the first of the bytes that make up this memory
location is used as the address for this larger memory location. Thus, as a practical
matter, you can think of the computer’s main memory as a long list of memory loca-
tions of

varying sizes

. The size of each of these locations is expressed in bytes and
the address of the first byte is used as the address (name) of that memory location.
Display 1.2 shows a picture of a hypothetical computer’s main memory. The sizes of
the memory locations are not fixed, but can change when a new program is run on
the computer.

input devices

output devices

main memory

bit

byte

address

memory
location

CH01.fm Page 4 Thursday, July 24, 2003 2:43 PM

1.1 Computer Systems

5

The fact that the information in a computer's memory is represented as zeros and
ones need not be of great concern to you when programming in C++ (or in most any
other programming language). There is, however, one point about this use of zeros
and ones that will concern us as soon as we start to write programs. The computer
needs to interpret these strings of zeros and ones as numbers, letters, instructions, or
other types of information. The computer performs these interpretations automat-
ically according to certain coding schemes. A different code is used for each different
type of item that is stored in the computer’s memory: one code for letters, another for
whole numbers, another for fractions, another for instructions, and so on. For exam-
ple, in one commonly used set of codes, 01000001 is the code for the letter A and also
for the number 65. In order to know what the string 01000001 in a particular location

Display 1.2 Memory Locations and Bytes

Bytes and Addresses

Main memory is divided into numbered locations called

bytes

.

 The number
associated with a byte is called its

address

.

 A group of consecutive bytes is used as
the location for a data item, such as a number or letter. The address of the first byte
in the group is used as the address of this larger memory location.

byte 1
byte 2
byte 3
byte 4
byte 5
byte 6
byte 7
byte 8
byte 9

3 byte location with address 1

2 byte location with address 4

1 byte location with address 6

3 byte location with address 7

CH01.fm Page 5 Thursday, July 24, 2003 2:43 PM

6

1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

stands for, the computer must keep track of which code is currently being used for
that location. Fortunately, the programmer seldom needs to be concerned with such
codes and can safely reason as though the locations actually contained letters, num-
bers, or whatever is desired.

The memory we have been discussing up until now is the main memory. With-
out its main memory, a computer can do nothing. However, main memory is only
used while the computer is actually following the instructions in a program. The
computer also has another form of memory called

secondary memory

 or

secondary
storage

. (The words

memory

 and

storage

are exact synonyms in this context.)

Secondary memory

 is the memory that is used for keeping a permanent record of
information after (and before) the computer is used. Some alternative terms that are
commonly used to refer to secondary memory are

auxiliary memory

,

auxiliary stor-
age

,

external memory

, and

external storage

.
Information in secondary storage is kept in units called

files,

 which can be as
large or as small as you like. A program, for example, is stored in a file in secondary
storage and copied into main memory when the program is run. You can store a pro-
gram, a letter, an inventory list, or any other unit of information in a file.

 Several different kinds of secondary memory may be attached to a single com-
puter. The most common forms of secondary memory are

hard disks

,

diskettes

, and

CDs

. (Diskettes are also sometimes referred to as

floppy disks.

)

CDs

 (compact disks)
used on computers are basically the same as those used to record and play music.
CDs for computers may be read-only so that your computer can read, but cannot
change, the data on the CD; CDs for computers can also be read/write CDs, which
can have their data changed by the computer. Information is stored on hard disks and
diskettes in basically the same way as it is stored on CDs.

Hard disks

 are fixed in
place and are normally not removed from the disk drive.

Diskettes

 and CDs can be
easily removed from the disk drive and carried to another computer. Diskettes and
CDs have the advantages of being inexpensive and portable, but hard disks hold
more data and operate faster. Other forms of secondary memory are also available,
but this list covers most forms that you are likely to encounter.

Why Eight?

A

byte

 is a memory location that can hold eight bits. What is so special about
eight

?

 Why not ten bits

?

 There are two reasons why eight is special. First, eight is a
power of 2. (8 is 2

3

.) Since computers use bits, which only have two possible
values, powers of two are more convenient than powers of 10. Second, it turns out
that it requires eight bits (one byte) to code a single character (such as a letter or
other keyboard symbol).

secondary memory

files

CDs, disks, and
diskettes

CH01.fm Page 6 Thursday, July 24, 2003 2:43 PM

1.1 Computer Systems

7

Main memory is often referred to as

RAM

 or random access memory. It is
called random access because the computer can immediately access the data in any
memory location. Secondary memory often requires sequential access, which
means that the computer must look through all (or at least very many) memory loca-
tions until it finds the item it needs.

The processor (also know as the central processing unit, or CPU) is the
“brain” of the computer. When a computer is advertised, the computer company will
tell you what chip it contains. The chip is the processor. The processor follows the
instructions in a program and performs the calculations specified by the program. The
processor is, however, a very simple brain. All it can do is follow a set of simple
instructions provided by the programmer. Typical processor instructions say things
like “Interpret the zeros and ones as numbers, and then add the number in memory
location 37 to the number in memory location 59, and put the answer in location 43,”
or “Read a letter of input, convert it to its code as a string of zeros and ones, and place
it in memory location 1298.” The processor can add, subtract, multiply, and divide
and can move things from one memory location to another. It can interpret strings of
zeros and ones as letters and send the letters to an output device. The processor also
has some primitive ability to rearrange the order of instructions. processor instruc-
tions vary somewhat from one computer to another. The processor of a modern com-
puter can have as many as several hundred available instructions. However, these
instructions are typically all about as simple as those we have just described.

Software

You do not normally talk directly to the computer, but communicate with it through
an operating system. The operating system allocates the computer’s resources to
the different tasks that the computer must accomplish. The operating system is
actually a program, but it is perhaps better to think of it as your chief servant. It is in
charge of all your other servant programs, and it delivers your requests to them. If
you want to run a program, you tell the operating system the name of the file that
contains it, and the operating system runs the program. If you want to edit a file, you
tell the operating system the name of the file and it starts up the editor to work on
that file. To most users the operating system is the computer. Most users never see
the computer without its operating system. The names of some common operating
systems are UNIX, DOS, Linux, Windows, Macintosh, and VMS.

A program is a set of instructions for a computer to follow. As shown in Dis-
play 1.3, the input to a computer can be thought of as consisting of two parts, a pro-
gram and some data. The computer follows the instructions in the program, and in
that way, performs some process. The data is what we conceptualize as the input to
the program. For example, if the program adds two numbers, then the two numbers

RAM

processor, chip

operating system

program

data

CH01.fm Page 7 Thursday, July 24, 2003 2:43 PM

8 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

are the data. In other words, the data is the input to the program, and both the pro-
gram and the data are input to the computer (usually via the operating system).
Whenever we give a computer both a program to follow and some data for the pro-
gram, we are said to be running the program on the data, and the computer is said
to execute the program on the data. The word data also has a much more general
meaning than the one we have just given it. In its most general sense it means any
information available to the computer. The word is commonly used in both the nar-
row sense and the more general sense.

