ELECTRICAL ENGINEERING

ELECTRIC CIRCUITS
Volume-1 : Study Material with Classroom Practice Questions

Electric Circuits

(Solutions for Volume-1 Class Room Practice Questions)

1. Basic Concepts

01. Ans: (c)

Sol: We know that;

$$
\begin{aligned}
& \mathrm{i}(\mathrm{t})=\frac{\mathrm{dq}(\mathrm{t})}{\mathrm{dt}} \\
& \mathrm{dq}(\mathrm{t})=\mathrm{i}(\mathrm{t}) \cdot \mathrm{dt} \\
& \mathrm{q}=\int_{0}^{5 \mu \mathrm{sec}} \mathrm{i}(\mathrm{t}) \mathrm{dt}=\text { Area under } \mathrm{i}(\mathrm{t}) \text { upto } 5 \mu \mathrm{sec} \\
& \mathrm{q}=\mathrm{q}_{1}\left|+\mathrm{q}_{2}\right|+\mathrm{q}_{3} \mid \\
& = \\
& =\left(\frac{1}{2} \times 3 \times 5\right)+\left(\frac{1}{2} \times 1 \times 2+(1 \times 3)\right)+\left(\frac{1}{2} \times 1 \times 1+(1 \times 3)\right) \\
& \mathrm{q}=15 \mu \mathrm{c}
\end{aligned}
$$

2. Ans: (a)

Sol:

Applying KCL at node 'b'
$\mathrm{I}+4=4$

$$
\Rightarrow \mathrm{I}=0 \mathrm{~A}
$$

$$
\text { And } \frac{8}{R}=4
$$

$$
\Rightarrow \mathrm{R}=2 \Omega
$$

3. Ans: (a)

Sol: The energy stored by the inductor $(1 \Omega, 2 \mathrm{H})$ upto first 6 sec :
04. Ans: (d)

Sol: The energy absorbed by the inductor $(1 \Omega, 2 \mathrm{H})$ upto first $6 \mathrm{sec}:$
$\mathrm{E}_{\text {absorbed }}=\mathrm{E}_{\text {dissipated }}+\mathrm{E}_{\text {stored }}$
Energy is dissipated in the resistor

$$
\begin{aligned}
& \mathrm{E}_{\text {stored upto 6sec }}=\int \mathrm{P}_{\mathrm{L}} \mathrm{dt} \\
& =\int\left(L \frac{\operatorname{di}(\mathrm{t})}{\mathrm{dt}} \cdot \mathrm{i}(\mathrm{t})\right) \mathrm{dt} \\
& =\int_{0}^{2}\left(2\left[\frac{\mathrm{~d}}{\mathrm{dt}}(3 \mathrm{t})\right] \times 3 \mathrm{t}\right) \mathrm{dt}+\int_{2}^{4}\left(2\left[\frac{\mathrm{~d}}{\mathrm{dt}}(6)\right] \times 6\right) \mathrm{dt} \\
& +\int_{4}^{6}\left(2\left[\frac{\mathrm{~d}}{\mathrm{dt}}(-3 \mathrm{t}+18)\right] \times(-3 \mathrm{t}+18)\right) \mathrm{dt} \\
& =\int_{0}^{2} 18 t d t+\int_{2}^{4} 0 d t+\int_{4}^{6}(-6[-3 t+18]) d t \\
& =36+0-36=0 \mathrm{~J} \\
& \text { (or) } \\
& \mathrm{E}_{\text {stored upto } 6 \text { sec }}=\left.\mathrm{E}_{\mathrm{L}}\right|_{\mathrm{t}=6 \mathrm{sec}} \\
& =\frac{1}{2} \mathrm{~L}\left(\left.\mathrm{i}(\mathrm{t})\right|_{\mathrm{t}=6}\right)^{2} \\
& =\frac{1}{2} \times 2 \times 0^{2}=0 \mathrm{~J}
\end{aligned}
$$

$$
\mathrm{E}_{\text {dissipated }}=\int \mathrm{P}_{\mathrm{R}} \mathrm{dt}=\int(\mathrm{i}(\mathrm{t}))^{2} \mathrm{R} d \mathrm{dt}
$$

$$
=\int_{0}^{2}(3 \mathrm{t})^{2} \times 1 \mathrm{dt}+\int_{2}^{4}(6)^{2} \times 1 \mathrm{dt}+\int_{4}^{6}(-3 \mathrm{t}+18)^{2} \times 1 \mathrm{dt}
$$

$=\int_{0}^{2} 9 t^{2} d t+\int_{2}^{4} 36 d t+\int_{4}^{6}\left(9 t^{2}+324-108 t\right) d t$
$=24+72+24$
$=120 \mathrm{~J}$
$\therefore \mathrm{E}_{\text {dissipated }}=120 \mathrm{~J}$
And $\mathrm{E}_{\text {stored upto } 6 \text { sec }}=0 \mathrm{~J}$
$\therefore \mathrm{E}_{\text {absorbed }}=\mathrm{E}_{\text {dissipated }}+\mathrm{E}_{\text {stored }}$
$\Rightarrow \mathrm{E}_{\text {absorbed }}=120 \mathrm{~J}+0 \mathrm{~J}=120 \mathrm{~J}$
05. Ans: (a)

Sol: Point $(-20,0) \Rightarrow V=-20 \mathrm{~V}$ and $\mathrm{I}=0 \mathrm{~A}$

By $\mathrm{KVL} \Rightarrow \mathrm{I}_{\mathrm{S}} \mathrm{R}_{\mathrm{S}}-\mathrm{V}=0$
$\Rightarrow \mathrm{I}_{\mathrm{S}} \mathrm{R}_{\mathrm{S}}+20=0$
$\Rightarrow \mathrm{I}_{\mathrm{S}} \mathrm{R}_{\mathrm{S}}=-20 \mathrm{~V}$

Point: $(0,-2) \Rightarrow \mathrm{V}=0 \mathrm{~V}$ and $\mathrm{I}=-2 \mathrm{~A}$

$\Rightarrow \mathrm{I}_{\mathrm{s}}=-2 \mathrm{~A}$
Substituting I_{s} in eq (1)

$$
\mathrm{R}_{\mathrm{S}}=10 \Omega
$$

From the diagram;
$\mathrm{I}=-1 \mathrm{~A}$ and $\mathrm{V}=-10 \mathrm{~V}$
06. Ans: (a)

Sol:

* linear
* Passive
* bilateral

7. Ans: (b)

Sol:

08. Ans: (e)

Sol:

09. Ans: (c)

Sol:

: 4 :
Electric Circuits
10.

Sol:

(1) $\mathrm{By} \mathrm{KVL} \Rightarrow+10+8+\mathrm{E}+4=0$

$$
\mathrm{E}=-22 \mathrm{~V}
$$

(2) $\mathrm{By} \mathrm{KVL} \Rightarrow+\mathrm{V}_{1}-2+4=0$

$$
\mathrm{V}_{1}=-2 \mathrm{~V}
$$

(3) $\mathrm{By} \mathrm{KVL} \Rightarrow+\mathrm{V}_{2}+6-8-10=0$

$$
\mathrm{V}_{2}=12 \mathrm{~V}
$$

11. Ans: (d)

Sol:

Here the 2 V voltage source and 3 V voltage source are in parallel which violates the KVL. Hence such circuit does not exist. (But practical voltage sources will have some internal resistance so that when two unequal voltage sources are connected in parallel current can flow and such a circuit may exist).
12. Ans: (d)

Sol:

Applying KVL,

$$
\begin{align*}
& -\mathrm{V}_{1}+12\left(\mathrm{I}_{\text {in }}-\frac{\mathrm{V}_{1}}{5}\right)+2\left(\mathrm{I}_{\text {in }}-\frac{16 \mathrm{~V}_{1}}{5}\right)=0 \\
& -\mathrm{V}_{1}+12 \mathrm{I}_{\text {in }}-\frac{12 \mathrm{~V}_{1}}{5}+2 \mathrm{I}_{\text {in }}-\frac{32 \mathrm{~V}_{1}}{5}=0 \\
& 14 \mathrm{I}_{\text {in }}=\frac{49}{5} \mathrm{~V}_{1} \\
& \Rightarrow \mathrm{~V}_{1}=\frac{70}{49} \mathrm{I}_{\text {in }} \ldots \ldots \ldots(1) \tag{1}\\
& \therefore \mathrm{V}_{\text {out }}=2\left(\mathrm{I}_{\text {in }}-\frac{16 \mathrm{~V}_{1}}{5}\right) \ldots \ldots(2)
\end{align*}
$$

Substitute equation (1) in equation (2)

$$
\begin{aligned}
& \begin{aligned}
\mathrm{V}_{\text {out }} & =2\left(\mathrm{I}_{\text {in }}-\frac{16}{5} \times \frac{70}{49} \mathrm{I}_{\text {in }}\right) \\
& =2\left(\frac{-25}{7}\right) \mathrm{I}_{\text {in }} \\
& =\frac{-50}{7} \mathrm{I}_{\text {in }}
\end{aligned} \\
& \therefore \mathrm{V}_{\text {out }}=-7.143 \mathrm{I}_{\text {in }}
\end{aligned}
$$

13. Ans: (c)

By nodal \Rightarrow
$\mathrm{V}-20+\mathrm{V}-4=0$
$\mathrm{V}=12$ volts
Power delivered by the dependent source is $P_{\text {del }}=(12 \times 4)=48$ watts
14. Ans: (d)

Sol:

Applying KVL,
$\Rightarrow \mathrm{V}+1.5 \mathrm{I}+2 \mathrm{I}=0$
$\Rightarrow \mathrm{V}=-3.5 \mathrm{I}$
15. Ans: (c)

Sol:

By using KCL
$\frac{\mathrm{V}_{\mathrm{x}}+15}{8}-2 \mathrm{~V}_{\mathrm{x}}=0 \Rightarrow \mathrm{~V}_{\mathrm{x}}=\mathrm{IV}$
By using nodal Analysis at V_{z} node
$\frac{\mathrm{V}_{\mathrm{z}}+15}{18}-2=0 \Rightarrow \mathrm{~V}_{\mathrm{z}}=+21 \mathrm{~V}$
16.

Sol:

By $\mathrm{KVL} \Rightarrow 1-\mathrm{i}_{1}-\mathrm{i}_{1}=0$
$\mathrm{i}_{1}=0.5 \mathrm{~A}$
By KVL $\Rightarrow-\mathrm{i}_{2}-\mathrm{i}_{2}+1=0$
$\mathrm{i}_{2}=0.5 \mathrm{~A}$
By KVL $\Rightarrow \mathrm{V}_{1}-0.5+2+0.5-\mathrm{V}_{2}=0$
$\mathrm{V}_{2}=\mathrm{V}_{1}+2 \mathrm{~V}$
17.

Sol: As the bridge is balanced; voltage across (G) is " 0 V ".
By KCL at node "A" $\Rightarrow-\mathrm{I}_{\mathrm{s}}+5 \mathrm{~m}+5 \mathrm{~m}=0$ $\mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$

18.

Sol: Given data:
$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{C}}=4 \sin 2 \mathrm{t}$ then $\mathrm{V}_{\mathrm{L}}=$?

$\mathrm{i}_{\mathrm{c}}=\frac{\mathrm{CdV}_{\mathrm{c}}}{\mathrm{dt}}=\frac{\mathrm{d}}{\mathrm{dt}}(4 \sin 2 \mathrm{t})=8 \cos 2 \mathrm{t}$
By KCL; $-1-2+\mathrm{i}_{\mathrm{L}}+\mathrm{i}_{\mathrm{c}}=0$
$\mathrm{i}_{\mathrm{L}}=3-8 \cos 2 \mathrm{t}$
We know that;

$$
\begin{aligned}
\mathrm{V}_{\mathrm{L}} & =\mathrm{L} \frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}}=2 \frac{\mathrm{~d}}{\mathrm{dt}}(3-8 \cos 2 \mathrm{t}) \\
& =2(-8)(-2) \sin 2 \mathrm{t} \\
\mathrm{~V}_{\mathrm{L}} & =32 \sin 2 \mathrm{t} \text { volt }
\end{aligned}
$$

19.

Sol: $\mathrm{V}=$? If power dissipated in 6Ω resistor is zero.

$\mathrm{P}_{6 \Omega}=0 \mathrm{~W}$ (Given)
$\Rightarrow \mathrm{i}_{6 \Omega}^{2} .6=0$
$\Rightarrow \mathrm{i}_{6 \Omega}=0\left(\mathrm{~V}_{6 \Omega}=0\right)$
$\frac{V_{1}-V_{2}}{6+j 8}=0 ; V_{1}=V_{2}$
By Nodal \Rightarrow
$\frac{\mathrm{V}_{1}-20 \angle 0^{0}}{1}+\frac{\mathrm{V}_{1}}{\mathrm{jl}}+0=0$
$\mathrm{V}_{1}=10 \sqrt{2} \angle 45^{0}=\mathrm{V}_{2}$
By Nodal \Rightarrow
$0+\frac{\mathrm{V}_{2}}{5}+\frac{\mathrm{V}_{2}-\mathrm{V}}{5}=0$
$\mathrm{V}=2 \mathrm{~V}_{2}=2\left(10 \sqrt{2} \angle 45^{0}\right)$
$\therefore \mathrm{V}=20 \sqrt{2} \angle 45^{\circ}$
20. Ans: (d)

Sol:

Note: Since no independent source in the network, the network is said to be unenergised, so called a DEAD network".
The behavior of this network is a load resistor behavior.

$$
\begin{aligned}
& \text { By Nodal } \Rightarrow \\
& -\mathrm{I}_{1}+\frac{\mathrm{V}}{4}+\frac{\mathrm{V}-2 \mathrm{I}_{1}}{2}=0 \\
& 3 \mathrm{~V}=8 \mathrm{I}_{1} \\
& \mathrm{R}_{\mathrm{eq}}=\frac{\mathrm{V}}{\mathrm{I}_{1}}=\frac{8}{3} \Omega
\end{aligned}
$$

21. Ans: (a)

Sol:
R_{3}

Apply KCL at Node - 1,
$\mathrm{I}=\mathrm{I}_{\mathrm{R} 1}+\mathrm{I}_{\mathrm{R} 3}=1+1=2 \mathrm{~A}$
Apply KCL at Node - 2,

$$
\mathrm{I}_{4}=-\mathrm{I}_{2}-\mathrm{I}=-2-2=-4 \mathrm{~A}
$$

22.

Sol:

Fig. 1
$\mathrm{Z}_{1}=\mathrm{Z}_{\mathrm{A}}+\mathrm{Z}_{\mathrm{B}}+\left(\frac{\mathrm{Z}_{\mathrm{A}} \mathrm{Z}_{\mathrm{B}}}{\mathrm{Z}_{\mathrm{C}}}\right)$
$=\frac{1}{\mathrm{~s}}+\frac{1}{2 \mathrm{~s}}+\frac{\left(\frac{1}{\mathrm{~s}}\right)\left(\frac{1}{2 \mathrm{~s}}\right)}{\left(\frac{1}{3 \mathrm{~s}}\right)}$
$\mathrm{Z}_{1}=\frac{1}{\mathrm{~s}\left(\frac{1}{3}\right)} ; \quad \mathrm{C}=\frac{1}{3} F$
$\mathrm{Z}_{2}=\mathrm{Z}_{\mathrm{B}}+\mathrm{Z}_{\mathrm{C}}+\frac{\mathrm{Z}_{\mathrm{B}} \mathrm{Z}_{\mathrm{C}}}{\mathrm{Z}_{\mathrm{A}}}=\frac{1}{2 \mathrm{~s}}+\frac{1}{3 \mathrm{~s}}+\frac{\left(\frac{1}{2 \mathrm{~s}}\right)\left(\frac{1}{3 \mathrm{~s}}\right)}{\left(\frac{1}{\mathrm{~s}}\right)}$
$\mathrm{Z}_{2}=\frac{1}{\mathrm{~S}(1)} ; \mathrm{C}=1 \mathrm{~F}$
$\mathrm{Z}_{3}=\mathrm{Z}_{\mathrm{A}}+\mathrm{Z}_{\mathrm{C}}+\frac{\mathrm{Z}_{\mathrm{A}} \mathrm{Z}_{\mathrm{C}}}{\mathrm{Z}_{\mathrm{B}}}$
$=\frac{1}{\mathrm{~s}}+\frac{1}{3 \mathrm{~s}}+\frac{\left(\frac{1}{\mathrm{~s}}\right)\left(\frac{1}{3 \mathrm{~s}}\right)}{\left(\frac{1}{2 \mathrm{~s}}\right)}$
$\mathrm{Z}_{3}=\frac{1}{\mathrm{~s}\left(\frac{1}{2}\right)} ; \mathrm{C}=\frac{1}{2} \mathrm{~F}$

23.

Sol: $\mathrm{Z}_{\mathrm{ab}}=$?

Since $2 * 4=4 * 2$; the given bridge is balanced one, therefore the current through the middle branch is zero. The bridge acts as below :

$$
\mathrm{Z}_{\mathrm{ab}}=\frac{4 \times 8}{4+8}=\frac{8}{3} \Omega
$$

24.

Sol: Redraw the circuit diagram as shown below:

Using Δ to star transformation:

25.

Sol: On redrawing the circuit diagram

$\bar{\equiv}$

As bridge is balanced
So $R_{A B}=R\left\|R_{\text {eq }}=R\right\| R=R / 2$
26. Ans: (b)

Sol: The equivalent capacitance across a, b is calculated by simplifying the bridge circuit as shown in Fig. 1 to Fig. 5. [$\because \mathrm{C}=0.1 \mu \mathrm{~F}]$

Fig. 1

$$
=\frac{0.1 \times 0.1}{0.2}=0.05 \mu \mathrm{~F}
$$

$\mathrm{C}_{\mathrm{ab}}=0.1 \mu \mathrm{~F}$
Note: The bridge is balanced and the answer is easy to get.

27. Ans:(a)

Sol: Consider a Δ connected network

Then each branch of the equivalent λ connected impedance is $\frac{\sqrt{3} Z}{3}=\frac{Z}{\sqrt{3}}$
28. Ans: (a)

Sol: Network is redrawn as

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{eq}} \Rightarrow \\
& \mathrm{R}_{\mathrm{eq}}=1+1+\frac{\mathrm{R}_{\mathrm{eq}}}{1+\mathrm{R}_{\mathrm{eq}}} \\
&=2+\frac{\mathrm{R}_{\mathrm{eq}}}{1+\mathrm{R}_{\mathrm{eq}}}=\frac{2+2 \mathrm{R}_{\mathrm{eq}}+\mathrm{R}_{\mathrm{eq}}}{1+\mathrm{R}_{\mathrm{eq}}}
\end{aligned}
$$

$R_{\text {cq }}+R_{\text {cq }}^{2}=2+3 R_{\text {cq }}$
$\mathrm{R}_{\mathrm{cq}}^{2}-2 \mathrm{R}_{\mathrm{cq}}-2=0$
$\mathrm{R}_{\mathrm{cq}}=(1+\sqrt{3}) \Omega$
29. Ans: (c)

Sol: Applying KCL

$$
\begin{aligned}
& \mathrm{I}_{0.25 \Omega}=2 \mathrm{i}+\mathrm{i}=3 \mathrm{i} \\
& \mathrm{I}_{0.125 \Omega}=(1-3 \mathrm{i}) \mathrm{A}
\end{aligned}
$$

Applying KVL in upper loop.

$$
\begin{aligned}
& -\frac{(1-3 i)}{8}+\frac{i}{2}+\frac{3 i}{4}=0 \\
& \frac{5 i}{4}=\frac{1-3 i}{8} \Rightarrow 10 i=1-3 i \\
& \therefore i=\frac{1}{13} A \\
& V=\frac{3 i}{4}=\frac{3}{4} \times \frac{1}{13}=\frac{3}{52} V
\end{aligned}
$$

30. Ans: (a)

Sol:

Applying KCL at Node V
$\frac{\mathrm{V}}{2}+\frac{\mathrm{V}-2 \mathrm{i}_{\mathrm{x}}}{4}+\mathrm{i}_{\mathrm{x}}=0$ \qquad
$\mathrm{i}_{\mathrm{x}}=\frac{\mathrm{V}+10}{6} \Rightarrow \mathrm{~V}=6 \mathrm{i}_{\mathrm{x}}-10$
Put in equation (1), we get
$3 \mathrm{i}_{\mathrm{x}}-5+\mathrm{i}_{\mathrm{x}}-2.5+\mathrm{i}_{\mathrm{x}}=0$
$5 \mathrm{i}_{\mathrm{x}}=7.5$
$\mathrm{i}_{\mathrm{x}}=1.5 \mathrm{~A}$
$\mathrm{V}=-1 \mathrm{~V}$
$\mathrm{I}_{\text {dependent souce }}=\frac{\mathrm{V}-2 \mathrm{i}_{\mathrm{x}}}{4}=\frac{-1-3}{4}=-1 \mathrm{~A}$
\therefore Power absorbed $=\left(I_{\text {dependent source }}\right)\left(2 \mathrm{i}_{\mathrm{x}}\right)$

$$
=(-1)(3)=-3 \mathrm{~W}
$$

31. Ans: (d)

Sol: $\mathrm{V}_{0}=$?

$$
\begin{aligned}
\text { By KCL } \Rightarrow \quad+2+3 & =0 \\
+5 & \neq 0
\end{aligned}
$$

Since the violation of KCL in the circuit ; physical connection is not possible and the circuit does not exist.
32. Ans: (b)

Sol: Redraw the given circuit as shown below:

$$
\text { By KVL } \Rightarrow
$$

$$
-15-V_{0}=0
$$

$$
\mathrm{V}_{0}=-15 \mathrm{~V}
$$

33. Ans: (d)

Sol: Redraw the circuit diagram as shown below:
Across any element two different voltages at a time is impossible and hence the circuit does not exist.
Another method:
By KVL \Rightarrow
$5+10=0$
$15 \neq 0$

Since the violation of KVL in the circuit, the physical connection is not possible.

34. Ans: (d)

Sol: Redraw the given circuit as shown below:

By KVL \Rightarrow
$-10-10=0$
$-20 \neq 0$

Since the violation of KVL in the circuit, the physical connection is not possible.
35. Ans: (b)

Sol: Redraw the given circuit as shown below:
By KVL \Rightarrow
$10-10=0$
$0=0$
KVL is satisfied
$\mathrm{I}_{5 \Omega}=\frac{10}{5}=2 \mathrm{~A}$
$\mathrm{I}_{5 \Omega}=2 \mathrm{~A}$

36. Ans: (d)

Sol:

Fig. 1
The diode is forward biased. Assuming that the diode is ideal, the Network is redrawn with node A marked as in Fig. 1.
Apply KCL at node A

$$
\frac{4-\mathrm{v}_{0}}{2}=\frac{\mathrm{v}_{0}}{2}+\frac{\mathrm{v}_{0}+2}{2}
$$

$\frac{3 \mathrm{v}_{0}}{2}=1$
$\mathrm{v}_{0}=\frac{2}{3} \mathrm{~V}$
(Here polarity is different what we assume so $\mathrm{V}_{0}=\frac{-2}{3} \mathrm{~V}$
37.

