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Abstract

This course of lectures is an introduction to hydraulics, the traditional name for fluid mechanics in
civil and environmental engineering where sensible and convenient approximations to apparently-
complex situations are made. An attempt is made to obtain physical understanding and insight into
the subject by emphasising that we are following a modelling process, where simplicity, insight, and
adequacy go hand-in-hand. We hope to include all important physical considerations, and to exclude
those that are not important, but with understanding of what is being done. It is hoped that this will
provide a basis for further sophistication if necessary in practice – if a problem contains unexpected
phenomena, then as much advanced knowledge should be used as is necessary, but this should be
brought in with a spirit of scepticism.
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1. The nature and properties of fluids, forces, and flows

1.1 Properties of fluids

1.1.1 Definition of a fluid

(b)  Gas(a)  Liquid (c)  Liquid with other molecule

Figure 1-1. Behaviour of typical molecules (a) of a liquid, (b) a gas, and (c) a different molecule in a liquid

A fluid is matter which, if subject to an unbalanced external force, suffers a continuous deformation. The forces
which may be sustained by a fluid follow from the structure, whereby the molecules are able to move freely. Gas
molecules have much larger paths, while liquid molecules tend to be closer to each other and hence are heavier.

Fluids can withstand large compressive forces (pressure), but only negligibly small tensile forces. Fluids at rest
cannot sustain shear forces, however fluids in relative motion do give rise to shear forces, resulting from a mo-
mentum exchange between the more slowly moving particles and those which are moving faster. The momentum
exchange is made possible because the molecules move relatively freely.

Especially in the case of a liquid, we can use the analogy of smooth spheres (ball bearings, billiard balls) to model
the motion of molecules. Clearly they withstand compression, but not tension.

Molecular characteristic Solids Fluids
Liquids Gases

Spacing Small (material is heavy) Large (light)
Activity Very little Vibratory Great, molecules

moving at large
velocities and
colliding

Structure Rigid, molecules do not move
relative to each other. Stress is
proportional to strain

If confined, elastic in compression, not
in tension or shear.

Response to force Resisted continuously, static or
dynamic

Molecules free to move and slip past
one another. If a force is applied it con-
tinues to change the alignment of parti-
cles. Liquid resistance is dynamic (in-
ertial and viscous).

Table 1-1. Characteristics of solids and fluids

1.1.2 The continuum hypothesis

In dealing with fluid flows we cannot consider individual molecules. We replace the actual molecular structure
by a hypothetical continuous medium, which at a point has the mean properties of the molecules surrounding the
point, over a sphere of radius large compared with the mean molecular spacing. The term "fluid particle" is taken
to mean a small element of fluid which contains many molecules and which possesses the mean fluid properties at
its position in space.
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1.1.3 Density

The density  is the mass per unit volume of the fluid. It may be considered as a point property of the fluid, and is
the limit of the ratio of the mass  contained in a small volume  to that volume:

 =
lim

 → 0






In fact the limit introduced above must be used with caution. As we take the limit  → 0, the density behaves as
shown in Figure 1-2. The real limit is  →  ∗, which for gases is the cube of the mean free path, and for liquids
is the volume of the molecule. For smaller volumes considered the fact that the fluid is actually an assemblage of
particles becomes important. In this course we will assume that the fluid is continuous, the continuum hypothesis.

If “outside” molecule

If “inside” molecule Possible variation if the fluid is compressible



*V V

Figure 1-2. Density of a fluid as obtained by considering successively smaller volumes  , showing the apparent limit of a
constant finite value at a point, but beyond which the continuum hypothesis breaks down.

As the temperature of a fluid increases, the energy of the molecules as shown in Figure 1-1 increases, each molecule
requires more space, and the density decreases. This will be quantified below in §1.1.8, where it will be seen that
the effect for water is small.

1.1.4 Surface tension

This is an important determinant of the exchange processes between the air and water, such as, for example, the
purification of water in a reservoir, or the nature of violent flow down a spillway. For the purposes of this course it
is not important and will not be considered further.

1.1.5 Bulk modulus and compressibility of fluids

The effect of a pressure change  is to bring about a compression or expansion of the fluid by an amount  . The
two are related by the bulk modulus , constant for a constant temperature, defined:

 = −




The latter term is the ”volumetric strain”.  is large for liquids, so that density changes due to pressure changes
may be neglected in many cases. For water it is 2070 GNm−2. If the pressure of water is reduced from 1
atmosphere (101,000 Nm−2) to zero, the density is reduced by 0.005%. Thus, for many practical purposes water
is incompressible with change of pressure.

1.1.6 Diffusivity

Fluids may contain molecules of other materials, such as chemical pollutants. The existence of such materials is
measured by the mass concentration per unit volume  in a limiting sense as the measuring volume goes to zero. at
a point, invoking the continuum hypothesis. The particles will behave rather similarly to individual fluid molecules
but where they retain their identity, as suggested in Figure 1-1(c).

Diffusion is the spontaneous spreading of matter (particles or molecules), heat, momentum, or light because of a
continuous process of random particle movements. No work is required for diffusion in a closed system. It is one
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type of transport process, which in many areas of water engineering is not important and can be neglected, yet it is
responsible for several important processes as well.

Figure 1-3. Typical behaviour of diffusion of an initial point concentration

We can consider a discrete physical analogy that reveals the nature of diffusion, but instead of a three-dimensional
medium, a one-dimensional medium is considered, where a single particle is free to make a series of discrete
movements, either to left or right, according to no particular physical law, merely the likelihood that the particle
will move and it can move in either direction. If we consider an initial cloud of many particles concentrated
near a single point, it can be shown that this process proceeds as shown in Figure 1-3, where the concentration is
plotted vertically as a function of horizontal distance . It shows the macroscopic behaviour of diffusion, where
irregularities and concentrations spread out as time passes, such that as time becomes infinite the diffusing quantity
is everywhere but in vanishingly-small quantities. This is perhaps a surprising result, that in a cloud of particles,
if a particle can go in any direction, the net result is for it to spread out. If we consider a region of uniform
concentration, say, then if any particle moves, it moves to the same concentration. On the edge of the cloud,
however, a particle can move either back into the cloud, not changing the concentration, or it can move out of the
cloud, thereby contributing to the spreading out of the cloud. At the next time step, this would be repeated, and so
on.

It can be shown that we obtain Fick’s law1 for the mass flux (flow)  in the  direction due to diffusion:

 = − 


 (1.1)

where  is the coefficient of diffusion, of dimensions L2T−1, expressing the ease with which particles move through
the surrounding medium. The negative sign is because particles flow from a region of high concentration to one
of low. Note that  has units of concentration × velocity, the rate at which matter is being transported per unit
cross-sectional area of flow.

Hence we have seen that the flow of matter is proportional to the gradient of the concentration – but that this
does not come from any special physical property of the concentration, such as particles being repelled by similar
particles, but merely because where there are many particles there will be more travelling away from that region
than are travelling to that region. In all cases of diffusion, the net flux of the transported quantity (atoms, energy, or
electrons) is equal to a physical property (diffusivity, thermal conductivity, electrical conductivity) multiplied by a
gradient (a concentration, thermal, electric field gradient). Noticeable transport occurs only if there is a gradient
- for example in thermal diffusion, if the temperature is constant, heat will move as quickly in one direction as in
the other, producing no net heat transport or change in temperature.

In Brownian motion and diffusion the random motion comes from the molecular natures of the constituents. Below
it will be shown that in fluids this leads to the physical attribute of viscosity. Subsequently it is shown that in real
pipes and waterways the random motion is dominated by the movement in the water of finite masses of water,
rather than to individual molecules.

1 Adolf Fick (born 1829, in Kassel, Germany; died 1901), a medical doctor. He is usually credited with
the invention of contact lenses as well.
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1.1.7 Viscosity

If, instead of the fluid being stationary in a mean sense, if parts of it are moving relative to other parts, then if a
fluid particle moves randomly, as shown above, it will in general move into a region of different velocity, there
will be some momentum transferred, and an apparent force or stress appears. This gives rise to the phenomenon of
viscosity, which is a diffusivity associated with the momentum or velocity of the moving fluid, and has the effect
of smoothing out velocity gradients throughout the fluid in the same way that we saw that diffusivity of a substance
in water leads to smoothing out of irregularities.

A model of a viscous fluid: Consider two parallel moving rows of particles, each of mass , with  in
each row. The bottom row is initially moving at velocity , the upper at +, as shown in the figure. At a certain
instant, one particle moves, in the random fashion associated with the movement of molecules even in a still fluid,
as shown earlier, from the lower to the upper row and another moves in the other direction.

u u 

u

The velocities of the two rows after the exchange are written as  and +. Now considering the momenta of the
two layers, the effect of the exchange of particles has been to increase the momentum of the slow row and decrease
that of the fast row. Hence there has been an apparent force across the interface, a shear stress.

This can be quantified:

Initial -momentum of bottom row = ()

Initial -momentum of top row = ()(+ )

Change of -momentum of bottom row = +

Change of -momentum of top row = −

Final -momentum of bottom row = ()

Final -momentum of top row = ()( + )

In the absence of other forces, equating the momenta gives

 = +

( + ) = (+ )−

Thus,

 = +



 and

 +  = + − 




Hence the lower slower fluid is moving slightly faster and the faster upper fluid is moving slightly slower than
before. Subtracting, the velocity difference between them now gives

 = − 2




thus    and we can see the effect of viscosity in reducing differences throughout the fluid.

In fact, if we consider the whole shear flow as shown in Figure 1-4, we can obtain an expression for shear stress in
the fluid in terms of the velocity gradient, as follows:

Impulse of top row on bottom = 
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x

z dz

du

Figure 1-4. Shear flow, where the velocity in one direction  is a function of the transverse velocity co-ordinate 

If  is the average time between such momentum exchanges, then

mean shear force =





As the horizontal velocity  is a function of , then if the two rows are  apart, the differential of  is

 =





and the mean shear stress per unit distance normal to the flow is

mean shear stress =
mean shear force

length× 1 =
 

  


where  is the mean particle spacing in . Now, ,   ,  and  are characteristic of the fluid and not of the
flow, and so we have

mean shear stress ∝ 




the transverse velocity shear gradient. Fluids for which this holds are known as Newtonian Fluids, as are most
common fluids. The law is written

 = 



 (1.2)

where  is the coefficient of dynamic viscosity, which is defined here. Although we have only considered parallel
flows here, the result has been found to apply throughout Newtonian fluid flow.

Effects of viscosity: The law (equation 1.2) shows how a transverse shear flow gives rise to shear stresses,
which acts, as suggested more immediately by the molecular argument above, so as to redistribute momentum
throughout a fluid. (Consider how stirring a bucket of water with a thin rod can bring all the water into rotation -
imagine trying to stir a fluid without viscosity!) If the fluid at the boundary of a flow has a certain specified velocity
(i.e. momentum per unit mass), then viscosity acts so as to distribute that momentum throughout the fluid. This can
be shown by considering the entry of flow into a pipe as shown in Figure 1-5. On the pipe wall the fluid velocity
must be zero, as the molecules adhere to the wall. Immediately inside the pipe entrance the velocity differences are
large, as viscosity has not yet had time to act, but as flow passes down the pipe viscosity acts so as to smooth out
the differences, until a balance is reached between the shear stresses set up by the viscosity, the driving pressure
gradient, and the momentum of the fluid.

Figure 1-5. Entry of viscous flow into a pipe, showing the effect of viscosity smoothing the initially discontinuous velocity
distribution
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Kinematic viscosity: In the above discussion we gave a physical explanation as to why  = . In
resisting applied forces (such as gravity or pressure) the response of the fluid is proportional to the density :

Total net force = mass× acceleration

so that

× ( terms involving velocity gradients) + pressure terms

∝ × (terms involving fluid accelerations)

It can be seen that dividing by density  shows that in the fundamental equation of motion the viscosity appears in
the ratio . This is the Kinematic viscosity :

 =





Typical values for air and water are such that airwater = 18 × 10−2. However, airwater = 12 × 10−3, and
calculating the ratio of the kinematic viscosities gives:

airwater = 15

Hence we find that in its effect on the flow patterns, air is 15 times more viscous than water!

However, the viscosities of both air and water are small (compared with honey) and are such that viscous effects
are usually confined to thin layers adjacent to boundaries. In the body of the flow viscosity in itself is unimportant,
however it is the reason that flows which are large and/or fast enough become unstable and turbulent, so that instead
of single molecules transferring momentum, finite masses of water move irregularly through the flow redistributing
momentum, and tending to make flows more uniform.. In most flows of water engineering significance, the effects
of turbulence are much greater than those of molecular viscosity.

The relative unimportance of viscous terms in many hydraulic engineering flows

g

sing 



Figure 1-6. Hypothetical laminar flow in a river if molecular viscosity were important

We consider a simple model to give us an idea of the importance of viscosity. In fact, we proceed naively, presum-
ing no knowledge of actual river flows, but supposing – incorrectly as we will see – that the flow is laminar, such
that it consists of layers of fluid of different velocity moving smoothly over each other in a macroscopic sense, all
irregularities being at a molecular scale.

Consider the hypothetical river as shown in Figure 1-6 with typical characteristics: 2m deep, with a slope of
sin  = 10−4, a surface velocity of 1m s−1, and a velocity on the bottom of 0, as fluid particles on a solid surface
do not move. The stress on the bottom can be estimated using Newton’s law of viscosity, equation (1.2), assuming
a constant velocity gradient as a rough approximation, to calculate the force due to molecular viscosity on the
bottom of the stream, giving  ≈ (1− 0)2 = 05 s−1:

Shear stress on bottom = 



= 





= 1000× 10−6 × 05
≈ 5× 10−4Nm−2

Now we estimate the gravity force on a hypothetical volume in the water extending from the bed to the sur-
face, and from this we obtain the mean stress component parallel to the bed. The vertical gravity force is
volume×density× = ×depth×plan area of the volume, so that the pressure due to gravity on the bottom
is approximately (assuming  ≈ 10) given by 1000 × 10 × 2 = 20000N. The component parallel to the bed,
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multiplying by sin  is 20000× 10−4 = 20N2. Hence the ratio of viscosity/gravity ≈ 5× 10−420 = 000025
Hence, molecular viscosity is unimportant in determining the stresses.

However, as we have considered all the forces acting parallel to the bed, and we have obtained a huge imbalance
in the forces, our model seems defective. How can a typical river of these dimensions flow without the dominant
gravity accelerating the flow hugely? The answer to this question will be presented in §1.4.2.

1.1.8 Typical values of physical properties of water

Temperature (◦C) 0 4 10 20 30  50  100

Density

kgm−3


9998 1000 9997 9983 9957  988  9581

Kinematic viscosity 1780 1584 1300 1006 0805  0556  0294

(units of 10−6 m2 s−1)

Table 1-2. Variation with temperature of the properties of pure water with no dis-
solved substances, from Jirka (2005) for the companion subject to this

The density of water depends on temperature (see Table 1-2), dissolved solid concentration (especially salt), but
little with pressure, as we have seen above. Changes in temperature and salinity are responsible for a number of
phenomena associated with convection currents and gravity currents, particularly in the ocean and lakes. However
in many fluid flows in rivers and pipes, these differences are small and can be ignored.

Figure 1-7. Variation of gravitational acceleration  (ms−2) with latitude.

Gravitational acceleration varies between 978m s−2 at the equator and 983m s−2 at the poles, so that students
could use an appropriate value, as portrayed in Figure 1-7, however it is clear that a value of 98m s−2 is accurate
enough, and even a value of 10 m s−2 (correct to 2%) could be used with an accuracy commensurate with almost
all of the theories and methods presented in this course.

Density of fresh water  1000 kgm−3

Density of sea water  1025 kgm−3

Gravitational acceleration  98 ≈ 10 m s−2

Kinematic viscosity  10−6 m2 s−1

Table 1-3. Typical values of physical properties associated with water problems

In view of all the above remarks, in many engineering problems and in this course typical constant values can be
assumed, which are set out in Table 1-3. It is a strange fact, and with the exception of the density of fresh water,
an accidental one, that all of these quantities are close to an integer power of 10!

2 To have a feel for what a force specified in Newton is, 1N is approximately the weight force on an apple!
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1.2 Forces acting on a fluid

g

n̂

(a) Body force vector acting through 
centre of mass of fluid particle

(b) Pressure force vector acting normal 
to local surface of fluid

dAp

   


DirectionForce 
magnitude

ˆp dA n
m g

Figure 1-8. The two types of forces acting on a fluid particle – body force such as gravity acting through the centre of mass,
and surface force, in this case pressure acting normally to the local surface.

Consider figure 1-8 showing the two dominant types of forces acting on fluid particles.

1. Body forces – this type of force acts at a distance, penetrating deep inside the fluid. - the most common is
that due to gravity. It is usually expressed as an acceleration, or, force per unit mass:

Fbody = g = g 

where g is the acceleration due to gravity, g = (0 0−), where we have assumed that the  co-ordinate is
vertically upwards.

2. Surface forces
a. Pressure forces – These are due to molecular motions of particles. Let n̂ be a unit vector normal to the

surface, directed into the fluid, then

Fpressure = −  n̂

Pressure is a scalar quantity. In a static fluid (one where all particles have the same velocity) there are no
other stresses acting, and equilibrium of a finite volume leads to Pascal’s Law3: pressure exerted anywhere
in a static fluid is transmitted equally in all directions.

b. Shear forces – the relative motion of real fluids is accompanied by tangential stresses. Those due to vis-
cous effects, whereby momentum exchange due to random movement of molecules occurs, are relatively
small in hydraulics problems. Rather more important than that of individual molecules is the momentum
exchange by turbulence and large masses of fluid.

1.3 Units

Throughout we will use the Système Internationale, in terms of metres, kilograms and seconds, the fundamental
units of mass (M), length (L) and time (T) respectively. Other quantities are derived from these. All are set out in
Table 1-4. Some of the derived quantities will be described further below.

1.4 Turbulent flow and the nature of most flows in hydraulics

1.4.1 Reynolds’ experiments (1883)

Reynolds4 non-dimensionalised the differential equations which govern the flow of viscous fluid, and found that

3 Blaise Pascal (1623 – 1662) was a French mathematician, physicist, and religious philosopher, who made important
contributions to the construction of mechanical calculators, the study of fluids, and clarified the concepts of
pressure and vacuum.
4 Osborne Reynolds (1842–1912) was a British engineering fluid dynamicist and professor of engineering at Manchester.
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Quantity Dimensions Units
Fundamental quantities

mass M kg

length L m

time T s

temperature  ◦C or ◦K = ◦C+ 27315
Derived quantities

linear velocity LT−1 ms−1

angular velocity T−1 s−1

linear acceleration LT−2 ms−2

volume flow rate L3T−1 m3 s−1

mass flow rate MT−1 kg s−1

linear momentum M L T−1 kgms−1

force MLT−2 1 kgms−2 = 1 N (Newton)
work, energy ML2T−2 1Nm = 1J (Joule)
power ML2T−3 1 J s−1 = 1W (Watt)
pressure, stress ML−1T−2 1Nm−2 = 1Pa (Pascal) = 10−5 bar
surface tension MT−2 Nm−1

dynamic viscosity ML−1T−1 1 kgm−1 s−1 = 10 Poise
kinematic viscosity L2T−1 1m2 s−1 = 104 Stokes

Table 1-4. Quantities, dimensions, and units

Laminar flow

Turbulent flow

Figure 1-9. Reynolds’ apparatus – the diagram showing the dye trace in the pipe for two different flow cases.

for dynamic similarity between two geometrically similar flow situations the dimensionless group Velocity scale
× Length scale  must be the same in the two cases, the quantity which is now called the Reynolds number (for
these pipe experiments the mean velocity  and pipe diameter were used). To determine the significance of the
dimensionless group Reynolds conducted his experiments on flow of water through glass tubes, as shown in Figure
1-9, with a smooth bellmouth entrance and dye injected into the tube. For small flows the dye stream moved as
a straight line through the tube showing that the flow was laminar. With increasing velocity, and hence Reynolds
number, the dye stream began to waver and then suddenly broke up and was mixed through the tube. The flow
had changed to turbulent flow with its violent interchange of momentum. Starting with turbulent flow in the glass
tube, Reynolds found that it always becomes laminar when the velocity is reduced to make  less than 2000.
Usually flow will change from laminar to turbulent in the range of Reynolds numbers from 2000 to 4000. In
laminar flow the losses are proportional to the average velocity, while in turbulent flow, proportional to a power of
velocity from 1.7 to 2.

1.4.2 The nature of turbulent flows in pipes and channels

Above we considered a simple model of a river in which we assumed the flow was laminar, governed by molecular
viscosity, and we found that with typical values of slope and velocity, there was a large imbalance of forces.
We could not explain how the momentum could be sufficiently quickly diffused throughout the flow by merely
molecular forces. What we did not consider was that a flow of the size and velocity of a river (or, after Reynolds, a
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pipe or any flow of sufficiently large size and velocity) is unstable, due paradoxically to the presence of viscosity,
and becomes turbulent, such that there are large masses of fluid moving irregularly. The resisting force on the bed
of the fluid, so as to balance gravity, is much larger, and this is able to be transferred to the fluid by large parcels of
fluid moving turbulently. Throughout the rest of this course it is assumed that all flows are turbulent and molecular
viscosity will be ignored.

Figure 1-10 shows three ways of visualising the turbulent flow in a channel.

Part (a) shows an instantaneous two-dimensional view that shows the remarkable complexity of the structure, with
large regions of fluid moving coherently but also the presence of complicated movements in other regions, and
notably with vortices, regions of concentrated rotational flow, familiar to anyone who has examined fluid flows in
nature by looking at a channel surface. These vortices seem to be a ubiquitous feature of turbulent flow.

Part (b) shows the horizontal velocity  at a point and how it varies with time, showing wild fluctuations, some
with a relatively long wavelength, as a large coherently-moving piece of fluid passes the point, some with short
wavelengths, as small structures like vortices pass. The figure also shows the mean value ̄ of the velocity over
time. The analysis of the fluctuations at a point to determine the nature of the flow has had a long history in fluid
mechanics, and a great amount of effort has gone into studying how the energy of the flow transfers from large
vortices down to smaller and smaller ones.

Part (c) shows the instantaneous and mean fluid velocities across a line from the bottom to the top of the flow. The
complexity of the structure is less obvious, but it can be seen that there is spatial variability of both the horizontal
and vertical velocities, as is obvious in Part (a). The plot of the mean horizontal fluid velocities, shown by the
smooth dashed curve, shows rapid variation near the boundary, such that ̄ is very large, and by analogy with
the laminar equation (1.2), the shear stresses are very large. The bed of the channel has been shown in the figure to
be composed of stones. It is not necessary for the bed to be rough for the flow to look like this – even for smooth
boundaries the instabilities of the flow are such that the flow is similar. Indeed, figure (a) is for a smooth bed.

The energy to create turbulence is typically put into the system at scales the size of the overall geometry. Viscosity
is the agent ultimately acting so as to dissipate the turbulent energy in the form of heat. It operates on the smallest
possible scales of the flow field – at a molecular level. In between the creation and dissipation turbulent scales
there is an orderly cascade of turbulent energy by which energy is nonlinearly transmitted from the large to small
turbulent fluctuations or scales by a continuously decreasing sequence of turbulent eddies. This has been tersely
described by L. F. Richardson, the father of computational fluid mechanics, paraphrasing Jonathan Swift:

Big whirls have little whirls that feed on their velocity,
And little whirls have lesser whirls and so on to viscosity - in the molecular sense.

1.4.3 Boundary layer theory

In the nineteenth century the fields of hydrodynamics, the study of fluids with no viscosity, and hydraulics, the study
of fluids with practical application in real-world situations, had grown far apart from each other. Hydrodynamics
could predict the force on an obstacle in a flow – but that prediction was that the force was zero, in contradiction
of all experience. Already in that century the partial differential equation that governs the motion of a fluid with
viscosity – the Navier-Stokes equation – had been developed, but it was too complicated for practical problems in
that era.

In 1904, at a mathematics conference in Heidelberg, Ludwig Prandtl5 presented the idea that provided the basis
for the modern science of fluid mechanics, reconciling some of the differences and difficulties of traditional hy-
draulics and nineteenth-century hydrodynamics. This idea, of boundary layer theory was subsequently developed
and extended, mainly through Prandtl and the people who went to work with him in Göttingen. The initial problem
tackled was the flow past a flat plate aligned with the flow, again a problem that was trivial in inviscid hydrodynam-
ics. Prandtl’s method was to divide the flow into different regions in which the dynamics are different – an outer
flow where viscosity is unimportant, and a thin inner viscous ("boundary") layer next to the surface. The equations
for each region were separately solved, but their boundary conditions were selected so that the solutions blended
into each other to yield a unified approximation. In the same paper, Prandtl also showed how the partial differential
equations that governed the boundary layer could be reduced to one ordinary differential equation using a com-
bination of the independent variables.Figure 1-11 shows how a boundary layer develops over a flat smooth plate,
initially laminar and then becoming turbulent. The effects of viscosity can still be considered as being confined to

5 Ludwig Prandtl (1875-1953), German engineer and fluid dynamicist; the father of modern fluid mechanics.
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(a) Instantaneous image of a turbulent flow - from "Volumetric visualization of coherent 
structure in a low Reynolds number turbulent boundary layer" published in the International 
Journal of Fluid Dynamics (1997), Vol.1, Article 3, by C. Delo and A.J. Smits.
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(c) The instantaneous and time-mean velocities over a section of a channel

u
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t
0

(b) The variation with time of the horizontal velocity at a point in a 
turbulent flow, showing its fluctuations around a mean value

Figure 1-10. Three ways of depicting a turbulent shear flow in a channel
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Laminar B.L. Turbulent B.L.Transition

Figure 1-11. Growth of boundary layer (BL) over a flat plate, showing how viscous effects are confined to the boundary layer

the boundary layer itself.

In this hydromechanics course, we are concerned with very long conduits of water, relative to their width, and in
these the boundary layer is always turbulent and grows so as to occupy all the flow. We will be able to assume that
the flow does not vary down the stream.

1.4.4 Prandtl - von Kármán universal turbulent velocity distribution

The apparent shear stress in turbulent flow can be represented by

 = (+ )



 (1.3)

where  is the eddy viscosity due to the turbulent motions, and where in this section we will use the simpler symbol
 for the mean horizontal velocity, for which we should ideally use ̄. In §1.1.7 of these notes it was shown that
the laminar viscosity can be explained by a simple ball model. Here a similar concept is used, but for finite masses
of fluid. Prandtl showed that the eddy viscosity can be given by an expression

 = 2



 (1.4)

where  is the so-called mixing length, expressing the mean distance that a fluid parcel travels before having its
momentum changed by its new environment. In turbulent flow there is a violent interchange of parcels of fluid
except at a boundary, so that  must go to zero at boundaries. Measurements have shown that the shear stress in a
turbulent flow is close to being constant, and so, substituting  = 0, the wall shear stress, and equation (1.4) in
equation (1.3), and neglecting molecular viscosity ,

0 = 2
µ




¶2
 (1.5)

After similarity considerations, von Kármán6 suggested that  = where  is a universal constant in turbulent
flow. Introducing the symbol of the shear velocity ∗:

∗ =
r

0


 (1.6)

equation (1.5) can be written




=

∗




which can be integrated to give



∗
=
1


ln  + constant. (1.7)

This Prandtl-von Kármán universal velocity law agrees very well with experiment in both pipes and channels. For

6 Theodore von Kármán (1881-1963), Hungarian mathematician and aerodynamicist with numerous important contributions.
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smooth-walled pipes as  → 0 it is replaced by a laminar law. In this case it is written



∗
=
1


ln

∗

+,

where  = 040 and  ≈ 5 from measurements by Nikuradse. At the centre of a pipe, where  = 0 this fails,
but this is unimportant in practice.

