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This Topic . . .

Vectors are quantities which have both magnitude (size) and direction. They are
used in navigation, engineering, science, economics, etc.

The topic introduces vectors and vector operations. For convenience, examples and
exercises use two and three dimensional vectors, however the ideas are applicable to
vectors with any number of dimensions.

The topic has 3 chapters:

Chapter 1 introduces vectors and scalars. It gives examples of vectors and shows
how vectors can be added and subtracted. Vector algebra is introduced and is
used to solve problems in geometry.

Chapter 2 introduces vector components and unit vectors. These give rise to a
powerful new computational approach to vector algebra. Three dimensional
vectors are introduced.

Chapter 3 introduces the scalar product and uses it to find the angle between two
vectors. The equation of a plane in 3-dimensions is introduced.

Auhor: Dr Paul Andrew Printed: February 24, 2013
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Chapter 1

Vectors

1.1 Vectors and Scalars

In everyday language speed and velocity mean the same thing, but in mathematics
speed is a scalar and velocity is a vector.A vector is a quantity which is completely
characterised by two things: its magnitude (or size) and its direction.

Example
vectors • The velocity of a car heading North at 60 km/h.1

• A force exerted on an object.
• The magnetic field of the earth at a given place.

A scalar is a quantity which is completely characterised by its magnitude alone.
Scalars are just numbers.

Example
scalars • Length • Area • Volume • Any number

• Mass • Time • Temperature

The simplest example of a vector is a directed line segment (or arrow). If P and Q
are two points, then the directed line segment from P to Q is the straight line which

begins at P and ends at Q. This vector is denoted by
−→
PQ, and we say “the vector

PQ”.

��
��

�
��

�
��

��*

P

Q−→
PQ

1Velocity has both magnitude and direction, but speed has magnitude only. For example we
would say the speed of the car is 60 km/h without referring to its direction.

1



2 CHAPTER 1. VECTORS

The magnitude or length of
−→
PQ is the length of segment PQ, and is represented by

the symbol |
−→
PQ|. For example, if

−→
PQ is the velocity of a car, then |

−→
PQ| would be

the speed of the car.

The direction of
−→
PQ is given by the arrowhead. A direction can be described in a

number of ways.
• In navigation, direction is given by a compass bearing, e.g. NE, N45◦E, N45◦ and
045◦ all refer to a bearing of 45◦ from north taken in a clockwise direction.
• In mathematics or engineering, direction is typically measured from a selected axis
with angles taken in an anticlockwise direction.

All vectors can be represented by arrows or directed line segments.

Example
vector

diagram
This vector diagram shows two forces acting on an object.
(Scale: 1cm = 10 Newtons)

z?-

20 N

15 N

Definition 1.1.1
Two vectors are called equal if they have the same length and direction.

Example
equal

vectors
The vectors

−→
PQ and

−−→
UV below are equal as they have the same length and

the same direction. It doesn’t matter that the vectors are in different places,

so long as their magnitudes and directions are the same. We write
−→
PQ =

−−→
UV .

�
��

�
��

�
��

�
��*

P

Q−→
PQ

�
��

�
��

�
��

�
��*

U

V−−→
UV

Vectors are usually represented in print by small boldface letters like a, b, c, . . . ,
and in handwriting by a˜, b˜, c˜, . . . .

Example
wind

velocity
Each of the vectors below represents the velocity v of the wind moving across
a field. The wind has the same strength and direction everywhere on the field.
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v

v

v

We think of negative numbers as being in the opposite direction to positive numbers
on a numberline. The same is true for vectors.

Definition 1.1.2
The negative of a vector a is a vector with the same length but the opposite direction.
It is denoted by −a.

Example
negative

of a
vector

��
�
��

�
��
�*

a
��

���
�����

−a

When a car doubles its velocity, then we think of it as travelling in the same direction
but at twice the speed. The same is true when we double a vector. This is an example
of scalar multiplication: multiplying a vector by the scalar 2.