Sol: The actual circuit is

38. Ans: (b)

Sol:

Voltage across $2 \mathrm{~A}=10+20+10-5$

$$
=35 \mathrm{~V}
$$

\therefore Power supplied $=\mathrm{VI}$

$$
=35 \times 2=70 \mathrm{~W}
$$

39. Ans :(d)

Applying KCL at node V
$\frac{\mathrm{V}-12}{6}+\frac{\mathrm{V}}{12}-\mathrm{V}_{0}+\mathrm{V}_{0}=0$
$\Rightarrow \frac{\mathrm{V}}{6}+\frac{\mathrm{V}}{12}=2 \Rightarrow \mathrm{~V}=8 \mathrm{~V}$
$\therefore \mathrm{V}_{0}=4 \mathrm{~V}$
Applying KVL in outer loop
$\Rightarrow-\mathrm{V}+1\left(\mathrm{~V}_{0}\right)+\mathrm{V}_{\mathrm{ab}}=0$
$\Rightarrow \mathrm{V}_{\mathrm{ab}}=\mathrm{V}-\mathrm{V}_{0}=8-4=4 \mathrm{~V}$
40.

Sol: By KVL
$\Rightarrow \mathrm{V}_{\mathrm{i}}-6-10=0$
$V_{i}=16 \mathrm{~V}$
$\mathrm{P}_{4 \Omega}=(8 * 2)=16 \mathrm{watts}-$ absorbed
$\mathrm{P}_{2 \mathrm{~A}}=(24 * 2)=48$ watts delivered
$\mathrm{P}_{3 \Omega}=(6 * 2)=12$ watts - absorbed
$\mathrm{P}_{10 \mathrm{~V}}=(10 * 2)=20$ watts - absorbed

Since; $P_{\text {del }}=P_{a b s}=48$ watts. Tellegen's Theorem is satisfied.
41.

Sol: By KVL in first mesh

$$
\begin{aligned}
& \Rightarrow \mathrm{V}_{\mathrm{x}}-6+6-12=0 \\
& \mathrm{~V}_{\mathrm{x}}=12 \mathrm{~V} \\
& \mathrm{P}_{12 \mathrm{v}}=(12 \times 9)=108 \text { watts delivered }
\end{aligned}
$$

$\mathrm{P}_{4 \Omega}=(12 \times 3)=36$ watts - absorbed
$\mathrm{P}_{6 \mathrm{~V}}=(6 \times 6)=36$ watts - absorbed
$\mathrm{P}_{6 \mathrm{~V}}=(6 \times 6)=36$ watts - delivered
$P_{2 \Omega}=(12 \times 6)=72$ watts - absorbed
Since $P_{\text {del }}=P_{\text {abs; }}$ Tellegen's theorem is satisfied.
42.

Sol:

By Nodal \Rightarrow
$\frac{\mathrm{V}}{3}-4+\frac{\mathrm{V}}{2}+\frac{4 \mathrm{~V}_{3}}{2}=0$
$\frac{5 \mathrm{~V}}{6}=4-2 \mathrm{~V}_{3}$
By KVL \Rightarrow
$\mathrm{V}_{3}-2 \mathrm{I}+4 \mathrm{~V}_{3}=0$
$5 \mathrm{~V}_{3}-2 \mathrm{I}=0$
By KVL \Rightarrow
$\mathrm{V}=\mathrm{V}_{3}$
Substitute (3) in (1), we get
$\mathrm{V}_{3}=\frac{24}{17}$
$\mathrm{V}_{3}=\frac{24}{17}$ Volt and $\mathrm{I}=\frac{60}{17} \mathrm{~A}$
$\mathrm{P}_{3 \Omega}=0.663 \mathrm{~W}$ absorbed
$\mathrm{P}_{4 \Omega}=64 \mathrm{~W}$ absorbed
$\mathrm{P}_{4 \mathrm{~A}}=69.64 \mathrm{~W}$ delivered
$\mathrm{P}_{2 \Omega}=24.91 \mathrm{~W}$ absorbed
$\mathrm{P}_{4 \mathrm{~V} 3}=19.92 \mathrm{~W}$ delivered
Since $P_{\text {del }}=P_{\text {abs }}=89.57 \mathrm{~W}$; Tellegen's
Theorem is satisfied.

2. Circuit Theorems

01.

Sol: The current "I" = ?

By superposition theorem, treating one independent source at a time.
(a) When 1A current source is acting alone.

Since the bridge is balanced; $\mathrm{I}_{1}=0 \mathrm{~A}$
(b) When 1 V voltage source is acting alone

$$
\mathrm{I}_{2}=0 \mathrm{~A}
$$

Since the bridge is balanced.
(c) When 2 V voltage source is acting alone

$$
\mathrm{I}_{3}=\frac{2}{3}=0.66 \mathrm{~A}
$$

By superposition theorem; $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$
$\mathrm{I}=0+0+0.66 \mathrm{~A}$
$\mathrm{I}=0.66 \mathrm{~A}$
02.

Sol:

$\mathrm{i}_{\mathrm{x}}=$?
By super position theorem; treating only one independent source at a time
(a) When 10 V voltage source is acting alone

By KVL \Rightarrow
$10-2 \mathrm{ix}_{1}-\mathrm{i}_{\mathrm{x} 1}-2 \mathrm{i}_{\mathrm{x} 1}=0$
$\mathrm{i}_{\mathrm{x} 1}=2 \mathrm{~A}$
(b) When 3A current source is acting alone

By Nodal \Rightarrow
$\frac{\mathrm{V}}{2}-3+\frac{\left(\mathrm{V}-2 \mathrm{i}_{\mathrm{x} 2}\right)}{1}=0$
$3 \mathrm{~V}-4 \mathrm{i}_{\mathrm{x} 2}=6$
And
$\mathrm{i}_{\mathrm{x} 2}=\frac{0-\mathrm{V}}{2} \Rightarrow \mathrm{~V}=-2 \mathrm{i}_{\mathrm{x} 2} \ldots$.
Put (2) in (1), we get
$\mathrm{i}_{\mathrm{x} 2}=-\frac{3}{5} \mathrm{~A}$
By SPT ;
$\mathrm{i}_{\mathrm{x}}=\mathrm{i}_{\mathrm{x} 1}+\mathrm{i}_{\mathrm{x} 2}=2-\frac{3}{5}=\frac{7}{5}$
$\therefore \mathrm{i}_{\mathrm{x}}=1.4 \mathrm{~A}$

03
Sol:

$$
\mathrm{R}_{1} \mathrm{i}=3 \mathrm{~A}
$$

$\mathrm{P}_{\mathrm{R}_{3}}=60 \mathrm{~W}$
For $120 \mathrm{~V} \rightarrow \mathrm{i}_{1}=3 \mathrm{~A}$
For $105 \mathrm{~V} \rightarrow \mathrm{i}_{1}=\frac{105}{120} \times 3=2.625 \mathrm{~A}$
For $120 \mathrm{~V} \rightarrow \mathrm{~V}_{2}=50 \mathrm{~V}$
For $105 \mathrm{~V} \rightarrow \mathrm{~V}_{2}=\frac{105}{120} \times 50=43.75 \mathrm{~V}$
$V_{2}=120 \mathrm{~V} \Rightarrow \mathrm{I}^{2} \mathrm{R}_{3}=60 \mathrm{~W} \Rightarrow \mathrm{I}=\sqrt{\frac{60}{\mathrm{R}_{3}}}$
For $\mathrm{V}_{\mathrm{S}}=105 \mathrm{~V}$
$\mathrm{P}_{3}=\left(\frac{105}{120} \sqrt{\frac{60}{\mathrm{R}_{3}}}\right)^{2} \times \mathrm{R}_{3}=45.9 \mathrm{~W}$

04. Ans: (b)

Sol: It is a liner network
$\therefore \mathrm{V}_{\mathrm{x}}$ can be assumed as function of $\mathrm{i}_{\mathrm{s} 1}$ and $\mathrm{i}_{\mathrm{s} 2}$
$\mathrm{V}_{\mathrm{x}}=\mathrm{Ai}_{\mathrm{s}_{1}}+\mathrm{Bi}_{\mathrm{s}_{2}}$
$80=8 \mathrm{~A}+12 \mathrm{~B} \rightarrow(1)$
$0=-8 \mathrm{~A}+4 \mathrm{~B} \quad \rightarrow(2)$
From equation $1 \& 2$
$\mathrm{A}=2.5$: $\mathrm{B}=5$
Now, $\mathrm{V}_{\mathrm{X}}=(2.5)(20)+(5)(20)$
$\mathrm{V}_{\mathrm{x}}=150 \mathrm{~V}$

05. Ans: (c)

Sol:

For finding Norton's equivalent resistance independent voltage sources to be short circuited and independent current sources to be open circuited, then the above circuit becomes

06. Ans: (b)

Sol:

Excite with a voltage source ' V '

Apply KCL at node V_{1}
$-I+\frac{V_{1}}{1}+\frac{V_{1}-V_{2}}{1}$
$\Rightarrow 2 \mathrm{~V}_{1}-\mathrm{V}_{2}-\mathrm{I}=0$
Apply KCL at node V_{2}

$$
\begin{align*}
& \frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{1}+\frac{\mathrm{V}_{2}}{1}+2 \mathrm{~V}_{\mathrm{x}}=0 \\
& 2 \mathrm{~V}_{2}-\mathrm{V}_{1}+2 \mathrm{~V}_{\mathrm{x}}=0 \ldots \ldots \tag{2}
\end{align*}
$$

But from the circuit,
$\mathrm{V}_{\mathrm{x}}=2 \mathrm{I} \ldots \ldots$.
Substitute (3) in (2)
$\Rightarrow 2 \mathrm{~V}_{2}-\mathrm{V}_{1}+4 \mathrm{I}=0$
$4 \mathrm{~V}_{2}-2 \mathrm{~V}_{1}+8 \mathrm{I}=0$
From (1),
$2 \mathrm{~V}_{1}=\mathrm{V}_{2}+\mathrm{I}$
$\therefore 4 \mathrm{~V}_{2}-\left(\mathrm{V}_{2}+\mathrm{I}\right)+8 \mathrm{I}=0$
$\Rightarrow 3 \mathrm{~V}_{2}+7 \mathrm{I}=0$
$\Rightarrow V_{2}=-\frac{7 \mathrm{I}}{3}$
Substitute (2) in (1)

$$
2 \mathrm{~V}_{1}-\left(-\frac{7 \mathrm{I}}{3}\right)-\mathrm{I}=0
$$

$$
\begin{aligned}
& 2 \mathrm{~V}_{1}+\frac{7}{3} \mathrm{I}-\mathrm{I}=0 \Rightarrow 2 \mathrm{~V}_{1}=\frac{-4 \mathrm{I}}{3} \\
& \Rightarrow \mathrm{~V}_{1}=\frac{-2 \mathrm{I}}{3} \\
& \therefore \mathrm{~V}=\mathrm{V}_{\mathrm{x}}+\mathrm{V}_{1}=2 \mathrm{I}+\left(-\frac{2 \mathrm{I}}{3}\right) \\
& =\frac{4 \mathrm{I}}{3} \\
& \Rightarrow \mathrm{~V}=\frac{4 \mathrm{I}}{3} \\
& \Rightarrow \frac{\mathrm{~V}}{\mathrm{I}}=\frac{4}{3} \Omega \Rightarrow \mathrm{R}_{\mathrm{eq}}=\frac{4}{3} \Omega
\end{aligned}
$$

7.

Sol:

Here $\mathrm{j} 1 \Omega$ and $-\mathrm{j} 1 \Omega$ combination will act as open circuit.
The circuit becomes

$\Rightarrow \mathrm{V}_{\mathrm{th}}=\frac{100 \angle 0^{\circ} \times \mathrm{j} 4}{3+\mathrm{j} 4}$

$$
=80 \angle 36.86^{\circ} \mathrm{V}
$$

8.

Sol: Thevenin's and Norton's equivalents across a, b.

By Nodal \Rightarrow
$\frac{\mathrm{V}}{5}-10+\frac{\mathrm{V}}{5}-\frac{\mathrm{V}_{\text {th }}}{5}=0$
$\frac{\mathrm{V}_{\text {th }}}{5}-\frac{\mathrm{V}}{5}-\frac{\mathrm{V}_{\mathrm{x}}}{4}=0$
$\frac{2 \mathrm{~V}}{5}=\left(10+\frac{\mathrm{V}_{\mathrm{th}}}{5}\right)$
$\frac{\mathrm{V}_{\text {th }}}{5}=\left(\frac{\mathrm{V}}{10}+\frac{\mathrm{V}}{5}\right)$
$\mathrm{V}_{\mathrm{x}}=\left(\frac{2 \mathrm{~V}}{5}\right)$
$\mathrm{V}_{\text {th }}=150 \mathrm{~V}, \mathrm{~V}=100 \mathrm{~V}$

$$
\begin{aligned}
& \frac{\mathrm{V}}{5}-10+\frac{\mathrm{V}}{5}=0 \\
& \frac{2 \mathrm{~V}}{5}=10 \\
& \mathrm{~V}=25 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{x}}=\frac{2 \mathrm{~V}}{5}=\frac{2 \times 25}{5} \\
& \mathrm{~V}_{\mathrm{x}}=10 \mathrm{~V}
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{SC}}=\left(\frac{10}{4}+5\right)=\frac{15}{2} \mathrm{~A}
$$

$$
\mathrm{I}_{\mathrm{SC}}=\frac{15}{2} \mathrm{~A}
$$

$$
\mathrm{R}_{\mathrm{th}}=\frac{\mathrm{V}_{\mathrm{th}}}{\mathrm{I}_{\mathrm{SC}}}=\frac{150}{\frac{15}{2}}=20 \Omega
$$

09.

Sol:

Super nodal equation
$\Rightarrow \mathrm{i}_{\mathrm{a}}-0.2 \mathrm{i}_{\mathrm{b}}+\mathrm{i}_{\mathrm{b}}-\mathrm{I}=0$
$\mathrm{I}=\mathrm{i}_{\mathrm{a}}+0.8 \mathrm{i}_{\mathrm{b}}$
$\mathrm{V}=80 \mathrm{i}_{\mathrm{b}} ; \mathrm{i}_{\mathrm{b}}=\frac{\mathrm{V}}{80}$

- Inside the supernode, always the KVL is written.
By KVL \Rightarrow
$100 \mathrm{i}_{\mathrm{a}}+2 \mathrm{i}_{\mathrm{a}}-80 \mathrm{i}_{\mathrm{b}}=0$
$\mathrm{I}=\frac{\mathrm{V}}{102}+\frac{0.8 \times \mathrm{V}}{80}$
$\frac{\mathrm{V}}{\mathrm{I}}=\mathrm{R}_{\mathrm{L}}=\frac{1}{\frac{1}{102}+\frac{1}{100}}=50.5 \Omega$.
$R_{L}=50.5 \Omega$

10.

Sol: V_{th} :

By Nodal \Rightarrow
$\frac{V_{\text {th }}}{(6+j 8)}-\frac{110 \angle 0^{0}}{(6+j 8)}+\frac{V_{\text {th }}}{(6+j 8)}-\frac{90 \angle 0^{0}}{(6+j 8)}=0$
$2 \mathrm{~V}_{\text {th }}=200 \angle 0^{0} \Rightarrow \mathrm{~V}_{\text {th }}=100 \angle 0^{0}$.
\mathbf{R}_{th} :

$\mathrm{R}_{\mathrm{th}}=(6+\mathrm{j} 8) \|(6+\mathrm{j} 8) \equiv(3+\mathrm{j} 4) \Omega$

$$
\begin{aligned}
& R_{L}=|3+\mathrm{j} 4|=5 \Omega \\
& \mathrm{I}=\frac{100 \angle 0^{0}}{(8+\mathrm{j} 4)} \\
& \mathrm{P}=|\mathrm{I}|^{2} \times \mathrm{R}_{\mathrm{L}} \\
& \mathrm{P}_{\max }=125 \times 5=625 \mathrm{~W} \\
& \therefore P_{\max }=625 \text { Watts }
\end{aligned}
$$

11.

Sol:

The maximum power delivered to " R_{L} " is
$R_{L}=\sqrt{R_{S}^{2}+\left(X_{S}+X_{L}\right)^{2}}$
Here $\mathrm{R}_{\mathrm{S}}=10 \Omega ; \mathrm{X}_{\mathrm{S}}=10 \Omega \& \mathrm{X}_{\mathrm{L}}=-15$
$\mathrm{R}_{\mathrm{L}}=\sqrt{10^{2}+(10-15)^{2}}$
$\mathrm{R}_{\mathrm{L}}=5 \sqrt{5} \Omega$.
$I=\frac{100 \angle 0^{0}}{(10+\mathrm{j} 10-\mathrm{j} 15+5 \sqrt{5})}$
$P_{\max }=|I|^{2} \cdot 5 \sqrt{5}=236 \mathrm{~W}$
12.

Sol:

The maximum power delivered to 10Ω load resistor is:
$\mathrm{Z}_{\mathrm{L}}=10-\mathrm{j} \mathrm{X}_{\mathrm{C}}=10+\mathrm{j}\left(-\mathrm{X}_{\mathrm{C}}\right)$
$X_{L}=-X_{C}$
So for MPT; $\left(\mathrm{X}_{\mathrm{S}}+\mathrm{X}_{\mathrm{L}}\right)=0$
$10-\mathrm{X}_{\mathrm{C}}=0$;
$\mathrm{X}_{\mathrm{C}}=10$
$I=\frac{100 \angle 0^{0}}{(10+\mathrm{j} 10-\mathrm{j} 10+10)}=5 \angle 0^{0}$
$P_{\text {max }}=|I|^{2} \mathrm{R}_{\mathrm{L}}=5^{2}(10)=250 \mathrm{~W}$
$P_{\text {max }}=250$ Watts
13. Ans: (b)

Sol:

For maximum power delivered to Z_{L},

$$
\mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{th}}^{*}
$$

$$
\mathrm{i}_{\mathrm{x}}=\left(1+\mathrm{V}_{0}\right) \times \frac{-\mathrm{j} 1}{1-\mathrm{j} 1}=\left(1+\mathrm{V}_{0}\right)(0.5-\mathrm{j} 0.5)
$$

But

$$
\begin{aligned}
& V_{0}=-i_{x} \\
& =-\left(1+V_{0}\right)(0.5-j 0.5) \\
& (-1-j) V_{0}=1+V_{0} \\
& \Rightarrow V_{0}(-1-j-1)=1 \\
& V_{0}=\frac{1}{-2-j}=-0.4+j 0.2
\end{aligned}
$$

Applying KVL
$+\mathrm{V}_{0}-\mathrm{j}\left(1+\mathrm{V}_{0}\right)+\mathrm{V}=0$
$\Rightarrow \mathrm{V}=-\mathrm{V}_{0}+\mathrm{j} 1\left(1+\mathrm{V}_{0}\right)$
$=0.4-\mathrm{j} 0.2+\mathrm{j} 1(0.6+\mathrm{j} 0.2)$
$\mathrm{V}=(0.2+\mathrm{j} 0.4) \mathrm{V}$
$\therefore \mathrm{Z}_{\text {th }}=\frac{\mathrm{V}}{1}=\mathrm{V}=(0.2+\mathrm{j} 0.4) \Omega$
$\therefore \mathrm{Z}_{\mathrm{L}}=\mathrm{Z}_{\mathrm{th}}^{*}=(0.2-\mathrm{j} 0.4) \Omega$
14.

Sol:

The maximum true power delivered to " Z_{L} " is :

$$
\begin{aligned}
& V_{\text {th }}=\left(\frac{50 \angle 0^{0}}{-j 5+j 5+5}\right)(j 5+5)=50 \sqrt{2} \angle 45^{0} \\
& Z_{\text {th }}=(-j 5) \|(5+j 5)=(5-j 5) \Omega
\end{aligned}
$$

$I=\frac{50 \sqrt{2} \angle 45^{0}}{(5-j 5+5+j 5)}=5 \sqrt{2} \angle 45^{0}$
$\mathrm{P}=|\mathrm{I}|^{2} 5=|5 \sqrt{2}|^{2} .5=250$ Watts
$\therefore \mathrm{P}_{\text {max }}=250$ Watts

15. Ans: (c)

Sol:

Maximum power will occurs when $R=R_{s}$

$$
\Rightarrow \mathrm{R}=1 \Omega
$$

$$
\begin{aligned}
& \therefore \mathrm{P}_{\max }=\left(\frac{1}{2}\right)^{2} \times 1=\frac{1}{4} \mathrm{~W} \\
& 25 \% \text { of } \mathrm{P}_{\max }=\frac{1}{4} \times \frac{1}{4}=\frac{1}{16} \mathrm{~W}
\end{aligned}
$$

current passing through ' R '

$$
I=1 \times \frac{1}{1+R}=\frac{1}{1+R}
$$

$$
\therefore \mathrm{P}=\mathrm{I}^{2} \mathrm{R}=\left(\frac{1}{1+\mathrm{R}}\right)^{2} \mathrm{R}=\frac{1}{16}
$$

$$
\Rightarrow(\mathrm{R}+1)^{2}=16 \mathrm{R}
$$

$$
\Rightarrow R^{2}+2 R+1=16 R
$$

$$
\Rightarrow R^{2}-14 \mathrm{R}+1=0
$$

$\mathrm{R}=13.9282 \Omega$ or 0.072Ω
From the given options $72 \mathrm{~m} \Omega$ is correct
16.

Sol: For, $\mathrm{E}=1 \mathrm{~V}, \mathrm{I}=0 \mathrm{~A}$ then $\mathrm{V}=3 \mathrm{~V}$

Fig.(b)
$\mathrm{V}_{\text {oc }}=3 \mathrm{~V}$ (with respect to terminals a and b)
For, $\mathrm{E}=0 \mathrm{~V}, \mathrm{I}=2 \mathrm{~A}$ then $\mathrm{V}=2 \mathrm{~V}$

Fig.(c)
Now when $E=10 \mathrm{~V}$, and I is replaced by $\mathrm{R}=2 \Omega$ then $\mathrm{V}=$?

When $\mathrm{E}=10 \mathrm{~V}$,
From Fig.(b) using homogeneity principle

For finding Thevenin's resistance across ab independent voltage sources to be short circuited \& independent current sources to be open circuited.

Fig.(d)

Fig.(c) is the energized version of Fig. (d)

$$
\Rightarrow \mathrm{R}_{\mathrm{th}}=\frac{2}{2}=1 \Omega
$$

\therefore with respect to terminals a and b the Thevenin's equivalent becomes.

$\mathrm{V}=30 \times \frac{2}{2+1}=20 \mathrm{~V}$
$\therefore \mathrm{V}=20 \mathrm{~V}$
17.

Sol: Superposition theorem cannot be applied to fig (b)

Since there is only voltage source given:

Fig (c)
By homogeneity and Reciprocity principles to fig (a);
$\mathrm{I}_{\mathrm{SC}}=6 \mathrm{~A}$
For R_{th} :

Statement: Fig (a) is the energized version of figure (d)

Fig (a)
$10=\left.\mathrm{R}_{\text {th }} .5\right|_{\text {by ohm'slaw }}$
$\mathrm{R}_{\mathrm{th}}=2 \Omega$.