Prandtl also developed a convenient power-law velocity distribution formula for turbulent pipe flow




=
³ 


´


where  is the velocity at the centreline,  is the distance from the pipe centre,  is the pipe radius, and  ≈ 17
for slower flows and less for faster ones. This is not related to the fundamental mechanics of the flow, but is
sometimes convenient, especially as it satisfies the condition that  = 0 at the centre of the pipe, such that the
velocity is a maximum there.

What we have ignored in this section is the fact that very close to the bed viscosity controls the vertical transport
of momentum, and the region closest to the boundary is called the laminar sub-layer, because within the region
turbulence is suppressed by viscosity. In this region the velocity profile is linear, as we expect from the earlier
discussion of viscosity. This layer exists even for rough beds, if the individual roughness elements do not project
too far into the flow.

Above the laminar sub-layer the velocity profile is logarithmic, as predicted by equation (1.7). For rough bound-
aries equation (1.7) can be written



∗
=
1


ln



0
, (1.8)

where 0 is the elevation at which the velocity is zero. In practice this has been found to be about 30, where 
is a measure of the size of the boundary roughnesses, and is the equivalent sand grain roughness. This gives the
velocity distribution law for turbulent flow over rough boundaries



∗
=
1


ln



30
=
1


ln
30 


, (1.9)

The profile shape depends on the bed texture, as described by the boundary roughness  and the magnitude is
directly proportional to the shear velocity ∗, which is related to the shear stress on the bed by 0 = 2∗. The
logarithmic velocity distribution has been found to be widely applicable throughout hydraulics, meteorology, and
oceanography, including pipe flows, channel flow, the flow of the atmosphere over the sea and land, and in the
oceans where there is a current in water of finite depth.

uu

z log z

     (a)  Natural co-ordinates                              (b) Semi-logarithmic plot

Figure 1-12. Measurements of time mean horizontal velocity in a channel

An example of a time-mean velocity profile is plotted in two forms in Figure 1-12, using linear and semi-
logarithmic plots. The linear axes reveal the physical nature of the boundary layer profile, which is typical of
velocity distributions in rivers. Near the bed, however, the profile seems rather more linear than logarithmic. On
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the semi-logarithmic axes the logarithmic portion of the profile appears as a straight line, and it is clear that the
two points closest to the bed do not follow the same log-linear trend as the rest of the profile. The dashed straight
line on the figure is the log-linear fit to the velocity profile, ignoring those two points. This plot shows that they lie
within the laminar sub-layer. By fitting equation (1.9) to the points which appear on a straight line we can estimate
the characteristic roughness size , and the friction velocity ∗.

1.4.5 The dynamic equation governing fluid motion and the Reynolds number

In this section we consider briefly the fundamental partial differential equation that governs the motion at each
point throughout the fluid. As we have already seen, the solutions to this equation actually show unsteady chaotic
or turbulent behaviour, and the equation is far too difficult to solve for many practical problems. However we
examine it here to obtain insights into the nature of viscosity and what approximations can be made. Having done
that we will move on to the traditional approximations of hydraulics, where solutions to practical problems can be
obtained, not by solving the partial differential equation throughout the fluid, but by considering the conservation
equations of mass, momentum, and energy.

The Navier-Stokes equation: If we consider the momentum of a fluid particle in three dimensions, and
equate the rate of change of momentum of the fluid particle, the following vector equation is obtained:

u

|{z}
1. Acceleration

of particle

= g|{z}
2. Acceleration

of gravity

− 1


∇| {z }

3. Pressure
gradient term

+



∇2u| {z }

4. Viscous
diffusion term

 (Navier-Stokes equation)

It is perhaps surprising that the motion of all air and water and other Newtonian fluids are governed by such a
simple equation. Considering each of the four contributions:

1. The particle acceleration term is actually more complicated than it appears, if is written, not as the acceleration
of a particle, but in terms of the time and space derivatives at a fixed point in space. For present purposes this
does not matter, and it will be left in this form.

2. The gravitational acceleration term g = (0 0−) = −k, where  is the scalar value of the acceleration.
We consider inertial cartesian co-ordinates such that  is vertically upwards, with unit vector k, in which case
there is only the one component shown.

3. The pressure gradient term occurs in a simple manner, such that its contribution to the acceleration of a
particle is simply ∇ = (  ) divided by the density, with a negative sign in front, such
that if fluid pressure increases in the  direction, say, then  is positive and the whole term for that
component, − ()  is negative, and the fluid will decelerate by an amount proportional to 1 such
that the acceleration will be greater for lighter fluids. All of that physical interpretation is obvious; it is not so
obvious that it be capable of such simple mathematical expression.

In the special case of no fluid movement at all, u = 0 throughout, and the Navier-Stokes equation becomes
simply∇ = g. Considering each of the components in that case:




= 0




= 0 and




= −, (1.10)

stating that in a stationary fluid the pressure is constant on a horizontal plane (no variation with  and ) and
has a constant vertical gradient throughout the fluid if it is incompressible ( constant).

4. The remaining component of the Navier-Stokes equation is the ∇2u, where we have substituted  = ,
the kinematic viscosity (see §1.1.7). The Laplacian operator ∇2 is a diffusion or smoothing operator that
occurs throughout physics. It has the form

∇2 = 2

2
+

2

2
+

2

2


the sum of the second derivatives in the three co-ordinate directions. As an example of the nature of solutions
to that equation, we can consider the heat equation governing the distribution of temperature  in a body,
 = ∇2, where  is a diffusion coefficient for heat transfer. If temperature  has a local maximum such
that all the second derivatives are negative, then  is negative, and the temperature there will diminish. In
this way, all uneven gradients throughout the field tend to diffuse out until the temperature field is as smooth
as possible, compatible with the boundary conditions.
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In the Navier-Stokes equation the whole last term 4 is a viscous diffusion term for velocity, such that there is
a tendency for the velocity field to diffuse such that rapid changes are diminished. This fits with some of our
earlier descriptions of viscosity as a diffusion phenomenon. Like the pressure gradient term, it is noteworthy
that this term is capable of such simple expression.

Magnitude of terms: Now an estimate is made of the size of the terms in the Navier-Stokes equation. We
consider a flow, whether along a conduit (pipe or channel) or past a body, such that a typical length scale of the
flow is , and a typical velocity scale is  . We non-dimensionalise co-ordinates with respect to the length scale 
such that we introduce dimensionless co-ordinates ∗ = , ∗ = , and ∗ =  such that in our field of
flow, ∗, ∗, and ∗ all have maximum magnitudes of about 1. As the flow is sweeping through our field of interest
at a speed of  , this means that the time taken for the flow to cross the region is given by  =  , which suggest
the introduction of a time scale ∗ = , such that a typical time of transit of a fluid particle is about ∗ ≈ 1.
Having non-dimensionalised the independent variables , , , and , we now consider the dependent variables. It
is obvious that we choose u∗ = u so that all velocity components are scaled with respect to the overall velocity
scale and have a typical maximum magnitude of 1. It is not so obvious, but the final results show it to be so, that
we introduce a dimensionless pressure ∗ modified so as to express it relative to hydrostatic pressure and non-
dimensionalised with respect to 2. This factor will be seen to recur throughout the rather simpler momentum
and force considerations later in these notes – in fact we will see that a typical dynamic pressure due to fluid impact
is 2. Hence we write

∗ =
+ 

2


Now, recognising that if ∗ =  etc, then  = ∗,  = (1) ∗ etc, ∇ = (1)∇∗, ∇2 =
(12)∇2∗,  = () (∗), and substituting into the Navier-Stokes equation:







∗
(u∗) = (0 0−)− 1



1


∇∗
¡
2∗ − ∗

¢
+



2
∇2∗ (u∗) 

Now, observing that ∇∗∗ = (0 0 1), and g = (0 0−), using the fact that  and  are constant, and finally
multiplying each term in the equation by 2:

u∗
∗

= −∇∗∗ + 


∇2∗u∗ (1.11)

where all the starred (*) quantities have a maximum magnitude of the order of 1. We have found that there is only
one dimensionless parameter in the equation governing the flow, and this is the dimensionless viscosity

∗ =



 (1.12)

For a given fluid and flow, the viscosity is unimportant if the quantity ∗ ¿ 1, that is, if the product of a typical
velocity and typical length of our flow are much larger than the kinematic viscosity.

The Reynolds number: It is an historical accident that in his 1883 paper, Osborne Reynolds introduced
the quantity that has since been called the Reynolds Number and given the symbol , which is the inverse of the
dimensionless viscosity, defined as

 =



=
1

∗
 (1.13)

which has been almost universally used as the measure of the relative importance of viscosity. It would have been
more satisfying if that number had been defined upside down as dimensionless viscosity! With the traditional
definition, high Reynolds number flows are those which are large and/or fast such that the effects of viscosity are
small. In environmental hydraulics problems, with, say, a typical length scale of 1m, a velocity scale of 1m s−1,
and a typical value for water at 20◦C of  = 1 × 10−6m2 s−1, a value of  = 106 (∗ = 10−6) is obtained,
showing how viscosity is unimportant in many outdoor problems. Flows in pipes, however, because they can
be smaller and have slower flow, may have Reynolds numbers of the order of 103, when viscous effects may be
present.

An interpretation – the ratio of inertia to viscous forces Above we used a highly mathematical treatment,
considering the dynamic equation of flow, and found that the Reynolds number was the inverse of dimensionless
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viscosity. A simpler statement is often made concerning the Reynolds number, that it is the ratio of inertial forces
to viscous forces in a flow. To obtain an idea of this, and to give us an idea of the integrated approach we will later
use, let us consider the steady (unchanging in time) flow of a viscous fluid in a region of flow of length scale 
in the direction of flow, and  in both transverse directions. If  is the scale of the main velocity, then the rate of
volume transport through the flow is the velocity times the cross-sectional area through which it flows,  × 2.
Hence the rate of mass transport through the flow is of a scale  × 2, in units of mass per unit time. The scale
of rate of momentum transport is then obtained by multiplying this by  to give 22.

To estimate the viscous forces, the scale of the velocity gradient is estimated by considering the magnitude of the -
velocity  divided by the length scale  over which the velocity goes from 0 on a boundary to the main magnitude,
giving the scale of  to be , although a precise value might be closer to (2), and hence the viscous
stress on the wall is of a magnitude . Multiplying by the area over which that acts, of the length of the flow
times a transverse length, giving , the viscous force on the boundaries has a scale ×  = .

Now calculating the ratio of the two terms we have obtained,

Viscous force on wall
Rate of momentum transport

=


22
=







2
 (1.14)

It is possible to make two deductions from this:

1. To solve our original problem, to estimate the overall ratio of viscous force to inertia, we could say that all
length scales in the problem are the same, such that  ≈ , we obtain the ratio to be  = ∗ = 1,
and so it is legitimate to say that the Reynolds number is the ratio of inertial to viscous stresses.

2. In a boundary layer, in a region close to a wall, however, the transverse scale is that of the rather smaller
boundary layer thickness, such that ¿  and the ratio as estimated in equation will be very much greater,
which is effectively what Prandtl discovered, that viscous effects are most important in the boundary layer.

1.4.6 The drag force on bodies in the flow

Figure 1-13. Flow past a sphere showing separation and turbulence in the separation zone

"The theory of drag is weak and inadequate", wrote White (2003, p478), in talking about a body immersed in a
flow. In fact, except for a idealised objects such as spheres, cylinders, and flat plates, there is almost no theory,
as the flow is changed abruptly by the body, and is very complicated one. Usually flow separation occurs, such
as shown in Figure 1-13, where the boundary layer flow on the upstream part of the sphere separates at about the
equator of the sphere. The pressure in the separation zone is much less than the upstream pressure, and so there is
a large force on the body in the direction of flow. Most reliable results for the drag force on immersed bodies are
experimental.

In laminar flows, at small Reynolds numbers, where viscosity is important, the forces on the body are primarily
viscous ones, proportional to the velocity, or more properly to the velocity gradients. For large Reynolds numbers,
where the viscous influence is limited to boundary layers on the upstream side of the body, and most force is due
to the effects of separation of the boundary layer and the difference between pressures upstream and downstream
of the body. In this case, it has been experimentally observed, and an approximate momentum theory shows, that
the drag force is proportional to the square of the velocity. Hence, as this is the more important case, the way that
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force on a body is calculated is to express it using an empirical dimensionless drag coefficient D, such that the
magnitude of the drag force  is written

 = 1
2
D

2 (1.15)

where  is the velocity of the upstream flow, and  is area, which for aircraft wings might be the plan area, but for
most non-streamlined objects is the projected or frontal area, that as seen by the stream as it approaches. The other
terms come from a simple inviscid theory for the maximum possible pressure on the upstream face of a bluff body
that we will study later, such that max =

1
2
2. From this it is clear that equation (1.15) is the rather empirical

expression that the total force on a body is the maximum pressure on the upstream face multiplied by the projected
area of the body, the whole corrected by D,  = maxD.

If, such as is the case for wave forces on oil platforms, or bridge piers subject to tides, the direction of the incident
velocity U can reverse, ideally equation (1.15) should be written in the vector sense F =  F̂, where F̂ is a
unit vector specifying the direction of the force, which is always in the direction of the flow velocity, such that
F̂ = U , giving

F = 1
2
DU (1.16)

or in a further generalisation, if the body is subject to an oblique velocity vectorU = (  ), the drag force on
the body is

F = 1
2
D |U|U (1.17)

where the magnitude of the velocity vector |U| = √2 +  2 + 2.
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Figure 1-14. Cylinder – variation of drag coefficient D with Reynolds number 

For smooth bodies such as spheres or circular cylinders there is a finite variation of D with Reynolds number, as
shown in Figure 1-14. In the small Reynolds number limit the flow is dominated by viscosity and this limit we
expect  ∼ 1, and to do this it is necessary for D ∼ 1. The sudden dip in the curve between  = 105

and 10ˆ is a result of the boundary layer becoming turbulent, when the transport of momentum is very effective at
replenishing the near-wall momentum and the boundary layer can persist for a longer distance without separating,
and the drag is less.

For bodies which are not smooth, however, the points of separation of the boundary layer are well-defined, at the
corners, and the variation of D with  is very small. Typical drag coefficients are shown in the table:

Shape D
2-D

Square cylinder 21

Ditto, at 45◦ 1.6
Flat plate 2.0

3-D
Cube 1.07
Circular disk 1.17
Rectangular plate 118− 2
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2. Hydrostatics

An understanding of fluid statics is essential for the design of hydraulic structures, tanks, ships, pressure measure-
ment and meteorology. We will consider the equilibrium of a mass of fluid which is at rest, or in uniform motion,
when no element of fluid moves relative to any other element. As there are no velocity gradients, there are no shear
stresses. The pressure forces balance applied body forces, in accordance with Newton’s second law.

2.1 Fundamentals

2.1.1 Pressure at a point

The pressure in a fluid in static equilibrium is the same in all directions. Pressure is a scalar quantity that arises
from the non-directional nature of the oscillations of fluid particles, nominally at rest here. This was considered in
§1.2.

2.1.2 The pressure in a fluid under static equilibrium






+








Figure 2-1.

Consider an element of fluid in static equilibrium with components of body
forces ,  and  per unit mass. The fluid has accelerations ,  and  .
Considering motion in the  direction only at this stage, as shown in Figure
2-1, the acceleration in the  direction is caused by the net force in the 

direction on the faces which are normal to that direction. The net force in the
 direction due to pressure forces is

−
µ
+






¶
  +    = −


   (2.1)

Considering Newton’s second law in the  direction: mass×acceleration in 

direction=net force in  this gives

(   )  = body force+ net pressure force

= (   )  − 


  

and cancelling the common factors of the volume of the body   , gives




=  ( − ) (2.2)

and we obtain expressions for the  and  components which are the same, with  replaced throughout by  and 

respectively. Thus we have:

The pressure gradient at a point = fluid density× (body force per unit mass - fluid acceleration)

or in vector terms

∇ =  (f − a)  (2.3)

where f = (  ) is the body force per unit mass, and a = (  ) is the fluid acceleration.

2.1.3 Fluid at rest in a gravity field

In the usual case of a body of fluid at rest in a field of constant gravity, where  and  are in a horizontal plane and
 is vertically upwards,

 =  =  = 0 and  =  = 0  = − ≈ −98m s−2
and substituting into equation (2.2) with similar equations for the other co-ordinates, we obtain




=




= 0 (2.4a)




= − (2.4b)
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That is, the pressure does not vary with  or , such that on any horizontal plane the pressure is constant, such as
anywhere on the plane XX or the plane YY within the fluid in Figure 2-2. This is also known as Pascal’s law.

X X Y Y

Figure 2-2. Two vessels and two typical horizontal planes, such that within the fluid the pressure on each plane is constant

Equation (2.4b) can be integrated in common cases where the density  is a known function of pressure . For
most problems in hydraulics the fluid can be considered incompressible, such that  is constant, and the integration
is simple: Z




 =

Z
(−) givingZ

d = −
Z

 and integrating,

 = − + ( )

where because we integrated a partial derivative the quantity  is in general a function of the other two variables
 and . However, the other differential equations (2.4a) show that  cannot be a function of  or  so that it is
a constant throughout the fluid. Thus we have the equation governing the pressure in an incompressible fluid in a
constant gravity field, the

Hydrostatic Pressure Equation:

+  = Constant throughout the fluid (2.5)

It is simpler to solve many problems in the form of equation (2.5), as we will see below while considering some
pressure measurement devices. However, many other problems are most easily solved by expressing the pressure
as a function of depth below the surface rather than elevation above a point. To do this the constant is evaluated by
considering a special point in the fluid, usually on the surface.



0







 = a +  = a +  (0 − )

a

Figure 2-3. Hydrostatic pressure variation with depth

Consider the general situation shown in Figure 2-3 that shows a graph of pressure plotted horizontally against
elevation using a datum (reference level) that is a vertical distance 0 below the surface. When  = 0 the
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pressure is atmospheric, denoted by a, and so

+  = Constant = a + 0

thereby evaluating the constant and enabling us to write the equation for pressure  at an arbitrary point with
elevation  as

− a = (0 − ) or  = a + (0 − )

Since 0 −  = , the height of the free surface above the point, this becomes

− a = 

and almost always we measure pressure as gauge pressure, relative to the atmosphere, as shown in Figure 2-4, so
that we usually just write

 =  (2.6)

so that the pressure at a point is given by the density  multiplied by gravitational acceleration  multiplied by the
depth of water above the point.

Gauge, absolute, and vacuum pressures Figure 2-4 shows, on an absolute pressure scale, how the gauge
pressure, widely used for engineering purposes, is measured relative to the (variable) atmospheric pressure; and
vacuum pressure, used in engineering applications such as brakes for vehicles, is measured from the same datum
but in the other direction. An absolute vacuum corresponds to a vacuum pressure of one atmosphere.

Zero pressure

Absolute 
pressure

Vacuum pressure

Gauge pressure

5Atmospheric pressure, variable, about 10 Pa

Figure 2-4. Definitions of gauge, absolute, and vacuum pressures.

Equivalent static head: Throughout engineering, pressures are often expressed as the equivalent height of
liquid which can be supported by that pressure, called the head, here denoted by :

 =





2.1.4 Units

Pressure is a force per unit area, so in fundamental SI units it is Nm−2, for which a special name is used, a
Pascal, or Pa. We will see that this is an appropriate name, and that it has a value of about 105 Pa. Atmospheric
pressure used to be specified in terms of 1/1000 of that, or millibar, however they are not SI units. Instead of a
millibar, the exactly numerical equivalent value of "hectoPascal" or "hPa" is used, which is a 1/100 of a Pascal.
Atmospheric pressure varies usually in the range 980−1030 hPa. Hurricane Wilma was the most intense hurricane
ever recorded in the Atlantic basin, in the 2005 season; the eye pressure was 882 hPa.

Example 2.1 (a) Find the gauge pressure when you swim to a depth of 3m; (b) estimate the pressure force on
an eyeball there.

(a) Assuming that the water is fresh such that the density is approximately 1000 kgm−3, and take  ≈ 10 ms−2:
 =  = 1000× 10× 3 = 30 000Nm−2 = 30000Pa
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(b) To estimate the force, assume that an eyeball is 2 cm in diameter, and that the force is that on a circle of the
same diameter, thus

Force = pressure× area = 30 000× 

4
× 0022 ≈ 9N

which, remembering that 1 Newton is approximately the gravitational force on a small apple, is about the weight
of 9 apples!

2.1.5 The mercury barometer and atmospheric pressure

Mercury
   

h

z
ap ap

0p 

Figure 2-5. Mercury barometer.

Consider the hydrostatic pressure equation (2.5) for all points within the mercury of the barometer shown in Figure
2-5:

+  = Constant

We apply this at two points: at the surface open to the air and secondly at the surface in the tube, at which the
pressure is the vapour pressure of mercury, close to zero

a + 0 = 0 +  thus

a = 

The density of mercury is about 13 600 kgm−3, and typically  is about 076m, hence

a ≈ 13 600× 98× 076 ≈ 1× 105 Nm−2
In terms of the equivalent height of water, which it is sometimes convenient to use,  =  ≈ 105100010 ≈
10m.

2.1.6 Pressure measurement by manometer

(a) The simple manometer

Consider the U-tube in Figure 2-6 filled with manometric fluid of density m with one end attached to a point X
where the pressure of the fluid, of density f, is to be measured. The other end is open to the atmosphere.

In the fluid, using the hydrostatic pressure equation (2.5) at both X and B:

X + f 1 = B + 0

In the manometric fluid, also using the hydrostatic pressure equation at B and at the surface open to the air:

B + 0 = a + m 2

Eliminating the unknown intermediate pressure B:

X − a = m2 − f 1

thus by measuring the height difference of the fluid in the manometer we can calculate the gauge pressure at X. In
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X

f m

B

1

2

Figure 2-6. Simple manometer, measuring the pressure in a vessel relative to the atmosphere

the special case where the same fluid is used throughout,

X − a = f (2 − 1)

(b) The U-tube manometer

X

f

m

B



Y

C

Figure 2-7. U-tube manometer, used to measure the pressure difference between two points

In experimental fluid mechanics we often wish to measure pressure differences. Consider the manometer shown in
Figure 2-7. Fluid of density f occupies points X and Y, between which the pressure difference is to be measured.
They could be two points on the same pipe. The manometric fluid has density m and has a difference between its
ends of . Applying the hydrostatic pressure equation between X and B, within the working fluid:

X + fX = B + f B (2.7)

between B and C in the manometric fluid,

B + m B = C + m C (2.8)

and in the other working fluid, between C and Y:

C + f C = Y + f Y (2.9)
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We can eliminate B between equations (2.7) and (2.8) to give

X + f X = C + m (C − B) + f B

and eliminating C by using this equation and equation (2.9):

X − Y = f (B − X + Y − C) + m (C − B)

However, C−B = , the measured manometric height, and the individual elevations of B and C disappear, giving
the relatively simple result

X − Y = (m − f)+ f (Y − X)

Notice that the contribution of the manometric height depends on the difference between the densities of the two
fluids.

2.1.7 An application – industrial hydraulics

1

2

Figure 2-8. Operation of an hydraulic lift or jack

Consider the problem shown in Figure 2-8 in which an actuator (a small cylinder with a piston in it, but probably a
pump in more modern applications) can apply a force to a fluid, and the pressure so generated is then transmitted
throughout the fluid to the other end of the fluid line where a larger cylinder and piston are placed. Use of the
hydrostatic pressure equation in the fluid between points 1 and 2 gives

1 = 2 +  (2 − 1) 

Now, 1 = 11, with a similar result for piston 2, giving

1

1
=

2

2
+  (2 − 1) 

In practical cases the term involving the difference in elevation is negligible, so that the force which can be lifted
by the hydraulic jack is

2 ≈ 1

µ
2

1

¶


For large values of 21 large forces can be exerted, such as the control surfaces on a large aircraft.

2.1.8 Pressures in accelerating fluids

Consider equation (2.2) for the pressure gradient:




= ( − ) (2.2)

with similar equations for  and .

1. Fluid accelerating vertically

27



A First Course in Hydraulics John D. Fenton

Let the vertical acceleration be , upwards, the other components being zero. Equation (2.3) gives




=




= 0




= (− − ) = −( + )

which are the same equations as obtained before, but with  replaced by +, so that the vertical acceleration
and gravity simply combine algebraically.

2. Fluid accelerating horizontally

a

a
g

Free surface

Lines on which pressures are constant

a

g

Figure 2-9. Vessel accelerating to the right, showing tilted water surface and pressure contours.

Consider the container in Figure 2-9 which is accelerating in the positive  direction with acceleration .
Equation (2.2) gives




= (0− )




= 0 and




= (− − 0)

These equations may be integrated to give

 = −−  + 

= −(+ ) + 

where  is a constant of integration. From this we can find the equation of surfaces on which the pressure is
constant, 1 say:

1 − 

− = + 

hence

 =  − 




where  is a constant. Clearly, surfaces on which pressure is constant are planes, with a gradient in the
-direction of −. The free surface, on which  = a is a special case.

2.2 Forces on submerged planar objects

Consider the submerged plate of arbitrary shape shown in Figure 2-10, inclined at an angle  to the horizontal. We
introduce the co-ordinate  with origin at the axis OO where the plane of the plate intersects the plane of the free
surface. The shape of the plate is defined by a specified breadth as a function of , (). At any horizontal line on
the plate which is  below the surface the hydrostatic pressure equation gives,

 = a + 
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()

d

() ()

()

C
CP



O

O

̄

Figure 2-10. Inclined underwater plane surface and axis OO where it intersects the plane of the surface

and the force on an element which is  wide and () long is

 =  where  is the area of the element

=  () 

= (a + ) () 

Now,  =  sin , therefore

 = a() +  sin   ()  (2.10)

Integrating over the whole plate to find the total force on one side gives

 =

Z
 = a

Z
() +  sin 

Z
()  

where the first integral is simply the area of the plate, , while the second is its first moment of area OO about
the intersection line OO of the plane of the plate and the free surface, which has be written as OO = ̄, where
̄ is the co-ordinate of the centroid C, giving

 = a+  sin   ̄ (2.11)

However the depth of the centroid ̄ = ̄ sin , so force can be written quite simply as

 = a+ ̄ (2.12)

which is often able to be simply calculated without taking moments, if the plate is a simple shape. As the pressure
at the centroid is C = a + ̄, the result can be simply stated

Force on plate = Area× Pressure at centroid.

In design calculations it is often necessary to know the position of Centre of Pressure (CP), the point at which the
total force can be considered to act. Taking moments about OO, substituting equation (2.10), and integrating:

Moment of force about O =

Z
  = a

Z
()  +  sin 

Z
() 2 

= a ̄+  sin  OO (2.13)

where OO is the Second Moment of Area of the plate about the axis OO. If CP is , By definition, CP, the 

co-ordinate of the centre of pressure is such that the moment of the force is equal to  CP, and so, substituting
equation (2.11) into that and setting equal to the result of equation (2.13), we have

CP =
a ̄+  sin  OO

a+ ̄
 (2.14)
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Almost always the atmospheric pressure is ignored, as calculating the force on one side of a plate usually means
that the other side of the plate also is subject to atmospheric pressure, e.g. the side of a ship shown in Figure 2-11,
or the interior of a submarine.

ap apnetp

Figure 2-11. Situation, such as the side of a ship, where the atmospheric pressure contributes equally on both sides such that it
can be ignored.

Substituting a = 0 into equation (2.14) and using ̄ = ̄ sin  gives the expressions

CP =
sin  OO

̄
=

OO

̄
 (2.15)

Note: although the force can be calculated by using the depth of the centroid of the plate, it does not act through
the centroid, i.e. CP 6= ̄.

