
1

Review of Essential Algebra Concepts and Skills for Calculus
(Prepared for Fall 2006 Algebra/Calculus Review Workshop for engineering majors who have a gap of one 

year or more in their study of mathematics)

"The best way to learn is to do; the worst way to teach is to talk." (Paul R. Halmos)

I.  Equation Types and Methods of Solution

Methods of solution of solving algebraic equations rely on fundamental axioms of 
equality:

 Addition property of equality: If ba  then cbca  for all real numbers c.
 Multiplication property of equality: If ba  then bcac  for all real numbers c.
 Commutative properties of addition and multiplication:

 abba 
 baab 

 Associative properties of addition and multiplication:
 )()( cbacba 
 )()( bcacab 

 Distributive property of multiplication with respect to addition:
acabcba  )(

Linear Equations

The simplest type of equation is a linear equation. The method for solving such 
equations after collecting like terms is to isolate the desired variable.  At each step of the 
solution process, the resulting “new” form of the equation is an equivalent equation. 
That is, the new form of the equation has the same solution set as the original equation.  
The remaining expression or value of the variable is the solution to the equation.

Example 1 Solve for x:  34)52(3  xx
Expanding and collecting like terms, we obtain

9

182

equationequivalentan obtain      to34156

propertyvedistributi the     Use34)52(3







x

x

xx

xx

Thus, 9 is the value of the variable x that satisfies (or solves) the original equation.  The 
set of all solutions to the original equation is {9}.  

To check, we could use substation into the original equation:
3(2(9) - 5) = 4(9) + 3
3(18 – 5) = 36 + 3
3(13) = 39
39 = 39   (correct)
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It should be emphasized that it is good practice to check your solution(s) to an 
equation.

In general, we expect a linear equation in one variable to have one unique solution.  

However, there are two other possibilities.

Example 2 (No solution) Solve for x:  342)52(3  xxx

We have

315

)"problem...ahave weHouston,("        34154

342156

342)52(3






xx

xxx

xxx

The discerning student recognizes that there is a problem at the third line.  The last line 
produces a false statement, namely, -15 is not equal to 3.  The absence of a variable in the 
last line means that the solution does not depend on x.  This means that there is no 
solution to the original equation.  That is to say, there is no replacement value for x that 
will result in a true statement of the equation.

The next example should come as no surprise.

Example 3 (Infinite number of solutions) Solve 1542)52(3  xxx

In this case, we find

00

sides)(Identical        154154

1542156

1542)52(3






xx

xxx

xxx

In this case, the resulting statement is true but does not depend on x so the original 
equation is true for all values of x.  Therefore, the solution set contains all real numbers.  
Any value for x in the original equation will result in a true statement.

This type of equation is known as an identity.  You may be familiar with other 

identities like xx 2 or the many trigonometric identities that result from Pythagorean 

and geometric relationships between trigonometric functions like 1cossin 22  xx ,  

)cos()sin(2)2sin( xxx  or 
2

)2cos(1
)(sin 2 x

x


 . 
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Nonlinear Algebraic Equations

Virtually all other algebraic nonlinear equations require a different method of solution. 

 Higher degree polynomial equations require transforming one side equal to zero, 
factoring (if possible) and using the Zero Factor Property: ab = 0 if and only if 
either a = 0 or b = 0.

 Rational equations require obtaining a single rational term and setting the 
numerator (a polynomial) equal to zero and solving.

 Radical equations require eliminating the radical(s) and then solving the resulting 
polynomial equation.

 Logarithmic and exponential equations require using the properties of logarithms 
and exponentials to rewrite the equation in a polynomial form and then solving.

Since this is a review of algebra in preparation for calculus, we will consider the common 
types of nonlinear equations encountered in calculus courses in their full complexity.

Example 4 A common type of equation to solve is
03093 23  xxx

Factoring, we have

)2)(5(3

30930 23



xxx

xxx

which has solutions x = −2, 0, 5.

Example 5 Not all equations factor so easily.  Consider 
02423  xxx .