Fig (b)

$$
\begin{aligned}
& I=\frac{6 \times 2}{(2+1)}=4 A \\
& I=4 A
\end{aligned}
$$

18. Ans: (b)

Sol: $\left[\begin{array}{c}10 \\ 4\end{array}\right]=\left[\begin{array}{ll}Z_{11} & Z_{12} \\ Z_{21} & Z_{22}\end{array}\right]\left[\begin{array}{l}4 \\ 0\end{array}\right]$
$10=\mathrm{Z}_{11}(4)+\mathrm{Z}_{12}(0)$
$4=Z_{21}(4)+Z_{22}(0)$

$\mathrm{Z}_{11}=\frac{10}{4}=2.5$
$Z_{21}=\frac{4}{4}=1$
$I_{5 \Omega}=\frac{6 \times 1}{6.5+1}=\frac{6}{7.5}=0.8 \mathrm{~A}$
19. Ans: (b)

Sol:

Fig.(a)

Fig.(b)

Using reciprocity theorem, for Fig.(a)

Norton's resistance between a and b is

Fig.(a) is the energized version of Fig.(d)

$\Rightarrow \mathrm{R}_{\mathrm{N}}=\frac{20}{4}=5 \Omega$
With respect to terminals a and b the Norton's equivalent of Fig.(b) is

\therefore From Fig.(b)

$$
\Rightarrow \mathrm{V}=-15 \mathrm{~V}
$$

20.

$\mathrm{P}_{\mathrm{AB}}=\mathrm{P}_{5 \Omega}=\mathrm{P}_{25 \mathrm{~V}}=\mathrm{P}_{5 \mathrm{~A}}=5^{*} 25=125$ watts
(ABSORBED)
21.

Sol:

By Mill Man's theorem;

$$
\begin{aligned}
\mathrm{V}^{\prime} & =\frac{\mathrm{V}_{1} \mathrm{G}_{1}+\mathrm{V}_{2} \mathrm{G}_{2}+\mathrm{V}_{3} \mathrm{G}_{3}}{\mathrm{G}_{1}+\mathrm{G}_{2}+\mathrm{G}_{3}} \\
& \equiv \frac{\frac{4}{2}-\frac{12}{2}+\frac{2}{1}}{\left(\frac{1}{2}+\frac{1}{2}+1\right)}=\frac{4-12+4}{2 * 2} \equiv-1 \mathrm{~V}
\end{aligned}
$$

$\therefore \mathrm{V}^{\prime}=-1 \mathrm{~V}$
$\frac{1}{\mathrm{R}^{1}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}=\frac{1}{2}+\frac{1}{2}+1=2$
$\therefore \mathrm{R}^{1}=\frac{1}{2} \Omega$

$$
I=\frac{-1}{\left(\frac{1}{2}+3\right)} \Rightarrow I=\frac{-2}{7} A
$$

22. Ans: (d)

Sol:

Since the two different frequencies are operating on the network simultaneously; always the super position theorem is used to evaluate the responses since the reactive elements are frequency sensitive
i.e., $Z_{L}=j \omega L$ and $Z_{C}=\frac{1}{j \omega c} \Omega$.
24.

Sol:

25.

Sol:

Nodal equations
$\mathrm{i}=\mathrm{GV}$
$\mathrm{i}_{\mathrm{x}}=\mathrm{i}_{1}$
$10=2 i_{1}+3\left(i_{1}-i_{2}\right)$
$0=4 i_{2}+2 \mathrm{i}_{\mathrm{x}}+3\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right)$
$\mathrm{V}_{\mathrm{x}}=\mathrm{V}_{1}$
$10=2 \mathrm{~V}_{1}-3\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right)$
$0=4 \mathrm{~V}_{2}+2 \mathrm{~V}_{\mathrm{x}}+3\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right)$

23.

Sol: In the above case if both the source are $100 \mathrm{rad} / \mathrm{sec}$, each then Millman's theorem is more conveniently used.

3. Transient Circuit Analysis

1.

$i(t)=e^{-3 t} A$ for $t>0$ (given)
Determine the elements \& their connection
$\frac{\text { Re sponse Laplace transform }}{\text { Excitation Laplace transform }}=$ System
transfer function

$$
\begin{aligned}
& \text { i.e., } \begin{array}{l}
\frac{\mathrm{I}(\mathrm{~s})}{\mathrm{V}(\mathrm{~s})}=\mathrm{H}(\mathrm{~s})=\frac{\frac{1}{(\mathrm{~s}+3)}}{\frac{1}{\mathrm{~s}}} \\
=\frac{\mathrm{s}}{(\mathrm{~s}+3)}=\mathrm{y}(\mathrm{~s})=\frac{1}{\mathrm{Z}(\mathrm{~s})} \\
\begin{aligned}
\therefore \mathrm{Z}(\mathrm{~s})= & \left(\frac{\mathrm{s}+3}{\mathrm{~s}}\right) \\
= & 1+\frac{1}{\mathrm{~s}\left(\frac{1}{3}\right)}=\mathrm{R}+\frac{1}{\mathrm{SC}}
\end{aligned}
\end{array} \text { }
\end{aligned}
$$

$\therefore \mathrm{R}=1 \Omega$ and $\mathrm{C}=\frac{1}{3} \mathrm{~F}$ are in series

02. Ans: (c)

Sol: The impulse response of first order system is $\mathrm{Ke}^{-2 \mathrm{t}}$.
So $\mathrm{T} / \mathrm{F}=\mathrm{L}(\mathrm{I} . \mathrm{R})=\frac{\mathrm{K}}{\mathrm{s}+2}$

$G(s)=\frac{K}{s+2}$
$|G(j \omega)|=\frac{K}{\sqrt{\omega^{2}+2^{2}}}=\frac{K}{2 \sqrt{2}}$
$\angle \mathrm{G}(\mathrm{j} \omega)=-\tan ^{-1} \frac{\omega}{2}=-\tan ^{-1} 1=-\frac{\pi}{4}$
So steady state response will be
$\mathrm{y}(\mathrm{t})=\frac{\mathrm{K}}{2 \sqrt{2}} \sin \left(2 \mathrm{t}-\frac{\pi}{4}\right)$
03.

Sol:

By $\mathrm{KVL} \Rightarrow \mathrm{v}(\mathrm{t})=(5+10$ sint $)$ volt
Evaluating the system transfer function $\mathrm{H}(\mathrm{s})$.
$\frac{\text { Desired response L.T }}{\text { Excitation }}=$ System transfer function
Excitation response L.T
$\frac{\mathrm{I}(\mathrm{s})}{\mathrm{V}(\mathrm{s})}=\mathrm{H}(\mathrm{s})=\mathrm{Y}(\mathrm{s})=\frac{1}{\mathrm{Z}(\mathrm{s})}=\frac{1}{\left(\mathrm{R}+\mathrm{SL}+\frac{1}{\mathrm{SC}}\right)}$
$H(s)=\frac{s}{\left(2 s^{2}+s+1\right)}$
$H(j \omega)=\frac{1}{\left(1+\frac{1}{j \omega}+2 j \omega\right)}$
II. Evaluating at corresponding ω_{s} of the input

$$
\left.\mathrm{H}(\mathrm{j} \omega)\right|_{\omega=0}=0
$$

$$
\left.\mathrm{H}(\mathrm{j} \omega)\right|_{\omega=1}=\frac{1}{\sqrt{2}} \angle-45^{\circ}
$$

III. $\frac{\mathrm{I}(\mathrm{s})}{\mathrm{V}(\mathrm{s})}=\mathrm{H}(\mathrm{s})$

$$
\begin{aligned}
& \mathrm{I}(\mathrm{~s})=\mathrm{H}(\mathrm{~s}) \mathrm{V}(\mathrm{~s}) \\
& \mathrm{i}(\mathrm{t})=0 \times 5+\frac{1}{\sqrt{2}} \times 10 \sin \left(\mathrm{t}-45^{\circ}\right) \\
& \mathrm{i}(\mathrm{t})=7.07 \sin \left(\mathrm{t}-45^{\circ}\right) \mathrm{A}
\end{aligned}
$$

OBS: DC is blocked by capacitor in steady state
04.

Sol: $\frac{\mathrm{V}(\mathrm{s})}{\mathrm{I}(\mathrm{s})}=\mathrm{H}(\mathrm{s})=\mathrm{Z}(\mathrm{s})=\frac{1}{\mathrm{Y}(\mathrm{s})}=\frac{1}{\left(\frac{1}{\mathrm{R}}+\frac{1}{\mathrm{sL}}+\mathrm{sC}\right)}$

$$
\mathrm{H}(\mathrm{~s})=\frac{1}{\left(1+\frac{1}{s}+\mathrm{s}\right)}
$$

$\left.H(j \omega)\right|_{\omega=1}=\frac{1}{\left(1+\frac{1}{j}+j\right)}=1$
$\mathrm{V}(\mathrm{s})=\mathrm{I}(\mathrm{s}) \mathrm{H}(\mathrm{s})=\sin \mathrm{t}$
$v(t)=\sin t$ Volts
05.

Sol: $\tau=\frac{L_{\text {eq }}}{\mathrm{R}_{\mathrm{eq}}}$
R_{eq} :

$\mathrm{R}_{\mathrm{eq}}=(2 \| 2)+9=10 \Omega$
L_{eq} :

$\mathrm{L}_{\mathrm{eq}}=(2 \| 2)+1=2 \mathrm{H}$
$\therefore \tau=\frac{\mathrm{L}_{\mathrm{eq}}}{\mathrm{R}_{\mathrm{eq}}}=\frac{2}{10}=0.2 \mathrm{sec}$
06.

Sol: $\tau=\mathrm{R}_{\mathrm{eq}} \mathrm{C}_{\mathrm{eq}}$

$\mathrm{R}_{\mathrm{eq}}=3 \Omega$
C_{eq} :

$\mathrm{C}_{\mathrm{eq}}=1 \mathrm{~F}$
$\therefore \tau=3 \times 1=3 \mathrm{sec}$
07.

Sol: $\tau=\mathrm{R}_{\mathrm{eq}} \mathrm{C}$

$\mathrm{R}_{\mathrm{eq}}=3 \Omega$
$\therefore \tau=3 \times 1=3 \mathrm{sec}$
08.

Sol: Let us assume that switch is closed at $\mathrm{t}=-\infty$, now we are at $\mathrm{t}=0^{-}$instant, still the switch is closed i.e., an infinite amount of time, the independent dc source is connected to the network and hence it is said to be in steady state.
In steady state, the inductor acts as short circuit and nature of the circuit is resistive.

ㅍ

At $t=0^{-}$: Steady state: A resistive circuit
Note: The number of initial conditions to be evaluated at just before the switching action is equal to the number of memory elements present in the network.
(i) $\mathrm{t}=0^{-}$

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=2=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right) \\
& \mathrm{E}_{\mathrm{L}}\left(0^{-}\right)=\frac{1}{2} \mathrm{Li}_{\mathrm{L}}^{2}\left(0^{-}\right)
\end{aligned}
$$

$$
=\frac{1}{2} \times 4 \times 2^{2}=8 \mathrm{~J}=\mathrm{E}_{\mathrm{L}}\left(0^{+}\right)
$$

For $\mathrm{t} \geq 0$

For $\mathrm{t} \geq 0$: Source free circuit

$$
\begin{aligned}
& I_{0}=2 \mathrm{~A} ; \tau=\frac{\mathrm{L}}{\mathrm{R}}=\frac{4}{20}=\frac{1}{5} \sec \\
& i_{L}=2 \mathrm{e}^{-5 t} \text { for } 0 \leq t \leq \infty \\
& V_{L}=L \frac{d i_{L}}{d t}=-40 e^{-5 t} V \text { for } 0 \leq t \leq \infty
\end{aligned}
$$

$\mathrm{t}=5 \tau=5 \times \frac{1}{5}=1 \mathrm{sec}$ for steady state practically i.e., with in 1 sec the total 8 J stored in the inductor will be delivered to the resistor.

For $\mathrm{t} \geq 0$

At $t=0^{+}$: Resistive circuit :
Network is in transient state

By KCL:

$-2+\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=0$
$\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=2 \mathrm{~A}$
$\mathrm{V}\left(0^{+}\right)=\left.\mathrm{R} \mathrm{i}_{\mathrm{L}}\left(0^{+}\right)\right|_{\text {By Ohm's law }}$
$\mathrm{V}\left(0^{+}\right)=20(2)=40 \mathrm{~V}$
By KVL:
$\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)+\mathrm{V}\left(0^{+}\right)=0$
$\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)=-\mathrm{V}\left(0^{+}\right)=-40 \mathrm{~V}=\left.\mathrm{V}_{\mathrm{L}}(\mathrm{t})\right|_{\mathrm{t}=0^{+}}$

Observations:

$$
\begin{array}{ll}
\mathrm{t}=0^{-} & \mathrm{t}=0^{+} \\
\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=2 \mathrm{~A} & \mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=2 \mathrm{~A} \\
\mathrm{i}_{20 \Omega}\left(0^{-}\right)=0 \mathrm{~A} & \mathrm{i}_{20 \Omega}\left(0^{+}\right)=2 \mathrm{~A}
\end{array}
$$

$\mathrm{V}_{20 \Omega}\left(0^{-}\right)=0 \mathrm{~V} \quad \mathrm{~V}_{20 \Omega}\left(0^{+}\right)=40 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}\left(0^{-}\right)=0 \mathrm{~V} \quad \mathrm{~V}_{\mathrm{L}}\left(0^{+}\right)=-40 \mathrm{~V}$

Conclusion:

To keep the same energy as $t=0^{-}$and to protect the KCL and KVL in the circuit (i.e., to ensure the stability of the network), the inductor voltage, the resistor current and its voltage can change instantaneously i.e., within zero time at $t=0^{+}$.
(2)

For $\mathrm{t} \geq 0$

$$
\begin{aligned}
& i_{L}(t)=2 e^{-5 t} A \text { for } 0 \leq t \leq \infty \\
& V_{L}(t)=-40 e^{-5 t} V \text { for } 0 \leq t \leq \infty
\end{aligned}
$$

Conclusion:

For all the source free circuits, $\mathrm{V}_{\mathrm{L}}(\mathrm{t})=-\mathrm{ve}$ for $\mathrm{t} \geq 0$, since the inductor while acting as a temporary source (upto 5τ), it discharges from positive terminal i.e., the current will flow from negative to positive terminals. (This is the must condition required for delivery, by Tellegan's theorem)
(3) $\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)=-40 \mathrm{~V}$
$\left.\mathrm{V}_{\mathrm{L}}(\mathrm{t})\right|_{\mathrm{t}=0^{+}}=-40 \mathrm{~V}$
$\left.L \frac{d i_{L}(t)}{d t}\right|_{t=0^{+}}=-40$
$\left.\frac{d i_{L}(t)}{d t}\right|_{t=0^{+}}=-\frac{40}{L}=-\frac{40}{4}=-10 \mathrm{~A} / \mathrm{sec}$

Check :

$$
\begin{aligned}
& i_{L}(t)=2 e^{-5 t} A \text { for } 0 \leq t \leq \infty \\
& \frac{d i_{L}(t)}{d t}=-10 e^{-5 t} A / s e c \text { for } 0 \leq t \leq \infty \\
& \left.\frac{d i_{L}(t)}{d t}\right|_{t=0^{+}}=-10 \mathrm{~A} / \sec
\end{aligned}
$$

9.

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=2.4 \mathrm{~A} \\
& \mathrm{~V}\left(0^{+}\right)=-96 \mathrm{~V} \\
& \mathrm{i}_{\mathrm{L}}(\mathrm{t})=2.4 \mathrm{e}^{-10 \mathrm{t}} \mathrm{~A} \text { for } 0 \leq \mathrm{t} \leq \infty
\end{aligned}
$$

10.

Sol:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}\left(0^{+}\right)=50 \mathrm{~V} ; \mathrm{i}\left(0^{+}\right)=62.5 \mathrm{~mA} \\
& \mathrm{~V}_{\mathrm{C}}(\mathrm{t})=50 \mathrm{e}^{-\frac{\mathrm{t}}{1.6 \times 10^{-3}}} \mathrm{~V} \text { for } \mathrm{t} \geq 0 \\
& \mathrm{i}_{\mathrm{C}}=\left.\mathrm{C} \frac{\mathrm{~d}_{\mathrm{C}}}{\mathrm{dt}}\right|_{\text {By Ohm's law }} \\
& \quad=2 \times 10^{-6} 50 \mathrm{e}^{-\frac{\mathrm{t}}{1.6 \times 10^{-3}}} \times \frac{-1}{1.6 \times 10^{-3}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{100 \times 10^{-6}}{1.6 \times 10^{-3}} \\
& =\frac{1}{16}
\end{aligned}
$$

11.

Sol: Case (i): $\mathrm{t}<0$

$$
\mathrm{V}_{\mathrm{C}}\left(0^{-}\right)=20 \mathrm{~V} \& \mathrm{i}\left(0^{-}\right)=0.1 \mathrm{~A}
$$

\because Capacitor never allows sudden changes in voltages

$$
\mathrm{V}_{\mathrm{C}}\left(0^{-}\right)=\mathrm{V}_{\mathrm{C}}(0)=\mathrm{V}_{\mathrm{C}}\left(0^{+}\right)=20 \mathrm{~V}
$$

Case (ii): $t>0$

To find the time constant $\tau=\mathrm{R}_{\mathrm{eq}} \mathrm{C}$
After switch closed
$\mathrm{R}_{\text {eq }}=50 \Omega \mathrm{C}=20 \mu \mathrm{~F}$
$\mathrm{i}\left(0^{+}\right)=0 \mathrm{~A}$
$\tau=50 \times 20 \mu$
$\tau=1 \mathrm{msec}$
$\mathrm{V}_{\mathrm{C}}(\mathrm{t})=\mathrm{V}_{0} \mathrm{e}^{-\mathrm{t} / \tau}=20 \mathrm{e}^{-\mathrm{t} / \mathrm{m}}$
$V_{C}(t)=20 \mathrm{e}^{-\mathrm{t} / \mathrm{m}} \mathrm{V} ; \quad 0 \leq \mathrm{t} \leq \infty$
12.

Sol: After performing source transformation;

By KVL;

$5 \mathrm{i}_{\mathrm{L}}-30 \mathrm{i}_{\mathrm{L}}-5 \frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}}=0$
$\frac{d i_{\mathrm{L}}}{\mathrm{dt}}+5 \mathrm{i}_{\mathrm{L}}=0$
$(\mathrm{D}+5) \mathrm{i}_{\mathrm{L}}=0$
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{K} \mathrm{e}^{-5 \mathrm{t}} \mathrm{A}$ for $0 \leq \mathrm{t} \leq \infty$
$\tau=\frac{1}{5} \mathrm{sec}$
13.

Sol: $\mathrm{i}_{\mathrm{L}_{1}}(0)=10 \mathrm{~A} ; \mathrm{i}_{\mathrm{L}_{2}}(0)=2 \mathrm{~A}$
$\mathrm{i}_{\mathrm{L}_{1}}(\mathrm{t})=\mathrm{I}_{0} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}$
$\tau=\frac{\mathrm{L}}{\mathrm{R}}=\frac{1}{1}=1 \mathrm{sec}$
$\mathrm{i}_{\mathrm{L}_{1}}(\mathrm{t})=10 \mathrm{e}^{-\mathrm{t}} \mathrm{A}$
Similarly, $\mathrm{i}_{\mathrm{L}_{2}}(\mathrm{t})=\mathrm{I}_{0} \mathrm{e}^{-\frac{\mathrm{t}}{\tau}}$
$\tau=\frac{\mathrm{L}}{\mathrm{R}}=2 \mathrm{sec}$
$\mathrm{i}_{\mathrm{L}_{2}}(\mathrm{t})=20 \mathrm{e}^{-\frac{\mathrm{t}}{2}} \mathrm{~A}$
14.

Sol:

At $t=0^{-}$: Steady state: A resistive circuit
By Nodal:
$-6 \mathrm{~mA}+\frac{\mathrm{V}_{\mathrm{C}}\left(0^{-}\right)}{4 \mathrm{~K}}+\frac{\mathrm{V}_{\mathrm{C}}\left(0^{-}\right)}{2 \mathrm{~K}}=0$
$\mathrm{V}_{\mathrm{C}}\left(0^{-}\right)=8 \mathrm{~V}=\mathrm{V}_{\mathrm{C}}\left(0^{+}\right)$

For $\mathrm{t} \geq 0$: A source free circuit
$V_{s}=6 \mathrm{~m} \times 4 \mathrm{~K}=24 \mathrm{~V}$
$\tau=\mathrm{R}_{\mathrm{eq}} \mathrm{C}=(5 \mathrm{~K}) 2 \mu=10 \mathrm{~m} \mathrm{sec}$

$V_{C}=8 e^{-\frac{\mathrm{t}}{10 \mathrm{~m}}}=8 \mathrm{e}^{-100 \mathrm{t}} \mathrm{V}$ for $0 \leq \mathrm{t} \leq \infty$
$\mathrm{i}_{\mathrm{C}}=\left.\mathrm{C} \frac{\mathrm{dV}_{\mathrm{C}}}{\mathrm{dt}}\right|_{\text {By omms aw }}=-1.6 \mathrm{e}^{-100 \mathrm{t}} \mathrm{mA}$ for $0 \leq \mathrm{t} \leq \infty$
By KCL:
$\mathrm{i}_{\mathrm{C}}+\mathrm{i}_{\mathrm{R}}=0$
$\mathrm{i}_{\mathrm{R}}=-\mathrm{i}_{\mathrm{C}}=1.6 \mathrm{e}^{-100 \mathrm{t}} \mathrm{mA}$ for $0 \leq \mathrm{t} \leq \infty$

Observation:

In all the source free circuit, $i_{C}(t)=-v e$ for $\mathrm{t} \geq 0$ because the capacitor while acting as a temporary source it discharges from the +ve terminal i.e., current will flow from -ve to + ve terminals.
15.

