

Physics Unit 9
\propto This Slideshow was developed to accompany the textbook
\rightarrow OpenStax Physics

- \simeq Available for free at
https://openstaxcollege.org/texibooks/college
\rightarrow By OpenStax College and Rice University
- 2013 edition
\propto Some examples and diagrams are taken from the textbook.

> Slides created by

Richard Wright, Andrews Academy
rwright@andrews.edu

In this lesson you will...

- Define electric current and ampere
- Describe the direction of charge flow in conventional current.
- Explain the origin of Ohm's law.
- Calculate voltages, currents, or resistances with Ohm's law.
- Describe a simple circuit.

09-07 Currient, Resistince; and

Ohm'a Laiv

09-01 Current, Resistance, and

Ohm's Lair

Current

\mapsto Rate of flow of charge
\rightarrow Amount of charge per unit time that crosses one point

$$
I=\frac{\Delta Q}{\Delta t}
$$

\multimap Symbol: (I)
\bigcirc Unit: ampere (A)

09-01 Current, Resistance, and

Ohen's Saur

\backsim Small computer speakers often have power supplies that give 12 VDC at 200 mA . How much charge flows through the circuit in 1 hour and how much energy is used to deliver this charge?
$\mapsto \Delta Q=720$ C
$\mapsto E=8640$ J

Charge in 1 hour:

$$
I=\Delta Q / \Delta t \rightarrow \Delta Q=I \Delta t=(.2 A)(3600 s)=720 C
$$

Energy:

$$
E P E=q V=(720 C) 12 V=8640 \mathrm{~J}
$$

The speakers usually don't draw that much current. They only draw that much current at their maximum volume.

09-01 Current, Resistance, and

Ohmis Sain

Conventional Current

\circ Electrons are the charge that flows through wires
\mapsto Historically thought positive charges move
\leadsto Conventional current \rightarrow imaginary flow of positive charges
\propto Flows from positive terminal and into negative terminal
\propto Real current flows the opposite way

09-01 Current, Resistance, and

Ohen's Saur

Drift Velocity

\circ Electrical signals travel near speed of light, but electrons travel much slower
\rightarrow Each new electron pushes one ahead of it, so current is actually like wave

$$
\begin{aligned}
\mapsto I & =\frac{\Delta Q}{\Delta t}=\frac{q n A x}{\Delta t}=q n A v_{d} \\
& \propto \\
& =\text { charge of each electron } \\
& \curvearrowleft \text { free charge density } \\
& \propto A=\text { cross-sectional area } \\
& v_{d}=\text { drift velocity }
\end{aligned}
$$

09-01 Current, Resistance, and

Ohen' A Sair

\bigcirc Think of water pumps
\multimap Bigger pumps \rightarrow more water flowing
\rightarrow-oskinny pipes (more resistance) \rightarrow less water flow
\bigcirc Electrical Circuits
\circ Bigger battery voltage \rightarrow more current
\propto Big electrical resistance \rightarrow less current

09-01 Current, Resistance, and

Then's Sain

Ohm's Law

$$
I=\frac{V}{R} \text { or } V=I R
$$

$$
\begin{aligned}
& \backsim V=\text { emf } \\
& \ddots I=\text { current } \\
& ๑ R=\text { resistance } \\
& \multimap \text { Unit: } V / A=\operatorname{ohm}(\Omega)
\end{aligned}
$$

09-01 Current, Resistance, and

Ohm's Saur

Resistors

\bigcirc Device that offers resistance to flow of charges
\circ Copper wire has very little resistance
\mapsto Symbols used for \rightarrow Resistor \rightarrow
\propto Wire \rightarrow

09-01 Current, Resistance, and

Ohem A Sair

\propto Our speakers use 200 mA of current at maximum volume. The voltage is 12 V . The current is used to produce a magnet which is used to move the speaker cone. Find the resistance of the electromagnet.
$\propto R=60 \Omega$

$$
V=I R \rightarrow 12 V=(0.20 A) R \rightarrow 60 \Omega=R
$$

09-01 Homenoth

\rightarrow Hopefully these circuit problems won't have you running around in circles
\rightarrow Read 20.3

In this lessoñ you will.

