
  J. C. G. Lesurf  — 1  —  Electronics from http://www.audiomisc.co.uk

These notes are for the alf of the Electronics course given by Dr Lesurf. There are just nine
lectures in this half of the course, but there are also a set of laboratories. These notes should be
combined with the labwork booklet to cover the analog portion of the course. There is also
additional information, colour versions of the diagrams, etc, on the “Scots Guide to Electronics”
website. To view this, direct a web-browser to the URL

http://www.st-and.ac.uk/~www_pa/Scots_Guide/intro/electron.htm

and then click the link for the “analog and audio” section of the guide. Items in other sections of
the Scots Guide may also be of interest. The examples given here and on the website tend to focus
on applications like audio (hi-fi) as I think this helps to make the topic more understandable and
interesting. Hence the website contains extra information on audio-related topics which you can
understand on the basis of the explanations provided in this course.

The lectures in this booklet are:

1) Analog and amplifiers pg   2

2) Limits and class prejudice pg  10

3) Frequencies and filters pg  18

4) Feedback pg  27

5) Power supplies pg  35

6) Wires and cables pg  44

7) Transmission and loss pg  51

8) Op-Amps and their uses pg  58

9) Semiconductor devices. pg  66

There are also some tutorial questions at the end of this set of notes.

Please read through the notes for each lecture before the lecture itself is given. Then see of you
can answer the relevant tutorial questions after you have attended the lecture. The notes should
mean you can then concentrate upon the explanations given in the lecture. If you are unclear as to
any point you can ask about this during the lectures, or during one of the whole-class tutorials.

J. C. G. Lesurf 
October 2007
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 Lecture 1 – Analog and Amplifiers
This course is intended to cover a range of electronic techniques which are likely to be of some
use or interest to physical scientists and engineers. The lectures covered in these notes focus on
the ‘Analog’ side of things.  In general, electronic systems tend to be made up by combining a
range of simpler elements, circuits, and components of various kinds. We will examine a number
of these in detail in later lectures, but for now we’ll start with a simple over-view of amplifiers and
their uses.

1.1 The uses of amplifiers.
At the most basic level, a signal amplifier does exactly what you expect – it makes a signal bigger!
However the way in which this is done does vary with the design of the actual amplifier, the type
of signal, and the reason why we’re wanting to enlarge the signal. We can illustrate this by
considering the common example of a ‘Hi-Fi’ audio system.

vol

preamp

CD

Power Amplifier

low-level
signals high-level

signals

Figure 1·1 —  Simple electronic system

Loudspeakers

In a typical modern hi-fi system, the signals will come from a unit like a CD Player, FM Tuner,
or a Tape/MiniDisc unit. The signals these produce have typical levels of the order of 100mV or
so when the music is moderately loud. This is a reasonably large voltage, easy to detect with
something like an oscilloscope or a voltmeter. However the actual power levels of these signals is
quite modest. Typically, these sources can only provide currents of a few milliamps, which by

 means powers of just a few milliwatts. A typical loudspeaker will require between a few
Watts and perhaps over 100 Watts to produce loud sounds. Hence we will require some form of
Power Amplifier to ‘boost’ the signal power level from the source and make it big enough to play
the music.

P = V I

We usually want to be able to control the actual volume – e.g. turn it up to annoy neighbours, or
down to chat to someone. This means we have to have some way of adjusting the overall Gain of
the system. We also want other functions – the most obvious being to select which signal source
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we wish to listen to. Sometimes all these functions are built into the same piece of equipment,
however is often better to use a separate box which acts as a Pre-Amp to select inputs, adjust the
volume, etc. In fact, even when built into the same box, most amplifier systems use a series of
‘stages’ which share the task of boosting and controlling the signals.

Figure 1·2 —  Simple PA system
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The system shown in figure 1.2 is similar to the previous arrangement, but in this case is used for
taking signals from microphones and ‘mixing’ them together to produce a combined output for
power amplification. This system also include an ‘EQ’ unit (Equalising) which is used to adjust
and control the frequency response. 

Microphones tend to produce very small signal levels. typically of the order of 1 mVrms or less,
with currents of a few tens of microamps or less – i.e. signal powers of microwatts to nanowatts.
This is similar to many other forms of sensor employed by scientists and engineers to measure
various quantities. It is usual for sensors to produce low signal power levels. So low, in fact, that
detection and measurement can be difficult due to the presence of Noise which arises in all
electronic system. For that reason it is a good idea to amplify these weak, sensor created, signals,
as soon as possible to overcome noise problems and give the signal enough energy to be able to
travel along the cables from the source to its destination. So, as shown in figure 1.2, in most
studios, the microphone sensor will actually include (or be followed immediately) by a small Low-
Noise Amplifier (LNA).

Due to the range of tasks, amplifiers tend to be divided into various types and classes. Frequently
a system will contain a combination of these to achieve the overall result. Most practical systems
make use of combinations of standard ‘building block’ elements which we can think of as being
the ‘words’ of the language of electronics. Here we can summarise the main types and their use.
Most types come in a variety of forms so here we’ll just look at a few simple examples.
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1.2 The Voltage Amplifier
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Figure 1·3 — Examples of voltage amplifiers
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Figure 1·3 shows four examples of simple voltage amplifier stages using various types of device. In
each case the a.c. voltage gain will usually be approximated by

Av ≈ −
R1

R2
... (1.1)

provided that the actual device has an inherent gain large enough to be controlled by the resistor
values chosen. Note the negative sign in expression 1.1 which indicates that the examples all
invert the signal pattern when amplifying. In practice, gains of the order of up to hundred are
possible from simple circuits like this, although for reasons we will discuss in later lectures (on
feedback and distortion) it is usually a good idea to keep the voltage gain below this. Note also
that vacuum state devices tend to be called “valves” in the UK and “tubes” in the USA.

Many practical amplifiers chain together a series of voltage amplifier stages to obtain a high overall
voltage gain. For example a PA system might start with voltages of the order on 0·1µV from
microphones, and boost this to perhaps 10 – 100 V to drive loudspeakers. This requires an overall
voltage gain of × 109, so a number of voltage gain stages will be required.

1.2 Buffers and Current Amplifiers
In many cases we wish to amplify the signal current level as well as the voltage. The example we
can consider here is the signal required to drive the loudspeakers in a Hi-Fi system. These will
tend to have a typical input impedance of the order of 8 Ohms. So to drive, say, 100 watts into
such a loudspeaker load we have to simultaneously provide a voltage of 28 Vrms and 3·5 Arms.
Taking the example of a microphone as an initial source again a typical source impedance will be
around 100 Ohms. Hence the microphone will provide just 1 nA when producing 0·1µV. This
means that to take this and drive 100 W into a loudspeaker the amplifier system must amplify the
signal current by a factor of over ×109 at the same time as boosting the voltage by a similar
amount. This means that the overall power gain required is ×1018 – i.e. 180 dB!
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This high overall power gain is one reason it is common to spread the amplifying function into
separately boxed pre- and power-amplifiers. The signal levels inside power amplifiers are so much
larger than these weak inputs that even the slightest ‘leakage’ from the output back to the input
may cause problems. By putting the high-power (high current) and low power sections in
different boxes we can help protect the input signals from harm.

In practice, many devices which require high currents and powers tend to work on the basis that
it is the signal voltage which determines the level of response, and they then draw the current they
need in order to work. For example, it is the convention with loudspeakers that the volume of the
sound should be set by the voltage applied to the speaker. Despite this, most loudspeakers have an
efficiency (the effectiveness with which electrical power is converted into acoustical power) which
is highly frequency dependent. To a large extent this arises as a natural consequence of the
physical properties of loudspeakers. We won’t worry about the details here, but as a result a
loudspeaker’s input impedance usually varies in quite a complicated manner with the frequency.
(Sometimes also with the input level.)
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Figure 1·4 —  Impedance properties of a typical ‘8 Ohm’ loudspeaker.

Figure 1·4 shows a typical example. In this case the loudspeaker has an impedance of around 12
Ohms at 150 Hz and 5 Ohms at 1 kHz. So over twice the current will be required to play the
same output level at 1 kHz than is required at 150 Hz. The power amplifier has no way to “know
in advance” what kind of loudspeaker you will use so simply adopts the convention of asserting a
voltage level to indicate the required signal level at each frequency in the signal and supplying
whatever current the loudspeaker then requires.

This kind of behaviour is quite common in electronic systems. It means that, in information
terms, the signal pattern is determined by the way the voltage varies with time, and – ideally – the
current required is then drawn. Although the above is based on a high-power example, a similar
situation can arise when a sensor is able to generate a voltage in response to an input stimulus but
can only supply a very limited current. In these situations we require either a current amplifier or a
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buffer. These devices are quite similar, in each case we are using some form of gain device and
circuit to increase the signal current level. However a current amplifier always tries to multiply the
current by a set amount. Hence is similar in action to a voltage amplifier which always tries to
multiply the signal current by a set amount. The buffer differs from the current amplifier as it sets
out to provide whatever current level is demanded from it in order to maintain the signal voltage
it is told to assert. Hence it will have a higher current gain when connected to a more demanding
load.

bipolar

Figure 1·5 — Examples simple buffers
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Figure 1·5 shows two simple examples of buffers. In each case the gain device (an NPN transistor
or an op-amp in these examples) is used to lighten the current load on the initial signal source
that supplies . An alternative way to view the buffer is to see it as making the load impedance
seem larger as it now only has to supply a small current to ensure that a given voltage is output.

v i n

Figure 1·6 — photodiode and 2-stage current amplifier
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Figure 1·6 shows an example of a 2-stage current amplifier in a typical application. The
photodiodes often used to detect light tend to work by absorbing photons and releasing free
charge carriers. We can then apply a potential difference across the photodiode’s junction and
‘sweep out’ these charges to obtain a current proportional to the number of photons per second
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striking the photodiode. Since we would require around 1016 electrons per second to obtain an
amp of current, and the efficiency of the a typical photodiode is much less than ‘one electron per
photon’ this means the output current from such a photodector is often quite small. By using a
current amplifier we can boost this output to a more convenient level. In the example, two
bipolar transistors are used, one an NPN-type, the other PNP-type, with current gains of  and

. For typical small-signal transistors  so a pair of stages like this can be expected
to amplify the current by between × 250 and × 250,000 depending upon the transistors chosen.
In fact, if we wish we can turn this into a voltage by applying the resulting output current to a
resistor. The result would be to make the circuit behave as a high-gain voltage amplifier.

β1

β2 β ≈ 50 − 500

1.3 The diff-amp
There are many situations where we want to amplify a small difference between two signal levels
and ignore any ‘common’ level both inputs may share. This can be a achieved by some form of
Differential Amplifier. Figure 1·7 shows an example of a differential amplifier stage that uses a pair
of bipolar transistors.

Figure 1·7 — ‘Long-tailed pair’ differential amp
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This particular example uses a Long-Tailed Pair connected to a Current Source. We can
understand how the circuit works simply from an argument based upon symmetry. For simplicity
in this diagram we represent the Current Source by the standard symbol of a pair of linked circles.
We will look at how a current source actually works later on. For now we can just assume it is an
arrangement that insists upon always drawing a fixed current which in this case has the value .I E

Assume that  and that the two transistors are identical. Assume that we start with the
two input voltages also being identical. The circuit is arranged so that .  By
symmetry, when  it follows that , hence .

R1 = R2

I E = I 1 + I 2

v 1 = v 2 I 1 = I 2 I 1 = I 2 = I E / 2

Now assume we increase, say,  by a small amount. This will mean that the transistor, Tr1, will
try to increase its current level and hence lift the voltage present at its emitter. However as it does
this the base-emitter voltage of Tr2 will fall. Since the current in a bipolar transistor depends

v 1
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upon its base-emitter voltage the result is that the current, , rises, and  falls. The sum of these
currents, , does not alter very much, but the balance between the two transistor currents/
voltages changes. The result is that the rise in , keeping  fixed, causes more current to flow
through  and less through . The reduction in  means the voltage drop across  will reduce.
hence the voltage at its lower end moves up towards . 

I 1 I 2

I E

v 1 v 2

R1 R2 I 2 R2

V +

To evaluate this more precisely, we can assume that for each transistor in the pair the collector-
emitter current is related to the base-emitter voltage via an expression

H I C E = V BE ... (1.2)
i.e. we can say that

H I 1 = (V B1 − V E )  ;  H I 2 = (V B2 − V E ) ... (1.3 & 1.4)
where  is the emitter voltage which the two transistors have in common and  and  are
the base voltages. The value  represents the voltage-current gain of each transistor. The sum of
these two currents always has a fixed value imposed by the current source, but any difference
between them will be such that

V E V B1 V B2

H

H (I 1 − I 2) = v 1 − v 2 ... (1.5)
where  vanishes as it is common to both of the initial expressions.V E

Since  we can say that the above is equivalent to saying thatI 1 + I 2 = I E

H (I E − 2I 2) = v 1 − v 2 ... (1.6)
When only concerned about a.c. signals we can ignore the constant  and say that this becomesI E

i 2 = −
1

2h i b
(v 1 − v 2) ... (1.7)

where  is one of the small-signal h-parameter values for a bipolar transistor,  represents the
change in the current in  produced when we change the input voltage so that their imbalance
from being equal is . Since this change in current appears across , and the potential at
the top of this is held fixed at  it follows that the lower end of  which we are using as the
output will change in voltage by

h i b i 2

R2

(v 1 − v 2) R2

V + R2

v ou t =
R2

2h i b
(v 1 − v 2) ... (1.8)

i.e. the stage has an effective voltage gain of .R2 / (2h i b )

Differential amplifiers are particularly useful in three applications:

• When we have an input which has come from some distance and may have had some added
interference. Using a pair of wires to send the signal we can then take the difference in
potential between them as the signal and reject any ‘common mode’ voltages on both wires as
being induced by interference.
• In feedback arrangements we can use the second input to control the behaviour of the
amplifier.
• When we wish to combine two signals we can feed one into one transistor, and the second
signal into the other.

Most Operational Amplifier integrated circuits have differential amplifier input stages and hence
amplify the difference between two given input levels. Many use bipolar pairs of the kind shown
in figure 1·7, but similar arrangements using Field Effect Transistors are also often used.
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The Current Source
Having made use of one, we should finish with an explanation of the Current Source. Figure 1·8
shows a simple example.

Figure 1·8 — Simple Current Source
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A positive voltage is applied to the base of a bipolar transistor, but this base is also connected to a
lower potential via a series of three diodes. The potential across such a diode when conducting
current will tend to be around 0·6 V. Since there are three of these, the base of the transistor will
sit at a potential about 1·8 V above the lower end of . The base-emitter junction of a bipolar
transistor is also a diode, hence it will also drop about 0·6 V when conducting. As a result, there
will be 1·8 - 0·6 = 1·2 V across . This means the current through this resistor will be .
since the transistor will probably have a current gain of over × 100 this means that more than
99% of this current will be drawn down from the transistor’s collector.

R2

R2 / R21·2

Hence approximately, we can say that

I c =
R2

... (1.9)
1·2 Volts

in practice the current will vary slightly with the chosen values of  and . However provided
the current through the diodes is a few mA the above result is likely to be reasonably accurate.
Provided that  is much larger than 1·8 V the exact value does not matter a great deal. The
circuit therefore tends to draw down much the same current whatever voltage appears at the
transistor’s collector – assuming that it, too, is more than a couple of volts. So the circuits acts to
give a ‘fixed’ current and behaves as a steady current source. Although this example uses a bipolar
transistor, as with many other forms of circuit we can make similar arrangements using other
types of device.

R1 V +

V +

Summary
You should now know the difference between some of the basic types of amplifier and the kinds
of  electronic ‘building blocks’ that can be used as amplifier stages. It should also be clear that the
range of tasks and signal details/levels varies enormously over a wide range of applications. You
should now also know how the basic amplifier arrangements such as Long-Tailed Pairs, etc, work.
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 Lecture 2 – Limits and Class Prejudice
Every real amplifier has some unavoidable limitations on its performance. The main ones that we
tend to have to worry about when choosing and using them are:

• Limited bandwidth. In particular, for each amplifier there will be an upper frequency
beyond which it finds it difficult/impossible to amplify signals.
• Noise. All electronic devices tend to add some random noise to the signals passing through
them, hence degrading the SNR (signal to noise ratio). This, in turn, limits the accuracy of
any measurement or communication.
• Limited output voltage, current, and power levels. This will mean that a given amplifier
can’t output signals above a particular level. So there is always a finite limit to the output
signal size.
• Distortion. The actual signal pattern will be altered due non-linearities in the amplifier. This
also reduces the accuracy of measurements and communications.
• Finite gain. A given amplifier may have a high gain, but this gain can’t normally be infinite
so may not be large enough for a given purpose. This is why we often use multiple amplifiers
or stages to achieve a desired overall gain.

Let’s start by looking at the limits to signal size.

2.1 Power Limitations
Figure 2·1 shows a simple amplifier being used to drive output signals into a resistive load.

Figure 2·1 — Amplifier and resistive load
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The amplifier is supplied via power lines at  and  so we can immediately expect that this
will limit the possible range of the output to  as the circuit has no way to
provide voltages outside this range. In fact, the output may well be rather more restricted than
this as we can see using the following argument.

V + V −
V + > v ou t > V −

In effect, we can regard the transistor as a device which passes a current whose level is primarily
determined by its base-emitter voltage, and hence by the input, . However any current it
draws from its collector must pass through  or , and any current emerging through its

v i n

RC RL
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emitter must then flow through . In practice it really acts a sort of  ‘variable resistor’ placed in
between these other resistors. We can therefore represent it as being equivalent to the circuit
shown in Figure 2·2a where the transistor is replaced by a variable resistance, VR.

RE

Figure 2·2 — Transistor as variable resistor
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When we lower the input voltage, , we reduce the transistor’s willingness to conduct, which is
equivalent to increasing its effective collector-emitter resistance. Taking this to the most extreme
case we would reduce the current it passes to zero, which is equivalent to giving it an effective
collector-emitter resistance of infinity. This situation is represented in figure 2·2b. Alternatively,
when we increase  we encourage the transistor to pass more current from collector to emitter.
This is equivalent to reducing its effective collector-emitter resistance. Again, taking this to the
extreme we would reduce its resistance to zero as shown in 2·2c. We can now use the extreme
cases shown in 2·2b and 2·2c to assess the maximum output the circuit can provide, and the
implications for the design.

v i n

v i n

From 2·2b we can see that the highest (i.e. most positive) current and voltage we can provide into
a load, , will beRL

v ou t = V max =
V +RL

RL + RC
 :  I max =

V +

RL + RC
... (2.1 & 2.2)

as the collector resistor acts a a Potential Divider with the load to limit the fraction of the
available positive power line voltage we can apply to the output. Looking at expressions 2.1 and
2.2 we can see that we’d like  to enable the maximum output to be able to be as big as
possible – i.e. to approach . For the sake of example, lets assume that we have therefore chosen
a value for  equal to .

RC ≪ RL

V +
RC RL / 10

Now consider what happens when we lower the transistor’s resistance (i.e. increase the current it
will conduct) to the maximum case shown in 2·2c. We now find that the minimum (most
negative) output voltage and current will be

v ou t = V mi n =
RLV a

Ra + RL
 :  I mi n =

V a

Ra + RL
... (2.3 & 2.4)

where we can define

V a ≡
REV + + RC V −

RE + RC
 :  Ra =

RC RE

RE + RC
... (2.5 & 2.6)

Either by considering the diagram or examining these equations we can say that in order for
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 to be able to approach  we require  (where  represents the value of the
parallel combination). Since we have already chosen to set  this is equivalent to choosing
a value of . Again, we can assume for the sake of example that  is chosen to be

 which means it will also apprimate to .