Sol: By KCL:

$$
\begin{aligned}
& \mathrm{i}(\mathrm{t})=\mathrm{i}_{\mathrm{R}}(\mathrm{t})+\mathrm{i}_{\mathrm{L}}(\mathrm{t}) \\
&=\frac{\mathrm{V}_{\mathrm{R}}(\mathrm{t})}{\mathrm{R}}+\frac{1}{\mathrm{~L}} \int_{-\infty}^{\mathrm{t}} \mathrm{~V}_{\mathrm{L}}(\mathrm{t}) \mathrm{dt} \\
&=\frac{\mathrm{V}_{\mathrm{S}}(\mathrm{t})}{10}+\mathrm{i}_{\mathrm{L}}(0)+\frac{1}{\mathrm{~L}} \int_{0}^{\mathrm{t}} \mathrm{~V}_{\mathrm{S}}(\mathrm{t}) \mathrm{dt} \\
& \mathrm{i}(\mathrm{t})=4 \mathrm{t}+5+4 \mathrm{t}^{2} \\
&\left.\mathrm{i}(\mathrm{t})\right|_{\mathrm{t}}=2 \sec =8+16+5=29 \mathrm{~A}=29000 \mathrm{~mA}
\end{aligned}
$$

16. Ans: (c)
17.

Sol:

At $t=0^{-}$: steady state: A resistive circuit.
(i) $\mathrm{t}=0^{-}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{C}}\left(0^{-}\right)=20 \mathrm{~V}=\mathrm{V}_{\mathrm{C}}\left(0^{+}\right) \\
& \mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=\frac{20}{1 \mathrm{~K}}=20 \mathrm{~mA}=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right) \\
& \mathrm{i}_{\mathrm{L}} \downarrow{ }^{20.1 \mathrm{H}},
\end{aligned}
$$

For $\mathrm{t} \geq 0$: A source free RL \& RC circuit
$\tau=\frac{0.1}{1 \mathrm{~K}}=100 \mu \mathrm{sec}$
$\tau_{\mathrm{C}}=200 \times 10^{-9} \times 10 \times 10^{3}=2 \mathrm{~m} \mathrm{sec}$
$\frac{\tau_{\mathrm{C}}}{\tau_{\mathrm{L}}}=20 ; \tau_{\mathrm{C}}=20 \tau_{\mathrm{L}}$

Observation:

$\tau_{\mathrm{L}}<\tau_{\mathrm{C}}$; therefore the inductive part of the circuit will achieve steady state quickly i.e., 20 times faster.

$$
\begin{aligned}
& V_{C}=20 e^{-\frac{t}{\tau_{\mathrm{C}}}} \mathrm{~V} \text { for } 0 \leq \mathrm{t} \leq \infty \\
& \mathrm{i}_{\mathrm{L}}=20 \mathrm{e}^{-\frac{\mathrm{t}}{\tau_{\mathrm{L}}}} \mathrm{~mA} \text { for } 0 \leq \mathrm{t} \leq \infty \\
& \mathrm{V}_{\mathrm{L}}=\left.\mathrm{L} \frac{\mathrm{di} \mathrm{i}_{\mathrm{L}}}{\mathrm{dt}}\right|_{\text {By ohm's law }} \\
& \mathrm{i}_{\mathrm{C}}=\left.\mathrm{C} \frac{\mathrm{~d} \mathrm{~V}_{\mathrm{C}}}{\mathrm{dt}}\right|_{\text {By Ohm's law }}
\end{aligned}
$$

18. Ans: (c)

Sol:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{c}}^{\mid}(\mathrm{s})=\frac{5 /(1 / 2 \mathrm{~s})}{\mathrm{R}+1 / \mathrm{s}+1 / 2 \mathrm{~s}} \\
&=\frac{\frac{5}{2 \mathrm{~s}^{2}}}{\frac{2 R \mathrm{R}+2+1}{2 \mathrm{~s}}}=\frac{5}{\mathrm{~s}(2 \mathrm{Rs}+3)} \\
& \mathrm{V}_{\mathrm{c}_{2}}(\infty)-\mathrm{V}_{\mathrm{c}^{\prime}}^{\mid}(\mathrm{s})-\frac{5}{\mathrm{~s}}=0 \\
& \mathrm{~V}_{\mathrm{c}}(\infty)=\mathrm{V}_{\mathrm{c}}^{\mid}(\mathrm{s})+\frac{5}{\mathrm{~s}} \\
& \mathrm{~V}_{\mathrm{c}}(\infty)=\underset{\mathrm{sta} \rightarrow 0}{\mathrm{Lts} \cdot\left[\frac{5}{\mathrm{~s}(2 R \mathrm{R}+3)}+\frac{5}{\mathrm{~s}}\right]=\frac{5}{3}+5=\frac{20}{3}}
\end{aligned}
$$

19. Ans: (d)

Sol: at $\mathrm{t}=0$

$$
\begin{aligned}
& L \frac{d i(0)}{d t}=V_{L}(0) \\
& V_{L}=2 \times 3=6 \\
& V_{L}=6 V \\
& E_{2}+6-8 R=0 \\
& E_{2}=8 R-6
\end{aligned}
$$

$\mathrm{E}_{2}-4 \mathrm{R}=0$
$\mathrm{E}_{2}=4 \mathrm{R}$
$8 \mathrm{R}-6=4 \mathrm{R}$
$4 \mathrm{R}=6$
$\mathrm{R}=1.5 \Omega$

20. Ans: (d)

Sol: at $\mathrm{t}<0$

Apply KVL in loop1 $\Rightarrow \mathrm{V}_{\mathrm{C}}\left(0^{-}\right)-100=0$
$\Rightarrow \mathrm{V}_{\mathrm{C}}\left(0^{-}\right)=100 \mathrm{~V}$

At $t=0^{+}$
$\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)=0$
$\mathrm{L} \frac{\mathrm{di}\left(0^{+}\right)}{\mathrm{dt}}=0$
$\frac{\mathrm{di}\left(0^{+}\right)}{\mathrm{dt}}=0$
21.

Sol: Case -1 at $t=0^{+}$
By redrawing the circuit

current through the battery at $t=0^{+}$is

$$
\frac{10}{3} \mathrm{Amp}
$$

Case -2 at $t=\infty$

current through the battery at $t=\infty$ is 10 A
22.

Sol:

At $t=0^{-}$: Steady state: A resistive circuit
(i) $\mathrm{t}=0^{-}$:

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=\frac{60}{3}=20 \mathrm{~A}=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right) \\
& \mathrm{V}_{1 \Omega}=20 \mathrm{~V}=\mathrm{V}_{\mathrm{C}}\left(0^{-}\right)=\mathrm{V}_{\mathrm{C}}\left(0^{+}\right)
\end{aligned}
$$

At $t=0^{+}$: A resistive circuit :
Network is in transient state
$\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)=20 \mathrm{~V}$
Nodal :
$\frac{20-60}{2.5}+20+\mathrm{i}_{\mathrm{C}}\left(0^{+}\right)=0$
$\mathrm{i}_{\mathrm{C}}\left(0^{+}\right)=-4 \mathrm{~A}$
23.

Sol: Repeat the above problem procedure :

$$
\begin{aligned}
& \left.\frac{d i_{L}(t)}{d t}\right|_{t=0^{+}}=\frac{V_{L}\left(0^{+}\right)}{L}=0 \mathrm{~A} / \mathrm{sec} \\
& \left.\frac{d V_{C}(t)}{d t}\right|_{t=0^{+}}=\frac{i_{C}\left(0^{+}\right)}{C}=-10^{6} \mathrm{~V} / \mathrm{sec}
\end{aligned}
$$

24.

Sol: Observation: So, the steady state will occur either at $\mathrm{t}=0^{-}$or at $\mathrm{t}=\infty$, that depends where we started i.e., connected the source to the network.

At $t=\infty$: Steady state: A Resistive circuit
$\mathrm{V}_{\mathrm{C}_{1}}(\infty)=\frac{100}{50 \mathrm{~K}} \times 40 \mathrm{~K}=80 \mathrm{~V}$

$$
\mathrm{V}_{\mathrm{C}_{2}}(\infty)=\frac{80 \times 3 \mu \mathrm{~F}}{(2+3) \mu \mathrm{F}}=48 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{C}_{3}}(\infty)=\frac{80 \times 2 \mu \mathrm{~F}}{5 \mu \mathrm{~F}}=32 \mathrm{~V}
$$

25.

Sol:

At $t=0^{-}$: Circuit is in Steady state: Resistive circuit

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=3 \mathrm{~A}=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right) \\
& \mathrm{V}_{4 \Omega}=4 \times 3=12 \mathrm{~V}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{V}_{2 \mathrm{C}}\left(0^{-}\right) & =\frac{12 \times \mathrm{C}}{2 \mathrm{C}+\mathrm{C}} \\
& =4 \mathrm{~V}=\mathrm{V}_{2 \mathrm{C}}\left(0^{+}\right) \\
\mathrm{V}_{\mathrm{C}}\left(0^{-}\right)= & 8 \mathrm{~V}=\mathrm{V}_{\mathrm{C}}\left(0^{+}\right)
\end{aligned}
$$

For $\mathrm{t} \geq 0$
and redrawing the circuit

By Nodal;

$$
\begin{aligned}
& \frac{12-18}{2}+\frac{12-8}{4}+\mathrm{i}_{2 \mathrm{C}}\left(0^{+}\right)=0 \\
& \frac{-6}{2}+\frac{4}{4}+\mathrm{i}_{2 \mathrm{C}}\left(0^{+}\right)=0 \\
& \mathrm{i}_{2 \mathrm{C}}\left(0^{+}\right)=2 \mathrm{~A}=\mathrm{i}_{2 \mathrm{C}}\left(0^{-}\right) \\
& \frac{8-12}{4}-\mathrm{i}_{2 \mathrm{C}}\left(0^{+}\right)+3+\mathrm{i}_{\mathrm{C}}\left(0^{+}\right)=0 \\
& \mathrm{i}_{\mathrm{C}}\left(0^{+}\right)=0 \mathrm{~A}=\mathrm{i}_{\mathrm{C}}\left(0^{-}\right)
\end{aligned}
$$

26.

Sol: $t=0^{-}$

$$
\mathrm{t}=0^{+} \quad \mathrm{t}=0^{+}
$$

$$
\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=5 \mathrm{~A} \quad \mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=5 \mathrm{~A}
$$

$$
\frac{\mathrm{di}_{\mathrm{L}}\left(0^{+}\right)}{\mathrm{dt}}=\frac{\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)}{\mathrm{L}}=40
$$

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{R}}\left(0^{-}\right)=-5 \mathrm{~A} \\
& \frac{\mathrm{di}_{\mathrm{R}}\left(0^{+}\right)}{\mathrm{dt}}=-40 \mathrm{~A} / \mathrm{sec}
\end{aligned}
$$

$$
\mathrm{i}_{\mathrm{R}}\left(0^{+}\right)=-1 \mathrm{~A}
$$

$$
\mathrm{i}_{\mathrm{C}}\left(0^{-}\right)=0 \mathrm{~A} \quad \mathrm{i}_{\mathrm{C}}\left(0^{+}\right)=4 \mathrm{~A}
$$

$$
\frac{\mathrm{di}_{\mathrm{C}}\left(0^{+}\right)}{\mathrm{dt}}=-40 \mathrm{~A} / \mathrm{sec}
$$

$$
\mathrm{V}_{\mathrm{L}}\left(0^{-}\right)=0 \mathrm{~V}
$$

$$
\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)=120 \mathrm{~V}
$$

$$
\frac{\mathrm{d} \mathrm{~V}_{\mathrm{L}}\left(0^{+}\right)}{\mathrm{dt}}=1098 \mathrm{~V} / \mathrm{sec}
$$

$\mathrm{V}_{\mathrm{R}}\left(0^{-}\right)=-150 \mathrm{~V}$
$\mathrm{V}_{\mathrm{R}}\left(0^{+}\right)=-30 \mathrm{~V}$

$$
\frac{\mathrm{d}_{\mathrm{R}}\left(0^{+}\right)}{\mathrm{dt}}=-1200 \mathrm{~V} / \mathrm{sec}
$$

$\mathrm{V}_{\mathrm{C}}\left(0^{-}\right)=150 \mathrm{~V}$
$\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)=150 \mathrm{~V}$
$\frac{\mathrm{d}_{\mathrm{C}}\left(0^{+}\right)}{\mathrm{dt}}=108 \mathrm{~V} / \mathrm{sec}$
(i). $\mathrm{t}=0^{-}$

$$
\text { By KCL } \Rightarrow \mathrm{i}_{\mathrm{L}}(\mathrm{t})+\mathrm{i}_{\mathrm{R}}(\mathrm{t})=0
$$

$$
\mathrm{t}=0^{-} \Rightarrow \mathrm{i}_{\mathrm{L}}\left(0^{-}\right)+\mathrm{i}_{\mathrm{R}}\left(0^{-}\right)=0
$$

$$
\mathrm{i}_{\mathrm{R}}\left(0^{-}\right)=-5 \mathrm{~A}
$$

$$
\mathrm{V}_{\mathrm{R}}(\mathrm{t})=\left.\mathrm{R} \mathrm{i}_{\mathrm{R}}(\mathrm{t})\right|_{\text {By Ohm's law }}
$$

$$
\mathrm{V}_{\mathrm{R}}\left(0^{-}\right)=\mathrm{Ri}_{\mathrm{R}}\left(0^{-}\right)=30(-5)=-150 \mathrm{~V}
$$

$$
\text { By KVL } \Rightarrow V_{L}(t)-V_{R}(t)-V_{C}(t)=0
$$

$$
\mathrm{V}_{\mathrm{C}}\left(0^{-}\right)=\mathrm{V}_{\mathrm{L}}\left(0^{-}\right)-\mathrm{V}_{\mathrm{R}}\left(0^{-}\right)=150 \mathrm{~V}
$$

(ii). At $t=0^{+}$

By KCL at $1^{\text {st }}$ node \Rightarrow

$$
\begin{aligned}
& -4+i_{L}(t)+i_{R}(t)=0 \\
& -4+i_{L}\left(0^{+}\right)+i_{R}\left(0^{+}\right)=0 \\
& i_{R}\left(0^{+}\right)=-i_{L}\left(0^{+}\right)+4 \\
& i_{R}\left(0^{+}\right)=-5+4=-1 \mathrm{~A} \\
& V_{R}(t)=\left.R i_{R}(t)\right|_{\text {By Ohm's law }} \\
& V_{R}\left(0^{+}\right)=R i_{R}\left(0^{+}\right) \\
& V_{R}\left(0^{+}\right)=-30 \mathrm{~V}
\end{aligned}
$$

By KVL $\Rightarrow \mathrm{V}_{\mathrm{L}}(\mathrm{t})-\mathrm{V}_{\mathrm{R}}(\mathrm{t})-\mathrm{V}_{\mathrm{C}}(\mathrm{t})=0$
$\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)=\mathrm{V}_{\mathrm{R}}\left(0^{+}\right)+\mathrm{V}_{\mathrm{C}}\left(0^{+}\right)$

$$
=150-30=120 \mathrm{~V}
$$

By KCL at $2^{\text {nd }}$ node;

$$
-5+\mathrm{i}_{\mathrm{C}}(\mathrm{t})-\mathrm{i}_{\mathrm{R}}(\mathrm{t})=0
$$

$$
\mathrm{i}_{\mathrm{C}}\left(0^{+}\right)=4 \mathrm{~A}
$$

(iii). $\mathrm{t}=0^{+}$

By KCL at $1^{\text {st }}$ node \Rightarrow

$$
-4+i_{L}(t)+i_{R}(t)=0
$$

$$
0+\frac{\mathrm{di}_{\mathrm{L}}(\mathrm{t})}{\mathrm{dt}}+\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{R}}(\mathrm{t})=0
$$

$$
\mathrm{V}_{\mathrm{R}}(\mathrm{t})=\left.\mathrm{R} \mathrm{i}_{\mathrm{R}}(\mathrm{t})\right|_{\text {By Ohm's law }}
$$

$$
\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{~V}_{\mathrm{R}}(\mathrm{t})=\mathrm{R} \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{R}}(\mathrm{t})
$$

By KVL \Rightarrow

$$
\begin{aligned}
& V_{L}(t)-V_{R}(t)-V_{C}(t)=0 \\
& \frac{d V_{L}(t)}{d t}-\frac{d V_{R}(t)}{d t}-\frac{d V_{C}(t)}{d t}=0
\end{aligned}
$$

By KCL at node 2:

$$
\begin{aligned}
& -5+\mathrm{i}_{\mathrm{C}}(\mathrm{t})-\mathrm{i}_{\mathrm{R}}(\mathrm{t})=0 \\
& 0+\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{C}}(\mathrm{t})-\frac{\mathrm{d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{R}}(\mathrm{t})=0 \\
& \frac{\mathrm{~d}}{\mathrm{dt}} \mathrm{i}_{\mathrm{C}}\left(0^{+}\right)=-(-40)=40 \mathrm{~A} / \mathrm{sec}
\end{aligned}
$$

27.

Sol: Transform the network into Laplace domain

$\mathrm{V}(\mathrm{s})=\mathrm{Z}(\mathrm{s}) \mathrm{I}(\mathrm{s})$
By KVL in S-domain \Rightarrow
$1-\mathrm{RI}(\mathrm{s})-\mathrm{sLI}(\mathrm{s})=0$
$\mathrm{I}(\mathrm{s})=\frac{1}{\mathrm{~L}} \frac{1}{\left(\mathrm{~s}+\frac{\mathrm{R}}{\mathrm{L}}\right)}$

$$
i(t)=\frac{1}{L} e^{-\frac{R}{L} t} A \text { for } t \geq 0
$$

28.

Sol: By Time domain approach;
$\mathrm{V}_{\mathrm{C}}\left(0^{-}\right)=5 \times 2=10 \mathrm{~V}=\mathrm{V}_{\mathrm{C}}\left(0^{+}\right)$

At $t=\infty$: Steady state: A resistive circuit

Nodal $\Rightarrow \frac{\mathrm{V}_{\mathrm{C}}(\infty)-25}{10}+\frac{\mathrm{V}_{\mathrm{C}}(\infty)}{5}-2=0$
$\mathrm{V}_{\mathrm{C}}(\infty)=15 \mathrm{~V}$
$\tau=\mathrm{R}_{\mathrm{eq}} \mathrm{C}=(5 \| 10) .1=(10 / 3) \mathrm{sec}$
$\mathrm{V}_{\mathrm{C}}=15+(10-15) \mathrm{e}^{-\frac{\mathrm{t}}{(10 / 3)}}$
$V_{C}=15-5 e^{-3 t / 10} V$ for $t \geq 0$
$i_{C}=C \frac{d V_{C}}{d t}=1.5 e^{-3 t / 10}$ A for $t \geq 0$
29.

Sol:

That is the response is oscillatory in nature
30.

Sol: $\mathrm{i}\left(0^{-}\right)=0 \mathrm{~A}=\mathrm{i}\left(0^{+}\right)$
$\mathrm{i}(\infty)=\frac{\mathrm{V}}{\mathrm{R}} \mathrm{A}$
$\tau=\frac{\mathrm{L}}{\mathrm{R}} \sec$

$$
\begin{aligned}
& i(t)=\frac{V}{R}+\left(0-\frac{V}{R}\right) e^{-t / \tau}=\frac{V}{R}\left(1-e^{-t / \tau}\right) \\
& V_{L}=\frac{\operatorname{Ldi}(t)}{d t}=V e^{-R t / L} \text { for } t \geq 0
\end{aligned}
$$

Expontionaly Increasing Response
31.

Sol: $\mathrm{V}_{\mathrm{C}}\left(0^{-}\right)=0=\mathrm{V}_{\mathrm{C}}\left(0^{+}\right)$

$$
\mathrm{V}_{\mathrm{C}}(\infty)=\mathrm{V}
$$

$\tau=\mathrm{RC}$
$\mathrm{V}_{\mathrm{C}}=\mathrm{V}+(0-\mathrm{V}) \mathrm{e}^{-\mathrm{t} / \tau}$

$$
=V\left(1-e^{-t / R C}\right) \text { for } t \geq 0
$$

$$
i c=C \frac{d v_{c}}{d t}=\frac{V}{R} e^{-t / R C} \text { for } t \geq 0
$$

$$
=\mathrm{i}(\mathrm{t})
$$

Expontionaly Decreasing Response
32.

Sol: It's an $R L$ circuit with $L=0 \Rightarrow \tau=0 \mathrm{sec}$ $\mathrm{i}(\mathrm{t})=\frac{\mathrm{V}}{\mathrm{R}}, \forall \mathrm{t} \geq 0$ So, $5 \tau=0 \mathrm{sec}$

i.e. the response is constant
33.

Sol: $\mathrm{i}_{1}=\frac{100 \mathrm{u}(\mathrm{t})-\mathrm{V}_{\mathrm{L}}}{10}$

$$
\mathrm{i} 1=\left(10 \mathrm{u}(\mathrm{t})-\frac{1}{100} \frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}}\right) \mathrm{A}
$$

Nodal \Rightarrow

$$
\begin{aligned}
& -i_{1}+i_{L}+\frac{V_{L}-20 i_{1}}{20}=0 \\
& -2 i_{1}+i_{L}+\frac{1}{200} \frac{d i_{L}}{d t}=0
\end{aligned}
$$

Substitute i_{1};

$$
\begin{aligned}
& \frac{\mathrm{di}_{\mathrm{L}}}{\mathrm{dt}}+40 \mathrm{i}_{\mathrm{L}}=800 \mathrm{u}(\mathrm{t}) \\
& \mathrm{SI}_{\mathrm{L}}(\mathrm{~s})-\mathrm{i}_{\mathrm{L}}(0+)+40 \mathrm{I}_{\mathrm{L}}(\mathrm{~s})=\frac{800}{\mathrm{~s}} \\
& \mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=0 \mathrm{~A}=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)
\end{aligned}
$$

$\mathrm{I}_{\mathrm{L}}(\mathrm{s})=\frac{800}{\mathrm{~s}(\mathrm{~s}+40)}=\frac{20}{\mathrm{~s}}-\frac{20}{\mathrm{~s}+40}$
$\left.\mathrm{I}_{\mathrm{L}} \mathrm{t}\right)=20 \mathrm{u}(\mathrm{t})-20 \mathrm{e}^{-40 \mathrm{t}} \mathrm{u}(\mathrm{t})$
$I_{L}(t)=20\left(1-e^{-40 t}\right) u(t)$
$\mathrm{i}_{1}=10 \mathrm{u}(\mathrm{t})-\frac{1}{100} \mathrm{~d} \frac{\mathrm{i}_{\mathrm{L}}}{\mathrm{dt}}$
$\mathrm{i}_{1}=\left(10-8 \mathrm{e}^{-40 \mathrm{t}}\right) \mathrm{u}(\mathrm{t})$
34.

Sol: By Laplace transform approach:

Transform the above network into the Laplace domain

For $\mathrm{t} \geq 0$

Nodal \Rightarrow
$\frac{\mathrm{V}(\mathrm{s})-\frac{2}{\mathrm{~s}}}{2}+\frac{\mathrm{V}(\mathrm{s})}{2}+\frac{\mathrm{V}(\mathrm{s})-\frac{1}{2 \mathrm{~s}}}{1+\frac{1}{\mathrm{~s}}}=0$
$I_{c}(s)=\left(\frac{V(s)-\frac{1}{2 s}}{1+\frac{1}{s}}\right)$
$\Rightarrow \mathrm{i}_{\mathrm{c}}(\mathrm{t})=\frac{1}{4} \mathrm{e}^{-\frac{\mathrm{t}}{2}} \mathrm{~A}$ for $\mathrm{t} \geq 0$
By KVL \Rightarrow
$\mathrm{V}_{\mathrm{C}}(\mathrm{s})-\frac{1}{2 \mathrm{~s}}-\frac{1}{\mathrm{~s}} \mathrm{I}_{\mathrm{C}}(\mathrm{s})=0$
$\mathrm{V}_{\mathrm{C}}(\mathrm{s})=\frac{1}{2 \mathrm{~s}}+\frac{1}{\mathrm{~s}} \mathrm{I}_{\mathrm{C}}(\mathrm{s})$
$v_{C}(t)=1-\frac{1}{2} e^{-\frac{t}{2}} V$ for $t \geq 0$

35.

Sol: By Time domain approach ;
$\mathrm{V}_{\mathrm{C}}(0)=6 \mathrm{~V}$ (given)
$\mathrm{V}_{\mathrm{C}}(\infty)=10 \mathrm{~V}$

At $t=\infty$: Steady state : Resistive circuit
$\tau=\mathrm{R} \mathrm{C}=8 \mathrm{sec}$
$\mathrm{V}_{\mathrm{C}}=10+(6-10) \mathrm{e}^{-\mathrm{t} / 8}$
$V_{C}=10-4 \mathrm{e}^{-\mathrm{t} / 8}$
$\mathrm{V}_{\mathrm{C}}(0)=6 \mathrm{~V}$
$i_{C}=C \frac{d V_{C}}{d t}=e^{-t / 8}=i(t)$

$$
E_{4 \Omega}=\int_{0}^{\infty}\left(e^{-t / 8}\right)^{2} 4 d t=16 J
$$

36.