- Explain the concept of resistivity.
- Use resistivity to calculate the resistance of specified configurations
of material.
- Use the thermal coefficient of resistivity to calculate the change of resistance with temperature.
09-02 Residitunce and Rexistivity

09-02 Resistance and

Resistivity

Another way to find resistance
\propto The resistance varies directly with length and inversely with width (or cross-sectional area) a wire
\bigcirc - Kind of like trying to get a lot of water through a pipe
\rightarrow Short, thick wire \rightarrow small resistance
\propto Long, skinny wire \rightarrow large resistance

09-02 Resistance and

 Resistivity$$
R=\frac{\rho L}{A}
$$

$\rho \rho \rho=$ resistivity
-Unit: $\Omega \mathrm{m}$

- ๑ Table 20.1 lists resistivities of some materials
\multimap Metals \rightarrow small resistivity ($1 \times 10^{-8} \Omega \mathrm{~m}$)
$\rightarrow-$ Insulators \rightarrow large resistivity ($1 \times 10^{15} \Omega \mathrm{~m}$)
\rightarrow Semi-conductors \rightarrow medium resistivity

09-02 Resistance and

Resintivity

Why are long wires thick?

\square Wire thicknesses are measured in gauges. 20-gauge wire is thinner than 16 -gauge wire. If 20 -gauge wire has $A=5.2 \times$ $10^{-7} \mathrm{~m}^{2}$ and 16 -gauge wire has $A=13 \times 10^{-7} \mathrm{~m}^{2}$, find the resistance per meter of each if they are copper.

$$
\begin{aligned}
& \circ \text { 20-guage } \rightarrow .0331 \Omega / m \\
& \circ \text { 16-guage } \rightarrow .0132 \Omega / m
\end{aligned}
$$

$$
\begin{gathered}
R=\frac{\rho L}{A} \rightarrow \frac{R}{L}=\frac{\rho}{A} \\
\rho=1.72 \times 10^{-8} \Omega m \\
20-\text { gauge }: \\
\frac{R}{L}=\frac{1.72 \times 10^{-8} \Omega m}{5.2 \times 10^{-7} \mathrm{~m}^{2}}=0.033 \Omega / \mathrm{m} \\
16-\text { gauge }: \\
\frac{R}{L}=\frac{1.72 \times 10^{-8} \Omega \mathrm{~m}}{13 \times 10^{-7} \mathrm{~m}^{2}}=0.013 \Omega / \mathrm{m} \\
20-\text { gauge has about } 3 \text { times the resistance }
\end{gathered}
$$

09-02 Resistance and

Resistivity

Resistivity and Temperature

$$
\rho=\rho_{0}(1+\alpha \Delta T)
$$

$\rho \rho=$ resistivity at temperature T
$\mapsto \rho_{0}=$ resistivity at temperature T_{0}
$\circ \alpha \alpha=$ temperature coefficient of resistivity
\multimap Unit: $1 /{ }^{\circ} \mathrm{C}($ or $1 / \mathrm{K})$

09-02 Resistance and

Resistivity

- - Metals
\multimap Resistivity increases with temperature
$\sim^{-} \alpha$ is positive
\bigcirc Semiconductors
\bigcirc Resistivity decreases with temperature
$\cdots \alpha$ is negative

09-02 Resistance and

Resistivity

Resistance and Temperature

$$
R=R_{0}(1+\alpha \Delta T)
$$

$\mapsto R=$ resistance at temperature T
$\mapsto R_{0}=$ resistance at temperature T_{0}
$\circ \alpha=$ temperature coefficient of resistivity

- Unit: $1 /{ }^{\circ} \mathrm{C}($ or $1 / \mathrm{K})$

09-02 Resistance and

Resistivity

\rightarrow A heating element is a wire with cross-sectional area of $2 \times$ $10^{-7} \mathrm{~m}^{2}$ and is 1.3 m long. The material has resistivity of $4 \times$ $10^{-5} \Omega \mathrm{~m}$ at $200^{\circ} \mathrm{C}$ and a temperature coefficient of $3 \times 10^{-2} 1 /{ }^{\circ} \mathrm{C}$. Find the resistance of the element at $350^{\circ} \mathrm{C}$.
$\circ \mathrm{R}=1430 \Omega$

Find new resistivity

$$
\rho=\left(4 \times 10^{-5} \Omega \mathrm{~m}\right)\left[1+\left(3 \times 10^{-2} \frac{1}{{ }^{\circ} \mathrm{C}}\right)\left(350^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}\right)\right]=2.2 \times 10^{-4} \Omega \mathrm{~m}
$$

Find resistance

$$
R=\frac{\rho L}{A}=\frac{\left(2.2 \times 10^{-4} \Omega \mathrm{~m}\right)(1.3 \mathrm{~m})}{2 \times 10^{-7} \mathrm{~m}^{2}}=1430 \Omega
$$

09-02 Resistance and

Resistivity

Superconductors

\mapsto Materials whose resistivity $=0$
\rightarrow Metals become superconductors at very low temperatures
\rightarrow Some materials using copper oxide work at much higher temperatures
\mapsto No current loss
\rightarrow Used in
\multimap Transmission of electricity
\multimap MRI
\multimap Maglev
\multimap Powerful, small electric motors
\rightarrow Faster computer chips

In this lesson you will...