While it is not obvious if this factors and the quadratic formula is of no use (yet), it is 
easy to see that x = 1 is a solution of this equation so x -1 is a factor of the corresponding 
polynomial.  Long division allows us to factor:

22

0

22

22

022

242

00

241

2

2

2

23

23













xx

x

x

xx

xx

xxx

xxxx

Thus, we have

)22)(1(

240
2

23





xxx

xxx
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


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Since the quadratic factor does not easily factor, we use the quadratic formula to solve
0222  xx

giving

31

2

842




x

So the solutions set is  31,31,1  .

Example 6 Solve 0

1
2

2






x
x

x
xx

.

Clearly, the denominator x cannot be zero.  The square root function requires that x > 0. 
Multiplying both sides by x gives

Now multiply both sides by x

so either x = −1 or x = 1.  Due to previously mentioned restrictions, the only solution is
x = 1.

Example 7 Solve 0
)1(

)1(2)1(2
4

22





x

xxx

e

eexex
.

Factoring the numerator, we obtain

3

4

)1(

)1(2

)1(

)1)(1(2
0











x

xx

x

xxx

e

xeex

e

xeeex

Again, only the numerator can be zero for this statement to be true.  Thus, we must have 
either 2x = 0 or 01  xx xee .  
The second case is not easily solved by standard techniques.  
However, we can graph the function xx xeey  1 and examine 
its x-intercepts.  The only one is approximately x = 1.279
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Algebraic Inequalities

Another common algebraic construct used extensively in calculus is solving inequalities.  
These are fundamentally different than equations yet the solutions have a strong 
relationship.

Example 8 A common type of nonlinear inequality is
03093 23  xxx

Now we must interpret the meaning of this inequality.  This product of 3 factors is 
negative or equal to zero.  The equality case has solutions x = −2, 0, and 5.
These values break up the number line (x-axis) into four intervals: 

),5(and),5,0(),0,2(),2,(  .

Beginning with the factored form of the inequality
0)5)(2(3  xxx

we use these factors and observe that the product of three factors is negative when
 only one factor is negative: 3x, x + 2, or x − 5
 all three factors are negative

The solution to the original inequality will include the solutions x = −2, 0, and 5 and 
some of the intervals.  

We may select one value from each interval and test that value to see if it satisfies the 
inequality:

We determine the sign of each factor and then determine the sign of the product:

x + 2       - - - - - - - - - - - 0 + + + + + + + + + + + + + + + + + + +
3x       - - - - - - - - - - - - - - - - - - - 0 + + + + + + + + + + + + + 
x – 5       - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 0 + + + +

)5)(2(3  xxx - - - - - - - - - - - 0 + + + + + 0 - - - - - - - - - - -  0 + + + +   (Sign of product)

Thus, we can see that the shaded regions indicate where the product of the three factors is 
negative.  Therefore, the solution is the set ]5,0[]2,(  .  This is why we can test a 
single point in each interval as in Method 1.  The sign of a factor changes at the 
corresponding zero for that factor.
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Example 8 Solve 0

1
2

2






x
x

x
x

.

Clearly, x cannot be zero.  Factoring out 
x

1
in the numerator gives

  

0
)1)(1(

0
1

0
12

1

2

2

2

22










x

xx
x

x

x

xx
x

In this case, using the reasoning above reveals that the factor 2x does not change sign at 
its zero.  That is because 2x is nonnegative.  As a result, the other factors determine 
where the inequality is true.  Thus, the inequality is true wherever the sign of x – 1 and 
x + 1 are the same:

x + 1 - - - - - - - 0 + + + + + + + + + + + + + + + + +
x – 1 - - - - - - - - - - - - - - - - - - - - - - - 0 + + + + + 

12 x + + + + + 0 - - - - - - - - - - - - - - - 0 + + + + + (Sign of product)
Therefore, the solution is ),1()1,(  .

Absolute Value  Geometrically, the absolute value of a number, |x|, represents the 
distance from the number to the origin (zero).  Algebraically, we describe this as a 
piecewise function:









0

0

xx

xx
x

The graph of the absolute value function is
shown at the right.  In tems of solving equations
and inequalities involving this function, we note
that linear absolute value expressions satisfy

 0x for all values of x

 Equations such as 5x have two solutions, x = −5 and 5

 Inequalities such as 5x have no solution

 Inequalities such as 5x are true for all values of x

 Inequalities such as 5x have a single interval solution set: ]5,5[

 Inequalities such as 5x have a two interval solution set: ),5[]5,( 
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Example 9 Solve the equation 2275 x .