Definition 1.1.3
If a is a vector and k is a scalar (a number), then ka is the vector with
• (if k > 0) length k times the length of a and direction the same as a.
• (if k < 0) length |k| times the length of a and direction oppposite to a.2

Example
scalar

multiplication

�
��

�
��*a

�
��

�
��

�
��

�
��*

0.5a
��
�*

2a

��
���

���
�����

−2a

����
−0.5a

Exercise 1.1

1. After taking off, one plane flew East at 300 km/h and another flew 045◦ at
400 km/h.3 Sketch these vectors using the scale 1cm = 100 km/h.

2 The same symbol “| |” is used with vectors and scalars: |k| is the absolute value of the number
k,and |a| is the length of the vector a.

3 45◦ from North in a clockwise direction.
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2. Sketch the following vectors:
(a) the velocity v of a car travelling south at 60 km/h.
(b) 1.5v
(c) 0.5v

3. A car was travelling with velocity v, then 5 minutes later its velocity was 1.1v
and then 10 minutes later its velocity was −v. What happened?

4. The figure below consists of 4 squares.
−→
AB = p and

−−→
AH = q.

EFG

H

A B C

DI

Which of the following is true?

(a)
−→
FE = p (b) |p| = |q| (c)

−−→
BC = p (d)

−→
GF = q

(e)
−−→
GH = q (f)

−−→
GE = 2p (g) |

−−→
HD| = 2|q| (h)

−−→
ED = −q

(i) |
−−→
FB| = |2p| (j)

−→
GI =

−−→
FD (k)

−→
FG = −p (l) p = q

5. Is it true that −(−a) = a? Use a diagram to explain why.
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1.2 Adding and Subtracting Vectors

Although there are many different kinds of vectors, all behave in the same way. This
is described in the definitions of vector addition and subtraction.

Definition 1.2.1
The sum a + b of vectors a and b is the given by the triangle rule below.

�
�
�
�
�
�
�
�
��

a

HH
HHH

HHHHj

b

Step 1: Shift b without changing its length or direction, until its tail just touchs the
head of a.

�
�
�
�
�
�
�
�
��

a

H
HHH

HHH
HHj

bHHH
HHH

HHHj

b

` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` `

Step 2: The vector a + b is equal to the vector that begins at the tail of a and ends
at the head of b.

�
�
�
�
�
�
�
�
��

a

H
HHHH

HHHHj

b

���
���

���
���

���
���:

a + b

This method is called the triangle method or the head-to-tail method of addition.

Example
resultant

displacement
We can describe how an object is displaced by giving the distance and direction
of the displacement. In the diagram below an object is first displaced towards
the east by 30 km, and then north by 10 km.
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-

6

��
��

��
��

��
��

��
��

��1

10

30

d

The vector d shows the object’s resultant displacement. This means the dis-
placement resulting from combining the actions of the vectors.

The length or magnitude |d| of the vector d can be estimated from accurately scaled
vector diagrams or by using trigonometry.

Example (continued)
finding
length

direction

-

6

��
��

��
��

��
��

��
��

��1

10

30

d

N N

E

θ

θ

The length of d is

|d| =
√

302 + 102 =
√

1000 = 31.6 km.

The direction of d is Nθ◦, where

tan θ =
30

10
=⇒ θ = 71.6◦.

That is, the direction is the compass bearing of N71.6◦ (which is measured
clockwise from North).

The resultant vector d does not depend on the order in which vectors are added in
the head-to-tail method.

Example
order of
addition

If the object is first displaced towards the north by 10 km, then east by 30 km,
the resultant displacement d is still the same as in the example above.

-
6

��
��

��
��

��
��

��
��

��1

10

30
N

E

d
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The head-to-tail method can be used for adding three or more vectors. It does not
matter in which order these are combined.

