
What is mathematical logic? A survey

John N. Crossley1

School of Computer Science and Software Engineering,
Monash University, Clayton, Victoria, Australia 3800

John.Crossley@infotech.monash.edu.au

1 Introduction

What is mathematical logic? Mathematical logic is the application of mathemat-
ical techniques to logic.

What is logic? I believe I am following the ancient Greek philosopher Aristotle
when I say that logic is the (correct) rearranging of facts to find the information
that we want.

Logic has two aspects: formal and informal. In a sense logic belongs to ev-
eryone although we often accuse others of being illogical. Informal logic exists
whenever we have a language. In particular Indian Logic has been known for a
very long time.

Formal (often called, ‘mathematical’) logic has its origins in ancient Greece in
the West with Aristotle. Mathematical logic has two sides: syntax and semantics.
Syntax is how we say things; semantics is what we mean.

By looking at the way that we behave and the way the world behaves, Aris-
totle was able to elicit some basic laws. His style of categorizing logic led to the
notion of the syllogism.

The most famous example of a syllogism is

All men are mortal
Socrates is a man

[Therefore] Socrates is mortal

Nowadays we mathematicians would write this as

∀x(Man(x) → Mortal (x))
Man(S)

Mortal (S)
(1)

One very general form of the above rule is

A (A → B)
B

(2)

otherwise know as modus ponens or detachment: the A is ‘detached’ from the
formula (A → B) leaving B. This is just one example of a logical rule.

This rule, and other rules of logic such as

A B
(A ∧B)

or
(A ∧B)

A

where ∧ is read ‘and’, have obvious interpretations. These rules come from ob-
serving how we use concepts.

This analytic approach was that taken by George Boole, an Irish mathemati-
cian in the nineteenth century. It is from his work that we have Boolean algebra
or Boolean logic or, as it is often known today, propositional calculus.

Later in the nineteenth century Gottlob Frege developed a small suite of
logical laws that are with us today and suffice for all of mathematics. These are
the rules of the predicate calculus. The rules relate only to the syntax. Although
they are abstracted from the way we talk and think, the meaning, the semantics,
is something quite separate.

The most familiar example of semantics is given by truth-tables such as the
one for conjunction (or ‘and’, ∧):

∧ T F
T T F
F F F

Here we are given the truth-values of the formulae A and B and we work out the
truth of the conjunction (A ∧ B) by taking the value for A at the side and the
value for B at the top and finding the value where column and row intersect.
In general, determining the truth of a syntactic expression (formula) A requires
looking carefully at its constituents.

At this point we should pause because we are now dealing with two com-
pletely different things, two different aspects of languages.

On the one hand we have the rules for working with strings of symbols – rules
such as modus ponens above; on the other hand we are looking at meanings. This
latter is the study of semantics. The former is syntax – the study of the way that
language is put together from symbols. In English this latter includes the way
we put words together to make a sentence.

Consider something we, in essence, wrote earlier (in (1)), or rather a slight
variant of it.

∀x(M(x) → D(x)) (3)

If M(x) is interpreted as ‘x is a man’ and D(x) as ‘x will die’, then this formula
is obviously true under this interpretation. However, if we interpret M(x) as ‘x
is an animal’ and D(x) as ‘x has at most two legs’, then it is obviously false
under this different interpretation.

Note that the formula itself is neither true nor false, it is a formula – a piece
of syntax.

2

2 Syntax and Semantics

The first concern of mathematical logic is the relation between syntax and se-
mantics.

First let us consider syntax a little more closely.
Any logic starts from certain basic symbols. In ordinary mathematical logic,

and I will say what ‘ordinary’ means later in Section 4, we have symbols (letters)
for variables: x, y, z, . . . and letters for predicates or properties, such as M and D
above. We also have letters for relations and functions. For example, L(x) might
arise in a context: ‘there is a line between the points x and y’, or in a context
‘x is married to y’. We use small letters for functions, f1, f2 Such arise in
arithmetic where we may use f1 for +, or have a function i, say, in group theory
that is intended to denote the inverse of an element. Applying these function
letters (perhaps repeatedly) gives rise to (individual) terms.

