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1. Lecture 1

1.1 Introduction

One of the things that science does is to use the tools and ideas from our everyday

experience and extrapolates them to other realms. If you look around you will see

that one of the first things we notice and are able to determined about object is its

size, perhaps inherited from our ancestor for whom a big or small animal meant the

difference between predator or food. For that reason, when we explore a new area of

science, from galaxies to atoms one of the first things we need to ask to get a grasp on

the new subject is what is the typical size of the objects that we are going to deal with.

We say that we determine the scale or order of magnitude of the systems we analyze.

As a way to fix ideas then let us revise the size of some systems in figure 1.
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Figure 1: When studying a new phenomenon the first question is at which length scale it

occurs. Typical examples are shown.

We see that in physics we have to deal with objects of very different size. For that

reason it is convenient to use scientific notation where we write for example 103 for a
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thousand (also we use the prefix kilo) and 10−3 for a thousandth (prefix milli). Some

commonly used prefixes
Factor prefix abbr.

10−15 femto f

10−12 pico p

10−9 nano n

10−6 micro µ

10−3 milli m

1

103 kilo K

106 mega M

109 giga G

1012 tera T

Not all of them are always used, for example Megameter is not used although we

are familiar with MegaByte or GigaByte.

The other important thing to notice is what are the forces acting on objects at

different scales. At the planetary scale and larger the dominant force is gravity. Not

because it is particularly strong but because most macroscopic objects are neutral un-

der the other forces. At our scale and down to the atomic scale electromagnetism

(electricity and magnetism) is the most important one. When we think about electro-

magnetism we first think of light-bulbs, phones, computers etc. but we should remind

ourselves that everything around us works through the electromagnetic force. Solids

are solids because electric charges keep the atoms together, chemical reactions occurs

as a consequence of transfer of charged electrons between atoms making and destroying

molecular bonds. Only inside the atomic nucleus, namely scales of 10−15m do we find

new forces, the strong force that keep the nucleus together and the weak force that

induces certain radioactive decays. So if we understand gravity and electromagnetism

we pretty much understand everything that surrounds us, at least in principle!. A very

notable exception is the Sun, only after the discovery of the strong force it became

apparent that the source of energy for the Sun is nuclear reactions.

Finally, once we understand the forces we need to know how they modify the

objects that interact with them. At distances much larger that the atomic nucleus this

is given by Newton’s famous third law:

~F = m~a (1.1)

namely a force acting on an object produces an acceleration, a change in velocity,

proportional to the force. If we explore distances of 10−10 meters an below (atomic
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scale) then Newton’s law is replaced by quantum mechanics as we will find out later

in the course. Furthermore, if objects move at speeds close to the speed of light then

Einstein’s theory of relativity should be used.

Before we start with electromagnetism we can make a quick review of gravity.

Newton’s law of gravity is one of the greatest achievements of mankind and made clear

what Galileo and others had expressed, namely that, through the use of reasoning and

mathematics we can gain insight into Nature at a depth that was previously unimag-

inable. It is not clear why this is so but it has been proved right until now, the more

we explore Nature the more amazing phenomena we discover and the more interesting

the mathematical constructions that are needed to describe them.

In any case, going back to the Law of Gravity, it simply states that two massive

bodies attract each other with a force proportional to the mass and inversely propor-

tional to the square of the distance separating them:

|~F | = G
M1M2

r2
(1.2)

Remember that the force is a vector, it has a magnitude that we just gave and a

direction which is toward the other body. The constant G is called Newton’s constant.

Its value is G = 6.67 × 10−11m2kg−1s−2 = 6.67 × 10−11N(m/kg)2. Please take your

time to see that you understand the units. Units are fundamental in physics since a

number without a unit has no meaning.

MM1 2

Figure 2: Two masses attract each other due to gravity.

Problem 1: Using that the radius of the Earth is rE ' 6000Km, the acceleration of gravity on

the surface g = 10m/s2 and the density five times that of water, give an estimate

of G and compare with the value given.

Solution: The gravitational force on an object of mass m at the surface of the Earth is

given by

|~F | = G
MEm

R2
E

(1.3)

where ME is the mass of the Earth and RE is its radius. According to Newton’s

law the acceleration is

g =
|~F |
m

= G
ME

R2
E

(1.4)
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The mass of the Earth is given by

ME =
4

3
πR3

EρE (1.5)

with ρE = 5 × 103Kg
m3 its density. Replacing in our previous equation and after

some algebra we find

G =
gR2

E
4
3
πR3

EρE
=

3

4π

g

REρE
(1.6)

replacing the values RE = 6, 000Km, g = 10m/s2, ρE = 5× 103Kg
m3 we find

G ' 8× 10−11 m3

Kgs2
(1.7)

a good estimate of the actual measured value G = 6.7×10−11N m2

Kg2
. Notice that the

units are the same since 1N = 1Kgm/s2. A final observation is that historically

this was done the other way around, namely by measuring G the density of the

Earth was determined.

Problem 2: Using that the period of the Moon orbit is around a month, estimate the distance

of the Earth to the Moon. How can you use that to know the size of the Moon?

Hint: Remember that the centripetal acceleration if ar = v2/r and v = ωr where

ω is the angular velocity.