- Calculate the power dissipated by a resistor and power supplied by a power supply.
- Calculate.the cost of electricity under various circumstances.
- Explain the differences and similarities between AC and DC current.
- Calculate rms voltage, current, and"average power.

09-03 Elcathic. Power and AC/DC

09-03 Electric. Pouch and AFC/DC

Power

$$
P=I V
$$

\propto Unit: Watt (W)
Other equations for electrical power

$$
\begin{aligned}
& \multimap P=I(I R)=I^{2} R \\
& \multimap P=\left(\frac{V}{R}\right) V=\frac{V^{2}}{R}
\end{aligned}
$$

$$
V=I R \rightarrow I=V / R
$$

09-03 Electric. Power and AC/DC

\rightarrow Let's say an electric heater has a resistance of 1430Ω and operates at 120 V . What is the power rating of the heater? How much electrical energy does it use in 24 hours?
$\mapsto \mathrm{P}=10.1 \mathrm{~W}$
$๑ E=873 \mathrm{~kJ}$

Power

$$
P=\frac{V^{2}}{R}=\frac{(120 V)^{2}}{1430 \Omega}=10.1 \mathrm{~W}
$$

Energy use

$$
P=\frac{W}{t} \rightarrow W=P t=(10.1 W)(86400 \mathrm{~s})=872640 \mathrm{~J}
$$

09-03 Electric. Power and AC/DC

Kilowatt hours

\bigcirc Electrical companies charge you for the amount of electrical energy you use
\mapsto Measured in kilowatt hours (kWh)
\bigcirc If electricity costs $\$ 0.15$ per kWh how much does it cost to operate the previous heater ($\mathrm{P}=10.1 \mathrm{~W}$) for one month?

- $\$ 1.09$

$$
\begin{gathered}
E=(0.0101 \mathrm{~kW})(720 \mathrm{~h})=7.272 \mathrm{kWh} \\
\text { Cost }=(7.272 \mathrm{kWh})(\$ 0.15)=\$ 1.09
\end{gathered}
$$

09-03 Electric. Pouch and AFC/DC

Alternating Current

\multimap Charge flow reverses direction periodically
\mapsto Due to way that power plants generate power
\bigcirc Simple circuit

09-03 Clectric. Power and AF/DC

Periodicity

\propto Voltage, Current, and Power fluctuate with time

\bigcirc So we usually talk about the averages

09-03 Clectric. Power and AC/DC

$$
\begin{aligned}
& \text { Average Power } \\
& \propto \mathrm{DC} \\
& \propto P=I V \\
& \propto \mathrm{AC} \\
& \multimap P_{\max }=I_{0} V_{0} \\
& \multimap P_{\text {min }}=0 \\
& \multimap P_{\text {ave }}=\frac{1}{2} I_{0} V_{0}
\end{aligned}
$$

\propto Often P is used to represent average power in all AC circuits.
I_{0} and V_{0} stand for the maximum value

09-03 Electric. Pouch and AFC/DC

Root Mean Square (rms)

$$
P_{a v e}=\frac{1}{2} I_{0} V_{0}=\left(\frac{I_{0}}{\sqrt{2}}\right)\left(\frac{V_{0}}{\sqrt{2}}\right)=I_{r m s} V_{r m s}
$$

$๑ I_{r m s}$ and $V_{r m s}$ are called root mean square current and voltage \mapsto Found by dividing the max by $\sqrt{2}$

$$
I_{r m s}=\frac{I_{0}}{\sqrt{2}} \quad V_{r m s}=\frac{V_{0}}{\sqrt{2}}
$$

09-03 Electric. Power and AC/DC

Convention in USA
$\backsim V_{0}=170 \mathrm{~V}$
$\bigcirc \mathrm{V}_{\text {rms }}=120 \mathrm{~V}$
\mapsto Most electronics specify 120 V , so they really mean $\mathrm{V}_{\text {rms }}$
\circ We will always (unless noted) use average power, and root mean square current and voltage
\longrightarrow Thus all previously learned equations work!