In some cases, for simple shapes such as rectangles and circles, the second moment of area CC of the plane about
an axis through its centroid is already known and does not have to be determined by integration. It is convenient
to use the Parallel Axis Theorem, which in this case is

OO = CC + ̄2 (2.16)

to calculate the distance of the centre of pressure from the centroid. Substituting this into equation (2.15)

CP =
CC + ̄2

̄
=

CC

̄
+ ̄ (2.17)

This formula can be re-written to give the expression for the distance of the centre of pressure from the centroid in
the plane of the plate:

CP − ̄ =
CC

̄
=

2nd Moment of area about axis at the centroid
1st Moment of area about axis at the surface

 (2.18)

In the limit where the plate is much smaller than the distance from the axis, this will tend to zero, where the relative
variation of pressure over the plate is small.

Example 2.2 A circular cover 125 cm in diameter is immersed in water so that the deepest part is 150 cm below
the surface, and the shallowest part 60 cm below the surface. Find the total force due to water acting on one side
of the cover, and the distance of the centre of pressure from the centroid. You may assume that the second moment
of area of a circle of diameter  about a diameter is CC = 464.

O

C

C

125 cm

150 cm

60 cm

30



A First Course in Hydraulics John D. Fenton

Circle: Area  = 
4
× 1252 = 1228m2

Depth to centroid ̄: By symmetry: ̄ = 05(06 + 15) = 105m

Force: equation (2.12):  = ̄ = 1000× 98× 1228× 105 = 126 kN (Ans.)

Simple trigonometry: sin  = (150− 60)125 = 072
Simple trigonometry: ̄ = ̄ sin  = 105072 = 1458 m

Formula given: CC = 464 = 0120m4

Position of Centre of Pressure (equation 2.18): CP − ̄ = CC̄ = 0120 (1228× 1458) = 0067 m,

Centre of pressure is 67 cm from centroid

2.3 Forces on submerged boundaries of general shape

d

C
CP

d

d

d

dF

Figure 2-12. Projection of boundary element onto two planes: (a) the free surface, to calculate the vertical force, and (b) a
vertical plane perpendicular to the desired horizontal force direction

Forces on submerged boundaries of general shape can be calculated surprisingly simply. Consider the underwater
boundary in figure 2-12, with an element of area d. Consider also the two elemental prisms constructed from d,
one to the free surface, which has a volume d , and one in a horizontal direction, denoted by , in which direction
we require the force, with elemental cross-sectional area d when projected onto a plane perpendicular to that
direction. The results we obtain for this prism will be valid for all horizontal directions, so it will not be necessary
to consider separately here another direction perpendicular to this.

2.3.1 Horizontal

The horizontal element has a vertical force on it due to the weight force of the fluid in it, but for it we are only
concerned with horizontal forces in the direction along the element, and so, as there are no other horizontal forces
on the prism, this means that the -component of the force of the fluid on the curved surface is equal to d, the
force of fluid on the projection d onto a vertical plane. This holds for all elements of the surface, and so we can
write for the whole surface:

Any horizontal component of force on a submerged surface is equal to the force on a
projection of that surface onto a vertical plane perpendicular to the component.

For such a calculation, we can use all the results of §2.2 for the forces on a planar surface, for the special case of a
vertical plane  = 2. Equations (2.12) and (2.18) give,

 = ̄ and CP − ̄ =
CC

̄
 (2.19)

where we have used the notation ̄ for the depth of the centroid of the projected area .

Example 2.3 A tank attached to the side wall of an underwater structure is of the shape of half a sphere, a
hemisphere. It has a diameter  and its centre is  below the surface. Calculate the horizontal force and its
position.

By symmetry, the net force will be normal to the side wall, and there is no force to left or right in the plane of the

31



A First Course in Hydraulics John D. Fenton

wall. To calculate the force we have simply to use equation (2.19), where the projected area of the hemisphere is a
circle, with centroid at its centre,  below the surface:

 = ̄ = 
2

4


To obtain the position of its resultant point of application, we use the fact that for a circle, CC = 464,

CP −  =
CC


=

4

64

4

2
=

2

16


Note that if we re-express this to calculate the distance between centre of pressure and centroid relative to the
radius (half the diameter) we find

CP − 

2
=



8


showing that for large submergence, → 0, and the centre of pressure will approach the centroid, which holds
for all submerged surfaces. in the deep water limit

Example 2.4 A mixing tank is a vertical cylinder of height  and diameter  filled with fluid of density .

(a) Calculate the total horizontal force  on one half of the tank? (this would be used to design the tank walls,
which must carry forces of 2 as shown).

(b) How far above the base of the tank does it act?

/ 2F / 2F

F

D

H

Answer: (a) The force on the semi-circular cylinder is equal to that on its projected area, which is the rectangle
across its centre, with dimensions  ×. The centroid of the area is at its geometric centre, such that ̄ = 2.

 = ̄

=  ×2

= 1
2
2

(b) The distance between centre of pressure and centroid:

CP − ̄ =
CC

̄


For the rectangle, the second moment of area CC about a horizontal axis through the centroid is, CC = 312,
hence

CP − ̄ =
3

12

1

 ×2
=



6


below the centroid, so the distance of the centre of pressure above the base is 2−6 = 3

2.3.2 Vertical

Considering the vertical element of fluid, there are only two vertical forces acting on it: one is the weight force of
the fluid  d , and the other is the vertical component of the element on the fluid. For equilibrium of the element,
the two must be equal. This holds for all elements of the boundary, and so we can write that the vertical force on
the whole boundary is equal to  , the weight force on the fluid between the boundary and the plane of the free
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surface.

Now, however, there is an important generalisation, and that is if any or all of the region between the boundary and
the surface is not occupied by fluid, for example if there were another body in the fluid, breaking up the prismatic
volume. In fact, this has no effect on the results, for the pressure on the boundary is the same, whether or not
part of the volume is unoccupied by fluid, and the force on the boundary is the same as if all the region between
boundary and surface were occupied by fluid. Hence we can write the relatively simple and powerful result:

The force component in the direction of gravity on a submerged boundary is equal to the
weight force on the fluid in the volume bounded by:

1. the boundary itself, and
2. its projection onto a plane at the level of the free surface.

Contributions are (downwards/upwards) if the surface is (below/above) the local fluid.

To locate the position of the resultant vertical force, the body force of the vertical prismatic element is at the centre
of the prism, and integrating over all such prisms to form the body, the resultant acts through the centre of volume
of the body, giving

The vertical force component acts through the centre of gravity of the volume between the
submerged boundary and the water surface.

Example 2.5 The corner of a tank is bevelled by equal dimensions  as shown in the figure. It is filled to 

above the top of the bevel. What is the force on the triangular corner?

x

z

y

d

d d

O

YX

Z

d+h

Force in  direction = Force on projection OYZ

=   ̄ 

=  × 1
2
2 × ¡+ 2

3

¢
=

2

6
(3+ 2)

= Force in  direction by symmetry

Force in  direction = Weight force on prism above XYZ

=  × Volume

=  × 2

2
× 1

3
(+ + + + )

=
2

6
(3+ 2) 

Thus, each of the force components is the same. This is what we would expect for such a surface whose direction
cosines are the same for all 3 directions.
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2.3.3 Horizontal force on a vertical wall with the water level at the top

The force on a straight vertical wall with water level at the top is a very common problem, such as sea walls, tanks,
and retaining walls. The answer has been provided in Example 2.4 above, originally for the force on a curved wall,
which we saw was the same as for a rectangular wall. We replace the diameter of the tank by the length  of the
wall and the results immediately follow:

 = 1
2
2 or,force per unit length




= 1

2
2

Height of resultant force above the base =


3
or,
2

3
from the surface.

2.3.4 More complicated situations

Why have we written "at the level of the free surface" in determining vertical forces?:

Door in roof of water tunnel

W – Weight force of water 
        in projected volume

W

Figure 2-13. Calculation of force in a situation where water does not occupy all the projected volume

In the above derivation we used the expression  = , where  was the height of the free surface above a
general point on the solid surface. It is not necessary for all of the volume between the free and solid surfaces to
be occupied by fluid – the result still holds, that the force is that on the volume between the solid surface and its
projection on the free surface. Consider the situation in Figure 2-13 where it is required to calculate the force on a
door in the roof of a tunnel which is full of water, but above the door is air. The calculation of the volume proceeds,
whether or not there is water actually there. Note that in this case the force is upwards. In the above derivation we
suppressed the vector and algebraic notation for the sign of the force to make the results simpler. We must interpret
the sign of the force, based on the physical nature of the problem. The force is always in the direction from the
water on to the solid surface, whether the surface is to the left, right, above or below the water.

What if the surface is multivalued in a co-ordinate direction?:

A

B

C

A'

B'

A''

B''

C''
b

a

c

d

e

(a) (b)

Figure 2-14. Geometric constructions for calculating forces on multivalued objects

If a solid surface bends such that there might be water to left and right of parts of it, or above and below parts, then
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we combine the forces in an algebraic sense such that we have to pay attention to the sign of the force over each
element of the surface. This has the effect that we usually just have the net projected surface area for horizontal
forces and the net projected volume for vertical forces – often just the body volume itself.

We consider two simple examples. Figure 2-14(a) shows a surface that dips down into water. The location of the
free surface is not important and has not been shown. The problem is to calculate the net force on the surface ABC.
The fluid on the section AB exerts a force to the right the same as that on the projection A0B0. The fluid on the
section BC exerts a force the same as that on the projection B00C00 to the left. However, the force on the section
B00A00 is the same as that on the section A0B0 but in the opposite direction so that the two cancel. hence, the net
force on the surface is that given by that on the net projection A00C00.

Similar considerations for vertical forces are exemplified by Figure 2-14(b), showing the cross-section of a hemi-
sphere, for example. The net vertical force on the hemisphere is composed of two parts, (i) that of the upwards
force on the surface cd, which is equal to the gravity force on the liquid in the volume abcdea, and (ii) that of the
downwards force on the surface bd, equal to the gravity force on the liquid in the volume abdea. The net upwards
force is the algebraic sum of the forces on the two volumes, so the required volume is abcdea−abdea = bcdb, which
is simply the volume of the body, in this case.

For any body which is completely immersed in the fluid, with a closed surface as this one, the net force on the
body is the weight force that would be exerted if fluid were to occupy the volume of the body. In this way, we have
proved Archimedes’ Theorem!

Example 2.6 A radial gate on a spillway is in the form of a circular arc of radius  = 6m, and retains a depth
of  = 6m of water. What is the magnitude, direction, and location of the force per unit length of gate?




m6R

 m6H

2/H

2/H

O

PU

S
T

Q

From above, the magnitude of the horizontal force is equal to the force that would be exerted on the horizontal
projection of the gate, i.e. on the rectangle formed by the line PQ and extending 1m normal to the plane of the
drawing:

 =  ̄|{z}
PQ

=  × × 1× 
2

= 1
2
2 = 1

2
× 1000× 98× 62

= 176kN.

The vertical force is a combination of the negative downwards force on PS (fluid above the surface) plus the
upwards force on SQ such that, from above, the net upwards force is the weight force on the volume between SQ
and the surface, namely UPQS, minus the weight force on the volume between PS and the surface, namely UPS.
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The net volume is the ”displaced volume” PQS, that is

 = +Weight force on the volume PQS

= + × 2×Volume of PST

= 2 × 1×

⎛⎜⎝ 1
2
2| {z }

Sector OPSO

− 1
2

2
 cos | {z }

Triangle OPTO

⎞⎟⎠
= 

¡
2 − 1

2
 cos 

¢
but sin  = (2)  = 12 and  = 6, giving  = 1000×98×(36× 6− 18× cos6) = 32 kNwhich
is positive, hence upwards, as we might expect because the pressures on the underside of the gate are greater than
on the upper side. The water tends to lift the gate off the spillway, and for stability it will have to be sufficiently
heavy.

The angle of elevation of the force is tan−1 (32176) = 018 = 018× 180 ≈ 10◦.
The position of the force: we can do this easily here, for a basic feature of radial gates is that the pressure every-
where on the gate acts normally to the circular surface of the gate, hence goes through the pivot O and so does the
resultant, so that there is no net moment on the gate.

2.4 The buoyancy and stability of submerged and floating bodies

The methods used above to calculate the force on a surface can be used to calculate the buoyancy forces on totally
or partially submerged bodies, that is, surfaces which are closed within the fluid or closed by a plane surface at the
level of the free surface.

2.4.1 Totally-submerged body

A

C

B1

B2

S1 S2

D

E

F

G1

G2

(a) (b)

Figure 2-15. Submerged body showing arbitrary points for force calculations

Consider the submerged body in Figure 2-15(a) intersected by an arbitrary vertical plane AC, which is the projected
area of each of the two surfaces closed by the plane, AB1C and AB2C, so that the forces on each of the two surfaces
are equal (and opposite), hence there is no resultant force on the body. Consider how human development might
have progressed had it been possible for an irregularly-shaped object to propel itself!

Now consider the body intersected by an arbitrary horizontal plane G1G2 as in Figure 2-15(b), where S1 and S2
are points in the free surface where the intersection of the plane and the body are projected to the surface. The
vertical (downwards as sketched) force on G1DG2 is equal to the weight of fluid in G1DG2S2S1G1 while the
vertical force (almost all of it upwards here) on G1FG2 is equal to the weight of fluid which would occupy the
volume G1FG2S2S1G1. Hence, the net buoyancy force, the net upwards force, is the weight of fluid which would
occupy the difference between the two volumes, namely the volume of the body.

That is, the buoyancy force is upwards and is equal to the gravity force on the volume of fluid displaced. This is
Archimedes’ Principle, and is easily extended to the case where the body is floating. In this case the body floats at
such a level in the water that the weight of the whole body equals that of the weight of fluid displaced by that part
of the body beneath the waterline.
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Example 2.7 A rectangular pontoon has a width  = 6m, length  = 12m, and a draught of  = 15m in
fresh water. Calculate
(a) the weight of the pontoon,
(b) its draught in sea water of relative density 1.025, and
(c) the load which can be supported by the pontoon in fresh water if the maximum draught is 2m.

(a)

Weight of pontoon = weight of water displaced

= 

= 1000× 98× 6× 12× 15
= 1060 kN.

(b) In sea water

1060 = 1025× 98× 6× 12×

 = 147m

(c) For 2m draught in fresh water,

Total buoyancy force = 1000× 98× 6× 12× 2 = 1410 kN.

Therefore the load which can be supported is 1410− 1060 = 350 kN.

2.4.2 Centre of buoyancy

The centre of buoyancy is the position in space where the buoyant force may be considered to act for the purposes
of taking moments. It is at the centre of mass of the fluid displaced by the body, whether submerged or floating.

G B

G
B

(a) (b)

Figure 2-16. Illustration of the centre of buoyancy of a regular body which is (a) submerged, or (b) floating.

Consider two solid rectangular blocks of the same size, but different densities. The one in (a) is heavier than the
liquid, it does not float, and if it is homogeneous the centres of buoyancy B and gravity G will coincide. In case (b)
the block is lighter than the fluid, it floats, and the displaced volume is less than its total volume, and G is above B
as shown.

2.4.3 Stability of submerged bodies

Consider the balloon in the illustration. Its centre of buoyancy is close to the centre of the envelope, while its centre
of gravity is near the gondola. It has been given a small positive (anti-clockwise) displacement by a gust of wind.
Consider the lines of action of the equal and opposite weight and buoyancy forces – it is clear that the moment set
up by the displacement is negative and acts so as to reduce the displacement. In this case, and for any submerged
body, as long as B is above G, the configuration is stable.

Now consider Figure 2-16(b) for the floating block, where G is above B. Do we expect that configuration to be
unstable? If not, why not? The explanation and limits for stability will be given in the following section.

2.4.4 Stability of floating bodies

For most floating bodies, the centre of gravity is above the centre of buoyancy, and from the above we might expect
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W

W

  Righting moment arm

B

G

Figure 2-17. Forces acting on a submerged body



B

G

B

G

B'

M

(a) (b)

Figure 2-18. (a) Floating body with the common potentially-unstable situation where the centre of gravity is above the centre
of buoyancy, and (b) showing how for an angle of rotation the displaced fluid is now a trapezoidal shape and the centre of
buoyancy has moved sideways, enough in this case for there to be a restoring force on the body.

the system to be unstable. However, if the body rotates, the shape of the displaced volume changes, such that the
centre of buoyancy moves laterally. Hence we have to calculate how much movement there is for a particular body
or ship to determine whether it is stable or otherwise. Figure 2-18 shows a stable situation where the centre of
buoyancy for an angle of roll  has moved from B to B

0
, enough that a restoring force has been set up. The amount

of movement depends on , so that a more fundamental quantity is the distance BM, where M is as shown in the
figure, such that for a small angle of rotation  the distance that the centre of buoyancy moves is

BB0 = BM  (2.20)

The condition that the body be stable is that M be above G, such that the Metacentric Height GM is positive.

We can calculate the distance BB0 by taking moments of volume about the axis of rotation of the body at the
waterline, as the centre of buoyancy is at the centre of the mass of fluid displaced. After a rotation , the change of
first moment of volume is due to the change of first moment of volume just of the wedge-shaped regions shown in
Figure 2-19, as the displaced volume below them is unchanged. Hence,

Displaced volume × BB0 = Change of first moment of volume in the region

between the unperturbed and rotated states.

Let the displaced volume is  , and if at any point over the waterline plane the increase in displacement is , then
if  is the distance of that point from the axis parallel to the axis of rotation, at the waterline, then

 =  tan  ≈ 

for small . On the left side of Figure 2-19,  is negative and hence  will be negative, as the displacement has
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

dA

h

y

Figure 2-19. View of vessel from stern, showing original waterline cross-section (dashed) and the new position of that section
after rolling a small angle .

decreased there. Let  be the element of area of the waterline cross-section, then

 × BB0 =

Z


  

=

Z


2  

= 

Z


2 

= 

where  is the second moment of area of the waterline cross-section about an axis parallel to the axis of rotation,
and so, from this and equation (2.20) we have

BM =



 (2.21)

That is, the distance of the metacentre above the centre of buoyancy is a purely geometrical quantity, equal to the
ratio of the second moment of area of the waterline cross-section to the displaced volume. To determine whether
the body is stable, we must calculate (see Figure 2-18)

GM = BM− BG, (2.22)

and if GM is positive the body will be stable for rotation about an axis parallel to that considered. The position of
the centre of gravity, giving BG, is difficult to calculate for ships. To summarise, the procedure is:

Determination of the stability of a floating body:

1. Calculate the vertical distance BM=  .

2. Determine the undisturbed position of the centre of buoyancy B from the geometry of the displaced volume.

3. Determine the position of the centre of mass of the body by measurement (see below) or by knowledge of its
shape and mass distribution.

4. Determine the metacentric height GM=BM−BG.

Measuring metacentric height

For ships, especially narrow vessels (small !) such as navy ships, the determination of metacentric height is
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important but difficult, and it is often done experimentally by measuring the angle of tilt caused by moving a load
a known distance across the deck of the ship.

Effect of free water on the stability of a vessel

If water comes on board a vessel and is free to move as the vessel moves, this can be catastrophic, such as has been
experienced with some Roll-on-roll-off vehicular ferries, when water has covered the vehicle deck. As the vessel
rolls, and the centre of buoyancy moves, so does the water move, and the centre of gravity of the vessel also moves
in this case, possibly endangering stability, as shown on Figure 2-20(a).

B

G

B'

(a) (b)

G'

Figure 2-20. (a) The effect of free water on the stability of a vessel, and (b) how bulkheads restrict the lateral movement of
water and the centre of gravity of the vessel

Bulkheads

Figure 2-20(b) shows how the installation of bulkheads restricts the lateral movement of water and that of the
centre of gravity of the vessel. Lesson: if you are on a vehicular ferry and there are no bulkheads between lanes,
be ready to leap overboard if anything goes wrong ...

Example 2.8 A block of wood has sides  ×  ×  and has relative density . Examine the conditions for
stability if it floats with side  vertical.

G
B D 

L

Find the draught :

Weight of block = Weight of water displaced

× 2 = 2

∴  = 

Find an expression for the metacentric height GM. Firstly, using the well-known expression for the second moment
of area of a rectangle about a transverse axis:

BM =



=

1
12
× × 3

2 × 
=

2

12


and from the figure

BG =


2
− 1

2
 =



2
(1− )

∴ GM = BM− BG =
2

12
− 

2
(1− ) 
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The limiting condition for stability is when GM= 0, so solving the equation for  gives the solution




=

1p
6(1− )



with the condition for stability that




6 1p

6(1− )


We examine this in a couple of special cases: (1) in the limit as  → 1, as the density of the block approaches that
of water, the limiting  → ∞, which seems right, that the block is sitting very low in the water, which would
be a stable configuration; (2) in the limit as  → 0also the limiting  → ∞, which also seems right, if one
imagines a polystyrene block sitting almost on top of the water. Another case (3),   1, of course, leads to the
block falling to the bottom, a most unstable situation!

3. Fluid kinematics and flux of quantities

3.1 Kinematic definitions

Fluids in motion are rather more complicated: the motion varies from place to place and from time to time. In
this section we are concerned with common terminology and descriptions of the flow, and the specification of fluid
motion.

Steady/unsteady flow: where the flow at each place (does not change / does change) with time.

Uniform/nonuniform flow: where the flow (does not vary / does vary) with position.

Laminar flow: where fluid particles move along smooth paths in laminas or layers. This occurs where
velocities are small or viscosity is large or if the size of the flow is small, e.g. the flow of honey, the motion around
a dust particle in air. In civil and environmental engineering flows flow is almost never laminar, but is turbulent.

Turbulent flow: where the fluid flow fluctuates in time, apparently randomly, about some mean condition,
e.g. the flow of wind, water in pipes, water in a river. In practice we tend to work with mean flow properties,
however in this course we will adopt empirical means of incorporating some of the effects of turbulence. Consider
the  component of velocity at  a point written as a sum of steady (̄) and fluctuating (0) components:

 = ̄+ 0

Let us compute the time mean value of  at a point by integrating over a long period of time  :

̄ =
1



Z
0

  =
1



Z
0

(̄+ 0)  = ̄+
1



Z
0

0 

and we see that by definition, the mean of the fluctuations, which we write as 0, is

0 =
1



Z
0

0  = 0 (3.1)

Now let us compute the mean value of the square of the velocity, such as we might find in computing the mean
pressure on an object in the flow:

2 = (̄+ 0)2 = ̄2 + 2̄0 + 02 expanding,

= ̄2 + 2̄ 0 + 02, considering each term in turn,

= ̄2 + 2̄ 0 + 02, but, as 0 = 0 from(3.1),

= ̄2 + 02 (3.2)
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hence we see that the mean of the square of the fluctuating velocity is not equal to the square of the mean of the
fluctuating velocity, but that there is also a component 02, the mean of the fluctuating components.

Eulerian and Lagrangian descriptions: Lagrangian descriptions use the motion of fluid particles.
Eulerian descriptions study the motion at points in space, each point being occupied by different fluid particles at
different times.

The fluid properties we usually need to specify a flow at all points and times are:

1. Fluid velocity u = (  ) a vector quantity, in terms of components in (  ) co-ordinates,

2. Pressure , a scalar, which in compressible flow will determine the density at a point, and

3. For flow with a free surface the height of that surface is also important.

Flow lines

Streamlines: a streamline is a line in space such that everywhere the local velocity vector is tangential to it,
whether unsteady or not, whether in three dimensions or not.

Figure 3-1. Typical streamlines showing how the velocity vectors are tangential

Figure 3-1 shows typical streamlines and velocity vectors. As the velocity vector is tangential at all points of a
streamline, there is no flow across a streamline, and in steady 2-D flow, the mass rate of flow between any two
streamlines is constant. Where streamlines converge, as shown in the figure, the velocity must increase as shown to
maintain that flow. Hence, a plot of streamlines implicitly shows us the direction and magnitude of the velocities.

Streamtubes: In 3-D flows the equivalent is a streamtube, which is a closed surface made up of streamlines,
as shown in Figure 3-2. There is no flow through a streamtube surface, hence the mass rate of flow through the
streamtube is constant at all sections.

Pathlines: a pathline is the path followed by an individual particle, which is a more Lagrangian concept. For
steady flow streamlines and pathlines coincide.

Streaklines: a streakline is a line joining the positions of all particles which have passed through a certain
point. They also coincide with streamlines and pathlines for steady flow.

3.2 Flux of volume, mass, momentum and energy across a surface

It is necessary for us to be able to calculate the total quantity of fluid and integral quantities such as mass, mo-
mentum, and energy flowing across an arbitrary surface in space, which we will then apply to the rather more
simple case of control surfaces. Consider an element of an arbitrary surface shown in Figure 3-3 through which
fluid flows at velocity u. The velocity component perpendicular to the surface is |u| cos  = u · n̂. In a time 

the volume of fluid which passes across the surface is u · n̂  , or, the rate of volume transport is u · n̂ .
Other quantities easily follow from this: multiplying by density  gives the rate of mass transport, multiplying by
velocity u gives the rate of transport of momentum due to fluid inertia (there is another contribution due to pressure
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Figure 3-2. Streamtube with velocity vectors tangential to the component streamlines and greater where velocity is greatest.

ˆ cos  u n u 

n̂

 1 

u

dA

Figure 3-3. Element of surface  with local velocity vector u showing how the velocity component normal to the surface is
u · n̂.

for total momentum), and if  is the energy per unit mass, multiplying by  gives the rate of energy transport across
the element. By integrating over the whole surface , not necessarily closed, gives the transport of each of the
quantities, so that we can write

Rate of

⎧⎪⎪⎨⎪⎪⎩
volume
mass

inertial momentum
energy

transport across surface  =
Z


⎡⎢⎢⎣
1



u



⎤⎥⎥⎦ u · n̂  (3.3)

n̂

nu ˆu

Figure 3-4. Pipe flow, showing a transverse section such that u and n̂ are parallel. Note that the magnitude of the velocity
varies over the section.

Note that as u · n̂ is a scalar there is no problem in multiplying this simply by either a vector or a scalar. In
hydraulic practice such integrals are usually evaluated more easily. For example, across a pipe or channel which is
locally straight, to calculate the rates of transport we choose a surface perpendicular to the flow, as in Figure 3-4,
as is described below.

Flux across solid boundaries: There can be no velocity component normal to a solid boundary, such that
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every solid boundary satisfies the boundary condition

u · n̂ = 0 (3.4)

and so from equation (3.3) there can be no volume, mass, momentum, or energy transfer across solid boundaries.

3.3 Control volume, control surface

1

2
1U

2U

3

3U

Figure 3-5. Typical control volume for a problem where one pipe joins another.

A control volume refers to a fixed region in space through which fluid flows, forming an open system. The
boundary of this system is its control surface. A typical control surface is shown in Figure 3-5. The control
volume for a particular problem is chosen for reasons of convenience. The control surface will usually follow solid
boundaries where these are present and will not cut through solid boundaries, as sometimes we have to calculate
all the forces on a control surface, which is difficult to do with solid boundaries. Where the control surface cuts
the flow direction it will usually be chosen so as to do so at right angles. Problems where control surfaces are most
useful are those where the fluid enters or leaves via pipes or channels whose cross-sectional area is relatively small,
which fortunately, is usually the case. The reasons for this will be made obvious below.

4. Conservation of mass – the continuity equation

Now we consider successively conservation of mass, momentum, and energy, for steady flows, although the ef-
fects of turbulence will be incorporated. Each conservation principle helps us to solve a variety of problems in
hydromechanics.

For steady flow, the mass conservation equation for a fluid within a control surface (CS) can be writtenZ
CS

u · n̂  = 0 (4.1)

such that the integral over the control surface of the mass rate of flow is zero, so that matter does not accumulate
within the control volume. This is the mass conservation equation. Equation (3.4) states that u · n̂ = 0 on solid
boundaries, and so for practical problems we haveZ

Flow boundaries

u · n̂  = 0 (4.2)

where we only have to consider those parts of the control surface through which fluid flows. In most hydraulics
the density of water varies very little and so  can be assumed to be a constant, so that it can be taken outside the
integral sign, and as it is a common factor, it can be neglected altogether.