V mi n V − RE ≪ RC / / RL / /
RC ≪ RL

RE ≪ RC RE

(RC / / RL) / 10 RL / 100

To consider the implications of the above lets take a practical example based on a power amplifier
for use as part of an audio system. This means we can expect  to be of the order of 8 Ohms. For
simplicity, lets assume . Following the assumptions above this means we would choose

 and . Again, for the sake of example, lets assume that the voltage rails
available are . This would mean that for an ideal amplifier we could expect to output peak
levels of about 90% of which for a sinewave would correspond to about 30 Watts rms
maximum power delivered into the  load.

RL

RL = 10Ω
RC = 1Ω RE = Ω0·1

±25 V
±25 V

10Ω

Now consider what happens when the amplifier is on, but isn’t trying to deliver a signal to the
load – i.e. when . This means that there will be 25 Volts across . Since this has a
resistance of  it follows that  when . i.e. the amplifier will demand
25 Amps from its positive power supply. Since none of this is being sent to the load this entire
current will be passed through the transistor and its emitter resistor and away into the negative
power rail supply. The result is that 25 × 50 = 1250 Watts will have to be dissipated in the
combination of , the transistor, and  in order to supply no actual output!

v ou t = 0 RC

1Ω I C = 25 Amps v ou t = 0

RC RE

It would be fair to describe this kind of design as being “quite inefficient” in power terms. In
effect it will tend to require and dissipate over 1 kW per channel if we wanted to use it as a 30
Watt power amplifier. This is likely to require large resistors, a big transistor, and lots of
heatsinks. The electricity bill is also likely to be quite high and in the summer we may have to
keep the windows open to avoid the room becoming uncomfortably warm. Now we could
increase the resistor values and this would reduce the “standing current” or Quiescent Current the
amplifier demands. However it would also reduce the maximum available output power, so this
form of amplifier would never be very efficient in power terms. To avoid this problem we need to
change the design. This leads us to the concept of amplifier Classes.

2.2 Class A
The circuit illustrated in Figure 2·1 and discussed in the previous section is an example of a
Class A amplifier stage. Class A amplifiers have the general property that the output device(s)
always carry a significant current level, and hence have a large Quiescent Current. The Quiescent
Current is defined as the current level in the amplifier when it is producing an output of zero.
Class A amplifiers vary the large Quiescent Current in order to generate a varying current in the
load, hence they are always inefficient in power terms. In fact, the example shown in Figure 2·1 is
particularly inefficient as it is Single Ended. If you look at Figure 2·1 again you will see that the
amplifier only has direct control over the current between one of the two power rails and the
load. The other rail is connected to the output load through a plain resistor, so its current isn’t
really under control.

We can make a more efficient amplifier by employing a Double Ended or Push-Pull arrangement.
Figure 2·3 is an example of one type of output stage that works like this. You can see that this
new arrangement employs a pair of transistors. One is an NPN bipolar transistor, the other is a
PNP bipolar transistor. Ideally, these two transistors have equivalent properties – e.g. the same
current gains, etc – except for the difference in the signs of their voltages and currents. (In effect,
a PNP transistor is a sort of electronic “mirror image” of an NPN one.)
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Figure 2·3 — Push-Pull Output
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The circuit shown on the left now
has two transistors which we can
control using a pair of input
voltages,  and . We can
therefore alter the two currents,
and  independently if we wish.

In practice, the easiest way to use
the circuit is to set the Quiescent
Current,  to half the maximum
level we expect to require for the
load. Then adjust the two transistor
currents ‘in opposition’.

It is the imbalance between the two
transistor currents that will pass
through the load so this means the
transistors ‘share’ the burden of
driving the output load.

V 1 V 2

I 1

I 2

I Q

When supplying a current,  to the load this means that we will haveI L

I 1 = I Q +
I L

2
 :  I 2 = I Q −

I L

2
... (2.7 & 2.8)

In linear operation this limits us to a current range  in each transistor, and load
currents in the range . Hence this arrangement is limited in a similar way to
before. However the important difference to before becomes clear when we take the same case as
was used for the previous example, with   power lines and a  load.

0 → 2I Q

−2I Q ≤ I L ≤ 2I Q

±25 V 10Ω

Since we wish to apply up to 25 V to a  load we require a peak output load current of 2·5
Amps. This means we can choose . As a result, each transistor now only has to
dissipate 1·25 × 25 = 31 Watts – i.e. the output stage dissipates 62 Watts in total when providing
zero output. Although this still isn’t very efficient, it is rather better than the value of well above 1
kW required for our earlier, single ended, circuit! 

10Ω
I Q = 1·25 A

2·3 Class B
Note that as is usual in electronics there are a number of arrangements which act as Class A
amplifiers so the circuit shown in Figure 2·3 is far from being the only choice. In addition we can
make other forms of amplifier simply by changing the Quiescent Current or Bias Level and
operating the system slightly differently. The simplest alternative is the Class B arrangement. To
illustrate how this works, consider the circuit shown in Figure 2·4a. Once again this shows a pair
of devices. However their bases (inputs) are now linked by a pair of diodes.

The current in the diodes is mainly set by a couple of constant current stages which run a bias
current, , through them. If we represent the forward voltage drop across each diode to be

 we can say that the input to the base of the upper transistor sits at a voltage of ,
and the input to the base of the lower transistor sits at .  Now since the base-emitter
junction of a bipolar transistor is essentially a diode we can say that the drop between the base
and emitter of the upper transistor will also be . Similarly, we can say that the emitter of the
lower (PNP) transistor will be  above its base voltage.

i b i as

V d v i n + V d

v i n − V d

V d

V d
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Figure 2·4 — Class B and AB Power stages 
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This leads to the very interesting result where the emitter voltages in 2·4a will be

V 1 = V 2 = v i n ... (2.9)
This has two implications. Firstly, when  the output voltages will be zero. Since this
means that the voltages above and below the emitter resistors ( ) will both be zero it follows that
there will be no current at all in the output transistors. The Quiescent Current level is zero and
the power dissipated when there is no output is also zero! Perfect efficiency!

v i n = 0
RE

The second implication is that as we adjust  to produce a signal, the emitter voltages will both
tend to follow it around. When we have a load connected this will then draw current from one
transistor or the other – but not both. In effect, when we wish to produce an positive voltage the
upper transistor conducts and provided just enough current to supply the load. None is wasted in
the lower transistor. When we wish to produce a negative voltage the lower transistor conducts
and draws the required current through the load with none coming from the upper transistor.
Again this means the system is highly efficient in power terms.

v i n

This all seems to be too good to be true, there must be a snag...  and yes, there are indeed some
serious drawbacks. When power efficiency is the main requirement then Class B is very useful.
However to work as advertised it requires the voltage drops across the diodes and the base-emitter
junctions of the transistors to all be exactly the same. In practice this is impossible for various
reasons. The main reasons are as follows:

• No two physical devices are ever absolutely identical. There are always small differences
between them.
• The diodes and the transistors used will have differently doped and manufactured junctions,
designed for different purposes. Hence although their general behaviours have similarities, the
detailed IV curves of the transistor base-emitter junctions won’t be the same as the IV curves
of the diodes.
• The current through the transistors is far higher than through the diodes, and comes mostly
from the collector-base junctions which are intimately linked to the base-emitter. Hence the
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behaviour is altered by the way carries cross the device.
• The transistors will be hotter than the diodes due to the high powers they dissipate. Since a
PN junction’s IV curve is temperature sensitive this means the transistor junctions won’t
behave exactly like the diodes, and may change with time as the transistor temperatures
change.
• When we change the applied voltage it takes time for a PN junction to ‘react’ and for the
current to change. In particular, transistors tend to store a small amount of charge in their
base region which affects their behaviour. As a result, they tend to ‘lag behind’ any swift
changes. This effect becomes particularly pronounced when the current is low or when we try
to quickly turn the transistor “off” and stop it conducting.

The overall result of the above effects is that the Class B arrangement tends to have difficulty
whenever the signal waveform changes polarity and we have to switch off one transistor and turn
on the other. The result is what is called Crossover Distortion and this can have a very bad effect on
small level or high speed waveforms. This problem is enhanced due to Non-Linearities in the
transistors – i.e. that the output current and voltage don’t vary linearly with the input level –
which are worst at low currents. (We will be looking at signal distortions in a later lecture.)

This places the amplifier designer/user in a dilemma. The Class A amplifier uses devices that
always pass high currents, and small signals only modulate these by a modest amount, avoiding
the above problems. Alas, Class A is very power inefficient. Class B is far more efficient, but can
lead to signal distortions. The solution is to find a ‘half-way house’ that tries to take the good
points of each and minimise the problems. The most common solution is Class AB amplification,
and an example of this is shown in Figure 2·4b.

2·4 Class AB
The Class AB arrangement can be seen to be very similar to the Class B circuit. In the example
shown it just has an extra pair of diodes. The change these make is, however, quite marked. We
now find that – when there is no output – we have a potential difference of about
between the emitters of the two transistors. As a consequence there will be a Quiescent Current of

2 × V d

I Q ≈
V d

RE
... (2.10)

flowing through both transistors when the output is zero. For small output signals that require
output currents in the range both transistors will conduct and act as a
double ended Class A arrangement. For larger signals, one transistor will become non-conducting
and the other will supply the current required by the load. Hence for large signals the circuit
behaves like a Class B amplifier. This mixed behaviour has caused this approach to be called
Class AB.

−2I Q < I L < 2I Q

When driving sinewaves into a load, , this means we have a quasi-Class A system up to an rms
voltage and output power of

RL

V ′r ms ≈
2 V d RL

RE
 :  PL′ ≈

2V 2
d RL

R 2
E

... (2.11 & 2.12)

If we take the same audio example as before ( ), assume a typical diode/base-emitter
drop of 0·5V, and chose small value emitter resistors of  this leads to a maximum
‘Class A’ power level of 20 Watts. The Quiescent Current will be around 1 Amp, so with
power rails this system would still dissipate around 50 Watts in total. In this case the system is
more like Class A than Class B. We do, however have some control over the circuit and can adjust
the bias current level.

RL = 10Ω
RE = Ω0·5

±25V
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The obvious way to change the bias current is to choose a different value for . Choosing a
larger value will reduce  and  whilst still preserving a region of Class A behaviour which can
be large enough to avoid the Crossover and imperfection problems mentioned earlier. However if
we make  too large they will ‘get in the way’ as all the current destined for the load must pass
though these emitter resistors. Most practical Class AB systems therefore use a different approach.
The most common tends to be to replace the diodes with an arrangement often called a ‘rubber
diode’ or ‘rubber Zener’.

RE

I Q PL′

RE

Figure 2·5 — Rubber diode used to set Quiescent Current 

2·5a  Rubber diode 2·5b  Rubber diode in use
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Figure 2·5a shows the basic ‘rubber zener’ arrangement. Looking at this we can see that it consists
of a pair of resistors and a transistor. The resistors are connected together in series to make a
potential divider which feeds a voltage to the base of the transistor. However the transistor can
‘shunt’ away any current applied and control the potential difference appearing across the pair of
resistors. The arrangement therefore settles into a state controlled by the fact that the base-emitter
junction of the transistor is like a diode and the transistor conducts when the base-emitter
voltage, , is approximately 0·5 V. Since  is also the voltage across  we can expect thatV d V d R2

V d ≈
V ZR2

R1 + R2
... (2.13)

provided that the base current is small enough compared to the currents in the two resistors to be
ignored. The above just comes from the normal action of a potential divider. However since in
this case the transistor is involved it will act to adjust  to keep  at about 0·5V. The result is
therefore that we can set the voltage

V Z V d

V Z ≈
V d (R1 + R2)

R2
... (2.14)

This means we can choose whatever voltage value, , we require by selecting an appropriate pair
of resistors. In a real power amplifier the pair of fixed resistors is often replaced by a
potentiometer and the circuit in use looks as shown in Figure 2·5b. The Quiescent current can
now be adjusted and set to whatever value gives the best result since we can now alter  and
hence the potential difference between the emitters of the output transistors. In practice the
optimum value will depend upon the amplifier and its use. Values below 1mA are common in
op-amp IC’s, whereas high-power audio amps may have  values up to 100mA or more.

V Z

V Z

I Q
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Class AB arrangements are probably the most commonly employed system for power amplifier
output sections, although ‘Pure’ Class A is often used for low current/voltage applications where
the poor power efficiency isn’t a problem. Although we won’t consider there here, it is worth
noting that there are actually a number of other arrangements and Classes of amplifier which are
used. For example, Class ‘C’ and Class ‘E’ which tend to use clipped or pulsed versions of the
signal.

In linear audio amplifiers the most well known alternative is the ‘Current Dumping’ arrangement
developed by QUAD (Acoustical Manufacturing) during the 1970’s. This combines a small Class
A amplifier and a pair of ‘Dumping’ devices. The Dumping devices just supply wadges of current
and power when required, but carry no Quiescent Current so they are highly power efficient, but
prone to distortion. The accompanying Class A amplifier is arranged to ’correct’ the errors and
distortions produced by the Dumping devices. In effect this means it just has to ‘fill in the gaps’
so only has to provide a relatively small current. Hence the Quiescent level required by the Class
A ‘fill in’ amplifier can be small, thus avoiding a poor overall efficiency.

Summary
You should now be aware of of the basic building blocks that appear in Power Amplifiers. That
Class A amplifiers employ a high Quiescent Current (sometimes called bias current or standing
current) large enough that the transistor currents are large even when the output signal level is
small. It should be clear that the power efficiency of Class A amplifiers is therefore poor, but they
can offer good signal performance due to avoiding problems with effects due to low-current level
nonlinearities causing Distortion. You should now also see why a Double Ended output is more
efficient than a Single Ended design. You should also know that Class B has a very low (perhaps
zero) Quiescent Current, and hence low standing power dissipation and optimum power
efficiency. However it should be clear that in practice Class B may suffer from problems when
handling low-level signals and hence Class AB, with its small but controlled Quiescent Current is
often the preferred solution in practice. It should also be clear how we can employ something like
a Rubber Zener to set the optimum Quiescent Current and power dissipation for a given task.
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 Lecture 3 – Frequencies and filters
One of the limitations which affect all real amplifiers is that they all have a finite Signal
Bandwidth. This means that whatever amplifier we build or use, we find that there is always an
upper limit to the range of sinewave frequencies it can amplify. This usually means that high
frequencies signals won’t be boosted, and may attenuated instead. It also often means that high
frequency signals may be Distorted – i.e. their waveshape may be changed. Some amplifiers also
have a low-frequency limitation as well, and are unable to amplify frequencies below some lower
limit. We therefore need to be aware of, and be able to assess, these effects to decide if a specific
amplifier is suitable for a given task.

In addition to the above, there are many situations where we deliberately want to alter the signal
frequencies a system will pass on or amplify. There are many situations where deliberate filtering
is needed. Some common examples are:

• Low Pass Filters used to limit the bandwidth of a signal before Analog to Digital Conversion
(digital sampling) to obey the Sampling Theorem
• Bandpass filters to select a chosen ‘narrowband’ signal and reject unwanted noise or
interference at other frequencies.
• Bandreject filters used to ‘block’ interference at specific frequencies. e.g. to remove 50/100
Hz ‘hum’ (or 60/120 Hz if you happen to be in the USA!)
• ‘Tone Controls’ or ‘EQ’ (Equalisation) controls. These tend to be used to alter the overall
tonal balance of sound signals, or correct for other unwanted frequency-dependent effects.
• ‘A.C.’ amplifiers that don’t amplify unwanted low frequencies or d.c. levels.

In this lecture we will focus on some examples of filters, but bear in mind that similar effects can
often arise in amplifiers.

3.1 Ways to characterise filters
The most common and most obvious way to describe the effect of a filter is in terms of is
Frequency Response. This defines the filter’s behaviour in terms of its Gain as a function of
frequency. figure 3·1 shows a typical example.
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Figure 3·1 — Example of Low-Pass Filter

Measured Toko 208BLR3315N  filter
gain normalised to 0 dB at 1 kHz
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In this case Figure 3·1 shows the measured power gain (or loss!) as a function of frequency for a
specific low-pass filter. This example is based upon a commercial audio filter sold under the
‘Toko’ brand name for use in hi-fi equipment. This filter is Passive – i.e. includes no gain devices,
just passive components like resistors, capacitors, or inductors. As a result we need to counteract
any unwanted losses in the filter. The overall circuit measured in this case is shown in figure 3·2.

+

4k7

4k7 µ1 F

+

100K 100K

1K

2K7 27K

1500pF

µ1 F
Toko LPF

100K

2K7

1K2

27K

TL071
TL071

Powered by a pair of PP3s this gives up to ± 6V out.
Response approx 1 Hz to 16kHz (about -3dB points).
Mid-band voltage gain around × 50

Figure 3·2 — Amplifiers and Low-Pass Filter.

Here the filter actually sits in between two amplifiers which raise the signal level. The filter’s job
in the system this example is taken from is to stop high frequencies from reaching the output
which is to be sampled by an ADC. The overall voltage gain is around ×50 at 1 kHz. The Toko
filter passes signals from d.c. up to around 18 kHz but attenuates higher frequencies. Note also
the pair of  capacitors in the signal path. These, taken in conjunction with the following

 resistors, act as High Pass filters to remove any d.c. as it this was unwanted in this case.
The combination of the  resistor and 1500pF capacitor at the input also act as an additional
low-pass filter.
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Figure 3·3 — As fig 3·1 but including phase plot

Although a frequency response of the kind shown in figure 3·1 is the most common way to
display the behaviour of a filter, it doesn’t tell the whole story. When sinewave components pass
through the filter they may also be delayed by an amount that depends upon their frequency.
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This effect is often represented in terms of a plot of the Phase Delay as a function of signal
frequency. For the same filter as before the measured Phase Delay as a function of frequency is
shown in figure 3·3.

In figure 3·3 the phase seems to ‘jump around’ in quite a complex way. However the underlying
behaviour is simpler than it appears. There are two reasons for this. Firstly, the phase
measurements are always in the range , but the actual signal delay may be more
than a half-cycle. When making phase measurements we can’t normally distinguish a delay of,
say, 50 degrees, from 360 + 50 = 410 degrees, or any other multiple number of cycles plus 50
degrees. If we look at the phase plot shown in figure 3·3 the phase seems to ‘jump’ from  to
about  at around 16 kHz. In fact, what has happened is that the real signal delay has
increased from  to around . However, since the measurement system only gives
results in the limited range it assumes that this is the same as . Despite the apparent
hopping around, the actual signal phase delay tends to increase fairly steadily with frequency.
The second reason for the complex plot is that at some points the signal level becomes very small.
e.g. in figure 3·3 at around 25kHz. When we try to make a phase measurement on a tiny signal
the result becomes unreliable due to measurement errors and noise. Hence the value at such a
frequency can’t be taken as being as reliable as at other frequencies.

−180° → 180°

−180°
+160°

−180° −200°
+160°

Measured plots of phase delay versus frequency therefore have to be interpreted with some care.
That said, the phase behaviour is important as we require it along with the amplitude behaviour
to determine how complex signals may be altered by passing through the filter. In practice,
though, it is often more convenient to measure or specify the filter’s time-effects in terms of a
time delay rather than a phase. We can say that a phase delay of  (radians) at a frequency
is equivalent to a time delay of

φ {f } f

∆t =
φ {f }
2πf

... (3.1)

Figure 3·4 shows the time delay as a function of frequency for the same filter as used for the
earlier figures.
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Figure 3·4 — Time delay versus frequency

Looking at figure 3·4, we can see that when expressed in terms of a time, the delay seems rather
more uniform and does not vary as quickly with frequency as does the phase. This behaviour is
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quite common in filters. In effect, the filter tends to delay signals in its Passband by a fairly
uniform amount. However since a given time delay looks like a phase delay that increases linearly
with frequency, this behaviour isn’t obvious from phase/frequency plots. The term Group Delay is
used to refer to the average time delay imposed over the range of frequencies the filter is designed
to pass through. In this case we can see that for our example filter the Group Delay value is
around 22 microseconds. The term comes from considering a ‘group’ of signal frequencies.