09-03 Electric. Power and AC/DC

\mapsto A 60 W light bulb operates on a peak voltage of 156 V . Find the $\mathrm{V}_{\mathrm{rms}}, \mathrm{I}_{\mathrm{rms}}$, and resistance of the light bulb.

$$
\begin{aligned}
& \multimap \mathrm{V}_{\mathrm{rms}}=110 \mathrm{~V} \\
& \multimap \mathrm{I}_{\mathrm{rms}}=0.55 \mathrm{~A} \\
& \multimap \mathrm{R}=202 \Omega
\end{aligned}
$$

$$
\begin{gathered}
V_{r m s}=\frac{156 \mathrm{~V}}{\sqrt{2}}=110 \mathrm{~V} \\
I_{r m s}: P=I \mathrm{~V} \rightarrow 60 \mathrm{~W}=I(110 \mathrm{~V}) \rightarrow I_{r m s}=0.55 \mathrm{~A} \\
P=\frac{V^{2}}{R} \rightarrow 60 \mathrm{~W}=\frac{(110 \mathrm{~V})^{2}}{R} \rightarrow R=\frac{(110 \mathrm{~V})^{2}}{60 \mathrm{~W}} \rightarrow 202 \Omega
\end{gathered}
$$

09-03 Electric. Power and AC/DC

--Why are you not supposed to use extension cords for devices that use a lot of power like electric heaters?

```
\(\mapsto \mathrm{P}=\mathrm{IV}\)
    \(\multimap \mathrm{P}\) is large so I is large
\(\rightarrow\) The wire has some resistance
\(\rightarrow\) The large current and little resistance can cause heating
\(\bigcirc\) If wire gets too hot, the plastic insulation melts
```

Wire resistance varies directly with L and inversely with A

If you use an extension cord, use one with thick wires and short length to reduce resistance
Remember small gauge means big wires

09-03 dumentilk

\multimap Don't write down just answers. Alternatively show your work, too.
\leadsto Read 20.6, 20.7

In this lesson you will...

- Define thermal hazard, shock hazạrd, and short circuit.
- Explain what effects various levels of current have on the human body.
09-04 Clectricity and the Human
Body

09-04 Plectricity, and the Hwman Body

\mapsto Thermal Hazards
\multimap Electric energy converted to thermal energy faster than can be dissipated
\rightarrow Happens in short circuits ○-Electricity jumps between two parts of circuits bypassing the main load
$\bigcirc P=\frac{V^{2}}{R}$
○Low R so high P
○○Can start fires
○○Circuit breakers or fuses try to stop \multimap Or long wires that have \circ-OHigh resistance (thin) \circ Or are coiled so heat can't dissipate

Thin wires have higher R than thick wires

Heat can't escape from coiled wires and they melt

09-02 Electricity and the Hfwan Body

- Shock Hazards
\propto Factors
o-Amount of Current
-○Path of current
\circ-Duration of shock
○-Frequency of current
\circ Human body mainly water, so decent conductor
\circ Muscles are controlled by electrical impulses in nerves
\mapsto A shock can cause muscles to contract
\multimap Cause fist to close around wire (muscles to close, stronger than to open)
\rightarrow Can cause heart to stop
\rightarrow Body most sensitive to $50-60 \mathrm{~Hz}$

09-021 बHomentoth

\backsim Don't let these problems shock you.
\rightarrow Read 21.1

In this lesson you will...

- Draw a circuit with resistors in parallel and in series.
- Calculate the voltage drop of a current across a resistor using Ohm's law.
- Contrast the way total resistance is calculated for resistors in series and in parallel.
- Explain why total resistañce of a parallel circuit is less than the smallest resistance of any of the resistors in that circuit.
- Calculate total rësistance of a circuit that contains a mixture of resistors connected in series and in p̄arallel.

Parallel

09-05 Resistoth in Serica and

Pariallel

Series Wiring
\propto More than one device on circuit
\mapsto Same current through each device
\bigcirc Break in device means no current
\mapsto Form one "loop"
\mapsto The resisters divide the voltage between them

09-05 Resistoth in Serica and

Pariallel

R_{s} is the equivalent resistance in Series

09-05 Resiatotha in Serica and

Patiallel

\multimap A $5.17 \mathrm{k} \Omega$ resistor and a $10.09 \mathrm{k} \Omega$ resistor are connected in series. What is the equivalent resistance?
$๑ 15.26 \mathrm{k} \Omega$

Circuit board and multimeter to measure
$5.17 \mathrm{k} \Omega+10.09 \mathrm{k} \Omega=15.26 \mathrm{k} \Omega$

09-05 Resistothi in Serics and

Pariallel

\backsim Bathroom vanity lights are occasionally wired in series. $V=120 \mathrm{~V}$ and you install 3 bulbs with $\mathrm{R}=8 \Omega$ and 1 bulb with $\mathrm{R}=12 \Omega$. What is the current, voltage of each bulb, and the total power used?