Together all of these give us atomic formulae – basic formulae such as L(x, y)
or M(f3(x, f1(y2))) or D(y).

Atomic formulae can the be joined together by logical connectives to form
more complicated formulae, sometimes called ‘well-formed formulae’, such as

(M(x) ∧D(y)) or (M(x) → D(x)) or ∀x(M(x) → D(x)).

These have been joined using connectives: propositional connectives ∧ (read as
‘and’), ∨ (read as ‘or’), → (read as ‘implies’), ¬ (read as ‘not’); and the quan-
tifiers: ∀ (read as ‘for all’) and ∃ (read as ‘there exists’).1 The precise rules for
constructing formulae can be found in any logic textbook, such as [21].

We then have rules for generating more formulae. We have already met modus
ponens in (2). This rule is also know as implication elimination, (→-E): the →
above the line is eliminated below it.

In Fig. 1 we give the rules2 which were discovered in the late nineteenth cen-
tury by Frege (though Leibniz knew many of them long before in the seventeenth
century). The formulation here is known as Natural Deduction since the rules
(with two exceptions) look very close to our actual practice in reasoning. In this
formulation we do not have axioms but we may have hypotheses, i.e. formulae
that we assume. Here an expression such as ∆, A ` B is read ‘from the formulae
in ∆ and the formula A we can prove the formula B’.

The rules should be easy to read with at most two exceptions. These are
(∨-E) and (∃-E). The former corresponds to proof by cases. We can paraphrase
it as follows: ‘If, from A we can prove C and from B we can prove C, then we
can prove C from (A ∨ B)’. Likewise (∃-E) can be paraphrased as: ‘If we can
prove C from some particular x such that P (with x replacing y), and we can
also prove that there is some y such that P , then we can prove C’.

1 Some people avoid using negation, ¬. They employ a constant ⊥ for the false formula.
Then they use the formula (A →⊥) instead of ¬A.

2 The phrase ‘x is free/not free in [some formula]’ is a technical condition that avoids
misunderstandings.

3

` A
(Axiom-I)

A ` A
(Ass-I)

∆, A ` B

∆ ` (A → B)
(→-I)

∆ ` A ∆′ ` (A → B)

∆, ∆′ ` B
(→-E)

∆ ` A
∆ ` ∀x.A

(∀-I) ∆ ` ∀x.A
∆ ` A[c/x]

(∀-E)

x is free in A, not free in ∆

∆ ` P [a/y]

∆ ` ∃y.P
(∃-I)

∆1 ` ∃y.P ∆2, P [x/y] ` C

∆1, ∆2 ` C
(∃-E)

where x is not free in C

∆ ` A ∆′ ` B

∆, ∆′ ` (A ∧B)
(∧-I)

∆ ` (A1 ∧A2)

∆ ` A1
(∧-E1)

∆ ` (A1 ∧A2)

∆ ` A2
(∧-E2)

∆ ` A1

∆ ` (A1 ∨A2)
(∨-I1)

∆ ` A2

∆ ` (A1 ∨A2)
(∨-I2)

∆ ` (A ∨B) ∆1, A ` C ∆2, B ` C

∆1, ∆2, ∆ ` C
(∨-E)

∆ ` ⊥
∆ ` A

(⊥-E)

Fig. 1. The basic rules of predicate calculus.

It is obvious that these rules are ‘good’ rules if we just interpret them in an
intuitive way. That is to say, when so interpreted they lead from true assertions
to other true assertions.

We build proofs by repeatedly applying the rules. Since some of the rules
have two premises (top lines) we actually get a tree. The tree is a proof of the
formula at the root of the tree.

3 The Completeness Theorem and Model Theory

It should be quite surprising that when we analyze the sort of language we use
in mathematics, and elsewhere too, that the few basic rules, given above and
originally due to Frege, suffice to yield all those syntactic expression that are
always true – and no others. This is the most dramatic result that mathematical
logic produced in the first half of the twentieth century:

4

Theorem 1 (The Completeness Theorem). There is a finite (small) set of
logical rules which will yield all, and only, those formulae which are true under
any interpretation.