In fact, we can always expect signals to take a finite time to propagate through any circuit or
element in a system. Hence we can also quote Group Delay values for amplifiers, transistors, or
even cables. Unless the delay is so long as to make us wait an annoyingly long time for a signal, a
uniform Group Delay is normally fine as it just means we have to allow a short time for the signal
to arrive but its waveform shape is unaffected. A non-uniform delay will mean that – even if the
amplitudes of frequency components remain relatively unchanged – the signal waveform will be
distorted. Hence in most cases we try to obtain filters and other elements that have a uniform
delay. That said, there are situations where we require a Dispersive element – i.e. one which delays
differing frequencies by differing times. Some forms of filter are actually designed to be All Pass.
i.e. they don’t set out to alter the relative amplitudes of the frequency components in the signals,
but are designed to alter the relative times/phases of the components.

Although we won’t consider it in detail here, it should be clear from the above that we can model
the behaviour of filters just as well by using their Temporal Response to waveforms like short pulses
or ‘steps’ (abrupt changes in level) as by using sinewave methods. In fact, the two ways of
understanding the signal processing behaviour are linked via Fourier Transformation. We can
therefore characterise amplifiers, filters, etc, in either the Time Domain or the Frequency Domain
as we wish. When dealing with continuous waveforms the frequency domain is usually more
convenient, but when dealing with pulses the time domain is more useful.

3·2 Order order!
Having established some of the general properties of filters, lets now look at some specific types
and applications. Broadly speaking we can separate filters into Active versus Passive, As the names
imply, an Active filter makes use of some gain device(s) as an integral part of the operation of the
filter. Passive filters don’t actually require a gain device to work, but are usually accompanied by
some form of amplifiers or buffers for convenience. Filters are also often referred to as ‘First
Order’, ‘Second Order’, etc. This refers to the number of components (capacitors and inductors,
not resistors or transistors) that affect the ‘steepness’ or ‘shape’ of the filter’s frequency response.
To see what this means we can use a few examples.

Figure 3·5 — Some Low-Pass filters

3·5a  RC filter 3·5b  2 stage RC filter
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Figure 3·5 shows three simple types of low-pass filter. In each case we can use the standard
methods of a.c. circuit analysis to work out the circuit’s voltage gain/loss, , as a
function of frequency and obtain the following results

Av ≡ v o / v i

 Av =
1

1 + jωRC
... (3.2)for 3·5a

 Av = 


1
1 + jωR1C 1

 
× 


1

1 + jωR2C 2
 

... (3.3)for 3·5b

 Av =
1

1 + jωRC − ω2LC
... (3.4)for 3·5c

In practice the above results would be modified by the impedances connected to the input and
output of each filter, but the results shown are good enough our purposes here. We can in fact
now re-write all of the above expressions in the general form

Av =
1

∑N
i = 0 a i ωi

... (3.5)

i.e. in each case the frequency response is given by an expression in the form of the inverse of a
polynomial of some order, . The relevant values for the three examples are as followsN

Filter order N a 0 a 1 a 2

3·5a (simple RC) 1 1 jRC -

3·5b (two-stage RC) 2 1 j (R1C 1 + R2C 2) −R1C 1R2C 2

3·5c (LC) 2 1 jRC −LC

So 3·5a shows a ‘first order’ low-pass filter, but 3·5b and 3·5c are ‘second order’. In general, we
can expect a filter of order  to cause the value of  to fall as  when we are well into the
frequency region where the filter is attenuating any signals (i.e. when  is large for the low-pass
examples). We can apply a similar general rule to other types of filter – high pass, etc – although
very complex filters may require a more general expression of the form

N Av ωN

ω

Av =
∑M

j = 0 b jωj

∑N
i = 0 a i ωi

... (3.6)

3.3 Active filters, Normalisation, and Scaling
The above examples are all ‘passive’ filters. OK, the circuit shown in Figure 3·5b does use an
amplifier (probably an IC op-amp) as a buffer between the two  stages, but this is just present
to ensure that the two stages don’t interact in an unwanted manner. Active filters generally
employ some form of feedback to alter or control the filter’s behaviour. This makes the designs
more flexible in terms of allowing for a wider choice of shapes of frequency response, time-
domain behaviour, etc. In theory we can make passive equivalents to most active filter so it may
seem as the need for an amplifier is an unnecessary extra complexity. However the active filer
offers some useful advantages. In particular, they help us avoid the need for ‘awkward’
components. For example, it is often good practice to avoid using inductors as these can pick up
unwanted interference due to stray magnetic fields. Also, some passive filters may require large-
value capacitors or inductors, which would be bulky and expensive. By using an active equivalent
we can often ‘scale’ all the component values in order to be able to use smaller and cheaper
components.

RC
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Most of the analysis and design of active filters is done in terms of Normalised circuits. To
understand what this means, look again at the circuit shown in figure 3·5a. The way in which the
filter’s voltage gain, , varies with frequency is set by the value of . The important thing to
note is that the behaviour isn’t determined by either  or  taken independently. So, for
example, if we were to make  ten times bigger, and  ten times smaller, the behaviour would be
unchanged. The  value sets a ‘turn-over frequency’ we can define as

Av RC
R C

R C
RC

ω0 ≡
1

RC
... (3.7)

A Normalised version of the circuit would assume that  was one Ohm, and  was one Farad.
This would set the turn-over frequency of  Radians/sec (i.e.  Hz).

R C
ω0 = 1 f 0 = 1 / 2π

In reality, normalised values will be impractical, and we will usually want a specific turn-over
frequency very different to the above value. However we can scale the normalised version of each
circuit as follows:

• To shift the turn-over frequency to  we choose the  and  values so that expressions 3.7
is correct

ω0 R C

• To obtain convenient component values we then ‘trade off’ the values of  and  against
each other until we get something suitable. e.g. we may increase  by some factor, , and
then reduce  by the same factor.

R C
R α

C

The choice of sensible values is a matter of practical experience so is hard to define in a lecture
course. This is one of the areas of electronics where design is a skill, not a science which provides a
uniquely correct answer. When using op-amps for the amplifiers in the active filer, we generally
try to end up with resistor values in the range  to , and capacitors in the range from

 down to .
1kΩ 100kΩ

1µF 10pF

Lets look at some examples of designs, then try scaling one for a specific result.

Figure 3·6 — 1st order active filters

3·6a  1st order low pass 3·6b  1st order high pass
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Figure 3·6 shows 1st order low and high pass active filters. For a Normalised version we would
assume that  and . More generally we can say that the frequency response of
for each of these will have the form

R = 1Ω C = 1F Av

 Av =
K ω0

S + ω0
... (3.8)for 3·6a

 Av =
K S

S + ω0
... (3.9)for 3·6b
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where we use a commonly used standard definition

S ≡ jω ... (3.10)
Let’s now take as an example a real filter which we want to have a turn-over frequency of, say,

. This means that in this case  If we try
choosing a resistance value of  this means we would need to choose  to
set the required turn-over frequency.

f 0 = 5kHz ω0 = 1 / RC = 2π × 5000 = 31,415.
R = 10kΩ C = 3·18nF

In the case of the above circuits the  value just sets the gain for frequencies well within the
Passband of the filter. So we can choose  to amplify the output by whatever amount is suitable
for our purpose. (Although in practice it is usually advisable to choose a gain below ×100.)
However for more complex higher-order filters the gain often alters the details of the frequency
response, particularly around the chosen turn-over frequency. These effects can be seen in the
following examples of second order filters.

K
K

Figure 3·7 — 
2nd order active filters

3·7a  2nd order low pass

3·7c  2nd order bandpass
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3·7b  2nd order high pass

+-v i
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R
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R (2 − d )

+- v
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2Q
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In this case an example of a band-pass filter is also included. The examples shown introduce two
new quantities that have standard definitions. The Damping value, , and the Quality factor, d Q
The gain value,  is related to these via the expressionsK

K = 3 − d  :  K = −2Q 2 ... (3.11 & 3.12)
The frequency response of each of the above is as follows:

   Av =
K ω2

0

S 2 + d ω0S + ω2
0

... (3.13)3·7a 2nd order lowpass

   Av =
K S 2

S 2 + d ω0S + ω2
0

... (3.14)3·7b 2nd order highpass

   Av =
K ω0S

S 2 + ω0S / Q + ω2
0

... (3.15)3·7c 2nd order bandpass



  J. C. G. Lesurf  — 25  —  Electronics from http://www.audiomisc.co.uk

The damping and quality factors have a very important effect upon the filter response. To see this
we can start by take the damping factor’s effect on the high/low pass filters.

Figure 3·8 — Effect of damping upon low-pass response
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Figure 3·8 shows the relative frequency/amplitude response shapes for three possible choices for
. It can be seen that  values below unity produces a ‘peak’ in the response at frequencies

around . (In fact, if we were to reduce  the circuit becomes an oscillator and will
oscillate at .) Values of  greater than unity tend to ‘damp down the response and smooth out
the corner at around . A choice of  (i.e. the square root of 2) produces a Maximally
Flat Amplitude Response. i.e. the amplitude response covers the smallest possible range in the
passband up to . A choice of  produces a Maximally Flat Time Delay, i.e. the most
uniform Group Delay in the passband up to . We can therefore in practice select a  value
which suits best our purpose. Note that the gain in the passband also depends upon . To make
the changes in shape clearer the above graphs are normalised to a 0dB level of . Note also that
the above example uses the low-pass filter. The high-pass filter behaves in a similar manner but we
would be referring to a passband that extends downward from high frequencies to  instead of
up to .

d d
ω0 d → 0

ω0 d
ω0 d = 1·414

ω0 d = 1·730
ω0 d

d
K 2

ω0

ω0

The bandpass filter has a frequency response which has a width (to the -3dB points) of

±∆f = f 0 / Q ... (3.16)
and has a phase response that changes from  radians at  to  at . In effect,
‘Q’ sets the narrowness or sharpness of the bandpass filter. A sharper filter will allow us to pick
out a wanted frequency from noise, etc, at other frequencies so a narrow filter is often desirable.
This is why this variable is therefore often called the Quality Factor, and given the letter ‘Q’.

+π f 0 − ∆f −π f 0 + ∆f

The filters used above as examples are just a few of the many types of filter that are available.
Higher orders of filter can be made with many slight variations in the relative component values,
and with various arrangements. The relative choices of component values (which then determine
the  and  coefficients in equation 3.6) determine what is called the Alignment of the filter and
set its detailed response. The most common forms of alignment have names like Butterworth
filters, Elliptic filters, etc. Each has its good and bad points but can be designed and analysed
using the same methods as used above.

a i b j
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In practice it is common to build high order filters by cascading two or more lower order (1st or
2nd) order filters. This makes the system easier to design and means it can be less demanding to
build. High order filters often require close-tolerance components with strange values which then
have to be put together from series/parallel combinations of more usual values. There are also a
number of specialist filters that use quite different techniques. The most common analog types
are those based upon ‘biquad’ and ’NIC’ (Negative Impedance Convertor) arrangements. The
NIC is particularly useful for special applications as it permits us to make a circuit which provides
otherwise impossible values – e.g. a negative resistance or inductance.

At radio frequencies there are a number of special filters based upon the properties of some
materials – Crystal Filters, Surface Acoustic Wave Filters, etc. And of course, these days, it is
common to perform signal filtering in the digital domain, so there are a variety of digital filtering
systems available. Since here we are concentrating on basic analog methods we won’t here
examine how these work, but it is worth bearing them in mind for situations where they may
prove more convenient than the analog filters described in detail in this lecture.

Summary
You should now understand how the behaviour a filter may be characterised by its Frequency
Response (both in terms of amplitude gain/loss, and the way in which phase varies with the signal
frequency). That this Frequency Domain behaviour also relates to a Time Domain behaviour. That
it is often useful to define or use the Time Delay as a function of frequency to assess the filter’s
effect upon signals. You should now also know that the Group Delay indicates the average time
delay that signals encounter across the filter’s passband, and that a uniform Group Delay will
avoid Dispersive distortions of the filtered signal.

You should now understand the concept of the Order of a filter, and know how to design simple
1st and 2nd order filters. That the Quality Factor or Damping of a filter affects the detailed
response, and that these can be set by the component values selected. You should also now be
aware that the Alignment of a filter can be chosen for optimal amplitude or phase or time
properties in a given application, and that some ‘standard’ alignments with names like
Butterworth Filters, etc, exist.
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 Lecture 4 – Feedback
In lecture 2 we looked at some of the basic limitations of signal amplifiers, in particular power
and signal size limitations. Now we will look at some of some of the other problems and see how
a specific technique called Feedback can be used to deal with them. However, before doing so it is
worth remembering that all ‘active’ systems use amplifiers. For example, the active filters we
looked at in the last lecture require op-amps or similar amplifiers. What is less obvious is that
amplifiers, in themselves, tend to act as filters...

4·1 The Problems
There are two basic problems we want to examine in this lecture. The first is a consequence of the
fact that all real components – resistors, capacitors, transistors, etc – suffer from what is know as
‘stray’ or ‘parasitic’ effects. For example, every real capacitor will have leads that have a non-zero
resistance and inductance. Similarly, every transistor will have some capacitance between its leads,
inductance in the leads, etc. As a result, every circuit we ever make will include lots of
unintended, invisible ‘components’ which will affect the performance.

In addition, all real gain devices take a finite time to respond to a change in their input. For
example, the ability of a bipolar transistor to pass current from its emitter to collector will depend
upon the density of charges in its base region. When we change the base current it will take a
finite time for the new current level to alter the charge density right across the base. It then takes
another finite time before the emitter-collector current can react to this change. In bipolar
transistors these effects are described in terms of an ‘ ’ value (transit frequency). This indicates
the highest input frequency which will be able to change the output current. Higher frequencies
tend to be ignored by the transistor as they change too swiftly for the transistor to be able to react.

f T

Figure 4·1 — Ideal and real frequency responses

frequency
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We don’t really need to worry here about all the detailed reasons for these effects. We can start
from accepting that the result will always be an amplifier that will have a frequency response that
isn’t just a uniform gain value at all frequencies. A real amplifier will be more likely to exhibit the
complex kind of shape shown by the solid line in figure 4·1 than the ideal ‘flat’ response. In
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particular there will always be a tendency for the gain to fall at high frequencies. The phase/time
delays may also vary with frequency. In addition, the complexity of the circuit (with all the stray
effects) may mean that its frequency/time behaviour is far from uniform even at frequencies it can
amplify reasonably well. The result of these effects is twofold. Firstly, the band of frequencies the
amplifier can amplify may not be wide enough for our purposes. Secondly, the non-uniform gain/
phase/time behaviour may alter the signal waveforms in a way we do not want. The signals can be
distorted by non-uniform time/amplitude behaviour, although this term isn’t usually used for this
effect.

v i

v o

v o = Av i

v 0 = Av i + Bv 2
i + C v 3

i + ...
linear transfer
non-linear transfer

Figure 4·2 — Ideal and real transfer curves

The term Distortion is usually used to mean that the amplifier has a gain which depends upon the
signal amplitude (or sometimes also the frequency). The effect is described as an effect which
arises due to non-linearity. Figure 4·2 illustrates the kind of non-linearity we are concerned with
here. We can distinguish an ideal amplifier from a realistic one in terms of the Transfer Curve –
the plot of  versus  – and the expressions that relate the input to the output.v o v i

For an ideal, linear amplifier, the transfer curve will actually be a straight line, and we find that

v o = Av i ... (4.1)
i.e. the output level is simply proportional to the input and we can say that the amplifier’s voltage
gain will be , a set value.Av = A

For a real amplifier, the transfer curve will not be a perfectly straight line. Now we have to
represent the relationship between input and output using a more complicated equation.  The
most convenient form for our purpose is a polynomial, so we would now write something like

v o = Av i + Bv 2
i + C v 3

i + ... ... (4.2)
where the individual coefficients are constants for a specific amplifier. The result of non-zero
values for , , etc means that the effective gain now becomesB C

Av = A0 [1 + α1v i + α2v
2
i + ...] ... (4.3)

where since we can define  we can say thatAv ≡ v o / v i
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α1 =
B

A0
 :  α2 =

C

A0
 ... (4.4 & 4.5)etc…

For a well-designed amplifier we can hope that the  for all . This will mean the the
amount of non-linearity, and hence the amount by which a signal is distorted during
amplification, will be small.

|αi | ≪ 1 i

4·2 Negative Feedback and performance improvements
Having outlined the problems we can now examine the application of feedback and see how this
may help us reduce their magnitude.

Figure 4·3 — Amplifier with and without feedback

4·3a  no feedback 4·3b  with feedback
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Figure 4·3 shows the amplifier in two situations. 4·3a shows the amplifier with no applied
feedback. 4·3b shows a modified circuit where a pair of resistors applies feedback to the non-
inverting input of the amplifier. This feedback is subtracted from the actual input and tends to
reduce the signal levels, hence it is conventionally called Negative Feedback.

The feedback applied to the amplifier in 4·3b means that the voltage applied to the inverting
input of the amplifier will be

v ′ = v o
R2

R1 + R2
... (4.6)

we can now define the Feedback Factor

β ≡
R1 + R2

R2
... (4.7)

to simplify the following expressions. 

From the explanations given earlier, we can expect the effective gain  to depend to some extent
upon the signal level and the frequency. When the apply feedback the output will become

Av

v 0 = (v i − v ′) Av = (v i −
v 0

β ) Av ... (4.8)

We can now rearrange this to define the overall voltage gain, , of the system with feedback
applied as

Av ′

Av ′ ≡
v 0

v i
=

Av

1 + Av / β
=

β
1 + β / Av

... (4.9)
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It is usual to call  the amplifier’s Open Loop Gain as it is the gain we obtain if we were to
‘break’ the feedback connection. In a similar way, it is usual to call  the system’s Closed Loop
Gain. In practice we can usually arrange for . Hence can say that for a suitably small

 we can approximate the above to

Av

Av ′
Av ≫ β

β / Av

Av ′ = β (1 −
β

Av
) = β −

β2

Av
... (4.10)

This result is an important one for two reasons. Firstly it tells us that the gain of the system with
feedback applied is largely determined by the choice of the feedback factor, , not the inherent
amplifier gain, . This is because it follows from the above that  when .

β
Av Av ′ → β Av → ∞

The second reason can be seen to follow from the first. When  the gain when feedback is
applied only has a weak dependence up . This implies that changes in  will have little effect.
To see the effect of the feedback upon distortion let us assume that a change in signal level or
frequency has caused the open loop gain to change from , where we can
assume that  is a small fractional Error in the expected gain. This means that the output
level is in error by a fraction, , so we can use this as a simple measure of the amount of signal
distortion/alteration produced by the unwanted change in gain.

Av ≫ β
Av Av

Av → Av (1 + e )
|e | ≪ 1

e

The change in open loop gain will, in the feedback system, cause a related change, , in the
closed loop gain such that

e ′

Av ′ (1 + e ′) = β −
β2

Av (1 + e ) ≈ β −
β2 (1 − e )

Av
... (4.11)

Combining expressions 4.10 and 4.11 we obtain

Av ′e ′ = −
e β2

Av
... (4.12)

which since we can expect  is similar toAv ′ ≈ β

e ′ ≈ −
e β
Av

... (4.13)

i.e. the fractional magnitude of the amount of error (and hence the degree of distortion) is
reduced by the factor . Now it is quite common for operational amplifier ICs to have low-
frequency open loop gain values of the order of 106. Used with a feedback factor of 10, the result
is a system whose voltage gain is almost exactly 10 where any distortions due to variations in gain
with signal level or frequency are reduced by a factor of 105. The result is an amplifier system
whose behaviour is largely determined by the choice of the resistors used for the feedback loop.
Given its simplicity and the dramatic effect it can have, it is perhaps no surprise that Negative
Feedback is often regarded as a ‘cure all’ for correcting amplifier imperfections. In reality, though,
feedback can itself lead to problems...