We have two cases to consider:
2275 x or 2275 x

In the first case we obtain x = 29/5.  In the second case, we obtain x = − 3.

Example 10 Solve the inequality 2275 x .

Interpreting this statement in terms of distance from zero, we see that the expression 
5x – 7 is less than 22 units from zero.  That is,

This can be written as a single inequality
− 22 < 5x – 7 < 22

Solving this compound inequality gives

5

29
3  x or in interval form 








5

29
,3 .

Example 11 Solve the inequality 2275 x .

Interpreting this statement in terms of distance from zero, we see that the expression 
5x – 7 is 22 units or more units from zero.  

This must be written as two inequalities:
2275 x or 2275 x

Solving this compound inequality gives

3x or  
5

29
x or in interval form 






  ,

5

29
)3,( .

Once again, note the relationship between the solutions to the corresponding equation 
from example 9 and the solutions to the inequalities in examples 10 and 11:

     2275 x      2275 x 2275 x
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Practice Problems Solve each of the following.

1. xxx 1222 23 

2. 2
2

63 2





x
x

xx

3. 3
12

352 2





x

x

xx

4. 243  xx

5. 0
1

)1(
)1(2

2







x
x

x
xx

6. 234 65 xxx 

7. 0
1

)1(
)1(2

2







x
x

x
xx

8. 3815 x

9. 3815 x

10. 114)2)(1(210)1)(5(3 2  xxxxxx
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II. Functions and Graphs of Functions

Fundamentally, the graph of an equation )(xfy  is the set of all points (x,y) whose 
coordinates satisfy the equation.

Lines:  Slope-Intercept Form  bmxy  Point-Slope Form    )( 11 xxmyy 

Lines are used extensively in calculus and as such they play a fundamental role in the 
study of functions.

Example 1 Find the equation of the line containing the point (−3,5) perpendicular to 
the line 1023  yx .  Graph the line and determine algebraically whether the point 
(−4,5) is on the line.

Solution  To determine the equation of a line, you need to know the slope and a point on 
the line (which we have).  To find the slope, we must determine the slope if the given line 
and use the opposite of its reciprocal.  We were given 1023  yx , so solving for y

yields 10
2

3
 xy .  The slope of this line is 

2

3
m so the slope of the line we seek is 

3

2
m .  Using the point-slope formula, we may substitute 5and,3,

3

2
 yxm into 

the formula:

intercept theis   which 7

25

)3(
3

2
5






yb

b

b

So the equation of the line is 7
3

2
 xy and its graph is

shown at right.  For the point (−4,5), we  have

3

13
5

7
3

8
5

7)4(
3

2
5







So the point is (−4,5) is not on the line.

Slope as rate of change

The slope of a line or “steepness” is ratio of the change in y (rise) to the change in x (run).  
The negative sign indicates that the line decreases from left to right.  That is to say, the 
values of the y-coordinate decreases as the x-coordinate increases.
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Example 2 A New York city taxi service charges an initial fee of $2.00 and then 
$0.20 for every 1/5 mile traveled.  Determine the function representing the cost (fare) for 
a taxi ride of x miles and use it to find the cost of a 34 mile taxi ride.

Solution  Since we are asked to find the cost as a function of miles traveled, the rate per 
mile is 5($0.20 per 1/5mile) = $1.00 per mile.  This rate of change is the slope for this 
linear function.  The initial fee of $2.00 is the y-intercept.  Thus, we have

21  xy or in function notation 2)(  xxc

Therefore, a 34 mile taxi ride in New York city costs

47$

234)34(


c

Polynomial Functions

A polynomial function of degree n is a finite sum of nonnegative integer powers of x:

01
2

2
1

1)( axaxaxaxaxp n
n

n
n  

 

Key Characteristics of Graphs of Polynomial Functions

 The domain is the set of all real numbers
 There are at most n x-intercepts
 The ends of the graph point in the same direction if n is even
 The ends of the graph point in opposite directions if n is odd

Example 3 Describe the graph of )1)(2)(2()( 2  xxxxxf .  