Example
adding

three
vectors

�
�
�
�
�
�
�
�
��

a

��
��

��
��
�1

b @
@
@
@
@
@R

c

��
���

���
���

���
���

���
���:

a + b + c

Example
rearranging

vectors
A plane flew 30 km east and 10 km north in a zig-zag fashion. The diagrams
below show that it doesn’t matter how we rearrange and combine the zigs and
zags, the total displacement to the east is 30 km, and the total displacement
to the west is 10 km. The resultant displacement is always the same.

-

-

-

6

6N

E

-

6

��
��

��
��

��
��

��
��

��1N

E

d

In the physical world many vectors interact simultaneously. For example, a plane
may be displaced both towards the east and towards the north at the same time. In
this case the resultant vector can still be found by adding the the individual vectors
that produce the action. The example above suggests why if we imagine that the
simultaneous displacements correspond to a large number of zig-zags.

Example (continued)
simultaneous

displacements
If a plane travels 30 km to the east, and is simultaneously blown off course by
10 km to the north, then we can think of the resultant displacement d as con-
sisting of two parts, (a) the displacement 30 km east and (b) the displacement
20 km north.

-

6

��
��

��
��

��
��

��
��

��1

10

30

N

E

d
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Example
resultant

velocity
If a plane travels at 300 km/h towards the east, and it is simultaneously blown
off course by a 100 km/h wind from the south, then we can think of its resultant
velocity v as consisting of two parts, the first a velocity of 300 km/h to the
east and the second a 100 km/h to the north. The resultant velocity - both its
length and direction - can be calculated from knowing these two velocities.

-

6

��
��

��
��

��
��

��
��

��1

100

300

N

E

d

Example
resultant

force
The vector diagram shows two forces acting on a ball bearing. What is the
resultant force?4

z
�

�
�	-

20 N

15 N
45◦

Answer

�
�

�
�

�
�
�

�
�	

-
B
B
B
B
B
B
B
B
BN

20 N

15 N
f

45◦θ

The length of f can be found using the cosine rule.

|f |2 = 202 + 152 − 2× 20× 15× cos 45◦ = 200.74

|f | = 14.17

The angle θ can be found from the sine rule.

sin θ

15
=

sin 45

14.17
sin θ = 0.7485

θ = 48.46

The resultant force f has length 14.17 N and direction −48.46◦ relative to the
horizontal.

4The resultant force can be thought of as a single force which is equivalent to the two forces
shown in the diagram
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Definition 1.2.2
The difference a− b of two vectors a and b is the sum of a and −b.

Step 1: Construct −b, then shift it until its head just touches the tail of a.