β / Av

4.3 Limitations of Feedback
The most obvious ‘limitation’ imposed by negative feedback is that the overall gain is reduced. As
a result, when we want a lot of gain we may have to use a chain or Cascade of amplifiers. This will
be more expensive, and require more space. At first glance it also looks as it will undo the benefit
of low distortion since each amplifier in the chain will add its own distortions to the signal.
Fortunately, this isn’t usually a real problem as we can see from the following example. Let’s
assume that we have a basic amplifier design which – open loop – has a voltage gain of ×1000,
and we want to amplify an actual input signal voltage by ×1000.
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The simplest thing to do would be to use the amplifier, open loop, to provide all the gain.
However in order to reduce the distortion we apply a feedback factor of , and then use a
chain of similar stages, each with this feedback factor. The result still have an overall gain of 10×
10×10 = 1000, but the feedback reduces the error level (and hence the distortion level) by a factor
of 10/1000 = 0·01 in each stage.

β = 10

The problem is that each stage adds its own distortion. We can therefore say that the total gain
error of the chain of three amplifiers will be given by

1 + e t = (1 + e 1′) (1 + e 2′) (1 + e 3′) ... (4.14)
(where we are assuming that the signal passes through the amplifiers in the order, ‘1, 2, 3’). Now
when we obtain the same output level from the end of the chain as we would using a single stage
with no feedback we can expect that

e 3′ = −
e β
Av

... (4.15)

However the distortion levels produced by the other amplifiers are not equal to . The reason
for this is that the error (distortion) level varies with the size of the signal. In the middle amplifier.
The signal level at the input/output of the middle amplifier (‘2’) in the chain will be  times
smaller than seen by ‘3’ at its input/output. Similarly, the input/output level seen by the first
amplifier will be  times smaller than seen by ‘3’.

e 3′

β

β2

For the sake of simplicity we can assume that the error level varies in proportion with the signal
voltage, hence we can say that

e 2′ =
e 3′
β

 :  e 1′ =
e 3′
β2 ... (4.16 & 4.17)

We can now approximate expression 4.14 to

1 + e t ≈ 1 + e 1′ + e 2′ + e 3′ = 1 + e 3′ (1 +
1
β

+
1
β2) ... (4.18)

i.e. for the values used in this example

e t ≈ −
e β
Av

× (1 +
1
β

+
1
β2) = × e ... (4.19)0·0111

i.e. we find that in practice and the overall distortion level tends to nearly all come from
the distortions produced by the final stage.

e t ≈ e 3′

In practice, the behaviour of a real system will be more complex but the explanation given above
remains generally valid in most cases. As a result, a chain of feedback-controlled amplifiers tends
to provide lower distortion than using a single stage without feedback despite the sacrifice in gain
per stage. The only significant case where this result is not correct is when the error or distortion
level does not fall with the signal size – i.e. if there is some kind of ‘kink’ or discontinuity in the
amplifier transfer curve in the region around zero volts. In practice the situation where this arises
is when we have used a pure class ‘B’ amplifier which will exhibit cross-over distortion. In these
cases the feedback will reduce the distortion level for reasonably powerful signals, but small signals
will experience high levels of gain error, and hence high distortion even when feedback is used.
For this reason class ‘B’ should be avoided – especially when we are dealing with small signals – if
we wish to avoid distortion.

From the simple explanation of feedback given in section 4·2 we might think that “the more, the
better”. In practice, however, it is usually a good idea to only use a modest amount of feedback as
excessive use can lead to some serious problems.  The reason for this can be seen by looking again
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at expression 4·9 are remembering that in general , , and hence  will all be complex values.
i.e. the gain and the feedback normally include some frequency-dependent phase/time effects as
well as changes in signal amplitude. To see the consequences of this lets take another example.

Av β Av ′

Consider a two-stage amplifier chain. Each stage has an open loop voltage gain of ×100 so the
total low-frequency gain is ×104. However one of the amplifiers has internal stray capacitances
that mean its gain tends to ‘roll off’ and behave as if it includes a first order low-pass filter with an

 of 200 Hz. The other amplifier has a similar limitation which gives it a turn-over frequency of
5kHz. We then measure the overall frequency response both with and without some feedback.
The results will be as shown in figure 4·4.
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Figure 4·4 — Example gain with/without feedback

The broken line with alternating long/short dashes shows the open loop gain of the system as a
function of frequency. The solid (red if you see this in colour) line shows the frequency response
with a feedback factor of , and the broken (blue) line shows the response with a
feedback factor of . Looking at the graphs we can see that the  feedback has the
beneficial effect of ‘flattening’ the response and ensuring that the gain remains reasonably
uniform over a wider range than is the case for the system without feedback. i.e. without feedback
the response is only fairly flat up to a few hundred Hz, with with a feedback of  applied
the response is flat to nearly 10 kHz. Thus the bandwidth over which the amplifier can be used is
increased by the application of feedback. In effect we have ‘flattened down’ the response, but it
still almost fits inside the open loop response. Note, however that it doesn’t quite fit and that it
slightly exceeds the open loop gain at high frequency.

β = 500
β = 10 β = 500

β = 500

It is customary to describe the amount of feedback applied to a system in terms of the ratio .
When this value is around unity the feedback does almost nothing. However as we reduce  in
comparison with  the gain reduces, the distortion level tends to fall, and the flat bandwidth
tends to increase. However if  becomes too large things can go wrong as indicated by the

 line in figure 4·4. Here we can see that the frequency response has developed an odd

Av / β
β

Av

Av / β
β = 10
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‘peak’ at around 30 kHz. The reason this happens can be understood by looking at figure 4·5
which displays the phase change versus frequency for each of the situations shown in figure 4·4.
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Figure 4·5 — Phase shifts with/without feedback
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Figure 4·5 shows two interesting points. Firstly, we can see that the feedback tends to suppress
variations of the phase as a function of frequency just as it tends to reduce variations in the
amplitude of the gain. However the second point is that this is only the case when the open loop
phase change is less than about 90 degrees. In particular, looking at the graphs we can see that
when the open loop phase change approaches  degrees, the closed loop systems also move
rapidly towards  degrees.

−180
−180

Now a  degree change at a given frequency means that the complex gain has a negative sign.
From before, we can say that the closed loop gain will be

−180

Av ′ =
β

1 + β / Av
... (4.20)

however we may now find that  is negative. Worst still, we may find that . If
this happens it means that , which in turn means that . i.e. unless
we take care we find that the feedback we intend to use to reduce the gain and make it more
uniform may produce an unexpectedly high gain at a specific frequency (or set of frequencies)
where we happen to have arranged for the above condition to arise! Since most of the effects
which cause the open loop response to vary will affect both the amplitude and phase this problem
is always potentially present. The more feedback we apply the wider the range of frequencies we
bring into the intended ‘flat’ region, and the more chance there is for this problem to arise.

β / Av β / Av → −1
(1 + β / Av ) → 0 Av ′ → ∞

In fact we have encountered a consequence of what is called the Barkhausen Criterion. This says
that we can make an oscillator by arranging for . The peak at the end of the flat
portion of the  response indicates that the system is near to becoming a 30 kHz oscillator.

β / Av = −1
β = 10
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In practice, the load we may attach to the output of a real amplifier will tend to alter its gain
behaviour, so if we allow the system to be ‘near’ oscillation we may find that it does oscillate
under some circumstances when certain loads are attached. Avoiding this is particularly important
in situations like hi-fi power amplifiers where the amplifier manufacturer can only be confident
that a wide – even alarming! - range of loudspeakers with weird impedance behaviour will be used
by various customers! An amplifier system which has a flat, unpeaked, response, with no risk of
unwanted oscillations irrespective of the output load is said to be Unconditionally Stable. For
obvious reasons this is highly desirable if it can be achieved.

To avoid these problems and ensure stability we have to adopt two approaches. One is to build an
amplifier that works as well as possible without feedback, and then only apply a moderate
amount. (Note that the terms “well as possible” and “moderate” here are matters of personal
judgement not strict engineering.) 

The second approach is to compensate the feedback or the amplifier to try and remove the
problem. This can be done in various ways but two examples are as follows.

Firstly, we can adjust the amplifiers so that the open loop value of  has a magnitude of much
less than unity at any frequency where the phase shift approaches 180 degrees. This make it very
difficult for  to be able to approach . 

Av

β / Av −1

Secondly we can apply lag/lead compensation. Up until now we have assumed the feedback circuit
is just a pair of resistors. However we can add other components (capacitors or inductors) to the
Feedback Network so that either the magnitude of  or its phase change with frequency in a way
that ensures a more uniform behaviour of  as a function of frequency and keeps its value
well clear of  at any frequency. The details of this process are outwith the scope of this lecture,
but you should see that these methods can help the situation, although the best policy is usually
to avoid the problem by applying feedback with care.

β
β / Av

−1

Summary
You should now understand how Negative Feedback can be used to improve the performance of
an amplifier system to  give it a wider ‘flat response’ bandwidth and reduce the level of signal
distortion. However it should also be clear that this feedback tends to reduce the available gain
and has some associated problems. That the main limitations are of two kinds

• The risk of oscillations or instability
• Class B type distortions

We can use feedback with care to avoid these problems but it should be clear that although some
feedback helps it is no substitute for designing or using an amplifier whose open loop behaviour is
as good as possible.



  J. C. G. Lesurf  — 35  —  Electronics from http://www.audiomisc.co.uk

 Lecture 5 – Power Supplies
Virtually every electronic circuit requires some form of power supply. This normally means that it
requires one or more Power Rails – lines held at specific steady d.c. voltages – from which the
required current and hence power may be drawn. There is also usually a need for an Earth
connection, both as a reference level and for safety purposes. In some cases the power can come
from a battery or some other kind of chemical cell. However most systems require a Power
Supply Unit (PSU) that can take a.c. power from the mains and convert this into the required
d.c. levels. This lecture will examine the basic types of mains-to-d.c. analog PSUs that are used
and consider their main properties.

5·1 The basic PSU
Figure 5·1 illustrates the traditional basic form of a simple mains PSU. It consist of a Transformer,
a diode, and a smoothing or Reservoir capacitor.

+
V m a i n s V a c

I

V dc  

Connection to ‘load’
(e.g. hi-fi amplifiers).

‘Power Line’

‘Ground’ (0Volts)

Reservoir
Capacitor

DiodeTransformer

Fig 5·1 —  A Simple ‘power supply’ used in lots of electronics.

We will assume that we don’t need to consider the details of how diodes and capacitors work at
this point. Instead we can just make a few relevant comments. The most important property of a
diode in the context of a PSU is that it will conduct current when a Forward Bias is applied, but
refuses to conduct when a Reverse Bias is applied. Hence when the output from the transformer
means that  the diode will pass current and the capacitor will be charged up by the
applied voltage from the transformer. However when  the diode will refuse to
conduct. Hence none of the charge in the capacitor will be removed again via the diode. Instead it
will be available to the output load and the capacitor can supply current to the amplifiers, etc,
which use the PSU output. in practice, there will always be a modest voltage drop across the
diode when it conducts, so  will never be as large as the peak positive value of .

V ac > V d c

V ac < V d c

V d c V ac

Note that the capacitor shown in figure 6·1 is an Electrolytic type. In theory this isn’t essential.
However we often find that we want very large capacitance values (perhaps tens or hundreds of
thousands of ) and these would become physically very large and expensive unless we choose
electrolytics. Electrolytic capacitors have a number of properties which make them undesirable in
high-performance circuits, and can explode if used ‘the wrong way around’ or at too high a
voltage.  However they offer large amounts of capacitance in a given volume for a given cost so
are widely used in PSUs.

µF

Figure 5·2 illustrates how the voltages and current in the circuit behave in a typical situation.
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V a c

Charging Discharging

Fig 5·2  —  Voltages & currents in power supply.
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Current in/out of
the capacitor

Voltages

Capacitor
Current

Time

The input transformer ‘steps down’ the mains input to provide a 50Hz sinewave voltage1, ,
which swings up & down over the range  to  as shown in figure 5·2. The value of

 depends on the turns ratio of the transformer. The voltage on the capacitor, , at any
moment depends on how much charge it holds.

V ac

+V pe ak −V pe ak

V pe ak V d c

When  the diode is forward biassed. Current then flows through the diode, charging
the capacitor. As  rises to  during each cycle it pumps a pulse of charge into the
capacitor & lifts . Using a silicon diode we can expect the peak value of  to
approximately be  Volts since the diode always ‘drops’ around half a volt when it’s
conducting. When  swings below  the diode stops conducting & blocks any attempt by
charge in the capacitor to get out again via the diode. Since the mains frequency is 50Hz these
recharging pulses come 50 times a second. 

V ac > V d c

V ac +V pe ak

V d c V d c

V pe ak − 0·5
V ac V d c

In the gaps between recharging pulses the dc current drawn out of the supply will cause  to
fall. How much it falls during these periods depends upon the amount of current drawn & the
size of the capacitor. The time between pulses will be

V d c

∆t ≈
1
50

= 20 milliseconds ... (5.1)

During this time a current, , would remove a chargeI d c

∆q = I d c ∆t ... (5.2)
from the capacitor, reducing the d.c. voltage by an amount

∆V ≈
I d c ∆t

C
... (5.3)

before it can be lifted again by the next recharging pulse.

1 I am assuming we are in the United Kingdom, hence have 50Hz mains power.
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As a result of this repetitive charging/discharging process during each mains cycle the output
voltage ripples up & down by an amount . Hence the output isn't a perfectly smooth d.c.
voltage. However, from equation 5.3 we can see that it's possible to reduce the amount of ripple
by choosing a larger value capacitor for the reservoir, C. This is why PSUs tend to use large
capacitances – it minimises the amount of ripple. Ideally, a PSU will provide a fixed d.c. level, but
in reality it will have ripple, and may alter when the current demanded by the load changes. In
general a ‘better’ supply will provide a more stable, constant output d.c. level.

∆V

5·2 The Transformer
From the explanation given above we can expect the simple PSU to provide an output d.c. level
of around  Volts. To set a given voltage we must therefore be able to choose the
amplitude of the input a.c. waveform delivered to the diode. This is the task of the transformer.
To explain the detailed behaviour of a transformer is quite complicated. Here, for the sake of
clarity, we can use a very basic model to explain its basic operation. Please note, however, that
what follows is a rather simplified explanation and doesn’t really give the full picture. It is good
enough for our current purposes, though.

V pe ak − 0·5

r

l

N 1 N 2

I

R

I 1 I 2

5·3a Coil (Inductor)

5·3b Transformer

‘Primary’ coil ‘Secondary’ coil

Fig 5·3  —  Simple coil and transformer arrangements.

The basic properties of a transformer can be explained in terms of the behaviour of inductors.
Figure 5·3a shows a coil of wire wound around a rod. Passing a current along the wire will
produce a magnetic field through & around the coil. This current-field relationship works both
ways — i.e. applying a magnetic field through the coil will produce a current. By looking at a
good book on electromagnetics we can find the relationship

B =
µN I

4r 2 + l 2
... (5.4)

where

• B = field level at the centre of the coil (Teslas);
• I = current in coil (Amps); 
• µ = permeability of the rod (Henries/metre);
• N = number of turns of wire;
• r = radius of coil (metres); 
• l = length of coil (metres)

The important feature of a transformer  is that two (or more) coil windings are placed so that any
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magnetic field in one has to pass through the other. The simplest way to do this is to wind two
coils onto one rod. However, this method isn't used much because it produces a lot of field
outside the rod. This ‘stray’ field can cause problems to other parts of a circuit and may waste
energy. Most modern transformers are wound on some kind of ‘ring’ of material as illustrated in
figure 5·3b. This works as if we'd ‘bent around’ the rod & brought its ends together. The
magnetic field is now coupled from coil to coil by the ring of magnetic material. It's conventional
to call the coils on a transformer the primary (input) & secondary (output) windings. Consider
now what happens if we apply an an a.c. current, , to the primary of the transformer shown
in figure 5·3b. This winding has  windings, so it produces a magnetic field

I 1 {t }
N 1

B {t } = k N 1I 1 {t } ... (5.5)
where k is a constant whose value depends upon the size/shape/material of the transformer's ring.
Since this field also passes through the secondary winding it must produce a current, , in
the secondary, such that

I 2 {t }

B {t } = k N 2I 2 {t } ... (5.6)
putting these equations together we get

I 2 {t } N 2 = I 1 {t } N 1 ... (5.7)
The transformer's output is connected to a resistive load. Since the current, , passes through
this, the voltage across the resistor will be

I 2 {t }

V r {t } = I 2 {t } R ... (5.8)
The power dissipation in the resistor will therefore be

P {t } = V r {t } I 2 {t } ... (5.9)
Now, from the principle of energy conservation, we can say that this power must be coming from
somewhere! The only place it can come from in this system is the signal source which is driving
the input current through the primary. Since we need to provide both volts & amps to transfer
power this means that a voltage , , must be applied across the transformer's input
(primary) terminals to set up the input current. The size of this voltage must be such that

V i n {t }

V i n {t } I 1 {t } = P {t } = V r {t } I 2 {t } ... (5.10)
We can now use equation 9 to replace the currents in this expression & obtain the result

V r {t } = V i n {t }  × 
N 2

N 1
... (5.11)

This result is a very useful one. It means we can ‘step up’ or ‘step down’ the size of an alternating
voltage by passing it through a transformer with an appropriate turns ratio, . Note that
when this is done the ratio of the input/output currents also changes by the 1/(same ratio). This is
necessary as the transformer can't, itself, generate any electrical power. All it does is transform the
power provided from the source. By choosing a suitable ratio, however, we can arrange for the
required input a.c. voltage to drive the diode which then rectifies this to obtain the desired d.c.
level.

N 2 / N 1

5.3 A better PSU
The simple arrangement shown in figure 5·1 isn’t particularly effective. There are a range of
other, more complex arrangements which provide a more stable d.c. level or more power. Here
we will just look briefly at a few of the many improvements that can be made. The first, and most
common of these is the use of a Full-Wave Rectifier Bridge. This is shown in figure 5·4.
Comparing figure 5·4 with 5·1 we can see that the change is that we now use four diodes instead
of one. These diodes act to ‘steer’ the input as follows:
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+
V m a i n s V ac

I

V dc  

Reservoir
Capacitor

DiodeTransformer

Fig 5·4 —  Improved PSU with Full-Wave Rectifier bridge

D1

D2

D3

D4

A

B

As with the simple arrangement, the reservoir capacitor is charged whenever the input a.c. is large
enough. However this can now happen in two ways which we can understand by considering the
relative voltages,  and  at the two points, ‘A’ and ‘B’ shown on figure 5·4V A V B

• When  we will find that . This permits the pair of
diodes, D1 & D2, to conduct, thus recharging the capacitor.

V ac → V pe ak V A − V B > V d c

• When  we will find that . This permits the pair of
diodes, D3 & D4, to conduct, recharging the capacitor.

V ac → −V pe ak V B − V A > V d c

The result is the capacitor can now be recharged twice during every input a.c. cycle. So when the
input is a 50Hz sinewave we recharge and ‘top up’ the capacitor’s voltage 100 times per second
(i.e. every 10 milliseconds). This is better than the simple one diode supply which can only top
up the reservoir every 20 milliseconds. Since the time between recharges is halved we can expect
the amplitude of the ripple to be halved. Hence the result is a smoother d.c. output. Since diodes
are quite cheap, it is usual to use a full-wave rectifier. The only drawback is that the charging
current flowing from the transformer to the capacitor now has to pass through two diodes in
series. Hence the ‘drop’ in voltage lost across the diodes is doubled from around 0·5 V to about
1 V.