If the flow through each flow boundary cuts the boundary at right angles, we can write the velocity as u = ± n̂,
such that u · n̂ = ±, where the plus/minus sign is taken when the flow leaves/enters the control volume. Then
across any section of area  we have the contribution

R

u · n̂  = ±R


 , which is ±, the volume flow rate

or discharge across the section. Sometimes it is convenient to express this in terms of  , the mean velocity, such
that

Rate of volume transport across surface =
Z


  =  = 
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The mass conservation equation now becomes, for a control surface through which an incompressible fluid crosses
each boundary at right angles,

±1 ±2 ±    = ±11 ± 22 ±    = 0 (4.3)

which is the continuity equation, where the sign in each case is chosen according as to whether the velocity or
discharge is assumed to be leaving or entering the control volume. For the velocities as shown in Figure 3-5, this
would become

3 −1 −2 = 33 − 11 − 22 = 0

Example 4.1 Fluid flows down a circular pipe of diameter 1 at speed 1. It passes through a contraction to a
smaller diameter 2, as shown in Figure 4-1. What is the mean velocity in the second pipe?

1

2

  

2D1U 2U1D

Figure 4-1. Control volume for example

Note that the control surface follows the solid boundaries or crosses the flow direction at right-angles. We have the
convention that flows out of the control volume are positive and those in are negative, hence

−11 + 22 = 0

−1
4
2
1 + 2



4
2
2 = 0

Hence 2 = 1

µ
1

2

¶2


5. Conservation of momentum and forces on bodies

Formulation: Newton’s second law states that the net rate of change of momentum is equal to the force
applied. In equation (3.3) we obtained

Momentum transport across a surface =
Z


uu · n̂  (5.1)

hence for a closed control surface CS we have to add all such contributions, so that

Net rate of change of momentum transport across control surface =
Z
CS

uu · n̂ 

There are two main contributions to the force applied. One is due to surface forces, the pressure  over the surface.
On an element of the control surface with area  and outwardly-directed normal n̂ the pressure force on the fluid
in the control surface has a magnitude of   (simply pressure multiplied by area) and a direction −n̂, because
the pressure acts normal to the surface and the direction of the force on the fluid is directed inwards to the control
volume.

The other contribution is the sum of all the body forces, which will be usually due to gravity. We let these
be denoted by Fbody. In many problems the body force is relatively unimportant. Equating the rate of change
of momentum to the applied forces and taking the pressure force over to the other side we obtain the integral
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momentum theorem for steady flow Z
CS

uu · n̂ +
Z
CS

 n̂  = Fbody. (5.2)

This form enables us to solve a number of problems yielding the force of fluid on objects and structures .Now the
integrals in equation (5.2) will be separated into those over surfaces through which fluid flows and solid surfaces:

X
Fluid

surfaces

⎛⎝Z


(uu · n̂+ n̂) 
⎞⎠+ X

Solid
surfaces

⎛⎝Z


uu · n̂ +
Z


 n̂ 

⎞⎠ = Fbody

However, as u · n̂ = 0 on all solid surfaces, there are no contributions. Also on the solid surfaces, unless we know
all details of the flow field, we do not know the pressure . However the sum of all those contributions is the
total force P of the fluid on the surrounding structure. Hence we have the theorem in a more practical form for
calculating the force on objects:

Total force on solid surfaces = P = −
X
Fluid

surfaces

⎛⎜⎜⎜⎜⎜⎝
Z


(uu · n̂+ n̂) 
| {z }

Momentum flux

⎞⎟⎟⎟⎟⎟⎠+Fbody (5.3)

Note the use of the term momentum flux for the integral shown – it includes contributions from the inertial momen-
tum flux and from pressure.

2j 

1j 

3j 

4j 

Figure 5-1. Control surface with fluid which is entering or leaving everywhere crossing the control surface (long dashes) at
right angles, but where velocity may vary across the element, as shown with short dashes.

Inertial momentum flux: Here we evaluate the integral describing the transport of momentum by fluid
velocity. In many situations we can choose the control surface such that on each part where the fluid crosses it,
the local surface element is planar, and the velocity crosses it at right angles, as shown in Figure 5-1. We write
for one control surface element, denoted by , u = ±n̂ where  is the fluid speed, whose magnitude might
vary over that part of the control surface through which it passes, but whose direction is perpendicular either in the
direction of the unit normal or opposite to it. Hence, for a particular element ,Z



u u ·n̂  =
Z


 (±n̂) (±)  = +n̂ 
Z


2  (5.4)

where, as (±)× (±) is always positive, the surprising result has been obtained that the contribution to momentum
flux is always in the direction of the outwardly-directed normal, whether the fluid is entering or leaving the control
volume. Also we have assumed that the area  is planar such that n̂ is constant, so that we have been able to
take the n̂ outside the integral sign.

Approximation of the integral allowing for turbulence and boundary layers: Although it has not
been written explicitly, it is understood that equation (5.4) is evaluated in a time mean sense. In equation (3.2)
we saw that if a flow is turbulent, then 2 = ̄2 + 02, such that the time mean of the square of the velocity is
greater than the square of the mean velocity. In this way, we should include the effects of turbulence in the inertial
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momentum flux by writing the integral on the right of equation (5.4) asZ


2  =

Z


³
̄2 + 02

´
 (5.5)

Usually we do not know the nature of the turbulence structure, or even the actual velocity distribution across the
flow, so that we approximate this in a simple sense by recognising that the time mean velocity at any point and the
magnitude of the turbulent fluctuations are all of the scale of the mean velocity in the flow in a time and spatial
mean sense, ̄ =  , such that we write for the integral in space of the time mean of the squared velocities:Z



2  =

Z


³
̄2 + 02

´
 ≈ ̄

2
  = 

µ




¶2
 = 

2



 (e23)

The coefficient  is called a Boussinesq7 coefficient, who introduced it to allow for the spatial variation of velocity.
Allowing for the effects of time variation, turbulence, has been noted recently (Fenton 2005).

The coefficients  have typical values of 12. Almost all, if not all, textbooks introduce this quantity for open
channel flow (without turbulence) but then assume it is equal to 1. Surprisingly, for pipe flow it seems not to have
been used at all. In this course we consider it important and will include it.

We are left with the result that over the surface  the contribution to momentum flux due to fluid velocity is
̄

2
 n̂ , where  is the Boussinesq coefficient.

Momentum flux due to pressure: The contribution due to pressure at each element in equation (5.3)
is
R

 n̂ . In most problems where simple momentum considerations are used, the pressure variation across

a section is not complicated. To evaluate the term a hydrostatic pressure distribution could be assumed so that
we can replace the integral by ̄  n̂ where ̄ is the mean pressure at that section, obtained by assuming a
hydrostatic pressure distribution, or as the relative size of the section is usually not large, effects of gravity are
ignored altogether and we just assume the pressure is constant.

Combining: Collecting terms due to velocity and pressure and summing over all such surfaces we have a
simple approximation to equation (5.3) above:

P =
X


¡
̄

2
 + ̄

¢
 (−n̂) +Fbody in terms of velocity, (5.6a)

P =
X


Ã


2



+ ̄

!
(−n̂) +Fbody in terms of discharge. (5.6b)

It is a simple and surprising result that all contributions to P from the fluid are in the opposite direction to the unit
normal vector. That is, all contributions are in the direction given by −n̂ , whether the flow is entering or leaving
the control volume, and that is also the direction of pressure contributions. Students should remember this when
reading other textbooks, where this simplifying result has not been used.

Example 5.1 Consider a jet of water of area 1 and mean velocity 1 directed horizontally at a vertical plate. It
is assumed that the velocities are so great that the effects of gravity are small and can be neglected. Draw a control
surface and calculate the force on the plate, assuming that the fluid after impact travels parallel to the plate.

7 J. J. Boussinesq (1842-1929) was a French academic engineer who studied many problems of flows and
waves allowing for variations of physical quantities across the section.
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Jet of water striking a plate and being diverted along the plate

After impact water travels parallel to the plate. Consider the figure. On section 1, n̂ = −i, on surface 2, n̂ = j,
surface 3, n̂ = −j, and so those sections play no role in horizontal momentum and force. The force on the plate is
P =  i. There are no contributions to the horizontal (i) momentum flux on the surfaces 2 and 3, and as the whole
system can be assumed to be at constant pressure  (except on the plate itself), substituting into the momentum
equation (5.6a) gives

 i = 1
2
11 (− (−i)) + 0i, giving  = +1

2
11

Example 5.2 Repeat, but where after impact, water is diverted back in the other directionNow consider Figure

P
U1

ap 1

 3

 2 

i

j U3

U2

ap

Figure 5-2. Case of jet being diverted back from whence it came

5-2. The crucial point is that while at 1 n̂1 = −i as before, but at 2 and 3, now we have also n̂2 = n̂3 = −i.
Substituting into the momentum equation (5.6a) gives

 i = 1
2
11 (− (−i)) + 2

2
22 (− (−i)) + 3

2
33 (− (−i)) + 0i

There is no energy loss in this example, and so by conservation of energy the fluid at 2 and 3 will also have a speed
of 1, 2 = 3 = 1. By mass conservation

−11 + 22 + 33 = 0 and 2 +3 = 1.

As the problem is symmetrical we can assume 2 = 3 = 12. We assume 2 = 3 = 1, and so we obtain

 i = 1
2
11 i+

1
2
1

2
11 i+

1
2
1

2
11 i
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giving

 = 21
2
11

twice the force in the first example (a), because the change of momentum has been twice that case. Not only was
the jet stilled in the i direction, but its momentum was completely reversed.

Now a rather more difficult example is presented.

Example 5.3 Calculation of force on a pipe bend

This is an important example, for it shows us the principles in a general sense. Fluid of density  and speed 

flows along a pipe of constant area  which has a bend such that the flow is deviated by an angle . Calculate
the force of the fluid on the bend. It can be assumed that there is little pressure loss in the bend, such that  is
constant throughout, and body forces can be ignored. The arrangement is shown on Figure 5-3.It is helpful to use

U
1

2

i

j

1n̂

2n̂



2n̂

cosi

sinj



Figure 5-3. Pipe bend
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Force of water on pipe

Figure 5-4. Direction of momentum fluxes and force for pipe bend.

unit vectors i and j as shown. At 1, n̂1 = −i, and u1 =  i, and the contribution to momentum flux in equation
(5.6a) is ¡

2 + 
¢
(−i)

From the construction in the subsidiary diagram, n̂2 = i cosθ + j sin . Hence, at 2 u2 =  n̂2 , and the momen-
tum flux is ¡

2 + 
¢
 n̂2 =

¡
2 + 

¢
 (i cos  + j sin ) 

Using equation (5.3) we have

P = − ¡−i ¡2 + 
¢
+

¡
2 + 

¢
(i cos  + j sin )

¢
+ 0|{z}

Body force



from which we obtain

P = 
¡
+ 2

¢
(i (1− cos )− j sin ) 

This answer is adequate, however further insight can be obtained from the trigonometric formulae 1 − cosθ =
2 sin2 (2) and sin  = 2 sin (2) cos (2), giving the solution

P = 2
¡
+ 2

¢
sin 

2

¡
i sin 

2
− j cos 

2

¢
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The magnitude of the force is

 = |P| = 2 ¡+ 2
¢
sin 

2


and the direction can be obtained a little more simply by considering the unit vector in the direction of the force:
i sin (2)− j cos (2). This can be written as

i cos
¡
−
2

¢
+ j sin

¡
−
2

¢


in the classical form i cos+ j sin, showing that the phase angle of the force is 2− 2. Consideration of the
angles involved in Figure 5-4 shows that this seems correct, that the direction of the force of the water is outwards,
and symmetric with respect to the inflow and outflow. Other noteworthy features of the solution are that forces
on the pipe bend exist even if there is no flow, because the direction of the force due to pressure at inlet is not the
same as at outlet. For design purposes the relative contributions of pressure and ”inertia” may be quite different.
Also in an unsteady state, when there might be pressure surges on the line (waterhammer) there might be large
forces. Considering the solution for different values of  (a) for  = 0, no deviation, there is no force, (b) the
maximum force is when  = when the water is turned around completely, and (c) if the water does a complete
loop,  = 2, the net force is zero.

6. Conservation of energy

6.1 The energy equation in integral form

The energy equation in integral form can be written for a control volume CV bounded by a control surface CS,
where there is no heat added or work done on the fluid inside the control volume:





Z
CV

 

| {z }
Rate of change of energy inside CV

+

Z
CS

un̂ 

| {z }
Flux of energy across CS

+

Z
CS

un̂ 

| {z }
Rate of work done by pressure

= 0 (6.1)

where  is time,  is density,  is an element of volume,  is the internal energy per unit volume of fluid, ignoring
nuclear, electrical, magnetic, surface tension, and intrinsic energy due to molecular spacing, leaving the sum of the
potential and kinetic energies such that the internal energy per unit mass is

 =  + 1
2

¡
2 + 2 + 2

¢
 (6.2)

where the velocity vector u = (  ) in a cartesian coordinate system, the co-ordinate  is vertically upwards,
 is pressure, n̂ is a unit vector with direction normal to and directed outwards from the control surface such that
un̂ is the component of velocity normal to the surface at any point, and  is the elemental area of the control
surface.

Here steady flow is considered, at least in a time-mean sense, so that the first term in equation (6.1) is zero. The
equation becomes, after dividing by density :Z

CS

µ



+  +

1

2

¡
2 + 2 + 2

¢¶
un̂  = 0 (6.3)

It is intended to consider problems such as flows in pipes and open channels where there are negligible distributed
energy contributions from lateral flows. It is only necessary to consider flow entering or leaving across finite parts
of the control surface, such as a section across a pipe or channel or in the side of the pipe or channel. To do this
there is the problem of integrating the contribution over a finite plane denoted by  which is also used as the
symbol for the cross-sectional area. As energy (a scalar) is being considered and not momentum (a vector), it is
not necessary to take particular orientations of parts of the control surface to be vertical, especially in the case of
pipes. To this end, when the integral is evaluated over a finite plane  will be taken to be the velocity along the
pipe or channel, and  and  to be perpendicular to that.

The contribution over a section of area  is then ±̇ , depending on whether the flow is leaving/entering the
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control volume, where

̇ =

Z


µ



+  +

1

2

¡
2 + 2 + 2

¢¶


Now we consider the individual contributions to this integral.

The pressure distribution in a pipe or open channel (river, canal, drain, etc.) is usually very close to hydrostatic
(streamlines are very close to all being parallel), so that  +  is constant over a section through which flow
passes, and we try to ensure that at all points at which flow crosses the control surface that this is true. Hence we
can take the first two terms of the integral outside the integral sign and use the result that

R

u · n̂  =  to give

̇ = (+ )+


2

Z


¡
2 + 2 + 2

¢
  (6.4)

where  and  are the pressure and elevation at any point on a particular section.

Now, in the same spirit as for momentum, when we introduced a coefficient  to allow for a non-constant velocity
distribution, we introduce a coefficient  such that it allows for the variation of the kinetic energy term across the
section Z



¡
2 + 2 + 2

¢
  = 3 = 

3

2
 (6.5)

Textbooks, strangely, take just the first component under the integral sign and writeZ


3 = 3

where  is the Coriolis8 coefficient, for which a typical value is  ≈ 125. We think that the more general
coefficient defined in equation (6.5) should be used, and it will be in this course. With equation (6.4) and this
definition of :

Rate of energy transport across th part of the control surface = ̇ = ( + ) + 


2

3

2


This can be written in a factorised form

̇ = |{z}
Mass rate of flow

×

⎛⎜⎜⎜⎝


+  +



2

2

2| {z }
Energy per unit mass

⎞⎟⎟⎟⎠ 

The energy per unit mass has units of J kg−1. It is common in civil and environmental engineering problems to
factor out gravitational acceleration and to write

̇ =  ×

⎛⎜⎜⎜⎝ 


+  +



2

2

2| {z }
Mean total head of the flow

⎞⎟⎟⎟⎠  (6.6)

where the quantity in the brackets has units of length, corresponding to elevation, and is termed the Mean total
head of the flow , the mean energy per unit mass divided by . The three components are:




= pressure head, the height of fluid corresponding to the pressure 

 = elevation, and


2

2

2
= kinetic energy head, the height which a flow of mean speed  could reach.

8 G. G. de Coriolis (1792-1843) was a French military and academic engineer, most famous for his contribution
to accelerations in rotating frames.
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This form is more convenient, because often in hydraulics elevations are more important and useful than actual
energies. For example, the height of a reservoir surface, or the height of a levee bank on a river might be known
and govern design calculations.

Now, evaluating the integral energy equation (6.3) using these approximations over each of the parts of the control
surface through which fluid flows, numbered 1, 2, 3, . . . gives an energy equation similar to equation (4.3) for the
mass conservation equation

±̇1 ± ̇2 ± ̇3 ±    = ±111 ± 222 ± 333 ±    = 0 (6.7)

where the positive/negative sign is taken for fluid leaving/entering the control volume. In almost all hydraulics
problems the density can be assumed to be constant, and so dividing through by the common density and gravity,
we have the

Energy conservation equation for a control surface

±11 ±22 ±33 ±    = 0 (6.8)

We will be considering this more later when we consider systems of pipes. For the moment, however, we will
consider a length of pipe or channel in which water enters at only one point and leaves at another.

6.2 Application to simple systems

For a length of pipe or channel where there are no other entry or exit points for fluid, using equation (6.8) and the
definition of head in equation (6.6):

−in

µ



+  +



2

2

2

¶
in

+out

µ



+  +



2

2

2

¶
out

= 0 (6.9)

and the continuity equation (4.3) gives −in + out = 0, so in = out = , so that the discharge is a common
factor in equation (6.9), and we can divide through by :µ




+  +



2

2

2

¶
in

=

µ



+  +



2

2

2

¶
out

 (6.10)

In this form the equation is very useful and we can solve a number of useful hydraulic problems. However, to
give more accurate practical results, an empirical allowance can be made for friction, and in many applications the
equation is used in the form

in = out +∆

where ∆ is a head loss. In many situations it is given as an empirical coefficient times the kinetic head, as will
be seen below.

6.2.1 Hydrostatic case

Notice that if there is no flow,  = 0, the energy equation becomesµ



+ 

¶
1

=

µ



+ 

¶
2



which is the Hydrostatic Pressure Equation.

6.2.2 A physical deduction

Note that as the quantity  +  + 22, where  = , is conserved, then for the same elevation, a region
of high/low velocity actually has a low/high pressure. This may come as a surprise, as we associate fast-flowing air
with larger pressures. In fact, what we feel in a strong wind as high pressure is actually caused by our body bringing
the wind to a low velocity locally. We will use this principle later to describe the Venturi meter for measuring flow
in pipes.

Example 6.1 A Siphon

Consider the tank shown. On the left side is a pipe with one end under the water and the other end below the level
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of the water surface. However the pipe is not full of water, and no flow can occur. The pipe on the right has been
filled with water (possibly by submerging it, closing an end, and quickly bringing that end out of the tank and
below the surface level). Flow is possible, even though part of the pipe is above the water surface. This is a siphon.

1

2

3

(a) Calculate the velocity of flow at 3 in terms of the elevations of points 1 and 3. Ignore friction losses.

(b) calculate the pressure at 2 in terms also of its elevation.

(a) We consider a control volume made up of the solid surfaces through which no flow can pass, an open face that
of the free surface in the tank, and the other open face that at 3. As the velocity with which the surface at 1 drops
we will ignore it. Equation (6.10) gives:µ




+  +



2

2

2

¶
1

=

µ



+  +



2

2

2

¶
3

0


+ 1 + 0 =

0


+ 3 +



2
23 

which gives

3 =

r
2


(1 − 3)

Note that the factor  does play a role. The velocity of flow is reduced by a factor 1
√
, which if  ≈ 13 is 088

(b) Now consider the control volume with the entry face across the pipe at 2. Equation (6.10) gives:µ



+  +



2

2

2

¶
2

=

µ



+  +



2

2

2

¶
3

2


+ 2 +



2
22 =

0


+ 3 +



2
23 

now solving the equation and using the fact that if the pipe has the same cross-sectional area, then mass conserva-
tion gives us 2 = 3,

2 =  (3 − 2) 

As 3 − 2 is negative, so is this pressure, relative to atmospheric. Flow is possible provided that point 2 is
not too high. If 2 drops to the vapour pressure of the water, then the water boils, vapour pockets develop in
it, and the flow will stop. At 20◦C the vapour pressure of water is 25 kPa, i.e. a gauge pressure of roughly
−100 + 25 = −975 kPa, corresponding to 3 − 2 = 2 = −975 × 103100098 ≈ −10m, or point
2 being about 10m above point 3. Of course, near 100◦C the vapour pressure of water is close to atmospheric
pressure, so that practically no elevation difference is possible without the water boiling.

Example 6.2 Application of the integral form of the energy equation – The Venturi9 meter

9 Giovanni Battista Venturi (1746-1822), Italian physicist.
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1

2

h

Consider the gradual constriction in the pipe shown, where there are pressure tapping points in the horizontal side
of the pipe at point 1 before the constriction and point 2 in the constriction. Generally (unless  were large) the
pressure at 2 is always less than that at 1 (higher velocities/lower pressures). Using a control volume crossing the
pipe at 1 and 2 and applying equation (6.10), the integral energy theorem for a single inlet and outlet,

1


+ 1 +



2

2

21
=

2


+ 2 +



2

2

22


Solving for  and using 1 = 2 +  gives

 =

vuut 2



1−2


+ 

1
2
2

− 1
2
1



Hence we see that by measuring the pressure change between 1 and 2 we can obtain an approximation to the
discharge. It is interesting that other presentations introduce a coefficient ( 1) in front to agree with experiment.
In our presentation, by including the parameter  ( 1) we may have gone some way to quantifying that.

6.3 Bernoulli’s equation along a streamline

Most presentations of the energy principle in hydraulics actually use Bernoulli’s10 equation, which is an energy-
like result obtained from non-trivial momentum considerations for flow through an infinitesimal streamtube (see,
for example, §3.7 ofWhite 2003). The result that  is constant along a streamline. This is not as useful as widely
believed, as in general this Bernoulli ”constant” varies across streamlines, a point that is not always emphasised.
Nevertheless, it is in the Bernoulli form that many tutorial and practical problems involving pipes and channels are
analysed, and almost all of them ignore the fact that the kinetic energy density varies across a flow. In this course
we consider primarily the energy equation in integral form, which allows for cross-stream variation.

There are, however, certain local problems where using Bernoulli’s equation is easier than the energy conservation
equation. It can be stated:

In steady, frictionless, incompressible flow, the head  =



+  +

 2

2
is constant along a streamline,

where  is the fluid speed such that  2 = 2 + 2 + 2. As it is written for frictionless flow along a streamline
only, Bernoulli’s equation is often not particularly useful for hydraulic engineering, as in both pipes and open
channel flows we have to consider the situation where the energy per unit mass varies across the section. It does,
however, give simple answers to some simple problems. Nevertheless in many textbooks the application of energy
conservation is often described as being application of Bernoulli’s equation.

Example 6.3 The surface of a tank is  above a hole in the side. Calculate the velocity of flow through the hole.

10 Daniel Bernoulli (1700-1782) was a Swiss mathematician and hydraulician who came from a remarkable
family of mathematicians. He is given most credit for this theorem, but his father Johann was also involved.
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1

2

h
z 2

Datum

The situation is substantially friction-free. We apply Bernoulli’s theorem between two points on any streamline:

Point 1 which is on the surface, where the elevation relative to an arbitrary datum is 2 + , the pressure is
atmospheric, and where we ignore the small velocity at which the surface drops as water flows out, and

Point 2 just outside the hole, where the elevation is 2, the streamlines are parallel and the pressure is atmospheric,µ



+  +

 2

2

¶
1

=

µ



+  +

 2

2

¶
2




+ 2 +  +

02

2
=




+ 2 +

 2
2

2


from which 2 =
√
2 is quickly obtained. Note that this is the same velocity that a particle dropped from that

height would achieve. Also notice that the atmospheric pressure cancelled, so we may as well take it to be zero,
and the 2 cancelled, so that we may as well take the datum at one of the points considered.

Example 6.4 The Do-It-Yourself Velocity Meter

h

One simple way of measuring the flow velocity in a stream – or from a boat – is to put your finger in the water, and
estimate the height  to which the diverted water rises until it has a velocity close to zero. Applying Bernoulli’s
theorem along the streamline between a point on the surface of the water where the velocity to be measured is  ,
and the highest point to which the water rises, both of which are at atmospheric pressure, gives

0


+ 0 +

2

2
=
0


+  +

02

2


giving  =
√
2.

Example 6.5 – the simple Pitot11 tube: application of Bernoulli’s equation along a streamline

Consider an L-shaped tube open at both ends inserted into a flowing stream as shown, with one end level with a
point A at which we want to measure the velocity, which is at depth  below the free surface.

11 Henri de Pitot (1695-1771), French scientist, mathematician, and engineer.
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Note that the velocity in the stream varies with depth such that the flow is rotational, and we cannot apply
Bernoulli’s equation across the streamlines, however we can still apply it along any streamline, and here we apply
it along that which passes through A until it strikes the centre of the open tube, inside which the fluid is stationary.
The point S, where the fluid locally is brought to a stop, is called a stagnation point, and here the streamline divides
around the tube as shown, or more properly, the infinitesimal streamtube separates out into a wider one which
passes down the side of the tube.

The surface inside the tube rises to a height  above the free surface. Initially we need the pressure at A. Between
a point O on the surface above and A all streamlines are parallel, and hence the pressure distribution is hydrostatic:

A = 

Writing Bernoulli’s equation between A and the stagnation point S where the velocity is zero, and using the result
for A:

A


+ A +

 2
A

2
=

S


+ S +

 2
S

2




+ A +

2A
2

=
S


+ A +

02

2
(6.11)

Now, inside the tube, the hydrostatic pressure equation gives

S =  (+ ) 

and substituting into equation (6.11) gives

A =
p
2

expressed only in terms of the height of water above the free surface. For different points in the flow, A varies,
and of course so does . In practice, due to losses a coefficient  might be placed in front of the expression for
A, with   1. In aeronautics there are rather more sophisticated versions of this.

Note that the fluid at the surface striking the vertical part of the tube, will in general rise to a height corresponding
to the velocity at the surface. In general, as the velocity at O is greater than that at A, it will rise higher than the
level in the tube.

6.4 Crocco’s law – a generalisation of Bernoulli’s law

It is surprising that this law is not more widely known in hydraulic engineering, as it is a generalisation of
Bernoulli’s law which describes variation of head across streamlines. Firstly we have to introduce the concept
of the vorticity of a fluid at a point, which is the curl of the velocity:

ω = ∇× u (Definition of vorticity)

It is a very important quantity in fluid mechanics, which is proportional to the angular velocity (and angular
momentum) of the fluid at a point, as

ω = 2× angular velocity of fluid.
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In terms of velocity components (  ) in an (  ) co-ordinate system it is

ω =

¯̄̄̄
¯̄ i j k

  

  

¯̄̄̄
¯̄ = iµ − 



¶
+ j

µ



− 



¶
+ k

µ



− 



¶
 (6.12)

For the case of a planar flow, u =  i +  k, such that  = 0 and with no variation in the  direction,  ≡ 0,
equation (6.12) gives

ω = j

µ



− 



¶
 (6.13)

and is directed normal to the plane of flow. The right-hand-law applies, as with angular velocity, such that with a
clenched fist, the fingers give the sense of motion of fluid particles, the thumb gives the direction of the vector.