At $t=0^{-}$: Network is not in steady state i.e., unenergised
$\mathrm{t}=0^{-}$:
$\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=0 \mathrm{~A}=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)$
$\mathrm{V}_{\mathrm{L}}\left(0^{+}\right)=10 \times 10=100 \mathrm{~V}$

At $\mathrm{t}=0^{+}$: Network is in transient state: A resistive circuit
$\mathrm{i}_{\mathrm{L}}(\infty)=10 \mathrm{~A}$ (since inductor becomes short)
$\tau=\frac{\mathrm{L}}{\mathrm{R}}=\frac{5}{10}=0.5 \mathrm{sec}$
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=10+(0-10) \mathrm{e}^{-\mathrm{t} / \tau}$ $=10\left(1-\mathrm{e}^{-\mathrm{t} / 0.5}\right) \mathrm{A}$ for $0 \leq \mathrm{t} \leq \infty$
$V_{L}(t)=L \frac{d}{d t} i_{L}(t)=100 e^{-2 t} V$ for $0 \leq t \leq \infty$
$\left.E_{L}\right|_{t=5 \tau \text { or } t=\infty}=\frac{1}{2} \mathrm{Li}^{2}=\frac{1}{2} \times 5 \times 10^{2}=250 \mathrm{~J}$

37. Ans: (b)

Sol:

At $t=0^{-}$: Steady state: A resistive circuit
By KVL \Rightarrow
$\mathrm{V}-\mathrm{V}_{\mathrm{cl}}\left(0^{-}\right)=0$
$\mathrm{V}_{\mathrm{Cl}}(0-)=\mathrm{V}=\mathrm{V}_{\mathrm{C} 1}\left(0^{+}\right)$
$\mathrm{V}_{\mathrm{C} 2}\left(0^{-}\right)=0 \mathrm{~V}=\mathrm{V}_{\mathrm{C} 2}\left(0^{+}\right)$
$\mathrm{i}_{\mathrm{L}}\left(0^{-}\right)=0 \mathrm{~A}=\mathrm{i}_{\mathrm{L}}\left(0^{+}\right)$

For $\mathrm{t} \geq 0$
Fig (a)

At $t=0^{+}$: A resistive circuit: Network is in transient state.
$\mathrm{i}_{1}\left(0^{+}\right)=\mathrm{i}_{2}\left(0^{+}\right)$
By KVL \Rightarrow
$-\operatorname{Ri}_{1}\left(0^{+}\right)-\mathrm{V}-\mathrm{Ri}_{1}\left(0^{+}\right)=0$
$\mathrm{i}_{1}\left(0^{+}\right)=\frac{-\mathrm{V}}{2 \mathrm{R}}=\mathrm{i}_{2}\left(0^{+}\right)$
OBS: $\mathrm{i}_{\mathrm{L}}(\mathrm{t})=\mathrm{i}_{1}(\mathrm{t}) \sim \mathrm{i}_{2}(\mathrm{t})$
At $\mathrm{t}=0^{+} \Rightarrow$
$\mathrm{i}_{\mathrm{L}}(0+)=\mathrm{i}_{1}(0+) \sim \mathrm{i}_{2}(0+)$

$$
=0 \mathrm{~A} \Rightarrow \text { Inductor: open circuit }
$$

38.

Sol: Evaluation of $i_{L}(t)$ and $e_{1}(t)$ for $t \geq 0$ by Laplace transform approach.

$$
\begin{aligned}
& \mathrm{i}_{\mathrm{L}}\left(0^{+}\right)=6 \mathrm{~A} ; \mathrm{i}_{\mathrm{L}}(\infty)=4 \mathrm{~A} \\
& \mathrm{e}_{1}\left(0^{+}\right)=8 \mathrm{~V} ; \mathrm{e}_{1}(\infty)=8 \mathrm{~V}
\end{aligned}
$$

For $\mathrm{t} \geq 0$
Transform the above network into Laplace domain.

S-domain:

Nodal in S-domain
$\frac{E_{1}(s)-16 / s}{2}+\frac{E_{1}(s)-\frac{8}{s}}{\frac{8}{s}}+\frac{E_{1}(s)+3}{2+\frac{s}{2}}=0$
$\mathrm{E}_{1}(\mathrm{~s})=\frac{8}{\mathrm{~s}}\left(\frac{\mathrm{~s}^{2}+6 \mathrm{~s}+32}{\mathrm{~s}^{2}+8 \mathrm{~s}+32}\right)$
$\mathrm{E}_{1}(\mathrm{~s})=\frac{8}{\mathrm{~s}}\left(1-\frac{2 \mathrm{~s}}{(\mathrm{~s}+4)^{2}+4^{2}}\right)$
$e_{1}(t)=8-4 e^{-4 t} \sin 4 t V$ for $t \geq 0$

$I_{L}(s)=\frac{E_{1}(s)+3}{2+\frac{s}{2}}$
$\mathrm{i}_{\mathrm{L}}(\mathrm{t})=4+2 \mathrm{e}^{-4 \mathrm{t}} \cos 4 \mathrm{t} A$
for $t \geq 0 \omega_{n}=4 \mathrm{rad} / \mathrm{sec}$

OBS: $\tau=\frac{1}{4} \sec =\left.\frac{1}{\xi \omega_{\mathrm{n}}}\right|_{\omega_{\mathrm{n}}}=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{\frac{1}{2} \times \frac{1}{8}}}=4$ $\frac{1}{4} \times \omega_{\mathrm{n}}=\frac{1}{\xi}$
$\xi=\frac{4}{\omega_{\mathrm{n}}}=\frac{4}{4}=1$
$\xi=1$ (A critically damped system)
39.

Sol: $\left.\omega \mathrm{t}\right|_{\mathrm{t}=\mathrm{t}_{0}}=\tan ^{-1}\left(\frac{\omega \mathrm{~L}}{\mathrm{R}}\right)$
$\omega \mathrm{t}_{\mathrm{o}}=\tan ^{-1}\left(\frac{\omega \mathrm{~L}}{\mathrm{R}}\right)$
$2 \pi(50) \mathrm{t}_{\mathrm{o}}=\tan ^{-1}\left(\frac{2 \pi(50)(0.01)}{5}\right)$
$\mathrm{t}_{\mathrm{o}}=32.14 \times \frac{\pi}{180^{\circ}}$
$\mathrm{t}_{\mathrm{o}}=1.78 \mathrm{msec}$.
So, by switching exactly at 1.78 msec from the instant voltage becomes zero, the current is free from Transient.
40.

Sol: $\omega \mathrm{t}_{\mathrm{o}}+\phi=\tan ^{-1}(\omega \mathrm{CR})+\frac{\pi}{2}$

$$
\begin{aligned}
& 2 t_{o}+\frac{\pi}{4}=\tan ^{-1}(\omega \mathrm{CR})+\frac{\pi}{2} \\
& 2 t_{\mathrm{o}}+\frac{\pi}{4}=\tan ^{-1}\left(2\left(\frac{1}{2}\right)(1)\right)+\frac{\pi}{2}=\frac{\pi}{4}+\frac{\pi}{2} \\
& 2 t_{\mathrm{o}}=\frac{\pi}{2} \Rightarrow t_{\mathrm{o}}=0.785 \mathrm{sec}
\end{aligned}
$$

4. AC Circuit Analysis

1.

Sol: $I_{a v g}=I_{d c}=\frac{1}{T} \int_{0}^{T} i(t) d t=3+0+0=3 A$

$$
I_{\mathrm{rms}}=\sqrt{\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{i}^{2}(\mathrm{t}) \mathrm{dt}}
$$

2.

Sol: $\mathrm{V}_{\mathrm{dc}}=\mathrm{V}_{\mathrm{avg}}=\frac{1}{\mathrm{~T}} \int_{0}^{\mathrm{T}} \mathrm{V}(\mathrm{t}) \mathrm{dt}=2 \mathrm{~V}$
Here the frequencies are same, by doing simplification
$\mathrm{v}(\mathrm{t})=2-3 \sqrt{2}\left(\cos 10 \mathrm{t} \times \frac{1}{\sqrt{2}}-\sin 10 \mathrm{t} \times \frac{1}{\sqrt{2}}\right)$

$$
+3 \cos 10 t=2+3 \sin 10 t V
$$

So $\mathrm{V}_{\mathrm{rms}}=\sqrt{(2)^{2}+\left(\frac{3}{\sqrt{2}}\right)^{2}}=\sqrt{8.5} \mathrm{~V}$
03.

Sol: $X_{\text {avg }}=X_{d c}=\frac{1}{T} \int_{0}^{T} x(t) d t=0$
$X_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} \mathrm{X}^{2}(\mathrm{t}) \mathrm{dt}}=\frac{\mathrm{A}}{\sqrt{3}}$
04. Ans: (a)

Sol: For a symmetrical wave (i.e., area of positive half cycle $=$ area of negative half cycle.) The RMS value of full cycle is same as the RMS value of half cycle.
05.

Sol: Complex power, $\mathrm{S}=\mathrm{VI}^{*}$

$\Rightarrow I=\frac{300 \angle 0^{\circ}}{2+\mathrm{j} 12.5+4-\mathrm{j} 8}$
$\Rightarrow \mathrm{I}=40 \angle-36.86^{\circ}$
\therefore Complex power, $\mathrm{S}=\mathrm{VI}^{*}$

$$
\begin{aligned}
& =300 \angle 0^{\circ} \times 40 \angle 36.86^{\circ} \\
& =9600+\mathrm{j} 7200
\end{aligned}
$$

\therefore Reactive power delivered by the source

$$
\begin{aligned}
\mathrm{Q} & =72000 \mathrm{VAR} \\
& =7.2 \mathrm{KVAR}
\end{aligned}
$$

6.

Sol: $\mathrm{Z}=\mathrm{j} 1+(1-\mathrm{j} 1) \|(1+\mathrm{j} 2)=1.4+\mathrm{j} 0.8$
$I=\left.\frac{E_{1}}{Z}\right|_{\text {By ohm's law }}=\frac{10 \angle 20}{1.4+j 8}$

$$
=6.2017 \angle-9.744^{\circ} \mathrm{A}
$$

$I_{1}=\frac{I(1+j 2)}{1-j 1+1+j 2}=6.2017 \angle 27.125^{\circ} \mathrm{A}$
$I_{2}=\frac{I(1-\mathrm{jl})}{1-\mathrm{jl}+\mathrm{l}+\mathrm{j} 2}=3.922 \angle-81.31^{\circ} \mathrm{A}$
$\mathrm{E}_{2}=(1-\mathrm{j} 1) \mathrm{I}_{1}=8.7705 \angle-17.875^{\circ} \mathrm{V}$
$\mathrm{E}_{0}=0.5 \mathrm{I}_{2}=1.961 \angle-81.31^{\circ} \mathrm{V}$
07.

Sol: Since two different frequencies are operating on the network simultaneously
always the super position theorem is used to evaluate the response.
By SPT: (i)

Network is in steady state, therefore the network is resistive. $\mathrm{I}_{\mathrm{R} 1}(\mathrm{t})=\frac{10}{2}=5 \mathrm{~A}$
(ii)

Network is in steady state
As impedances of L and C are present because of $\omega=2$. They are physically present.

$$
Z_{L}=j \omega L ; Z_{c}=\left.\frac{1}{j \omega C}\right|_{\omega=2}
$$

Network is in phasor domain
Nodal \Rightarrow
$\frac{V}{j 2}+\frac{V}{2}+\frac{V-5 \angle 0^{0}}{-j 0.5}=0$
$\mathrm{V}=6.32 \angle 18.44^{0}$
$I_{R 2}=\frac{V}{2}=3.16 \angle 18.44^{0}=3.16 \mathrm{e}^{\mathrm{j} 18.14^{0}}$
$\mathrm{i}_{\mathrm{R} 2}(\mathrm{t})=\mathrm{R} \cdot \mathrm{P}\left[\mathrm{I}_{\mathrm{R} 2} \mathrm{e}^{\mathrm{j} 2 \mathrm{t}}\right] \mathrm{A}$ $=3.16 \cos \left(2 t+18.44^{0}\right)$
By super position theorem,

$$
\begin{aligned}
\mathrm{i}_{\mathrm{R}}(\mathrm{t}) & =\mathrm{i}_{\mathrm{R} 1}(\mathrm{t})+\mathrm{i}_{\mathrm{R} 2}(\mathrm{t}) \\
& =5+3.16 \cos \left(2 \mathrm{t}+18.44^{0}\right) \mathrm{A}
\end{aligned}
$$

8. Ans: (c)

Sol: $\frac{1}{s^{2}+1}-I(s)\left(2+2 s+\frac{1}{s}\right)=0$
$\mathrm{I}(\mathrm{s})\left(\frac{2 \mathrm{~s}+2 \mathrm{~s}^{2}+1}{\mathrm{~s}}\right)=\frac{1}{\mathrm{~s}^{2}+1}$
$\mathrm{I}(\mathrm{s})+2 \mathrm{~s}^{2} \mathrm{I}(\mathrm{s})+2 \mathrm{sI}(\mathrm{s})=\frac{\mathrm{s}}{\mathrm{s}^{2}+1}$
$\mathrm{i}(\mathrm{t})+\frac{2 \mathrm{~d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}+2 \frac{\mathrm{di}}{\mathrm{dt}}=\cos \mathrm{t}$
$2 \frac{\mathrm{~d}^{2} \mathrm{i}}{\mathrm{dt}^{2}}+2 \frac{\mathrm{di}}{\mathrm{dt}}+\mathrm{i}(\mathrm{t})=\cos \mathrm{t}$
09.

Sol: $\mathrm{V}=\sqrt{\mathrm{V}_{\mathrm{R}}^{2}+\left(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}\right)^{2}}$
$V=V_{R}=I . R$
$100=\mathrm{I} .20 ; \mathrm{I}=5 \mathrm{~A}$
Power factor $=\cos \phi=\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{V}}=\frac{\mathrm{V}_{\mathrm{R}}}{\mathrm{V}_{\mathrm{R}}}=1$
So, unity power factor.
10.

Sol: By KCL in phasor - domain \Rightarrow
$-\mathrm{I}_{1}-\mathrm{I}_{2}-\mathrm{I}_{3}=0$
$\mathrm{I}_{3}=-\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)$
$\mathrm{i}_{1}(\mathrm{t})=\cos \left(\omega \mathrm{t}+90^{\circ}\right)$

$$
\begin{aligned}
& \mathrm{I}_{1}=1 \angle 90^{0}=\mathrm{j} 1 \\
& \mathrm{I}_{2}= 1 \angle 0^{0}=(1+\mathrm{j} 0) \\
& \mathrm{I}_{3}=\sqrt{2} \angle \pi+45^{0}=\sqrt{2} \mathrm{e}^{\mathrm{j}(\pi+45)} \\
& \mathrm{i}_{3}(\mathrm{t})=\text { Real } \operatorname{part}\left[\mathrm{I}_{3} \cdot \mathrm{e}^{\mathrm{j} \omega \mathrm{t}}\right] \mathrm{mA} \\
&=-\sqrt{2} \cos \left(\omega \mathrm{t}+45^{0}+\pi\right) \mathrm{mA} \\
& \mathrm{i}_{3}(\mathrm{t})=-\sqrt{2} \cos \left(\omega \mathrm{t}+45^{0}\right) \mathrm{mA}
\end{aligned}
$$

11.

Sol: $I=\frac{V}{R}+\frac{V}{Z_{L}}+\frac{V}{Z_{C}}=8-j 12+j 18$

$$
\begin{aligned}
& \mathrm{I}=8+6 \mathrm{j} \\
& |\mathrm{I}|=\sqrt{100}=10 \mathrm{~A}
\end{aligned}
$$

12.

Sol: By KCL \Rightarrow

$$
\begin{aligned}
& -I+I_{L}+I_{C}=0 \\
& I=I_{L}+I_{C} \\
& I_{L}=\frac{V}{Z_{L}}=\frac{V}{j \omega L}=\frac{3 \angle 0^{\circ}}{j(3) \cdot\left(\frac{1}{3}\right)} \\
& I_{L}=\frac{3 \angle 0^{\circ}}{j}=\frac{3 \angle 0^{0}}{\angle 90^{\circ}}=3 \angle-90^{\circ} \\
& I=3 \angle-90^{\circ}+4 \angle 90^{0} \\
& =-j 3+j 4=j 1=1 \angle 90^{\circ}
\end{aligned}
$$

13. Ans: (d)

Sol:

$\mathrm{I}_{1}=\mathrm{I}_{\mathrm{C}}=\frac{\mathrm{V}}{\mathrm{Z}_{\mathrm{C}}}=\frac{\mathrm{V}}{\mathrm{X}_{\mathrm{C}}} \angle 90^{\circ}$
$I_{2}=\frac{V}{2+j \omega L}=\frac{V}{2+j 2}=\frac{V}{2 \sqrt{2}} \angle 45^{0}$
Therefore, the phasor I_{1} leads I_{2} by an angle of 135°.
14.

Sol: $\mathrm{I}_{2}=\sqrt{\mathrm{I}_{\mathrm{R}}^{2}+\mathrm{I}_{\mathrm{C}}^{2}} \quad \Rightarrow 10=\sqrt{\mathrm{I}_{\mathrm{R}}^{2}+8^{2}}$
$\mathrm{I}_{\mathrm{R}}=6 \mathrm{~A}$
$\mathrm{I}_{1}=\mathrm{I}=\sqrt{\mathrm{I}_{\mathrm{R}}^{2}+\left(\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{C}}\right)^{2}}$
$10=\sqrt{6^{2}+\left(\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{C}}\right)^{2}}$
$\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{C}}= \pm 8 \mathrm{~A}$
$\mathrm{I}_{\mathrm{L}}-8= \pm 8$
$\mathrm{I}_{\mathrm{L}}-8=-8$ (Not acceptable)
Since $\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}}{\mathrm{Z}_{\mathrm{L}}} \neq 0$.
$\mathrm{I}_{\mathrm{L}}-8=8$
$\mathrm{I}_{\mathrm{L}}=16 \mathrm{~A}$
$\mathrm{I}_{\mathrm{L}}>\mathrm{I}_{\mathrm{C}}$

I_{2} leads $120 \angle 0^{0}$ by $\tan ^{-1}\left(\frac{8}{6}\right)$
I_{1} lags $120 \angle 0^{0}$ by $\tan ^{-1}\left(\frac{8}{6}\right)$
Power factor $\cos \phi=\frac{I_{R}}{I}=\frac{I_{R}}{I}$

$$
=\frac{6}{10}=0.6(\mathrm{lag})
$$

15.

Sol:

Network is in steady state.

$$
\begin{aligned}
\left|\mathrm{I}_{\mathrm{C}}\right| & =\left|\frac{\mathrm{V}}{\mathrm{Z}_{\mathrm{C}}}\right|=\left|\frac{300 \angle 0^{0}}{(1 / \mathrm{j} \omega \mathrm{c})}\right|=\mathrm{v} \omega \mathrm{c} \\
& =300 \times 2 \pi \times 50 \times 159.23 \times 10^{-6}
\end{aligned}
$$

$\mathrm{I}_{\mathrm{C}}=15 \mathrm{~A}$
$\mathrm{I}=\sqrt{\mathrm{I}_{\mathrm{R}}^{2}+\mathrm{I}_{\mathrm{C}}^{2}}$
$25=\sqrt{\mathrm{I}_{\mathrm{R}}^{2}+15^{2}}$
$\mathrm{I}_{\mathrm{R}}=20 \mathrm{~A}$

$\mathrm{V}_{\mathrm{R}}=\mathrm{RI}_{\mathrm{R}} \mid$ By ohm's law
$300=R .20$
$\mathrm{R}=15 \Omega$
Network is in steady state
$\mathrm{I}_{\mathrm{R}}=\frac{360}{15}=24 \mathrm{~A}$
So the required $\mathrm{I}_{\mathrm{C}}=\sqrt{25^{2}-24^{2}}$
$\mathrm{v} \omega \mathrm{c}=7$
$360 \times 2 \pi \times \mathrm{f} \times 159.23 \times 10^{-6}=7$
$\mathrm{f}=19.4 \mathrm{~Hz}$
OBS: $\mathrm{I}_{\mathrm{C}}=\frac{\mathrm{V}}{\mathrm{Z}_{\mathrm{C}}}$
$Z_{C}=\frac{1}{j \omega c} \Omega$
As $\mathrm{f} \downarrow \Rightarrow \mathrm{Z}_{\mathrm{C}} \uparrow \Rightarrow \mathrm{I}_{\mathrm{C}} \downarrow$
16.

Sol: $\mathrm{P}_{5 \Omega}=10$ Watts (Given)

$$
\begin{aligned}
& \quad=\mathrm{P}_{\mathrm{avg}}=\mathrm{I}_{\mathrm{rms}}{ }^{2} \mathrm{R} \\
& 10=\mathrm{I}_{\mathrm{rms}}^{2} \cdot 5 \\
& \mathrm{I}_{\mathrm{rms}}=\sqrt{2} \mathrm{~A}
\end{aligned}
$$

Power delivered $=$ Power observed
(By Tellegen's Theorem)

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{T}}=\mathrm{I}_{\mathrm{rms}}^{2}(5+10) \\
& \mathrm{V}_{\mathrm{rms}} \mathrm{I}_{\mathrm{rms}} \cos \phi=(\sqrt{2})^{2}(15) \\
& \frac{50}{\sqrt{2}} \times \sqrt{2} \cos \phi=2 \times 15 \\
& \cos \phi=0.6(\mathrm{lag})
\end{aligned}
$$

17. Ans: (d)

Sol:

$$
\begin{aligned}
\mathrm{V}= & \sqrt{\mathrm{V}_{\mathrm{R}}^{2}+\left(\mathrm{V}_{\mathrm{L}}-\mathrm{V}_{\mathrm{C}}\right)^{2}} \\
& =\sqrt{(3)^{2}+(14-10)^{2}} \\
\mathrm{~V} & =5 \mathrm{~V}
\end{aligned}
$$

18.

Sol: $Y=Y_{1}+Y_{c}=\frac{1}{Z_{L}}+\frac{1}{Z_{C}}$

$$
\begin{aligned}
& =\frac{1}{30 \angle 40^{0}}+\frac{1}{\left(\frac{1}{j \omega c}\right)} \\
& =j \omega c+\frac{1}{30} \angle-40^{0} \\
& =j \omega c+\frac{1}{30}\left(\cos 40^{\circ}-j \sin 40^{\circ}\right)
\end{aligned}
$$

Unit power factor $\Rightarrow \mathrm{j}$-term $=0$
$\omega \mathrm{c}=\frac{\sin 40^{\circ}}{30}$
$\mathrm{C}=\frac{\sin 40^{\circ}}{2 \pi \times 50 \times 30}=68.1 \mu \mathrm{~F}$
$\mathrm{C}=68.1 \mu \mathrm{~F}$
19. Ans: (b)

Sol: To increase power factor shunt capacitor is to be placed.
VAR supplied by capacitor

$$
\begin{aligned}
& =\mathrm{P}\left(\tan \phi_{1}-\tan \phi_{2}\right) \\
& =2 \times 10^{3}\left[\tan \left(\cos ^{-1} 0.65\right)-\tan \left(\cos ^{-1} 0.95\right)\right] \\
& =1680 \mathrm{VAR}
\end{aligned}
$$

VAR supplied $=\frac{\mathrm{V}^{2}}{\mathrm{X}_{\mathrm{C}}}=\mathrm{V}^{2} \omega \mathrm{C}=1680$

$$
\therefore \mathrm{C}=\frac{1680}{(115)^{2} \times 2 \pi \times 60}=337 \mu \mathrm{~F}
$$

20.