Voltage

Current

Forward Bias

Reverse Bias

V Z

5·5a  Zener IV curve 5·5b  Symbol for a Zener

Fig 5·5 —  The Zener Diode
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The second commonly employed improvement is the use of a Zener Diode, or some similar
device. The Zener has a typical IV curve whose shape is shown in figure 5·5a. The device is
engineered to suffer a ‘breakdown’ when a large enough reverse bias voltage is applied. By suitable
semiconductor design and manufacturing the voltage at which this occurs can be set for a specific
diode to be at almost any level, , from around a couple of volts to many tens of volts. The
breakdown can be quite ‘sharp’. As a result we can approximate the Zener’s properties in terms of
three rules:

V Z

1 – In forwards bias (not normally used for a Zener) the behaviour is like an ordinary
semiconductor diode.
2 – In reverse bias at voltages below  the device essentially refuses to conduct, just like an
ordinary diode.

V Z

3 – In reverse bias, any attempt to apply a voltage greater than  causes the device to be
prepared to conduct a very large current. This has the effect of limiting the voltage we can
apply to around  .

V Z

V Z

We can therefore build a circuit of the kind shown in figure 5·6 and use it to suppress power line
voltage variations. Note that in this circuit I have used the standard symbol for a full-wave diode
rectifier bridge. This arrangement of four diodes is so commonly used that it can be bought with
the four diodes in a single package and has its own symbol as shown.

R

Fig 5·6 —  Zener Smoothed PSU

V dc  

+

I R I L

V r a w

I Z

circuit symbol
for diode bridge

The effect of the Zener in this circuit can be explained as follows. Let us assume that the d.c.
level, , provided by the bridge and reservoir capacitor is greater than the chosen Zener’s
breakdown voltage, . This means that the series resistor will see a potential difference between
its ends of  and we find that the output voltage,  almost irrespective of
the choice of the resistor value, , and of . When no load current, , is being drawn by
anything connected to the supply, we find that the current through the resistor and hence the
Zener will therefore be

V r aw

V Z

V r aw − V Z V d c = V Z

R V r aw I L

I R = I Z =
V r aw − V Z

R
  I L = 0 ... (5.12)when

Now consider what happens when the attached load draws a current in the range
. In effect, the current arriving via the resistor, , is now ‘shared’

by the Zener and the load. This means that there will still be a non-zero current for , hence it
maintains the output level at about . As a result, provided we don’t attach a load that
tries to draw a current larger than , the voltage across the Zener will be ‘held’ at the same value,

0 < I L < (V r aw − V Z ) / R R
I Z

V d c = V Z

I R
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. In practice, the action of the Zener is just to draw whatever current is required in order to
ensure that the voltage drop across  will be whatever is needed to ensure that the voltage across
the Zener is 

V Z

R
V Z .

Looking back at Figure 5.5 can see that the Zener does not actually maintain exactly the same
voltage when we allow the current it takes to vary, but the variation is relatively small provided we
ensure the Zener current does not fall too close to zero. When designing a Zener controlled PSU
in more detail we could use a value for the dynamic resistance of the chosen Zener in order to take
this into account. This dynamic resistance value is a measure of the slope of the reverse bias
breakdown part of the curve shown in figure 5.5. Lists of components will generally give a value
for this resistance as well as the nominal Zener voltage, and power handling, for each Zener
diode. We would then use this data to select the Zener required for a given purpose.

If we allow the current drawn by the load to exceed the current level set by expression 5.12 the
situation will change. Once  there will be “no current left over” for the Zener to draw.
In this situation the zener has no effect. The current demanded by the load must come via the
resistor, . Hence we now have a situation where the current through the resistor will be  and
have a value greater than the value of  we would calculate from expression 5.12. From Ohm’s
Law. this increase in resistor current means that the voltage across the resistor must now exceed

. Unless we have arranged for the input, , to rise, this means that  must
now be less than . Any further increase in the current demanded by the load causes a further
fall in the output voltage. As a result, at these high load currents the zener has no effect and we
just see the system behaving in a way set by the presence of the resistor, , in series with the raw
d.c. level. The overall behaviour can be represented by the graph shown in figure 5·7.

I L > I R

R I L

I R

V r aw − V Z V r aw V d c

V Z

R

V d c

V Z

V r a w

I L

I S

I m a xRegulated Region
of operation

Unregulated

Fig 5·7 —  Output IV behaviour of Zener Regulated PSU

We can divide the operation into two areas – regulated and unregulated. In the regulated area the
output voltage is controlled by the action of the Zener, and in the unregulated region it is not. In
the regulated region we have

V d c = V Z  :  0 < I L < I S ... (5.13)

V d c = V r aw − I LR  :  I S ≤ I L < I max ... (5.14)
where  represents the maximum regulated current valueI S

I S ≡
V r aw − V Z

R
... (5.15)
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and the maximum possible available unregulated current is

I max ≡
V r aw

R
... (5.16)

In principle, a Zener regulated supply works well provided that we do not attempt to demand a
load current greater than . Within limits, it permits us to hold a steady output level even when
the demanded current varies. It also tends to ‘reject’ any ripple. A small change in the voltage,

, will alter the value of  by a corresponding amount. However provided that  always
remains greater than the current demanded by the load, the Zener will still take some current and
effectively hold the output voltage at a steady level. Hence the Zener helps to suppress unwanted
ripple.  Although very useful, the circuit shown in Figure 5.6 does have one serious drawback in
situations where we require a significant output voltage and current. As an example to illustrate
this, consider a situation where we require an output  of 15 Volts and have to supply load
currents at this voltage up to 2 Amps.

I S

V r aw I s I s

V d c

In order to ensure we can bias the system we can choose a value of  a few volts greater than
15 V – lets take  of 20 Volts for the sake of example. Since we require currents up to 2
Amps we have . Using expression 5.15 this means we must choose a resistor,

. The first consequence of the way the circuit works is that the resistor always has to
pass a current of at least 2 Amps, so must dissipate 5 Watts even when no output is required. The
second consequence is that when no output (load) current is demanded all of this current then
passes though the Zener, hence meaning it has to dissipate 15 × 2 = 30 Watts! This indicates that
the arrangement shown in figure 5·6 suffers from the ‘Class A problem’. i.e. It has a relatively
large quiescent current and power dissipation level. The cure for this is actually quite simple. We
can add a Series Pass transistor as shown in figure 5·8.

V r aw

V r aw

I s = 2A
R = 2·5Ω

R

Fig 5·8 —  Zener Controlled Series Pass Transistor PSU

+

I R

I LI C

Here the output from the resistor-Zener combination isn’t used to directly supply the load
current. Instead, it sets the voltage on the base of an output transistor. This means that when a
given maximum current, , is required by the load, the resistor-Zener only have to supply a
maximum current of  where  is the current gain of the transistor. Given, say, a transistor
with a current gain value of ×100 this means the quiescent current required through the resistor
and Zener fall by a factor of 100. i.e. We now only need to pass 20 mA through the resistor and
Zener to have a power supply capable of providing up to 2 Amps at a regulated voltage. The
result is that the quiescent power dissipation in the PSU is 100 times lower than previously. Now,
the transistor only passes the required current (and dissipates power) as and when the attached
load demands it.

I S

I S / β β
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The above design is considerably more power efficient and practical than the simple Zener
system. However it does suffer from the drawback that there is an extra ‘diode drop’ in the way
due to the base-emitter junction between the Zener and the output. This needs to be taken into
account when designing a PSU for a specific output voltage. Most real PSU circuits are more
complex than is shown in figure 5·8 but the extra complications are usually designed to improve
specific aspects of the performance and the operation is basically as explained above. There are in
fact a wide range of types of PSU including ‘Switched Mode’ types. Each have their particular
good and bad points. However circuits of the type outlined above generally work well in simple
cases where a reliable PSU is required.

Summary
You should now understand how the combination of a rectifier diode and a reservoir capacitor can
be used to obtain a d.c. level from and a.c. input. How a transformer can be used to step up or
down the a.c. level, and hence choose the desired size of input to the diode bridge. You should
also know how a Full-Wave Rectifier Bridge improves performance by doubling the number of
recharging opportunities per input a.c. cycle. You should also now understand how a Zener
Diode can be used to Regulate the d.c. level and reduce any ripple and that the use of a Series
Pass Transistor can improve the power efficiency and capability of the PSU.
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 Lecture 6 – Wires and Cables

6.1 Which way?
Plain old metal wires turn up a lot in electrical systems, electronics, and even in computing and
optoelectronics. The metal patterns used for microwave ‘striplines’, and even the connections
inside integrated circuits are essentially ‘cables’ or ‘wires’. There is also a serious sub-industry as
part of the Hi-Fi equipment business that sells fancy connecting cables, often at high prices.
Given how many cables there are, and the wide range of tasks they perform, it is seems a good
idea to look at their properties with some care.

In general, metal cables and wires serve two purposes. 

• To carry electrical power from place to place.
• To carry information-bearing signals from place to place.

Now in order to communicate a signal we have to transfer some energy from place to place. This
is because a signal without energy cannot have an effect upon a receiver. Hence it doesn’t matter
whether the wires are for simple power or signal transfer, power or energy has to be transferred in
both cases. We therefore need to establish how this can take place.

To get an initial idea of what is going on, consider the situation shown in figure 6·1.

Figure 6·1 –  House to House Communications.

‘A’ ‘B’

This shows a wire hung between two houses. It is being used to send signals from one house to
the other. The transmitter is a switch (Morse Key) and a battery, the receiver is a light bulb. (We
are deliberately making this as simple as possible to avoid all the details of fancy signal
communications equipment!) With stunning originality and imagination, we can call the houses
‘A’ and ‘B’. (We could call them ‘Dunpayin’ or whatever, but that would just make the following
equations longer to type!)

An eavesdropper wants to find out, “Which house are the signals being sent from?” Can he tell
this by examining the signals on the wire? For his eavesdropping he just has a voltmeter and a
current meter which he can attach. By using the voltmeter he can determine the potential
difference between the wire and the ground. Using the current meter he can determine which way
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any currents flow in the wire. Note that, as is usual, EM signals on wires actually require a
conducting ‘loop’. This provides a complete circuit for the current to flow around. In between the
signal source and its destination this also means there are two conductors, and any applied voltage
will appear as a potential difference between them. In this case one of the conductors is actually
the ground (earth) upon which both houses sit. So the eavesdropper also measures voltages with
reference to the ground. In the situation described he only notices the current in the wire and
ignores the current flow in the ground.

Now  so for power to flow from house to house (i.e. from transmitter to receiver – or
from battery to light bulb in this case) we require the product of the observed voltage and the
observed current to be non zero. The voltmeter and ammeter used by the eavesdropper are ‘center
zero’ types that show both a magnitude and a sign. The transmitter (battery) can be two possible
locations, and can be arranged to apply either a positive or a negative potential to the wire, There
are therefore four possible situations which may arise whenever the switch is closed and energy
flows from battery to bulb. These are illustrated in figure 6·2.

P = I V

Figure 6·2a –  Positive voltage sending from ‘A’

‘A’ ‘B’

V

I+
−

Conventional
Current Flow

Figure 6·2b –  Negative voltage sending from ‘A’

‘A’ ‘B’

V

I

+
−

Conventional
Current Flow

Figure 6·2c –  Positive voltage sending from ‘B’

‘A’ ‘B’

V
+
−

Conventional
Current Flow

I

Figure 6·2d – Negative voltage sending from ‘B’

‘A’ ‘B’

V+
−

Conventional
Current Flow

I

The results obtained by observing the meters in each case can be listed as follows if we define a
flow of conventional current from A → B as having a positive sign we can draw up the following
table of results.

Figure Observed
voltage

Conventional Current
Flow

Sign of P = V I

6·2a +ve A → B (+ve) +ve

6·2b –ve B → A (–ve) +ve

6·2c +ve B → A (-ve) –ve

6·2d –ve A → B (+ve) –ve
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By looking at this table we can see that we can’t decide where the signal source is located simply
by examining the current or voltage alone. However by considering their product (i.e. the power)
we obtain a value whose sign tells us where the signal is coming from. This is because  tells us
the rate and direction of energy flow along the wires. Although in this case we aren’t noticing the
current flow in the ground we would find that it would tell us the same thing if we could find the
very low current density and voltage in the ground itself since both of these always have to
opposite sign to the wire’s.

V I

6.2 Energy and Moving Electrons
In the above we only took an interest in the voltage (potential difference) and the current. The
simple ‘school textbook’ model of electricity tends to describe electricity as being similar to water
flowing in a pipe. In fact this isn’t a very good way of looking at what is happening as it tends to
hide some important features. To appreciate this, we can picture the electrons flowing along the
wire as illustrated in figure 6·3.

Electron velocity, v

Wire area, A

Electron density, ρn

Block length, l

Figure 6·3  –  Simple Model of Electron flow along a wire

Here we imagine the ‘free’ electrons that can provide the moving charges that constitute the
current as having a uniform number density inside the material of  electrons per unit volume.
The current is the result of these moving along the wire at an average velocity, . We can now
define the current to be

ρn

v

I ≡
nq

t
... (6.1)

where  is the number of electrons that cross a boundary cutting across the wire in a time, , and
 is the charge per electron. By measuring the current in Amps, and the charge in Coulombs, we

can say that  Amps corresponds to  electrons per second.

n t
q

I I / q

Since we know the density of the electrons in the wire we can turn this number into an effective
volume of the electron distribution that will cross the boundary per second. This volume can be
taken as a ‘block’ of the free charges which extends along a length, , of the wire and covers its
entire cross sectional area. Hence we can determine the length

l

l =
I

Aq ρn
... (6.2)
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Which implies that the free electrons are all tending on average to move this distance per second.
Hence we find that the mean velocity of the moving electrons is

v =
I

Aq ρn
... (6.3)

Lets now take an example of a copper wire with a square cross section of 1mm by 1mm. 

Avogadro’s Number tells us the number of atoms (or molecules) per gram-mol of the materal. The
value of this number is 6·0225 × 1023. A ‘mol’ can be regarded as the atomic weight divided by
the valancy value of the material. copper has an atomic weight of 63·54, and a nominal valancy of
one. We can therefore say that 63·54 grams of copper will contain 6·0225 × 1023 atoms, and each
on contributes one free electron. Thus each gram of copper will contain 6·0225 × 1023/63·54 =
9·4783 × 1021 free electrons. The density of copper is 8·95 grams/cc. So the above is equivalent to
saying that each cubic centimetre of copper will contain 8·4830 × 1022 free electrons per cc – i.e.
in S.I. units we can say that   8·4830 × 1028  per cubic metre. The wire’s area is 10-6 m2 so
taking a current of one Amp for the sake of example, we can use expression 6.2 to calculate a
mean electron velocity of just under 0·075 mm/second.

ρn =

This result is an interesting one for two related reasons. Firstly, it is many orders of magnitude less
than the speed of light in vacuum. Hence we can immediately see that it doesn’t correspond to
the velocity of signals, or energy transfer, along metal cables. If it were simply the movement of
the electrons that carried the signal we might have to wait a very long time for a reply when
speaking over a transatlantic telephone cable! A less obvious reason becomes apparent if we now
work out the kinetic energy of the above ‘block’ of electrons. Each has a mass, , of the order of
9 × 10-31 Kg. So the kinetic energy passing the boundary per second will be

m e

PK =
I m e v 2

2q
... (6.4)

which, using the above values come to 1·5 × 10-20 Watts.

Now it must be remembered that the above calculations are only rough, hand-waving, estimates
of the correct values. (For example, the effective mass of an electron will change when it is in a
material.) However, this result shows that the rate at which the electrons move, and the amount
of kinetic energy they carry, can be much smaller than we might expect. For example, it is
common in domestic house wiring for a current of an Amp or so to support power levels of a few
hundred Watts – i.e. many orders of magnitude greater than the value calculated above. We
therefore have to conclude that the real burden of the signal and energy transfer is being carried
elsewhere, and not simply by the electrons in the wires.

6.3 EH Fields and Domestic Waveguides.
In fact, we can now reveal that it is the electromagnetic fields that surround metal wires that
actually carry the signal energy. Here we can examine three standard cases, starting with one that
looks like the ‘house to house’ system we looked at earlier. In each case it turns out to be the
product of that carries the power and the electrons are almost irrelevant except as a
convenient place to ‘pin’ or ‘control’ the fields. The wires (more precisely, the electrons inside the
wires) act to guide the fields, but it is the fields that do the real work!

E × H

In terms of electromagnetism, we can define the power flow in terms of the Poynting Vector

S ≡ E × H ... (6.5)



  J. C. G. Lesurf  — 48  —  Electronics from http://www.audiomisc.co.uk

As a vector, this quantity has both a magnitude and a direction, so it in indicates both the rate of
energy flow, and the direction in which the energy travels. To determine the total flow  from one
place to another we would need to integrate the value of  over a suitable surface which is placed
so that any path from place to place must pass through the surface. For wires, waveguides, etc,
this usually means a plane surface perpendicular to the wires, located between the signal source
and destination. We also should average the value over a suitable time (often one cycle of a
periodic signal) to obtain a mean or average power value.

S

Figure 6·4  EH field around a wire near to a ground plane.
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Figure 6·4 shows the E-field (solid lines) and H-field (broken lines) that are set up in the kind of
arrangement considered in figures 6·1 and 6·2. Perhaps surprisingly, the ground tends to act as a
fairly good conductor so far as the EH fields are concerned. Hence we usually obtain a pattern
similar to that between a small wire and a flat conducting metal plane. (Which is often called a
‘ground plane’ for reasons that should now be obvious!) Since the metal is a good conductor, the
E-field lines strike it normal to the surface, and the H-field at the surfaces is parallel to the
surface. If we analyse the shapes in detail we discover the the field lines are actually all circles or
arcs of circles.

Figure 6·5  EH pattern between a parallel pair of similar wires

E-field lines
H-field lines

E

EE

E

H

H

H

H



  J. C. G. Lesurf  — 49  —  Electronics from http://www.audiomisc.co.uk

A good conductor acts like a ‘mirror’. We can therefore say that the fields we see above the
ground behave just as if there was an image of this pattern below ground level. Of course, it only
looks like this when we are above ground. However it leads to the related result shown in figure
6·5 which shows the field between a parallel pair of wires used as a ‘twin feeder’ to convey signal
energy.

For the illustrations the top wire in each case is assumed to be given a positive potential w.r.t. the
ground plane or lower wire. The current flow is assumed to be away from the observer in the top
wire, and towards the observer in the ground plane or lower wire. This then gives the E-field and
H-field directions indicated by the arrows on the diagrams. By the right-hand rule we can see that
everywhere the Poynting Vector – and hence the energy flow – is away from the observer. If we
reverse both the potentials and the currents (as would happen if the signal source reversed the
polarity of the signal they are applying) both  and  would change signs. Hence the Poynting
Vector’s sign would remain unchanged. The behaviour of the fields is therefore consistent with
the currents and voltages we considered earlier. We can therefore use the Poynting Vector to
show us the direction energy (and hence signal) flow.

E H

If we ignore the ‘Earth’ wire, which is present (in the UK at least!) purely for safety reasons,
normal house mains wiring is a form of twin feeder and acts essentially as a form of ‘waveguide’ to
direct the electrical power from generating station, via National Grid, to the lights, TVs, etc, in
our house. (In fact, at the risk of complicating things, long distance power transmission often uses
three wires as this is more efficient, but we can ignore that here as being a detail.)

A pair of wires acting as a twin feeder is fairly cheap to make, and easy to use. It does, however
suffer from two disadvantages. Firstly, the EH fields spread for some distance around the wires.
As a consequence, any pieces of metal or dielectric near the wires will be in the field. Hence signal
power may be lost by being coupled onto these objects, or the signal propagation behaviour
altered by their presence. Secondly, at high frequencies the wires will tend to act like as an
‘antenna’ and may radiate some of the power rather than guiding it to the intended destination.
To minimise these effects it is advisable to keep the spacing between the wires, and their
diameters, as small as we can. It is also common to wind the wires around each other the wires
together and make a ‘twisted pair’. Ideally we want to keep other objects much further away than
the wire spacing, and keep the wire spacing much smaller than the free-space wavelength of the
highest frequencies that we wish to carry along the wires.