$$
\begin{aligned}
& \propto \mathrm{I}=3.33 \mathrm{~A} \\
& \mapsto \mathrm{~V}=26.7 \mathrm{~V}, 40 \mathrm{~V} \\
& \mapsto \mathrm{P}_{\text {total }}=400 \mathrm{~W}
\end{aligned}
$$

$$
\begin{gathered}
R_{S}=3(8 \Omega)+12 \Omega=36 \Omega \\
V=I R \rightarrow 120 V=I(36 \Omega) \rightarrow I=3.33 \mathrm{~A} \\
V=I R \rightarrow V=(3.33 A)(8 \Omega)=26.7 \mathrm{~V} \\
\rightarrow V=(3.33 A)(12 \Omega)=40 \mathrm{~V} \\
P=I^{2} R \rightarrow P=(3.33 A)^{2}(8 \Omega)=88.9 \mathrm{~W} \\
\rightarrow P=(3.33 A)^{2}(12 \Omega)=133.3 \mathrm{~W} \\
P_{\text {total }}=3(88.9 \mathrm{~W})+133.3 \mathrm{~W}=400 \mathrm{~W} \\
\rightarrow P=I^{2} R=(3.33 A)^{2}(36 \Omega)=400 \mathrm{~W}
\end{gathered}
$$

Notice you can total the power and the voltage

09-05 Resistotha in Serical and

Pariallal

Parallel Wiring

- Same voltage across several devices
\mapsto Typical house wiring
\bigcirc Break in device has no effect on current
\bigcirc Resistors divide current

09-05 Resistoth in Serica and

pariallel

Derivation

∞ Each branch draws current as if the other wasn't there
\mapsto Each branch draws less current than the power supply gives
$\mapsto R=V / I$
\mapsto Overall circuit: Large I \rightarrow Small R
-OSmaller resistance than either branch

09-05 Resistoth in Serica and

Pariallel

$$
I=I_{1}+I_{2}
$$

$$
I=\frac{V}{R}
$$

$$
I=\frac{V}{R_{1}}+\frac{V}{R_{2}}
$$

$$
I=V\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right)=V\left(\frac{1}{R_{P}}\right)
$$

09-05 Resistoth in Serica and

Pariallal

Parallel Resistors

$$
\frac{1}{R_{P}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}
$$

09-05 Resistoth in Serica and

Patiallel

$\rightarrow A 1004 \Omega$ resistor and a 101Ω resistor are connected in parallel. What is the equivalent resistance?

- 91.8Ω

-oIf they were connected to a 3 V battery, how much total current would the battery supply?
$\rightarrow 32.7 \mathrm{~mA}$

$\circ-$ How much current through each resistor?
$\bigcirc 3.0 \mathrm{~mA}$ and 29.7 mA

$$
\begin{gathered}
\frac{1}{R_{P}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
1 / R_{P}=\frac{1}{1004 \Omega}+\frac{1}{101 \Omega}=0.000996 / \Omega+0.00990 / \Omega=0.010897 / \Omega \\
R_{P}=\frac{1}{0.010897 / \Omega}=91.8 \Omega \\
V=I R \rightarrow 3 V=I(91.8 \Omega) \rightarrow I=0.0327 \mathrm{~A}=32.7 \mathrm{~mA} \\
V=I R \rightarrow 3 V=I(1004 \Omega) \rightarrow I=0.0030 \mathrm{~A} \\
V=I R \rightarrow 3 V=I(101 \Omega) \rightarrow I=0.0297 \mathrm{~A} \\
\text { Add them together } \rightarrow 0.0327 \mathrm{~A}
\end{gathered}
$$

09-05 Resistoth in Serica and

Patiallel

Circuits Wired Partially in Series and Partially in Parallel
 \multimap Simplify any series portions of each branch

\bigcirc Simplify the parallel circuitry of the branches
\propto If necessary simplify any remaining series

09-05 Resistothe in Serics and

Pariallel

\propto Find the equivalent resistance and the total current of the following circuit.

Combine far left branch (series) $\rightarrow 10090 \Omega+5170 \Omega=15260 \Omega$
Combine left two branches $($ parallel $) \rightarrow \frac{1}{R}=\frac{1}{15260 \Omega}+\frac{1}{100900 \Omega} \rightarrow \frac{1}{R}$
$=7.54 \times 10^{-5} \bar{\Omega} \rightarrow R=13255 \Omega$
The rest is series $\rightarrow 13255 \Omega+1004 \Omega+101 \Omega=\mathbf{1 4 3 6 0} \Omega$ $V=I R \rightarrow 3 V=I(14360 \Omega) \rightarrow I=2.09 \times 10^{-4} A=209 \mathrm{~mA}$

09-05 Resistotis in Serics and

Pariallal

\leadsto Find the equivalent resistance.