Sol: $\mathrm{Z}=\frac{\mathrm{V}}{\mathrm{I}}=\frac{160 \angle 10^{\circ}-90^{\circ}}{5 \angle-20^{\circ}-90^{\circ}}=32 \angle 30^{\circ}$
$\phi=30^{\circ}$ (Inductive)

$$
\mathrm{V}_{\mathrm{rms}}=\frac{160}{\sqrt{2}} \mathrm{Vj}, \mathrm{I}_{\mathrm{rms}}=\frac{5}{\sqrt{2}}
$$

Real power $(\mathrm{P})=\frac{160}{\sqrt{2}} \times \frac{5}{\sqrt{2}} \times \cos 30^{\circ}$

$$
=200 \sqrt{3} \mathrm{~W}
$$

Reactive power $(\mathrm{Q})=\frac{160}{\sqrt{2}} \times \frac{5}{\sqrt{2}} \times \frac{1}{2}$

$$
=200 \mathrm{VAR}
$$

Complex power $=\mathrm{P}+\mathrm{jQ}=200(\sqrt{3}+\mathrm{j} 1) \mathrm{VA}$
21.

Sol: $\mathrm{V}=4 \angle 10^{\circ}$ and $\mathrm{I}=2 \angle-20^{\circ}$
Note: When directly phasors are given the magnitudes are taken as rms values since they are measured using rms meters.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{rms}}=4 \mathrm{~V} \text { and } \mathrm{I}_{\mathrm{rms}}=2 \mathrm{~A} \\
& \mathrm{Z}=\frac{\mathrm{V}}{\mathrm{I}}=2 \angle 30^{\circ} ; \phi=30^{\circ} \quad \text { (Inductive) } \\
& \mathrm{P}=10 \sqrt{3} \mathrm{~W}, \mathrm{Q}=10 \mathrm{VAR} \\
& \mathrm{~S}=10(\sqrt{3}+\mathrm{j} 1) \mathrm{VA}
\end{aligned}
$$

22. Ans: (a)

Sol: $\mathrm{S}=\mathrm{VI}$ *

$$
\begin{aligned}
& =\left(10 \angle 15^{\circ}\right)\left(2 \angle 45^{\circ}\right) \\
& =10+\mathrm{j} 17.32 \\
\mathrm{~S} & =\mathrm{P}+\mathrm{jQ} \\
\mathrm{P} & =10 \mathrm{~W} \quad \mathrm{Q}=17.32 \mathrm{VAR}
\end{aligned}
$$

23. Ans: (c)

Sol: $\mathrm{P}_{\mathrm{R}}=\left(\mathrm{I}_{\mathrm{rms}}\right)^{2} \times \mathrm{R}$

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{rms}}=\frac{10}{\sqrt{2}} \\
& \mathrm{P}_{\mathrm{R}}=\left(\frac{10}{\sqrt{2}}\right)^{2} \times 100
\end{aligned}
$$

24.

Sol: $\mathrm{P}_{\text {avg }}=\frac{\mathrm{V}_{\text {rms }}^{2}}{\mathrm{R}}=\frac{\left(\frac{240}{\sqrt{2}}\right)^{2}}{60}=480$ Watts

$$
\begin{aligned}
& \mathrm{V}=240 \angle 0^{0} \\
& \mathrm{I}_{\mathrm{R}}=\frac{\mathrm{V}}{\mathrm{R}}=\frac{240}{60}=4 \mathrm{~A}
\end{aligned}
$$

$$
\mathrm{I}_{\mathrm{L}}=\frac{\mathrm{V}}{\mathrm{Z}_{\mathrm{L}}}=\frac{\mathrm{V}}{\mathrm{X}_{\mathrm{L}}}=\frac{240}{40}=6 \mathrm{~A}
$$

$$
\mathrm{I}_{\mathrm{C}}=\frac{\mathrm{V}}{\mathrm{Z}_{\mathrm{C}}}=\frac{\mathrm{V}}{\mathrm{X}_{\mathrm{C}}}=\frac{240}{80}=3 \mathrm{~A}
$$

$\mathrm{I}_{\mathrm{L}}>\mathrm{I}_{\mathrm{C}}$: Inductive nature of the circuit.
$\mathrm{I}=\sqrt{\mathrm{I}_{\mathrm{R}}^{2}+\left(\mathrm{I}_{\mathrm{L}}-\mathrm{I}_{\mathrm{C}}\right)^{2}}=\sqrt{4^{2}+3^{2}}=5 \mathrm{~A}$
Power factor $=\frac{\mathrm{I}_{\mathrm{R}}}{\mathrm{I}}=\frac{4}{5}=0.8$ (lagging)
25. Ans: (a)

Sol:

NW is in Steady state.

$$
\begin{aligned}
& \mathrm{V}=100 \angle 0^{0} \Rightarrow \mathrm{~V}_{\mathrm{rms}}=100 \mathrm{~V} \\
& \mathrm{I}_{1}=\frac{100 \angle 0^{0}}{(3+\mathrm{j} 4) \Omega} \Rightarrow\left|\mathrm{I}_{1}\right|=20=\mathrm{I}_{\text {lrms }} \\
& \mathrm{I}_{2}
\end{aligned}=\frac{100 \angle 0^{0}}{(1-\mathrm{j} 1) \Omega} \Rightarrow\left|\mathrm{I}_{2}\right|=\frac{100}{\sqrt{2}} \mathrm{~A}=\mathrm{I}_{2 \mathrm{rms}} \mathrm{l}, ~ \begin{aligned}
\mathrm{P} & =\mathrm{P}_{1}+\mathrm{P}_{2} \\
& =\left(\mathrm{I}_{1 \mathrm{rms}}\right)^{2} \cdot 3+\left(\mathrm{I}_{2 \mathrm{rms}}\right)^{2} \cdot 1
\end{aligned}
$$

$$
\begin{aligned}
& =20^{2} \cdot 3+\left(\frac{100}{\sqrt{2}}\right)^{2} \cdot 1 \\
\mathrm{P} & =6200 \mathrm{~W} \\
\mathrm{Q} & =\mathrm{Q}_{1}+\mathrm{Q}_{2} \\
& =\left(\mathrm{I}_{1 \mathrm{rms}}\right)^{2} \cdot 4+\left(\mathrm{I}_{2 \mathrm{rms}}\right)^{2} \cdot(1) \\
& =3400 \mathrm{VAR}
\end{aligned}
$$

$$
\text { So, } \mathrm{S}=\mathrm{P}+\mathrm{jQ}=(6200+\mathrm{j} 3400) \mathrm{VA}
$$

26.

when $\mathrm{I}=0$,
\Rightarrow impedance seen by the source should be infinite

$$
\begin{aligned}
& \Rightarrow Z=\infty \\
& \begin{aligned}
& \therefore Z=(50+j 5)+(j 5) \| j\left(5-X_{c}\right) \\
&=50+j 5+\frac{\mathrm{j} 5 \times \mathrm{j}\left(5-\mathrm{X}_{\mathrm{c}}\right)}{\mathrm{j} 5+\mathrm{j}\left(5-\mathrm{X}_{\mathrm{c}}\right)}=\infty \\
& \Rightarrow \mathrm{j}\left(10-\mathrm{X}_{\mathrm{c}}\right)=0
\end{aligned} \\
& \Rightarrow X_{\mathrm{c}}=10 \Rightarrow \frac{1}{\omega \mathrm{c}}=10 \\
& \Rightarrow C=\frac{1}{5000 \times 10}=20 \mu \mathrm{~F}
\end{aligned}
$$

27. Ans: (c)

Sol: $I_{\mathrm{rms}}=\sqrt{3^{2}+\left(\frac{4}{\sqrt{2}}\right)^{2}+\left(\frac{4}{\sqrt{2}}\right)^{2}}$

$$
=\sqrt{25}=5 \mathrm{~A}
$$

Power dissipation $=I_{\text {rms }}^{2} R$

$$
=5^{2} \times 10=250 \mathrm{~W}
$$

28.

Sol: $\mathrm{X}_{\mathrm{C}}=\mathrm{X}_{\mathrm{L}} \Rightarrow \omega=\omega_{0}$, the circuit is at resonance
$\mathrm{V}_{\mathrm{C}}=\mathrm{QV}_{\mathrm{S}} \angle-90^{\circ}$
$\mathrm{Q}=\frac{\omega_{0} \mathrm{~L}}{\mathrm{R}}=\frac{\mathrm{X}_{\mathrm{L}}}{\mathrm{R}}=2$

$$
=\frac{1}{\omega_{0} c R}=\frac{X_{C}}{R}=2
$$

$\Rightarrow \mathrm{V}_{\mathrm{C}}=200 \angle-90^{\circ}=-\mathrm{j} 200 \mathrm{~V}$
29.

Sol: Series RLC circuit
$\mathrm{f}=\mathrm{f}_{\mathrm{L}}, \mathrm{PF}=\cos \phi=0.707$ (lead)
$\mathrm{f}=\mathrm{f}_{\mathrm{H}}, \mathrm{PF}=\cos \phi=0.707$ (lag)
$\mathrm{f}=\mathrm{f}_{\mathrm{o}}, \mathrm{PF}=\cos \phi=1$

30. Ans: (b)

Sol: Network is in steady state (since no switch is given)

Let $\mathrm{I}=1 \mathrm{~mA}$
$\omega=\omega_{0}($ Given $)$
$\Rightarrow \mathrm{I}_{\mathrm{R}}=\mathrm{I}$
31. Ans: (c)

Sol: Since; "I" leads voltage, therefore capacitive effect and hence the operating frequency ($\mathrm{f}<\mathrm{f}_{0}$)

32.

Sol: $Y=\frac{1}{R_{L}+j \omega L}+\frac{1}{R_{C}-\frac{j}{\omega C}}$

$$
=\frac{R_{L}-j \omega L}{R_{L}^{2}+(\omega L)^{2}}+\frac{R_{C}+j / \omega c}{R_{C}^{2}+(1 / \omega C)^{2}}
$$

$$
\mathrm{j}-\text { term } \Rightarrow 0
$$

$$
\omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}} \sqrt{\frac{\mathrm{R}_{\mathrm{L}}^{2}-\frac{\mathrm{L}}{\mathrm{C}}}{\mathrm{R}_{\mathrm{C}}^{2}-\frac{\mathrm{L}}{\mathrm{C}}}} \mathrm{rad} / \mathrm{sec}
$$

33.

Sol:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{L}}=\mathrm{QI} \angle-90^{\circ}=-\mathrm{jQI} \\
& \mathrm{I}_{\mathrm{C}}=\mathrm{QI} \angle 90^{\circ}=\mathrm{jQI} \\
& \mathrm{I}_{\mathrm{L}}+\mathrm{I}_{\mathrm{C}}=0 \\
& \left|\mathrm{I}_{\mathrm{R}}+\mathrm{I}_{\mathrm{L}}\right|=|\mathrm{I}-\mathrm{jQI}| \\
& =\mathrm{I} \sqrt{1+\mathrm{Q}^{2}}>\mathrm{I} \\
& \left|\mathrm{I}_{\mathrm{R}}+\mathrm{I}_{\mathrm{C}}\right|=|\mathrm{I}+\mathrm{jQI}| \\
& =\mathrm{I} \sqrt{1+\mathrm{Q}^{2}}>\mathrm{I}
\end{aligned}
$$

The given circuit is shown in Fig.
$\mathrm{Z}_{\mathrm{AB}}=10+\mathrm{Z}_{1}$
where, $Z_{1}=\left(\frac{-j}{\omega}\right) \|\left(j 4 \omega-\frac{j}{\omega}\right)$

$$
\begin{aligned}
& =\frac{\left(\frac{-j}{\omega}\right)\left(j 4 \omega-\frac{j}{\omega}\right)}{\frac{-j}{\omega}+j 4 \omega-\frac{j}{\omega}} \\
& =\frac{4-\frac{1}{\omega^{2}}}{j 4 \omega-\frac{j 2}{\omega}}
\end{aligned}
$$

For circuit to be resonant i.e., $\omega^{2}=\frac{1}{4}$
$\omega=\frac{1}{2}=0.5 \mathrm{rad} / \mathrm{sec}$
$\therefore \omega_{\text {resonance }}=0.5 \mathrm{rad} / \mathrm{sec}$
34.

Sol: (i) $\frac{L}{C}=R^{2} \Rightarrow$ circuit will resonate for all the frequencies, out of infinite number of frequencies we are selecting one frequency.
i.e., $\omega_{0}=\frac{1}{\sqrt{\text { LC }}}=\frac{1}{2} \mathrm{rad} / \mathrm{sec}$
then $Z=R=2 \Omega$.

$$
\begin{aligned}
& I=\frac{V}{Z}=\frac{10 \angle 0^{0}}{2}=5 \angle 0^{0} \\
& i(t)=5 \cos \frac{t}{2} A \\
& Z_{L}=j \omega_{0} L=j 2 \Omega ; Z_{C}=\frac{1}{j \omega_{0} c}=-j 2 \Omega . \\
& I_{L}=\frac{I(2-j 2)}{2+j 2+2-j 2}=\frac{I}{\sqrt{2}} \angle-45^{0}
\end{aligned}
$$

$\mathrm{i}_{\mathrm{L}}=\frac{5}{\sqrt{2}} \cos \left(\frac{\mathrm{t}}{2}-45^{0}\right) \mathrm{A}$
$\mathrm{i}_{\mathrm{c}}=\frac{\mathrm{I}(2+\mathrm{j} 2)}{2+\mathrm{j} 2+2-\mathrm{j} 2}=\frac{\mathrm{I}}{\sqrt{2}} \angle 45^{0}$
$\mathrm{i}_{\mathrm{c}}=\frac{5}{\sqrt{2}} \cos \left(\frac{\mathrm{t}}{2}+45^{\circ}\right) \mathrm{A}$
$P_{\text {avg }}=I_{\mathrm{L}(\mathrm{mms})}^{2} \cdot R+I_{\mathrm{c}(\mathrm{rms})}^{2} \cdot R$
$=\left(\frac{5 / \sqrt{2}}{\sqrt{2}}\right)^{2} .2+\left(\frac{5 / \sqrt{2}}{\sqrt{2}}\right)^{2} .2$
$=25$ watts
(ii) $\frac{L}{C} \neq R^{2}$ circuit will resonate at only one frequency.
i.e., at $\omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{4} \mathrm{rad} / \mathrm{sec}$

Then $Y=\frac{2 R}{R^{2}+\frac{L}{C}}$ mho
$\mathrm{Y}=\frac{2(2)}{2^{2}+\frac{4}{4}}=\frac{4}{5} \mathrm{mho}$
$Z=\frac{5}{4} \Omega$
$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{Z}}=\frac{10 \angle 0^{0}}{5 / 4}=8 \angle 0^{0}$
$\mathrm{i}(\mathrm{t})=8 \cos \frac{\mathrm{t}}{4} \mathrm{~A}$
$\mathrm{Z}_{\mathrm{L}}=\mathrm{j} \omega_{0} \mathrm{~L}=\mathrm{j} 1 \Omega$
$Z_{c}=\frac{1}{j \omega_{0} C}=-j 1 \Omega$

$$
\begin{aligned}
\mathrm{I}_{\mathrm{L}} & =\frac{\mathrm{I}(2-\mathrm{jl})}{2+\mathrm{jl}+2-\mathrm{j} 1}=\frac{\sqrt{5}}{4} \mathrm{I} \cdot \angle \tan ^{-1}\left(\frac{1}{2}\right) \\
\mathrm{i}_{\mathrm{L}} & =\frac{8 \sqrt{5}}{4} \cos \left(\frac{\mathrm{t}}{4}-\tan ^{-1}\left(\frac{1}{2}\right)\right) \\
\mathrm{I}_{\mathrm{c}} & =\frac{\mathrm{I}(2+\mathrm{j} 1)}{2+\mathrm{j} 1+2-\mathrm{jl}}=\frac{\sqrt{5}}{4} \mathrm{I} \angle \tan ^{-1}\left(\frac{1}{2}\right) \\
\mathrm{i}_{\mathrm{c}} & =\frac{8 \sqrt{5}}{4} \cos \left(\frac{\mathrm{t}}{4}+\tan ^{-1}\left(\frac{1}{2}\right)\right) \\
\mathrm{P}_{\mathrm{arg}} & =\mathrm{I}_{\mathrm{Lrms}}^{2} \cdot \mathrm{R}+\mathrm{I}_{\mathrm{Crms}}^{2} \mathrm{R} \\
& =\left(\frac{2 \sqrt{5}}{\sqrt{2}}\right)^{2} \cdot 2+\left(\frac{2 \sqrt{5}}{\sqrt{2}}\right)^{2} \cdot 2=40 \text { Watts }
\end{aligned}
$$

35.

Sol: (i) $Z_{a b}=2+\left(Z_{L}\left\|Z_{C}\right\| 2\right)$

$$
\begin{aligned}
& =2+j X_{L}\left\|-j X_{C}\right\| 2 \\
= & \frac{2+2 X_{L} X_{C}\left(X_{L} X_{C}-j 2\left(X_{L}-X_{C}\right)\right)}{\left(X_{L} X_{C}\right)^{2}+4\left(X_{L}-X_{C}\right)^{2}}
\end{aligned}
$$

$$
\mathrm{j} \text {-term }=0
$$

$$
\Rightarrow-2\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{C}}\right)=0
$$

$$
\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}
$$

$$
\omega_{0} \mathrm{~L}=\frac{1}{\omega_{0} \mathrm{C}}
$$

$$
\omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}=\frac{1}{\sqrt{4.4}}=\frac{1}{4} \mathrm{rad} / \mathrm{sec}
$$

At resonance entire current flows through 2Ω only.
(ii) $\left.\mathrm{Z}_{\mathrm{ab}}\right|_{\omega=\omega_{0}}=2+2=4 \Omega$

$$
\mathrm{X}_{\mathrm{L}}=\mathrm{X}_{\mathrm{C}}
$$

(iii) $V_{i}(t)=V_{m} \sin \left(\frac{t}{4}\right) V$

$$
\mathrm{Z}=4 \Omega
$$

$$
\begin{aligned}
& i(t)=\frac{V_{i}(t)}{Z}=\frac{V_{m}}{4} \sin \left(\frac{t}{4}\right)=\dot{i}_{R} \\
& V=2 i_{R}=\frac{V_{m}}{2} \sin \left(\frac{t}{4}\right) V=V_{C}=V_{L} \\
& i_{C}=C \frac{d V_{C}}{d t}=\frac{V_{m}}{2} \cos \left(\frac{t}{4}\right) \\
& i_{c}=\frac{V_{m}}{2} \sin \left(\frac{t}{4}+90^{\circ}\right) A \\
& i_{L}=\frac{1}{L} \int V_{L} \cdot d t=\frac{-V_{m}}{2} \cos \left(\frac{t}{4}\right) \\
& i_{L}=\frac{V_{m}}{2} \sin \left(\frac{t}{4}-90^{\circ}\right) A
\end{aligned}
$$

OBS: Here $\mathrm{i}_{\mathrm{L}}+\mathrm{i}_{\mathrm{C}}=0$
\Rightarrow LC Combination is like an open circuit.
36. Ans: (d)

Sol:

$$
\mathrm{Q}=\frac{\omega \mathrm{L}}{\mathrm{R}}
$$

$\mathrm{Q}=\frac{2 \omega \mathrm{~L}}{\mathrm{R}}=2 \times$ orginal $\rightarrow \mathrm{Q}-$ doubled

$$
\begin{aligned}
S & =V \cdot I \\
& =V \cdot \frac{V}{R+j \omega L} \times \frac{R-j \omega L}{R-j \omega L}
\end{aligned}
$$

$$
S=\frac{V^{2}}{R^{2}+(\omega L)^{2}}-\frac{V^{2} \cdot j \omega L}{R^{2}+(\omega L)^{2}}
$$

$$
\mathrm{S}=\mathrm{P}+\mathrm{jQ}
$$

Active power $(P)=\frac{V^{2}}{R^{2}+(\omega L)^{2}}$

$$
\mathrm{P}=\frac{\mathrm{V}^{2}}{\mathrm{R}^{2}\left(1+\mathrm{Q}^{2}\right)}
$$

$\mathrm{P} \approx \frac{\mathrm{V}^{2}}{\mathrm{R}^{2} \mathrm{Q}^{2}}$
as Q is doubled, P decreases by four times.
37.

Sol: $Z_{C}=\frac{1}{j \omega C}$

$$
\omega=0 ; \mathrm{Z}_{\mathrm{C}}=\infty \Rightarrow \mathrm{C} \text { :open circuit } \Rightarrow \mathrm{i}_{2}=0
$$

$\omega=\infty ; Z_{C}=0 \Rightarrow C$:Short Circuit $\Rightarrow i_{2}=\frac{E_{m}}{R_{2}} \angle 0^{\circ}$
Transform the given network into phasor domain.

Network is in phasor domain.
By KCL in P-d $\Rightarrow \mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}$
$\mathrm{I}_{1}=\frac{\mathrm{E}_{\mathrm{m}} \angle 0^{\mathrm{o}}}{\mathrm{R}_{1}}$
$\mathrm{I}_{2}=\frac{\mathrm{E}_{\mathrm{m}} \angle 0^{\circ}}{\mathrm{R}_{2}+\frac{1}{\mathrm{j} \omega \mathrm{C}}}=\frac{\mathrm{E}_{\mathrm{m}} \angle 0^{\circ}}{\mathrm{R}_{2}-\frac{\mathrm{j}}{\omega \mathrm{C}}}$
$\mathrm{I}_{2}=\frac{\mathrm{E}_{\mathrm{m}} \angle \tan ^{-1}\left(\frac{1}{\omega \mathrm{CR}_{2}}\right)}{\sqrt{\mathrm{R}^{2}+\left(\frac{1}{\omega \mathrm{C}}\right)}}$
$\omega=\infty \Rightarrow \mathrm{I}_{2}=\frac{\mathrm{E}_{\mathrm{m}} \angle 0^{\circ}}{\mathrm{R}_{2}}$
$\omega=0 \Rightarrow \mathrm{I}_{2}=0 \mathrm{~A}$
$\omega:(0$ and $\infty) \mathrm{j}$ the current phasor I_{2} will always lead the voltage $\mathrm{E}_{\mathrm{m}} \angle 0^{\circ}$.
(a)

(b)

38.

Sol: $R_{2}=0 \Rightarrow I_{2}=\frac{E_{m} \angle 0^{\circ}}{0+\frac{1}{j \omega C}}=E_{m} \omega C \angle 90^{\circ}$
$\mathrm{R}_{2}=\infty \Rightarrow \mathrm{I}_{2}=0 \mathrm{~A}$

(b)

39.

Sol: $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2} ; \mathrm{I}_{1}=\frac{\mathrm{E}_{\mathrm{m}} \angle 0^{\circ}}{\mathrm{R}_{1}}$

$$
\begin{aligned}
\mathrm{I}_{2} & =\frac{\mathrm{E}_{\mathrm{m}} \angle 0^{\circ}}{\mathrm{R}_{2}+\mathrm{j} \omega \mathrm{~L}} \\
& =\frac{\mathrm{E}_{\mathrm{m}}}{\sqrt{\mathrm{R}_{2}^{2}+(\mathrm{WL})^{2}}} \angle-\tan ^{-1}\left(\frac{\omega \mathrm{~L}}{\mathrm{R}_{2}}\right)
\end{aligned}
$$

(i) If " ω " Varied
(a)

(b)

ii. If " R_{2} " is varied
(a)

(b)

40. Ans: (a)

Sol: The given circuit is a bridge.
$\mathrm{I}_{\mathrm{R}}=0$ is the bridge is balanced. i.e., $\mathrm{Z}_{1} \mathrm{Z}_{4}=\mathrm{R}_{2} \mathrm{R}_{3}$
Where $\mathrm{Z}_{1}=\mathrm{R}_{1}+\mathrm{j} \omega \mathrm{L}_{1}$,

$$
Z_{4}=R_{4}-\frac{j}{\omega C_{4}}
$$

As $R_{2} \quad R_{3}$ is real, imaginary part of $Z_{1} Z_{4}=0$
$\omega \mathrm{L}_{1} \mathrm{R}_{4}-\frac{\mathrm{R}_{1}}{\omega \mathrm{C}_{4}}=0 \quad$ or $\quad \frac{\omega \mathrm{L}_{1}}{\mathrm{R}_{1}}=\frac{1}{\omega \mathrm{C}_{4} \mathrm{R}_{4}}$
or $\mathrm{Q}_{1}=\mathrm{Q}_{4}$
where Q is the Q uality factor.