What is an interpretation? We have given a hint when discussing (3) above.
First we have to establish what domain we are talking about, e.g. people, or

natural numbers. Then we have to interpret the predicates in the language and
these will usually be interpreted as relations, one such example in the case of
numbers is the relation ≤. Here is a different example. If we have a language
involving P (x, y) and we consider interpreting this predicate P as ‘x divides y
and we only allow x, y, etc. to be interpreted as natural numbers, then we can
see that

(P (x, y) ∧ P (y, z)) → P (x, z)

is always true.
On the other hand

(P (x, y) ∨ P (y, x)) (4)

is sometime true and sometimes false, while

∀x¬P (x, x) (5)

is false since every number divides itself.
However if we interpret P (x, y) as ‘y is strictly greater than x’, then (4) is

sometimes true and sometimes false and (5) is true.
If we go to a completely different interpretation and let the variables range

over human beings and now interpret P (x, y) as ‘x is married to y’ then we get
different results.

The actual formal definition of ‘true in an interpretation’ is quite complicated
(see e.g. [21]), so we omit it here.

Those formulae, which are true under all possible interpretations, are called
universally valid or, sometimes, simply ‘valid’. One example is any formula of
the form (A ∨ ¬A).

Formally we say that an interpretation, M, is a model of a formula A (or a
set of formulae ∆) if A is true in M (if every formula in ∆ is true in M).

In [16], Kreisel pointed out that the Completeness Theorem actually catches
our intuitive notion of truth. The argument is simple. The Completeness The-
orem says that every formula true in all (formal, mathematical) interpretations
is provable. Clearly, anything provable is true in all interpretations (including
informal ones). Finally anything true in all interpretations is true in all formal
interpretations. Thus these three classes: A: provable in predicate calculus, B:
true in all interpretations, and C: true in all formal interpretations, are such
that A ⊆ B ⊆ C ⊆ A and therefore A,B and C all coincide.

One half of the Completeness Theorem is more powerful in the following
form.

Theorem 2 (The Compactness Theorem). If a set, Σ, of formulae is con-
sistent, then it has a model, i.e. an interpretation in which all formulae in Σ
are true.

5

Here consistent means, as you would expect, that we cannot prove a contra-
diction (such as (A ∧ ¬A)) from Σ.

The idea of model gives rise to Model Theory. This got a great impetus from
the Completeness Theorem. Model Theory is the study of interpretations of a set
of sentences of logic. The area is basically a grand exploitation of the semantics
of logic. Surprisingly, one can obtain significant results simply by looking at the
style of the sentences. At its simplest level it gives us beautiful results such as
the following.

Theorem 3. If a formula ∀x1∀x2 . . .∀xnA(x1, . . . , xn) with no quantifiers in-
side the formula A is true in an interpretation then it is true in any (non-empty)
sub-interpretation.

A simple application of this is the following. If we write down axioms for
a group involving the inverse function (as mentioned above) and a function m,
say for group multiplication, then all these axioms can be written in the form
∀x1∀x2 . . .∀xnA(x1, . . . , xn) with no quantifiers inside the formula A. It follows
that if G is a model of these axioms, i.e. a group, then any non-empty subset
of the elements of G closed under inverses and multiplication, is actually a sub-
group.3

But Model Theory has much more powerful results too and allows us to do
calculus in a new way: the Non-standard analysis of Abraham Robinson [22]. It
has given us deep insights into group theory and into models of set theory, and
has become an autonomous discipline (see [1]).

4 Intuitionist or Constructive Logic

Now there is not just one ‘true’ logic. At the beginning of the twentieth century
Brouwer questioned the law of the excluded middle and gave a new interpretation
to the syntax that we use in mathematics. He regarded a proof as telling us how
to make a construction. For Brouwer, a proof of (A∨¬A) was only acceptable if
one could give either a proof of A or a proof of ¬A. In the ordinary mathematics
of that time, as used by Hilbert, (A ∨ ¬A) was trivially true. This was, roughly
speaking, based on the idea that A was either true or not, even if we do not
know which: there was no middle alternative. This was unacceptable, indeed
meaningless, for Brouwer.

Now the ordinary logic that is (still!) commonly used by mathematicians and
most philosophers4 relies on the law of the excluded middle:

(A ∨ ¬A)

or, equivalently, the law of double negation:

¬¬A
A

3 Some people take this as the definition of a sub-group but other examples can be
given, see [20] or [4].

4 But not as much by computer scientists.

6

Both of these are equivalent to our last rule in Fig. 1:

∆ ` ⊥
∆ ` A

(⊥-E)

For many computer scientists and philosophers, it is better not to use this
rule. 5 This gives so-called constructive or intuitionist logic.

When I was a student this kind of logic was regarded as odd.
In the 1960s Saul Kripke, then a young student, produced a different kind of

interpretation in order to prove a Completeness Theorem for intuitionist logic.
His ‘interpretations’ were not single models in the sense we met above, they were
families of such interpretations with relations between them. They are know as
possible world interpretations. Intuitively speaking, a formula is then provable if
(and only if) it is true in all possible worlds. For a detailed treatment see [18]
or [7].

Nowadays there are lots of different logics that all have their value and ap-
plication. These logics include various kinds of modal logics. Modal logics have
modalities which are indicated by new symbols. Thus we may have ♦ for possibly
and � for necessarily. One of the most famous of these is the logic called S5.
This is a propositional logic in which the formulae are built up from propositional
variables p, q, . . . using the propositional connectives (see above Section 2) and
also allowing prefixing of formulae by � or ♦. (Thus (p∨♦(q∧�r)) is a formula
of S5. It has all the true formulae of ordinary propositional calculus as axioms
together with the rules shown in Fig. 2.

Many of these logics also have completeness theorems analogous to Theo-
rem 1. The proofs of these have similarities with the proof of the completeness
of intuitionist logic. Indeed, Kripke proved completeness results for modal logics
first [17] and only subsequently used his ideas there to prove the completeness
of intuitionist logic. Details of such theorems may be found in [7].

If ` A then ` �A ` �(A → B) → (�A → �B)

�A ` A ♦A → �♦A

Fig. 2. The rules for the modal logic S5.

5 This is not a question of the rule being right or wrong, it is a question of what one
can say about what computers do. There are certainly problems which a compute
cannot decide (see below, Section 5, so the computer does not necessarily ‘know’
whether A is true or ¬A is true.

7

5 Recursive Functions

When one turns to specific domains, for example the natural numbers, 0, 1, 2, . . .,
the power of the logic changes. In order to study the natural numbers, the theory
of formal arithmetic was described by axioms. These axioms are known as the
Peano axioms but they are really due to Richard Dedekind (see [12]).

Kurt Gödel showed, in 1931, that there is no finite system of axioms that will
give you all the true statements of arithmetic.6 This is his famous Incompleteness
Theorem.

So logic, in one sense, fails. But this weakness is also a strength. In proving
the theorem Gödel developed the notion of recursive or computable function.7

These functions are those that are representable in formal arithmetic. That is
to say there are predicates that exactly mirror these functions. Later, however,
it was found that there are many other ways of describing exactly the same
functions.

Alan Turing [25] showed that the functions that can be computed on his
idealized machines, now known as Turing machines, are exactly the same as
Gödel’s recursive functions. All our computers developed from this notion of
Turing’s.8 It is now almost universally believed that a function is computable
if, and only if, it can be programmed on some computer and, for every type
of computer so far developed, it has been shown that those functions that can
be computed are amongst Turing’s computable functions. So recursive functions
are exactly the functions we can compute. This work also showed that some
functions cannot be computed. In particular it is not possible to compute whether
a given Turing machine with a given program will stop or not. This is the Halting
problem.

The development of recursion theory has spawned a whole sub-industry of
mathematical logic in which I have played a part.

In advancing the theory of computable functions several different approaches
have been adopted including the Turing machines mentioned above and the
Lambda calculus which we shall treat below (see Section 7).

One of the nicest approaches is that of Shepherdson-Sturgis machines or Un-
limited Register Machines (see [24]). An excellent description of these can be
found in Davis, Sigal and Weyuker [11]. We consider an abstract machine, very
much like a modern computer. It has a finite number of registers in which natural
numbers are stored. The registers are identified by variables X1, X2, . . . , Y, Z1, Z2,
The Xi are the input registers. There is also an output register, where the an-
swer will be found. The Zj are auxiliary ones. Initially each register has zero in
it. The whole programming language is very simple and is shown in Fig. 3. All
recursive functions can be computed using programs in this language!
6 In fact he even showed that there is no finite complete system of axiom schemes for

formal arithmetic.
7 To be precise, attention actually focussed on partial functions, those that may not

be defined for all arguments.
8 At least as far as we can tell. It seems obvious that John von Neumann used Turing’s

ideas but there is no record of him admitting to that! See Martin Davis [10].

8

Z → 0

Z → Z + 1

If Z 6= 0 GO TO L

Z stands for an arbitrary register name. Instructions are labelled with labels
L, L1, L2,

Fig. 3. The programming instructions for Shepherdson-Sturgis machines.

It was some time before people were able to prove that there are different
degrees of computability. However this has now become a large industry, strongly
developed by Sacks in the latter half of last century. (See Barwise [1].)

One of the areas which still requires considerable development, in my view,
is that of higher order recursive functions. Although a great deal of work was
done last century by Kleene, Sacks and others, our understanding of the kinds
of functions that will take a program as an argument and always yield another
program is not very well understood (even though such higher order functions
are extensively used).

6 Set Theory

Besides arithmetic logic has also been applied to set theory. Indeed, one of the
major impetuses for mathematical logic was the problem, in the nineteenth cen-
tury, of the foundations of analysis, including, in particular, the infinitesimal
calculus.

Cantor [3, 2] started investigating Fourier series and came across difficulties.
The first thing was that one could count beyond infinity. This had been remarked
long ago by Galileo in his Discorsi e dimostrazioni matematiche intorno a due
nuove scienze (1638) (which I have not seen) where he showed there are the
same number of square numbers as there are numbers. Here is an even simpler
example. Suppose we arrange all the even numbers first and then all the odd
numbers, then we get a list

0, 2, 4, . . . , 1, 3, 5,

So if we start counting we count 1, 2, 3, . . . and then run out of counting numbers
before we get to the end. Cantor introduced infinite (ordinal) numbers to be able
to count this far. He counted

1, 2, 3, . . . , ω, ω + 1, ω + 2,

And this process could be carried much further to ω×ω or ωω or even to ωωωω

...

which is now known as ε0 and even that was not the end. There is no end.

9

In developing his theories of large cardinal and ordinal numbers he introduced
set theory. Sets can be thought of as being formed in two different styles. The
first is by building them up, e.g. by taking unions of smaller sets, etc.. The other
is by defining them by what they comprehend: defining a set as the set of x
such that A(x). The näıve axiom of comprehension says that {x : A(x)} always
exists. This gives rise to Russell’s paradox (6):

If R is the set of x such that x 6∈ x, then we have both x ∈ R and x 6∈ R.

The basic axioms of set theory were not troublesome and were formulated
by Zermelo and Fraenkel. The axiom of comprehension, however, had to be
circumscribed.

Thanks to the formulations available through the mathematization of logic,
set theory has developed enormously.

Nevertheless this (finite) set of axiom schemes did not succeed in resolving all
the open questions. Not merely was it incomplete (as it had to be because it was
possible to develop arithmetic in set theory, see my remarks on incompleteness
above in Section 5) but it did not resolve the status of the Axiom of Choice. The
Axiom of Choice says that, given a non-empty set of non-empty sets, there is a
set that has exactly one element from each of those sets. Russell [23] gives the
nice example: given an infinite set of pairs of socks, how do you pick one sock
from each pair?

The first problem was the problem of consistency. This has been attacked
by building models of set theory. Gödel was the first to do this in spectacular
fashion by building models of set theory within set theory, see [14]. However,
such models do not solve all the problems.

Now Gödel [14] had established the consistency, but not the independence,
of both the Axiom of Choice and the Continuum Hypothesis9 back in 1940.

About the time I obtained my PhD (1963) Paul Cohen [5, 6] showed the
independence of the Axiom of Choice (and the Continuum Hypothesis) from the
other axioms of set theory. He applied a kind of model theory which we now
know is closely related to the model theory that Saul Kripke used for modal
and intuitionist logic. The technique is known as forcing and depends on being
able to create possible worlds that behave in unusual ways. Since that time very
many other statements with mathematical import have been proved independent
of the other axioms of set theory.

The search for “nice” axioms for set theory continues. Although the concept
of set appears simple from an intuitive point of view, we have no precise con-
ception of what a set is. Moreover, since about 1970, the field of Set Theory has
become extremely complicated and difficult. It is perhaps not surprising that
even its practitioners use words such as ‘morass’.

9 The Continuum Hypothesis says that there are no infinite cardinal numbers between
the smallest infinite cardinal number, that of the set of natural numbers and the
cardinal number of the set of all subsets of the natural numbers.

10

7 Proof Theory

Finally there is Proof Theory. This studies the formal proofs in mathematical
logic in the same way that one studies the real numbers, for example. Originally
this was done by Gerhard Gentzen in the 1940s when he tried to prove that the
Peano axioms for arithmetic are consistent.

Gödel had not only proved the Incompleteness Theorem (see above Section 5)
but had also shown that it was impossible to prove the consistency of formal
arithmetic in the theory itself. Gentzen devised a new way of presenting proofs,
in fact closely related to the system of natural deduction we used in Section 2.
He was then able to show that one could simplify certain proofs.

For example, suppose we are given two proofs: where the first is a proof of
A:

....
A (6)

and the second is a proof of B from A from which we get a proof10 of A → B:

[A]....
B

(A → B) (7)

Then suppose that we use modus ponens to remove the A from (A → B) thus:
We now have a proof:

....
A

[A]....
B

(A → B)
B (8)

But if instead we had simply put the first proof, (6) of A, on top of the second
proof, (7) of (A → B), then we no longer need the hypothesis [A] in the second
proof in order to get a proof of B. Previously we had made an unnecessary
detour since we already had a proof of B.

That is to say, we can reduce the proof in (8) to a simple proof of B of the
form

A....
B

This removal of unnecessary detours is known as cut elimination.
10 The square brackets indicate that A can be discharged, i.e. is not needed for the

proof of B, though it is for the proof of B, of course.

11

Gentzen [13] showed, by using a special form of induction, transfinite in-
duction,11 that there could be no proof of a contradiction, i.e. that arithmetic
was consistent. The actual technique was to assume that there was a proof of
a contradiction and then to reduce that proof, by cut elimination, until it was,
in fact, of a very simple form. From there it was obvious that there could be no
such proof.

Gentzen’s techniques have been greatly developed by Feferman in the USA
and Schütte and his group in Germany. These people have extended his results
to much more complicated systems of logic than simple arithmetic.

However, the work started by Gentzen about sixty years ago has started a
new and perhaps surprising industry in computer science. Although Gentzen
was aware of the information contained in a proof, it was not until Bill Howard
showed in his [15] that propositional calculus (which is even simpler than pred-
icate calculus and can be, at least partially, identified with Boolean algebra)
reflects the lambda calculus. Thereby the usefulness of Gentzen’s work for pro-
ducing computer programs was realized.

This is despite the fact that the lambda calculus was one of the ways that
recursive functions were developed. It was an alternative to Turing machines.
More recently lambda calculus has formed the basis for the programming lan-
guage, LISP, and in fact one can obtain programs directly from formal proofs by
developing Howard’s ideas further. For more about this you may care to listen to
my lecture later in this conference [8]: What is the difference between proofs and
programs? which is devoted to this topic of extracting programs from proofs.

8 Conclusion

Over little more than a century mathematical logic has developed from nothing
to a very multi-faceted subject. It has thrown a great deal of light on many
areas of philosophy: particularly through modal logics; mathematics: especially
through set theory; and computer science: through the analysis it has permitted
and the (correct) programs it has allowed to be generated. It has also shown the
limits of computability.

At present, mathematical logic encompasses model theory, set theory, re-
cursion theory and proof theory. Although modal logics have long been used,
especially by philosophers, in my lifetime I believe that the most important
change in mathematical logic has been the development of many, many other
kinds of logics, which have supplemented the standard or classical one used in
mathematics. I have touched on but a few of these. Some of the others are the
subjects of other lectures in this conference. There is still more work to be done
and I hope I have encouraged you to find out what there is to do in the areas in
which you yourselves are interested.

11 In fact he only needed transfinite induction up to ε0, see Section 6, in order to prove
his result.

12

References

1. Jon Barwise, editor. Handbook of mathematical logic. North-Holland Pub. Co.,
1977.

2. Georg Cantor. Über einen die trigonometrischen Reihen betreffenden Lehrsatz.
Journal f. reine und angew. Math., 72:130–138, 1870.

3. Georg Cantor. Über die Ausdehnung eines Satzes aus der Theorie der
trigonometrischen Reihen. Mathematische Annalen, 5:123–132, 1872.

4. Chen Chung Chang and H Jerome Keisler. Model theory. North-Holland Pub. Co.,
1973. 3rd ed. 1990.

5. Paul Joseph Cohen. The independence of the continuum hypothesis. Proc. Nat.
Acad. Sci. U.S.A., 50:1143–1148, 1963.

6. Paul Joseph Cohen. The independence of the continuum hypothesis. II. Proc. Nat.
Acad. Sci. U.S.A., 51:105–110, 1964.

7. Maxwell John Cresswell and George Edward Hughes. A New Introduction to Modal
Logic. Taylor & Francis Inc., 1996.

8. John Newsome Crossley. What is the difference between proofs and programs?
Lecture at this conference.

9. John Newsome Crossley, Chris Brickhill, Christopher John Ash(†), John Colin
Stillwell, and Neil Hale Williams. What is mathematical logic? Oxford University
Press, 1972. Latest edition, Dover, 1990.

10. Martin Davis. Engines of logic : mathematicians and the origin of the computer.
W. W. Norton, 2001.

11. Martin D. Davis, Ron Sigal, and Elaine J. Weyuker. Computability, complexity,
and languages: fundamentals of theoretical computer science. Academic Press,
Harcourt, Brace, Boston, MA, 2nd edition, 1994.

12. Richard Dedekind. The nature and meaning of numbers. In Essays on theory of
numbers. Dover, 1901 (1963). Translation of Was sind und was sollen die Zahlen?

13. Michael E.Szabo, editor. The collected papers of Gerhard Gentzen. North-Holland
Pub. Co., Amsterdam, 1969.

14. Kurt Gödel. The consistency of the axiom of choice and of the generalized
continuum-hypothesis with the axioms of set theory. Princeton University Press,
1940.

15. William Howard. The formulae-as-types notion of construction. In John Roger
Hindley and Jonathan Seldin, editors, To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus, and Formalism, pages 479–490. Academic Press, 1969.

16. Georg Kreisel. Mathematical logic. In Thomas Lorie Saaty, editor, Lectures on
modern mathematics, volume 3, pages 95–195. Wiley, 1965.

17. Saul Kripke. A completeness theorem in modal logic. JSL, 24:1–14, 1959.
18. Saul Kripke. Semantical analysis of intuitionistic logic I. In John Newsome Crossley

and Michael Anthony Eardley Dummett, editors, Formal Systems and Recurive
Functions. North-Holland, Amsterdam, 1965.

19. Edward John Lemmon. Beginning logic. Nelson, 1971.
20. Roger C Lyndon. Properties preserved under homomorphism. Pacific J. of Math-

ematics, 9:143–154, 1959.
21. Elliott Mendelson. Introduction to mathematical logic. Chapman & Hall, 4th

edition, 1997.
22. Abraham Robinson. Non-standard analysis. North-Holland Pub. Co., 1966.
23. Bertrand Russell. Introduction to Mathematical Philosophy. G. Allen and Unwin,

London, 1970. First published in 1919, thirteenth impression, 1970.

13

24. John Cedric Shepherdson and H.E. Sturgis. Computability of recursive functions.
J. Assoc. Comput. Mach., 10:217–255, 1963.

25. Alan Matheson Turing. Computability and lambda-definability. JSL, 2:153–163,
1937.

26. Jean van Heijenoort. From Frege to Gödel. Harvard University Press, 1967.

14