Solution: Now we equate the gravitational force with the mass of the Moon times the

centripetal acceleration given by ar = v2

r
. We have:

|~F | = G
MEMm

R2
0

= Mm
v2

R0

(1.8)

where R0 is the radius of the orbit. The velocity v is given by v = ωR0 where ω is

the angular velocity given by ω = 2π
T

, with T the period of the orbit. Furthermore

we can use that

g =
GME

R2
E

(1.9)

as we had before. This allows us to do the calculation without using G, we simple

need g the acceleration of gravity on the surface of the Earth. Putting everything

together we find

R3
0 = g

T 2

4π2
R2
E (1.10)

Replacing the numbers we find an estimate

R0 = 4.5× 108m = 450, 000Km (1.11)
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This is the right order of magnitude but slightly larger than the actual value. You

can try to see why we got a larger value. In any case try to do the calculation

yourself and be sure that everything is clear. Finally knowing the distance to the

Moon is should be simple to look at the Moon and figure out how big it is.
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2. Lecture 2

2.1 Electric charge

In the same way that gravity describes the interaction of masses, electrostatics describes

the interaction of electric charges. Notice that we say electrostatics because this applies

to static charges. If charges move they generate a magnetic field. This can be ignored

if the charges move slowly compared with the speed of light except if we have a large

number of charges moving together in the same direction as in an electric cable. We

will look at that later, for the moment we concentrate in static charges (or moving

slowly). Before continuing however one might wonder if the law of gravity might not

need to be amended and perhaps masses also interact differently if they move fast. This

is actually true and it is described by Einstein’s theory of general relativity.

Going back then to electric charges, a difference with gravity is that in this case

the force can be repulsive as well as attractive. In fact electric charge can be positive

or negative, charges of opposite sign attract and those of the same sign repel. Other

than that, the law for the force is similar as established by Coulomb’s law:

|~F | = 1

4πε0

q1q2

r2
(2.1)

Namely the magnitude of the force is proportional to the product of the charges and

inversely proportional to the square of the distance.

The constant that replaces Newton’s constant is 1
4πε0

= 9 × 109N m2

C2 . This values

assumes that we measure the electric charge in Coulombs (C). In atomic and nuclear

physics sometimes other units of charge are used so that the constant is just one. To

get an idea of how much a Coulomb is we can consider the minimal unit of charge

which is the charge of the electron e = −1.6 × 10−19C. The proton, has the same

but opposite charge. It is still a mystery why the charge of the proton and electron

are exactly opposite but that implies that atoms are exactly neutral since they have

the same number of protons (which are in the nucleus) and electrons (which orbit the

nucleus). Perhaps it should be pointed out that the proton is made out of quarks called

u and d that have charges +2/3e and −1/3e respectively. In any case we see that a

large number of electrons are needed to make a charge of a Coulomb. However, the

Avogadro number NA = 6 × 1023 is much larger. Since the Avogadro number is the

number of atoms in a mol of a substance the means that we have available that number

of electrons. For example one gram of Hydrogen (which is one mol) has NA = 6× 1023

atoms each of which has one proton and one electron. However large charges are not

usually obtained because, as mentioned before atoms are neutral. This is because the

electric interaction is large and it would cost a large amount of energy to split positive

and negative charges.
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Figure 3: Two charges can attract or repel each other depending on their sign.

Nevertheless, a small amount of charge can be created, one example is by rubbing

two materials. Sometimes one of them gets charged and allows us to check the laws of

attraction and repulsion.

To understand more about charge we need to know that it is conserved. Experi-

mentally it has been observed that the total charge of an isolated system is always the

same. One can create charge but only of opposite signs in such a way that the total is

always the same. So if you rub two objects and one is charged positive the other will be

charged negative. Another important property is that of materials. Certain material

such as metals are conductors, which means that electric charges can move freely inside

them. Insulators on the other hand do not allow the motion of charge. These are the

most common types, other materials such as semiconductors, superconductors etc. are

more rare but very important in technological applications as we all know (electronics

is based on semiconductors for example). If a metal is charged, since equal charges

repel each other, the charges will try to be as far of each other as possible and will

migrate to the surface. In fig.4 we see for example that if we approach a conducting

sphere with a negatively charged rod, positive charge will be attracted close to the rod

and negative charge well be repelled. However the total charge of the sphere should be

zero if it was so initially. A different situation is if we connect the sphere to ground.

This means that we run a conducting cable into the ground basically connecting the

sphere to the Earth which for this purpose can be thought of as an unlimited reservoir
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of charge. In that case the negative charge will be repelled all the way to the ground.

If we then disconnect the sphere and afterward remove the rod, the sphere will acquire

a charge. The process is summarized in fig.5. This phenomenon is call induction and

can be used to generate relatively large amounts of charge. An example is the machine

demonstrated in class (unfortunately not very successfully) and which can be seen in

fig. 6.
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Figure 4: A negatively charged rod attracts positive charges and repels negative ones. The

total charge of the sphere however remains constant since it is insulated

The idea of connecting something to ground is extremely important and when using

an electrical device an important point is if it is appropriately connected to ground.

One hand connecting the chassis (metallic case) to ground is a safety precaution against

accidentally connecting it to a power line. It also avoids static electricity that can

damage electronic circuits. Although connecting to ground literally means a connection

to a conductor embedded in the soil, sometimes this is not practical (for example

cell phones etc.) and then the “ground” refers to a common connection of electrical

parts to the chassis. This gives a stable common reference to all circuits. This is

particularly important in sensitive electronic devices since this common reference gives

them stability, otherwise they can function erratically and can be a common reason for
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Figure 5: If the sphere is connected to ground we can induced a charge in it by using the

procedure in the figure. Be sure you understand what happens in each step.

malfunctioning (for example, you create your own circuit to plug to a computer port

but forget to connect the ground of your circuit to the computer ground either through

the port or directly to the chassis).