Unfortunately, meeting the above requirements can be difficult at times. Also, thinner wires are
likely to have a larger resistance, so will waste signal power heating up the wires. To overcome
these problems it is common to use alternative forms of wiring or guiding. The topic of signals
guides and fibres is a complex one, so here we will only briefly mention one widely used solution
to the above problems – the Coaxial Cable. Often called ‘Co-ax’ .

Coaxial Cable consists of two conductors, one of which surrounds the other. We can think of this
as a variation on the wire-over-a-groundplane shown in figure 6·4. However we now bend the
ground plane and ‘wrap it around’ the wire. The result is a wire inside a ‘tube’ of conductor with
an insulating space in between. The two conductors usually have circular symmetry, and share the
same long axis (hence the name). The space between them is also usually filled with a suitable
dielectric material to keep the conductors apart and help the cable maintain its overall size and
shape. The result has a typical form shown in figure 6·6. In this case the E-field is radial and the
h-field is circumferential. As before, the power is carried by the EH fields. However unlike the
previous examples, this field is now all ‘inside’ the cable. This means that the signal energy guided
along the co-ax is unlikely to be affected by objects which come near to the outside of the cable.
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Figure 6·6 – Co-axial cable

The corollary of the above is that any unwanted signals (interference or noise) from elsewhere will
now also be unlikely to inject itself onto the cables. Co-ax therefore falls into a general class of
cables and guides which is said to be ‘shielded’. It efficiently guides the power from place to place,
with little chance of any of the signal being affected by the cable’s surroundings. For this reason
co-ax is particularly useful when we are dealing with low-power and/or high frequency signals.
Hence it is used a great deal in radio systems and in sensitive measurement equipment. For
similar reasons, many signal and radio cable connectors also have a co-axial form.

Summary
You should now understand the way in which wires and cables carry signals and signal energy in
the form a an EH field pattern. You should also now know that although the charge carriers (free
electrons) move in the conductors they only carry a tiny amount of energy, and move much
slower than the actual signals. You should now be able to see the underlaying similarity of a wire
over a return/ground plane, a pair of wires acting as a ‘twin feeder’, and a co-axial cable. The
useful property of co-ax in keeping signals ‘shielded’ and preventing them from being lost should
also be clear.
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 Lecture 7 – Transmission and Loss

7.1 Transmission Lines
Cables are generally analysed as a form of Transmission Line. The E-fields between the conductors
mean that each length of the pair of conductors has a capacitance. The H-fields surrounding
them mean they also have inductance. The longer the cable, the larger the resulting values of
these might be. To allow for this variation with the length, and also take into account the fact
that signals need a finite time to pass along a cable, they are modelled in terms of a given value of
capacitance and inductance ‘per unit length’. A run of cable is then treated as being a series of
incremental (i.e. small)  elements chained together as shown in figure 7·1. (Note that I have
identified these as  and  and use the primes to indicate that they are values-per-unit-length.)

LC
L′ C ′

Figure 7·1  –  Cable represented as a
series of inductors and capacitors.

L ′ L ′ L ′ L ′

C ′ C ′ C ′ C ′

The amount of capacitance/metre and inductance/metre depends mainly upon the size and shape
of the conductors. The inductance relates the amount of energy stored in the magnetic field
around the cable to the current level. The capacitance relates the amount of energy stored in the
electric field to the potential difference between the conductors. For co-ax and twin feeders the
values are given by the expressions in the table below, where the relevant dimensions are as
indicated in figure 7·2.

Figure 7·2 – Cable dimensions

a
b a

D
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Capacitance  F/m Inductance  H/m Impedance  Ω

Co-axial cable 2πεr ε0
ln{b /a}

µr µ0 ln{b /a}
2π

138
εr

ln {b / a}

Twin Feeder πεr ε0
Arccosh{ D

2a }
µr µ0 Arccosh{ D

2a }
π

276
εr

 Arccosh { D
2a }

Note that when  we can say that . Since we require
the wires not to touch, this condition will alway be true for a twin feeder, so we can use an
alternative form for the above expressions. Some textbooks assume that . Since when this
is the case, , they then give a simplifier set of expressions for the
properties of a twin feed where the above  terms are replaced with .

x ≥ 1 Arccosh {x} = ln {x + x 2 − 1}

D ≫ a
Arccosh {x} → ln {2x}

Arccosh {D / 2a} ln {D / a}

For cables of the kinds considered here, we can make a few general comments which apply
whatever their detailed shapes, sizes, etc.

The Characteristic Impedance depends upon the ratio of the values of the capacitance per metre
and inductance per metre. To understand its meaning, consider a very long run of cable that
stretches away towards infinity from a signal source. The source transmits signals down the cable
which vanish off into the distance. In order to carry energy, the signal must have both a non-zero
current, and a non-zero potential. (i.e. both the E-field and the H-field must exist and propagate
along, guided by the cable.) Since the far end is a long way away, the signals transmitted from the
source can’t initially be influence by the properties of any destination before they finally arrive.
Hence the  ratio of the field carried along the cable (and hence the current/voltage ratio) are
determined solely by properties of the cable. The result, when the signal power vanishes, never to
be seen again, is that the cable behaves like a resistive load of an effective resistance set by the
cable itself. This value is called the Characteristic Impedance, , of the cable. In general, for a
loss-free cable, its value is given by

E / H

Z 0

Z 0 =
L′
C ′

... (7.1)

and the velocity with which the signal (and hence its energy) propagate along the cable is given by

v =
1

L′C ′
... (7.2)

which, if we assume no magnetic materials is involved, will be equivalent to a velocity of

v =
c

εr
... (7.3)

where  represents the relative permittivity of the insulating (dielectric) materials in which the
conductors are nominally embedded.

εr

As a matter of convention, there is a tendency for many co-axial cables to be designed and
manufactured to have an impedance of either 75  (used by TV and VHF radio manufacturers)
or 50  (used by scientists and engineers for instrumentation and communications). Engineers
use a variety of type and impedances of cables. At RF, the use of 300Ω twin feed is fairly
common, and 600Ω is often used at audio frequencies. Standard values tend to be adopted for
convenience in a given application area as this makes it easier for people to build systems from
compatible elements.

Ω
Ω
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7.2 Dispersion and Loss
If you look in books on microwaves, RF, or optics, you’ll see that there are many kinds of
transmission line. Although they all share the same basic properties as the kinds of wires and
cables we are considering here their detailed behaviour is often more complex. Here we’ll ignore
forms of waveguide that only work at very high frequency, but have a look at the problems that
can arise when using ‘conventional’ types of cables and wires to carry low frequency signals. This
topic is of interest to scientists and engineers who need to be alert for situations where the signals
may be altered (or lost!) by the cables they are using as this will compromise our ability to make
measurements and carry out tasks. Hi-Fi Audio fans also take a keen interest in the effects cables
and wires might have upon signals as they fear this will alter the sounds they wish to enjoy!

The main imperfections of conventional wires and cables arise from two general problems. Firstly,
the materials used may not behave in the ‘ideal’ way assumed so far. Secondly, the cables may be
used incorrectly as part of an overall system and hence fail to carry the signals from source to
destination as we intend. Here we can focus on materials/manufacturing problems of cables. The
most obvious of these is that real metals aren’t perfect conductors. They have a non-zero
resistivity. The signal currents which must flow in the wires when signal energy is transmitted
must therefore pass though this material resistance. As a result, some  signal power will tend to be
dissipated and lost, warming up the metal.

A less obvious problem is that the dielectric material in between the conductors will also tend to
‘leak’ slightly. Dry air has quite a high resistivity (unless we apply many kV/metre when it will
break down and cause a spark), but high isn’t the same as infinite. In addition, all real dielectrics
consist of atoms with electrons. The electrons are tightly bound to the nuclei, but they still move
a little when we apply an electric field. Hence dissipation will also occur when we apply a varying
field to a dielectric as work has to be done moving these bound electrons. This can be regarded as
a non-zero effective a.c. conductivity of the dielectric.

As a consequence of the above effects a better model of a cable is a series of elements of the form
shown in figure 7·3.

Figure 7·3  –  More realistic cable model.

L ′

C ′

R ′

G ′

L ′

C ′

R ′

G ′

L ′

C ′

R ′

G ′

Here the dissipative loss due to conductor resistance is indicated by a resistance-per-length value
of  and loss due to the dielectric is represented by a conductance-per-length value of . As
before, here I have used primes to emphasise that the values are per unit length and avoid
confusion with total values or those of specific components.

R ′ G ′

The presence of the losses alters the propagation behaviour of the cables. The characteristic
impedance and signal velocity now become
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Z 0 =
jωL′ + R ′

jωC ′ + G ′
... (7.4)

v =
ω

Im [ (R ′ + jωL′) (G ′ + jωC ′)] ... (7.5)

where  is the (angular) signal frequency and  means the imaginary part. Note that, unlike
the case for a ‘perfect’ cable, the impedance and velocity will now usually be frequency
dependent. The frequency dependent cable velocity may be particularly significant when we are
transmitting broadband signals as the frequency components get ‘out of step’ and will arrive a
differing times. This behaviour is called Dispersion and is usually unwanted as it distorts the signal
patterns as they propagate along the cables. Alas, all real cables will have some resistance/
conductance so this effect will usually tend to arise. However, the good news is that if we can
arrange that

ω Im []

G ′
C ′

=
R ′
L′

... (7.6)

then the two forms of loss have balancing effects upon the velocity and the dispersion vanishes.
Such a cable is said to be ‘distortionless’ and the above requirement which has to be satisfied for
this to be true is called Heaviside’s Condition, named after the first person to point it out.

The rate of energy or power loss as a signal propagates down a real cable is in the form of an
exponential. For a given input power, , the power that arrives at the end of a cable of length, ,
will be

P0 Z

P = P0 Exp {−αZ } ... (7.7)

where  is defined to be the Attenuation Coefficient whose value is given byα

α = Re [ (R ′ + jωL′) (G ′ + jωC ′) ] ... (7.8)

where indicates the real part. For frequency independent cable values the above indicates
that the value of  tends to rise with frequency. This behaviour, plus some dispersion, are usual
for most real cables. The question in practice is, “How big are these effects, and do they matter
for a particular application?” Not, “Do these effects occur?”

Re []
α

The actual values of  and  depend both upon the materials chosen for the cables, and the
sizes and shapes of the conductors. In general, larger cables tend to have a greater cross section of
metal, and a wider dielectric gap, and hence can have lower loss, but this rule can easily be broken
if one cable is manufactured with more care than another. The most common metal for cables
tends to be copper, but aluminium and steel are also used quite often. Although aluminium and
steel have a lower conductivity than copper they are cheaper, aluminium is lighter, and may resist
tarnishing (‘rusting’) better. Silver, graphite (carbon), and even gold are used in special cases.
Typical values for the resistivity of some of these materials are shown below.

R ′ G ′

Copper Aluminium Silver Graphite Gold

 Ωnano m 16·9 26·7 16·3 13,750·0 22·0

( In practice, most cable materials are not ‘pure’ and are alloys with resistivity values which may differ from the above. )
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From the table, silver would seem to be the best choice as it has a very low resistivity and hence
would be expected to minimise signal losses. Alas silver suffers from two drawbacks. It is very
expensive, and tarnishes very easily. Since a surface tarnish nearly always degrades electrical
performance this means it should only be used in situations where the surface can be protected
from the atmosphere – e.g. by a coating. Copper is much cheaper, and has almost as low a
resistivity as silver, hence its popularity, although it, too, will tarnish.

The most commonly used dielectrics are: air (which has the obvious advantage of being free!),
polyethylene, ptfe, and pvc. Their main properties are summarised in the table below. Note that
is customary to specify the a.c. losses of  a dielectric in terms of a value which is called the Loss
Tangent  (  ) or Power Factor (  ). This is a dimensionless number based upon the ratio of
the real and imaginary parts of the material’s dielectric constant.

tan δ Fp 

Dry Air Polyethylene PTFE PVC

εr 1·0006 2·2 2·1 3·2

tan δ low 0·0002 0.0002 0.001

 (d.c.)Ωm high 1015 1015 1015

Breakdown ( MV/m) 3 47 59 34

(The compositions of all these materials varies from sample to sample, so the above values should be only taken as typical.)

To take these values into account we can define an effective shunt conductivity per unit length
value of

G ′ ≡ G ′0 + ωC ′ tan δ ... (7.9)
and substitute this as required into the earlier expressions for the cable impedance, velocity, and
attenuation coefficient.

Looking back to the table of resistivities the inclusion of graphite seems curious. It has a resistivity
about 1000 times greater than the other metals that are often used as conductors, hence seems a
rather poor choice. In fact, there is a specific reason why a higher conductivity can sometimes be
very useful. This is linked to what is referred to the as the Skin Effect.

The Skin Effect arises when EM waves are incident upon, or are guided by, conducting surfaces.
The E-fields set up currents in the surface and hence the field only penetrates for a finite distance.
This in turn means that the currents only exist near the surface. In practice, in a ‘thick’ conductor
the current level falls exponentially with the depth below the metal surface. The result is that the
currents on conductors associated with a guided field only make use of a finite metal thickness.
Hence the resistance experienced by the currents (which leads to dissipation losses) is influenced
by this thickness as well as the material’s resistivity. The magnitude of the current falls
exponentially with a 1/e scale depth given – for good conductors – by the approximate expression

d ≈
1

2 ×  10−3 × f σ
... (7.10)

where  is the signal frequency, and σ is the conductor’s conductivity. (This expression assumes
the conductor is ‘non-magnetic’ – i.e. it has a .)

f
µr = 1

The significant point is that this thickness depends upon the signal frequency as well as the
conductivity. The table below gives the skin depth values for copper and graphite at a series of
frequencies.
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100Hz 10kHz 1MHz 100MHz 10GHz

 copperd 6·5 mm 0.65 mm 65 µm 6·5 µm 0·65 µm

 graphited 185 mm 18·5 mm 1·85 mm 0·185 mm 18·5 µm

In general, the wires in many cables tend to have thicknesses or diameters of the the order of
0·1mm to 1mm. Hence when made of copper, we find that the full bulk of the material is only
used to support signal conduction for frequencies up to around 100 kHz. At higher frequencies,
the cross-sectional area of the material where conduction occurs tends to fall with increasing
frequency. The result is that the dissipation resistance per length, , tends to rise with frequency.
This frequency dependence affects both the signal velocity – causing dispersion distortions – and
preferentially attenuates high frequencies – causing a change of the amplitude spectrum. Hence it
is to be avoided when possible. There are two main ways to avoid these problems.

R ′

The first is to use a material of higher resistivity, such as graphite. This means that a conductor of
the same size as before will tend to keep a fairly uniform  value to a frequency around 1000 ×
higher than when using copper. The drawback being that the losses will be higher (but more
uniform) at lower frequencies. The second method (which is sometimes combined with a change
in material) is to use many fine, individually insulated wires in a ‘woven’ arrangement. This
means that each individual wire has a small thickness, hence its entire bulk will tend to be used to
a higher frequency than for a fatter wire. The snag is that, by having a smaller cross-section, it
may have a high resistance. However, by using many such wires all used ‘in parallel’ we can
reduce the overall resistance to a low level. For this kind of reason, many co-axial cables use
‘braided’ or woven meshes of many thin wires. Similarly, wound components and wires employed
for ‘rf’ purposes sometimes use a woven construction called ‘Litz wire’ after its developer.

R ′

The woven arrangement for coaxial cables also has the effect of making them more flexible. This
is convenient when we want to bend them to fit around corners. However it also increases their
sensitivity to Microphony. This is an effect where any changes in external force (or atmospheric
pressure) applied to the cable tends to alter its outer diameter, or shape. This will change its
capacitance per length. Now the cable’s conductors must be charged when there is a potential
difference between them. Altering the capacitance can’t immediately create or destroy charges, so
the potential difference changes. The result is that the voltage between the inner and outer
conductor changes in response to pressure.

In some cases a coaxial cable may be deliberately given a large steady charge, and then the voltage
between its inner and outer conductors measured. The result is a linear ‘capacitor microphone’
which can be used to detect soundwaves, bending of the wire, or even footfalls, anywhere along
the cable. A particular use is in the security industry where such a system can be used as an
intruder detector in any location where the wires are laid. In other situations this microphonic
behaviour is a potential problem. For example, it would be undesirable in cables used as part of a
home hi-fi as it would mean that delayed sound signals might be picked up radiating from
loudspeakers when music is being played at high level. This could then be re-amplified and
appear as a form of ‘echo’ or acoustical feedback, altering the total sound pattern being produced.

7.3 A short run home
Although much of what has been discussed applies equally to both very long and very short
lengths of cable, there are a number of useful simplifying approximations we can make when
dealing with the most usual cases where cable lengths are short. In electronic terms we have to
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define ‘short’ and ‘long’ here relative to the wavelength (along the cable) of the highest frequency
in use in the signals of interest. To some extent this is a matter of judgement but a useful rule of
thumb is to check if the cable length is at least a couple of orders of magnitude less than a
quarter-wavelength. If it is, we can often treat the cable as ‘short’. If not, it may be best to regard
it as ‘long’ and employ the full metal jacket of transmission line theory.

As an example, consider a 1 metre long co-axial cable for use as part of an audio system. Is this
cable ‘short’? Well, depending on how good your ears are, you can probably hear sinewaves up to
a frequency between 15 kHz and 25 kHz. If we take the upper frequency and assume a velocity
along the cable similar to that of EM waves in free space we obtain a length for a quarter-
wavelength at 25 kHz of approx 3 km. Hence a 1 m ‘audio interconnect’ is more than three
orders of magnitude shorter, so we can treat it as being ‘short’ for most purposes. This means that
instead of regarding it as a series of incremental lengths which pass the signal along we can treat it
as one ‘lumped’ section placed between the signal source and destination as shown in figure 7·4.

Figure 7·4  –  Short interconnecting cable

L

C

R

G

RS

Rl

signal source cable destination

Where for a cable of length, , we can simply say thatz

L = z L′ :  R = z R ′ :  C = z C ′ :  G = z G ′

... (7.11)
and analyse the effect of the cable as if it were a form of ‘filter’ placed between the signal source
and destination. To do this we can use simple a.c. circuit theory although we may need to take
into account the fact that  and  may be frequency dependent to some extent.R ′ G ′

Summary
You should now understand how a cable can be modelled and analysed as a series of incremental
lengths in the form of a Transmission Line. That this line may have losses due to physical
imperfections of both the conducting and dielectric elements. You should know how the cable’s
Characteristic Impedance and the velocity of signal transfer depend upon the cable’s electrical
properties. That a cable may be Dispersive, and that dispersion may, in principle, be prevented by
arranging for the cable to satisfy Heaveyside’s Condition. You should also understand how the Skin
Effect can cause problems with wideband signals, but that this may be combatted using either
woven/braided wiring and/or a change of conductor. Finally, you should now be able to see when
a cable can be treated as a ‘short’ section and its effect assessed without the need for the full details
of transmission line theory.
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 Lecture 8 – Op-Amps & their uses
Operational Amplifier ICs are very widely used in analog signal processing systems. Their obvious
use is as amplifier, however they can be used for many other purposes – for example in the active
filters we considered in lecture 3. This lecture looks at the basic way Op-Amps work, considers
the common types, and some typical applications.

8·1 Op Amp Circuits
The details of the circuitry inside an op-amp integrated circuit can be very complex, and can vary
from type to type, and even from manufacturer to manufacturer. They can also make use of
semiconductor effects and constructions that you don’t normally encounter outside of an IC. For
simplicity, here we will just look at a simplified version of the design. The basic circuit
arrangement is shown in figure 8·1.