      0)( xf          0)( xf     0)( xf

0)( xf
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Example 4 Describe the graph of )1)(1)(2()( 22  xxxxxf .  

Identify the graphs of xyxyxyxy    and  ,, 32

A B

C      D

Transformation of Graphs
Let c be a positive number.  Then

 The graph of cxfy  )( is a vertical shift of the graph of )(xfy  c units ______

 The graph of cxfy  )( is a vertical shift of the graph of )(xfy  c units ______

 The graph of )( cxfy  is a horizontal shift of the graph of )(xfy  c units 
______

 The graph of )( cxfy  is a horizontal shift of the graph of )(xfy  c units 
______

 The graph of )(xfy  is a reflection of the graph of )(xfy  across the _______

 The graph of )( xfy  is a reflection of the graph of )(xfy  across the _______
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Example 5 Sketch the graph of each of the following.

(a) 2)3(  xy (b) 12)(  xxg (c) 53  xy (d) 2)( 3  xxf

Stretches and Shrinks

 If |c| > 1, then the graph of )(xcfy  is a stretch of the graph of )(xfy  .

 If 0 < |c| < 1, then the graph of )(xcfy  is a shrink of the graph of )(xfy  .

Example 6 Sketch the graph of each of the following.

(a) 3
2

1
 xy (b) 23)(  xxg (c) 23)( xxp 

Practice Problems

Identify the x-intercepts for each of the following functions.

1. 25)2( 2  xy 2. 234 18153)( xxxxf  3. 7 xy

4. Find a parabola whose vertex is (2,-3) opening down passing through the point (0,-11).

5. Determine a polynomial of minimum degree having zeros x = -2, 0, 3 passing through 
the point (1,6).
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b
x

c
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bxxcbxx


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05)44(8
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2

2

222

2











x

x

x

xx

xx

III Pythagorean Theorem, Distance, and Circles

Pythagorean Theorem:  In a right triangle, the sum of the      a    c
squares of the legs is equal to the square of the hypotenuse.

222 cba            b

Quadratic Formula:  The solutions to the equation 02  cbxax are given by

a

acbb
x

2

42 


Completing the Square:   A useful technique when working with quadratic expressions 
is completing the square.  This is based on the form of the square of a binomial:

222 2)( aaxxax 

Note the factor of two in the linear coefficient.  For any monic quadratic expression (the 
leading coefficient is 1), we can complete the square in the following manner:

Adding and subtracting the same
expression does not change the 
value

Example 1 Complete the square: 17102  xx .  We have

8)5(

17252510

17)55(101710

2

2

2222







x

xx

xxxx



Example 2 Solve by completing the square.  12243 2  xx

We first divide through by 3 to obtain a leading coefficient of 1:
4812243 22  xxxx

We now complete the square:

so 214x
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Distance Formula  

From the Pythagorean Theorem, we obtain the distance between two points
),(and  ),( 2211 yxyx :              ),( 22 yx

2
12

2
12 )()( yyxxD  ),( 11 yx     12 yy 

    12 xx 

Equation of a Circle

The equation of a circle of radius r centered at the point (h, k) is given by
222 )()( rkyhx 

Example 3  Complete the square to determine the center and radius of the circle given by

56)6()3(

6)3(11612)3(6

11126

22

222222

22







yx

yyxx

yyxx

Therefore, the center of the circle is (3, −6) and the radius is 142 .

Practice Problems

1. Find the equation of the circle of radius 5 in the first quadrant tangent to the x-axis at 
the point (9,0).

2. Find the equation of the circle with a diameter having endpoints (1,-2) and (5,6).
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IV  Rational Functions and the Difference Quotient

A rational function is a quotient.  It is obtained by dividing two non-constant 
polynomials, say, p(x) and q(x):

0)(
)(

)(
)(  xq

xq

xp
xf

We make the following observations about rational functions:
 The zeros (x-intercepts) of the numerator p(x) are the zeros (x-intercepts) of the 

rational function f(x).
 The zeros of the denominator q(x) are where the rational function f(x) is undefined.  

These x values break the graph into unconnected sections referred to as branches.

The primary example of a rational function is 
x

y
1



whose graph is shown at right.  Notice that
 the function is undefined at x = 0
 the “ends” of the graph approach the x-axis

Rational functions are not easy to graph accurately
by hand because they require carefully plotted points.
However, we can easily identify key characteristics
of such graphs based only upon the numerator p(x) and the
denominator q(x).