Far left two branches (parallel): $\frac{1}{R}=\frac{1}{1004 \Omega}+\frac{1}{100900 \Omega} \rightarrow R=994.1 \Omega$
Combine series: $R=994.1 \Omega+5170 \Omega=6164.1 \Omega$
Combine parallel: $\frac{1}{R}=\frac{1}{6164.1 \Omega}+\frac{1}{10090 \Omega} \rightarrow R=3826.5 \Omega$
Combine series: $R=3826.5 \Omega+101 \Omega=3927 \Omega$

09-05 drименоtik

\propto These series of problems parallel the lesson.
\rightarrow Read 21.2

In this lesson you will...

- Compare and contrast the voltage and the electromagnetic force of an electric power source.
- Describe what happens to the terminal voltage, current, and power delivered to a load as internal resistance of the voltage source increases (due to aging of batteries, for example).
- Explain why it is beneficial-to use more than one voltage source connected in parallel. •

Terminal Voltage
*

09-06 Electromotive Gore:

Germinal Voltage

\multimap Emf
\circ Electromotive force
\bigcirc Not really a force
\multimap Really voltage produced that could drive a current

09-06 Clectromotive GFree:

Germinal Voltage

Internal Resistance
\mapsto Batteries and generators have resistance
\rightarrow In batteries \rightarrow due to chemicals
\rightarrow In generators \rightarrow due to wires and other components
\circ Internal resistance is connected in series with the equivalent resistance of the circuit

09-06 Clectromotive GFree:

Germinial Voltage

\propto Internal resistance causes terminal voltage to drop below emf
\leadsto Internal resistance is not necessarily negligible

$$
\begin{aligned}
\propto V & =\mathcal{E}-I r \\
\odot-V & =\text { terminal voltage } \\
\sim \mathcal{E} & =\text { emf } \\
\sim-I & =\text { current of circuit } \\
\circ-r & =\text { internal resistance }
\end{aligned}
$$

09-06 Clectromotive Gorlec:

Germinal Voltage

\multimap A string of 20 Christmas light are connected in series with a 3.0 V battery. Each light has a resistance of 10Ω. The terminal voltage is measured as 2.0 V . What is the internal resistance of the battery?
$\propto 100 \Omega$

$$
\begin{gathered}
\begin{array}{c}
V=I R(\text { circuit w/o battery }) \\
2 V=I(20 \times 10 \Omega) \rightarrow I=0.01 \mathrm{~A} \\
V=I R \text { (internal resistance) } \\
\text { Voltage drop across internal resistance } \\
3 V-2 V=1 V \\
1 V=(0.01 A) R \rightarrow 100 \Omega=R
\end{array}
\end{gathered}
$$

09-06 Clectromotive GForec:

Germinal Voltage

\mapsto A battery has an internal resistance of 0.02Ω and an emf of 1.5 V . If the battery is connected with five 15Ω light bulbs connected in parallel, what is the terminal voltage of the battery?
$๑ 1.49$ V

Combine parallel circuits

$$
\frac{1}{R}=5\left(\frac{1}{15 \Omega}\right) \rightarrow R=3 \Omega
$$

Combine with internal resistance

$$
R=3.02 \Omega
$$

Find current draw

$$
V=I R
$$

$$
1.5 \mathrm{~V}=I(3.02 \Omega) \rightarrow I=0.497 \mathrm{~A}
$$

Use the circuit w/o battery to find terminal voltage

$$
V=I R
$$

$$
V=(0.496 A)(3 \Omega)=1.49 V
$$

09-06 Clecthomotive GForee:

Germinial Voltage

\mapsto If batteries are connected in series, their emfs add, but so do the internal resistances
\mapsto If batteries are connected in parallel, their emfs stay the same, but the currents add and the combined internal resistance is less

Think of resisters in series and parallel

09-06 नाण

๑ Hard work takes lots of emf!
\leadsto Read 21.3

09-07 7 Prahhoffis Rulcs

Kirchhoff's Rules
\mapsto Junction Rule
\multimap Total current into a junction must equal the total current out of a junction
-- Loop Rule
\cdots For a closed-circuit loop, the total of all the potential rises - total of all potential drops $=0$
\circ (or the total voltage of a loop is zero)

09-07 7istahhoflis Rulcs

Reasoning Strategy

\bigcirc Draw the current in each branch of the circuit (flows out of positive terminal of battery). Choose any direction. If you are wrong you will get a negative current.
๑ Mark each element with a plus and minus signs at opposite ends to show potential drop. (Current flows from + to - through a resistor)
\multimap If the current leaves the element at + , voltage rise
\multimap If the current leaves the element at - , voltage drop
\rightarrow Apply junction rule and loop rule to get as many independent equations as there are variables.
\circ Solve the system of equations.