�
�
�
�
�
�
�
�
��

a

H
HHH

HHH
HHj

b

HH
HH

HH
H

HHY

−b

H
HH

H
HH

H
HHY

−b

` ` ` ` ` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` ` ` ` `
` ` ` ` ` ` ` ` ` ` `

````
````

```

Step 2: The vector a− b is equal to the vector that begins at the tail of −b and ends
at the head of a.

�
�
�
�
�
�
�
�
��

a

HH
H

HH
H

HH
HY

−b

6

a− b

Definition 1.2.3
The zero vector 0 has length 0. Its direction is not defined.

Example
a vector
equation

The vectors r, s and t below satisfy the vector equation r + s + t = 0.

�
t

�
�
�
�
�
�
�
�
��

r

@
@
@
@
@
@
@
@
@R

s
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Exercise 1.2

NOTE: These exercises use the rules of trigonometry, which are covered in
MathsStart Topics 5 and 6.

1. A plane is flying NE at its maximum velocity of 500 km/h according to its
instruments. However there is a northerly5 wind of 100 km.
(a) Sketch this situation on a vector diagram.
(b) Calculate the resultant velocity of the plane.

2. A yacht is cruising at 15 knots on a compass bearing of N124◦. Find the actual
speed and direction of the yacht if there is also an ocean current of 5 knots in
the direction N58◦.

3. Two students push a heavy object. The vector diagram below shows the forces
on that object.

HH
H

HH
H

HH
Hj

�
�
�

��

AA

��
j

�
�
�A
A
A

AA�� ��AA

-��
��

�
��

�
��

��*

4 New
tons

3 Newtons

f1

f2
30◦

Find the magnitude and direction of the resultant force.

4. The four points A,B,C,D are vertices of the trapezium.

�
�
�
�
�
�
��

@
@

@
@
@

@
@@

A

C

B

D

Simplify the following vector expressions as much as possible:

(a)
−−→
DA+

−→
AB +

−−→
BC

(b)
−−→
DB −

−→
AB

(c)
−→
CA−

−−→
DA+

−−→
DB

(d)
−−→
DA+

−−→
AD

5Note that a northerly wind blows from the North!
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5. Construct vector equations for u, v and w if:

(i)

�
�
�
�
�
�
�
�
��

w

6

v

� u
(ii)

�
�
�
�
�
�
�
�
��

w

?

v

�
u

6. A pilot wants to fly due east at a speed of 400 km/h, however there is a 50km/h
wind towards the SE. What direction must the pilot fly in, and at what speed?

7. Use a diagram to show that a− a = 0 for any vector a.
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1.3 Vector Algebra

We can perform a limited amount of algebra on vectors: adding, subtracting, scalar
multiplication, simplfying by collecting and combining like terms, multiplying out
brackets, and solving linear equations. These techniques contribute to the usefulness
of vectors in applications.

Example
collecting

&
combining
like terms

In a vector expression like 2a + b + a + 3b− 4a, the terms 2a, a and −4a
are called like terms because each is a scalar multiple of the vector a. We can
combine like terms by adding their coefficients.

2a + a− 4a = (2 + 1− 4)a = −a

In a similar way we can combine the multiples of b.

We simplify 2a + b + a + 3b− 4a by collecting and combining like terms, in
exactly the same way as we do in ordinary algebra:

2a + b + a + 3b− 4a = −a + 3b.

Example
expanding

brackets
Vector expressions may also contain brackets such as 2(a + 3b). These can be
multiplied out as in ordinary algebra.

2a + b− 2(a + 3b) = 2a + b− 2a− 6b = −5b

Example
solving
vector

equations

We can solve vector equations in almost the same way that we solve ordinary
linear equations6, the main difference being that it is customary to multiply
but not divide vectors by scalars.

Solve the equation 2x + a− b + c = 2a− 3b + c for the unknown vector x.

Answer

2x + a− b + c = 2a− 3b + c

2x = a− 2b . . . now multiply both sides by 1
2 .

x =
1

2
(a− 2b) or

1

2
a− b

As you can see, the methods we use for simplifying linear expressions in ordinary al-
gebra carry intuitively over to vectors. However, vectors are different from numbers,
and we should confirm that what we are doing is valid.

6A linear equation is an equation in which the unknown only occurs to the first power.
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1.4 Geometric Problems

Vector algebra can be used to solve geometric problems.

Example
midpoint
formula

In the vector diagram M is the midpoint of BC. Vector algebra can be used to

find an expression for
−−→
AM in terms of p and q.

�
�
�
�
�
�
�
�
��

��
��

��
��

��
��

��
��

��1

PPPPPPPPP

s

A

B

C

M

p

q

The diagram shows that

−−→
AM =

−→
AB +

−−→
BM = p +

−−→
BM

As M is the midpoint of BC, you can see that

−−→
BM =

1

2

−−→
BC =

1

2
(q− p)

Substituting this into the previous equation:

−−→
AM = p +

1

2
(q− p)

=
1

2
(p + q)

Exercise 1.4

1. In the diagram M is the midpoint of VW.

�
�
�
�
�
��

PPPPPPPPPq

��
��

��
��
�1

�
�
�
�
�
�
�
�
�
�
��

s
O

U

V

W

Me

f

g

Find expressions for
−−→
OV ,

−−→
VW ,

−−→
UM and

−−→
OM in terms of e, f , g.
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2. In the diagram P is divides AB in the ratio 1:2. Find an expression for−→
OP in terms of a and b.

�
�
�
�
�
�
�
�
��

���
���

���
���

���
���

���
��:

``````````````̀

s

O

A

B

P

a

b



Chapter 2

Vector Components

2.1 Vectors and Co-ordinates

If a Cartesian co-ordinate system was added to a vector diagram, then co-ordinates
could be assigned to the top and tail of each vector.We could then describe vectors
in terms of these co-ordinates, and use this information in calculations.