(a) (d)(c)(b) (e)
k, , 

i, , 

Figure 6-1. Effects of different combinations of velocity gradients on a fluid particle

We can obtain a physical feel for this quantity by considering an initially rectangular particle of fluid as shown in
Figure 6-1(a). If the horizontal velocity  increases with the vertical co-ordinate  then due to that effect alone, after
a short time the fluid element will be like in (b), where the left and right sides have rotated clockwise. However, if
the vertical velocity  increases with  then due to this effect alone, after a short time the fluid element will be as
in (c) where top and bottom have rotated anticlockwise. The combination of these two effects will be to give the
shape shown in (d), such that a fluid element deforms but its net or average rotation could be quite small or even
zero. This is borne out by equation (6.13), such that if  is positive and  is also positive, the combined
effect is to tend to cancel each other. If, on the other hand, the fluid element is rotating clockwise as if it were a
solid body, then  is positive but  is negative, such that the two combined as in (6.13) reinforce each
other, giving a result as in (e), and the vorticity will indeed be about twice the angular velocity of each component.
The clockwise rotation in this case is consistent with the direction of vorticity being into the plane.

j, , 

i, , 

k, , 

Figure 6-2. Uniform channel shear flow showing co-ordinates and effect of shear in causing rotation of fluid elements

Example 6.6 Examine the vorticity of a planar uniform channel flow where the velocity is  = () i, as
shown in the figure, showing how the velocity is zero on the bed, and increases away from the bed. The vorticity
is given by equation (6.13): ω = j  = j 0(), so that the magnitude of the vorticity is given by the velocity
gradient and its direction is perpendicular to the flow. In the figure, the sliding of layers of fluid over lower slower
layers, causing fluid elements to rotate clockwise from our viewpoint, is represented on the figure by cylinders of
fluid where the radius of the cylinder increases with increasing vorticity. This has no physical meaning, but is just
a graphical device to give an idea of the fact that as  0() is greatest near the bed, the vorticity is greatest there.

Crocco’s Law12: tells us how the head actually varies throughout a flow. For the same conditions as
Bernoulli’s law, steady, frictionless, incompressible but possibly rotational flow, the law is (see p160 of Batchelor

12 Luigi Crocco (1909-1986), Italian applied mathematician and aeronautical engineer. The law was discovered in 1936.
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1967)13:

∇ () = u×∇× u = u× ω (Crocco’s law)

showing that the vector gradient of energy per unit mass ( times Head) is equal to the cross product of velocity
and vorticity. If we take a scalar product with u (or with ω),

u ·∇ () = u · u× ω = 0

the right side is zero, as the scalar triple product there has two identical components, remembering that a scalar
triple product has the magnitude of the volume of the parallelepiped generated by its three component vectors, and
if any two are co-planar the volume is zero. Hence, as  is constant, we have

u ·∇ = 0

showing that the gradient of the head  is orthogonal to the velocity vector (and to the vorticity vector). That
is, in the direction of the velocity vector, along the streamline, by definition, the derivative of  is zero – even in
rotational flow – so that  is constant along a streamline. This is Bernoulli’s theorem.

Example 6.7 Examine Crocco’s Law for the case of the planar channel flow in Example 6.6.

Let the channel have a total depth . At any point of elevation  above the bed, the depth of fluid above the point
is  − . As the streamlines are all parallel, the pressure distribution in the flow will be the same as a hydrostatic
pressure distribution,  = (− ). Evaluating :

 =



+  +

 2

2

=
(− )


+  +

2()

2
= +

2()

2


and clearly the head varies across streamlines, giving,

∇ () = i ()


+ j
 ()


+k

 ()


= k() 0()

Now we evaluate u× ω:

u× ω = i()× j 0() = k() 0()
which is the same as∇ (), so that we have verified Crocco’s law in this special case.

6.5 Irrotational flow

When we study the dynamics of fluids we will see that if a fluid is not viscous, a so-called ideal fluid, then no
shear stresses can act on any fluid elements, no moments exist, and any fluid element retains its original (angular
momentum / angular velocity / vorticity). A very important case is that of fluid that starts with no vorticity, hence
at all times it has no vorticity, and the flow is irrotational, i.e. ω = ∇×u = 0. It is this model that lies at the heart
of the study of hydrodynamics (the mechanics of irrotational incompressible flows) and water waves in coastal and
ocean engineering, where the viscosity and vorticity are unimportant.

In irrotational flow ω = 0, and Crocco’s law gives ∇ = 0, that is  is constant throughout the fluid, and we
can apply Bernoulli’s law throughout the fluid. In the more general case of rotational flow, where  varies across
streamlines, Crocco’s law leads to u ·∇ = 0, such that  is constant along each streamline, and we can apply
Bernoulli’s law along each streamline.

An example of an application to irrotational flow is Example 6.3 above, where water which was still, and hence
irrotational, drained from a tank. We considered a single typical streamline, but we could have considered any
point on the surface and any point at the nozzle leading from the tank.

13 George K. Batchelor (1920-2000) was an Australian fluid dynamicist who was a professor of applied mathematics at
Cambridge University and for many years editor of the Journal of Fluid Mechanics. He worked in turbulence
and the physics of suspensions.
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6.6 Summary of applications of the energy equation

In these notes, the hierarchy of problems and methods to be used can be expressed:

Control volume has three or more
surfaces through which fluid passes

Eqn (6.8) ±11 ±22 ±33 ±    = 0 where  =

 +  + ()22

Control volume has two surfaces
through which fluid passes

Eqn (6.10) 1 = 2 +∆

A single streamline can be consid-
ered

Bernoulli’s law  =  +  +  22 is constant along the
streamline

Flow is irrotational (not studied in
this course)

Bernoulli’s law  =  +  +  22 is constant throughout
the flow

In other sources such as textbooks, these are presented in the reverse order, with little accent if any on the integral
form of the energy equation. In most cases, the application is referred to as ”Bernoulli’s equation”, even if it
is using the energy equation between two points separated by a complicated geometry such as the surface of a
reservoir and a garden tap. The use of  seems almost to be unknown.

7. Dimensional analysis and similarity

In hydraulics the four basic dimensions are mass M, length L, time T, and temperature Θ. Dimensional analysis
can be used to plan experiments and to present data compactly, but it can also be used in theoretical studies as well.
It is a method for reducing the number and complexity of variables which affect a physical problem. This can lead
to large savings in test programmes.

Dimensional analysis also helps thinking and planning for an experiment or theory. It suggests variables which
can be discarded, sometimes immediately, sometimes such that experiment shows them to be unimportant. It also
gives insight into the form of the physical relationship we are trying to study. Another benefit is that it provides
scaling laws, by which we can experiment on a model and scale the results up to prototype size.

7.1 Dimensional homogeneity

The principle of dimensional homogeneity is almost self-evident:

If an equation expresses a proper relationship between variables in a physical process it will be dimension-
ally homogeneous, i.e. each of its additive terms will have the same dimensions.

As an example consider Bernoulli’s equation:




+  +

 2

2
= Constant along a streamline

MLT-2/L2

ML−3LT−2
= LL

¡
LT−1

¢2
LT−2

= L.

The motive behind dimensional analysis is that any dimensionally homogeneous equation can be written in an
equivalent non-dimensional form which is more compact. For example we might write Bernoulli’s equation by
dividing through by a vertical length scale, such as the depth of a river :




+




+

 2

2
= Constant along a streamline,

and if we introduce dimensionless pressure ∗ = , dimensionless elevation ∗ = , and dimensionless
velocity ∗ = 

√
, then the equation becomes

∗ + ∗ + 1
2
 2
∗ = Constant.

7.2 Buckingham Π theorem

This theorem was proved by E. Buckingham in 1914, and states:
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In a physical problem involving  quantities in which there are  dimensions, the quantities can be
arranged into − dimensionless Π parameters, such that the problem can be expressed
 (Π1Π2    Π−) = 0, or as Π1 = 1 (Π2    Π−)  or Π2 = 2 (Π1    Π−)     

where (  ) indicates a functional relationship – different in each alternative. The dimensionless parameters are
expressed as productsΠ of various physical quantities. We select  physical quantities as repeating variables, and
express each of the − dimensionless parameters as a product of powers of these three and one of each of the
remaining − variables in turn, and solve for the powers such that each parameter is dimensionless. Often these
parameters appear as dimensionless values of each of those variables. In many cases the grouping of the quantities
is obvious by inspection, such as when two have the same dimension, such as length, and the ratio of these is the
Π parameter. It is essential that none of the repeating variables can be derived from the other repeating variables.

7.3 Useful points

1. If the problem involves a free surface, then gravity is usually very important and viscosity usually has a
negligible effect and may be neglected.

2. If the problem involves no free surface, then gravity is not relevant to anything but the pressure if the fluid is
incompressible.

3. If head is involved, use  times the head, which is the energy flux, more fundamental than head, for the
head depends on the local value of , for example.

Example 7.1 List the quantities governing the head loss in a pipe and arrange them in dimensionless groups so
that we obtain an understanding of what is important.

Of relevance are

1 Head loss∆ , appearing as the rate of energy loss ∆ ML−3LT−2L3T−1L=ML2T−3

2 Length of pipe  L
3 Flow rate  L3T−1

4 Pipe diameter  L
5 Roughness size on the pipe wall  L
6 Dynamic viscosity of the liquid  ML−1T−1

7 Density of the liquid  ML−3

.

We have M, L, and T in the variables, so that  = 3. We choose , , and  as our repeating variables, which
involve all 3 dimensions, and as we have  = 7 physical quantities we will have  −  = 4 dimensionless
variables, based on the dimensional quantities ∆ , , , and  in turn:

1. Π1 = 123∆  so that the dimensional equation is

M0L0T0 =
¡
L3T−1

¢1 L2
¡
ML−3

¢3 ML2T−3

and considering the exponent of each dimension in turn,

M : 0 = 1 + 3

L : 0 = 2 + 31 + 2 − 33
T : 0 = −3− 1

From this we have immediately 1 = −3, 3 = −1, and solving the remaining equation, 2 = 4. Hence we
have

Π1 =
∆4

3
=

∆4

2


2. Π2 = 123, and from this it is immediately obvious that we can only involve , such that 1 = 3 =

0, and 2 = −1 such that Π2 = .

3. Π3 = 123, and similarly Π3 =  and it is obvious that is the only arrangement.

4. Π4 = 123 so that the dimensional equation is

M0L0T0 =
¡
L3T−1

¢1 L2
¡
ML−3

¢3 ML−1T−1
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and considering the exponent of each dimension in turn,

M : 0 = 3 + 1

L : 0 = +31 + 2 − 33 − 1
T : 0 = −1 − 1

which we can easily solve to give 3 = −1, 1 = −1, and 2 = 1, and hence Π4 = −1−1

Summarising, we have

Π1 =
∆4

2
 Π2 =




 Π3 =




 Π4 =






and the problem can be written



µ
∆4

2













¶
= 0

or as the head loss is the main dependent variable, we express it in terms of the other quantities:

∆4

2
= 

µ












¶


Now, however, we use some physical intuition, that the amount of head loss ∆ is directly proportional to the
length of the pipe , so that we write

∆4

2
=




× 

µ








¶


Re-arranging, we have

∆


=

2

5


µ








¶
 (7.1)

It has been found experimentally that this is an excellent way of formulating the problem – that the fundamental
law for pipe friction, the Weisbach formula, is exactly of this form, essentially

∆ = 




2

2


where  is the mean velocity (proportional to 2), and  is a dimensionless friction coefficient, proportional
to the function  in equation (7.1), a function of the relative roughness  and the dimensionless viscosity in
the form . It will be seen below that this quantity occurs throughout fluid mechanics, usually written upside
down, as the Reynolds number.

Example 7.2 Repeat that example, but instead of rate of energy loss ∆ use simply head loss∆ .

Here we will not repeat the analysis, but only the results:

Π1 =
∆


 Π2 =




 Π3 =




 Π4 =






This is very different from the previous example – using the head loss directly, with its units of length, its corre-
sponding Π parameter has appeared simply as a geometric parameter. If we proceeded as before we would obtain,
cf. equation (7.1),

∆


= 

µ








¶


which completely misses the important part of the relationship in that earlier equation. This is powerful evidence
for the use of rate of energy loss or power dissipation rather than head loss. It is interesting that of the two usually-
reliable textbooks (White 2003, Streeter & Wylie 1981), neither mentions the importance of using energy rather
than head. *** Just check this in the 2003 edition. Streeter & Wylie (1981, p164) suggested adding  as a parameter
(which is also not at all obvious for pipeline problems), and obtained for a smooth pipe ( not included) a form
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equivalent to

∆


= 

µ
2

5





¶


thereby missing the insightful form of equation (7.1).

7.4 Named dimensionless parameters

Professor Irmay of the Technion in Israel gave a seminar in Sydney in about 1980 which the lecturer attended, in
which he said that ”all of the named dimensionless numbers are upside down – and most are also to the wrong
power”! We shall see that that is quite a fair statement.

7.4.1 Reynolds number

The number was first proposed by Reynolds in 1883.In any problem involving viscosity, with a discharge  and
length scale  such that there is a velocity scale  = 2, a dimensionless viscosity number appears as in the
preceding examples:




=




=






which is the ratio of viscosity to inertial forces. In most hydraulics literature this quantity is written upside down
and is called the Reynolds number:

 =





It would have been more satisfying if the number quantifying the relative importance of viscosity had been directly
proportional to viscosity! With the traditional definition, high Reynolds number flows are those which are large
and/or fast such that the effects of viscosity are small. In hydraulics problems, with, say, a typical length scale of
1m, a velocity scale of 1m s−1, and a typical value for water at 20◦ of  = 1 × 10−6m2 s−1, a typical value of
 = 106 is obtained. Flows which may be laminar for small Reynolds number become turbulent at a Reynolds
number of the order of 103, so it can be seen that nearly all flows in hydraulic engineering are turbulent, and the
effects of viscosity are not so important. However, we will see that, for example, the resistance coefficient for pipe
flows shows significant variation with Reynolds number in commonly-experienced conditions.

7.4.2 Froude14 number

The Froude number is the most important such number in free-surface flows, and is irrelevant if there is no free
surface. It is traditionally used in hydraulic engineering to express the relative importance of inertia and grav-
ity forces, and occurs throughout open channel hydraulics. The traditional definition for a flow of velocity  ,
gravitational acceleration  and depth  is

 =
√




This number usually does not appear in this form – see Professor Irmay’s quote above! If we consider an open
channel flow and we want to calculate the energy flux, then with an origin on the bottom of the channel, as the
depth is the only vertical scale we have,

̇ = 

µ
 +



2

2

2

¶


and non-dimensionalising by dividing through by ,

̇


= 1 +



2

2

2
= 1 +

2

2
= 1 +



2
 2

hence we see that the relative contribution of kinetic energy is  22. Even if we were to consider rather more
complicated problems such as the unsteady propagation of waves and floods, and to non-dimensionalise the equa-
tions, we would find that the Froude number itself never appeared, but always as F2 or F2, depending on

14 William Froude (1810-1879) (pronounced "Frood"), British naval architect who proposed similarity
rules for free-surface flows.
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whether energy or momentum considerations are being used.

Flows which are fast and shallow have large Froude numbers, and those which are slow and deep have small
Froude numbers. Generally F2 is an expression of the wave-making ability of a flow.

We could define an improved Froude number, improved = 2, which explicitly recognises (a) that 2
is more fundamental than 

√
, and (b) that it is the weighted value of 2 over the whole section, 2,

which better expresses the importance of dynamic contributions. However, we will use the traditional definition
 = 

√
. In the present course outside this section we have little need for it.

7.4.3 Other named numbers

These include the Euler number, a dimensionless pressure number; the Weber number, a dimensionless surface
tension number (upside down); Mach number – the ratio of the speed of a flow or aircraft to the speed of sound, a
compressibility parameter. They are not important in hydraulics.

7.5 Physical scale modelling for solving flow problems

Once an experimenter has selected variables and the dimensional analysis performed, he/she seeks to achieve
similarity between the model tested and the prototype to be designed. A formal statement is:

Flow conditions for a model test are completely similar if all relevant dimensionless parameters have the same
corresponding values for model and prototype.

7.5.1 Geometric similarity

A model and prototype are geometrically similar if and only if all body dimensions in all three co-ordinates have
the same linear scale ratio.

7.5.2 Kinematic similarity

This requires that the model and prototype have the same length-scale ratio and also the same time-scale ratio.
The result is that the velocity-scale ratio will be the same for both. Frictionless flows with a free surface, such as
in hydraulic models, are kinematically similar if their Froude numbers are equal, as Froude number contains only
length and time dimensions:

m = p or
m√
m

=
pp
p



Now, if the model scale is  = mp, the velocity scale is

m

p
=

√
mp
p

=
√


and the time scale is

m

p

=
mm

pp

=
√

=
√


Hence, if a water wave model or a river model has a length scale , the wave period, propagation speed, and particle
velocities are related by

√
.

7.5.3 Dynamic similarity

Dynamic similarity exists when model and prototype have the same length-scale ratio, time-scale ratio, and force-
scale ratio. Geometric similarity is necessary, then dynamic similarity exists, with kinematic similarity, if model
and prototype force and pressure coefficients are equal. For incompressible flow with no free surface it is enough
to have model and prototype Reynolds numbers equal; with a free surface the Froude number and if necessary the
Weber number are correspondingly equal.

Dynamic similarity is very hard to achieve because true equivalence of Reynolds and Froude numbers can only be
achieved by dramatic changes in fluid properties, whereas most model testing is done with air or water.
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Hydraulic model testing with a free surface: if we have obtained Froude similarity as above, then to
obtain dynamic similarity we must have

m = p or
mm

m

=
pp

p



hence we must have
m

p
=

mm

pp
= 
√
 = 32

If we use a 1 : 10 model scale, then we need to find a fluid with a viscosity 0132 = 0032 that of water. As the
viscosity of air is 15 times that of water, it is ruled out, and so are all other fluids. In practice, water is used for
model and prototype, and Reynolds number similarity is unavoidably violated. This is not so bad, as typical values
for model and prototype are large, and viscosity effects are relatively small.

There are worse problems in hydraulic models of natural flow systems such as rivers, harbours, and canals, where
they have large horizontal dimensions but small vertical dimensions. If we were to scale an estuary model by
1 : 1000 the model would be only a few millimetres deep and the Reynolds and Weber numbers would be seriously
in error. Hydraulic models usually overcome this by violating geometric similarity by distorting the vertical scale
by a factor of 10 or more. In such cases, as deeper channels flow more freely, the model bottom is usually
roughened more to correct for the geometric discrepancy. Another problem is when sediment transport is modelled,
when one cannot get particles small enough to model prototype sand particles for example. Nevertheless, in this
case some interesting corrections can be made by using lighter particles.

8. Flow in pipes

The main problem in studying flow in pipes is to obtain the relationship between flow rate and energy loss, so
that if frictional characteristics are known, then flow rates can be calculated, given the available head difference
between two points.

8.1 The resistance to flow

8.1.1 Weisbach’s equation

In Example 7.1 we used dimensional analysis to obtain the result (equation 7.1):

∆


=

2

5


µ








¶


for the head loss ∆ in a pipe of length  and diameter  with a flow rate , where the roughness size on the
pipe wall is , and the physical quantities , , and  are as usual. This is the basis for Weisbach15’s equation for
pipes, introduced in the 1840s, which states

∆ = 




2

2
 (8.1)

where  is the mean velocity, and  is a dimensionless friction coefficient, for which the symbol  or 4 is
sometimes used, which is a function of relative roughness  =  and pipe Reynolds number . The
equation is widely used to calculate friction in pipes, and was at the core of hydraulics research in the first half
of the 20th century. Often the equation is called the Darcy-Weisbach equation; some authors do not bother with a
name for the equation or for the coefficient . For pipes the gravitational acceleration  plays no role other than
that of multiplying∆ to give the energy loss per unit mass. The total power loss in the pipe is ∆ .

8.1.2 Experimental results

Nikuradse – uniform sand grains: The most important developments in the determination of the co-
efficient  were in the 1930s. Nikuradse16 measured  in his famous series of experiments on both smooth and

15 Julius Weisbach (1806-1871), German mathematician and hydraulician.
16 Johann Nikuradse (1894-1979), Georgian engineer who worked in Germany.
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pipes artificially-roughened with uniform sand grains. For fully-rough conditions he concluded that the friction
coefficient  was a function only of the relative roughness  = , where  is the grain diameter, as

1√

= 20 log10

37


 (8.2)

The coefficient 20 is usually written as 2, here it will be emphasised that it is experimentally-determined. At the
other extreme, for smooth boundaries, or flows of a small Reynolds number such that the viscous layer covers the
roughnesses, the Kármán-Prandtl law is

1√

= 20 log10

³

√

´
− 08 (8.3)

where  is the Reynolds number of the pipe flow,  = , where  is the kinematic coefficient of viscosity,
and where the numbers 20 and the 08 were experimentally obtained by Nikuradse. He subtracted the fully-rough
behaviour, equation (8.2), and plotted the quantity

 = 20 log10
37


− 1√


(8.4)

as ordinate, such that for fully rough conditions the points tend towards the value  = 0. For the abcissa the
logarithm of the grain/roughness Reynolds number

∗ =
∗


was used, where ∗ is the shear velocity ∗ =
p
0, in which 0 is the boundary shear stress. These are shown

on Figure 8-1. In the smooth wall limit and for flows of small Reynolds number such that the viscous boundary
layer effectively covers the roughnesses:

 = 10− 20 log10∗ (8.5)

such that when  is plotted against log10∗, as in Figure 8-1 the graph is a straight line of gradient −20. Niku-
radse found that for smooth conditions, his points fell close to this line.

The remarkable result can be seen that all results, smooth and rough, fall on a single curve, giving indeed a single
function for the friction factor  in terms of ∗ and ..
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Figure 8-1. Nikuradse’s results on (∗  ) axes.

Nikuradse had found that the experimental points for different values of relative roughness clustered along a single
curve, as shown in Figure 8-1, which showed a marked dip in the transition region between the two limits. He
had used uniform roughness elements composed of sand grains of the same diameter, such that there was very
little protuberance of any above the others. The hydraulic conditions on each grain were similar for each test,

65



A First Course in Hydraulics John D. Fenton

and so almost all grains made the transition from laminar to turbulent in the same range of conditions, and so the
transition range for the pipe as a whole was relatively limited. Rouse (1937) wrote an interesting article explaining
the developments in fluid mechanics of the twentieth century, some of which have been described above. As far as
Nikuradse’s results were concerned, he wrote:

It is to be noted that equation (8.2 in this work) may be expected to apply generally only in the event that
the roughness in question is geometrically similar to that of the sand coatings in Nikuradse’s investigation.
Any departure in the form of roughness will most certainly require different constants in this relationship,
and in some cases (waviness) even a different form of equation ... It is with the investigation of other
types of roughness in this systematic fashion that laboratories are now engaged , with the ultimate goal of
determining the proper functional relationship for major types of commercial pipe.

In fact, the most important such work is that of Colebrook and White (Colebrook & White 1937, Colebrook 1939),
which will now be described, and which has provided the basis for almost all pipe friction calculations.

Colebrook andWhite – commercial (variable) roughness: Of studies of pipes with variable roughness
for practical applications, the most comprehensive were those of Colebrook and White. In Colebrook & White
(1937) they considered pipes with non-uniform artificial roughness elements: ”six different types of roughness
were formed from various combinations of two sizes of sand grain, viz. 0035 cm diam. and 035 cm diam. ... The
whole surface was roughened for some of the experiments, while for others part of the surface was left smooth. The
fine grains lay in a very uniform manner just touching each other”. The large grains were arranged sparsely, in two
different configurations. They calculated the  the equivalent uniform sand size, from the friction coefficients for
fully rough cases. When the results were plotted, using  = , on the axes of figure 8-2 here, the results formed
a family of curves, all but one showing a dip, like the results of Nikuradse. As the distribution of roughness sizes
went from uniform, as Nikuradse, to a mixture of large and small grains, and ultimately to only large grains, each
curve of results showed less and less dip together with earlier deviation from the smooth law, so that the transition
region became wider and wider. Their case V, for widely-spaced large grains only, showed no dip. They quoted
results from tests on galvanised and wrought-iron pipes, which had variable roughness heights, and which showed
behaviour similar to their case V, where transition was gradual and ”in extreme cases so gradual that the whole
working range lies within the transition zone”.
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Figure 8-2. Nikuradse’s plot, to which results from Colebrook and White for two sand sizes
and other results for commercial roughness have been added, the latter showing no dip in the
transition zone.

Colebrook (1939) examined results from experiments on commercial pipes of variable roughness – galvanised,
tar-coated cast-iron and wrought-iron pipes, and plotted the results on a figure such as 8-2, as has been done here.
It can be seen that for each such commercial pipe with non-uniform roughness, there was no dip on the diagram,
and the transition region was very wide indeed. Colebrook then described how he and White obtained a bridging
function between equation (8.4) for small Reynolds number and  = 0 for large Reynolds numbers. For computing
head loss in turbulent pipe flow Colebrook and White’s formula is widely used, expressing the friction factor  as
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an implicitly-defined function of the pipe Reynolds number  =  and the relative roughness  = :

1√

= −2 log10

µ


37
+
251


√


¶
 (8.6)

It is a bridging equation, which goes from one correct limit to the other correct limit. There is nothing special about
its validity in the intermediate transition range, other than that it is not very far from the various experimental curves
shown. It has no other justification other than that it has the correct behaviour in the two limits. Colebrook did not
view the equation as an interpolating function and never expected much of it. He was more of an empirical frame
of mind than his successors, and he viewed the different results for the various pipes as being more important than
the single equation. In fact, in his conclusions, he stated:

The fact that there are considerable variations in the roughness and transition curves in each class of
pipe must not be considered a defect in the method of analysis. Such variations are to be expected, since
manufacturing conditions are not identical in different plants. For design purposes a series of transition
curves for each class is obviously impracticable, so mean curves corresponding to average conditions have
been determined.

Then Colebrook wrote

Where it is not possible to determine by experiment the transition curve for any particular type of pipe,
the theoretical transition curve (8.6) may be used with very little error provided that the roughness can be
determined, and this is not difficult since some reliable experimental data on a few pipes over at least a
small range of velocities is usually available.

In view of the results on the figure here, one might disagree with the ”very little error”. These warnings were
repeated by Montes (1998, p109 et seq.), who gave a scholarly discussion of the situation and stated, concerning
the equation:

(it) ... has no other validation than the comparison with data for a particular type of roughness.

His suggestions and word of warning seem not to have been adopted, at least by authors of textbooks. It provides
an approximate solution, which has been extensively used for 60 years. However, it is clear that its progenitors did
not believe that it was the complete answer to calculating friction coefficients, and assumed that engineers would
use experimental methods much more than they have.

8.1.3 Moody (1944) – a graphical presentation of the equation

Possibly the one development which most cemented the Colebrook and White equation into its place as the most
widely-used means of calculating friction was the work of Moody (1944) in which he provided a diagram (8-3)
here, on which he plotted the Colebrook and White equation (8.6), citing the equation and its originators almost
as an afterthought. The diagram showed a number of curves, each for a constant value of the relative roughness ,
with  as abcissa and  as ordinate.

The success of this was caused by the problem in a pre-computer age, that in practical problems, where  has to
be calculated for a given Reynolds number and relative roughness, it appears on both sides of the Colebrook and
White equation, and the problem becomes one of solving the equation as a nonlinear equation, using methods such
as Newton’s method, bisection, etc.

Many people seem to believe that the Moody diagram has almost magical properties. In fact, all it is is a plot of
solutions of the nonlinear transcendental Colebrook and White equation (8.6).

8.1.4 Explicit approximations for 

There have been several approximations to the equation, giving formulae for  explicitly. There were some early
expressions which were not particularly accurate, but in the years 1976-1983 there was a flurry of activity obtain-
ing more accurate approximations that appeared mainly in the chemical engineering literature. Haaland (1983),
obtained a relatively simple and useful expression

 =
1

182
log−210

µ³ 

37

´109
+
69



¶
 (8.7)

Haaland made the good point that Colebrook and White’s original expression was not exact, and so the level of
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Figure 8-3. The Moody diagram, showing graphically the solution of the Colebrook & White equation for  as a function of 
with a parameter the relative roughness  = .

accuracy of this expression is reasonable. It is accurate to 1% over a wide range of roughnesses and Reynolds
numbers. However, as shown above, the Colebrook and White equation is quite a rough approximation anyway. It
is surprising that the much simpler explicit equation (8.7) has not been used.