Another interesting point is what happens if you have a charged conducting sphere

and you touch it with another conducting one which is not charged. Since they are

both conducting the charge will distribute among them. However, which one gets more

charge? If the spheres have the same radius, by symmetry the total charge is distributed

equally. However if one is bigger, the charges on it can be further apart which they

prefer because the force between charges of the same sign is repulsive. What this means

is that the sphere of larger radius gets more charge. In fact will see later that the charge

it gets is proportional to its radius.
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Figure 6: Machines used to generate static electricity. The first and last one are Wimshurst

machines. In the middle is a small Van der Graaf generator. Van der Graaf made huge

generators to accelerate atomic particles which can still be seen in the Boston museum of

Science.

2.2 Electric field

Although initially one might think that electricity describes only forces between charges,

simple experiments show that electromagnetic waves propagate from one place to an-

other. Those include radio waves, light etc. A simple demonstration of this is when we

create sparks in class and that was detected by the AM radio receiver which generated

a noise with each spark. All this suggests that there is a form of energy that exist

independently of the charges and leads us to the idea of electric field. Charges are

sources for the electric field but electric fields can exist independently of charges. We

denote the electric field as ~E. It is a vector and it has the property that if you put a

charge q in it, the charge experiences a force:

~F = q ~E (2.2)

The direction of the force is parallel to ~E although it can have opposite orientation if

the charge is negative. It also follows that the force is proportional to the charge as

can be verified experimentally. Furthermore we find that we reproduce Coulomb’s law

if a charge q1 generates an electric field

~E =
1

4πε0

q1

r2
r̂ (2.3)

where r̂ is a radial unit vector pointing away from the charge. An important principle

that can be verified experimentally is the principle of superposition, if several sources

produce fields ~E1, ~E2, . . . , ~En then the total electric field is

~E = ~E1 + ~E2 + . . .+ ~En (2.4)

This implies the principle of superposition for the forces acting on an object namely

~F = q ~E = q ~E1 + q ~E2 + . . .+ q ~En = ~F1 + ~F2 + . . .+ ~Fn (2.5)
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It is important that we add the forces and also the electric fields as vectors. Remember

the rule of addition of vectors as illustrated in fig.7. Notice that vectors are mathe-

matical entities with properties independent of what they represent. The easiest way

to think about them is to think that they represent displacement from one place to

another. Everybody is able to figure out where you are going to end up if you move

lets say 30 meters in certain given direction, for example North and then 20 meters in

another, for example South-West. This is addition of vectors and the same principle

can be applied to the vectors represent electric fields, forces, velocities etc. But always

add vectors that represent the same thing!

By the way, we emphasized that every quantity has a unit and we see that electric

field should be measured in N/C, where N is Newton, a unit of force and C a unit of

charge.

F

F F

F=F + F + F
1 2 3

32

1

Figure 7: Vector are added in the same way you add displacements form one place to

another. Be sure you have no confusion on how to add vectors

The concept of electric field is very useful but in principle it looks as a mess to

draw. Indeed you have to draw an arrow at each point in space!. For that reason

people found other way to represent the electric field and introduced the concept of

“lines of electric field”. What you do is to draw lines in such way that they are always

tangent to the electric field. This gives you the direction. Then one draws more lines

where the field is more intense. This is not a precise representation but gives a pictorial

idea of how the electric field actually looks like. The simplest case is that of a single

charge that we draw in figures 8 and 9. Notice that the Electric field points away from

a positive charge and toward a negative one. This is because a small positive probe

charge will be repelled by the positive charge and be attracted by the negative one.
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Figure 8: A positive charge generates an electric field pointing away from it.
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Figure 9: A negative charge generates an Electric field pointing toward it.
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3. Lecture 3

3.1 Dipole and quadrupole

The law of addition of vectors allows us to find the electric field produced by two

charges. If the two charges are of equal magnitude but opposite sign (and separated by

a distance so that they do not cancel each other) then we have what is called a dipole.

The electric lines can be found in fig.10. In the laboratory practice you will be able to

use a program that draws these lines for you. Try several configurations. For example

arrange four charges so that they look as two dipoles of opposite orientation and see

what happens. In fig. 11 and 12 we illustrate typical outputs of the program. Besides

the electric lines it also shows equipotential surfaces everywhere perpendicular to the

electric field. We discuss what they mean below.

+ −

Figure 10: Electric field of a dipole obtained by adding (vectorially) the electric fields of

each charge.

A simple rule for the lines of electric field is that they only start from positive

charges and end in negative ones. They can never end “in the middle of the air” so

to say. Before, we mentioned that electric field can exist independently of charges, in

that case the lines of electric field have to close on themselves since there is nowhere

for them to end. We will see how this works later.

3.2 Electrostatic energy

To motivate the idea of energy we use the Kelvin water dropper (fig.13), a simple
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Figure 11: Typical output from the computer program you use in the lab. In this case

illustrating the electric field and equipotentials of a dipole.

Figure 12: Illustrating the electric field and equipotentials of a quadrupole (meaning four

poles).

device that generates electricity. The way it works is illustrated in fig.14. Assuming

that one metallic jar is positively charged and the other negative, opposite charges will

be induced in the streams of water falling through the respective rings. The water

breaks in droplets which then fall into the jars accumulating charge. This is because of

the cross connection between jars and rings which makes the positive droplets fall into

the positively charged jar and the negative ones in the negatively charged one. If the

water were not to break in droplets we would have a conducting circuit from the jars

to the water tank, the charge will be repelled and would not accumulate in the jar. It

is the same effect as when we discussed induction that we needed to cut the connection
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to ground and remove the rod. Ingeniously here the connection breaks simply because

the water stream breaks into droplets. When enough charge is accumulated the electric

field is strong enough to push the charge through the bulbs lighting them up which

simultaneously neutralizes the system. Charge will build up again by repeating the

procedure. The initial charge imbalance appears just randomly, the important effect is

that any random charge fluctuation will be amplified by the device.