High-Level Languages

There are many languages for writing programs. In this text we will discuss the C++
programming language and use it to write our programs. C++ is a high-level
language, as are most of the other programming languages you are likely to have
heard of, such as C, Java, Pascal, Visual Basic, FORTRAN, COBOL, Lisp, Scheme,
and Ada. High-level languages resemble human languages in many ways. They are
designed to be easy for human beings to write programs in and to be easy for human
beings to read. A high-level language, such as C++, contains instructions that are
much more complicated than the simple instructions a computer's processor (CPU)
is capable of following.

The kind of language a computer can understand is called a low-level language.
The exact details of low-level languages differ from one kind of computer to another.
A typical low-level instruction might be the following:

ADD X Y Z

Display 1.3 Simple View of Running a Program

Program

Computer

Data

Output

running a
program
executing a
program

high-level language

low-level
language

CH01.fm Page 8 Thursday, July 24, 2003 2:43 PM

1.1 Computer Systems 9

This instruction might mean “Add the number in the memory location called X to the
number in the memory location called Y, and place the result in the memory location
called Z.” The above sample instruction is written in what is called assembly
language. Although assembly language is almost the same as the language
understood by the computer, it must undergo one simple translation before the
computer can understand it. In order to get a computer to follow an assembly
language instruction, the words need to be translated into strings of zeros and ones.
For example, the word ADD might translate to 0110, the X might translate to 1001, the
Y to 1010, and the Z to 1011. The version of the above instruction that the computer
ultimately follows would then be:

0110 1001 1010 1011

Assembly language instructions and their translation into zeros and ones differ from
machine to machine.

Programs written in the form of zeros and ones are said to be written in machine
language, because that is the version of the program that the computer (the
machine) actually reads and follows. Assembly language and machine language are
almost the same thing, and the distinction between them will not be important to us.
The important distinction is that between machine language and high-level lan-
guages like C++: Any high-level language program must be translated into machine
language before the computer can understand and follow the program.

Compilers

A program that translates a high-level language like C++ to a machine language is
called a compiler. A compiler is thus a somewhat peculiar sort of program, in that its
input or data is some other program, and its output is yet another program. To avoid
confusion, the input program is usually called the source program or source code,
and the translated version produced by the compiler is called the object program or
object code. The word code is frequently used to mean a program or a part of a
program, and this usage is particularly common when referring to object programs.
Now, suppose you want to run a C++ program that you have written. In order to get the
computer to follow your C++ instructions, proceed as follows. First, run the compiler
using your C++ program as data. Notice that in this case, your C++ program is not
being treated as a set of instructions. To the compiler, your C++ program is just a long
string of characters. The output will be another long string of characters, which is the
machine-language equivalent of your C++ program. Next, run this machine-language
program on what we normally think of as the data for the C++ program. The output
will be what we normally conceptualize as the output of the C++ program. The basic
process is easier to visualize if you have two computers available, as diagrammed in

assembly
language

machine language

compiler

source program
object program
code

CH01.fm Page 9 Thursday, July 24, 2003 2:43 PM

10 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

Display 1.4. In reality, the entire process is accomplished by using one computer two
times.

The complete process of translating and running a C++ program is a bit more
complicated than what we showed in Display 1.4. Any C++ program you write will

Display 1.4 Compiling and Running a C++ Program
 (Basic Outline)

Compiler
A compiler is a program that translates a high-level language program, such as a
C++ program, into a machine-language program that the computer can directly
understand and execute.

C++ program
Data for

C++ program

Compiler

Computer

Machine-language
 program

Computer

Output of
C++ program

CH01.fm Page 10 Thursday, July 24, 2003 2:43 PM

1.1 Computer Systems 11

use some operations (such as input and output routines) that have already been pro-
grammed for you. These items that are already programmed for you (like input and
output routines) are already compiled and have their object code waiting to be com-
bined with your program’s object code to produce a complete machine-language pro-
gram that can be run on the computer. Another program, called a linker, combines the
object code for these program pieces with the object code that the compiler produced
from your C++ program. The interaction of the compiler and the linker are diagrammed
in Display 1.5. In routine cases, many systems will do this linking for you automati-
cally. Thus, you may not need to worry about linking in very simple cases.

SELF-TEST EXERCISES

1 What are the five main components of a computer?

2 What would be the data for a program to add two numbers?

3 What would be the data for a program that assigns letter grades to students in
a class?

4 What is the difference between a machine-language program and a high-
level language program?

5 What is the role of a compiler?

6 What is a source program? What is an object program?

7 What is an operating system?

8 What purpose does the operating system serve?

9 Name the operating system that runs on the computer you use to prepare pro-
grams for this course.

10 What is linking?

11 Find out whether linking is done automatically by the compiler you use for
this course.

Linking
The object code for your C++ program must be combined with the object code for
routines (such as input and output routines) that your program uses. This process of
combining object code is called linking and is done by a program called a linker. For
simple programs, linking may be done for you automatically.

linking

CH01.fm Page 11 Thursday, July 24, 2003 2:43 PM

12 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

History Note

The first truly programmable computer was designed by Charles Babbage, an
English mathematician and physical scientist. Babbage began the project sometime
before 1822 and worked on it for the rest of his life. Although he never completed
the construction of his machine, the design was a conceptual milestone in the history
of computing. Much of what we know about Charles Babbage and his computer
design comes from the writings of his colleague Ada Augusta. Ada Augusta was the
daughter of the poet Byron and was the Countess of Lovelace. Ada Augusta is
frequently given the title of the first computer programmer. Her comments, quoted
in the opening of the next section, still apply to the process of solving problems on
a computer. Computers are not magic and do not, at least as yet, have the ability
to formulate sophisticated solutions to all the problems we encounter. Computers
simply do what the programmer orders them to do. The solutions to problems are

Display 1.5 Preparing a C++ Program for Running

Complete machine
language code
ready to run

Object code for
C++ program

Object code for
other routines

C++ program

Compiler

Linker

Charles Babbage

Ada Augusta

CH01.fm Page 12 Thursday, July 24, 2003 2:43 PM

1.2 Programming and Problem-Solving 13

carried out by the computer, but the solutions are formulated by the programmer.
Our discussion of computer programming begins with a discussion of how a
programmer formulates these solutions.

1.2 Programming and Problem-Solving

The Analytical Engine has no pretensions whatever to originate anything. It can do
whatever we know how to order it to perform. It can follow analysis; but it has
no power of anticipating any analytical relations or truths. Its province is to
assist us in making available what we are already acquainted with.

ADA AUGUSTA, COUNTESS OF LOVELACE (1815–1852)

Ada Augusta,
Countess of
Lovelace and the
first computer
programmer, left

Charles Babbage,
right

A model of
Babbage’s
computer

CH01.fm Page 13 Thursday, July 24, 2003 2:43 PM

14 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

In this section we describe some general principles that you can use to design and
write programs. These principles are not particular to C++. They apply no matter
what programming language you are using.

Algorithms

When learning your first programming language it is easy to get the impression that
the hard part of solving a problem on a computer is translating your ideas into the
specific language that will be fed into the computer. This definitely is not the case.
The most difficult part of solving a problem on a computer is discovering the method
of solution. After you come up with a method of solution, it is routine to translate
your method into the required language, be it C++ or some other programming
language. It is therefore helpful to temporarily ignore the programming language
and to concentrate instead on formulating the steps of the solution and writing them
down in plain English, as if the instructions were to be given to a human being rather
than a computer. A sequence of instructions expressed in this way is frequently
referred to as an algorithm.