8.1.5 Actual physical roughnesses

Pipe Material  (mm)

Brass, copper, glass, Perspex 0.003

Plastic 0.03

Asbestos cement 0.03

Commercial steel or wrought iron 0.045

Galvanised iron 0.15

Cast iron 0.25

Concrete 0.3-3.0

Table 8-1. Typical absolute roughness values

8.2 Practical single pipeline design problems

Case Known To find

A Discharge  and diameter  known Head loss ∆

B Head loss ∆ and diameter  known Discharge 

C Head loss ∆ and discharge  known Diameter 

Table 8-2. Three cases of pipeline design problems
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Here we consider the three types of simple pipe problems, so-called because they are problems where pipe friction
is the only loss. Six variables are involved: , , ,∆, , and . In general the quantities which are known are:
length , the temperature and hence the viscosity , and  the roughness of the pipe material being considered.
the simple pipe problems may then be treated as three types, as shown in Table 8-2.We also have the Weisbach
equation (8.1) in terms of more practical quantities

∆ = 




2

2
= 

82

25
 (8.8)

A. Determining the head loss, given the pipe details and flow rate: If the pipe details are known,
then , , and  are known, and the friction factor  may be computed from Haaland’s approximation (8.7) to the
Colebrook-White equation, and the head loss simply calculated from equation (8.8).

B. Determining the flow rate, given the head gradient and pipe details: This has an explicit solution,
which is surprising, given how all the variables are implicitly related. It follows from the fact that the quantity

√
 occurs in one place, from which  cancels, leaving an explicit solution. Using equation (8.8) for ,


√
 =

p
23


where  = ∆, the energy gradient. (8.9)

and solving equation (8.8) for  and substituting into the Colebrook-White equation (8.6) gives:

 = −
r

 

2
52 log10

µ


37
+

251 

32
√
2  

¶
 (8.10)

which has been given by Swamee & Jain (1976, eq. (15)).

C. Determining the size of pipe required, given the flow, the head gradient and pipe roughness:
Rewriting equation (8.10) it can be expressed as a nonlinear transcendental equation, written in a form suitable for
an iterative solution:

 =

µ
−


r
2

 
log−110

µ


37
+

251 

32
√
2  

¶¶25
 (8.11)

such an expression has been given by Swamee & Jain (1976, eq. (11)). An initial value of  is assumed, substituted
on the right, and an updated value calculated, which in turn is substituted on the right, until the process converges.
Usually only two iterations are necessary.

D. A modern numerically-based approach: modern software, especially in the case of spreadsheets,
can be conveniently programmed to solve any of the above, with a minimum of programming and details. Some
of Microsoft Excel’s effectiveness for numerical computations comes from a module Solver. It was originally
designed for optimisation problems, where one has to find values of a number of different parameters such that
some quantity is minimised, usually the sum of errors of a number of equations. With this tool one can find such
optimal solutions, or solutions of one or many equations, even if they are nonlinear.

In the formulations of the present problems, one just has to take the Colebrook-White equation (8.6):

1√

+ 2 log10

µ


37
+
251


√


¶
= 0 (8.12)

and then with  = 4 and the Weisbach equation (8.8) written:

∆ − 
82

25
= 0 (8.13)

the system of equations (8.12) and (8.13) can be numerically solved for  and any other single unknown such as
∆ , , or  without going to the extent of writing the solutions as we did above.

8.3 Minor losses

Losses which occur in pipelines because of bends, elbows, joints, valves, etc. are called minor losses, although
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they are just as important as the friction losses we have considered. In almost all cases the minor loss is determined
by experiment. A significant exception is the head loss due to a sudden expansion which we will treat below. All
such losses are taken to be proportional to the square of the velocity and are expressed as a coefficient times the
kinetic head:

∆ = 
2

2
 (8.14)

8.3.1 Pipeline fittings

Values of  for various pipeline fittings are given in Table 8-3, taken from Streeter & Wylie (1981, p245).

Fitting 

Globe valve (fully open) 100

Angle valve (fully-open) 50

Swing check valve (fully open) 10

Gate valve (fully open) 02

Close return bend 22

Standard T 18

Standard elbow 09

Medium sweep elbow 08

Long sweep elbow 06

Table 8-3. Head-loss coefficients  for various fittings

Minor losses may be neglected when they comprise 5% or less of the head losses due to pipe friction. The friction
factor, at best, is known to about 5% error, and it is meaningless to try to specify great accuracy. In general, minor
losses may be ignored when there is a length of some 1000 diameters between each minor loss.

8.3.2 Losses due to sudden expansion in a pipe

1U 2U

1 2

Figure 8-4. Sudden expansion in a pipe

The energy and momentum equations can be used. Consider a control volume which cuts across the pipe at 1 and
2. The momentum equation is applied while assuming that the boundary shear will be small, and assuming that the
pressure on the faces at 1 are the same as in the flow, as the radial velocity components of velocity are not largeXZ



(u u · n̂+ n̂)  = 0

i

⎛⎝1(−1)1 − 1 2|{z}
Note

+ 2(+2)2 + 22

⎞⎠ = 0

The area 2 was noted as it is multiplied by 1, as it is the area of larger pipe, equal to the smaller pipe plus the
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expansion (see the figure).

Solving for 2 − 1:

2 − 1 = 21
1

2
− 22  (8.15)

The head loss∆ due to turbulent eddying in the separation zone will be finite. The energy equation gives

1


+ 

21
2

=
2


+ 

22
2
+∆

such that

∆ =
1


− 2


+ 

µ
21
2
− 22
2

¶


Substituting equation (8.15) gives

∆ = 
22

− 

21


1

2
+ 

µ
21
2
− 22
2

¶


and using mass conservation 11 = 22 to eliminate 2, we have

∆ = 
21


µ
1

2

¶2
− 

21


1

2
+ 

Ã
21
2
− 21
2

µ
1

2

¶2!

=
21
2
(2 −1)

2 + (− 2)1
22



and for simplicity we assume that  = , giving

∆ =


2
(1 − 2)

2
=

21
2

µ
1− 1

2

¶2
 (8.16)

This is an interesting result, for it shows how excess kinetic energy will be converted to heat, the amount depending
on the velocity difference. Also, if 1 ¿ 2 such as a pipe entering a tank, then all the kinetic energy will be
converted to heat. In the case of gradual expansions, losses are much less.

8.3.3 Sudden contraction

The head loss at the entrance to a pipeline from a tank or reservoir is usually taken as  = 05 if the opening
is square edged. For well-rounded entrances  = 001 to 005 and may usually be neglected. For re-entrant
openings, such as when the pipe extends into the tank beyond the wall,  = 1.

8.4 Pipeline systems

8.4.1 Introduction

One of the most common problems faced by an hydraulic engineer is the analysis and/or design of pipeline systems.
In this section we will bring together some sections considered above and apply them to practical problems. In
particular, Section 6, the energy equation; Section 8, flow in pipes; and Section 11, fluid machinery. Complex flow
problems will be investigated, including systems that incorporate different elements such as pumps and multiple
pipeline networks.

There are some warnings to make here:

• Some American books still use the Hazen-Williams equation for pipe friction. It was superseded in the 1930s
by the work of the German school.

• For the Weisbach friction factor American books use the symbol  . British books tend to use 4 instead. To
overcome the ambiguity, in this course we have used the European symbol  and Weisbach’s formula in the
form∆ =  × 22, with no factor of 4 in front of it.
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8.4.2 Summary of useful results from above for calculating pipe friction
Continuity equation: For a control surface, equation (4.3) is

±1 ±2 ±    = 0 (8.17)

where the  are the discharges crossing the control surface, where the positive/negative sign is taken for fluid
leaving/entering the control volume.

Integral energy theorem: The integral energy theorem (equation 6.8) can be written

±11 ±22 ±33 ±    = 0 (8.18)

where the  are the corresponding total head of the flow, the mean energy per unit mass divided by :

 =



+  +



2

2

2


Simple pipe or channel: For a length of pipe or channel where there are no other entry or exit points for fluid,
equation (6.10), explicitly including head loss∆, gives:µ




+  +



2

2

2

¶
in

=

µ



+  +



2

2

2

¶
out

+∆ (8.19)

Head loss formulae: Weisbach’s equation is

∆ = 




2

2
 (8.20)

where∆ is the head loss in a pipe of length  and diameter ,  is the mean velocity, and  is a dimensionless
friction coefficient. It can be re-written in terms of more practical quantities using equation (8.13), giving

 (∆) = ∆ − 
82

25
= 0 (8.21)

The value of  is given implicitly by either

(a) The Colebrook-White equation: re-written in the form of equation (8.12):

1 ( ) =
1√

+ 2 log10

µ


37
+
251

R
√


¶
= 0 (8.22)

where the relative roughness  = , and the pipe Reynolds numberR = 4, or explicitly by

(b) Haaland’s expression: equation (8.7):

 =
1

182
log−210

µ³ 

37

´109
+
69

R

¶


Table 8-4 shows typical physical roughnesses.

Pipe Material  (mm)

Brass, copper, glass, Perspex 0.003

Plastic 0.03

Asbestos cement 0.03

Commercial steel or wrought iron 0.045

Galvanised iron 0.15

Cast iron 0.25

Concrete 0.3-3.0

Table 8-4. Typical absolute roughness values

Minor losses: Losses which occur in pipelines because of bends, elbows, joints, valves, etc. were described in
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#8.3. All such losses are taken to be proportional to the square of the velocity and are expressed as a coefficient
times the kinetic head:

∆ = 
2

2
 (8.23)

Values of  for various pipeline fittings and situations are given in Table 8-5.

Fitting/Situation 

Globe valve (fully open) 10.0

Angle valve (fully-open) 5.0

Close return bend 2.2

Standard T 1.8

Elbows 0.6 – 0.9

Gate valve (fully open) 0.2

Expansion

1− 1

2

2
Sharp contraction 0.5

Re-entrant contraction 1.0

Rounded contraction 0.05 – 0.1

Table 8-5. Head-loss coefficients  for various fittings and expansions and contractions

8.5 Total head, piezometric head, and potential cavitation lines

8.5.1 General considerations

Consider the mean total head at a section across a pipe:

 =



+  +



2

2

2
 (8.24)

The pressure  and elevation  will usually vary linearly over the section, such that the piezometric head  =

 +  is a constant over the section, and hence so is  . This total head is usually known at control points such
as the surface of reservoirs. The amounts lost due to friction and local losses in the system can be calculated.

If  is the absolute vapour pressure of the water in the pipe, cavitation will not occur if the absolute pressure
+  > , where  is the atmospheric pressure. Hence, from equation (8.24), for no cavitation

+ 


=  −  +




− 

2

2

2
> 




giving the condition

 6  +∆ (8.25)

where∆ might be called the cavitation height

∆ =



− 


− 

2

2

2
 (8.26)

That is, as  is the elevation of any part of the cross-section, no part of the pipe can have an elevation larger than
the magnitude of the local head plus a distance ∆. The limiting condition is for the highest fluid in the pipe at
any section, which is just below the soffit (the top of the inside) of the pipeline, such that we can write

Cavitation will not occur at a section if the soffit of the pipe is lower
than a point ∆ above the local total head elevation.

Now consider the quantities which make up the cavitation height∆ in equation (8.26):

• Atmospheric pressure head  – typical atmospheric pressures are roughly 990 − 1010mbar, and the
density of fresh water is 1000 kgm−3 at 5◦ and 958 kgm−3 at 100◦, so that  will vary between 101

73



A First Course in Hydraulics John D. Fenton

and 108m. The standard atmosphere of 760mm of mercury with a value of 1034m of water could be
assumed without much error.

• Vapour pressure – this shows rather more variation, primarily with temperature. As shown in Figure 8-5 for
atmospheric temperatures it is always less than a metre, and for moderate temperatures could be ignored,
however as the temperature approaches 100◦C it approaches 1033m, and  −  goes to zero such that
boiling occurs at atmospheric pressure.
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Figure 8-5. Vapour pressure head and its variation with temperature

• Kinetic head – this varies from situation to situation and from pipe to pipe in the same network. For this to
be as much as 1m, the mean fluid velocity in the pipe would be roughly

p
2× 9812 ≈ 40m s−1, which

is large.

The manner in which a pipeline is examined for the possibility of cavitation is essentially to plot a graph of
 + ∆ (equation 8.25) against horizontal distance along the pipe. If the soffit of the pipe were found to pass
above that line, then the absolute pressure in the water would be equal to the vapour pressure there, and it would
start to cavitate and disrupt the flow. The calculation is usually done in three stages, giving three lines which are
significant to the problem:

Total head line or ”energy grade line”: First calculate the total head at points such as reservoirs from knowl-
edge of the elevation, then at other points from knowledge of both friction and local losses due to structures,
pumps, expansions or contractions. Plotting this line often reveals details of the flow, such as where energy
might be reduced due to turbulent mixing and losses destroying kinetic energy. After plotting the total head
points, the total head line can be plotted by connecting the known points with straight lines.

Piezometric head line or ”hydraulic grade line”: This is often calculated and plotted, which often helps un-
derstanding a problem, but it is not strictly necessary to do so to calculate  + ∆. The piezometric head
line joins a series of points showing the piezometric head for each point along a pipe, plotted against horizontal
distance. As can be obtained from equation (8.24), the piezometric head :

 =  − 

2

2

2


showing that it is simply plotted a vertical distance equal to the kinetic head 2×22 below the total head
line. The piezometric head line is parallel to the total head line for each pipe element.

Potential cavitation line: Equation (8.25) shows that for no cavitation,  6  + ∆, where  refers to the
soffit of the pipe. This condition can be written

 6  − 

2

2

2| {z }
Piezometric head

+
 − 

| {z }
Almost constant on any one day
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This shows that where points and joining lines are drawn, displaced vertically a distance ( − )  above the
piezometric head line, then if the soffit of the pipe ever passes above this ”potential cavitation line”, cavitation
will occur. The additive quantity is a function of atmospheric pressure and water temperature, but for most
hydraulic engineering problems varies little.

8.5.2 Entry and exit points

Entry point: Immediately the flow enters a pipe the total head reduces by an amount  22 (above we saw

2 2/ 2 /g Q A 

Piezometric head line

Total head line

2 2
entry / 2 /K g Q A

2 2/ 2 /g Q A 

(a) Entry to pipe (b) Exit from pipe to reservoir

Figure 8-6. Behaviour of total and piezometric head lines at entry and exit from pipe into a reservoir

that the head loss coefficient for a square-edged inlet was  ≈ 05). The pressure will further drop by an amount
22, as the kinetic contribution to the head has increased by this amount. This means that the local total head
line and piezometric head lines look as in 8-6(a).

Exit point: As the flow leaves the pipe and enters a much larger body of water such as a reservoir, all the
kinetic energy is destroyed. This can be explained by the theory above leading to equation (8.16) for the case
2 =∞ or 2 = 0, giving

∆ =
21
2



This means that the piezometric head becomes equal to the head in the reservoir at the exit, and the pressure is the
same just inside the pipe as at a point of the same elevation in the reservoir, as shown in Figure 8-6(b).

8.5.3 A typical problem

Figure 8-7 shows an example where a pipeline passes from one reservoir to another over a hill, and shows a
number of features of total and piezometric head lines. As it is drawn, cavitation will occur, and the actual pressure
distribution will be very different. Here, the example is included to demonstrate how one checks for potential
cavitation. In practice, if it were found to be likely, then a more complete analysis would be done, incorporating
its effects.

• Considering the flow just after the entrance to the pipe, the total head line immediately shows a slight drop be-
cause of the losses associated with the sudden contraction, something like 0.1 or 05 times 22, according
to equation (8.14) and Table 8-1.

• The piezometric line shows an even larger sudden drop because as the fluid has been accelerated into the pipe
and now has a finite velocity, the distance between the two curves 22 is finite.

• As velocity is constant along the pipe, so is the distance between the two curves.

• As the flow approaches the downstream reservoir, the piezometric head in the pipe will be the same as in the
reservoir, but the total head contains the kinetic component which is excess – the flow enters the reservoir
as a turbulent jet until all the kinetic head is destroyed, as shown in the figure, after which both total and
piezometric heads are now equal to the elevation of the still reservoir surface.

• The potential cavitation line can now be simply drawn as a line everywhere a constant distance ( − )  above
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H h

Total head line

 
 

2 2/ 2 /g Q A 

Cavitationwould occurhere

Piezometric head line

Potential cavitation line

( ) /a vp p g 

Figure 8-7. Pipeline between two reservoirs passing over a hill showing hydraulic lines and region of cavitation.

the piezometric head line.

• It can be seen that the soffit of the pipe passes above this line, and cavitation will occur wherever it is above.
The flow situation will, in fact change, in a manner to be described further below. For present purposes we
have shown that cavitation is a problem in this case.

Example 8.1 (Example #10.1 Streeter & Wylie 1981)

Consider the pipeline emerging from a tank, passing through a valve, and finally the flow emerges into the at-
mosphere via a nozzle. Determine the elevation of hydraulic and energy grade lines at points A-E. The energy loss
due to the nozzle is 01× 22. In this case we take a value of  = 13.

20
m

2/1K 10K
24m

02.0
36m

mm150D 75mm 
nozzle

Piezometric head line

Total head line

A B C D E

Figure 8-8. Tank, pipeline and nozzle, with total head and piezometric head lines

First we apply the integral energy equation for a control surface around all the sides of the tank, the pipe, and
across the nozzle. µ




+  +



2

2

2

¶
in

=

µ



+  +



2

2

2

¶
out

+∆

which gives

0 + 20 + 0 = 0 + 0 +


2

2³
 (2)

2
4
´2

| {z }
Note: Diameter of nozzle

+
2

2 (24)
2

⎛⎜⎜⎝ 1

2|{z}


+ 10|{z}


+
002× 60
015| {z }

Friction: 

⎞⎟⎟⎠

+01× 2

2 ×
³
 (2)

2
4
´

| {z }
2 diameter of nozzle

2
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20 =
2

2 (24)
2

¡
× 16 + 1

2
+ 10 + 8 + 01× 16¢

With  = 13, we obtain a discharge of  = 00547, while with  = 1,  = 00582 The difference of 6% seems
enough to warrant using the more realistic value. Hence, our basic quantity is

2

2
=

2

2 (24)
2
=

005472

2× 98× (01524)2
= 0489

to be used in local loss formulae, while the kinetic head term to be used is


2

2
= 13× 0489 = 0636

Now we apply the energy equation between the surface of the tank and just after A, and then between each of the
subsequent points:

 = 20− 05× 0489 = 1976  = 1976− 064 = 1912
 = 1976− 002×24

015
× 0489 = 1820  = 1820− 064 = 1756

 = 182− 10× 0489 = 1331  = 1331− 064 = 1267
 = 1331− 002×36

015
× 0489 = 1096  = 1096− 064 = 1032

 = 1096− 16× 01× 0489 = 1018  = 1018− 16× 064 = −006
The final value of the piezometric head at E should have been zero, but accumulated round-off error by working to
two places only, has caused the error. These results are plotted in Figure 8-9.

0

5

10

15

20
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 



Figure 8-9. Total and piezometric head lines for example

Example 8.2 Consider a single pipe of length  = 1000m connecting two reservoirs with a head difference
∆ = 10m. It has a diameter of  = 300mm, roughness height  = 03mm; it has a square-edged entry,
0 = 05, and with  = 13 in the pipe. Calculate the flow in the pipe.

0 +∆ + 0 = 0 + 0 + 0 +
2

2 (24)
2

µ
0 +




+ 

¶
We will solve the problem by iteration using Haaland’s approximation for , which is a weakly-varying function
of , so that the equation is an implicit equation for :

 =
24p

0 +  + 

p
2∆ (8.27)

and we will start with the fully-rough approximation for .

For  =  = 03300 = 0001,

 =
1

182
1³

log10

³¡
0001
37

¢109´´2 = 00196
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Hence from (8.27)

 =
 × 0324p

05 + 00196× 100003 + 13
√
2× 98× 10 = 0121m3 s−1

This is our first estimate. Here we calculate  as a function of :

 =



=




=

4


=

4

 × 03× 10−6 or
1


=
236× 10−7



and so from Haaland, equation (8.7)

 =
1

182
1³

log10

³¡
0001
37

¢109
+ 69

´´2 = 1

182
1³

log10

³¡
0001
37

¢109
+ 1 63×10−6



´´2 
and so, using  = 0121m3 s−1 we get  = 00202. Substituting again into (8.27)

 =
 × 0324p

05 + 00201× 100003 + 13
√
2× 98× 10 = 0119m3 s−1

And repeating, we get  = 00202, hence it has converged sufficiently. The discharge is 0119m3 s−1.

8.5.4 Compound pipe systems

Pipes in series: When two pipes of different sizes or roughnesses are so connected that fluid flows through

0                    1                2                3                       4                         5                6            7                 8

Figure 8-10. Compound pipe system – in series, joining two reservoirs

one pipe and then through the other. Consider Figure 8-10, where we apply the energy integral equation between
the surface of the two reservoirs:µ




+  +



2

2

2

¶
in

=

µ



+  +



2

2

2

¶
out

+∆

0 + 0 + 0 = 0 + 8 + 0 +1

221
2

+ 2
2

2

222
2

+   + 6
6

6

226
2

+ 
227
2

Hence we obtain

0 − 8 =
2

2

µ
1

21
+

222

22
+   +

666

26
+



27

¶
=

2

2

X
=1



2
 (8.28)

where for the friction loss in a length of pipe,  = , and usually, if the kinetic head is destroyed at the
end of the pipe,  = . The Colebrook-White equation

1√

+ 2 log10

µ


37
+
251

R
√


¶
= 0

shows us that  is an implicit function of relative roughness  =  of a pipe and the Reynolds number of the
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pipe flow in the form

1

R

=




=


4


Substituting gives

1√

+ 2 log10

µ


37
+
197



1√


¶
= 0 (8.29)

We now have a system of nonlinear equations to solve: equation (8.28) is an equation for  and all of the 
(and any  which depend on the Reynolds number), while for each pipe segment, equation (8.29) is a single
equation in the common  and a single . There are precisely as many equations as unknowns, and a solution
seems possible. Any one of a number of different methods such as Newton’s method for a system of equations,
or optimisation methods are possible, which might be quite complicated. In this case, however, the structure of
the system is simple, because in each of the Colebrook-White equations the term involving  is weakly varying,
which suggests using a direct iteration method.

As noted in Section 8.2, there are three types of practical pipeline design problems:

A. Determining the head loss, given the pipe details and flow rate: In this case it is possible to solve
the problem sequentially through the pipes, and to proceed by a process of direct iteration for the .

Example 8.3 Here we consider an example of a single pipe of length  = 1000m, with a diameter of  =

300mm, roughness height  = 03mm, and discharge  = 005m3 s−1; it has a square-edged entry, 0 = 1,
and with  = 13 in the pipe. We use the Colebrook-White equation in the form of a reworked version of equation
(8.29) so that we can use direct iteration to solve for a solution, starting with  = 002 as an initial estimate:

1√


= −2 log10
µ



37
+
197



1√


¶
= −2 log10

µ
0001

37
+
197× 1× 10−6 × 03

005
× 1√

002

¶
= 6902

= −2 log10
µ
0001

37
+
197× 1× 10−6 × 03

005
× 6902

¶
= 6907

Hence it has converged sufficiently in just two steps, giving  = 169072 = 00210. Now we determine the head
loss directly. We have an entry loss and an exit loss, as well as the frictional loss. As we have a single pipe we can
factor  out:

 =
2

22

µ
0 +




+ 

¶
=

0052

2× 98× ( × 0324)2
µ
05 +

00210× 1000
03

+ 13

¶
= 183m

B. Determining the flow rate, given the head gradient and pipe details: This requires a certain
amount of iterative solving, as we have seen in Example 8.3. An equation similar to (8.28) is written, and then as
many Colebrook-White equations as there are pipes, each of which is solved iteratively, the whole procedure being
iterated until converged.We will show an example here, and subsequently show how a numerical optimisation
approach enables a rather more automatic approach.

Example 8.4 (Example 10.4 of Streeter & Wylie 1981) We consider two pipelines, the first with 0 = 05,
1 = 300m, 1 = 600mm, 1 = 2mm. The second has 2 = 240m, 2 = 1000mm, 2 = 03mm,
 = 3× 10−6m2 s−1, and  = 6m. Use  = 1. Find the flow.

From the energy equation (8.28):

 =
2

2

⎛⎜⎜⎜⎝0

21
+

111

21
+

µ
1

1
− 1

2

¶2
| {z }
Expansion loss, Table 8-1

+
222

22
+



22

⎞⎟⎟⎟⎠ 
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and substituting numerical values

6 =
2

2

Ã
05

(4× 062)2
+

1 × 30006
(4× 062)2

+

µ
1

4× 062 −
1

4× 12
¶2

+
2 × 2401
(4× 12)2

+
1

(4× 12)2
!


from which we obtain

 =

√
6√

0663 27 + 319 11 + 19 8512
(8.30)

This is in a form ready for direct iteration. Now we use the Colebrook-White equation in the form,

 =
1

22
log−210

µ


37
+
197



1√


¶


from which we obtain

1 =
1

4
log−210

µ
2600

37
+
197× 3× 10−6 × 06



1√
1

¶
(8.31)

2 =
1

4
log−210

µ
031000

37
+
197× 3× 10−6 × 1



1√
2

¶
(8.32)

Now we evaluate the three equations (8.30)-(8.32) iteratively – this should be stable, as all the left sides are slowly
varying functions of all the variables. Initially 1 = 2 = 002, giving the sequence of results

Iteration  1 2
0 − 002 002

1 08979 00272 00165

2 07878 00272 00168

3 07880

The process has converged quickly. This could be programmed on a spreadsheet, however it is simpler to use the
automatic facility in Microsoft Excel which will be described below. Not every variable in every equation is as
dominant as they were here.

C. Determining the size of pipe required, given the flow, the head gradient and pipe roughness:
The diameter  of the pipe is embedded deeply in the equations – a more general technique than iteration is

required.

A numerically-based approach: Modern software, especially in the case of spreadsheets, can be conve-
niently programmed to solve any of the above, with a minimum of programming and details. Some of Microsoft
Excel’s effectiveness for numerical computations comes from a module Solver. It was originally designed for op-
timisation problems, where one has to find values of a number of different parameters such that some quantity is
minimised, usually the sum of errors of a number of equations. With this tool one can find such optimal solutions,
or solutions of one or many equations, even if they are nonlinear.

Let our system of equations be f(x) = 0, where f and x are vectors such that

f(x) = [(   = 1     ) = 0  = 1     ] 

namely we have a system of  equations  in  unknowns  . If the equations are linear, a number of linear
algebra methods such as matrix inversion, etc. are possible. In the more general case, if the equations are nonlinear,
then nonlinear optimisation methods are suggested. In this process, , the sum of the squares of the errors for all
the equations are evaluated:

 =

X
=1

2 ()

and the values of the  found such that  will be a minimum. If  =  it should be possible to find a solution
such that  = 0 and the equations are solved. If there are fewer variables than equations,    , then it will not
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be possible to solve the equations, but minimising  produces a useful solution anyway. This is particularly so in
the case of finding approximating functions.

Initial estimate

 )0(
2

)0(
1 , xx

Initial search direction Minimum on search

 )1(
2

)1(
1 , xx

Second search direction

Minimum desired

1x

2x
 21, xx

Figure 8-11. Representation of typical search method for the minimum of a function of two variables

In the formulations of the present problems, we have to write all the equations with all terms taken over to one side,
and then to implement an optimisation procedure such as Solver. It does not matter how complicated the equations
are – it is just necessary to be able to evaluate them. Most methods for minimising  are gradient methods, such
that in the  -dimensional solution space, a direction is determined, and the minimum of the error function in that
direction found, at the minimum a new direction found, usually orthogonal to the previous one, and so on. For two
dimensions it can be shown as finding the minimum value of a surface, as in Figure 8-11; the three dimensional
case can be imagined as finding the hottest point in a room by successively travelling in a number of different
directions, finding the maximum in each, and then setting off at right angles, and so on. In either case the gradients
are not obtained analytically but numerically by evaluating the functions at different values.