The idea we wanted to illustrate is also that we were able to generate electric power

and so the energy has to come from somewhere. It might not be apparent initially where

it is coming from. To figure that out one has to run the system and see when it will

stop and what I need to replace to make it work again. Obviously many electric devices

have batteries and we know they are the source of energy because when they run out

we need to replace them or the device won’t work anymore. Here it is clear that after

a while the tank runs out of water. So we need to take the water from the jars and

put it back up into the tank. To do that we need to lift water against gravity and

that is where we put energy back into the system. Therefore, gravitational energy is

being converted into electric energy. One way of seeing that is that, since the jars repel

the water droplets, gravity is necessary to push them down into their respective jars

allowing the accumulation of charge.

Having said that let us now look at how we understand energy when there are

electric fields present.

From Newtonian mechanics we know that forces can be derived from potentials.

Basically a particle feels a force that tries to make it move in the direction where it

can decrease its potential energy faster. The same occurs in the case of electrostatics.

Consider a positive charge Q which is fixed at some point and take another charge q

that we are going to move. Let us say that the other charge is negative so there is an

attractive force. If we want to move the charge q further apart by an amount ∆r we

need to do some work because there is a force that opposes us. The amount of work

needed is

W = |~F |∆r = ∆U = Ufinal − Uinitial (3.1)

where ∆U is the change in potential energy of the system. A couple of comments. When

computing the work we should use only the component of the force in the direction of

the motion. Since here we move parallel to the force the formula is OK. If not we need

to multiply by cos θ where θ is the angle between the force and the direction of motion.

Second comment is that the formula is valid for constant force. Since the force depends

on r we are going to consider ∆r � r and therefore to consider the force constant is a
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Figure 13: Kelvin invented this device to generate electricity. I find it of great interest

since it is basically just water dropping from a tank and nevertheless it is able to generate

electricity enough to light a few neon bulbs. Essentially illustrates how, by understanding

how nature works one can create something interesting out of almost nothing.

good approximation. With this in mind we compute

∆U = Ufinal − Uinitial = − 1

4πε0

Qq

r2
δr (3.2)

The minus sign is because we should have ∆U > 0 as discussed but the product of

the charges is negative since they have opposite sign. We claim now that the potential

energy is

U =
1

4πε0

Qq

r
(3.3)

Indeed the difference in potential energy between the initial and final situation is

∆U = Ufinal − Uinitial =
1

4πε0

Qq

r + ∆r
− 1

4πε0

Qq

r
= − 1

4πε0

Qq

r(r + ∆r)
∆r (3.4)

If we use now that ∆r � r we find that

∆U = − 1

4πε0

Qq

r2
δr (3.5)

as we computed from the force. This verifies our expression (3.3) for the potential

energy.
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Figure 14: The key is the cross connection of the rings and the jars. This amplifies any

charge difference accumulating opposite charges in the two metallic jars.

Another case in which we can compute the potential energy is that of a constant

uniform electric field. Namely ~E is independent of the position, that is a probe charge

feels the same force no matter where it is located. Of course this is an idealized situation

but in many cases is a good approximation for the electric field in certain regions where

it does not change very much. In such case, let us say that the electric field points in

the direction x̂. If we move a charge in directions, ŷ or ẑ, perpendicular to x̂, the force

does not oppose or help the motion so we do not need to do any work. If we move it
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in direction x̂ however, since we move in the direction of the force we extract work, or,

we make negative work:

W = −|~F |∆x = −q| ~E|∆x = δU = Ufinal − Uinitial = U(x+ ∆x)− U(x) (3.6)

The final energy of the system is therefore smaller than the initial one. We see that

the equation is satisfied if the potential energy is simply given by

U = −q| ~E|x (3.7)

Another way to figure out the sign is to notice that the charge will move in the direction

of decreasing energy. So, if q > 0 then U has to decrease toward the right and therefore

the minus sign.

3.3 Electrostatic potential

We see, as a consequence of the force being proportional to the charge, that so is the

potential energy. For that reason we define the electrostatic potential V (x, y, z) such

that is we put a charge at position (x, y, z) the energy of the system changes by

U = qV (x, y, z) (3.8)

For a charge Q the electrostatic potential is given by

V =
1

4πε0

Q

r
, where, as always, r =

√
x2 + y2 + z2 (3.9)

On the other hand, for a constant electric field in direction x̂ it is

V = −| ~E|x (3.10)

By analogy with the equation that determines the work done in terms of the potential

energy we see that if we move by a distance ∆x in a direction parallel to the electric

field the change in electrostatic potential is

∆V = −| ~E|∆x (3.11)

Equivalently the component of ~E in direction x is

Ex = −∆V

∆x
(3.12)

So, the electric field can be computed from the potential by moving in a direction x

by an amount ∆x. The change in potential ∆V determines the electric field through
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eq.(3.12). This actually works if we move in any direction, it always give the component

of ~E in that particular direction (or equivalently the projection of ~E along the direction

of motion). For example, if we move in a direction perpendicular to ~E then there is no

change in the potential. This gives rise to the notion of equipotential surfaces. This

means surfaces of the same (equal) potential, that is surfaces where V has a constant

value. From what we just said, such surfaces should be perpendicular to the electric

field. For example, for a single charge they are spheres concentric with the charge. For

a constant electric field they are planes perpendicular to ~E. In other cases, for example

for the dipole, they are more complicated but one can have some idea by drawing the

electric field and then drawing surfaces perpendicular to it (see fig. 11).