It is convenient to introduce vectors i and j on the x- and y-axes, each with tail at
the origin and pointing in the positive x- and y-directions, and each with length 1.
These are called unit vectors as they have length 1. When talking about them, we
just call them “ i ” and “ j ”.

-

6

-

6

x

y

O i

j

r

r

(1, 0)

(0, 1)

We can use co-ordinates to describe vectors . . . and we can use vectors to locate
points on the Cartesian plane.

-

6

-

6

x

y

O i

j

r

r r

(x, 0)

(0, y) P(x, y)

xi
+
yj

-

6

-

6

�
�
�
�
�
�
�
�
�
�
��>

x

y

O xi

yj

r

r rP(x, y)

15
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Definition 2.1.1
If P(x, y) is a point on the Cartesian plane, and if O is the origin then

−→
OP = xi+yj

is called the position vector of the point P.

The notation [x, y] is commonly used as an abbreviation for the vector xi + yj. The
numbers x and y are called the vector components of xi+yj, x being the x-component
and y being the y-component.

Example
vector

components
(a) i = [1, 0] (b) j = [0, 1] (c) 2i− 3j = [2,−3] (d) 0 = [0, 0]

If a is a vector which is equal to position vector
−→
OP = [x, y], then we can also write

a = [x, y], and also say that the numbers x and y are the vector components of a.

�
�
�
�
�
��

r �
�
�
�
�
��

r

O

P(x, y)

−→
OP = [x, y] a = [x, y]

Working with components is very intuitive.

Properties of Components

• If a = [x, y], then −a = [−x,−y]

• If a = [x, y] and h is a scalar, then ha = [hx, hy]

• If a = [x1, y1] and b = [x2, y2], then a± b = [x1 ± x2, y1 ± y2]

The first two properties are illustrated below for position vectors, but are true for
all vectors.

-�

6

?

�
�
�
�
�
��

�
�
�

�
�
�	

x

y

O
r

r

r

(x, y)

(−x,−y)

a

−a

-

6

�
�
�
���

p p p p p p p p
p p p p p p p p

p p p p p p p p
p p��

��

x

y

O

r

r
r

(hx, hy)

(x, y)

hxx

hy

y

ha

a

The three properties can be proved using vector algebra.
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Example
adding
vector

components

Show that if a = [x1, y1] and b = [x2, y2], prove that a + b = [x1 +x2, y1 + y2].

Answer

a + b = [x1, y1] + [x2, y2]

= (x1i + y1j) + (x2i + y2j)

= (x1 + x2)i + (y1 + y2)j)

= [x1 + x2, y1 + y2]

Example
parallel
vectors

Find c if a = [1, 2] and b = [2, c] are parallel.

Answer
Two vectors can only be parallel if one is a scalar multiple of the other.

�
�
�
�
�
��

�
�
��a = [1, 2]
b = [2, c]

If a and b are parallel, then a = hb for some scalar h.

Put [1, 2] = h[2, c],
then 2h = 1 and ch = 2,
so h = 1

2
and c = 4.

Theorem1 If P(xP , yP ) and Q(xQ, yQ) are any two points in a plane, then

−→
PQ = [xQ − xP , yQ − yP ].

Proof.