A sequence of precise instructions which leads to a solution is called an
algorithm. Some approximately equivalent words are recipe, method, directions,
procedure, and routine. The instructions may be expressed in a programming lan-
guage or a human language. Our algorithms will be expressed in English and in the
programming language C++. A computer program is simply an algorithm expressed
in a language that a computer can understand. Thus, the term algorithm is more gen-
eral than the term program. However, when we say that a sequence of instructions is
an algorithm, we usually mean that the instructions are expressed in English, since if
they were expressed in a programming language we would use the more specific
term program. An example may help to clarify the concept.

Display 1.6 contains an algorithm expressed in rather stylized English. The
algorithm determines the number of times a specified name occurs on a list of
names. If the list contains the winners of each of last season's football games and the
name is that of your favorite team, then the algorithm determines how many games
your team won. The algorithm is short and simple but is otherwise very typical of the
algorithms with which we will be dealing.

The instructions numbered 1 through 5 in our sample algorithm are meant to be
carried out in the order they are listed. Unless otherwise specified, we will always
assume that the instructions of an algorithm are carried out in the order in which they
are given (written down). Most interesting algorithms do, however, specify some
change of order, usually a repeating of some instruction again and again such as in
instruction 4 of our sample algorithm.

The word algorithm has a long history. It derives from the name of a ninth-
century Persian mathematician and astronomer al-Khowarizmi. He wrote a famous

algorithm

sample
algorithm

origin of the
word algorithm

CH01.fm Page 14 Thursday, July 24, 2003 2:43 PM

1.2 Programming and Problem-Solving 15

textbook on the manipulation of numbers and equations. The book was entitled
Kitab al-jabr w’almuqabala, which can be translated as Rules for reuniting and
reducing. The similar sounding word algebra was derived from the arabic word al-
jabr, which appears in the title of the book and which is often translated as reuniting
or restoring. The meanings of the words algebra and algorithm used to be much
more intimately related than they are today. Indeed, until modern times, the word
algorithm usually referred only to algebraic rules for solving numerical equations.
Today the word algorithm can be applied to a wide variety of kinds of instructions
for manipulating symbolic as well as numeric data. The properties that qualify a set
of instructions as an algorithm now are determined by the nature of the instructions
rather than by the things manipulated by the instructions. To qualify as an algorithm,
a set of instructions must completely and unambiguously specify the steps to be
taken and the order in which they are taken. The person or machine carrying out the
algorithm does exactly what the algorithm says, neither more nor less.

Program Design

Designing a program is often a difficult task. There is no complete set of rules, no
algorithm to tell you how to write programs. Program design is a creative process.
Still, there is the outline of a plan to follow. The outline is given in diagrammatic
form in Display 1.7. As indicated there, the entire program-design process can be

Display 1.6 An Algorithm

 Algorithm that determines how many times
 a name occurs in a list of names:

1. Get the list of names.
2. Get the name being checked.
3. Set a counter to zero.
4. Do the following for each name on the list:

Compare the name on the list to the name being checked,
and if the names are the same, then add one to the counter.

5. Announce that the answer is the number indicated by the counter.

Algorithm
An algorithm is a sequence of precise instructions that leads to a solution.

CH01.fm Page 15 Thursday, July 24, 2003 2:43 PM

16 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

divided into two phases, the problem-solving phase and the implementation phase.
The result of the problem-solving phase is an algorithm, expressed in English, for
solving the problem. To produce a program in a programming language such as
C++, the algorithm is translated into the programming language. Producing the final
program from the algorithm is called the implementation phase.

The first step is to be certain that the task—that which you want your program to
do—is completely and precisely specified. Do not take this step lightly. If you do not
know exactly what you want as the output of your program, you may be surprised at
what your program produces. Be certain that you know what the input to the pro-
gram will be and exactly what information is supposed to be in the output, as well as
what form that information should be in. For example, if the program is a bank
accounting program, you must know not only the interest rate, but also whether
interest is to be compounded annually, monthly, daily, or whatever. If the program is
supposed to write poetry, you need to determine whether the poems can be in free
verse or must be in iambic pentameter or some other meter.

 Many novice programmers do not understand the need to design an algorithm
before writing a program in a programming language, such as C++, and so they try
to short-circuit the process by omitting the problem-solving phase entirely, or by
reducing it to just the problem definition part. This seems reasonable. Why not “go
for the mark” and save time? The answer is that it does not save time! Experience
has shown that the two-phase process will produce a correctly working program
faster. The two-phase process simplifies the algorithm design phase by isolating it
from the detailed rules of a programming language such as C++. The result is that
the algorithm design process becomes much less intricate and much less prone to
error. For even a modest size program, it can represent the difference between a half
day of careful work and several frustrating days of looking for mistakes in a poorly
understood program.

 The implementation phase is not a trivial step. There are details to be concerned
about, and occasionally some of these details can be subtle, but it is much simpler
than you might at first think. Once you become familiar with C++ or any other pro-
gramming language, the translation of an algorithm from English into the program-
ming language becomes a routine task.

 As indicated in Display 1.7, testing takes place in both phases. Before the pro-
gram is written, the algorithm is tested, and if the algorithm is found to be deficient,
then the algorithm is redesigned. That desktop testing is performed by mentally
going through the algorithm and executing the steps yourself. On large algorithms
this will require a pencil and paper. The C++ program is tested by compiling it and
running it on some sample input data. The compiler will give error messages for cer-
tain kinds of errors. To find other types of errors, you must somehow check to see if
the output is correct.

problem-solving phase

implementation phase

CH01.fm Page 16 Thursday, July 24, 2003 2:43 PM

1.2 Programming and Problem-Solving 17

The process diagrammed in Display 1.7 is an idealized picture of the program
design process. It is the basic picture you should have in mind, but reality is some-
times more complicated. In reality, mistakes and deficiencies are discovered at unex-
pected times, and you may have to back up and redo an earlier step. For example,
testing the algorithm may reveal that the definition of the problem was incomplete.
In such a case you must back up and reformulate the definition. Occasionally, defi-
ciencies in the definition or algorithm may not be observed until a program is tested.
In that case you must back up and modify the definition or algorithm and all that fol-
lows them in the design process.

Object-Oriented Programming

The program design process that we outlined in the previous section represents a
program as an algorithm (set of instructions) for manipulating some data. That is a
correct view, but not always the most productive view. Modern programs are usually
designed using a method known as Object Oriented Programming or OOP. In OOP a

Display 1.7 Program Design Process

Translating
to C++

Testing

Start

Working
program

Desktop
testing

Algorithm
design

Problem
definition

Problem-solving phase

Implementation phase

OOP

CH01.fm Page 17 Thursday, July 24, 2003 2:43 PM

18 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

program is viewed as a collection of interacting objects. The methodology is easiest
to understand when the program is a simulation program. For example, for a
program to simulate a highway interchange, the objects might represent the
automobiles and the lanes of the highway. Each object has algorithms that describe
how it should behave in different situations. Programming in the OOP style consists
of designing the objects and the algorithms they use. When programming in the
OOP framework the term Algorithm design in Display 1.7 would be replaced with
the phrase Designing the objects and their algorithms.