End Behavior of Rational Functions

Let m be the degree of p(x) and n be the degree of q(x).
 If m – n > 1, the graph has end behavior like a polynomial of degree m – n.
 If m = n + 1, the graph has end behavior like (is asymptotic to) the diagonal line

obtained by long division (ignoring the rational remainder)
 If m = n, the graph has a horizontal asymptote y = k where k is the ratio of the leading 

coefficients of p(x) and q(x)
 If m < n, then the ends of the graph are asymptotic to the x-axis (the line y = 0)

As with the factors of a polynomial, we will see the same behavior is exhibited by the 
factors of rational functions.

Example 1  Describe the graph of 
23

2

4

145
)(

xx

xx
xf




 in terms of x-intercepts, location 

above or below the x-axis, and end behavior.
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Example 2  Determine a rational function )(xf with x-intercepts at x = −2 and 4 having 
vertical asymptotes at x = 0 and 7.  Identify each x value across which the graph changes 
sign.  What determines whether there is a change in sign?

Example 3  Describe the graph of 
6

12
)(

2

2





xx

xx
xf in terms of x-intercepts, location 

above or below the x-axis, and end behavior.  What happens if the numerator and 
denominator have the same linear factor?

Example 4  Use long division to show that the rational function 
22

3093
)(

2





x

xx
xg has 

a diagonal (slant) asymptote of 3
2

3
 xy .  What happens to the value of the 

remainder term as |x| becomes large (unbounded)?

Example 5  Describe the graph of 
1

4
)(

2

2





x

x
xh in terms of symmetry, x-intercepts, 

location above the x-axis, and end behavior.  Sketch the graph.
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Practice Problems

Describe each graph in terms of x-intercepts, location above or below the x-axis, and end 
behavior.  If the graph has a horizontal or slant asymptote, determine the equation of the 
line (asymptote).

1. 
82

)(
2 


xx

x
xf

2. 
82

1833
)(

2

2





xx

xx
xg

3. 
x

xx
xh

2

82
)(

2 

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Partial Fractions

Combining fractions through addition or subtraction involves obtaining a common 
denominator and forming a single fraction.  There are occasions in which we actually 
want to break up a single fraction into “partial” fractions whose denominator involves a 
single “prime” factor.

As a simple example, add the fractions 
2

1

4

3




 xx
.

We have

)4)(2(

24

)4)(2(

)4()63(
4

4

2

1

2

2

4

3

2

1

4

3






























xx

x

xx

xx
x

x

xx

x

xxx

We observe that this means that we could “decompose” the fraction 
)4)(2(

24



xx

x
as the 

sum of fractions 
2

1

4

3




 xx
.  But how would we reverse this process in general?

Partial Fraction Decomposition

Consider the rational expression 
23

1
2 


xx

x
. (Note that the degree of the numerator is 

less than the degree of the denominator so the rational expression is in “lowest terms”.)  
Factoring reveals that

)2)(1(

1

23

1
2 







xx

x

xx

x

Because the numerator has degree less than the denominator, there must exist constants A
and B with 

21)2)(1(

1










x

B

x

A

xx

x

Obtaining a common denominator, we have

)2)(1(

)1()2(

)2)(1(

)1(

)2)(1(

)2(

21)2)(1(

1
























xx

xBxA

xx

xB

xx

xA

x

B

x

A

xx

x
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Equating the numerators on each side of the equal sign, we have
)1()2(1  xBxAx

We may now expand to determine the coefficients A and B:

)2()(

21

BAxBA

BABxAxx




Equating like terms, we obtain

12

1




BA

BA

Eliminating B, we get
A = −2

which allows us to determine the value B = 3.  Therefore, we may write

2

3

1

2

)2)(1(

1











xxxx

x

Practice Problem

1. Decompose 
12

23
2 


xx

x
into fractions with linear denominators.
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The Difference Quotient

The concept of slope (“steepness” or rate of change) applies to more than straight lines.  
It applies to any curve or process (population, water volume, pollution, elimination of 
drugs from the body, etc.).  As a result, we frequently consider the average rate of 
change in a quantity over a small interval.

