Electrical Circuit Analysis

Stephen Boyd

ENGR108
Stanford University

October 19, 2021



we first review general graphs

— incidence matrix
— flows
— potentials

electrical circuit analysis uses very similar ideas, with some
small differences

— reduced incidence matrix
— (electrical) currents
— (electrical) potentials

we focus on resistor circuits, but same ideas apply to more
general circuits with other devices
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Graph

graph with n nodes, labeled 1,....,n
m directed edges, labeled 1,....m

in example below, edge 4 goes from node 3 to node 1
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we say edge 4 is incident to nodes 3 and 1
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Incidence matrix of a graph

» n x m incidence matrix A defined as

1 edge j points to node ¢
Aij; = ¢ —1 edge j points from node i
0 otherwise.

P each column is associated with an edge, and has one +1 and
one —1 entry

P row i is associated with node ¢, and can have zero or multiple
+1 and —1 entries
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Example

-1 -1 0 1

1 0 -1 0

A= 0 0 1 -1
0 1 0
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Flows

m-vector f denotes a flow, f; is the flow along edge i
fi > 0 means flow is in the edge direction

fi < 0 means flow is in the direction opposite the edge
n-vector Af gives the total net flow into the nodes
(Af); is the total net flow into node i

Af = 0 means the flow is conserved; f is a circulation
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Potentials

> n-vector p denotes a potential at each node

v

p; is the potential at node ¢

» m-vector ATp gives the potential differences across the m
edges

» (ATp); is the potential difference across edge j

» potential difference is the incoming node potential minus
outgoing node potential
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Example

» for flow f, (Af)s=fs— fa— f5

(net flow into node 3)

» for potential p, (ATp)y = ps — p1
(potential difference across edge 2)
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Circuit nomenclature
» (resistor) circuit consists of
— n nodes, drawn as dots, plus a special ground node

— b edges or branches, each containing a resistor, drawn as a box
— n external sources, injecting current into the nodes

> often described using circuit schematic diagram
» simple example withn=3,b=5
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Circuit variables

> we index nodes by k=1,...,n, branchesby I =1,...,b
(can think of ground node as node n + 1)

» j; is the electrical current in branch [ (in A, Amperes)

» v is the voltage across branch [ (in V, Volts)
(measured from outgoing node to incoming node)

> electrical potential (relative to ground) at node k is ey (in V)

v

node k has external current injected, denoted 5 (in A)

> we'll work with b-vectors j and v, and n-vectors e and @
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Circuit schematic diagram
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Reduced incidence matrix

P circuit analysis uses n x b reduced incidence matrix

41 branch [ goes into node &
A = —1 branch [ goes out of node k
0 otherwise

P same as incidence matrix of the circuit graph, with last row
(associated with ground node) removed

» columns of A have two entries (one +1 and one —1) for
branches between nodes

» columns of A have one entry (+1 or —1) for branches that go
to or from ground node
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Kirchhoff’s circuit laws

Kirchhoff’s current law (KCL):
> current is conserved at each node, i.e., (Aj)g + i =0

» in matrix notation: Aj+i=0

Kirchhoff’s voltage law (KVL):

» branch [ voltage is the potential difference across it (using
circuit convention, outgoing minus incoming potential):
(ATe)l +v =0

» in matrix notation: ATe 4 v =0
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Ohm’s law

P each branch contains a resistor

» characterized by Ohm's law, v; = R;j;

» R; > 0 is the resistance (in Ohms, denoted £2) of branch {
» in matrix notation: v = Rj, with R = diag(Ry,..., Rp)
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Circuit equations

P circuit quantities are b-vectors v and j, n-vector e

P circuit equations are
Aj+i=0 (KCL)
ATe+v=0 (KVL)
v=Rj (Ohm's law)
» combine KVL and Ohm's law to get ATe + Rj = 0, and
express as
R AT1T741 [0
A 0 e | | —i

» a system of b+ n linear equations with b + n variables
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Solution of circuit equations
P assuming matrix is invertible,

HEARE
(and v = Rj)

» so v, 7, and e are all linear functions of ¢
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Example
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Example — solution

2A 0A —1A

+ 2.14V - l + 1.24V - l
1.07A 0.41A
® ®
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—0.59V
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Resistance matrix

e is a linear function of 7 so it has form e = Ri

n X n matrix R is called the resistance matrix

>

| 4

> R maps injected currents to resulting node potentials

» R;; is the potential at node ¢ when 1A is injected into node j
>

don’t confuse with R, which maps branch currents to branch
voltages (and is diagonal)
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Resistance matrix

we can find R from circuit equations
from ATe+ Rj =0 we get j = —R1ATe

from Aj +i=0we get —AR1ATe = —i
so e = (ARflAT)_li

so R = (AR_lAT)_1
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Example

R:

Analysis of electrical circuits

1.448 0.414 0.103
0.414 0.690 0.172
0.103 0.172 0.793
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Conservation of power

> power dissipated in branch [ is j;u;; total power is Pdiss = jTy

P> power entering circuit via external current at node k is ixey;
total is P&t = iTe

> conservation of power. Pdiss = pext

P j.e., the total power dissipated in the circuit branches is the
total power entering the nodes via the external currents

> to see this:
jlo=—j"(ATe) = —(4j)Te=i"e

(using Aj +i=0, ATe +v =0)

» does not depend on branch resistances . ..
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Maxwell’s minimum energy principle

» the circuit equations are

R AT il [0
A 0 e | | —i
P these are also the KKT optimality conditions for the problem

minimize  (1/2)j7 Rj
subjectto Aj+i=0

with variable j

» jTRj = jTv, the total power dissipated in the circuit
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Maxwell’s minimum energy principle

Maxwell concluded that

» branch currents minimize the dissipated power, subject to
satisfying KCL

» the optimal Lagrange multipliers are the node potentials

Analysis of electrical circuits

27



	General graphs, flows, and potentials
	Analysis of electrical circuits