The main characteristics of OOP are encapsulation, inheritance, and polymor-
phism. Encapsulation is usually described as a form of information hiding or
abstraction. That description is correct, but perhaps an easier to understand charac-
terization is to say that encapsulation is a form of simplification of the descriptions
of objects. Inheritance has to do with writing reusable program code. Polymorphism
refers to a way that a single name can have multiple meanings in the context of
inheritance. Having made those statements, we must admit that they hold little
meaning for readers who have not heard of OOP before. However, we will describe
all these terms in detail later in this book. C++ accommodates OOP by providing
classes, a kind of data type combining both data and algorithms.

The Software Life Cycle

Designers of large software systems, such as compilers and operating systems,
divided the software development process into six phases known as the software life
cycle. The six phases of this life cycle are:

1. Analysis and specification of the task (problem definition)
2. Design of the software (object and algorithm design)
3. Implementation (coding)
4. Testing
5. Maintenance and evolution of the system
6. Obsolescence

We did not mention the last two phases in our discussion of program design because
they take place after the program is finished and put into service. However, they
should always be kept in mind. You will not be able to add improvements or
corrections to your program unless you design it to be easy to read and easy to
change. Designing programs so that they can be easily modified will be an important
topic that we will discuss in detail when we have developed a bit more background
and a few more programming techniques. The meaning of obsolescence is obvious,
but it is not always easy to accept. When a program is not working as it should and
cannot be fixed with a reasonable amount of effort, it should be discarded and
replaced with a completely new program.

class

software life cycle

CH01.fm Page 18 Thursday, July 24, 2003 2:43 PM

1.3 Introduction to C++ 19

SELF-TEST EXERCISES

12 An algorithm is approximately the same thing as a recipe, but some kinds of
steps that would be allowed in a recipe are not allowed in an algorithm.
Which steps in the following recipe would be allowed?

Place 2 teaspoons of sugar in mixing bowl.
Add 1 egg to mixing bowl.
Add 1 cup of milk to mixing bowl.
Add 1 ounce of rum, if you are not driving.
Add vanilla extract to taste.
Beat until smooth.
Pour into a pretty glass.
Sprinkle with nutmeg.

13 What is the first step you should take when creating a program?

14 The program design process can be divided into two main phases. What are
they?

15 Explain why the problem-solving phase should not be slighted.

1.3 Introduction to C++

Language is the only instrument of science ...

SAMUEL JOHNSON (1709–1784)

In this section we introduce you to the C++ programming language, which is the
programming language used in this book.

Origins of the C++ Language

The first thing that people notice about the C++ language is its unusual name. Is
there a C programming language, you might ask? Is there a C− or a C− − language?
Are there programming languages named A and B? The answers to most of these
questions is no. But the general thrust of the questions is on the mark. There is a B
programming language; it was not derived from a language called A, but from a
language called BCPL. The C language was derived from the B language, and C++
was derived from the C language. Why are there two pluses in the name C++? As
you will see in the next chapter, ++ is an operation in the C and C++ languages, so
using ++ produces a nice pun. The languages BCPL and B will not concern us. They

CH01.fm Page 19 Thursday, July 24, 2003 2:43 PM

20 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

are earlier versions of the C programming language. We will start our description of
the C++ programming language with a description of the C language.

The C programming language was developed by Dennis Ritchie of AT&T Bell
Laboratories in the 1970s. It was first used for writing and maintaining the UNIX
operating system. (Up until that time UNIX systems programs were written either in
assembly language or in B, a language developed by Ken Thompson, who is the
originator of UNIX.) C is a general-purpose language that can be used for writing
any sort of program, but its success and popularity are closely tied to the UNIX oper-
ating system. If you wanted to maintain your UNIX system, you needed to use C. C
and UNIX fit together so well that soon not just systems programs, but almost all
commercial programs that ran under UNIX were written in the C language. C
became so popular that versions of the language were written for other popular oper-
ating systems; its use is not limited to computers that use UNIX. However, despite
its popularity, C is not without its shortcomings.

The C language is peculiar because it is a high-level language with many of the
features of a low-level language. C is somewhere in between the two extremes of a
very high-level language and a low-level language, and therein lies both its strengths
and its weaknesses. Like (low-level) assembly language, C language programs can
directly manipulate the computer’s memory. On the other hand, C has many features
of a high-level language, which makes it easier to read and write than assembly lan-
guage. This makes C an excellent choice for writing systems programs, but for other
programs (and in some sense even for systems programs), C is not as easy to under-
stand as other languages; also, it does not have as many automatic checks as some
other high-level languages.

To overcome these and other shortcomings of C, Bjarne Stroustrup of AT&T
Bell Laboratories developed C++ in the early 1980s. Stroustrup designed C++ to be
a better C. Most of C is a subset of C++, and so most C programs are also C++ pro-
grams. (The reverse is not true; many C++ programs are definitely not C programs.)
Unlike C, C++ has facilities to do object-oriented programming, which is a recently
developed and very powerful programming technique.

A Sample C++ Program

Display 1.8 contains a simple C++ program and the screen display that might be
generated when a user runs and interacts with this program. The person who runs a
program is called the user. The text typed in by the user is shown in boldface to
distinguish it from the text written by the program. On the actual screen both texts
would look alike. The person who writes the program is called the programmer. Do
not confuse the roles of the user and the programmer. The user and the programmer
may or may not be the same person. For example, if you write and then run a
program, you are both the programmer and the user. With professionally produced

user

programmer

CH01.fm Page 20 Thursday, July 24, 2003 2:43 PM

1.3 Introduction to C++ 21

programs, the programmer (or programmers) and the user are usually different
persons.

In the next chapter we will explain in detail all the C++ features you need to
write programs like the one in Display 1.8, but to give you a feel for how a C++ pro-
gram works, we will now give a brief description of how this particular program
works. If some of the details are a bit unclear, do not worry. In this section, we just
want to give you a feel for what a C++ program is.

The beginning and end of our sample program contain some details that need
not concern us yet. The program begins with the following lines:

#include <iostream>
using namespace std;

int main()
{

For now we will consider these lines to be a rather complicated way of saying
“The program starts here.”

The program ends with the following two lines:

return 0;
}

For a simple program, these two lines simply mean “The program ends here.”
The lines in between these beginning and ending lines are the heart of the pro-

gram. We will briefly describe these lines, starting with the following line:

int number_of_pods, peas_per_pod, total_peas;

This line is called a variable declaration. This variable declaration tells the
computer that number_of_pods, peas_per_pod, and total_peas will be used as
names for three variables. Variables will be explained more precisely in the next
chapter, but it is easy to understand how they are used in this program. In this
program, the variables are used to name numbers. The word that starts this line,
int, is an abbreviation for the word integer and it tells the computer that the
numbers named by these variables will be integers. An integer is a whole number,
like 1, 2, −1, −7, 0, 205, −103, and so forth.

The remaining lines are all instructions that tell the computer to do something.
These instructions are called statements or executable statements. In this program
each statement fits on exactly one line. That need not be true, but for very simple
programs, statements are usually listed one per line.