This procedure usually means that we have simply to write down the equations, with initial trial values of the
unknowns, and call the optimising routine. It is very general and powerful, and we can usually write down the
equations in the simplest form, so that no algebraic manipulation is necessary or favourable. As an example, refer
to URL: http://johndfenton.com/Lectures/Hydraulics/Pipesolver.xls. This contains solutions to Examples 8.3 and
8.4 above. It can be seen that it works rather more simply, and no attention has to be paid to the solution process.

8.5.5 Parallel pipelines

If the flow is divided among two or more pipes and then is joined again, it is a parallel-pipe system. In pipes in
series the same fluid flows through all the pipes and the head losses are cumulative, but in parallel pipes the head
losses are the same in any of the lines and the discharges are cumulative.

Two types of problem occur:

• With the heads known at the ends of the pipes, find the discharge. This is just the separate solution of simple
pipe problems for discharge, since the head loss is known for each.

• With the discharge known, find the distribution of flow and the head loss. This is more complicated, as the
losses are nonlinear, and for different flows the fraction of flow in each pipe will change.

Consider the case where there are three pipes. The equations are, from (8.28) but assuming just frictional
resistance,

 = 1
1

1

21
221

= 2
2

2

22
222

= 3
3

3

23
223

 and  = 1 +2 +3,

and adding a Colebrook-White equation for each pipe gives us a total of seven equations in the seven un-
knowns , 1, 1, 2, 2, and 3, 3. They are nonlinear. It would seem simplest to use Solver again.

8.5.6 Branching pipelines

There are two different cases:
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The dividing flow type: this is the more usual case, where a pipeline bifurcates or enters a manifold,
from which flow leaves via a number of different exits. Examples include the bifurcating nature of a water supply
system and diffusers for disposal of sewage or heated effluents into large bodies of water. There is no reason to
expect unusual losses, and a simple energy balance equation can be written, including conventional coefficients
associated with bends etc. at the bifurcation.

The combining flow type: in this case where two or more pipes combine, it is possible that there will be
some finite energy losses associated with two different streams of different energies per unit mass and different
mass flow rates combining and leaving with the same energy per unit mass. This seems not to be treated in text
books, but it is possible that an analysis based on momentum might yield results.

 1 

 2 

 3  4 
1

2

Figure 8-12. Pipe junction, showing control surface dashed

Consider two pipes joining as in Figure 8-12, where a flow 1 and flow 2, with the assumed directions of flow
shown, join at 3, and it is assumed that in general some losses will occur before a station 4. The control surface is
shown by a dashed line. The mass conservation equation gives

−1 −2 +4 = 0 (8.33)

the momentum conservation equation gives, where it is assumed that at the entry to the control volume, the pressure
in both pipes is 3, and that frictional forces between 3 and 4 are negligible,

− cos 1
µ
3


1 +

1
2
1

1

¶
− cos 2

µ
3


2 +

2
2
2

2

¶
+

4


4 +

4 (1 +2)
2

4
= 0 (8.34)

where it is been assumed that due to turbulent mixing of the streams, that 4 = 1 and 4 = 1. The energy
conservation equation gives

−1
Ã
1


+

1
2

µ
1

1

¶2!
−2

Ã
2


+

2
2

µ
2

2

¶2!
+4

Ã
4


+
1

2

µ
4

4

¶2!
−4∆ = 0 (8.35)

where −∆ is the change in head between 3 and 4 such that∆ is a positive quantity. Eliminating 4 between
equations (8.34) and (8.35) gives

∆ =
3



µ
1− 1

4
cos 1 − 2

4
cos 2

¶
− 1

2
1

41
cos 1 − 2

2
2

42
cos 2

+
1

2

(1 +2)
2

24
+
1

2

1
3
1

(1 +2)
2
1

+
1

2

2
3
2

(1 +2)
2
2

 (8.36)

This has an important counterpart in the hydraulic jump, the turbulent phenomenon in open channels which takes a
shallow high-speed stream to a deep low-speed state with no momentum loss, but with intense turbulence causing
a loss in energy.

It is interesting that in this case, unlike losses due to fittings and bends, the pressure also plays a role.
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To obtain an idea of the magnitude of the losses, consider two pipes of the same area 1 = 2 carrying the same
discharge 1 = 2, which enter a larger pipe at angles of ±45◦. From the Weisbach equation it can be shown
that, for the same head gradient, that discharge is proportional to the pipe diameter to the power 52, hence we can
say that 41 = (41)

25
= 225, or that 41 = 245. As a first approximation we will set all the  and

 to 1, and so substituting into equation (8.36),

∆ =
3



³
1− 2× 2−45 2−12

´
− 2× 21

24521

1√
2
+
1

2

(21)
2

28521
+
2

2

21
221

= 0188
3


+ 0348

21
21

 (8.37)

Now we calculate the effective local loss coefficient junction such that ∆ = junction × 24 2, giving

junction =
2∆

(44)2
=

2∆

(211245)2
= 152× ∆

(11)2


and substituting back into (8.37)

junction = 152

µ
0188

3

21
+ 0348

¶
= 0284

3

21
+ 0527

hence for negligible pressure, we obtain a value of 053, typical of such local losses. However the pressure
contribution might be quite large. Let us take 3 ≈ 100m and 1 = 1ms

−1, giving

junction = 0284
98× 100

1
+ 0527 ≈ 280

which seems a remarkably high value, and may cause a re-evaluation of the role of junctions in a network.

8.5.7 Branching pipe systems

 1 

 2 

 3 

z 1

z 3

z 2

z J

Figure 8-13. Three interconnected reservoirs

A simple branching pipe system is shown in Figure 8-13, where the total energy lines – ignoring all local losses
– are shown dashed. In a typical problem, the flow through each pipe is wanted when the reservoir elevations are
given. The Darcy-Weisbach equation is written for each pipe, a pipe-friction law also, and continuity at the pipe
junction must be satisfied. Hence we have the equation for pipe , bringing terms to one side:

J −  + 




 ||
22

= 0 for  = 1 2 3 (8.38)

written, instead of 2 , with  || with the convention that  is positive if it is from  to J, in which case J  ,
and, of course, if  is negative, then J  . The  are given by the Haaland approximation , equation (8.7):

 =
1

182
log−210

µ³ 

37

´109
+
69

R

¶
 whereR =

4 ||


 for  = 1 2 3
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where we must take the Reynolds number as a positive quantity as shown, using ||. The remaining equation is
that of mass-conservation at the junction J:

1 +2 +3 = 0 (8.39)

Hence, if we know the reservoir elevations, the pipe diameters, roughnesses, and lengths, then we have four
nonlinear equations (8.38) and (8.39) in the four unknowns 1 23 and J. Solver can be used to solve this
system. However a useful system for hand solution which works is to assume the elevation of the total head line J

at the junction, and calculate the resistances from the Haaland equations, initially neglecting the Reynolds number
term, then from each Darcy-Weisbach equation compute the discharge, then by how much the mass-conservation
equation is violated at the junction, and the J adjusted there, and the process repeated. To do this we re-arrange
equation (8.38) in a form which also incorporates the direction of the flow:

 = 

r
2


×  − Jp

| − J|
 for  = 1 2 3 (8.40)

such that if J   then 1 is negative and flow is away from the junction.

Note that we have neglected all local losses.

Example 8.5 (Example 10.7 of Streeter & Wylie 1981): Find the discharges at 20◦C ( = 1 × 10−6m2 s−1)
for three reservoirs connected by pipes with the following data:

Pipe 1 Pipe 2 Pipe 3
Length  3000m 600m 1000m

Diameter  1m 045m 06m

Area  0785m2 0159m2 0283m2

Relative roughness  00002 0002 0001

Reservoir surface level  30m 18m 9m

Assume elevation of total energy line at J: 23m. Initially neglect Reynolds number terms in equations for :

1 ≈ 1
182

log−210
³¡

00002
37

¢109´
= 00137 1 = 0785

q
2×98×1

00137×3000 × 30−23√
30−23 = 1433

2 ≈ 1
182

log−210
³¡

0002
37

¢109´
= 00234 2 = 0159

q
2×98×045
00234×600 × 18−23√

|18−23| = −0282
3 ≈ 1

182
log−210

³¡
0001
37

¢109´
= 00196 3 = 0283

q
2×98×06
00196×1000 × 9−23√

|9−23| = −0819
1 +2 +3 = 1433− 0282− 0819 = 0332

Hence the inflow is greater than the outflow, so we will increase J to be 25m. Now we iterate again, however we
believe that the friction factors are already satisfactory.

1 =
1
182

log−210
³¡

00002
37

¢109
+ 6910

−6×1
4×1433

´
= 00142 1 = 0785

q
2×98×1

00142×3000
30−25√
|30−25| = 1190

2 =
1
182

log−210
³¡

0002
37

¢109
+ 6910

−6×045
4×0282

´
= 00236 2 = 0159

q
2×98×045
00236×600 × 18−25√

|18−25| = −0332
3 ≈ 1

182
log−210

³¡
0001
37

¢109
+ 6910

−6×06
4×082

´
= 00198 3 = 0283

q
2×98×06
00198×1000 × 9−25√

|9−25| = −0872
1 +2 +3 = 1190− 0332− 0872 = −0014

which is close enough to zero, and the process seems to have converged quickly, with a somewhat lucky guess as
to J.

All this is rather more simply done using Solver: URL: http://johndfenton.com/Lectures/Hydraulics/Pipesolver.xls.

8.5.8 Networks of pipes

Hardy-Cross method (1936): The following conditions must be satisfied in a network of pipes:

1. The algebraic sum of the head drops around each circuit must be zero.

2. The net flow at a junction must be zero.

3. The Weisbach equation must be satisfied in each pipe.
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To solve the resulting set of equations, methods of successive approximation have been traditionally used. The
Hardy Cross method is one in which flows are assumed for each pipe so that continuity is satisfied at every
junction. A correction to the flow in each circuit is then computed in turn and applied to bring the circuits into
closer balance.

This is suited to hand computation, but seems to require some arbitrariness and monitoring. The following method
seems better for computer applications.

An alternative approach: Consider the Weisbach equation for head loss which we will write in slightly
more general form, allowing local losses and for the direction of flow being in the direction of head loss:

∆ = − 1

22

µ



+
P



¶
 || 

where the negative sign and the modulus symbol has been introduced so that if  is positive, then∆ is negative,
head loss occurring in the direction of flow. We re-write this in terms of the flow from a node  to a node , for
which we use the symbol  :

 − = − 1

22

µ




+
P

Local losses



¶
 | | 

which we write as

 − = Ω
2
  | |  (8.41)

This notation is suggested by the electrical analogy, where there is a linear relationship

Potential difference = Resistance× Current.

In equation (8.41) the resistance-like quantity Ω is defined by

Ω2 =
1

22

µ




+
P

Local losses



¶


and solving the "quadratic" equation (8.41) for  , which is not so trivial because of the modulus sign, we obtain

 =
1

Ω
sign ( −)

q
| − | (8.42)

and sign( −) means take the sign of the head difference. In this way, if    , then  is positive, with
flow from  to , which is correct..

We can use the Colebrook-White equation or the Haaland approximation for , equation (8.7), for each pipe, here
modified slightly in terms of | |:

 =
1

182
log−210

µ³ 
37

´109
+
69

R

¶
 whereR =

4 | |


 (8.43)

and mass-conservation at the junction  : X


 = 0 (8.44)

where summation is over all the pipes meeting at  . As in both these equations the discharge can be expressed in
terms of the heads from equation (8.42), the resulting system of equations is in terms of the heads at the nodes and
the friction factors in each of the pipes. Excel Solver can be used to solve these nonlinear equations.

Hence, the suggested procedure is:

1. Write a mass-conservation equation (8.44) at each junction of the network,

2. Write a law for the friction parameter such as equation (8.43) for each pipe in the network,

3. Equations (8.42) can be substituted for every occurrence of  so that the equations are only in terms of the
unknown heads at the nodes and the unknown friction factors of the pipes, as well as the known characteristics
of pipes and fittings.
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4. Use a nonlinear equation solver such as Excel Solver to solve the equations.

Example 8.6 Consider the pipe network shown in Figure 8-14, where the friction factors are presumed known,
giving the Ω shown.Hence the equations we have are:

1Q

2.0Q 5.0Q

3.0Q

 4 
 3 

 2 
 1 

134 

4.123 

2.212 

4.214 
7.124 

Figure 8-14. Simple network

Junction 1 12 +14 − 1 = 0
Junction 2 −12 +24 +23 + 03 = 0

Junction 3 −23 +34 + 05 = 0

Junction 4 −34 −24 −14 + 02 = 0

where

12 =
1

22
sign (1 −2)

p
|1 −2| and so on.

Substituting these expressions we have 4 equations in the 4 unknowns 1    4. However, we believe that one
of the junction equations is redundant and that we are free to specify one value of  = 10 for example, leaving
three equations in three unknowns.

9. Discharge measurement in pipes

Pipeline flow can be measured in many ways. Selection of a particular installation depends upon specific local
situations. The accuracy of flow measurements in pipelines can be very high.

9.1 Differential head meters – Venturi, nozzle and orifice meters

This class of flowmeters includes venturi, nozzle, and orifice meters. These meters have a potential accuracy of
1%. They have no moving parts but use some form of constriction. Heads are measured upstream where the meter
is the size of the approach pipe and downstream where the area is reduced to a minimum. Energy relationships are
used to obtain the discharge in terms of the difference of head between the two locations. However in practice the
results are modified by the use of discharge coefficients so that the results agree more with experiment.

Venturi meters are one of the most accurate type of flow measuring device that can be used in a water supply
system. They contain no moving parts, require very little maintenance, and cause very little head loss. Venturi
meters are often used in the laboratory to calibrate other closed conduit flow measuring devices. The effective
discharge coefficient for venturi meters ranges from 0.9 to about unity. As venturi meters have smoothly varying
flow boundaries, they have been used for measuring sewage and flow carrying other materials.

9.1.1 Venturi meters

On page 53 we analysed a Venturi meter using the energy theorem, but without describing how the pressures were
to be measured. Consider the gradual constriction in the pipe in Figure 9-1, where there are pressure tapping points
in the pipe at point 1 before the constriction and point 2 in the constriction.

We use a control volume crossing the pipe at 1 and 2 and apply equation (6.10), the integral energy theorem for a
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 1 

 2 

 3 

 4 

d

Figure 9-1. Venturi meter, showing constriction, tapping points, and manometer

single inlet and outlet:

1


+ 1 +



2

2

21
=

2


+ 2 +



2

2

22


This can be written more simply in terms of piezometric heads 1 and 2:

1 +


2

2

21
= 2 +



2

2

22


and solved for :

 =

s
1



2 (1 − 2)

122 − 121
=

1√

12

s
2 (1 − 2)

21 −22
 (9.1)

It is interesting that it has been possible to express the discharge so simply in terms of the piezometric head
difference. Usual practice is to write this equation as

 = 12

s
2 (1 − 2)

21 −22
 (9.2)

where, it is said,  is a ”coefficient determined experimentally”, which ranges from 0.9 to about unity. Comparison
with our expression (9.1) shows that  = 1

√
, and so, if we assume a value of  = 13, we obtain  =

1
√
13 = 088, and so it is possible that our incorporation of  in these lectures has provided an explanation for

the values of , without having to invoke energy losses.

9.1.2 Nozzle Meters
 2  1 

Figure 9-2. Nozzle meter

In effect, the flow nozzle is a venturi meter that has been simplified and shortened by eliminating the gradual down-
stream expansion (Figure 9-2). The streamlined entrance of the nozzle causes a straight jet without contraction, so
its effective discharge coefficient is nearly the same as the venturi meter. Flow nozzles allow the jet to expand of
its own accord. This feature causes a greater amount of turbulent expansion head loss than the loss that occurs in
venturi meters, which suppress exit turbulence with a gradually expanding tube boundary.

The effective coefficient of discharge for flow nozzles in pipelines varies from 0.96 to 1.2 for turbulent flow and
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increases as the throat-to-pipe-diameter ratio increases.

Frequently, the upstream pressure connection is made through a hole in the wall of the conduit at a distance of
about one pipe diameter upstream from the starting point of the flare of the nozzle. Thus, the pressure is measured
before it curves to enter the nozzle, while the downstream pressure connection may be made through the pipe wall
just above the end of the nozzle tube.

9.1.3 Orifice Meter

 2  1 

Figure 9-3. Orifice meter

The most common differential-pressure type flowmeter used in pipelines is the sharp-edged orifice plate (Figure 9-
3). Applications with proper water quality, careful attention to installation detail, and proper operation techniques
make these flowmeters capable of producing accuracy to within 1%.

Advantages of the orifice plate are its simplicity and the ability to select a proper calibration on the basis of the
measurements of the geometry. Disadvantages of the orifice plate include long, straight pipe length requirements
and the limited practical discharge range ratio of about one to three for a single orifice hole size. However, the
location of the range can be shifted by using sets of plates for changing orifice hole sizes. This shift, in effect,
provides a range ratio increase. Calibrations based on tap locations relative to pipe diameter, rather than orifice
diameter, make this feasible because the same tap locations can be used for different orifice plate hole sizes.

It should be noted that the orifice plate installation in the Sexton Laboratory is not of this type, for the downstream
measurement point is considerably further downstream such that the jet will have diffused through the flow and
there will have been energy losses. In this case the coefficient  is purely empirically determined.

9.1.4 Measurement of piezometric head difference

For applications where continuous monitoring and control are necessary the pressure elevation heads will be mea-
sured and recorded digitally. However the U-tube manometer provides a simple way of doing this manually, as in
Figure 9-1 where a U-tube manometer measures an elevation difference of .

Consider the hydrostatic pressure equation




+  = Constant = 

hence we see that the hydrostatic pressure equation is simply a statement that in a fluid at rest, the piezometric head
 is constant. In the present context we can simply say that 1 = 4 and that 2 = 3. Hence the piezometric head
difference 1 − 2 in equations (9.1) and (9.2) is simply 4 − 3. It is this quantity that the manometer measures.
Now we can write for the quantity 1 − 2 that we need in equation (9.2):

1 − 2 = 4 − 3

=
4


+ 4 − 3


− 3

and we can obtain 4 − 3 by using the hydrostatic pressure equation in the manometric fluid where the density is
:

4


+ 4 =

3


+ 3 giving

4


− 3


=  (3 − 4) 

and substituting gives

1 − 2 = ( − 1) (3 − 4) = ( − 1) 
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Equation (9.2) becomes

 = 12

s
2 ( − 1) 
21 −22



and we see that the discharge is obtained simply by measuring the elevation difference across the manometer. It is
not surprising that the relative density appears as  − 1, as on one side of the manometer there is a fluid column
of relative density  and on the other side one of 1. It is convenient that the elevations of the tapping points are
unimportant – the only elevation to measure is  the height difference across the manometer.

9.2 Acoustic flow meters

Now we consider rather more modern technologies by considering non-mechanical, non-intrusive devices which
are capable of measuring discharge in open channels or pipes with considerable accuracy. It will be seen that in
practice this accuracy is seldom realised.

1. Transit-time acoustic flow meters

Array of four 
diagonal 
beams

One or two 
diagonal 
beams

Figure 9-4. Ultrasonic flow meters – one, or two crossed beams, or four or more beams.

Transit-time acoustic (ultrasonic) flowmeters are based on the principle that transit time of an acoustic signal
along a known path is altered by the fluid velocity. A high frequency acoustic signal sent upstream travels
slower than a signal sent downstream. By measuring the transit times of signals sent in both directions along a
diagonal path, the average path velocity can be calculated. Then the average axial velocity can be computed.

Manufacturers and users make claims for the accuracy (0.5-3%) of a multi-beam installation, but this is
exaggerated, as an inaccurate numerical integration method is used to incorporate the data from the beams
(Fenton 2002).

2. Doppler-type acoustic flow meter

Figure 9-5. Doppler-type acoustic flow meter showing beams reflected from individual particles.

The Doppler flowmeter measures the velocity of particles moving with the flowing fluid (Figure 9-5). Acoustic
signals of known frequency are transmitted, reflected from particles, and are picked up by a receiver. The
received signals are analysed for frequency shifts, and the resulting mean value of the frequency shifts is
supposed to be directly related to the mean velocity of the particles moving with the fluid. System electronics
are used to reject stray signals and correct for frequency changes caused by the pipe wall or transducer
protective material.

Doppler flowmeter performance is highly dependent on physical properties such as the liquid’s sonic conduc-
tivity, particle density, and flow profile. Likewise, non-uniformity of particle distribution in the pipe cross
section results in a computed mean velocity that is incorrectly weighted. Therefore, the meter accuracy is
sensitive to velocity profile variations and to distribution of acoustic reflectors in the measurement section.
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Unlike other acoustic flowmeters, Doppler meters are affected by changes in the liquid’s sonic velocity. As a
result, the meter is sensitive to changes in density and temperature.

These problems make Doppler flowmeters unsuitable for highly accurate measurements, however they are
widely used and believed in flow measurements in streams. They should not be.

3. Acoustic Doppler Current Profilers (ADCP)

Figure 9-6. Acoustic Doppler Current Profiler showing isovels, beams and backscattering particles.

These are a recent (1997) development, and take the previous Doppler method rather further. Figure 9-6
shows a typical profiler installation for measuring flow in a pipe. A transducer assembly is mounted on the
invert of a pipe or channel. Piezoelectric ceramics emit short pulses along narrow acoustic beams pointing
in different directions. Echoes of these pulses are backscattered from material suspended in the flow. As this
material has motion relative to the transducer, the echoes are Doppler shifted in frequency. Measurement of
this frequency shift enables the calculation of the flow speed.

The Profiler divides the return signal into discrete regular intervals which correspond to different depths in
the flow. Velocity is calculated from the frequency shift measured in each interval. The result is a profile, or
linear distribution of velocities, along the direction of the beam. Each of the small black circles in Figure 9-6
represent an individual velocity measurement in a small volume known as a cell.

Usually there are actually two beams for each of those shown – one pointing upstream and the other down-
stream. The data from one beam pair are averaged to generate one profile, and a beam pair on the opposite
side of the transducer assembly generates the other. It can be inferred from the diagram that the sampling does
not give a particularly good coverage of the whole flow. When operated as a vertical beam from a moving
boat, the results can be accurate, but for the installation shown we do not expect great accuracy.

9.3 Magnetic Flowmeters

The operation of magnetic flowmeters is based upon the principle that a voltage is induced in an electrical conductor
moving through a magnetic field. In the case of magnetic flowmeters, the conductor is the flowing water being
measured. For a given field strength, the magnitude of the induced voltage is proportional to the mean velocity of
the conductor, giving the discharge. This is actually a method which, unlike all the previous methods, automatically
integrates the velocity over the pipeline.

The meter consists of a nonmagnetic and nonelectrical conducting tube or pipe through which the water flows. Two
magnetic coils are used, one on each side of the pipe. Two electrodes in each side of the insulated pipe wall sense
the flow-induced voltage. The meter has electrical circuits to transform the induced voltage into a rate-of-flow
indication on a meter dial. The electrical sensing system and uniform flow-through passage allow the magnetic
flowmeter to measure flow in both directions.

A source of electrical power is needed to activate the magnetic field, and a transmitter is used to record or send
the rate-of-flow signals to desired stations. The water needs sufficient conductivity, but other properties such as
temperature, viscosity, density, or solid particles do not change calibration. However, dissolved chemicals can
deposit on the electrodes and cause accuracy errors. Some of these meters are provided with wipers or electrolytic
or ultrasonic electrode cleaners.

Head losses through the meter are negligible, and accuracy of measurement in the upper half of the meter’s rated
capability is usually good. Later model electromagnetic meters can have good accuracy (+/-1.0%) for a range of
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minimum to maximum discharge.

10. Pressure surges in pipes

10.1 Introduction

Surge tank

Valve at turbine

Figure 10-1. Reservoir, pipeline, surge tank, penstock and turbine valve system

Unsteady flow in pipelines when compressibility effects are not important are referred to as surge. When the flow
passage suddenly closes, partly or completely, the water decelerates and compressibility of the fluid and elasticity
of the pipe walls must be considered, this is called water hammer. As one means of eliminating water hammer,
the water may be allowed to surge into a tank as shown. The valve at the end of a pipeline may be controlled
by a turbine governor, and may quickly stop if the generator loses its load. To destroy all momentum in the long
pipe system quickly would require high pressure and a costly pipeline. With a surge tank as near the valve as
possible, although surge will occur between the reservoir and surge tank, development of high pressures in this
part is prevented. It would still be necessary to design the pipeline between surge tank and valve to withstand water
hammer.

Closed surge tanks which operate under air pressure are used in certain case, for example, after a reciprocating
pump, but are uneconomical for large pipelines.

Detailed analysis of surge tanks requires solution of the equation of motion and continuity for the liquid in the
pipeline, but in this course we will concentrate on water hammer, including compressibility of the liquid and
elasticity of the pipeline.

10.2 The phenomenon of water hammer

Water hammer may occur in a pipeline when there is a sudden retardation or acceleration of the flow, such as
the closing of a valve on the line. If the change is gradual, calculations may be carried out by surge methods,
considering the liquid incompressible and the pipeline rigid. Water hammer is produced by a sudden change in the
velocity of flow in a conduit, when the head on the upstream side of the valve is increased and causes a pulse of
high pressure to propagate upstream at the sonic wave speed . Examples include Sharp (1981, page 1):

• The stopping and starting of pumps

• The turning off of a tap at a wash basin

• The sudden flow demand of an automatic fire sprinkler system

• A resonance in a liquid supply line

• Mechanical failure of an item such as a valve – a casualty of age or wear from repeated use.

Water hammer is a wave motion which is very rapid – changes may propagate at 1200m s−1, while liquid velocities
are usually no greater than 6m s−1. When water hammer is produced it is transmitted to all parts of the connected
system, where it is modified by changes in geometry and the conduit properties and boundary conditions. A sudden
change of 1m s−1 can be accompanied by a pressure change of 100m. Valve controls and all pipework should be
designed so that they can survive the water hammer without damage.

The assembly of data and an understanding of the properties of wave transmission and reflection are the first steps.
Once a system has been analysed, the maximum and minimum (for cavitation and rupture of the water column is
also possible) pressures are known and the system may be modified and re-analysed.

91



A First Course in Hydraulics John D. Fenton

10.3 Sequence of events following sudden valve closure
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Figure 10-2. Four stages of one cycle of sudden closure of a valve

The following description and Figure 10-2 have been taken from Streeter & Wylie (1981, #12.4):

Consider a valve in a pipeline which is suddenly closed. Friction is neglected in this discussion. At the
instant of valve closure  = 0 the fluid nearest the valve is compressed and brought to rest and the pipe wall
is stretched as shown in the first figure. As soon as the first layer is compressed, the process is repeated
for the next layer of fluid particles. The fluid upstream from the valve continues to move downstream at
the original speed as there has been no time for any sound waves to have reached it and informed it. This
continues until successive layers have been compressed back to the reservoir. The high pressure moves
upstream as a wave, bringing the fluid to rest as it passes, compressing it and expanding the pipe. When
the wave reaches the upstream end of the pipe at  = , all the fluid is under the extra head , all the
momentum has been lost, and all the kinetic energy has been converted into elastic energy.