09-07 7hachhoffrs Rulcs

\mapsto Find the current through the circuit

Loop Rule (starting top left going CCW)

$$
\begin{gathered}
I(10090 \Omega)+4.5 V+I(5170 \Omega)+I(101 \Omega)+I(1004 \Omega)=3 V \\
16365 \Omega I+4.5 V=3 \mathrm{~V} \\
16365 \Omega I=-1.5 V \\
I=-9.17 \times 10^{-5} A=91.7 \mu A
\end{gathered}
$$

09-07 7iscohhoffis Rulca

Left Junction: $I_{3}=I_{1}+I_{2}$
Top Loop CCW: $3 \mathrm{~V}=\left(I_{2}\right)(1004 \Omega)+\left(I_{2}\right)(101 \Omega)-\left(I_{1}\right)(100900 \Omega)$
Bottom Loop CW: 4.5 V + 3 V
$=\left(I_{3}\right)(10090 \Omega)+\left(I_{3}\right)(5170 \Omega)+\left(I_{2}\right)(1004 \Omega)+\left(I_{2}\right)(101 \Omega)$

$$
\begin{gathered}
\text { System } \\
I_{1}+I_{2}-I_{3}=0 \\
-100900 \Omega\left(I_{1}\right)+1105 \Omega\left(I_{2}\right)=3 \mathrm{~V} \\
1105 \Omega\left(I_{2}\right)+15260 \Omega\left(I_{3}\right)=7.5 \mathrm{~V} \\
I_{1}=-2.45 \times 10^{-5} A, I_{2}=4.81 \times 10^{-4} A, I_{3}=4.57 \times 10^{-4} \mathrm{~A}
\end{gathered}
$$

09-07 Hivmentoth

\rightarrow Currently, you need to work on these problems
\bigcirc Read 21.4

In this lesson you will...

- Explain why a voltmeter must be connected in parallel with the circuit.
- Draw a diagram showing an ammeter correctly connected in a circuit.
- Describe how a galvanometer can be used as either a voltmeter or an ammeter.
- Find the resistance that mūst be placed inseries with a galvanometer to allow it to be used as a voltmeter with a given reading.
- Explain why measuring the voltage or current in a circuit can never be exact.

09-08 DC Vottmeters and

09-08 DC Voltmetcrs and

 Atmincteri\propto Analog (non-digital) meters
๑ Main component \rightarrow galvanometer

Made of magnets, wire coil, spring, pointer and calibrated scale.

Current flowing through the coil makes it magnetic, so it wants to move. The stronger the current the more the coil will rotate.

09-08 DC Voltmeters and

 Atmincterso-Ammeters

- Measures current
--Inserted into circuit so current passes through it

○○Connected in series

09-08 DC Voltmeters and

 Amincters- Coil usually measures only little current
\rightarrow Has shunt resistors connected in parallel to galvanometer so excess current can bypass
\sim A knob lets you select which shunt resistor is used

Example of Shunt resistors

- Want to measure 100 mA , but meter's coil only reads 0.100 mA .
- Have shunt resistor take 99.9 mA and the coil only gets .1 mA
- To know how big to make the shunt resistors, the resistance of the coil needs to be known.

09-08 DC Voltmeters and

 Afmincters\leadsto Problems with Ammeters
\multimap The resistance of the coil and shunt resistors add to the resistance of the circuit
\rightarrow This reduces the current in the circuit
-OIdeal ammeter has no resistance
\bigcirc Real-life good ammeters have small resistance so as only cause a negligible change in current

09-08 DC Voltmet

 Amincters\bigcirc Voltmeters
\multimap Connected in parallel to circuit since parallel has same voltage
\circ The coil works just like in the ammeter
\propto Given the current and the resistance of the coil $\rightarrow \mathrm{V}=\mathrm{IR}$
\rightarrow To give more range, a large resistor is connected in series with the coil

Large resistor is added because if V is constant Big R means small I

09-08 DC Voltmeters and

 Afmincters\bigcirc Problems with Voltmeters
\multimap The voltmeter takes some the voltage out of the circuit
\circ Ideal voltmeter would have infinitely large resistance as to draw tiny current
\multimap Good voltmeter has large enough resistance as to make the current draw (and voltage drop) negligible

09-08 dfomentoth

\bigcirc See if you measure up to these meter problems
\rightarrow Read 21.6

In this lessoñ you will.