5. Magnetic Circuits

1.

Sol: $\mathrm{X}_{\mathrm{C}}=12$ (Given)
$\mathrm{X}_{\mathrm{eq}}=12$ (must for series resonance)
So the dot in the second coil at point "Q"
$\mathrm{L}_{\mathrm{eq}}=\mathrm{L}_{1}+\mathrm{L}_{2}-2 \mathrm{M}$
$\mathrm{L}_{\mathrm{eq}}=\mathrm{L}_{1}+\mathrm{L}_{2}-2 \mathrm{~K} \sqrt{\mathrm{~L}_{1} \mathrm{~L}_{2}}$
$\omega \mathrm{L}_{\text {eq }}=\omega \mathrm{L}_{1}+\omega \mathrm{L}_{2}-2 \mathrm{~K} \sqrt{\mathrm{~L}_{1} \mathrm{~L}_{2} \omega \cdot \omega}$
$12=8+8-2 \mathrm{~K} \sqrt{8.8}$
$\Rightarrow \mathrm{K}=0.25$
02.

Sol: $\mathrm{X}_{\mathrm{C}}=14$ (Given)
$X_{\text {Leq }}=14$ (must for series resonance)
So the dot in the $2^{\text {nd }}$ coil at " P "
$\mathrm{L}_{\mathrm{eq}}=\mathrm{L}_{1}+\mathrm{L}_{2}+2 \mathrm{M}$
$\mathrm{L}_{\text {eq }}=\mathrm{L}_{1}+\mathrm{L}_{2}+\mathrm{K} \sqrt{\mathrm{L}_{1} \mathrm{~L}_{2}}$
$\omega \mathrm{L}_{\text {eq }}=\omega \mathrm{L}_{1}+\omega \mathrm{L}_{2}+2 \mathrm{~K} \sqrt{\omega \mathrm{~L}_{1} \mathrm{~L}_{2} \omega}$
$14=2+8+2 \mathrm{~K} \sqrt{2(8)}$
$\Rightarrow \mathrm{K}=0.5$
03.

Sol: $\mathrm{L}_{\mathrm{ab}}=4 \mathrm{H}+2-2+6 \mathrm{H}+2-2+8 \mathrm{H}-2-2$
$L_{a b}=14 \mathrm{H}$

$6 \mathrm{H}+2-2$
04. Ans: (c)

Sol: Impedance seen by the source

$$
\begin{aligned}
Z_{\mathrm{S}}= & \frac{\mathrm{Z}_{\mathrm{L}}}{16}+(4-\mathrm{j} 2) \\
& =\frac{10 \angle 30^{\circ}}{16}+(4-\mathrm{j} 2) \\
& =4.54-\mathrm{j} 1.69
\end{aligned}
$$

5.

Sol: $Z_{\text {in }}=\left(\frac{N_{1}}{N_{2}}\right)^{2} \cdot Z_{L}$

$$
\mathrm{R}_{\mathrm{in}}^{\prime}=\mathrm{n}^{2} .5
$$

For maximum power transfer; $\mathrm{R}_{\mathrm{L}}=\mathrm{R}_{\mathrm{s}}$

$$
\mathrm{n}^{2} 5=45 \Rightarrow \mathrm{n}=3
$$

6. Ans: (b)

Sol:

Apply KVL at input loop

$$
\begin{equation*}
-6-30 \times 10^{-3} \frac{\mathrm{di}_{1}}{\mathrm{dt}}+5 \times 10^{-3} \frac{\mathrm{di}_{2}}{\mathrm{dt}}-50 \mathrm{i}_{1}=0 \ldots \tag{1}
\end{equation*}
$$

Take Laplace transform
$-\frac{6}{\mathrm{~s}}+\left[-30 \times 10^{-3}(\mathrm{~s})-50\right] \mathrm{I}_{1}(\mathrm{~s})+5 \times 10^{-3} \mathrm{sI}_{2}(\mathrm{~s})=0$.
Apply KVL at output loop
$\mathrm{V}_{2}(\mathrm{~s})-30 \times 10^{-3} \frac{\mathrm{di}_{2}}{\mathrm{dt}}+5 \times 10^{-3} \frac{\mathrm{di}_{1}}{\mathrm{dt}}=0$
Take Laplace transform
$\mathrm{V}_{2}(\mathrm{~s})-30 \times 10^{-3} \mathrm{si}_{2}(\mathrm{~s})+5 \times 10^{-3} \mathrm{si}_{1}(\mathrm{~s})=0$
Substitute $\mathrm{I}_{2}(\mathrm{~s})=0$ in above equation
$\mathrm{V}_{2}+5 \times 10^{-3} \mathrm{sI}_{1}(\mathrm{~s})=0$ \qquad
From equation (2)

$$
\begin{align*}
& -\frac{6}{s}+\left(-30 \times 10^{-3}(\mathrm{~s})+50\right) \mathrm{I}_{1}(\mathrm{~s})=0 \\
& \mathrm{I}_{1}(\mathrm{~s})=\frac{-6}{\mathrm{~s}\left(30 \times 10^{-3}(\mathrm{~s})+50\right)} \cdots \cdots \tag{4}
\end{align*}
$$

Substitute eqn (4) in eqn (3)

$$
\mathrm{V}_{2}(\mathrm{~s})=\frac{-5 \times 10^{-3}(\mathrm{~s})(-6)}{\mathrm{s}\left(30 \times 10^{-3}(\mathrm{~s})+50\right)}
$$

Apply Initial value theorem

$$
\begin{aligned}
& \operatorname{Lt}_{\mathrm{s} \rightarrow \infty} \mathrm{~s} \frac{-5 \times 10^{-3}(\mathrm{~s})(-6)}{\mathrm{s}\left(30 \times 10^{-3}(\mathrm{~s})+50\right)} \\
& \mathrm{v}_{2}(\mathrm{t})=\frac{-5 \times 10^{-3} \times(-6)}{30 \times 10^{-3}}=+1
\end{aligned}
$$

7.

Sol: $\mathrm{R}_{\text {in }}{ }^{\prime}=\frac{8}{2^{2}}=2 \Omega$
$\mathrm{R}_{\text {in }}=3+\mathrm{R}_{\text {in }}{ }^{\prime}=3+2=5 \Omega$
$\mathrm{I}_{1}=\frac{10 \angle 20}{5}=2 \angle 20^{\circ}$
$\frac{\mathrm{I}_{1}}{\mathrm{I}_{2}}=\mathrm{n}=2 \Rightarrow \mathrm{I}_{2}=1 \angle 20^{\circ} \mathrm{A}$
08.

Sol: By the definition of KVL in phasor domain
$\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{0}-\mathrm{V}_{2}=0$
$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{2}=\mathrm{V}_{\mathrm{S}}\left(1-\frac{\mathrm{V}_{2}}{\mathrm{~V}_{\mathrm{S}}}\right)$
$\mathrm{V}=\mathrm{ZI}$
By KVL
$V_{S}=j \omega L_{1} \cdot I_{1}+j \omega M(0)$
$\mathrm{V}_{2}=\mathrm{j} \omega \mathrm{L}_{2}(0)+\mathrm{j} \omega \mathrm{MI}_{1}$
$\mathrm{V}_{0}=\mathrm{V}_{\mathrm{S}}\left(1-\frac{\mathrm{M}}{\mathrm{L}_{1}}\right)$

6. Two Port Networks

1.

Sol: The defining equations for open circuit impedance parameters are:
$\mathrm{V}_{1}=\mathrm{Z}_{11} \mathrm{I}_{1}+\mathrm{Z}_{12} \mathrm{I}_{2}$
$\mathrm{V}_{2}=\mathrm{Z}_{21} \mathrm{I}_{1}+\mathrm{Z}_{22} \mathrm{I}_{2}$
$[\mathrm{Z}]=\left[\begin{array}{cc}\frac{10}{\mathrm{~s}} & \frac{4 \mathrm{~s}+10}{\mathrm{~s}} \\ \frac{10}{\mathrm{~s}} & \frac{3 \mathrm{~s}+10}{\mathrm{~s}}\end{array}\right]^{2} \Omega$

02. Ans: (b)

Sol: The matrix given is $\left[\begin{array}{cc}0 & \frac{-1}{2} \\ \frac{1}{2} & \frac{1}{2}\end{array}\right]=\left[\begin{array}{ll}\mathrm{y}_{11} & \mathrm{y}_{12} \\ \mathrm{y}_{21} & \mathrm{y}_{22}\end{array}\right]$ since $y_{11} \neq y_{22}$
\Rightarrow Asymmetrical, and

$$
\mathrm{Y}_{12 \neq \mathrm{y}_{21}}{ }^{\prime}
$$

\Rightarrow Non reciprocal network
03.

Sol: Convert Y to Δ :

Fig:A
Fig: B

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{A}}=\left[\begin{array}{cc}
\frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right] \quad \mathrm{Y}_{\mathrm{B}}=\left[\begin{array}{cc}
\mathrm{S} & -\mathrm{S} \\
-\mathrm{S} & \mathrm{~S}
\end{array}\right] \\
& \mathrm{Y}=\left[\begin{array}{cc}
\mathrm{S}+\frac{2}{3} & -\mathrm{S}-\frac{1}{3} \\
-\mathrm{S}-\frac{1}{3} & \mathrm{~S}+\frac{2}{3}
\end{array}\right] \mathrm{mho}
\end{aligned}
$$

4.

Sol:

$$
\mathrm{Y}_{\mathrm{A}}=\left[\begin{array}{cc}
\frac{2}{3} & -\frac{1}{3} \\
-\frac{1}{3} & \frac{2}{3}
\end{array}\right] \quad \mathrm{Y}_{\mathrm{B}}=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & 1
\end{array}\right]
$$

$$
Y=\left[\begin{array}{cc}
\frac{7}{6} & -\frac{5}{6} \\
-\frac{5}{6} & \frac{5}{3}
\end{array}\right]
$$

5.

Sol: Convert Y to Δ :

$$
\text { Convert Y to } \Delta \text { : }
$$

$\mathrm{Y}_{\mathrm{A}}=\left[\begin{array}{cc}\frac{2}{3} & -\frac{1}{3} \\ -\frac{1}{3} & \frac{2}{3}\end{array}\right]$ mho $\quad \mathrm{Y}_{\mathrm{B}}=\left[\begin{array}{cc}\frac{2}{6} & -\frac{1}{6} \\ -\frac{1}{6} & \frac{2}{6}\end{array}\right]$ mho

$$
Y=\left[\begin{array}{cc}
\frac{6}{6} & -\frac{3}{6} \\
-\frac{3}{6} & \frac{6}{6}
\end{array}\right]=\left[\begin{array}{cc}
1 & -\frac{1}{2} \\
-\frac{1}{2} & 1
\end{array}\right]
$$

6.

Sol:

$$
\begin{aligned}
& \mathrm{T}_{1}=\mathrm{T}_{2}=\left[\begin{array}{cc}
1+\frac{1}{-\mathrm{jl}} & 1 \\
\frac{1}{-\mathrm{j} 1} & 1
\end{array}\right] \\
&=\left[\begin{array}{cc}
1+\mathrm{j} & 1 \\
\mathrm{j} & 1
\end{array}\right] \\
& \mathrm{T}_{3} \Rightarrow \mathrm{Z}_{1}=1 \Omega ; \mathrm{Z}_{2}=\infty \\
& \mathrm{T}_{3}=\left[\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right] \\
& \mathrm{T}=\left(\mathrm{T}_{1}\right)\left(\mathrm{T}_{2}\right)\left(\mathrm{T}_{3}\right) \\
& \mathrm{T}=\left[\begin{array}{cc}
\mathrm{j} 3 & 2+\mathrm{j} 4 \\
-1+\mathrm{j} 2 & \mathrm{j} 3
\end{array}\right]
\end{aligned}
$$

7.

Sol: $T_{1}: Z=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$

$$
\begin{aligned}
& \mathrm{T}_{1}=\left[\begin{array}{ll}
2 & 3 \\
1 & 2
\end{array}\right] \\
& \mathrm{T}_{2}: \mathrm{Z}_{1}=0 ; \mathrm{Z}_{2}=2 \Omega \\
& 5 \\
& \mathrm{~T}_{2}=\left[\begin{array}{ll}
1 & 0 \\
\frac{1}{2} & 1
\end{array}\right] \\
& \mathrm{T}=\left[\mathrm{T}_{1}\right]\left[\mathrm{T}_{2}\right] \\
& \mathrm{T}=\left[\begin{array}{cc}
3.5 & 3 \\
2 & 2
\end{array}\right]
\end{aligned}
$$

8. Ans: (a)

Sol: For $\mathrm{I}_{2}=0(\mathrm{O} / \mathrm{P}$ open), the Network is shown in Fig. 1

Fig. 1
$\mathrm{V}_{1}=-2 \mathrm{I}_{1}$ \qquad
$\mathrm{Z}_{11}=\frac{\mathrm{V}_{1}}{\mathrm{I}_{1}}=-2$
$V_{2}=-6 I_{1}+V_{1}$
From (1) and (2)
$V_{2}=-6 I_{1}-2 I_{1}$
or $\mathrm{V}_{2}=-8 \mathrm{I}_{1}$
$\mathrm{Z}_{21}=\frac{\mathrm{V}_{2}}{\mathrm{I}_{1}}=-8$
For $\mathrm{I}_{1}=0(\mathrm{I} / \mathrm{P}$ open), the network is shown in Fig. 2

Note: that the dependent current source with current $3 I_{1}$ is open circuited.

$$
\begin{array}{ll}
\mathrm{V}_{1}=1 \mathrm{I}_{2}, & \mathrm{Z}_{12}=\frac{\mathrm{V}_{1}}{\mathrm{I}_{2}}=1 \\
\mathrm{~V}_{2}=3 \mathrm{I}_{2}, & \mathrm{Z}_{22}=\frac{\mathrm{V}_{2}}{\mathrm{I}_{2}}=3 \\
{[\mathrm{Z}]=\left[\begin{array}{ll}
-2 & 1 \\
-8 & 3
\end{array}\right]} &
\end{array}
$$

9.

Sol: By Nodal

$$
\begin{aligned}
& -\mathrm{I}_{1}+\mathrm{V}_{1}-3 \mathrm{~V}_{2}+\mathrm{V}_{1}+2 \mathrm{~V}_{1}-\mathrm{V}_{2}=0 \\
& -\mathrm{I}_{2}+\mathrm{V}_{2}+\mathrm{V}_{2}-2 \mathrm{~V}_{1}=0 \\
& \mathrm{Y}=\left[\begin{array}{cc}
4 & -4 \\
-3 & 2
\end{array}\right] \mathrm{U} \\
& {[\mathrm{Z}]=\mathrm{Y}^{-1}}
\end{aligned}
$$

We can also obtain [g], [h], [T] and [T] ${ }^{-1}$ by re-writing the equations.

10.

Sol: The defining equations for open-circuit impedance parameters are:
$\mathrm{V}_{1}=\mathrm{Z}_{11} \mathrm{I}_{1}+\mathrm{Z}_{12} \mathrm{I}_{2}$
$\mathrm{V}_{2}=\mathrm{Z}_{21} \mathrm{I}_{1}+\mathrm{Z}_{22} \mathrm{I}_{2}$
In this case, the individual Z-parameter matrices get added.
$(\mathrm{Z})=\left(\mathrm{Z}_{\mathrm{a}}\right)+\left(\mathrm{Z}_{\mathrm{b}}\right)$
$[Z]=\left[\begin{array}{cc}10 & 2 \\ 2 & 7\end{array}\right] \Omega$
11.

Sol: For this case the individual y-parameter matrices get added to give the y-parameter matrix of the overall network.
$\mathrm{Y}=\mathrm{Y}_{\mathrm{a}}+\mathrm{Y}_{\mathrm{b}}$
The individual y-parameters also get added
$\mathrm{Y}_{11}=\mathrm{Y}_{11 \mathrm{a}}+\mathrm{Y}_{11 \mathrm{~b}}$ etc
$[\mathrm{Y}]=\left[\begin{array}{cc}1.4 & -0.4 \\ -0.4 & 1.4\end{array}\right] \mathrm{mho}$
12. Ans: (c)

Sol: $\mathrm{Y}_{11}=\left.\frac{\mathrm{I}_{1}}{\mathrm{~V}_{1}}\right|_{\mathrm{V}_{2}=0}$

$Y_{11}=\frac{I_{1}}{0}=\infty$
13.

Sol: (i). $\left[\mathrm{T}_{\mathrm{a}}\right]=\left[\begin{array}{ll}1+\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}} & \mathrm{Z}_{1} \\ \frac{1}{\mathrm{Z}_{2}} & 1\end{array}\right]$
(ii). $\left[\mathrm{T}_{\mathrm{a}}\right]=\left[\begin{array}{cc}1 & \mathrm{Z}_{1} \\ \frac{1}{\mathrm{Z}_{2}} & 1+\frac{\mathrm{Z}_{1}}{\mathrm{Z}_{2}}\end{array}\right]$
$\left[T_{a}\right]$ and $\left[T_{b}\right]$ are obtained by defining equations for transmission parameters.
14.

Sol: In this case, the individual T-matrices get multiplied

$$
\begin{aligned}
(\mathrm{T}) & =\left(\mathrm{T}_{1}\right) \times\left(\mathrm{T}_{\mathrm{N} 1}\right) \\
(\mathrm{T}) & =\left(\mathrm{T}_{1}\right)\left(\mathrm{T}_{\mathrm{N} 1}\right)=\left(\begin{array}{cc}
1+\mathrm{s} / 4 & \mathrm{~s} / 2 \\
1 / 2 & 1
\end{array}\right)\left(\begin{array}{ll}
8 & 4 \\
2 & 5
\end{array}\right) \\
& =\left(\begin{array}{cc}
3 \mathrm{~s}+8 & 3.5 \mathrm{~s}+4 \\
6 & 7
\end{array}\right)
\end{aligned}
$$

15.

Sol: $\mathrm{Z}_{\text {in }}=\mathrm{R}_{\text {in }}=\frac{\mathrm{V}_{1}}{\mathrm{I}_{1}}=\frac{A V_{2}-\mathrm{BI}_{2}}{C V_{2}-\mathrm{DI}_{2}}=\frac{\mathrm{V}_{2}-2 \mathrm{I}_{2}}{\mathrm{~V}_{2}-3 \mathrm{I}_{2}}$,

$$
\begin{aligned}
& \mathrm{V}_{2}=10\left(-\mathrm{I}_{2}\right) \\
& \mathrm{Z}_{\mathrm{in}}=\mathrm{R}_{\text {in }}=\frac{12}{13} \Omega
\end{aligned}
$$

16.

$$
\begin{aligned}
& \frac{3 \mathrm{I}_{1}}{2}-\mathrm{V}_{2}-\frac{\mathrm{I}_{1}}{2}=0 \\
& \mathrm{~V}_{2}=\mathrm{I}_{1} \\
& \Rightarrow \mathrm{Z}_{21}=1 \Omega=\mathrm{Z}_{12} \\
& \mathrm{Z}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \Omega
\end{aligned}
$$

$$
\mathrm{Y}=\mathrm{Z}^{-1}=\left[\begin{array}{ll}
\frac{2}{3} & \frac{-1}{3} \\
\frac{-1}{3} & \frac{2}{3}
\end{array}\right] \mathrm{U}
$$

Now [T] parameters;
$\mathrm{V}_{1}=2 \mathrm{I}_{1}+\mathrm{I}_{2}$
$\mathrm{V}_{2}=\mathrm{I}_{1}+2 \mathrm{I}_{2}$
$\Rightarrow \mathrm{I}_{1}=\mathrm{V}_{2}-2 \mathrm{I}_{2}$ \qquad
Substituting (3) in (1):
$\mathrm{V}_{1}=2\left(\mathrm{~V}_{2}-2 \mathrm{I}_{2}\right)+\mathrm{I}_{2}=2 \mathrm{~V}_{2}-3 \mathrm{I}_{2} \ldots \ldots(4$
$\mathrm{T}=\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$
$\mathrm{T}^{1}=\mathrm{T}^{-1}=\left[\begin{array}{cc}2 & -3 \\ -1 & 2\end{array}\right]$
Now h parameters
$2 \mathrm{I}_{2}=-\mathrm{I}_{1}+\mathrm{V}_{2}$
$I_{2}=\frac{-I_{1}}{I_{2}}+\frac{V_{2}}{2}$
Substitute (5) in (1)
$\mathrm{V}_{1}=2 \mathrm{I}_{1} \frac{-\mathrm{I}_{1}}{2}+\frac{\mathrm{V}_{2}}{2}$
$\mathrm{V}_{1}=\frac{3}{2} \mathrm{I}_{1}+\frac{1}{2} \mathrm{~V}_{2}$
$\mathrm{h}=\left[\begin{array}{cc}\frac{3}{2} & \frac{1}{2} \\ \frac{-1}{2} & \frac{1}{2}\end{array}\right]$
$\mathrm{g}=[\mathrm{h}]^{-1}=\left[\begin{array}{ll}\frac{1}{2} & \frac{-1}{2} \\ \frac{1}{2} & \frac{3}{2}\end{array}\right]$
17. Ans: (a)

Sol: $Y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{V_{1}=0}$
just use reciprocity of fig (a)

Now use Homogeneity

So, $Y_{22}=\left.\frac{I_{2}}{V_{2}}\right|_{\mathrm{V}_{1}=0}=\frac{5}{5}=1 \mathrm{mho}$
This has noting to do with fig (b) since fig (b) also valid for some specific resistance of 2Ω at port-1, but $\mathrm{Y}_{22}, \mathrm{~V}_{1}=0$. So S.C port-1
18.

Sol: $\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\frac{\mathrm{N}_{2}}{\mathrm{~N}_{1}}=\mathrm{n}=\frac{-\mathrm{I}_{1}}{\mathrm{I}_{2}}$
$\frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}}=\mathrm{n}$
$\Rightarrow \mathrm{V}_{1}=\frac{1}{\mathrm{n}} \mathrm{V}_{2}-(0) \mathrm{I}_{2}$
$\Rightarrow \mathrm{T}=\left[\begin{array}{cc}\frac{1}{\mathrm{n}} & 0 \\ 0 & \mathrm{n}\end{array}\right]$
$\mathrm{T}^{1}=\mathrm{T}^{-1}=\left[\begin{array}{ll}\mathrm{n} & 0 \\ 0 & \frac{1}{\mathrm{n}}\end{array}\right]$
$\mathrm{T}^{1}=\mathrm{T}^{-1}=\left[\begin{array}{ll}\mathrm{n} & 0 \\ 0 & \frac{1}{\mathrm{n}}\end{array}\right]$
Now h-parameters
$\mathrm{V}_{1}=(0) \mathrm{I}_{1}+\frac{1}{\mathrm{n}} \mathrm{V}_{2}$
$\mathrm{I}_{2}=\frac{-\mathrm{I}_{1}}{\mathrm{n}}+(0) \mathrm{V}_{2}$
$g=\left[\begin{array}{cc}0 & \frac{1}{\mathrm{n}} \\ \frac{-1}{\mathrm{n}} & 0\end{array}\right]$
$\mathrm{h}=\left[\begin{array}{cc}0 & -\mathrm{n} \\ \mathrm{n} & 0\end{array}\right]$

Note: In an ideal transformer, it is impossible to express V_{1} and V_{2} interms of I_{2} and I_{2}, hence the ' Z ' parameters do not exist. Similarly, the y parameters.