-

6
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��

PP
PP

PP
PP

Pi

x

y

O

P(xP , yP )

Q(xQ, yQ)

r
r

r
1A theorem is an important or useful result.
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It can be seen from the diagram that the position vectors
−→
OP and

−→
OQ are given by

−→
OP = [xP , yP ] = [xP i + yP j

and
−→
OQ = [xQ, yQ] = [xQi + yQj].

So
−→
PQ =

−→
OQ−

−→
OP

= xQi + yQj− ([xP i + yP j])

= (xQ − xP )i + (yQ − yP )j

= [xQ − xP , yQ − yP ].

In words: the components of a directed line segment are the co-ordinates of the top
minus the co-ordinates of the tail.

Exercise 2.1

1. If a = [2,−3] and b = [3, 4], find the vector components of
(i) 3a + 4b
(ii) 2b− a

2. Find c if a = [5,−2] and b = [10, c] are parallel.

3. If a = [2,−1], b = [3, 4] and c = [p, 15], find p so that c is parallel to b− a.

4. If P(1,−2), Q(−3, 1), R(2, 4) and S(−1, 6) are points the Cartesian plane, find

the components of the vector
−→
PQ + 2

−→
RS.
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2.2 Formula for Length

The magnitude or length of any vector can be found from its components using
Pythagoras’ theorem.

The diagram below shows that the length of a = [x, y] is |a| =
√
x2 + y2.

-

6

�
�
�
�
�
�
�
�
�
�
��>

O x

y y

rP(x, y)

a

Theorem If a is a vector and h is a scalar, then |ha| = |h||a|.
Proof. Let a = [x, y], then ha = [hx, hy] and

|ha| =
√

(hx)2 + (hy)2 = h
√

(x2 + y2 = |h||a|.

Finding a
unit vector

Corollary If a is a vector, then 1
|a|a has length 1 (ie. it is a unit vector having the

same direction as a).2,3

Proof. The theorem shows that the length of 1
|a|a is

∣∣ 1
|a|a
∣∣ = 1

|a| |a| = 1.

Exercise 2.2

1. If a = [1, 3] and b = [2,−1], find |a− 2b|.

2. If a = [1, 4] , c = [2, 1] and a + b = c, find |b|.

3. Find unit vectors having the (i) same direction and (ii) opposie direction to

(i) a = [3,−4] (ii) b = [−5, 12] (iii) c = [−6, 8] (iv) O = [0, 0].

4. If P(1,−1), Q(−2, 1), R(2, 4) and S(−1, 5) are points, find the unit vector

parallel to
−→
PQ + 2

−→
RS.

2A corollary is a deduction from a theorem.
3Unit vectors like this are used in astronomy, where the direction of a star is may be known

but its distance from earth is not.



20 CHAPTER 2. VECTOR COMPONENTS

2.3 Vectors in Three Dimensions

All of the previous ideas can be extended to three dimensions. The diagram below
shows a three dimensional co-ordinate system.

-
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(2, 1, 0)(2, 0, 0)

(2, 0, 3)

(0, 0, 3)

(0, 1, 0)(0, 0, 0)

(0, 1, 3)

x

y

z

If you arrange your thumb and the first two fingers on your right hand in the same
directions as the three axes in the diagram, with the thumb pointing in the z-
direction, then first finger point will point in the x-direction and the second finger
will point in the y-direction. When a screw is screwed in the z-direction, your right
hand will rotate (anti-clockwise) from the x-axis towards the y-axis.

The point P has co-ordinates (2, 1, 3). It can be reached by moving 2 units along
the x-axis from the origin (0, 0, 0), then moving 1 unit parallel to the y-axis, then
moving 3 units parallel to the z-axis.

The projection of point P (2, 1, 3) onto the (x, y)-plane is (2, 1, 0), the projection onto
the (y, z)-plane is (0, 1, 3), and the projection onto the (z, x)-plane is (2, 0, 3).

Example
In three dimensions, i, j and k represent the unit vectors which have tails at
the origin and which point along the x-, y- and z-axes in a positive direction.

