Electrical Circuit Analysis

Stephen Boyd

ENGR108
Stanford University

October 19, 2021

- we first review general graphs
- incidence matrix
- flows
- potentials
- electrical circuit analysis uses very similar ideas, with some small differences
- reduced incidence matrix
- (electrical) currents
- (electrical) potentials
- we focus on resistor circuits, but same ideas apply to more general circuits with other devices

Outline

General graphs, flows, and potentials

Analysis of electrical circuits

Graph

- graph with n nodes, labeled $1, \ldots, n$
- m directed edges, labeled $1, \ldots, m$
- in example below, edge 4 goes from node 3 to node 1
- we say edge 4 is incident to nodes 3 and 1

Incidence matrix of a graph

- $n \times m$ incidence matrix A defined as

$$
A_{i j}=\left\{\begin{aligned}
1 & \text { edge } j \text { points to node } i \\
-1 & \text { edge } j \text { points from node } i \\
0 & \text { otherwise }
\end{aligned}\right.
$$

- each column is associated with an edge, and has one +1 and one -1 entry
- row i is associated with node i, and can have zero or multiple +1 and -1 entries

Example

Flows

- m-vector f denotes a flow, f_{i} is the flow along edge i
- $f_{i}>0$ means flow is in the edge direction
- $f_{i}<0$ means flow is in the direction opposite the edge
- n-vector $A f$ gives the total net flow into the nodes
- $(A f)_{i}$ is the total net flow into node i
- $A f=0$ means the flow is conserved; f is a circulation

Potentials

- n-vector p denotes a potential at each node
- p_{i} is the potential at node i
- m-vector $A^{T} p$ gives the potential differences across the m edges
- $\left(A^{T} p\right)_{j}$ is the potential difference across edge j
- potential difference is the incoming node potential minus outgoing node potential

Example

$$
A=\left[\begin{array}{rrrrr}
-1 & -1 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & -1 \\
0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

- for flow $f,(A f)_{3}=f_{3}-f_{4}-f_{5}$ (net flow into node 3)
- for potential $p,\left(A^{T} p\right)_{2}=p_{4}-p_{1}$ (potential difference across edge 2)

Outline

General graphs, flows, and potentials

Analysis of electrical circuits

Circuit nomenclature

- (resistor) circuit consists of
- n nodes, drawn as dots, plus a special ground node
- b edges or branches, each containing a resistor, drawn as a box
- n external sources, injecting current into the nodes
- often described using circuit schematic diagram
- simple example with $n=3, b=5$

Circuit variables

- we index nodes by $k=1, \ldots, n$, branches by $l=1, \ldots, b$ (can think of ground node as node $n+1$)
- j_{l} is the electrical current in branch l (in A, Amperes)
- v_{l} is the voltage across branch l (in V , Volts) (measured from outgoing node to incoming node)
- electrical potential (relative to ground) at node k is e_{k} (in V)
- node k has external current injected, denoted i_{k} (in A)
- we'll work with b-vectors j and v, and n-vectors e and i

Circuit schematic diagram

Reduced incidence matrix

- circuit analysis uses $n \times b$ reduced incidence matrix

$$
A_{k l}=\left\{\begin{aligned}
+1 & \text { branch } l \text { goes into node } k \\
-1 & \text { branch } l \text { goes out of node } k \\
0 & \text { otherwise }
\end{aligned}\right.
$$

- same as incidence matrix of the circuit graph, with last row (associated with ground node) removed
- columns of A have two entries (one +1 and one -1) for branches between nodes
- columns of A have one entry (+1 or -1) for branches that go to or from ground node

Example

Kirchhoff's circuit laws

Kirchhoff's current law (KCL):

- current is conserved at each node, i.e., $(A j)_{k}+i_{k}=0$
- in matrix notation: $A j+i=0$

Kirchhoff's voltage law (KVL):

- branch l voltage is the potential difference across it (using circuit convention, outgoing minus incoming potential): $\left(A^{T} e\right)_{l}+v_{l}=0$
- in matrix notation: $A^{T} e+v=0$

Ohm's law

- each branch contains a resistor
- characterized by Ohm's law, $v_{l}=R_{l} j_{l}$
- $R_{l}>0$ is the resistance (in Ohms, denoted Ω) of branch l
- in matrix notation: $v=R j$, with $R=\operatorname{diag}\left(R_{1}, \ldots, R_{b}\right)$

Circuit equations

- circuit quantities are b-vectors v and j, n-vector e
- circuit equations are

$$
\begin{array}{ll}
A j+i=0 & (\mathrm{KCL}) \\
A^{T} e+v=0 & \text { (KVL) } \\
v=R j & \text { (Ohm's law) }
\end{array}
$$

- combine KVL and Ohm's law to get $A^{T} e+R j=0$, and express as

$$
\left[\begin{array}{cc}
R & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
j \\
e
\end{array}\right]=\left[\begin{array}{c}
0 \\
-i
\end{array}\right]
$$

- a system of $b+n$ linear equations with $b+n$ variables

Solution of circuit equations

- assuming matrix is invertible,

$$
\left[\begin{array}{l}
j \\
e
\end{array}\right]=\left[\begin{array}{cc}
R & A^{T} \\
A & 0
\end{array}\right]^{-1}\left[\begin{array}{c}
0 \\
-i
\end{array}\right]
$$

(and $v=R j$)

- so v, j, and e are all linear functions of i

Example

Example - solution

Resistance matrix

- e is a linear function of i so it has form $e=\mathcal{R} i$
- $n \times n$ matrix \mathcal{R} is called the resistance matrix
- \mathcal{R} maps injected currents to resulting node potentials
$-\mathcal{R}_{i j}$ is the potential at node i when 1 A is injected into node j
- don't confuse with R, which maps branch currents to branch voltages (and is diagonal)

Resistance matrix

- we can find \mathcal{R} from circuit equations
- from $A^{T} e+R j=0$ we get $j=-R^{-1} A^{T} e$
- from $A j+i=0$ we get $-A R^{-1} A^{T} e=-i$
- so $e=\left(A R^{-1} A^{T}\right)^{-1} i$
- so $\mathcal{R}=\left(A R^{-1} A^{T}\right)^{-1}$

Example

Conservation of power

- power dissipated in branch l is $j_{l} v_{l}$; total power is $P^{\text {diss }}=j^{T} v$
- power entering circuit via external current at node k is $i_{k} e_{k}$; total is $P^{\mathrm{ext}}=i^{T} e$
- conservation of power: $P^{\text {diss }}=P^{\text {ext }}$
- i.e., the total power dissipated in the circuit branches is the total power entering the nodes via the external currents
- to see this:

$$
j^{T} v=-j^{T}\left(A^{T} e\right)=-(A j)^{T} e=i^{T} e
$$

(using $A j+i=0, A^{T} e+v=0$)

- does not depend on branch resistances...

Maxwell's minimum energy principle

- the circuit equations are

$$
\left[\begin{array}{cc}
R & A^{T} \\
A & 0
\end{array}\right]\left[\begin{array}{l}
j \\
e
\end{array}\right]=\left[\begin{array}{c}
0 \\
-i
\end{array}\right]
$$

- these are also the KKT optimality conditions for the problem

$$
\begin{array}{ll}
\text { minimize } & (1 / 2) j^{T} R j \\
\text { subject to } & A j+i=0
\end{array}
$$

with variable j

- $j^{T} R j=j^{T} v$, the total power dissipated in the circuit

Maxwell's minimum energy principle

Maxwell concluded that

- branch currents minimize the dissipated power, subject to satisfying KCL
- the optimal Lagrange multipliers are the node potentials

