Electrical Circuit Analysis

Stephen Boyd

ENGR108 Stanford University

October 19, 2021

- we first review general graphs
 - incidence matrix
 - flows
 - potentials
- electrical circuit analysis uses very similar ideas, with some small differences
 - reduced incidence matrix
 - (electrical) currents
 - (electrical) potentials
- we focus on resistor circuits, but same ideas apply to more general circuits with other devices

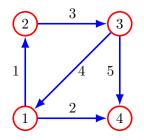
Outline

General graphs, flows, and potentials

Analysis of electrical circuits

Graph

- ▶ graph with n nodes, labeled $1, \ldots, n$
- ightharpoonup m directed edges, labeled $1, \ldots, m$
- ightharpoonup in example below, edge 4 goes from node 3 to node 1
- ightharpoonup we say edge 4 is incident to nodes 3 and 1



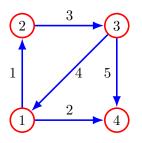
Incidence matrix of a graph

ightharpoonup n imes m incidence matrix A defined as

$$A_{ij} = \left\{ \begin{array}{ll} 1 & \text{edge } j \text{ points to node } i \\ -1 & \text{edge } j \text{ points from node } i \\ 0 & \text{otherwise.} \end{array} \right.$$

- ightharpoonup each column is associated with an edge, and has one +1 and one -1 entry
- row i is associated with node i, and can have zero or multiple +1 and -1 entries

Example



$$A = \left[\begin{array}{ccccc} -1 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1 \end{array} \right]$$

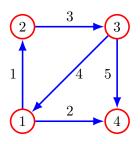
Flows

- ightharpoonup m-vector f denotes a *flow*, f_i is the flow along edge i
- $f_i > 0$ means flow is in the edge direction
- $ightharpoonup f_i < 0$ means flow is in the direction opposite the edge
- lacktriangleright n-vector Af gives the total net flow into the nodes
- $lackbox (Af)_i$ is the total net flow into node i
- $lackbox{ }Af=0$ means the flow is conserved; f is a circulation

Potentials

- n-vector p denotes a potential at each node
- $ightharpoonup p_i$ is the potential at node i
- \blacktriangleright $m\text{-vector }A^Tp$ gives the potential differences across the m edges
- ▶ $(A^Tp)_j$ is the potential difference across edge j
- potential difference is the incoming node potential minus outgoing node potential

Example



$$A = \left[\begin{array}{ccccc} -1 & -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & -1 \\ 0 & 1 & 0 & 0 & 1 \end{array} \right]$$

- ▶ for flow f, $(Af)_3 = f_3 f_4 f_5$ (net flow into node 3)
- for potential p, $(A^Tp)_2 = p_4 p_1$ (potential difference across edge 2)

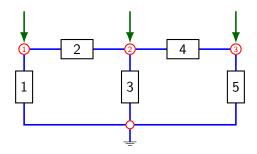
Outline

General graphs, flows, and potentials

Analysis of electrical circuits

Circuit nomenclature

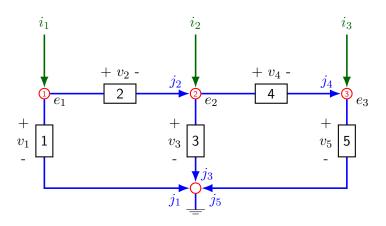
- (resistor) circuit consists of
 - n nodes, drawn as dots, plus a special ground node
 - b edges or branches, each containing a resistor, drawn as a box
 - $-\ n$ external sources, injecting current into the nodes
- often described using circuit schematic diagram
- ightharpoonup simple example with n=3, b=5



Circuit variables

- we index nodes by $k=1,\ldots,n$, branches by $l=1,\ldots,b$ (can think of ground node as node n+1)
- $ightharpoonup j_l$ is the electrical current in branch l (in A, Amperes)
- v_l is the voltage across branch l (in V, Volts) (measured from outgoing node to incoming node)
- ightharpoonup electrical potential (relative to ground) at node k is e_k (in V)
- lacktriangle node k has external current injected, denoted i_k (in A)
- lacktriangle we'll work with b-vectors j and v, and n-vectors e and i

Circuit schematic diagram



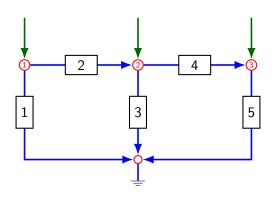
Reduced incidence matrix

ightharpoonup circuit analysis uses n imes b reduced incidence matrix

$$A_{kl} = \left\{ \begin{array}{l} +1 & \text{branch } l \text{ goes into node } k \\ -1 & \text{branch } l \text{ goes out of node } k \\ 0 & \text{otherwise} \end{array} \right.$$

- same as incidence matrix of the circuit graph, with last row (associated with ground node) removed
- ightharpoonup columns of A have two entries (one +1 and one -1) for branches between nodes
- lacktriangle columns of A have one entry (+1 or -1) for branches that go to or from ground node