The position vector of the point P(2, 1, 3) above is
−→
PQ = 2i + j + 3k.

−→
PQ has components [2, 1, 3] and length |

−→
PQ| =

√
22 + 12 + 32 =

√
14.

In general, the length of the three dimensional vector [x, y, z] is
√
x2 + y2 + z2.
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Exercise 2.3

1. Draw a three dimensional co-ordinate system and show the points:
(i) (3, 0, 0) (ii) (3, 2, 0) (iii) (3, 2, 1) (iv) (−1,−1,−1)

2. How far is P (3, 4, 5) from the origin?

3. If a = [1, 3, 2] and b = [2,−1, 4], find |a− 2b|.

4. If a = [1, 0, 4] , c = [2, 1, 0] and a + 2b = c, find |b|.

5. Find a unit vector having the same direction as a = [3,−4, 5]

6. A rectangular prism (box) has sides 2m, 3m and 4m long. What is the maxi-
mum distance between 2 corners?



Chapter 3

The Scalar Product

3.1 Scalar Products and Angles

Scalar products enable the angle between two vectors to be calculated.

Definition 3.1.1
1. If a = [a1, a2] and b = [b1, b2], then the scalar product of a and b is

a • b = a1b1 + a2b2.

2. If a = [a1, a2, a3] and b = [b1, b2, b3], then the scalar product of a and b is

a • b = a1b1 + a2b2 + a3b3.

Scalar products are also called dot products.

Example
scalar
or dot

products

(a) If a = [1, 4] and b = [2,−3], then a • b = 1× 2 + 4×−3 = −10.

(b) If u = [1, 1, 2] and v = [1, 1,−1], then u • v = 1× 1 + 1× 1 + 2×−1 = 0.

The angle between two position vectors is the smallest angle they make at the origin.
If the vectors are not position vectors, then we can think of the angle between them
as being the angle between their equivalent position vectors. Alternatively, it can
be thought of as the smallest angle between them if they are shifted so that their
tails touch.

�
�

�
�
�

�
�
�
�	

a

H
HHH

HHH
HHj

bHH
HHH

HHHHj

θ̀

` ` ` ` ` ` ` ` `

` ` ` ` ` ` ` ` ` `
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The scalar product is important because of the following theorem.

Theorem If θ is the angle between two vectors a and b, then

a • b = |a||b| cos θ.

Example
finding

an angle
Find the angle between the vectors a = [3, 2] and b = [2, 1]

Answer

The dot product is a • b = 3× 2 + 2× 1 = 8.

The lengths are |a| =
√

32 + 22 =
√

13 and |b| =
√

22 + 12 =
√

5.

The angle is given by

cos θ =
a • b

|a||b|
=

8√
13
√

5
=

8√
65
.

So θ = 7.12o

Example
perpendicular

vectors
Show that the position vectors [1, 1, 2] and [1, 1, -1] are perpendicular.

Answer

The dot product is a • b = 1× 1 + 1× 1 + 2×−1 = 0.

This shows that cos θ = 0, so the vectors are perpendicular.

Exercise 3.1

1. Find the angle between [1, 2] and [3,−3].

2. Find the angle that points P (1, 1) and Q(1, 2) subtend at the origin.

3. Find the angle at which the line between P (1, 1) and Q(2, 3) intersects the
x-axis. (Hint: Use the unit vector i in your calculations)

4. A cube has sides 1 m long. If three of the sides are taken to be the x-, y- and
z- axes, find the angle between z-axis and the diagonal running between the
origin and the furthest edge.

5. A rectangular box has dimensions 1m, 2m and km. What should the value
of k be if the angle between longest diagonal and the longest edge of the box
needs to be 20o?
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3.2 Planes in 3-dimensions

A vector is said to be normal to a plane if it is perpendicular to every vector that
lies in the plane.

The equation of a plane can be found from:

• a point A(a, b, c) on the plane.