An important property of equipotential surfaces is that if we move a charge along

such surface we do not do any work.

Another important property is that to be in a static situation, namely with charges

not moving, the surface of a conductor has to be an equipotential surface. This is

because on the surface of the conductor the electric field is perpendicular to it, otherwise

if there were a component parallel to the surface, charges would move until they cancel

the electric field. Similarly, if charges are not moving then inside a conductor the electric

field is zero, implying that all the conductor has the same value of the potential. We

should emphasize that this refers to the static situation. If charges are moving then

the electric field inside a conductor need not be zero and the conductor need not be all

at the same potential.

The principle of superposition also applies to the electrostatic potential. So if we

have several charges, the total electrostatic potential is the sum of the electrostatic

potentials due to each of them. It becomes apparent the usefulness of the potential,

since the potential add as numbers as opposed to the electric field which add as vectors.

Finally the potential is measured in Nm/C since the electric field is measured in

N/C and ∆x in meters. Since this is a very common unit it has received the special

name of Volt (V). So we have

1V = 1
Nm

C
(3.13)

The potential difference many times is referred simply as “voltage”

Another demo illustrates the existence of this potential by measuring directly the

potential of a charged sphere and another by showing how putting a fluorescent light

in the electric field produces a discharge because of the potential difference between

the two ends of the tube (fig.15).
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Figure 15: A voltmeter and a fluorescent bulb make manifest the existence of a potential

difference (and electric field).
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4. Lecture 4

4.1 More on electrostatic potential

From formula (3.12) we see that V cannot have abrupt jumps otherwise the electric field

would be infinite. One example is the potential of a charged sphere which is constant

inside and decreases as 1/r outside. The electric field on the other hand has a jump, it

is zero inside and has a finite value on the surface. We plot this in figs.16 and 17.

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10

V(r)

R

Figure 16: Dependence of the electric potential with the distance to a center of a charged

sphere.

An interesting situation that we have already discussed is what happens if we touch

two charged spheres of different radii, how is the total charge distributed between the

two?.

Now we know that it distributes so that the potential is constant. In a first ap-

proximation we can ignore the presence of the other sphere and say that the potential

on the surface of each sphere is given by

V1 =
1

4πε0

Q1

R1

, V2 =
1

4πε0

Q2

R2

(4.1)

where Q1,2 and R1,2 are the charges and radii of each sphere respectively. If the poten-

tials are equal (V1 = V2) then we evidently have

Q1

R1

=
Q2

R2

(4.2)
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Figure 17: Dependence of the electric field with the distance to a center of a charged sphere.

implying that the smallest sphere has less charge, namely the charge is proportional

to the radius as mentioned before. Naively or pictorially speaking the charges prefer

to be in the large sphere since they repel each other and can then be further apart.

However one important observation is that the electric field is larger in the surface of

the smaller sphere. Indeed we have

| ~E1| =
1

4πε0

Q1

R2
1

, | ~E2| =
1

4πε0

Q2

R2
2

, (4.3)

From here, and eq.(4.2) it is evident that

| ~E1|R1 = | ~E2|R2. (4.4)

We see that if R1 is very small then | ~E1| is very large. Notice this is because, although

Q1 is smaller, we can get closer to the center of the small sphere. An extreme case

is when we have a sharp point which can be thought as a sphere of almost zero size.

Near it the electric field will be extremely large ionizing the air and allowing charge

to flow out of the conductor. This is the principle of the lightning rod invented by

Benjamin Franklin. Lightning is essentially a giant spark. The lightning rod ionizes

the air around making it conductive and favoring the initiation of the spark. Therefore

lightning is more likely to strike on the lightning rod than on the structure that it

protects.

Another important observation is that, since the electric field inside a conductor

is zero, it will still be zero if we carve a hole inside it (fig.19). This means that
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Figure 18: Distribution of charges between two conducting sphere of different radii and in

contact with each other.

conductors act as shields for electric fields. An important application is the so called

Faraday cage. Inside a metallic cage no electric field penetrates and therefore it is

isolated from electromagnetic waves, namely radios, cell phones etc. do not work.

4.2 Electric flux

One interesting concept that can be defined for a vector field such as the electric field

is that of flux through a surface. The idea originates from considering the motion of

water. If water is moving at velocity ~v then the flow of water (usually given in liters

per second, or gallons per minute) through a surface of area A is given by

flow = v⊥A = |~v|A cos θ (4.5)

where v⊥ = |~v| cos θ is the component of the velocity perpendicular to the surface. Here

θ is the angle between the normal and the velocity. To see why this is so consider figure

20. During a time interval ∆t it is clear that all the fluid contained in the volume

A|~v| cos θ∆t will go through the area A and hence the result.
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Figure 19: In a region with no charge and surrounded by a conductor the electric field is

zero.