Most of the statements begin with either the word cin or cout. These state-
ments are input statements and output statements. The word cin, which is pro-
nounced “see-in,” is used for input. The statements that begin with cin tell the

beginning of
program

return 0;

variable declarations

variables

statements

cin and cout

CH01.fm Page 21 Thursday, July 24, 2003 2:43 PM

22 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

Display 1.8 A Sample C++ Program

#include <iostream>
using namespace std;

int main()
{
 int number_of_pods, peas_per_pod, total_peas;

 cout << "Press return after entering a number.\n";
 cout << "Enter the number of pods:\n";
 cin >> number_of_pods;
 cout << "Enter the number of peas in a pod:\n";
 cin >> peas_per_pod;

 total_peas = number_of_pods * peas_per_pod;

 cout << "If you have ";
 cout << number_of_pods;
 cout << " pea pods\n";
 cout << "and ";
 cout << peas_per_pod;
 cout << " peas in each pod, then\n";
 cout << "you have ";
 cout << total_peas;
 cout << " peas in all the pods.\n";

 return 0;
}

Sample Dialogue

Press return after entering a number.
Enter the number of pods:
10
Enter the number of peas in a pod:
9
If you have 10 pea pods
and 9 peas in each pod, then
you have 90 peas in all the pods.

CH01.fm Page 22 Thursday, July 24, 2003 2:43 PM

code22.html

1.3 Introduction to C++ 23

computer what to do when information is entered from the keyboard. The word
cout, which is pronounced “see-out,” is used for output, that is, for sending informa-
tion from the program to the terminal screen. The letter c is there because the lan-
guage is C++. The arrows, written << or >>, tell you the direction that data is
moving. The arrows, << and >>, are called ‘insert’ and ‘extract,’ or ‘put to’ and ‘get
from,’ respectively. For example, consider the line:

cout << "Press return after entering a number.\n";

This line may be read, ‘put "Press...number.\n" to cout’ or simply ‘output
"Press...number.\n"’. If you think of the word cout as a name for the screen
(the output device), then the arrows tell the computer to send the string in quotes to
the screen. As shown in the sample dialogue, this causes the text contained in the
quotes to be written to the screen, The \n at the end of the quoted string tells the
computer to start a new line after writing out the text. Similarly, the next line of the
program also begins with cout, and that program line causes the following line of
text to be written to the screen:

The next program line starts with the word cin so it is an input statement. Let’s
look at that line:

cin >> number_of_pods;

This line may be read, ‘get number_of_pods from cin’ or simply ‘input
number_of_pods’.

If you think of the word cin as standing for the keyboard (the input device),
then the arrows say that input should be sent from the keyboard to the variable
number_of_pods. Look again at the sample dialogue. The next line shown has a 10
written in bold. We use bold to indicate something typed in at the keyboard. If you
type in the number 10, then the 10 appears on the screen. If you then press the Return
key (which is also sometimes called the Enter key), that makes the 10 available to the
program. The statement which begins with cin tells the computer to send that input
value of 10 to the variable number_of_pods. From that point on, number_of_pods
has the value 10; when we see number_of_pods later in the program, we can think
of it as standing for the number 10.

Consider the next two program lines:

cout << "Enter the number of peas in a pod:\n";
cin >> peas_per_pod;

\n

Enter the number of pods:

CH01.fm Page 23 Thursday, July 24, 2003 2:43 PM

24 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

These lines are similar to the previous two lines. The first sends a message to the
screen asking for a number. When you type in a number at the keyboard and press
the Return key, that number becomes the value of the variable peas_per_pod. In the
sample dialogue, we assume that you type in the number 9. After you type in 9 and
press the Return key, the value of the variable peas_per_pod becomes 9.

The next nonblank program line, shown below, does all the computation that is
done in this simple program:

total_peas = number_of_pods * peas_per_pod;

The asterisk symbol, *, is used for multiplication in C++. So this statement says to
multiply number_of_pods and peas_per_pod. In this case, 10 is multiplied by 9 to
give a result of 90. The equal sign says that the variable total_peas should be
made equal to this result of 90. This is a special use of the equal sign; its meaning
here is different than in other mathematical contexts. It gives the variable on the left-
hand side a (possibly new) value; in this case it makes 90 the value of total_peas.

The rest of the program is basically more of the same sort of output. Consider
the next three nonblank lines:

cout << "If you have ";
cout << number_of_pods;
cout << " pea pods\n";

These are just three more output statements that work basically the same as the
previous statements that begin with cout. The only thing that is new is the second of
these three statements, which says to output the variable number_of_pods. When a
variable is output, it is the value of the variable that is output. So this statement
causes a 10 to be output. (Remember that in this sample run of the program, the
variable number_of_pods was set to 10 by the user who ran the program.) Thus, the
output produced by these three lines is:

Notice that the output is all on one line. A new line is not begun until the special
instruction \n is sent as output.

The rest of the program contains nothing new, and if you understand what we
have discussed so far, you should be able to understand the rest of the program.

PITFALL Using the Wrong Slash in \n

When you use a \n in a cout statement be sure that you use the backslash, which is
written \. If you make a mistake and use /n rather than \n, the compiler will not
give you an error message. Your program will run, but the output will look peculiar.

If you have 10 pea pods

backslash

CH01.fm Page 24 Thursday, July 24, 2003 2:43 PM

1.3 Introduction to C++ 25

Programming TIP
Input and Output Syntax

If you think of cin as a name for the keyboard or input device and think of cout as
a name for the screen or the output device, then it is easy to remember the direction
of the arrows >> and <<. They point in the direction that data moves. For example,
consider the statement:

cin >> number_of_pods;

In the above statement, data moves from the keyboard to the variable
number_of_pods, and so the arrow points from cin to the variable.

On the other hand, consider the output statement:

cout << number_of_pods;

In this statement the data moves from the variable number_of_pods to the screen,
so the arrow points from the variable number_of_pods to cout.

Layout of a Simple C++ Program

The general form of a simple C++ program is shown in Display 1.9. As far as the
compiler is concerned, the line breaks and spacing need not be as shown there and in
our examples. The compiler will accept any reasonable pattern of line breaks and
indentation. In fact, the compiler will even accept most unreasonable patterns of line
breaks and indentation. However, a program should always be laid out so that it is
easy to read. Placing the opening brace, {, on a line by itself and also placing the
closing brace, }, on a line by itself will make these punctuations easy to find.
Indenting each statement and placing each statement on a separate line makes it easy
to see what the program instructions are. Later on, some of our statements will be
too long to fit on one line and then we will use a slight variant of this pattern for
indenting and line breaks. You should follow the pattern set by the examples in this
book, or follow the pattern specified by your instructor if you are in a class.

In Display 1.8, the variable declarations are on the line that begins with the word
int. As we will see in the next chapter, you need not place all your variable declara-
tions at the beginning of your program, but that is a good default location for them.
Unless you have a reason to place them somewhere else, place them at the start of
your program as shown in Display 1.9 and in the sample program in Display 1.8. The
statements are the instructions that are followed by the computer. In Display 1.8, the
statements are the lines that begin with cout or cin, and the one line that begins with
total_peas followed by an equal sign. Statements are often called executable
statements. We will use the terms statement and executable statement interchange-
ably. Notice that each of the statements we have seen ends with a semicolon. The

line breaks
and spaces

statement

executable statement

CH01.fm Page 25 Thursday, July 24, 2003 2:43 PM

26 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

semicolon in statements is used in more or less the same way that the period is used in
English sentences; it marks the end of a statement.