• a normal vector n = [l,m, n] to the plane

In the diagram below, (x, y, z) is a general point on the plane π.
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sP(x, y, z)

sA(a, b, c)

π

n

As AP = [x−a, y− b, z−c] and n = [l,m, n] are perpendicular, their scalar product
is zero and

l(x− a) +m(y − b) + n(z − c) = 0

The equation of π is l(x− a) +m(y − b) + n(z − c) = 0.

Example
equation

of a
plane

Find the equation of the plane with normal vector [1, 0,−2] that passes through
the point (1, 1, 3), and find one point on the plane.

Answer

i. The equation is 1(x− 1) + 0(y − 1) +−2(z − 3) = 0, that is x− 2z + 5 = 0
ii. Let z = 0, then x = −5. the equation imposes no restrictions on the value
of y, so take y = 1. One point is (−5, 1, 0).

Example
normal

to a
plane

Find a normal vector to the plane x+ 2y − z = 4
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Answer

A normal vector is [1, 2, -1].

Exercise 3.2

1. Find the equation of a plane with normal vector [2, 3,−1] that passes through
(1, 1, 1).

2. A(1, 2,−1) and B(2, 1,−1) are two points. Find the equation of the plane
which passes through A and is normal to AB.

3. Find a unit vector normal to the plane x + y + z = 3.

4. Find the equation of the plane perpendicular to the z-axis and passing through
the point (1,−2, 5)



Appendix A

Answers

Exercise 1.1

1. check with tutor

2. check with tutor

3. After 5 minutes, it increased its velocity by 10 percent, then 10 minutes later
it turned in the opposite direction and moved at the same velocity it started
with.

4. (d), (e) and (l) are false

5. check with tutor

Exercise 1.2

1. (a) check with tutor
(b) Magnitude =

√
5002 + 1002 − 2× 500× 100× cos 45 = 435.1,

Direction = 45◦ + θ from North, where

sin θ

100
=

sin 45

435.1
⇒ θ = 9.353o

That is, the direction is a compass bearing of N54.353◦.

2. (a) Magnitude =
√

52 + 152 − 2× 5× 15× cos 114 = 17.64
(b) Direction = N109.0◦

3. (a) Magnitude =
√

32 + 42 − 2× 3× 4× cos 150 = 6.766
(b) Direction = 17.19◦ above horizontal.

4. (a)
−→
DC (b)

−→
DA (c)

−→
CB (d) 0

5. (a) u− v + w = 0 (b) u + w + v = 0

26
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6. (a) Magnitude = 436.9 km/h
(b) Direction = 4.6◦ S of E (or a compass bearing of N94.6◦).

7. check with tutor

Exercise 1.4

1. (a)
−→
OV = e + f

(b)
−−→
VW = −f − e + g

(c)
−−→
UM = f + 1

2
(−f − e + g) = 1

2
f − 1

2
e + 1

2
g

(d)
−−→
OM = e + f + 1

2
(−f − e + g) = 1

2
e + 1

2
f + 1

2
g

2. 2
3
a + 1

3
b

Exercise 2.1

1. (i) [18, 7] (ii) [4, 11]

2. c = −4

3. p = 3

4. [−10, 7]

Exercise 2.2

1.
√

34

2.
√

10

3. (i) ±1
5
[3,−4]

(ii) ± 1
13

[5,−12]
(iii) ±1

5
[−3, 4]

(iv) the direction is not defined.

4. 1√
97

[−9, 4]

Exercise 2.3

1. check with tutor

2.
√

50

3.
√

70

4.
√

9
2

5. 1√
50

[3,−4, 5]
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6.
√

29 m

Exercise 3.1

1. 108.4◦

2. 18.43◦

3. 63.44◦

4. 54.74◦

5. 6.143

Exercise 3.2

1. 2(x− 1) + 3(y − 1)− (z − 1) = 0

2. 1(x− 1)− 1(y − 2) = 0

3. 1
3
[1, 1, 1]

4. z = 5