By analogy1, given a surface we define the electric flux through it as the area of

the surface times the value of the component of the electric field perpendicular to the

surface. The easiest case is when the surface is everywhere perpendicular to ~E in which

case we just multiply area times | ~E|. For example for a single charge, we can take as a

surface the sphere of radius R concentric with the charge (fig.21). In that case we have

that the surface is perpendicular to ~E and the flux is

flux = 4πR2 1

4πε0

Q

R2
=
Q

ε0

(4.6)

namely it is independent of the radius R !. Moreover, consider a cone that determines

a surface as the one in figure 22, namely a truncated cone where the base and the top

are spherical. Notice that the areas are related by

A1

R2
1

=
A2

R2
2

(4.7)

1In the case of the electric field the situation is static, there no fluid moving but it is a useful

analogy
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Figure 20: Flow of water through a cross section area A.

because the area of an object scales as the square of the (linear) size. Along the laterals

of the truncated cone the flux is zero since it is parallel to the electric field. Through

the base and the top the flux has opposite signs since it is entering through one and

exiting through the other. The total flux is

flux =
1

4πε0

Q

R2
1

A1 −
1

4πε0

Q

R2
2

A2 = 0 (4.8)

It vanishes in view of eq.(4.7). Therefore the flux through this surface which does not

surround the charge is zero. With some imagination one can think of constructing any

surface with very small blocks of this (truncated) conical shape and the result will be

the same. If the surface does not surround the charge the flux is zero and if it does

then the flux is Q
ε0

. The superposition principle also applies to the flux, so if the surface

surrounds several charges the flux is given by the total charge surrounded. This is

called Gauss’s theorem, the flux through a closed surface is given by Q
ε0

where Q is the

total charge surrounded by the surface. It is a very powerful theorem since one can

take a surface very far from the charges and knowing the electric field there is enough

information to know how much charge we enclose.
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Figure 21: Computing the flux of the electric field produced by a charge through a concentric

sphere of radius R.

One simple example where we can use the theorem is for a flat surface with a charge

density σ. Namely, if we cut a region of area A of the surface, the charge contained is

σA. Looking at fig.23 and by symmetry the electric field will be uniform and pointing

away from the plane. Taking different surfaces and computing the flux we see that

2| ~E|A =
σA

ε0

⇒ | ~E| = σ

2ε0

(4.9)

If the plane is (x, y), that is normal to ẑ then we have an electric field

~E =

{
σ

2ε0
ẑ if z > 0

− σ
2ε0
ẑ if z < 0

(4.10)

In fact you can show using Gauss theorem that the electric field has to be independent

from the distance to the plane. Try to see why this is so using a cylindrical surface

which does not intersect the plane.
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Figure 22: For the truncated cone in the figure, the total flux is zero since the flux incoming

at the bottom is equal to the outgoing at the top.

Figure 23: The electric field created by a plane can be computed using Gauss law.

4.3 Electric current

As we explained, electrostatic forces are responsible for chemistry, explain why solids are

solids whereas liquids are liquids etc. It has practical applications in ink-jet printers,

electrophoresis, cathode tubes, particle accelerators, etc. However, by far the most

common use of electricity is through the use of electric currents and circuits.

The idea is that if we have a constant electric field in a conductor, this will produce

a motion of charges until the electric field vanishes inside. However the idea emerges
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that if we can remove the charges from one side and put it back in the other then we

can have a continuous motion of charge from one place to another. This “removal” of

charge should be done against the potential and therefore requires energy. The device

that produces such effect is known as a battery. Usually the energy in a battery comes

from a chemical reaction inside it. Such chemical reactions are capable of moving

charges across a potential difference of around 1 V ( the usual battery if 1.5 V). A

simple comment is how does then the 9V battery work?. Well, by opening up one it

is easy to see that there are 6 “elements” inside it. That essentially means six 1.5V

batteries connected in series, that is one after the other. We see that the potential just

adds as actually follows from the properties of V we discussed before.

Figure 24: Typical chemical batteries have an emf of 1.5V. A 9V battery consists of 6 of

those in series, that is one after the other.

If there were no resistance to the flow of charge, the electrons would accelerate

indefinitely inside the conductor. As it were, there is an effective maximum velocity

and therefore, after a short time, if a conductor is connected to a battery a steady flow

of charge will be present. Such flow of charge is known as a current and is measured

in Amperes (or Amps). A current of 1A means that one Coulomb of charge is going

through a section of the conductor every second 1A = 1C
s
. Experimentally it turns out

that the current inside a conductor is proportional to the potential difference or voltage

across it. This is called Ohm’s law and reads:

V = IR (4.11)
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where V is the voltage across a conductor, I is the current and R is the resistance.

The resistance in measured in Ohms (Ω) where 1Ω = 1V
A

. So a potential difference of

1V across a resistor of 1 Ω creates a current of 1A. Remember also that the potential

always decreases along the direction of the current.

Examples of resistors are shown in figure 26. Typically such resistors are color

coded. By reading the colors one can figure out the resistance.
digit color multiplier

- silver 0.01

- gold 0.1

0 black 1

1 brown 10

2 red 100

3 orange 1K

4 yellow 10K

5 green 100K

6 blue 1M

7 violet 10M

8 gray

9 white

The way it works is explained in fig.27 where we see that the value is written with

the first three stripes. The first two are read as a number using the table. The third

one is a multiplier whose value is also taken from the table. For example red black

orange is read as 20KΩ = 20, 000Ω.
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Figure 25: Simple circuit with a battery and a resistor. By Ohm’s law we have V = I R.