- Explain the importance of the time constant; τ, and calculate the time constant for a given resistance and çapacitance.
- Describe-what happens to a graph of the voltage across a capácitor over time as it charges. .
- Explain how a timing circuit works"and list some applications.
09-09 DC Cincuits Covitaining
Resistors and Capacitath

09-09 DC Circuits Containing

Resistors and Capacitoths

Charging a Capacitor
\mapsto Circuit with a capacitor, battery, and resistor
\rightarrow Initially capacitor is uncharged
\mapsto When battery connected current flows to charge capacitor
\circ As charges build up, there is increased resistance because of the repulsion of the charges on the parallel plates
\propto When capacitor is fully charged, no
 current will flow

Current no longer flows because the parallel plates aren't connected and it can't accept anymore charge

09-09 DC Circuits Containing

Resistors and Capacitors

\rightarrow Loop Rule

$$
\mathcal{E}=\frac{q}{c}+I R
$$

Solve for I

$$
I=\frac{V}{R}-\frac{q}{R C}
$$

I is rate of change of q
Differential Calculus says

Draw the circuit with Battery, capacitor, and resistor

09-09 DC Circuits Containing

 Resistors and CapacitateCharging a Capacitor
$\propto q=C V\left(1-e^{-\frac{t}{R C}}\right)$
$\square \mathrm{RC}=\tau$ (time constant - The time required to charge the capacitor to 63.2\%)
$\mapsto \mathrm{CV}=\mathrm{Q}$ (maximum charge)
$๑ V=\varepsilon\left(1-e^{-\frac{t}{R C}}\right)$
\bigcirc Where
$\multimap \mathrm{V}$ is voltage across the capacitor
$\rightarrow \mathcal{E}$ is emf
\rightarrow t is time
$\rightarrow \mathrm{R}$ is resistance of circuit
$\multimap \mathrm{C}$ is capacitance

09-09 DC Circuits Containing

Resistors and Capacitors

Discharging a Capacitor
\mapsto The battery is disconnected
\mapsto The capacitor acts like a battery supplying current to the circuit

- Loop Rule
$I R=\frac{q}{c}$
$I=\frac{q}{R C}$
$\cdots q=Q e^{-\frac{t}{R C}}$
$\mapsto V=V_{0} e^{-\frac{t}{R C}}$
\square Often capacitors are used to charge slowly, then discharge quickly like in camera flash.
\mapsto Done by have different values for R in charging and discharging.

09-09 DC Circuits Containing

Resistorts aind Capacitoth

Camera flashes work by charging a capacitor with a battery.
-USually has a large time constant because batteries cannot produce charge very fast
\propto The capacitor is then discharged through the flashbulb circuit with a short time constant

09-09 DC Circuits Containing

 Resifitoris aind Capacitoth\mapsto An uncharged capacitor and a resistor are connected in series to a battery. If V $=12 \mathrm{~V}, \mathrm{C}=5 \mu \mathrm{~F}$, and $\mathrm{R}=8 \times 10^{5} \Omega$. Find the time constant, max charge, max current, and charge as a function of time.
\multimap Time constant: $\tau=R C=(800000 \Omega)(0.000005 F)=4 \mathrm{~s}$
\multimap Max Charge: $Q=C V=(0.000005 F)(12 V)=0.000060 C=60 \mu C$
\multimap Max Current: $I=\frac{V}{R}=\frac{12 \mathrm{~V}}{800000 \Omega}=0.000015 \mathrm{~A}=15 \mu \mathrm{~A}$
\multimap Charge function: $q(t)=60\left(1-e^{-\frac{t}{4}}\right) \mu \mathrm{C}$
\multimap Current function: $I(t)=15 e^{-\frac{t}{4}} \mu$

Time constant: $\tau=R C=(800000 \Omega)(0.000005 F)=4 s$
Max Charge: $Q=C V=(0.000005 F)(12 V)=0.000060 C=60 \mu C$
Max Current: $I=\frac{V}{R}=\frac{12 V}{800000 \Omega}=0.000015 \mathrm{~A}=15 \mu \mathrm{~A}$
Charge function: $q(t)=60\left(1-e^{-\frac{t}{4}}\right) \mu C$
Current function: $I(t)=15 e^{-\frac{t}{4}} \mu \mathrm{~A}$

๑ Discharge your knowledge by completing these problems