Let )(xf denote a function that represents a curve or variable process.  The average 
change of f on the interval [x, x+h] is given by the quotient

h

xfhxf

xhx

xfhxf )()(

)(

)()( 





Examples  Set up and simplify the different quotient (average rate of change) for the 
following functions on a general interval [x, x+h].

(a) xxf )( (b) 
x

xg
1

)( 

We have In this case, we get

 

 

xhx

xhxh

h

xhxh

xhx
xhx

xhx

h

xhx

h

xhx

h

xfhxf

























1

)(

)()(

)(

1

)(

1

)(

)(

11

11
)()(

hxx

hhxx

h

hhxx

hxx
h

hx

hx

xx

x

hx

h
xhx

h

xghxg


























Practice Problems

Set up and simplify the different quotient (average rate of change) for the following 
functions on a general interval [x, x+h].

1. 12)( 2  xxxf 2. 
3

2
)(




x
xg
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V  Exponents, Exponential and Logarithmic Functions

Order of Operations

The operations of arithmetic are performed, in order, from left to right:
1. Parentheses or grouping symbols
2. Exponents
3. Multiplication and Division
4. Addition and Subtraction

The Properties of Exponents

Exponents are a short hand for multiplication.  When multiplying a common base a 
raised to various powers, the following properties hold for all integers r and s:

1. srsr aaa 

2. )0(   aa
a

a sr
s

r

3.   rssr aa 

4. )0(10  aa

5. )0(
1

 a
a

a
r

r

For rational exponents, we have

6.  mnn mn
m

aaa 

Furthermore, we say that n ma is in reduced form if m < n.

Examples Write each of the following expressions in simplest (reduced) form without 
negative exponents.

(a) 
53

4323

36

)2(9

cab

cba




(b) 3 65424 zyx

(c) 
5

2

3
1

2
3

5

5


r

r
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Exponential Functions

The question arises of, “What do we mean by 23 or 2 ?”

The reason is that we want to consider functions of the form xaxf )( but is this 
function defined for all real numbers?

Before we answer that question, let’s see if we can motivate the reasonability of such 
values.

Consider 
2

3 .  We have an irrational number raised to an irrational power.  Is this a 
rational number or not?  If not, what rational number is it?  If it is irrational, then consider

2
2

3 







Evaluate this number using the properties of exponents.

 
3

3

33

2

22
2

2










 

Somewhere, somehow, in this process we have managed to raise an irrational number to 
an irrational power and obtain a rational number!

In the case of 2 , we could use the following sequence of approximations using 2 raised 
to a rational power:

,2,2,2,2,2,2,2,2 1415926.3141592.314159.31415.3141.314.31.33

This sequence approaches a single value that is represented by 2 .  We cannot produce 
the actual value in decimal form but we can estimate it to any required accuracy.  In this 
manner, we can define the value of any positive real base raised to any real power.

Exponential Functions

Using the previous ideas, we may define an exponential function to be

)0()(  aaxf x .

It is immediate that for a > 0, 0xa for all real numbers x. y

Graph of an Exponential function

If a > 1, the graph of xay  has the following shape:

       x
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On the other hand, if 0 < a < 1, the graph looks like:    y

This is due to the fact that 
a

a
11 

       x

Examples  Graph the following exponential functions together by plotting points.

(a) xy 2 and 
x

y 







2

1
(b) xy 4 and 

x

y 







4

1

Modeling with exponential functions and solving equations

Population and radioactive materials exhibit exponential behavior.  In general, this model 
is

taAA 0
where A0 is the initial population and a is a growth factor occurring every t units of time.

Example 1  Suppose a certain colony of bacteria grows exponentially so that it doubles 
every 6 hours.  If the initial population is 50 bacteria, find the population after 30 hours.

We have

)2(50 tA 

since A0 = 50 bacteria and a = 2.  Thus, 1600)2(50)30( 6
30

A

Example 2: Using the natural exponential function, kte , we have
kteA 50 .

To determine the value of k needed for this model, we use that fact that A(6) = 100 since 
the population doubles every 6 hours.

6

2ln
62ln250100 66  kkee kk

so the population of bacteria is modeled by 6
2ln

50)(
t

etA  .