For now you can view the first few lines as a funny way to say “this is the begin-
ning of the program.” But we can explain them in a bit more detail. The first line

#include <iostream>

is called an include directive. It tells the compiler where to find information about
certain items that are used in your program. In this case iostream is the name of a
library that contains the definitions of the routines that handle input from the
keyboard and output to the screen; iostream is a file that contains some basic
information about this library. The linker program that we discussed earlier in this
chapter combines the object code for the library iostream and the object code for
the program you write. For the library iostream this will probably happen
automatically on your system. You will eventually use other libraries as well, and
when you use them, they will have to be named in directives at the start of your
program. For other libraries, you may need to do more than just place an include
directive in your program, but in order to use any library in your program, you will
always need to at least place an include directive for that library in your program.
Directives always begin with the symbol #. Some compilers require that directives
have no spaces around the #; so it is always safest to place the # at the very start of
the line and not include any space between the # and the word include.

The following line further explains the include directive that we just explained.

using namespace std;

Display 1.9 Layout of a Simple C++ Program

#include <iostream>
using namespace std;

int main()
{
 Variable_Declarations

 Statement_1
 Statement_2
 ...
 Statement_Last

 return 0;
}

#include

include directive

CH01.fm Page 26 Thursday, July 24, 2003 2:43 PM

1.3 Introduction to C++ 27

The above line says that the names defined in iostream are to be interpreted in the
“standard way” (std is an abbreviation of standard). We will have more to say about
this line a bit later in this book.

The third and fourth nonblank lines, shown below, simply say that the main part
of the program starts here:

int main()
{

The correct term is main function, rather than main part, but the reason for that
subtlety will not concern us until Chapter 3. The braces { and } mark the beginning
and end of the main part of the program. They need not be on a line by themselves,
but that is the way to make them easy to find and we will always place each of them
on a line by itself.

The next-to-last line

return 0;

says to “end the program when you get to here.” This line need not be the last thing
in the program, but in a very simple program it makes no sense to place it anywhere
else. Some compilers will allow you to omit this line and will figure out that the
program ends when there are no more statements to execute. However, other
compilers will insist that you include this line, so it is best to get in the habit of
including it, even if your compiler is happy without it. This line is called a return
statement and is considered to be an executable statement because it tells the
computer to do something; specifically, it tells the computer to end the program. The
number 0 has no intuitive significance to us yet, but must be there; its meaning will
become clear as you learn more about C++. Note that even though the return
statement says to end the program, you still must add a closing brace } at the end of
the main part of your program.

PITFALL Putting a Space before the include File Name

Be certain that you do not have any extra space between the < and the iostream file
name (Display 1.9) or between the end of the file name and the closing >. The
compiler include directive is not very smart: It will search for a file name that starts
or ends with a space! The file name will not be found, producing an error that is
quite difficult to find. You should make this error deliberately in a small program,
then compile it. Save the message your compiler produces so you know what the
error message means the next time you get that error message.

int main()

return 0;

return statement

CH01.fm Page 27 Thursday, July 24, 2003 2:43 PM

28 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

Compiling and Running a C++ Program

In the previous section you learned what would happen if you ran the C++ program
shown in Display 1.8. But where is that program and how do you make it run? We
now discuss such issues.

You write a C++ program using a text editor in the same way that you write any
other document such as a term paper, a love letter, a shopping list, or whatever. The
program is kept in a file just like any other document you prepare using a text editor.
There are different text editors, and the details of how to use the text editor will vary
from one text editor to another, so we cannot say too much more about your text edi-
tor. You will need to consult the documents for your editor.

The way that you compile and run a C++ program also depends on the particular
system you are using, so we will discuss these points in only a very general way. You
will need to learn how to give the commands to compile, link, and run a C++ pro-
gram on your system. These commands can be found in the manuals for your system
and by asking people who are already using C++ on your system. When you give the
command to compile your program, this will produce a machine-language translation
of your C++ program. This translated version of your program is called the object
code for your program. The object code for your program must be linked (that is,
combined) with the object code for routines (such as input and output routines) that
are already written for you. It is likely that this linking will be done automatically, so
you do not need to worry about linking. But on some systems, you may be required
to make a separate call to the linker. Again, you will need to consult your manuals or
a local expert. Finally, you give the command to run your program; how you give
that command also depends on the system you are using, so check with the manuals
or a local expert.

Programming TIP
Getting Your Program to Run

Different compilers and different environments might require a slight variation in
some details of how you set up a file with your C++ program. Obtain a copy of the
program in Display 1.10. It is available for downloading over the Internet. (See the
preface for details.) Alternatively, very carefully type in the program yourself.
Compile the program. If you get an error message, check your typing, fix any typing
mistakes, and recompile the file. Once the program compiles with no error
messages, try running the program.

CH01.fm Page 28 Thursday, July 24, 2003 2:43 PM

1.3 Introduction to C++ 29

If you get the program to compile and run normally, you are all set. You do not
need to do anything different from the examples shown in the book. If this program
will not compile or will not run normally, then read on. In what follows we offer
some hints for dealing with your C++ setup. Once you get this simple program to
run normally, you will know what small changes to make to your C++ program files
in order to get them to run on your system.

If your program seems to run, but you do not see the output line

Testing 1, 2, 3

then, in all likelihood, the program probably did give that output, but it disappeared
before you could see it. Try adding the following to the end of your program, just
before the line with return 0; these lines should stop your program to allow you to
read the output.

char letter;
cout << "Enter a letter to end the program:\n";
cin >> letter;

The part in braces should then read as follows:

Display 1.10 Testing Your C++ Setup

#include <iostream>
using namespace std;

int main()
{
 cout << "Testing 1, 2, 3\n";
 return 0;
}

Sample Dialogue

Testing 1, 2, 3

If you cannot compile and run this program, then
see the programming tip entitled “Getting Your
Program to Run.” It suggests some things you
might do to get your C++ programs to run on your
particular computer setup.

CH01.fm Page 29 Thursday, July 24, 2003 2:43 PM

code29.html

30 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

cout << "Testing 1, 2, 3\n";
char letter;
cout << "Enter a letter to end the program:\n";
cin >> letter;
return 0;

For now you need not understand these added lines, but they will be clear to you by
the end of Chapter 2.

If the program will not compile or will not run at all, then try changing

#include <iostream>

by adding a .h to the end of iostream, so it reads as follows:

#include <iostream.h>

If your program still does not compile and run normally, try deleting.

using namespace std;

If your program requires iostream.h instead of iostream, then you have an
old C++ compiler and should obtain a more recent compiler.

If your program still does not compile and run, then check the documentation
for your version of C++ to see if any more “directives” are needed for “console”
input/output.

If all this fails, consult your instructor if you are in a course. If you are not in a
course or you are not using the course computer, check the documentation for your
C++ compiler or check with a friend who has a similar computer setup. The neces-
sary change is undoubtedly very small and, once you find out what it is, very easy.