Figure 8·1 — Basic Op-amp Circuit
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Tr1/2 form a Long-Tailed Pair differential amplifier for which Tr3 provides a Constant Current
source for their common emitters. The input pair drive one of the output transistors (Tr5)
directly. The other output transistor (Tr6) is driven via Tr4. Taken together Tr5/6 form a
Class A output stage. In this kind of circuit it us usual to have the values chosen so that
and , and to ensure that the transistors have similar gain values. For
simplicity we can assume the transistors all have a very high gain so we can treat the base currents
as being so small that we can ignore them and assume they are essentially zero. We can therefore
understand how the system works as follows:

R1 = R2

R5 = R6 = R7 = R8

When the two input are the same (i.e. when ) the currents through  and  will be the
same – each will pass an emitter and collector current of approx . This means that the
current levels on the two transistors, Tr4 and Tr5, will be almost identical. Since the same
current flows though  and  it follows that the value of the potential difference across  is the

v 1 = v 2 R1 R2

/ (2R3)1·2

R5 R6 R5
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same as that across . Now the diode in series with  means that the voltage applied to the base
of Tr6 is one junction-drop higher than the potential at that end of the resistor. This counters the
voltage drop between the base and emitter of Tr6. Hence the potential across  is the same as
that across . i.e. we find that the potential across  equals that across .

R6 R6

R7

R6 R7 R5

In effect, the result of the above is that the potential across  (and hence the current that Tr6
draws) is set by the current through . Similarly, the potential across  (and hence the current
provided by Tr5) is set by the current through . When  the currents through Tr5 and
Tr6 are the same. As a result when we connect a load we find that no current is available for the
load, hence the amplifier applies no output voltage to the load, .

R7

R2 R8

R1 v 1 = v 2

RL

However, if we now alter the input voltage so that  we find that the currents through the
output devices Tr5 and Tr6 will now try to differ as the system is no longer ‘balanced’. The
difference between the currents through Tr5 and Tr6 now flows through the load. Hence an
imbalance in the input voltages causes a voltage an current to be applied to the load. The
magnitude of this current and voltage will depend upon the gains of the transistors in the circuit
and the chosen resistor values. The system acts as a Differential Amplifier. When  the
output will be positive and proportional to . When  the output will be negative
but still proportional to  (which will now be negative).

v 1 ≠ v 2

v 1 > v 2

v 1 − v 2 v 1 < v 2

v 1 − v 2

This form of circuit is quite a neat one in many ways. It acts in a ‘balanced’ manner so that any
imbalance in the inputs creates an equivalent imbalance in the output device currents, thus
producing an output. Since the operation is largely in terms of the internal currents the precise
choice of the power line voltages,  and  , doesn’t have a large effect on the circuit’s
operation. We just need the power lines levels to be ‘large enough’ for the circuit to be able to
work. For this reason typical Op-Amps work when powered with a wide range of power line
voltages – typically from a minimum of  to  Volts. In practice this usually means that the
output is limited to a range of voltages a few volts less than the range set by the power lines. In
most cases  Volt lines are used, but this isn’t essential in every case.

V + V −

±5 ±15

±15

Due to the way the circuit operates it has a good Common Mode Rejection Ratio (CMRR) – i.e.
any common (shared) change in both input levels is largely ignored or ‘rejected’. Most real Op-
Amps use many more transistors than the simple example shown in figure 8·1 and hence can have
a very high gain. Their operation is otherwise almost the same as you’d expect from the circuit
shown. This means they tend to share its limitations. For example, the pure Class A means that
there is usually limit to the available output current (double the quiescent level) and that this can
be quite small if we wish to avoid having high power dissipation in the Op-Amp. For a typical
‘small signal’ Op-Amp the maximum available output current is no more than a few milliamps,
although higher power Op-Amps may include Class AB stages to boost the available current and
power.

There are an enormous variety of detailed types of Op-Amp. Many include features like
Compensation where an internal capacitance is used to control the open-loop gain as a function
of frequency to help ensure stability when feedback is applied between the output and the
input(s). This is why common Op-Amp types such as the 741 family have a very high gain at low
frequencies (below a few hundred Hertz) which falls away steadily at higher frequencies. Many
Op-Amps such as the TL071 family use FET input devices to minimise the required input
current level. Although the details of performance vary, they all are conceptually equivalent to the
arrangement shown in figure 8·1.
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8·2 Op-Amps as Amplifier Stages
The obvious use of Op-Amp ICs is as signal amplifiers. In general terms these are of four main
types. Inverting, Non-Inverting, Differential, and Buffers. We have already discussed some of
these in previous lectures but figure 8·2 shows a comparison of the required circuits, all using the
same basic Op-Amp. It is conventional to call the two inputs Inverting and Non-Inverting
depending upon the sign of the resulting output and the gain when a signal is fed to the relevant
input whilst the other is connected to zero volts (shown as an Earth symbol). In figure 8·1  was
shown entering the non-inverting input and  entering the inverting input. It is also
conventional to label these inputs with a plus sign for the non-inverting input and a minus sign
for the inverting input to indicate the sign of the gain that will be applied to the signal entering
via that connection.
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Inverting amplifier

Non-Inverting amplifier

Buffer

Differential Amplifier

Figure 8·2 — Examples of Op-Amp based amplifiers

In each case the behaviour of the amplifier is controlled by the feedback from the output to the
inverting input (i.e. the input where  is shown to be applied in figure 8·1). Given an Op-Amp
with a very high open-loop gain we can expect the voltages at the two inputs to always be very
similar when the output is a modest voltage. e.g. If the amplifier has an open loop differential
voltage gain of  (quite a common value) then when the output is, say, 10 Volts, the two
inputs will only differ in voltage by 0·1microvolts. 

v 2

Av = 108

In a circuit like the Inverting arrangement the non-inverting input is connected to Earth
(nominally zero volts) directly. Hence the output always adjusts to keep the inverting input to the
Op-Amp at almost zero volts (give or take a few microvolts). Hence the input to an inverting
input connection sees a resistance (  in these examples) whose other end is connected to a
Virtual Earth, so sees an effective input resistance of . Signals presented to a non-inverting
input in the other arrangements see an input which the Op-Amp tends to adjust to almost equal
the input. Hence the non-inverting arrangement has a very high input resistance. The output
impedance of all the arrangements is very low provided we don’t ask for more current than the
Op-Amp can supply since the feedback tries always to assert the output voltage required.

R1

R1
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8.3 Filters, Tone Controls, and EQ
Although often used to amplify signals, Op-Amps have many other uses. We have already seen in
lecture 3 how an amplifier with a differential input can be used as part of a active filter. In
principle, these active filters are just feedback amplifiers with highly frequency-specific feedback
networks that manipulate the closed-loop gain as a controlled function of the signal frequency. in
addition to the high/low/bandpass (or band reject) filters outlined in lecture 3 there are a number
of other frequency-dependent functions which Op-Amps can be used to perform. Here we can
take the example of Tone Controls circuits sometimes used in audio systems.

Although Tone Controls are now rarely provided in domestic Hi-Fi equipment, they still appear
in some professional items and can be very useful in improving less-than-perfect source material.
Their main task is to adjust the frequency response to obtain a more natural result. However they
can also be useful for special purposes such as deliberately manipulating the sound. In scientific
areas beyond Hi-Fi some form of adjustment of the frequency response can be very useful in ‘pre
whitening’ the spectrum of a signal. This means boosting some frequencies and attenuating others
in order to obtain a spectrum which has a more uniform power spectral density. It allows
recording or transmission systems to be used more efficiently and provide an optimum signal to
noise performance.

+
–

8k2 100k 8k2

47nF 47nF

10nF 10nF2k2 2k247k

v i

v o

Figure 8·3 — Baxandall Tone Control Circuit

X 1X 2

The classic form of tone control in Hi-Fi is the Baxandall arrangement shown in figure 8·3. This
arrangement is called a Baxandall tone control, named after its inventor. We can understand how
it works by noticing that it is actually a development of the non-inverting amplifier arrangement
shown in figure 8·2. However the normal pair of feedback resistors have been replaced by quite
complicated arrangements of resistance and capacitance. The circuit is laid out in a symmetric
manner. In this case the impedance between the signal input and the inverting input of the
amplifier is  and the impedance between the output and the inverting input is . The voltage
gain is therefore now

X 2 X 1

Av = −
X 1

X 2
... (8.1)

where both  and  may be complex and have frequency-dependent values. However if we setX 1 X 2
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both potentiometers to their central positions we find that despite being individually frequency
dependent we get  at all frequencies. Hence when the pots are centered the frequency
response is nominally flat and has a gain of . However if we move either potentiometer setting
away from its central position we imbalance the system and produce a value of  which varies
with frequency.

X 1 = X 2

−1
Av

Consider first the effect of the upper pot (the  one). At high frequencies the pair of 47 nF
capacitors act as a short circuit and clamp the three wires of this 100k pot together. Hence
adjusting the 100k pot does not alter the high frequency behaviour of the circuit. However at
lower frequencies the impedance of the capacitors rises and the pot has some effect. Hence the
100k pot acts as a Bass Control and allows us to boost or cut the relative gain for low frequency
signals. Now consider the lower pot (the  one). Here the effect of the associated capacitors is
reversed. The 10 nF capacitors mean that the arm of the circuit which contains the 47k pot
essentially loses contact with the input and output at low frequencies. Hence the 47k pot has not
effect upon low frequency signals, but it does upon high frequencies. It therefore acts as a Treble
Control and can be used to boost or cut the relative gain at high frequencies.

100kΩ

47kΩ

Various forms of Tone adjustment can be applied. For example, the Graphic Equaliser circuits
which are popular in studios and PA systems use a bank of bandpass filters to break the signal’s
frequency range into chunks. Each frequency section is then amplified and the results added (or
subtracted) back together with various controlled gains to rebuild the overall signal. By altering
the relative gains of the bandpass filters specific tonal bands can be boosted or cut to alter the
sound. These complex circuits do reveal one of the main potential problems of Tonal
adjustments. Any slight unwanted imbalances mean that it can be almost impossible to get a flat
response should it be desired! For this reason, professional or high quality system use close
tolerance components and usually have a ‘defeat’ switch that allows the signal to bypass the entire
system when tonal adjustments are not required. Given the good quality of signals that are often
available these days, tonal adjustment is usually only of value for special purposes or for reducing
the severity of problems with historic recordings, or ones made incorrectly. There is therefore
something of a ‘theological’ debate in Hi-Fi as to whether people should have, or use, such
systems at all. Purists say not. Realists find them useful. As with most engineering this is a case of
“Yer pays yer money and yer takes yer choice”!

8.4 Special Purposes
In the lectures so far we have seen circuits which show how an op-Amp could be used as part of a
feedback amplifier or filter. In fact, Op-Amps have many other uses and we can give a few
examples here just to illustrate the range of possibilities.

v i n v i nv ou t v o u t

C

CR
R

+ +
– –

Integrator Differentiator

Figure 8·4 — Signal integration and differentiation
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Figure 8·4 shows a pair of circuits which we can use to integrate or differentiate a signal value
with respect to time. The Integrator acts to provide an output level proportional to the time-
integral of the input level. It provides an output voltage at a time,  given byt 1

v
ou t

{t 1} = v ou t {t 0} − ∫
 t 1

t 0

v i n {t }
RC

 d t ... (8.2)

where  represents the output voltage at some initial time, , and
represents the output voltage at a later moment, . Note that the output is actually
proportional to minus the integral of the input value , and that there is a constant of
proportionality, . This arrangement is useful whenever we want to integrate or sum over a
series of values of a signal over some period of time. In practice we often arrange to add a switch
connected across the capacitor and close this, to set  and the instant we start the
summing or integration. Signal integration is a very useful function in signal and data collection
as we frequently wish to sum signal levels to improve a measurement by performing an average
over many readings.

v ou t {t 0} t = t 0 v ou t {t 1}
t = t 1

v i n {t }
1 / RC

v ou t {t 0} = 0

The Differentiator performs the opposite function. Here the output at some time, , will bet

v ou t {t } =
1

RC
×

d v i n {t }
d t

... (8.3)

This allows us to observe the rate of change of a signal level.  (Note that the Differentiator here is
a completely different function to the Differential amplifier we considered in earlier lectures.) in
both of the above circuits the scaling factor  is called the Time Constant as it has the
dimensions of time and is often represented by the symbol, .

RC
τ

v i n

v i n

v ou t

v ou t
R

R+
+–
–

Logamp Peak detector

Figure 8·5 — Logamp and peak detector

C

Figure 8·5 shows two examples of circuits which combine an Op-Amp with diodes to perform
some useful non-linear function. The logamp exploits the fact that the effective resistance  of
a diode varies with the applied voltage. For a ‘textbook’ diode we can say that the current and
voltage will be linked via an expression of the form

V / I

I = I 0 (Exp {q V

k T } − 1) ... (8.4)

where  is Boltzmann’s constant,  is the absolute temperature of the diode,  is the charge on
an electron, and  is the saturation current value of the diodes chosen. In the logamp circuit
shown in figure 8·5 a pair of diodes replace the usual feedback resistor.

k T q
I 0

Now the Op-Amp has a very high differential gain. This means that when it can it tries to adjust
its output to keep its two input voltages very similar, and it also only draws a small input current.
This means that the point where the resistor, , and the diodes meet will be held almost precisely
at zero volts to ensure that the voltage at the inverting input almost exactly matches the zero

R
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potential applied to the non-inverting input. The low current requirement means that almost
none of any current passing through the other components will flow in or out of the Op-Amp’s
inputs. Hence we can say that the potential across the diodes will equal  and the potential
across  will equal .  We can also expect the current in the pair of diodes to equal that
through 

v ou t

R v i n

.

Since the diodes are connected in parallel, but facing opposing ways, the total current they pass
when the output voltage is  will bev ou t

I = I 0 (Exp {q v ou t

k T } + Exp {−
q v ou t

k T } − 2) ... (8.5)

Whereas the current through  will be . Putting these to be equal we therefore find thatR v i n / R

v i n = RI 0 (Exp {q v ou t

k T } + Exp {−
q v ou t

k T } − 2) ... (8.6)

Clearly under most circumstances this would be a truly awful choice for an amplifier as it will
distort the signal’s time-varying voltage pattern quite severely. However its usefulness becomes
apparent when we consider what happens when the voltages are large enough to ensure that

. We can then approximate expression 8·6 to|v ou t | ≫ q / k T

|v i n | ≈ RI 0 Exp { q

k T
× |v ou t |} ... (8.7)

which we can rearrange into

|v ou t | ≈
k T

q
ln { |v i n |

RI 0
} ... (8.8)

i.e. we find that when the signal levels are large enough the output voltage varies approximately as
the natural log of the input voltage. Hence the circuit’s name Logamp. The circuit is very useful
for Compressing the range of voltage levels. This means that amplitude measurements become
easier to make, and signals easier to observe without becoming too small to notice or so large as to
become overpowering. It can permit a system to work over a wider Dynamic Range. The sacrifice
is that the actual signal pattern will be deformed in the process. By the way, note that the
amplifier is still voltage inverting so  always has the opposite sign to . Also note that 8.8 is
just an approximation and ‘blows up’ if you make the error of assuming it is correct when
approaches zero!

v ou t v i n

v i n

The second circuit shown in figure 8·5 acts as a positive peak detector. In this case the diode is
being used as a ‘switch’ that can only pass current in one direction. The precise form of its
nonlinearity doesn’t matter. The Op-Amp tries to behave like a voltage buffer and assert a voltage
on the capacitor which equals its input. However it can only do this whilst the diode is prepared
to conduct. Hence when the input is greater to or equal to the voltage on the capacitor the circuit
behaves in this way. 

However whenever the input voltage falls below the voltage on the capacitor the diode becomes
reverse biassed. The Op-Amp cannot then force the capacitor to discharge.The charge stored can
only leave via the resistor, . Hence the circuit tends to ‘remember’ most recent peak positive
input voltage level, but slowly forgets unless the voltage rises to a new peak. If we wish we can
remove the resistor and replace it with a switch. The output then always remains at whatever the
peak positive value of the input has been since the last time the switch was closed. The circuit is
therefore useful for holding peak values which only occur briefly. This function is useful in ‘peak
hold’ meters and displays.

R
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Summary
You should now understand the basic circuit arrangement used in most Op Amps and why it acts
as a differential amplifier. The Class A output with small transistors also explains why most Op
Amps can only output small current and power levels. You should now know how Op Amps can
be used to perform various linear and nonlinear functions. These include the linear examples of
tone controls, differentiators, integrators as well as the nonlinear ones of Logamps and peak
detectors.
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Lecture 9 – Semiconductor Devices
Various types of Semiconductor Device are used in the examples described in this course. In this
lecture we can have a closer look at they physical basis of how some of them work. This
information should be useful both for the ‘analogue’ systems we have dealt with up until now,
and also for the switching behaviours of the ‘digital’ systems we will go on to next.

9.1 Diodes & rectification.
The Diode is the simplest type of semiconductor device. There are, in fact, lots of different kinds of
diodes. Here we will just consider the most common type. This is called a PN-Junction, made by
joining together two bits of semiconducting material — one P-Type, the other N-Type — as
illustrated in figure 9.1a. When we bring the materials together two things happen. The -ve
acceptor atoms in the P-type material repel the mobile electrons on the N-type side of the join
(Junction). The +ve donors in the N-type material also repel the holes on the P-type side of the
junction. The donor & acceptor atoms are fixed, but the mobile electrons & holes can move &
hence they are driven away from the region near the junction. As a result a depletion zone forms
around the junction. Any charges which can move have moved away from this zone, leaving it
empty.

‘N-type’ material ‘P-type’ material

+ +

− −
−

−−

+++

Depletion
zone

−
+

Junction

9.1a  Acceptor atoms repel free electrons &
Donor atoms repel free holes.

‘N-type’ ‘P-type’

− −
−

+++

Depletion
zone

9.1b  Conventional energy level
picture of what's happening.

Fig 9.1  How to make a diode.

eVd

The free electrons inside the N-type material need some extra energy to overcome the repulsion of
the P-type's acceptor atoms. If they don't have enough energy, they can't cross the depletion zone
& reach the P-type material. If they do manage to get past this energy barrier some of their
kinetic energy will have been converted into potential energy, but — once well clear of the
depletion zone — they can move around OK unless they ‘fall into a hole’. This action is usually
described using a conventional ‘energy level diagram’ of the sort shown in figure 9.1b. The
electrons can roll around the ‘flat’ parts of the energy diagram, but need extra energy to roll up
the step and move from N-type to P-type across the junction. Coming the other way they'd ‘drop
down’ and zip into the N-type material with extra kinetic energy. The size of this energy barrier
can be defined in terms of a junction voltage, . This means the amount of energy converted
from kinetic to potential form (or vice versa) when an electron crosses the depletion zone is
where e is the charge on a single electron.

V d

e V d
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A similar argument applies to the free holes in the P-type material. However, this is more
complicated to understand because holes have the ‘strange’ property that their energy increases as
they go ‘down’ the energy level diagram. Their behaviour is similar in some ways to a bubble
underwater or a hydrogen balloon in air.This is because a hole is the absence of an electron. (To
create a hole at a lower level we have to lift an electron up to the conduction band from further
down — this takes more energy.) As a result, the moveable holes in the P-type material find it
difficult to ‘roll down’ the barrier and get into the N-type material. They keep trying to ‘bob up’
to the top of the band.