Now there is an unbalanced condition at the reservoir end at the instant of arrival of the pressure wave,
as the reservoir pressure is unchanged. The fluid starts to flow backward, beginning at the reservoir. This
flow returns the pressure to the value before closure, the pipe wall returns to normal, and the fluid has a
velocity −0. This process of conversion travels downstream toward the valve at the speed of sound  in
the pipe. At the instant 2 the wave arrives at the valve, pressures are back to normal, but the velocity
in the pipe everywhere is −0. Since the valve is closed, no fluid is available to maintain the flow at the
valve and a low pressure− develops such that the fluid is brought to rest. This low-pressure wave travels
upstream at a speed  and everywhere brings the fluid to rest, causes it to expand because of the lower
pressure, and allows the pipe walls to contract. If the static pressure in the pipe is not sufficiently high to
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sustain the head − the liquid cavitates, vaporises and continues to move backward over a longer period
of time.

At the instant the negative pressure wave arrives at the reservoir end, 3 after closure, the fluid is at
rest but at head −. This leaves an unbalanced condition at the reservoir and fluid flows into the pipe,
acquiring a velocity +0 and returning the pipe and fluid to normal conditions as the wave travels down
the pipe at speed . At the instant this wave reaches the valve, conditions are exactly the same as at the
instant of closure, 4 earlier.

This process is repeated every 4. The action of fluid friction and imperfect elasticity of fluid and pipe
wall is to damp out the motion and eventually to cause the fluid to come to a state of rest. Closure of a
valve in less than 2 is called rapid closure; slow closure is obvious.

10.4 Derivation of fundamental relationship using steady momentum
theorem
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Figure 10-3. Propagating wave in pipe showing wave velocity and fluid velocities – in the physical unsteady frame and in a
frame travelling with the wave.

Consider the motion in the two frames as shown in Figure 10-3. The first is the physical frame, through which
the wave moves at a velocity of −. To make motion steady we superimpose a velocity of +, so that the wave
is now motionless, but the horizontal velocities with which the fluid moves through the system have increased by
+. Now we apply principles of mass and momentum conservation in the steady frame. Mass conservation gives

−1 (1 + )1 + 2 (2 + )2 = 0 (10.1)

Now to apply momentum conservation we note that there will be an additional horizontal force of the pipe on
the fluid where the pipe suddenly expands. As the pressure there is 2, just as at the exit of area 2, it seems
simplest to assume that the force contribution there is 2 times the area of the annulus, which is 2 (2 −1). So,
applying the integral momentum theorem (5.2), using  = 1 in the fluid momentum terms, because the Galilean
transformation of + applies to all the fluid, and taking the horizontal component we have

−11 (1 + )
2 − 11 + 22 (2 + )

2
+ 22 = 2 (2 −1)| {z }

Force of annular bulge on fluid



Collecting like terms gives

−11 (1 + )
2
+ 22 (2 + )

2
+1 (2 − 1) = 0 (10.2)

Multiplying equation (10.1) by 2 + , subtracting from equation (10.2), and cancelling common factors gives:

2 − 1 + 1 (+ 1) (2 − 1) = 0

If we make the sensible approximation that as 1 ¿  that we replace 1 +  by :

2 − 1 = 1 (1 − 2) 
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and dividing by  gives an expression for the head rise in terms of the velocity change:

∆ =



(−∆) 

Here we have not considered all the mechanics of the pipeline system, and have not derived an expression for the
wave speed . If we had we would have obtained the relationship

 =

s


1 + 


, (10.3)

where  is the propagation speed of compressible disturbances in elastic pipes,  is the bulk modulus of the fluid,
such that

 = 





 is the Young’s modulus of the pipe wall,  is pipe diameter and  is pipe wall thickness. If we had rigid thick
walls such that  À , then  → 0, and we obtain  =

p
 the propagation speed of sound waves in

the fluid. Finite values of  mean that the speed of waves in the combined pipe/water system will be less.

This derivation gives some physical insight into the basic mechanism of water hammer. The extra head is caused
by the piling up of fluid with higher momentum into a region of lower momentum, with the compressibility of the
fluid and elasticity of the pipeline softening the blow. While water hammer might be thought of as a nuisance,
it is a good thing that the compressibility does come into play. Otherwise, if we had a rigid pipeline  → ∞
and an incompressible fluid  → ∞, then from equation (10.3) then the velocity of waves (the propagation of
information) in the pipeline would be infinite, and hence so would be the increase in head. We can imagine the
effect of a long solid bar of stone crashing against an immoveable barrier. With compressibility, the time for the
fluid to slow is finite, and so is the extra pressure caused.

10.5 Practical considerations

Some of the following has been taken from the useful introduction to water hammer of Sharp (1981).

10.5.1 Rupture of the water column

Rupture or separation of the water column occurs frequently in pipelines, as negative pressures can easily be
induced by wave reflection. Unlike some aspects of system behaviour that are conservative when neglected, this
phenomenon in general increases the problems and severity of water hammer. It is too complex to treat here.

10.5.2 Resonance

It is quite possible that the abrupt nature of water hammer, which contains a large number of Fourier components,
can excite the natural frequencies of a system, and a full analysis should bear this in mind.

10.5.3 Protection methods

The use of some form of protection device is largely a matter of economics. It is physically possible to design a
pipeline capable of withstanding any surge or shock so that failure does not occur. However it is more reasonable
to design a pipeline for pressures only slightly in excess of normal steady operating values. If occasional large
shocks must be provided for, it will generally cost less to prevent them from reaching the rest of the pipe system,
by some form of protective device.

• Flywheels – Install a flywheel on rotating machinery such that in the event of failure the velocity changes are
not so rapid, and so the water hammer is reduced.

• Open surge tank – hydroelectric installations use an open surge tank often, although there are stability prob-
lems in the case of turbine load fluctuations. In pumping schemes it is seldom possible to install an open
surge tank on the delivery side, and closed surge tanks are used, which depend upon air pressure. It is nec-
essary to provide as generous a connection as possible between the pipeline and the surge tank, otherwise
rather more water hammer passes the surge tank.

• Bypass methods may be used – since the development of water hammer is due to sudden changes in the
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velocity of flow, protection may be achieved by slowly decelerating the liquid. For example, when flow
reverses towards a pump a bypass may be opened allowing water to flow to the suction side. The bypass
valve may then be closed slowly with only a small overpressure developing. Similarly in a hydroelectric
system, when regulation requires a sudden decrease in output a bypass may open rapidly in concert with the
flow reduction through the turbine. An example is the deflector plate/needle valve combination at a Pelton
wheel.

In the same category are pressure relief valves which open very rapidly as warning of an excessive pressure
increase occurs.

• Other methods for protection

– One way surge tank – when pressures less than atmospheric occur in a pipe, a surface reservoir isolated by
a non-return valve can automatically discharge into a pipeline, which is the reverse of the bypass method.

– Controlled closing of a non-return valve - using a control or damping mechanism

– Anti-vacuum valves - air may be admitted when pressures are less than atmospheric and prevent low
pressures from occurring. This has the disadvantage that the air has subsequently to be removed.

– Valve stroking – deliberate phasing of the degree of opening of a valve so as to control the ultimate water
hammer pressures. This assumes a detailed knowledge of the valve characteristics.

10.5.4 Typical values

As a general rule, for a large steel water pipeline, a typical value of  is 1000m s−1. For other situations  can vary
between the speed of sound in water, typically 1500m s−1, down to some 200m s−1 for plastic lines. The bulk
modulus  = 22GPa at 20◦C.

Material  (GPa)
Aluminium alloy 70
Asbestos cement 24
Concrete 20
Copper 120
Glass 70
Iron 100
Plastic 0.8-3
Steel 210
Rock - Granite 50
Rock - Sandstone 3

11. Pumps and turbines

To move fluid from one point to another in a pipe, it is necessary to supply a driving force. In some cases, gravity
can be used to supply the driving force (i.e. when there is a difference in elevations). In most cases, however,
pumps or fans must be used to supply the driving force that is required to move the fluid. Different types of pumps
can be used to accomplish different tasks. For example, the energy that is transferred from a pump to the fluid may
be used to increase the velocity, pressure, or elevation of the fluid. Going in the other direction, hydraulic turbines
are used all around the world to extract power from water. In this course we will deal mainly with pumps.

It is interesting that fluid machinery is one of the best applications of dimensional analysis, as the machines are so
complicated that theory can do very little, whereas dimensional analysis provides some very practical help indeed.

11.1 Introduction to pump types

Pumps move mainly incompressible fluids (like water) and fans move compressible fluids (gases like air). There
are many types of pumps. The main ones are

• Rotodynamic pumps, which are the main ones of interest to us, use rotating elements such as impellers or
blades. The lower the head required and the greater the flow required the more axial the pump or turbine
should be for efficient operation, hence for high heads a fast-rotating relatively small element is used, while
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for low heads a larger fan-type of design is used.

• Centrifugal - fluid is spun around and ejected by centrifugal action. These are the most common pumps used
in industry,

• Positive displacement or force pumps – a set volume of fluid is physically moved, often by a piston. These
pumps are less common, and are used for thick and viscous fluids under high pressure or where the delivery
flow must be precise,

• Others such as the Hydraulic Ram, suitable for remote locations, and the Archimedean Screw, which is useful
for low heads.

11.2 Hydraulic ram pumps

Figure 11-1. Hydraulic ram pump – components and system layout

An hydraulic ram pump17 is a simple, motorless device for pumping water at low flow rates. It uses the energy of
flowing water to lift water from a stream, pond, or spring to an elevated storage tank or to a discharge point. It is
suitable for use where small quantities of water are required and power supplies are limited, such as for household,
garden, or livestock water supply. A hydraulic ram pump is useful where the water source flows constantly and the
usable fall from the water source to the pump location is at least 1 metre. They can be particularly useful in the
developing world in the wet tropics.

11.2.1 Principles of Operation

Components of a hydraulic ram pump are illustrated in Figure 11-1(a). Its operation is based on converting the
kinetic energy in flowing water into potential energy of a smaller quantity of fluid. Water flows from the source
through the drive pipe (A) and escapes through the waste valve (B) until it builds enough pressure to suddenly close
the waste valve. Water then surges through the interior discharge valve (C) into the air chamber (D), compressing
air trapped in the chamber. When the pressurised water reaches equilibrium with the trapped air, it rebounds,
causing the discharge valve (C) to close. Pressurised water then escapes from the air chamber through a check

17 These notes and the accompanying figure were prepared by Gregory D.Jennings, Agricultural Engineering
Extension Specialist, North Carolina Cooperative Extension Service, USA.
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valve and up the delivery pipe (E) to its destination. The closing of the discharge valve (C) causes a slight vacuum,
allowing the waste valve (B) to open again, initiating a new cycle.

The cycle repeats between 20 and 100 times per minute, depending upon the flow rate. If properly installed,
a hydraulic ram will operate continuously with a minimum of attention as long as the flowing water supply is
continuous and excess water is drained away from the pump.

11.2.2 System Design

A typical hydraulic ram pump system layout is illustrated in Figure 11-1(b). Each of the following must be
considered when designing a hydraulic ram pump system:

1. Available water source

2. Length and fall of the drive pipe for channelling water from the source to the pump

3. Size of the hydraulic ram pump

4. Elevation lift from the pump to the destination

5. Desired pumping flow rate through the delivery pipe to the destination.

11.3 Centrifugal Pumps

A centrifugal pump, in its simplest form, consists of an impeller rotating inside a casing. The impeller imparts
kinetic energy to the fluid. The velocity head, which is created by moving fluid from the low-velocity centre to
the high-velocity edge of the impeller, is converted into a pressure head when the fluid leaves the pump. In the
volute of the centrifugal pump, the cross section of the liquid path is greater than in the impeller, and in an ideal
frictionless pump the drop from the high velocity in the impeller to the lower velocity is converted according to the
energy equation, to an increased pressure. This is the source of the discharge pressure of a centrifugal pump.

Figure 11-2. Typical centrifugal pump

Advantages of centrifugal pumps:

• Simple to construct,

• Low cost,

• Fluid is delivered at uniform pressure without shocks or pulsations,

• The discharge line may be throttled (partly shut off) or completely closed without damaging the pump,

• Able to handle liquids with large amounts of solids,

• Can be coupled directly to motor drives,

• There are no valves involved in the pump operation, and

• Lower maintenance costs than other types of pumps.

Disadvantages of centrifugal pumps:
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Figure 11-3. Centrifugal pump: impeller and housing

• Cannot be operated at high heads,

• Subject to air binding and usually must be primed (the supply line must be filled with water),

• The maximum efficiency for a pump holds over a fairly narrow range of conditions, and

• Do not handle highly-viscous fluids efficiently.

11.4 Pump Performance Curves/Characteristic Curves

Figure 11-4. Typical characteristic curves for a family of pumps.

Pump manufacturers often produce graphs, such as that in Figure 11-4, for fixed pump size and fixed operating
speed. Changing the size of the pump  or the operating speed of rotation  changes the conditions for optimum
operation. The desired size of pump and operating speed can be inferred from similitude. There are many different
factors which determine the actual performance characteristics of a pump. For this reason, it is best to use the actual
experimental performance of the pump for determining the size that is required. The performance characteristics
of a pump can be measured in-house, or they can be obtained from the pump manufacturer.

The performance characteristics of pumps and fans are most often presented in a graphic form called ’characteristic
curves’. These curves describe characteristics of available head (pressure) and efficiency and power consumption,
from zero to maximum flow. A family of performance curves can exist for various impeller diameters.

The performance curves which are supplied by the pump manufacturer will typically show plots of:
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• Developed head (pressure) vs discharge (flow rate),

• Efficiency vs discharge, and

• Power vs discharge,

for various pump speeds. These plots are typically given for water, but for low viscosity fluids the plots will not
change much.

Pump
Zero pressure

-ve pressure +ve pressure

Pump
Zero pressure

-ve pressure +ve pressure

Figure 11-5. Simple pump line showing how negative pressures arise in the suction line.

On the suction side (i.e. upstream) the pressure may be negative (see Figure 11-5). Although it is often not possible,
one should try to avoid negative pressures. Certainly one should try to minimise the length of negative pressure
to avoid leakage of air into the pipe and pipe collapse (circular pipes are stronger under positive pressure – no
buckling). Thus, we try to locate pumps as close as possible to the water level on the suction side.

The power output of a pump is  , where  is the flow through the pump and  is the head across the pump.
If the power required to drive a pump is  , and  is the efficiency of the pump, then

 =




11.5 Dimensional analysis

The actual performance characteristics of rotating machines have to be determined by experimental testing, and
different machines have different characteristics. Furthermore, machines belonging to the same family may run
at different speeds. Each size and speed combination will produce a unique set of characteristics, so that for one
family of machines the number of characteristics to be determined is impossibly large. The problem is solved by
the application of dimensional analysis. The dimensionless groups obtained provide the similarity laws governing
the relationships between the variables within one family of geometrically-similar machines.

The variables to be considered are:

Symbol Variable Dimensions

 Volumetric flow rate through machine L3T−1

 Head difference across machine, as energy per unit mass,  L2T−2

 Rotational speed of machine (revolutions per second) T−1

 Length scale of machine, possibly diameter of impeller L

 Density of fluid handled ML−3

 Dynamic viscosity of fluid ML−1T−1

 Bulk modulus of elasticity of the fluid ML−1T−2

 Absolute roughness of machine’s internal passages L

Now we do the dimensional analysis. We have 8 variables and 3 dimensions, giving 5 dimensionless groups from
the Buckingham Π theorem. We choose ,  , and  as the repeating variables, and not  as it is an output of the
system.
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1. Π1 =  123  so that the dimensional equation is

M0L0T0 =
¡
T−1

¢1 L2
¡
ML−3

¢3 L2T−2

and considering the exponent of each dimension in turn,

M : 0 = 3 + 0

L : 0 = 2 − 33 + 2
T : 0 = −1 − 2

From this we have immediately 1 = −2, 3 = 0, and solving the remaining equation, 2 = −2. Hence we
have

Π1 =


22


2. Π2 =  123  so that the dimensional equation is

M0L0T0 =
¡
T−1

¢1 L2
¡
ML−3

¢3 L3T−1

and considering the exponent of each dimension in turn,

M : 0 = 3 + 0

L : 0 = 2 − 33 + 3
T : 0 = −1 − 1

From this we have 1 = −1, 3 = 0, and solving the remaining equation, 2 = −3. Hence we have

Π2 =


3


3. Π3 = 123  so that the dimensional equation is

M0L0T0 =
¡
T−1

¢1 L2
¡
ML−3

¢3 ML−1T−1

and considering the exponent of each dimension in turn,

M : 0 = 3 + 1

L : 0 = 2 − 33 − 1
T : 0 = −1 − 1

From this we have immediately 1 = −1, 3 = −1, and solving the remaining equation, 2 = −2. Hence we
have

Π3 =


2


4. Π4 =  123  so that the dimensional equation is

M0L0T0 =
¡
T−1

¢1 L2
¡
ML−3

¢3 ML−1T−2

and considering the exponent of each dimension in turn,

M : 0 = 3 + 1

L : 0 = 2 − 33 − 1
T : 0 = −1 − 2

From this we have immediately 1 = −2, 3 = −1, and solving the remaining equation, 2 = −2. Hence we
have

Π4 =


22

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5. Π5 = 123  so that we can write the group by inspection

Π5 =





Hence we have the relationship



22
= 

µ


3




2




22





¶


In fact, the quantity  = 22 is the head coefficient, and  = 3 is the flow coefficient. As 

has units of velocity, the quantity 2 = 2 is 1R, whereR is the Reynolds number based on impeller
diameter. The quantity  =  is the relative roughness of the machine’s internal passages. It can be shown that
the speed of sound in water  =

p
, so that the remaining dimensionless number 22 = 2()2 =

1M2, whereM is the Mach number of flow in the machine. Hence we now can write



22
= 

µ


3
RM 

¶
 (11.1)

Now consider the power required to drive the pump  = . This gives

 = 22 × 
¡
3RM 

¢


and replacing  × (3   ) by 3 × 1(3   ), where 1 is a different function of the same
variables, this gives

 

35
= 1

¡
3RM 

¢


the power coefficient  . The functional relationships between 22, 3, and 35 are deter-
minable by experiment and constitute a set of performance characteristics which are the same shape as the  and 
versus  characteristics, but represent the whole family of geometrically similar machines and are identical for all
such machines ifR,M, and  are the same. In general, of course, they are not, but it is a convenient approximation
that the functions are weakly dependent on them.

11.6 Similarity laws

For all machines belonging to one family and operating under dynamically similar conditions, each of the dimen-
sionless coefficients are the same, and so we have



3
= constant, (11.2)



22
= constant, and (11.3)



35
= constant. (11.4)

With these relationships we can obtain the performance of a machine operating under different conditions from
those which are known. This will be an estimate of course, as we have ignored the effects of the other variables.

Hence if we keep the same pump size ( fixed)

2 = 1
2

1

and 2 = 1

µ
2

1

¶2


Hence if we know the new head 2 we can calculate the required speed and hence the flow.

Often we need to consider pumps of different sizes. Thus operating at maximum efficiency for which the manu-
facturer’s data gives us the values of



22
and



3

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we have
1

2
1

2
1

=
2

2
2

2
2

and
1

1
3
1

=
2

2
3
2



If we want to use this type of pump to deliver 5 times the flow and 2 times the head that the manufacturer chose
to illustrate the performance of the pump, such that 2 = 51 and 2 = 21, then we can solve this pair of
equations for 21 and 21:

2
2

2
2

2
1

2
1

= 2 and
2

3
2

1
3
1

= 5 such that

2

1

=

µ
25

2

¶14
≈ 19 and

2

1

=

µ
8

25

¶14
≈ 075

hence we need a pump about twice the size (linear dimension) of the one in the manufacturer’s literature, which
would operate at 34 of the speed.

Type number or specific speed: The performance of machines belonging to different families may be
compared by plotting their dimensionless characteristics on the same graph. Detailed comparison may then be
achieved by analysing the various aspects of the sets of curves. A simpler method of machine classification is the
use of type number or specific speed.

Q

H, H, 

 

H

Maximum  

Design 
point

S

T

HD

QD

Figure 11-6. Design point on a pump characteristic.

Every machine is designed to meet a specific duty, usually referred to as the design point on its basic performance
characteristic usually associated with the maximum efficiency of the machine. It is thus informative to compare
machines by quoting the values of  , , and  corresponding to their design points. for pumps  and 

are the two most important parameters, their relative size indicates the suitability of a particular pump for large or
small volumes relative to the head developed. If their relative size is calculated such that the impeller diameter is
eliminated from it, the comparison becomes independent of machine size. This is the type number . Hence we
write

 =

¡
3

¢
(22)




and we choose the powers  and  such that  appears to the power 1 and  to the power zero, such that it
disappears. Hence, −+ 2 = 1 and −3+ 2 = 0, with solution  = 12 and  = 34:

 =
12

()
34



A value of type number can be calculated for any point on the characteristic curve. It will be equal to zero at point
S on Figure 11-6 because there the flow is zero and will become large at T as the head is small. Such values are
of no practical interest, and only the type number at the design point is used for classification, comparison, and
design.
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11.7 Series and parallel operation

Pumps may be arranged in series or parallel to achieve the effect required.

Series arrangement – see Figure 11-7

Q

H

1 pump

3 pumps

2 pumps

Figure 11-7. Three pumps in series and the characteristic curves of 1, 2, and all 3 pumps.

Parallel arrangement – see Figure 11-8

Q

H

1 pump 2 pumps 3 pumps

Figure 11-8. Three pumps in parallel and the characteristic curves of 1, 2, and all 3 pumps.

11.8 Euler equation for a rotor (impeller)

We have seen Conservation of Mass and Volume, Energy, and Momentum (three components) – now we have
Conservation of Moment of Momentum (often called Angular Momentum), which also has three components, but
it is rare that more than one of these equations is needed. A one-dimensional (radial) approximation is used which
simplifies the problem very much. Consider the centrifugal impeller shown in Figure 11-9, rotating with angular
velocity :

• Flow enters the impeller at 1, where the radius is 1, and then flows along a typical streamline shown dashed
(in the steady frame of the impeller) to point 2, radius 2, where it leaves the impeller and enters, possibly,
another cascade of vanes.

• The absolute velocity at 1 is 1, the tangential velocity of the impeller is 1 so that the velocity of the fluid
relative to the impeller is 1 , tangential to the impeller blades. The angle between the absolute velocity 1
and a tangent to the impeller is 1. In this basic velocity triangle the absolute velocity is resolved into two
components, one the radial direction velocity of flow 1and the other the velocity of whirl 1 .

• Similarly the outlet velocity triangle at 2 is constructed as shown. The relative velocity 2 is now parallel to
the rear of the blades, while the absolute velocity is parallel to a stationary outer cascade of vanes if they are
present. It can be seen that the vanes in the impeller and in the outer cascade have very different angles, but
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
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1

Figure 11-9. One-dimensional flow through a centrifugal impeller.

in each case the relative velocity is parallel to them.

The general expression for the energy transfer between the impeller and the fluid, usually referred to as Euler18’s
turbine equation can now be obtained.

From Newton’s second law applied to angular motion,

Torque = rate of change of moment of momentum

Moment of momentum = mass × tangential velocity × radius

Moment of momentum entering the impeller per second = ̇11

Moment of momentum leaving the impeller per second = ̇22

where ̇is the mass flow rate. Therefore

Rate of change of moment of momentum = Torque transmitted = ̇ (22 − 11) 

hence the rate of work being applied to the water is the product of torque and angular velocity:

Work done per second = ̇ (22 − 11) 

but 2 = 2 and 1 = 1, hence

Work done per second = ̇ (22 − 11) 

and the rate of energy transfer per unit mass of fluid flowing is 22 − 11, and so dividing by  to bring to
units of head, we find that the theoretical head developed is:

 =
22 − 11




which is Euler’s equation. It is useful to express Euler’s head in terms of the absolute fluid velocities rather than
components. We have

1 = 1 cos1 and 2 = 2 cos2

so that

 =
22 cos2 − 11 cos1




18 Leonhard Euler (1707-1783), Swiss mathematician and physicist, remarkable genius.
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However, from the cosine rule,

21 = 21 + 21 − 211 cos1
so that 11 cos1 = 1

2

¡
21 − 21 + 21

¢
, with a similar result for 2, giving

 =
22 − 21
2| {z }
A

+
22 − 21
2| {z }
B

+
21 − 22
2| {z }

C



Term A denotes the increase of kinetic energy of the fluid in the impeller. Term B represents the energy used in
setting the fluid in circular motion about the impeller axis. Term C is the regain of static head due to a reduction of
relative velocity in the fluid passing through the impeller.

11.9 Water turbines

Turbines are used to extract energy from water – the reverse of pumps. A typical hydro-electric power station
will have several, each directly coupled to an electric generator There are three main types, the Pelton wheel,
which is an impulse turbine, and the Francis turbine and the axial flow Kaplan turbine, both of which are reaction
turbines. Below are presented three photographs of turbines and of one pump in the Michell Hydraulics Laboratory
at Melbourne University, with thanks to Ms Pam Doughty, Webmaster of the Civil and Environmental Engineering
Department and Mr Joska Shepherd, Technician in Charge of the Laboratory.

(a) Francis turbine (b) Francis turbine from other side

(c) Pelton wheel, including deflector vane (d) Submersible de-watering pump & Joska Shepherd

Table 11-1. Examples of rotating machines in the Michell Laboratory

11.9.1 Reaction turbines

Francis turbines: In reaction turbines, such as the Francis turbine in (a) and (b) of Table 11-1, the fluid first
passes around the snail-shell like volute around the periphery of the turbine (see (a)), and then through a ring of
stationary guide vanes or wicket gate (see (b)) in which only part of the head is converted into kinetic energy. The
guide vanes discharge onto the runner along the whole of its periphery such that the fluid entering the runner has
pressure as well as kinetic energy. The pressure energy is converted into kinetic energy in the runner (the passage
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running full). In fact, the situation looks very similar to the centrifugal pump vanes shown in Figure 11-9, but
where everything runs in reverse. Examples are most of the power stations in the Kiewa scheme in Victoria, or the
Snowy Mountains scheme.

Axial-flow or Kaplan turbines: Another common type of reaction turbine which is used in lower-head
installations, is the Kaplan or axial-flow turbine, which looks rather like a large air-fan with wide blades, but
which also acts in reverse. These are typically used in power stations which are in dams across a river, such as at
Yarrawonga on the Murray River or stations on the Derwent River in Tasmania.

11.9.2 Impulse turbines

In impulse turbines, such as the Pelton wheel, as in entry (c) in Table 11-1, the total head available is first converted
into kinetic energy in one or more nozzles operating at atmospheric pressure. The jet(s) of water strike ”buckets”
of elliptical shape attached to the periphery of a rotating wheel. The jet of water strikes the bucket, is split sym-
metrically so that there is no extra thrust along the axis of the wheel, and is deflected back roughly in the direction
whence it came, thereby imparting momentum to the bucket and the wheel. The total head available at the nozzle is
equal to the gross head less losses in the pipeline leading to the nozzle. These are used for high-head installations.

Since a Pelton wheel which drives an electrical generator should rotate at constant speed, the only way to control
it and increase or decrease load when required is to control the discharge , which is done by means of a needle
(spear) valve in the nozzle. The water will still emerge at the same speed, but the power provided will be different.
For cases of sudden load removal, because it is not possible to close the valve quickly without causing high-
pressure surges in the penstock or supply line, deflector plates are used so that the jet of water can be quickly
deflected from the wheel but without causing damaging transients in the supply line. Gradually the needle valve
will move to the new position and the deflector returns to its original position, not interfering with the flow.

Pelton Francis Kaplan

Type number (using  in rad s−1) 0.05 – 0.4 0.4 – 2.2 1.8 – 4.6

Operating head (m) 100 – 1700 80 – 500 Up to 400

Maximum power output (MW) 55 40 30

Best efficiency (%) 93 94 94

Regulation mechanism Spear valve & Guide vanes, Blade

deflector plate surge tanks feathering

Table 11-2. Comparison of water turbines

Table 11-2 shows a comparison of the three types of turbines which are used to drive electric generators.
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