SELF-TEST EXERCISES

16 If the following statement were used in a C++ program, it would cause some-
thing to be written on the screen. What would it cause to be written on the
screen?

cout << "C++ is easy to understand.";

17 What is the meaning of the symbols \n as used in the following statement
(which appears in Display 1.8)?

cout << "Enter the number of peas in a pod:\n";

CH01.fm Page 30 Thursday, July 24, 2003 2:43 PM

1.4 Testing and Debugging 31

18 What is the meaning of the following statement (which appears in Display 1.8)?

cin >> peas_per_pod;

19 What is the meaning of the following statement (which appears in Display 1.8)?

total_peas = number_of_pods * peas_per_pod;

20 What is the meaning of this directive?

#include <iostream>

21 What, if anything, is wrong with the following #include directives?

a. #include <iostream >

b. #include < iostream>
c. #include <iostream>

1.4 Testing and Debugging

“And if you take one from three hundred and sixty-five, what remains?”
“Three hundred and sixty-four, of course.”
Humpty Dumpty looked doubtful. “I’d rather see that done on paper,” he said.

LEWIS CARROLL, THROUGH THE LOOKING-GLASS

A mistake in a program is usually called a bug, and the process of eliminating bugs
is called debugging. There is colorful history of how this term came into use. It
occurred in the early days of computers, when computer hardware was extremely
sensitive. Rear Admiral Grace Murray Hopper (1906–1992) was “the third programmer
on the world’s first large-scale digital computer.” (Denise W. Gurer, “Pioneering women
in computer science” CACM 38(1):45–54, January 1995.) While Hopper was working
on the Harvard Mark I computer under the command of Harvard professor Howard H.
Aiken, an unfortunate moth caused a relay to fail. Hopper and the other programmers
taped the deceased moth in the logbook with the note “First actual case of bug being
found.” The logbook is currently on display at the Naval Museum in Dahlgren,
Virginia. This was the first documented computer bug. Professor Aiken would come
into the facility during a slack time and inquire if any numbers were being computed.
The programmers would reply that they were debugging the computer. For more
information about Admiral Hopper and other persons in computing, see Robert Slater,
Portraits in Silicon, MIT Press, 1987. Today, a bug is a mistake in a program. In this
section we will describe the three main kinds of programming mistakes and give
some hints on how to correct them.

bug

CH01.fm Page 31 Thursday, July 24, 2003 2:43 PM

32 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

Kinds of Program Errors

The compiler will catch certain kinds of mistakes and will write out an error
message when it finds a mistake. It will detect what are called syntax errors since
they are, by and large, violation of the syntax (that is, the grammar rules) of the
programming language, such as omitting a semicolon.

 If the compiler discovers that your program contains a syntax error, it will tell
you where the error is likely to be and what kind of error it is likely to be. If the com-
piler says your program contains a syntax error, you can be confident that it does.
However, the compiler may be incorrect about either the location or the nature of the
error. It does a better job of determining the location of an error, to within a line or
two, than it does of determining the source of the error. This is because the compiler
is guessing at what you meant to write down and can easily guess wrong. After all,
the compiler cannot read your mind. Error messages subsequent to the first one have
a higher likelihood of being incorrect with respect to either the location or the nature
of the error. Again, this is because the compiler must guess your meaning. If the
compiler’s first guess was incorrect, this will affect its analysis of future mistakes,
since the analysis will be based on a false assumption.

If your program contains something that is a direct violation of the syntax rules
for your programming language, the compiler will give you an error message.
However, sometimes the compiler will give you only a warning message, which
indicates that you have done something that is not, technically speaking, a violation
of the programming language syntax rules, but that is unusual enough to indicate a
likely mistake. When you get a warning message, the compiler is saying, “Are you
sure you mean this?” At this stage of your development, you should treat every
warning as if it were an error until your instructor approves ignoring the warning.

 There are certain kinds of errors that the computer system can detect only when
a program is run. Appropriately enough, these are called run-time errors. Most
computer systems will detect certain run-time errors and output an appropriate
error message. Many run-time errors have to do with numeric calculations. For
example, if the computer attempts to divide a number by zero, that is normally a run-
time error.

 If the compiler approved of your program and the program ran once with no
run-time error messages, this does not guarantee that your program is correct.
Remember, the compiler will only tell you if you wrote a syntactically (that is, gram-
matically) correct C++ program. It will not tell you whether the program does what
you want it to do. Mistakes in the underlying algorithm or in translating the algo-
rithm into the C++ language are called logic errors. For example, if you were to
mistakenly use the addition sign + instead of the multiplication sign * in the program
in Display 1.8, that would be a logic error. The program would compile and run nor-
mally, but would give the wrong answer. If the compiler approves of your program

syntax error

error messages
versus
warning messages

run-time error

logic error

CH01.fm Page 32 Thursday, July 24, 2003 2:43 PM

1.4 Testing and Debugging 33

and there are no run-time errors, but the program does not perform properly, then
undoubtedly your program contains a logic error. Logic errors are the hardest kind to
diagnose, because the computer gives you no error messages to help find the error. It
cannot reasonably be expected to give any error messages. For all the computer
knows, you may have meant what you wrote.

PITFALL Assuming Your Program Is Correct

In order to test a new program for logic errors, you should run the program on
several representative data sets and check its performance on those inputs. If the
program passes those tests, you can have more confidence in it, but this is still not an
absolute guarantee that the program is correct. It still may not do what you want it to
do when it is run on some other data. The only way to justify confidence in a
program is to program carefully and so avoid most errors.

SELF-TEST EXERCISES

22 What are the three main kinds of program errors?

23 What kinds of errors are discovered by the compiler?

24 If you omit a punctuation symbol (such as a semicolon) from a program, then
this produces an error. What kind of error?

25 If you omit the final brace } from a program, then this produces an error.
What kind of error?

26 Suppose your program has a situation about which the compiler reports a
warning. What should you do about it? Give the text’s answer, and your local
answer if it is different from the text’s. Identify your answers as the text’s or
as based on your local rules.

27 Suppose you write a program that is supposed to compute the interest on a
bank account at a bank that computes interest on a daily basis, and suppose
you incorrectly write your program so that it computes interest on an annual
basis. What kind of program error is this?

CH01.fm Page 33 Thursday, July 24, 2003 2:43 PM

34 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

C H A P T E R S U M M A R Y

■ The collection of programs used by a computer is referred to as the soft-
ware for that computer. The actual physical machines that make up a com-
puter installation are referred to as hardware.

■ The five main components of a computer are the input device(s), the output
device(s), the processor (CPU), the main memory, and the secondary memory.

■ A computer has two kinds of memory: main memory and secondary memory.
Main memory is only used while the program is running. Secondary memory is
used to hold data that will stay in the computer before and/or after the program
is run.

■ A computer’s main memory is divided into a series of numbered locations
called bytes. The number associated with one of these bytes is called the
address of the byte. Often several of these bytes are grouped together to form a
larger memory location. In that case, the address of the first byte is used as the
address of this larger memory location.

■ A byte consists of eight binary digits, each either zero or one. A digit that can
only be zero or one is called a bit.

■ A compiler is a program that translates a program written in a high-level lan-
guage like C++ into a program written in the machine language, which the
computer can directly understand and execute.

■ A sequence of precise instructions that leads to a solution is called an algo-
rithm. Algorithms can be written in English or in a programming language,
like C++. However, the word algorithm is usually used to mean a sequence of
instructions written in English (or some other human language, such as Spanish
or Arabic).