19. Ans: (c)

Sol: $Z_{22}=\left.\frac{V_{2}}{I_{2}^{1}}\right|_{\mathrm{V}_{1}=0}$
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{1}{\mathrm{n}}=\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}$
$V_{1}=\frac{1}{n} V_{2}$
$\frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{\mathrm{R}}=\mathrm{I}_{1}$

$\mathrm{I}_{2}^{1}=\mathrm{I}_{2}+\mathrm{I}_{1}$
$\frac{1}{\mathrm{n}}=\frac{\mathrm{I}_{2}}{\mathrm{I}_{1}}=\frac{\mathrm{I}_{2}^{1}-\mathrm{I}_{1}}{\mathrm{I}_{1}}=\frac{\mathrm{I}_{2}^{1}}{\mathrm{I}_{1}}-1$
$\frac{\mathrm{I}_{2}^{1}}{\mathrm{I}_{1}}=\frac{1}{\mathrm{n}}+1=\frac{1+\mathrm{n}}{\mathrm{n}}$
$I_{2}^{1}=\left(\frac{1+n}{n}\right) I_{1}$
$\mathrm{I}_{2}^{1}=\left(\frac{1+\mathrm{n}}{\mathrm{n}}\right)\left(\frac{\mathrm{V}_{2}-\mathrm{V}_{1}}{\mathrm{R}}\right)$
$\mathrm{I}_{2}^{1}=\left(\frac{1+\mathrm{n}}{\mathrm{n}}\right)\left(\frac{\mathrm{V}_{2}-\frac{1}{\mathrm{n}} \mathrm{V}_{2}}{\mathrm{R}}\right)$
$\frac{I_{2}^{1}}{V_{2}}=\left(\frac{1+n}{n}\right)\left(\frac{n-1}{n R}\right)$
$\frac{\mathrm{V}_{2}}{\mathrm{I}_{2}^{1}}=\frac{\mathrm{n}^{2} \mathrm{R}}{\mathrm{n}^{2}-1}$
20.

Sol:

For series parallel connection individual h-parameters can be added.
\therefore For network $1, \mathrm{~h}_{1}=\mathrm{g}_{1}^{-1}$

$$
=\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]
$$

For network 2, $\mathrm{h}_{2}=\mathrm{g}_{2}^{-1}$

$$
\begin{aligned}
& =\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right] \\
& \therefore \mathrm{h}=\left[\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right]+\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
\end{aligned}
$$

\therefore overall g-parameters,

$$
\begin{aligned}
& \mathrm{g}=\mathrm{h}^{-1}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]^{-1}=\frac{1}{3}\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \\
& \mathrm{g}=\left[\begin{array}{cc}
2 / 3 & 1 / 3 \\
1 / 3 & 2 / 3
\end{array}\right]
\end{aligned}
$$

7. Graph Theory

01. Ans: (c)

Sol: $\mathrm{n}>\frac{\mathrm{b}}{2}+1$
Note: Mesh analysis simple when the nodes are more than the meshes.
02. Ans: (c)

Sol: Loops $=b-(n-1) \Rightarrow$ loops $=5$

$$
\mathrm{n}=7 \quad \therefore \mathrm{~b}=11
$$

3. Ans: (a)
4.

Sol: Nodal equations required $=\mathrm{f}$-cut sets

$$
=(\mathrm{n}-1)=(10-1)=9
$$

Mesh equations required $=\mathrm{f}$-loops

$$
=\mathrm{b}-\mathrm{n}+1=17-10+1=8
$$

So, the number of equations required
$=\operatorname{Minimum}($ Nodal, mesh $)=\operatorname{Min}(9,8)=8$
05. Ans: (c)

Sol: not a tree (Because trees are not in closed path)

06. Ans: (a)
07.

Sol: For a complete graph ;

$$
\begin{aligned}
& \mathrm{b}=\mathrm{n}_{\mathrm{C}_{2}} \Rightarrow \frac{\mathrm{n}(\mathrm{n}-1)}{2}=66 \\
& \mathrm{n}=12
\end{aligned}
$$

$$
\text { f-cut sets }=(n-1)=11
$$

f-loops $=(b-n+1)=55$
f-loop $=\mathrm{f}$-cutset matrices $=\mathrm{n}^{(\mathrm{n}-2)}$

$$
=12^{12-2}=12^{10}
$$

08. Ans: (a)

Sol: Let $\mathrm{N}=1$
Nodes $=1$, Branches $=0$; f-loops $=0$
Let $\mathrm{N}=2$

Nodes $=2 ;$ Branches $=1 ;$ f-loop $=0$
Let $\mathrm{N}=3$

Nodes $=3 ;$ Branches $=3 ;$ f-loop $=1$
\Rightarrow Links $=1$
Let $\mathrm{N}=4$

Nodes $=4$; Branches $=4 ;$ f-loops $=$ Links $=1$
Still N $=4$

Branches $=6$; f-loops $=$ Links $=3$
Let $\mathrm{N}=5$

Nodes $=5$; Branches $=8 ; \mathrm{f}-$ loops $=$ Links $=4$ etc
Therefore, the graph of this network can have at least " N " branches with one or more closed paths to exist.
09. Ans: (b)

Sol:

10. Ans: (d)

Sol:
(a) $1,2,3,4 \rightarrow$

(b) 2,3,4,6 \rightarrow

(c) $1,4,5,6$ \rightarrow

(d)1,3,4,5
11. Ans: (b)

Sol: $\mathrm{m}=\mathrm{b}-\mathrm{n}+1=8-5+1=4$
12. Ans: (d)
13. Ans: (d)

Sol: The valid cut - set is (1,3,4,6)

14. Ans: (b)

Sol:

15. Ans: (d)

Sol:

Fundamental loop should consist only one link, therefore option (d) is correct.

8. Passive Filters

1.

Sol:
$\left.\begin{array}{l}\omega=0 \Rightarrow V_{0}=V_{i} \\ \omega=\infty \Rightarrow V_{0}=0\end{array}\right\} \Rightarrow$ Low pass filter
02.

Sol: $\omega=0 \Rightarrow \mathrm{~V}_{0}=\frac{\mathrm{V}_{\mathrm{i}} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}$
" V_{0} " is attenuated $\Rightarrow \mathrm{V}_{0}=0$
$\omega=\infty \Rightarrow V_{0}=V_{i}$
It represents a high pass filter characteristics.
03.

Sol: $\mathrm{H}(\mathrm{s})=\frac{\mathrm{V}_{\mathrm{i}}(\mathrm{s})}{\mathrm{I}(\mathrm{s})}=\frac{\mathrm{S}^{2} \mathrm{LC}+\mathrm{SRC}+1}{\mathrm{SC}}$
Put $s=j \omega i=-\frac{\omega^{2} L C+j \omega R C+1}{j \omega C}$
$\omega=0 \Rightarrow \mathrm{H}(\mathrm{s})=0$
$\omega=\infty \Rightarrow \mathrm{H}(\mathrm{s})=0$
It represents band pass filter characteristics
04.

Sol: $\omega=0 \Rightarrow \mathrm{~V}_{0}=0$
$\omega=\infty \Rightarrow V_{0}=0$
It represents Band pass filter characteristics
05.

Sol: $\omega=0 \Rightarrow V_{0}=0$
$\omega=\infty \Rightarrow V_{0}=V_{i}$
It represents High Pass filter characteristics.
06.

Sol: $H(s)=\frac{1}{s^{2}+s+1}$
$\omega=0: S=0 \Rightarrow H(s)=1$
$\omega=\infty: S=\infty \Rightarrow H(s)=0$
It represents a Low pass filter characteristics
07.

Sol: $H(s)=\frac{s^{2}}{s^{2}+s+1}$
$\omega=0: S=0 \Rightarrow H(s)=0$
$\omega=\infty: S=\infty \Rightarrow H(s)=1$
It represents a High pass filter characteristics
08.

Sol: $\omega=0 ; \mathrm{V}_{0}=\mathrm{V}_{\mathrm{i}}$
$\omega=\infty ; \mathrm{V}_{0}=0$
It represents a low pass filter characteristics.
09.

Sol: $\omega=0 \Rightarrow \mathrm{~V}_{0}=\mathrm{V}_{\text {in }}$
$\omega=\infty \Rightarrow V_{0}=V_{\text {in }}$
It represents a Band stop filter or notch filter.
10.

Sol: $H(s)=\frac{S}{s^{2}+s+1}$
$\omega=0: S=0 \Rightarrow H(s)=0$
$\omega=\infty: S=\infty \Rightarrow H(s)=0$
It represents a Band pass filter characteristics
11.

Sol: $H(s)=\frac{S^{2}+1}{s^{2}+s+1}$
$\omega=0 \Rightarrow \mathrm{~S}=0 \Rightarrow \mathrm{H}(\mathrm{s})=1$
$\omega=\infty \Rightarrow \mathrm{S}=\infty \Rightarrow \mathrm{H}(\mathrm{s})=1$
It represents a Band stop filter
12.

Sol: $H(s)=\frac{1-s}{1+s}$
$\omega=0 \Rightarrow \mathrm{~S}=0 \Rightarrow \mathrm{H}(\mathrm{s})=1$
$\omega=\infty \Rightarrow \mathrm{S}=\infty \Rightarrow \mathrm{H}(\mathrm{s})=-1=1 \angle 180^{\circ}$
It represents an All pass filter

13. Ans: (c)

Sol.

$\omega=0 \Rightarrow V_{0}=V_{i}$
$\omega=\infty \Rightarrow V_{0}=0$
$\mathrm{V}_{0}(\mathrm{~s})=\left(\frac{\mathrm{V}_{\mathrm{i}}(\mathrm{s})}{\left.\mathrm{R}+\frac{1}{\mathrm{sc}}\right)}\left(\frac{1}{\mathrm{sc}}\right)\right.$
$\frac{\mathrm{V}_{0}(\mathrm{~s})}{\mathrm{V}_{\mathrm{i}}(\mathrm{s})}=\mathrm{H}(\mathrm{s})=\frac{1}{\operatorname{SscR}+1}$
$H(j \omega)=\frac{1}{1+j \omega c R}=\frac{1}{1+j \frac{f}{f_{L}}}$

Where $f_{L}=\frac{1}{2 \pi R C}$

$$
|\mathrm{H}(\mathrm{j} \omega)|=\frac{1}{\sqrt{1+\left(\frac{\mathrm{f}}{\mathrm{f}_{\mathrm{L}}}\right)^{2}}}
$$

$\angle \mathrm{H}(\mathrm{j} \omega)=-\tan ^{-1}\left(\frac{\mathrm{f}}{\mathrm{f}_{\mathrm{L}}}\right)$
$\mathrm{f}=0 \Rightarrow \phi=0^{0}=\phi_{\text {min }}$
$\mathrm{f}=\mathrm{f}_{\mathrm{L}} \Rightarrow \phi=-45^{0}=\phi_{\text {max }}$

9. Three Phase Circuits

01. Ans: (c)

Sol: Z_{p} (star) $=\frac{9 \angle 30^{\circ} 9 \angle 30^{\circ}}{27 \angle 30^{\circ}}=3 \angle 30^{\circ} \Omega$
02. Ans: (c)

Sol:

Let V_{L} be the line to line voltage
$\mathrm{V}_{\mathrm{p}}=\frac{\mathrm{V}_{\mathrm{L}}}{\sqrt{3}}$
Let the total power in star connected load with phase resistance as R be P_{1}
$\mathrm{P}_{1}=3 \frac{\mathrm{~V}_{\mathrm{P}}^{2}}{\mathrm{R}}=3 \frac{\mathrm{~V}_{\mathrm{L}}^{2}}{3 \mathrm{R}}=\frac{\mathrm{V}_{\mathrm{L}}^{2}}{\mathrm{R}}$
When one of the phase resistance is removed, the relevant star load is shown in Fig.
Power in this star load
$=\mathrm{P}_{2}=2\left(\frac{\mathrm{~V}_{\mathrm{L}}}{2}\right)^{2} \frac{1}{\mathrm{R}}=\frac{\mathrm{V}_{\mathrm{L}}^{2}}{2 \mathrm{R}}$
$\therefore \frac{\mathrm{P}_{2}}{\mathrm{P}_{1}}=50 \%$
03. Ans: (d)

Sol: $\mathrm{I}_{\mathrm{n}}=15 \angle 0^{\circ}+15 \angle-120^{\circ}+15 \angle-240^{\circ}=0$
05.

Sol: The circuit is redrawn with switch open as shown in Fig. 1

Fig. 1
Open circuit voltage, when the switch is open $=$ Thevenin voltage
Phase voltage, $\mathrm{V}_{\mathrm{Rn}}=\frac{400}{\sqrt{3}} \mathrm{~V}$
To find Thevenin's equivalent impedance short circuit the voltage sources (Fig. $2 \& 3$)

Fig. 2

Fig. 3
$\therefore \mathrm{Z}_{\mathrm{th}}=\frac{300}{3}=100 \Omega$
\therefore Thevenin's equivalent circuit across R , n is shown in Fig. 4 with the switch closed and 100Ω load across P, Q

\therefore RMS value of voltage across 100Ω resistor $=\frac{400}{2 \sqrt{3}} \mathrm{~V}=115.5 \mathrm{~V}$
06.

Sol:

The unbalanced load is shown in Fig. 1. Power is consumed only in 100Ω resistor.

Power consumed in the delta connected unbalanced load shown in Fig. 1 is given by

$$
\mathrm{P}_{1}=\frac{\mathrm{V}_{\mathrm{ph}}^{2}}{\mathrm{R}}=\frac{(400)^{2}}{100}=1600 \mathrm{~W}
$$

The star connected load with ' R_{x} ' in each phase is shown in Fig.2.

Fig. 2
Power consumed in balanced star connected load as in Fig. 2 is

$$
\mathrm{P}_{2}=3 \times\left[\frac{\left(\frac{400}{\sqrt{3}}\right)^{2}}{\mathrm{R}_{\mathrm{x}}}\right]=\frac{400^{2}}{\mathrm{R}_{\mathrm{x}}}
$$

But given $\mathrm{P}_{1}=\mathrm{P}_{2}$

$$
\begin{aligned}
& \therefore 1600=\frac{400^{2}}{\mathrm{R}_{\mathrm{x}}} \\
& \therefore \mathrm{R}_{\mathrm{x}}=\frac{400 \times 400}{1600}=100 \Omega
\end{aligned}
$$

7. Ans: (b)

Sol:

Power factor angle of load (ϕ)

$$
=\tan ^{-1}\left(\frac{6}{8}\right)=36.86^{\circ}
$$

Active power consumed by the delta connected balanced load as in Fig. is

$$
\begin{aligned}
\mathrm{P} & =3 \times \mathrm{V}_{\mathrm{ph}} \times \mathrm{I}_{\mathrm{ph}} \times \cos \phi \\
& =3 \times 400 \times \frac{400}{\sqrt{8^{2}+6^{2}}} \times \cos 36.86=38400 \mathrm{~W}
\end{aligned}
$$

Reactive power consumed by the delta connected load is

$$
\begin{aligned}
\mathrm{Q}_{1} & =3 \times \mathrm{V}_{\mathrm{ph}} \times \mathrm{I}_{\mathrm{ph}} \times \sin \phi \\
& =3 \times 400 \times \frac{400}{\sqrt{8^{2}+6^{2}}} \times \sin 36.86 \\
& =28800 \mathrm{VAR}
\end{aligned}
$$

Active power consumption remains same even after capacitor bank is connected Reactive power consumed by the delta connected load at a power factor of 0.9

$$
\begin{aligned}
Q_{2} & =\frac{P}{0.9} \times \sin \left(\cos ^{-1} 0.9\right) \\
& =\frac{38400}{0.9} \times \sin 25.84 \\
& =18597.96 \text { VAR }
\end{aligned}
$$

$\therefore \mathrm{Q}_{2}=18597.96$ VAR
\therefore Reactive power supplied by star connected capacitor bank $=\mathrm{Q}_{1}-\mathrm{Q}_{2}$

$$
\begin{aligned}
& =28800-18597.96 \\
& =10202.04 \\
& \cong 10.2 \mathrm{kVAR}
\end{aligned}
$$

08. Ans: (d)

Sol: The rating of star connected load is given as $12 \sqrt{3} \mathrm{kVA}, 0.8 \mathrm{p} . \mathrm{f}$ (lag)
Active power consumed by the load, $\mathrm{P}=12 \sqrt{3} \times 0.8 \times 10^{3}$

$$
=16.627 \mathrm{~kW}
$$

Reactive power consumed by the load

$$
\begin{aligned}
& =12 \sqrt{3} \times \sin \left(\cos ^{-1} 0.8\right) \times 10^{3} \\
\mathrm{Q}_{1} & =12.47 \mathrm{kVAR}
\end{aligned}
$$

Reactive power consumed by the load at unity power factor is

$$
\mathrm{Q}_{2}=\frac{\mathrm{P}}{(1)} \times \sin \left(\cos ^{-1} 1\right)=0
$$

$\therefore \mathrm{kVAR}$ to be supplied by the delta connected capacitor bank $=\mathrm{Q}_{1}-\mathrm{Q}_{2}$
$\mathrm{Q}_{\mathrm{C}}=12.47 \mathrm{kVAR}$
09. Ans: (b)

Sol:

Assume V_{AN} as reference

$\mathrm{V}_{\mathrm{AN}}=230 \angle 0^{\circ}$
$\mathrm{V}_{\mathrm{BN}}=230 \angle-120^{\circ}$
$\mathrm{V}_{\mathrm{CN}}=230 \angle+120^{\circ}$
$\frac{\mathrm{V}_{\mathrm{AN}}^{2}}{\mathrm{R}}=4000 \Rightarrow \mathrm{R}=\frac{230^{2}}{4000}=13.225 \Omega$
$\mathrm{I}_{\mathrm{A}}=\frac{\mathrm{V}_{\mathrm{AN}}}{\mathrm{R}}=\frac{230}{13.225}=17.3913 \mathrm{~A}$
$\therefore \mathrm{I}_{\mathrm{A}}=17.3913 \angle 0^{\circ} \mathrm{A}$
Given neutral current $\mathrm{I}_{\mathrm{N}}=0$
$\Rightarrow \mathrm{I}_{\mathrm{A}}+\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}=0$
$\Rightarrow \mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}=-\left(\mathrm{I}_{\mathrm{A}}\right)$
$\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}=-17.3913$
$\Rightarrow \frac{V_{\mathrm{BN}}}{\mathrm{Z}_{\mathrm{B}}}+\frac{\mathrm{V}_{\mathrm{CN}}}{\mathrm{Z}_{\mathrm{C}}}=-17.3913$
$\Rightarrow \frac{230 \angle-120^{\circ}}{\mathrm{Z}_{\mathrm{B}}}+\frac{230 \angle+120^{\circ}}{\mathrm{Z}_{\mathrm{C}}}=-17.3913$
$\Rightarrow \frac{230 \angle-120^{\circ}}{\mathrm{Z}_{\mathrm{B}}}+\frac{230 \angle+120^{\circ}}{\mathrm{Z}_{\mathrm{C}}}=17.3913 \angle 180^{\circ} \mathrm{A}$
ssume that pure capacitor in phase B and pure inductor in phase C we will get

$$
\begin{aligned}
\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}} & =\frac{230 \angle-120^{\circ}}{\mathrm{X}_{\mathrm{C}} \angle-90^{\circ}}+\frac{230 \angle+120^{\circ}}{\mathrm{X}_{\mathrm{L}} \angle 90^{\circ}} \\
& =\frac{230 \angle-30^{\circ}}{\mathrm{X}_{\mathrm{C}}}+\frac{230 \angle+30^{\circ}}{\mathrm{X}_{\mathrm{L}}}
\end{aligned}
$$

When we add the two phasors I_{B} and I_{C}. with angles -30° and $+30^{\circ}$ we will get the resultant vector with the angle between -30° and $+30^{\circ}$
But,
$\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}$ should be equal to $17.3913 \angle 180^{\circ}$
Which has angle of 180°
\therefore We have taken wrong assumption
\therefore Now take pure inductor in phase B and pure capacitor in phase C we will get
$\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}}=\frac{230 \angle-120^{\circ}}{\mathrm{X}_{\mathrm{L}} \angle 90^{\circ}}+\frac{230 \angle+120^{\circ}}{\mathrm{X}_{\mathrm{C}} \angle-90^{\circ}}$

$$
\begin{gathered}
=\frac{230 \angle-210^{\circ}}{\mathrm{X}_{\mathrm{L}}}+\frac{230 \angle+210^{\circ}}{\mathrm{X}_{\mathrm{C}}} \\
=\frac{230}{(2 \pi \times 50 \times \mathrm{L})} \angle-210^{\circ}+\frac{230}{\left(\frac{1}{(2 \pi \times 50 \times \mathrm{C})}\right)} \angle+210^{\circ} \\
=\frac{0.7321}{\mathrm{~L}} \angle-210^{\circ}+72256.63 \times \mathrm{C} \angle+210^{\circ}
\end{gathered}
$$

\therefore From the given options by substituting
$\mathrm{L}=72.95 \mathrm{mH}$ and $\mathrm{C}=139.02 \mu \mathrm{~F}$ we will get $\mathrm{I}_{\mathrm{B}}+\mathrm{I}_{\mathrm{C}} \simeq 17.3913 \angle 180^{\circ}$
$\mathrm{L}=72.95 \mathrm{mH}$ in phase B and $\mathrm{C}=139.02 \mu \mathrm{~F}$ in phase C should be placed.
11. Ans: (d)

Sol:

$\Rightarrow I_{L}=\frac{\left(\frac{\mathrm{V}}{\sqrt{3}}\right)}{\mathrm{R}} \Rightarrow \frac{\mathrm{V}}{\sqrt{3} \mathrm{R}}=12 \mathrm{~A}$
Now if the same resistances are connected in delta across the same supply

Transforming Δ into equivalent Y
12. Ans: (b)

Sol: Assume the resistances are equal

\qquad

Now, if the resistors are connected in star,

$\Rightarrow P_{\text {absorbed } Y}=3 \frac{\left(\frac{\mathrm{~V}}{\sqrt{3}}\right)^{2}}{\mathrm{R}}=3 \times \frac{\mathrm{V}^{2}}{3 \mathrm{R}}=\frac{\mathrm{V}^{2}}{\mathrm{R}}$
From equation(1), $\Rightarrow \frac{\mathrm{V}^{2}}{\mathrm{R}}=20 \mathrm{~kW}$
$\therefore \mathrm{P}_{\text {absorbed } \mathrm{Y}}=\frac{\mathrm{V}^{2}}{\mathrm{R}}=20 \mathrm{~kW}$