The electrical properties of the diode can now be understood as consequences of the formation of
this energy barrier & depletion zone around the PN Junction. The first thing to note is that the
depletion zone is free of charge carriers & the electrons/holes find it difficult to cross this zone. As
a result, we can expect very little current to flow when we connect an external voltage supply &
apply a small potential difference between the two pieces of semiconducting material. (Here,
‘small’ mean small compared with , which an electron requires to get over the potential
barrier.) The effect of applying a bigger voltage depends upon which way around it's connected.
When we make the N-type side more +ve (i.e. drag some of the free electrons out of it) & the P-
type more -ve (drag holes out of it) we increase the difference in potential across the barrier. This
makes it even harder for a stray electron or hole to cross the barrier. When we make to N-type
side more -ve & the P-type side more +ve we force lots of extra electrons & holes into the two
pieces of material. To understand the effect of this, let's concentrate on the electrons.

V d
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9.2b  Applied voltage makes it
much easier for current to
flow across the junction.

9.2a  Applied voltage removes
free charges & increases the
hight of the barrier.

Fig 9.2  Effect of applying a large potential difference across the diode.

The electrons in the N-type region near the junction are repelled by the fixed acceptor atoms in
the P-type. However, they're also repelled by the other electrons drifting around inside the N-
type material. When we shove extra electrons into the N-type material (i.e. make it more -ve) we
increase the number of electrons ‘pushing’ from this side. This works a bit like pressure in a gas.
Electrons near the junction are helped across the junction by being shoved from behind. The
effect is to reduce the amount of extra energy required to cross the barrier — i.e. the barrier
height reduces. As a result, the barrier is reduced or removed and free electrons/holes can move
freely from one material to the other.
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The diode's electrical behaviour can be seen in the ‘real diode’ graph illustrated in figure 9.3. The
polarity of applied voltage which produces virtually no current is called Reverse bias. On the basis
of the explanation given above we might expect no current to flow when the diode is reverse
biassed. In reality, the energies of the electrons & holes in the diode aren't all the same. A small
number will have enough energy to overcome the barrier. As a result, there will be a tiny current
through the diode when we apply reverse bias. However, this current is usually so small we can
forget about it.

I I

V V

V d V d

00

Real Diode ‘Ideal’ Diode

Fig 9.3  Current-Voltage Behaviour of a diode.
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The polarity which produces a significant current is called Forward bias. When we raise the
forward bias voltage we reduce the diode's energy barrier. This essentially reduces the diode's
resistance. We might therefore expect it's effective resistance to vary approximately . i.e.
we can say that the diode's effective resistance at a given forward voltage will obey an equation
like

∝ 1 / V f

R {V f } = Rd  × 
V d

V f
... (3)

where  is the actual diode's resistance when we apply a forward voltage equal to . From the
definition of resistance we can say that . Combining this with equation 3 we can expect
that the resulting current will be

Rd V d

V = I R

I {V f } =
V f

R {V f } =
V 2

f

Rd V d
... (4)

The interesting result of the above argument is that it predicts that the current in a forward
biassed diode varies with the square of the voltage. Diode's don't obey Ohm's Law! A more
accurate analysis of the physics of a diode shows that the IV curve isn't a square-law but an
exponential relationship of the general form

I {V f } = I d (Exp {αV f } − 1) ... (5)
where the values of  depend upon the diode. This is the sort of formula you'll see quoted
in most textbooks (especially physics ones rather than engineering books). In fact, the actual IV
relationship of a real diode will depend on the details of how it was made. It's rarely exactly either
a square-law or an exponential, but for many practical purposes assuming square-law behaviour
quite OK. This square law approximation simplifies things in many situations.

α & I d

For some purposes we can simplify the diode's behaviour even more & pretend it's IV behaviour
is like the ‘ideal’ diode curve shown in figure 9.3. Here we assume that no current flows unless we
attempt to apply a voltage  . The diode then conducts as much current as we like without a≥ V d
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higher voltage ‘drop’ across the diode. Most modern diodes are made of silicon. For this
semiconductor material,  Volts. Hence, to a first approximation we can say a diode
only conducts when the forward voltage is half a volt. From the viewpoint of a solid-state
physicist, this model of the diode is hopelessly over-simplified. We should really remember that a
forward biassed diode always passes some current, but this current is small unless the applied
voltage is around half a volt. Despite that, it's good enough to explain how lots of the circuits
which use diodes work!

V d ≈ 0·5

9.2 The Field Effect Transistor (FET).

Figure 9.4  N-Channel Junction Field Effect Transistor (J-FET).
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The Field Effect Transistor is a device which enables us to use one electrical signal to control
another. The name ‘transistor’ is a shortened version of the original term, transfer resistor, which
indicates how the device works. Most transistors have three connections. The voltage on (or
current into/out of) one wire has the effect of controlling the ease with which current can move
between the other two terminals. The effect is to make a ‘resistance’ whose value can be altered by
the input signal. We can use this behaviour to ‘transfer’ patterns of signal fluctuation from a small
input signal to a larger output signal.

A wide variety of devices are called transistors. Here will just look at one example, called an N-
channel Junction-FET (J-FET). Figure 9.4 illustrates what this looks like. This sort of transistor is
made by forming a channel of N-type material in a substrate of P-type material. Three wires are
then connected to the device. One at each end of the channel. One connected to the substrate. In
a sense, the device is a bit like a PN-junction diode, except that we've connected two wires to the
N-type side.
Electrons can move along the channel, so when we apply a voltage between the two end-wires a
current will flow along the channel. We can maintain this by continually putting electrons in one
end (the source) and removing them at the other (the drain). The effective resistance between the
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two ends will depend upon the size & shape of the channel and the properties of the N-type
material. Note, however, that electrons moving in the channel will — just as with the diode — be
repelled by the fixed charges in the P-type substrate. As a result, the current doesn't fill the whole
channel. It avoids the depletion zones near the walls. 

Consider now what happens when we use the third wire to apply a small -ve voltage to the
substrate. This increases the forces which push channel electrons away from the walls. As a result,
the depletion zones get bigger and the cross-sectional area the current has to squeeze through gets
smaller. The effect is a bit like what happens when we put our foot on a garden hose. The -ve
voltage applied to the third wire makes it harder for the current to get through. If we squeeze hard
enough we can reduce the flow to zero and pinch off the current. The third connection is called
the gate because it can be used to control the flow of electrons along the channel. 

If we wish, we can apply a small +ve voltage to the gate, make the depletion zones smaller, and let
the current through more easily. However, we can't take this too far. Remember that the
substrate-channel boundary is a PN-junction. If we apply too large a +ve gate voltage we'll make
it possible for channel electrons to cross the walls and move into the substrate. This won't help us
get them moving from source to drain, so it isn't any use. What's worse, modern FET's have such
tiny gates that even a small channel-gate current will blow up the transistor. (One of the basic
rules of practical electronics is that, “transistors blow up faster than fuses!”) 

The basic properties of a typical JFET are illustrated by the characteristic curves shown in figure
9.5. The curves shown are typical for transistors designed to work with small signals (a few tens of
volts & millimamps). Note, however, that it's possible to buy a wide variety of devices which give
similar shapes, but with current levels up to many amps and voltages up to hundreds of volts.

Figure 9.5  Characteristic voltage-current curves for 
typical N-channel J-FET.
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The left-hand family of curves show how the drain-source current, , varies with the applied
drain-source voltage, , for four choices of gate-source voltage, . Broadly speaking, we can
divide use these curves to divide the transistor's behaviour into two regions. Provided  is
above some minimum value (about 2 Volts) we find that the current doesn't depend very much
on the actual drain-source voltage. When  is less than this ‘turn on’ value the current does
vary with the drain-source voltage. This isn't very surprising since we obviously have to apply a
voltage between drain & source if we want a current to flow between them! However, once this
voltage is big enough the current is almost entirely controlled by the gate-source voltage.
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The reason for this can be understood by looking at figure 9.6. This shows the same FET when
we apply different source-drain voltages while keeping the gate-source voltage constant.

Source

Gate

Drain

Source

Gate

Drain

Source

Gate

Drain

V gs = −1 Volt V gs = −1 Volt V gs = −1 Volt

V d s = 1 Volt V d s = 10 Volts V d s = 20 Volts

Electric field

1 Volt drain-source 10 Volts drain-source 20 Volts drain-source

Figure 9.6  Effect of increasing the drain-source voltage.

With a steady gate-source voltage of -1 V there is always 1 volt across the wall of the channel at
the source end. A drain-source voltage of 1V means that there will be 2 volts across the wall at the
drain end. (The drain is ‘up’ 1V from the source potential and the gate is 1V ‘down’, hence the
total difference is 2V.) The higher voltage difference at the drain end means that the electron
channel is squeezed down a bit more at this end.

When the drain-source voltage is increased to 10V the voltage across the channel walls at the
drain end increases to 11V, but remains just 1V at the source end. The field across the walls near
the drain end is now a lot larger than at the source end. As a result the channel near the drain is
squeezed down quite a lot. Increasing the source-drain voltage to 20V squeezes down this end of
the channel still more. As we increase the drain-source voltage we increase the electric field which
drives electrons along the open part of the channel. However, we can now see that increasing the
drain-source voltage also squeezes down the channel near the drain end. This reduction in the
open channel width makes it harder for electrons to pass. The two effects of greater push along
the channel and a tighter squeeze tend to cancel out. As a result the drain-source current tends to
remain constant when we increase the drain-source voltage. This effect dominates the FET's
behaviour when the drain-source voltage is noticeably larger than the gate-source voltage. Hence,
when  is bigger than a few volts we get a drain-source current which doesn't depend very
much on .

V d s

V d s

 As we'd expect from our model of the FET, the more negative the gate, the lower the current.
This is because the gate-source voltage always controls the width of the most open part of the
channel at the source end. The right hand curve indicates how the  varies with  when

Volts. This curve is essentially correct for almost any drain-source voltage above a few
volts. (Note of warning! There will also be a maximum voltage above which this curve won't
apply. There are various reasons for this which we'll ignore in this course. Too large a voltage or
current will, however, blow up the transistor. This tends to upset its behaviour!)

I d s V gs

V d s ≫ 2 
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Before leaving our explanation of how a FET works, notice that the picture we've drawn is
symmetric. i.e. in principle it doesn't matter if we swap over the drain & source connections.
Some FETs can be used either way around without any noticeable change in behaviour. However,
most real FETs are built with a channel wider at one end that the other. This (for reasons we
won't go into) makes them work better the ‘right way around’. So, although you can use a FET
with the drain and source leads swapped around, most of them don't work very well if you try it.

9.3  MOSFETs
MOSFETs are similar to the J-FETs, but they're manufactured using a different technique and
behave slightly differently. Here we'll concentrate on a type of transistor called the enhancement
mode MOSFET, but note there's another ‘flavour’ of MOSFET which we'll ignore called the
depletion mode type. MOSFET stands for Metal-Oxide-Silicon Field-Effect-Transistor.
Enhancement mode means that the applied gate voltage increases or ‘enhances’ the ability of the
transistor to pass an drain-source current. This is the opposite way around to a J-FET where
increasing the gate voltage tends to reduce the drain-source current.

Metal contacts

Insulating layer

Source
Gate

Drain

Channel

N-typeN-type

P-type substrate

Electric field from gate pushes away p-type ‘holes’ and
attracts/allows electrons from n-type inserts into channel.

Figure 9.7  N-channel enhancement mode MOSFET.

Figure 9.7 illustrates how an N-channel enhancement MOSFET works. The transistor differs
from the J-FET in two ways. Firstly, the gate electrode is placed on top of a very thin insulating
layer (of oxide — hence the ‘oxide’ in the name) which means it isn't in direct electrical contact
with the rest of the transistor. Secondly, the device is made without manufacturing an N-type
doped channel between the source and drain. Instead, there are a pair of small N-type regions just
under the drain & source electrodes. As a result, when the gate source voltage  , then

 no matter what drain-source voltage we apply. 
V gs = 0

I d s = 0

If we apply a positive voltage to the gate we'll set up an electrostatic field between it and the rest
of the transistor. The positive gate voltage will push away the ‘holes’ inside the p-type substrate
and attracts the moveable electrons in the n-type regions under the source & drain electrodes.
This produces a layer just under the gate's insulator through which electrons can get into and
move along from source to drain. The positive gate voltage therefore ‘creates’ a channel in the top
layer of material. Increasing the value of the positive gate voltage pushes the p-type holes further
away and enlarges the thickness of the created channel. As a result we find that the size of the
channel we've made increases with the size of the gate voltage and enhances or increases the
amount of current which can go from source to drain — this is why this kind of transistor is
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called an enhancement mode device. 

The above explanation is based on using n-type patches at source & drain in a p-type substrate.
The resulting transistor behaves as if the gate voltage creates a channel of n-type material, hence
it's called an ‘n-channel’ device. It's possible to build devices the ‘other way around’ where p-type
patches are used in an n-type substrate. These behave in a similar way, but they pass current when
a negative gate voltage creates an effective p-type channel layer under the insulator. By swapping
around p-type for n-type we can make pairs of transistors whose behaviour is similar except that
all the signs of the voltages and currents are reversed. Pairs of devices like this care called
complimentary pairs. Figure 9.8 illustrates the behaviour of a typical complimentary pair of power
MOSFETs made by Hitachi for use in hi-fi amplifiers.
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Figure 9.8  Typical pair of ‘complimentary’ power MOSFETs.

Note that with a n-channel device we apply a +ve gate voltage to allow source-drain current, with
a p-channel device we apply a -ve gate voltage. (In fact, most kinds of transistor can be made in
‘either polarity’ to build complimentary devices.) One nuisance of using MOSFETs is that a
variety of circuit symbols are used for each device. Figure 9.8 shows two common symbols for the
p-type & n-type MOSFET. You'll also discover others in electronics books & catalogues. This is
confusing & annoying, but we seem to be stuck with it. In part, its a reflection of the fact that
MOSFETs come in many types & are more complex than the simple description given here
admits. Alas, its also because electronic engineers haven't ‘got their act together’ and all agreed to
use the same symbols. Don't worry if you can't remember all the symbols. For this course, just
remember that there are basically two kinds of enhancement MOSFET & that they behave as
indicated in figure 9.8.
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 Tutorial Questions

Lecture 1
Q1) Draw a diagram of a Constant Current Source that uses a Bipolar transistor. Say what
emitter resistor value in your circuit would give a constant current value of 200mA. [6 Ohms if
you have three diodes in your circuit.]

 Q2) Draw a diagram of a Long Tailed Pair differential amplifier stage and give a brief explanation
of how it works. 

Lecture 2
Q1) Explain the difference between a Class A and a Class B amplifier circuit and say why in many
cases where high powers and low distortion are required, Class AB is chosen.

iv n

Load

2Ω

0·5Ω

10 Ω

+ 15 V

- 15 V

Q2) The diagram on the left shows a single
ended Class A amplifier output stage. What are
the values of the maximum positive and negative
voltage the amplifier can apply to the load
resistor? How much power does the amplifier
dissipate when providing no output? What is the
mean value of the maximum undistorted
sinewave power level the amplifier can supply to
the load? [max +ve +12·5V. most -ve -8·65 V,
quiescent dissipation 225 W, 3·75 W]

Lecture 3
Q1) Sketch a graph showing how the frequency response (voltage gain versus frequency) of a 2nd
order active low pass filter varies with the choice of the value of the damping value, d. 

Q2) Explain what we mean by the Quality Factor of a resonant filter. Explain briefly how the
width of the passband of a resonant pass filter varies with the value of its quality factor.

Q3) A 2nd order lowpass filter is required with a turn-over frequency value of 5kHz and a
maximally flat response (i.e.  = 1·414). The circuit is required to have an input impedance of at
least 10kΩ and the arrangement shown below is chosen. Work out and write down suitable
values for the resistors and capacitors in the circuit. What will be the value of the circuit’s low
frequency voltage gain? [Example results: All R’s except  choose 10kΩ, then  = 5·8 kΩ.
Both C’s then 3·18 nF. LF voltage gain 1·58]

d

R4 R4
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+-v i
v o

R1 R2

R3
R4

C 1 C 2

Lecture 4
Q1) An amplifier has a low-frequency open loop voltage gain of 1,000,000. A feedback factor of

 is applied. Say why this can be expected extend the range of frequencies over which
the amplifer’s response is fairly flat. By what factor would you expect the feedback to reduce any
nonlinearity distortions? Say why it can be unwise to apply too much feedback and reduce the
closed-loop gain too much. [Distortion should fall by a factor of 1,000]

β = 1,000

Q2) With the aid of a suitable diagram of an amplifier, explain what is meant by the term
Negative Feedback, and show how it is applied. Define the terms Open Loop Gain and Closed Loop
Gain. 

Q3)  A differential-input amplifier has low-frequency open loop voltage gain value of ×105. The
amplifier gain is uniform at this value up to 5kHz, but above this frequency falls by 10dB each
time the signal frequency is doubled. Feedback with a feedback factor (β) value of ×103 is applied
to the amplifier. What will be the value of the amplifier’s voltage gain at low frequency once the
feedback is applied? Sketch a graph showing the gain/frequency behaviour with and without the
applied feedback, including the frequency region where the gain of the system with feedback
applied begins to fall away. [With feedback, gain flat up to around 80kHz. LF gain essentially
103 in voltage terms.]

Lecture 5
Q1) A power supply is built according to the circuit diagram shown below.

R

C

+

The transformer provides an an output a.c. voltage to the full-wave diode bridge of 20 Volts rms
at a frequency of 50Hz. What will be the value of the peak voltage supplied to the reservoir
capacitor, ?  [27 Volts]C
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Q2) Given a reservoir capacitor of , what will be the magnitude of the ripple at
the capacitor when a load draws 500 mA from the power supply? [0·5V]

C = 10,000 µF

Q3) The Zener used in the circuit has a  value of 15·5 Volts. What will be the stablised output
voltage level supplied to loads that do not demand excessive currents? Give a brief explanation
saying why this output doesn’t equal the Zener voltage. [14·9V]

V Z

Q4) The resistor  = 100 Ω and the transistor has a current gain value of ×100.  Give a brief
explanation of what sets the maximum current the supply can provide whilst maintaining a
stabilised output voltage. What is the highest value of load current the supply can be expected to
provide to a load whilst maintaining its stablised output voltage? [11·5 A ignoring ripple. With
ripple this drops by a factor   to 5·75 A.]

R

(1 + ∆t β
C R )

Q5) A transformer has 800 turns on its primary (input) and 250 turns on its secondary (output).
The output is connected to a 470Ω resistor as a load, and the input is connected to mains (230V
rms). How much power will be dissipated in the resistor? What will be the rms value of the
current in the primary? [10·9 W, 47mA]

Lecture 6
Q1) Sketch diagrams of Co-axial Cable and Twin Feeder. Which type of cable would you expect
to offer better protection from external interference, and why? 

Lecture 7
Q1) Why do cable losses often tend to also make the cable dispersive? Why is it sometimes
advisible to use Braided/Woven cables or conductors with a high resistivity?

Q2) A co-axial cable is 20 metres long. It has a capacitance per unit length of 200pF/m, and the
internal dielectric has a relative permittivity of . No magnetically active materials are
used in the cable. At what velocity would you expect electromagnetic signals to propagate along
the cable? The cable is used to convey signals from a source which has an output impedance of
1kΩ to a destination which has a very high input impedance. At what frequency would you
expect the system to show a 3dB loss in signal power compared to its behaviour at low frequency?
Suggest some steps you might take if you wished to use the cable over a wider range of frequencies
than this value. [1·34 × 108 m/s. 79·5 kHz]

εr = 5·0

Q3) A coaxial cable has a Characteristic impedance of 75Ω and a capacitance per metre of 50 pF/
m. What will be the value of the cable’s inductance per metre? (You may ignore the effects of any
losses in the cable when calculating this value.)  The outer conductor of the cable has a diameter
of 10 mm and the gap between the inner and outer is filled with a material whose  = 4. What
will be the diameter of the inner conductor?  [  0·28 µH/m. 3·3mm]

εr

L′ =

Lecture 8
Q1) Draw a diagram of a Peak Detector circuit and give a brief explanation of how it works.

Q2) Draw a diagram of an Integrator and give a brief explanation of how it works.