■ Before writing a C++ program, you should design the algorithm (method of
solution) that the program will use.

■ Programming errors can be classified into three groups: syntax errors, run-time
errors, and logic errors. The computer will usually tell you about errors in the
first two categories. You must discover logic errors yourself.

■ The individual instructions in a C++ program are called statements.

■ A variable in a C++ program can be used to name a number. (Variables are
explained more fully in the next chapter.)

CH01.fm Page 34 Thursday, July 24, 2003 2:43 PM

Answers to Self-Test Exercises 35

■ A statement in a C++ program that begins with cout << is an output state-
ment, which tells the computer to output to the screen whatever follows the <<.

■ A statement in a C++ program that begins with cin >> is an input statement.

Answers to Self-Test Exercises

1 The five main components of a computer are the input device(s), the output
device(s), the processor (CPU), the main memory, and the secondary memory.

2 The two numbers to be added.

3 The grades for each student on each test and each assignment.

4 A machine-language program is written in a form the computer can execute
directly. A high-level language program is written in a form that is easy for a
human being to write and read. A high-level language program must be trans-
lated into a machine-language program before the computer can execute it.

5 A compiler translates a high-level language program into a machine-language
program.

6 The high-level language program that is input to a compiler is called the
source program. The translated machine-language program that is output by
the compiler is called the object program.

7 An operating system is a program, or several cooperating programs, but is
best thought of as the user’s chief servant.

8 An operating system’s purpose is to allocate the computer’s resources to dif-
ferent tasks the computer must accomplish.

9 Among the possibilities are the Macintosh operating system, Windows 2000,
Windows XP, VMS, Solaris, SunOS, UNIX (or perhaps one of the UNIX-
like operating systems such as Linux). There are many others.

10 The object code for your C++ program must be combined with the object
code for routines (such as input and output routines) that your program uses.
This process of combining object code is called linking. For simple programs
this linking may be done for you automatically.

11 The answer varies, depending on the compiler you use. Most UNIX and
UNIX-like compilers link automatically, as do the compilers in most inte-
grated development environments for Windows and Macintosh operating
systems.

CH01.fm Page 35 Thursday, July 24, 2003 2:43 PM

36 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

12 The following instructions are too vague for use in an algorithm:

Add vanilla extract to taste.
Beat until smooth.
Pour into a pretty glass.
Sprinkle with nutmeg.

The notions of “to taste,” “smooth,” and “pretty” are not precise. The
instruction “sprinkle” is too vague, since it does not specify how much nutmeg
to sprinkle. The other instructions are reasonable to use in an algorithm.

13 The first step you should take when creating a program is to be certain that the
task to be accomplished by the program is completely and precisely specified.

14 The problem-solving phase and the implementation phase.

15 Experience has shown that the two-phase process produces a correctly work-
ing program faster.

16

17 The symbols \n tell the computer to start a new line in the output so that the
next item output will be on the next line.

18 This statement tells the computer to read the next number that is typed in at
the keyboard and to send that number to the variable named peas_per_pod.

19 This statement says to multiply the two numbers in the variables
number_of_pods and peas_per_pod, and to place the result in the variable
named total_peas.

20 The #include <iostream> directive tells the compiler to fetch the file
iostream. This file contains declarations of cin, cout, the insertion (<<)
and extraction (>>) operators for input and output. This enables correct link-
ing of the object code from the iostream library with the I/O statements in the
program.

21 a. The extra space after the iostream file name causes a file-not-found
error message.

b. The extra space before the iostream file name causes a file-not-found
error message.

c. This one is correct.

22 The three main kinds of program errors are syntax errors, run-time errors,
and logic errors.

C++ is easy to understand.

CH01.fm Page 36 Thursday, July 24, 2003 2:43 PM

Programming Projects 37

23 The compiler detects syntax errors. There are other errors that are not techni-
cally syntax errors that we are lumping with syntax errors. You will learn
about these later.

24 A syntax error.

25 A syntax error.

26 The text states that you should take warnings as if they had been reported as
errors. You should ask your instructor for the local rules on how to handle
warnings.

27 A logic error.

Programming Projects

1 Using your text editor, enter (that is, type in) the C++ program shown in Dis-
play 1.8. Be certain to type the first line exactly as shown in Display 1.8. In
particular, be sure that the first line begins at the left-hand end of the line
with no space before or after the # symbol. Compile and run the program. If
the compiler gives you an error message, correct the program and recompile
the program. Do this until the compiler gives no error messages. Then run
your program.

2 Modify the C++ program you entered in the Programming Project 1. Change
the program so that it first writes the word Hello to the screen and then goes
on to do the same things that the program in Display 1.8 does. You will only
have to add one line to the program to make this happen. Recompile the
changed program and run the changed program. Then change the program
even more. Add one more line that will make the program write the word
Good-bye to the screen at the end of the program. Be certain to add the sym-
bols \n to the last output statement so that it reads as follows:

cout << "Good-bye\n";

(Some systems require that final \n, and your system may be one of the
systems that requires a final \n.) Recompile and run the changed program.

3 Modify the C++ program that you entered in Programming Project 1 or 2.
Change the multiplication sign * in your C++ program to an addition sign +.
Recompile and run the changed program. Notice that the program compiles
and runs perfectly fine, but the output is incorrect. That is because this modi-
fication is a logic error.

4 Write a C++ program that reads in two integers and then outputs both their
sum and their product. One way to proceed is to start with the program in

CH01.fm Page 37 Thursday, July 24, 2003 2:43 PM

project37.html

38 1 INTRODUCTION TO COMPUTERS AND C++ PROGRAMMING

Display 1.8 and to then modify that program to produce the program for this
project. Be certain to type the first line of your program exactly the same as
the first line in Display 1.8. In particular, be sure that the first line begins at
the left-hand end of the line with no space before or after the # symbol. Also,
be certain to add the symbols \n to the last output statement in your program.
For example, the last output statement might be the following:

cout << "This is the end of the program.\n";

(Some systems require that final \n, and your system may be one of the
systems that requires a final \n.)

5 The purpose of this exercise is to produce a catalog of typical syntax errors
and error messages that will be encountered by a beginner, and to continue
acquainting the student with the programming environment. This exercise
should leave the student with a knowledge of what error to look for when
given any of a number of common error messages.

Your instructor may have a program for you to use for this exercise. If not,
you should use a program from one of the Programming Projects above.

You are to deliberately introduce errors to the program, compile, record the
error and the error message, fix the error, compile again (to be sure you have
the program corrected), then introduce another error. Keep the catalog of
errors and add program errors and messages to it as you continue through
this course.

The sequence of suggested errors to introduce is:

a. Put an extra space between the < and the iostream file name.

b. Omit one of the < or > symbols in the include directive.
c. Omit the int from int main().
d. Omit or misspell the word main.
e. Omit one of the (), then omit both the ().
f. Continue in this fashion, deliberately misspelling identifiers (cout, cin,

and so on). Omit one or both of the << in the cout statement; leave off the
ending curly brace }.

CH01.fm Page 38 Thursday, July 24, 2003 2:43 PM

project38.html

	code links 2:
	code links 1:
	program projects 1:
	Text: For additional online Programming Projects, click the CodeMate icons below.
	Text2: 1.6
	program project 1:
	6:

