

Ch 12. Intro to Organic Chemistry: Alkanes

What is Organic Chemistry?

- Organic Compounds: Contain <u>carbon</u> as primary component. (Contain C-H bond.)
 - Biological molecules (proteins, nucleic acids, carbohydrates, lipids)
 - Many modern materials (plastics, synthetic fibers), medicine
- Inorganic Compounds: Majority do not contain carbon (Those that contain C lack C-H bond, eg. CaCO₃, CO₂.)

Organic Compounds: What is Special about Carbon?

 Is tetravalent (forms 4 bonds)

- Bonds strongly to itself through <u>covalent</u> <u>bonding</u>— thus can form long chains or rings
- Bonds strongly to electronegative elements (like N, O, and halogens), to form <u>polar covalent</u> <u>bonds</u>

Organic Compounds: What is Special about Carbon?

4. Can form <u>multiple</u> covalent bonds by sharing more than 2 electrons (double bonds, triple bonds)

5. Forms compounds with specific 3D shape (C single bonds are oriented toward 4 corners of tetrahedron)

*Because of these bonding properties, an extraordinary number of carbon compounds exist!

Comparison of General Properties: Organic vs. Inorganic Ionic Compounds

	Organic	Inorganic (Ionic)
Solubility	Most are nonpolar → insoluble in water.	Most are soluble in water.
Electrical Conductivity	When soluble in water, are poor conductors of electricity.	When soluble in water, are good conductors of electricity.
Physical states	Can be gas, liquid, or solid at room temp	All are solids at room temp
Melting and Boiling Points	Relatively low	Very high

Organic vs. Inorganic Compounds

Organic Compound

- Covalent (nonpolar) bonding within molecule, but
- Weak London dispersion forces <u>between</u> molecules
- Melting point: -95 °C
- Boiling point: 69 °C
- Solubility in water: No

Inorganic Ionic Compound

- Strong ionic bonding between + and – ions
- Melting point: 801 °C
- Boiling point: 1413 °C
- Solubility in water: Yes

Functional group: an atom or group of atoms responsible for the characteristic properties and behavior of an organic compound. Allows classification of organic compounds into distinct chemical <u>families</u>.

Some Organic Compound Families

TABLE 12.1 Some Important Families of Organic Molecules

FAMILY NAME	FUNCTIONAL GROUP STRUCTURE*	SIMPLE EXAMPLE	LINE STRUCTURE	NAME ENDING
Alkane	Contains only C—H and C—C single bonds	CH ₃ CH ₂ CH ₃ Propane	\sim	-ane
Alkene	} c=c ∕	H_2C = CH_2 Ethylene	H H	-ene
Alkyne	−C≡C−	$H-C\equiv C-H$ Acetylene (Ethyne)	Н−−━−Н	-yne
Aromatic		H H H H C C H Benzene C H H		None
Alkyl halide	$-\frac{ }{ } X (X=F, Cl, Br, I)$	CH ₃ CH ₂ Cl Ethyl chloride		None
Alcohol	_С_О_Н	CH ₃ CH ₂ OH Ethyl alcohol (Ethanol)	ОН	-ol
Ether		CH ₃ CH ₂ —O—CH ₂ CH ₃ Diethyl ether	\sim_0	None
Amine		CH ₃ CH ₂ NH ₂ Ethylamine	∕	-amine
Aldehyde	О —С—С—Н 	$CH_3 - C - H$ (Ethanal)	O H	-al
Ketone		$CH_3 - C - CH_3$ Acetone	° (-one

© 2013 Pearson Education, Inc.

Some Organic Compound Families

TABLE 12	2.1 Some	Important Families	of Organic Molecules
----------	----------	--------------------	----------------------

FAMILY NAME	FUNCTIONAL GROUP STRUCTURE*	SIMPLE EXAMPLE	LINE STRUCTURE	NAME ENDING
Carboxylic acid	О СОН	$CH_3 - C - OH$ Acetic acid	O OH	-ic acid
Anhydride	$-\mathbf{C} - \mathbf{C} -$	$CH_3 - C - O - C - CH_3$ Acetic anhydride		None
Ester	-C - C - C - C - C - C - C - C - C - C	$CH_3 - C - O - CH_3$ Methyl acetate	OCH3	-ate
Amide	$ \begin{array}{c} $	$CH_3 - C - NH_2$ Acetamide	NH ₂	-amide
Thiol	-C-SH	CH ₃ CH ₂ SH Ethyl thiol	SH	None
Disulfide	C—S—S—C	CH ₃ SSCH ₃ Dimethyl disulfide	s_s	None
Sulfide	C—S—C	CH ₃ CH ₂ SCH ₃ Ethyl methyl sulfide	<u>∕_s</u> ∕	None

*The bonds whose connections are not specified are assumed to be attached to carbon or hydrogen atoms in the rest of the molecule.

© 2013 Pearson Education, Inc.

Categories of Organic Compound Families

(Refer to Handout: Families of Organic Compounds.)

- 1. Hydrocarbons (contain only carbon and hydrogen): Alkane, alkene, alkyne, aromatic
- 2. Single bonds only, carbon bonded to electronegative atom: Alkyl halide, alcohol, ether, amine
- 3. Carbonyl compounds: Aldehyde, ketone, carboxylic acid, anhydride, ester, amide
- 4. (Sulfur-containing compounds: thiol, sulfide, disulfide)

For each family, we will learn its...

- 1. Structure
- 2. Nomenclature
- 3. Reactions
- 4. Physical/chemical properties