Example



$$A = \left[\begin{array}{ccccc} -1 & -1 & 0 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 \end{array} \right]$$

Kirchhoff's circuit laws

Kirchhoff's current law (KCL):

- current is conserved at each node, i.e., $(Aj)_k + i_k = 0$
- ▶ in matrix notation: Aj + i = 0

Kirchhoff's voltage law (KVL):

- branch l voltage is the potential difference across it (using circuit convention, outgoing minus incoming potential): $(A^Te)_l + v_l = 0$
- in matrix notation: $A^T e + v = 0$

Ohm's law

- each branch contains a resistor
- characterized by Ohm's law, $v_l = R_l j_l$
- $ightharpoonup R_l > 0$ is the *resistance* (in Ohms, denoted Ω) of branch l
- ightharpoonup in matrix notation: v=Rj, with $R={f diag}(R_1,\ldots,R_b)$

Circuit equations

- circuit quantities are b-vectors v and j, n-vector e
- circuit equations are

$$\begin{aligned} Aj + i &= 0 & \text{(KCL)} \\ A^T e + v &= 0 & \text{(KVL)} \\ v &= Rj & \text{(Ohm's law)} \end{aligned}$$

ightharpoonup combine KVL and Ohm's law to get $A^Te+Rj=0$, and express as

$$\left[\begin{array}{cc} R & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} j \\ e \end{array}\right] = \left[\begin{array}{c} 0 \\ -i \end{array}\right]$$

▶ a system of b + n linear equations with b + n variables

Solution of circuit equations

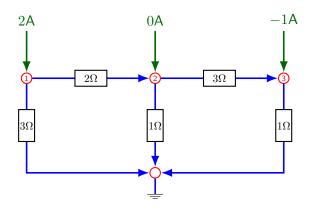
assuming matrix is invertible,

$$\left[\begin{array}{c} j \\ e \end{array}\right] = \left[\begin{array}{cc} R & A^T \\ A & 0 \end{array}\right]^{-1} \left[\begin{array}{c} 0 \\ -i \end{array}\right]$$

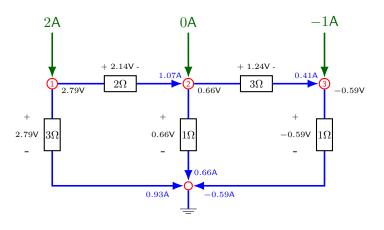
(and
$$v = Rj$$
)

ightharpoonup so v, j, and e are all linear functions of i

Example



Example — solution



Resistance matrix

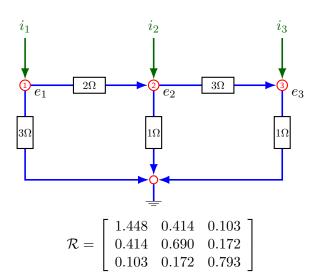
- ightharpoonup e is a linear function of i so it has form $e = \mathcal{R}i$
- ightharpoonup n imes n matrix \mathcal{R} is called the *resistance matrix*
- $ightharpoonup \mathcal{R}$ maps injected currents to resulting node potentials
- $lacktriangledown \mathcal{R}_{ij}$ is the potential at node i when 1A is injected into node j
- don't confuse with R, which maps branch currents to branch voltages (and is diagonal)

Resistance matrix

- ightharpoonup we can find $\mathcal R$ from circuit equations
- from $A^T e + Rj = 0$ we get $j = -R^{-1}A^T e$

- $> so \mathcal{R} = \left(AR^{-1}A^T\right)^{-1}$

Example



Conservation of power

- **•** power dissipated in branch l is $j_l v_l$; total power is $P^{\mathsf{diss}} = j^T v$
- **>** power entering circuit via external current at node k is $i_k e_k$; total is $P^{\text{ext}} = i^T e$
- ightharpoonup conservation of power: $P^{\text{diss}} = P^{\text{ext}}$
- i.e., the total power dissipated in the circuit branches is the total power entering the nodes via the external currents
- to see this:

$$j^T v = -j^T (A^T e) = -(Aj)^T e = i^T e$$

(using
$$Aj + i = 0$$
, $A^{T}e + v = 0$)

does not depend on branch resistances . . .

Maxwell's minimum energy principle

▶ the circuit equations are

$$\left[\begin{array}{cc} R & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} j \\ e \end{array}\right] = \left[\begin{array}{c} 0 \\ -i \end{array}\right]$$

▶ these are also the KKT optimality conditions for the problem

minimize
$$(1/2)j^TRj$$

subject to $Aj + i = 0$

with variable j

 $ightharpoonup j^T R j = j^T v$, the total power dissipated in the circuit

Maxwell's minimum energy principle

Maxwell concluded that

- branch currents minimize the dissipated power, subject to satisfying KCL
- the optimal Lagrange multipliers are the node potentials