Figure 26: Examples of commonly used resistors.
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Figure 27: The first three stripes indicate the value of the resistance according to the color

code table. The other ones are related to tolerance and reliability.
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5. Lecture 5

5.1 Resistivity

For a conductor of uniform cross sectional area A it turns out experimentally that the

resistance is given by

R = ρ
L

A
(5.1)

where L is the length and ρ is the resistivity (measured in Ω · m), a property of the

material. So, the longer the cable and the smaller the cross section the larger the

resistance. It seems that the lower the resistance the better, however in electric circuits

sometimes a resistance plays an important role so there are special components called

resistors which, although being conductors have a relatively high resistance. We already

discussed them in the previous lecture. A typical application is to limit the current

in a circuit. Namely, for a given V, a very small resistance will create a large current

I which could damage some component. In fact it is easy to see that energy is being

dissipated in a conductor since charge is moving from a value of the potential to another

(see fig.28). The energy difference ∆U gained when transferring a charge Q across a

potential difference ∆V is

∆U = Q∆V (5.2)

Such energy is converted into heat. In a given time interval ∆t an amount of charge

Q = I∆t is transferred so the energy is

∆U = I∆V∆t (5.3)

or

P =
∆U

∆t
= I∆V (5.4)

Here P is the power, namely energy per unit time that is dissipated in the resistor. It

is converted into heat. Such heat has to be removed by cooling the equipment either

passively (letting air dissipate the heat) or actively (for example with a cooling fan).

Using Ohm’s law we have alternative equivalent expressions for the power

P = I ·∆V = I2R =
(∆V )2

R
(5.5)

For a given ∆V if the resistance R is very small the power dissipated is very large. This

is called a short-circuit, the large amount of heat produced usually melts the insulation

and even the conductor itself with the consequent fire risk. All materials conduct a

small amount of electricity but an idea of the difference between an insulator and a
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conductor can be seen in the following table where the resistivity of various material is

given.
Material Resistivity (Ω ·m)

Silver 1.59× 10−8

Copper 1.68× 10−8

Aluminum 2.82× 10−8

Tungsten 5.60× 10−8

Zinc 5.90× 10−8

Nickel 6.99× 10−8

Iron 1.0× 10−7

Germanium 4.6× 10−1

seawater 2× 10−1

Silicon 6.40× 102

Glass 1010 to 1014

Between copper and glass there is a factor of at least 1018. We should also mention

that resistivity depends on the temperature. The table are typical values at 20 oC.

Figure 28: A battery connected to a conductor produces a steady flow of current. The

electrons move opposite to the direction of the current. When going across the potential they

gain energy which is converted into heat by collision with the atoms.

5.2 Capacitors

A capacitor is a device that can be used to store electric energy that can be used later
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on. It has numerous applications some of which we are going to discuss in the rest of

this lecture or later in the course. In fact if you open any electronic device one easily

finds several of them.

In its most simple form it has two parallel surfaces of area A separated by a

distance d. One surface has charge Q and the other −Q. Since the electric field of

a flat surface we already discussed, we can easily find that the electric field cancels

outside the capacitor and inside it is given by | ~E| = Q
Aε0

. Notice that σ = Q
A

and the

factor of two goes away because we have two planes. Given the electric field we use the

formula for the potential difference:

∆V = −| ~E|∆x = − Qd
Aε0

(5.6)

The surface with positive charge has the largest potential. We also see that the potential

difference is proportional to Q. If we define the capacity C (do not confuse with the

symbol for Coulomb!) through the equation

Q = C ∆V (5.7)

then we find the capacity equal to

C =
Aε0

d
(5.8)

From the definition (5.7) we see that the unit of capacity is C/V (here C is Coulombs!) a

unit known as Faraday (F). That is 1F = 1C
V

. Although this is just an example most of

the capacitors in practical applications are similar. Commonly the planes are very thin

and an insulator is in the middle. The foils are then rolled so that capacitor occupies

less space but it essentially works in the same way. If we want to have large capacity

we need d very small and that’s why thin insulators sheets between the plates are used

and also large area which is why we need to roll it to occupy less volume. In practical

circuits a Faraday is a large unit so capacity is usually measured in µF = 10−6F , that

is micro Faraday or even nF = 10−9F or pF = 10−12F . In the picture (fig. 30) we see

some examples.
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Figure 29: A simple capacitor consists of two oppositely charged surfaces. This configuration

stores energy.

Figure 30: Examples of capacitors. The electrolytic ones have to be connected in a particular

polarity. The − signs indicate that the corresponding terminal should always have lower

potential, namely if connected to a battery it should be connected to the negative terminal.
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6. Lecture 6

6.1 Energy contained in a capacitor

We said that a capacitor stores energy. We now compute how much energy it actually

contains. A way to do that is to consider how much work we need to separate the two

plates that form the capacitor. Suppose the left plate is fixed and we move the right

one by a distance ∆d (see fig.31). The electric field produced by the other plate is

| ~E| = σ
2ε0

where σ = Q
A

. The force is then

|~F | = σ

2ε0

Q (6.1)

The work we need to do to separates the plates by a distance ∆d is

W = ∆U = Ufinal − Uinitial = |~F |∆d =
σ

2ε0

Q∆d (6.2)

From here we find that

U =
σ

2ε0

Qd =
1

2
Q2 d

Aε0

=
1

2

Q2

C
(6.3)

where we remembered that the capacity is

C =
Aε0

d
(6.4)

Using that Q = C ∆V we find the equivalent expressions for the energy contained in

the capacitor:

U =
1

2

Q2

C
=

1

2
C (∆V )2 =

1

2
Q∆V (6.5)

6.2 Dielectrics

We mentioned before that between the plates in a capacitor we include an insulator.

This can actually modify the properties of the capacitor and increase the capacity.

The reason is that insulators are generically dielectric. This means that their electrical

properties can be understood as if they are made out of tiny dipoles. The dipoles

align themselves with the electric field decreasing its value in a phenomenon known as

screening. If we consider a single charge inside a dielectric the screening phenomenon

is illustrated in figure 32. Notice that outside the dielectric the field is the same from

symmetry and Gauss law. Experimentally the result is that the electric field inside is
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Figure 31: The energy stored in a capacitor can be computed by doing a small displacement

of the plates by ∆d and computing the work needed to do that.

suppressed by a factor ε0/ε where ε is known as the permitivity of the medium. The

electric field inside the dielectric is then

~E =
1

4πε

Q

r2
r̂ (6.6)

outside is again

~E =
1

4πε0

Q

r2
r̂ (6.7)

In the case of the capacitor it works the same, we just need to replace ε0 → ε. Therefore

the capacity when there is a dielectric in between the plates is

C =
Aε

d
(6.8)

Typical values for ε/ε0 are

Material ε
ε0

Vacuum 1 (definition)

Air 1.0006

Teflon 2.1

Polyethylene 2.25

Paper 3.5

Water 80
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We see that air and vacuum are very close to each other which is why we ignore

the difference. It also shows that if we want to store more energy in a capacitor, at the

same voltage it is convenient to use a dielectric of high dielectric constant.
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Figure 32: A charge in a dielectric is partially screened by the dipoles aligning with the

electric field. Due to temperature and other variables the alignments is partially random.

As a result the field inside the dielectric is smaller that without the medium. Outside the

medium, in this case, the electric field is the same with or without the dielectric. This is

because the configuration is spherically symmetric and using Gauss’s law, the electric field is

given by the total charge enclosed in a surface (the dielectric has no net charge).

6.3 RC circuits

Now that we know what a capacitor is we can see how to charge it and what applications

we can find for it. The simplest way to charge it is with a battery and through a resistor.

One might think the resistor is not necessary but not matter what we do there is some

resistance in the circuit so we need to include it. Also, sometimes we do not want to

charge the capacitor as fast s we can and, as we are going to see, a resistor makes

the charging process slower. When the contact is closed, current starts to circulate

but it cannot go through the capacitor so charge starts to accumulate in it. Initially
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the current is just I = ∆V
R

but as the capacitor charges a potential difference appears

and the current is smaller. In the final stage, the capacitor is completely charged, the

potential difference between its terminals is the same as the battery (but opposes it)

and no more current circulates. An estimate of the time the capacitor takes to charge

is obtained by dividing the total charge by the initial current:

τ =
Q

I
=

C∆V

∆V/R
= RC (6.9)

This is a characteristic time of the circuit. The larger the resistance and the capacity

the larger the time it takes to charge. We can then discharge the capacitor through a

smaller resistance for example and it will release its energy in a much shorter interval.

An application is the flash in a photographic camera. The battery with relatively large

internal resistance charges a capacitor and then it is suddenly discharged though the

flash. Another typical application is in timing circuits. For example oscillators etc. A

resistor of variable resistance is inserted and the time of charge and discharge is used

to determine the period of the oscillations. It is not very precise so it can be used only

when the exact timing is not crucial. Another important application is in computer

memories. A charged capacitor for example can represent a 1 and a discharged one

a 0. In that case we want the capacity small to be able to charge it and discharge it

fast. However if we do not read the memory current will leak and the capacitor will be

discharged. For that reason when the computer is turned off what was in the memory

disappears. When it is working a special circuit continuously reads the memory and

rewrites it before the capacitors have time to discharge (these memories are called

DRAM and are presently the most common ones).

We can analyze the circuit in slightly more detail by defining some points (a), (b),

(c) as in figure 33 and considering the voltages at those points Va, Vb, Vc. Using Ohm’s

law ∆V = IR for the resistor and Q = C∆V for the capacitor we have

Vb − Vc = ∆Vresistor = IR (6.10)

Va − Vb = ∆Vcapacitor =
Q

C
(6.11)

Va − Vc = ∆Vbattery (6.12)

If we add the first two we have

Vb − Vc + Va − Vb = IR +
Q

C
= Va − Vc = ∆Vbattery (6.13)

So the current circulating through the circuit is

I =
1

R

(
∆Vbattery −

Q

C

)
(6.14)
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Since ∆VBattery is fixed we see that initially, when the capacitor is not charged (Q = 0)

the current is I = 1
R

∆VBattery. The current starts to charge the capacitor, Q increases

and I decreases but keeps charging the capacitor until Q = C∆Vbattery which gives

I = 0. If we plot the voltage across the capacitor and the current we get a plot as in

fig.34.

R

I

C

+
+
+
+

+ −

−
−

−
−

V∆ Battery

(a)

(c)

(b)

Figure 33: A capacitor is usually charged with a battery and through a resistor. The time

it takes to charge depends on the capacity and the resistor. It is given by ∆t = RC and is a

characteristic time of this type of circuit.
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Figure 34: Time dependence of the voltage and current across the capacitor for the RC

circuit in arbitrary units. It illustrates the general behavior of these quantities.
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7. Lecture 7

7.1 Capacitor charge and discharge

In the same way we can charge a capacitor through a resistor we can also discharge

it. In the circuit of fig.35 we have a switch with two positions. In one position the

capacitor charges through resistor R1 and in the other it discharges through resistor R2.

The characteristic times are given by ∆tcharge = R1C and ∆tcharge = R2C. Notice

that these are properties of the circuit. The capacitor itself has no characteristic time

associated with it, it depends on both the capacity C and the resistance R. A more

practical circuit substitutes the switch by an integrated circuit that does the same job.

At the end of this lecture I put a description of the circuit we used in class and how

you can build it yourself if you are interested.

R

C

+ −

V∆ Battery

R

1

2

Figure 35: By flipping the switch we can charge and discharge the capacitor. The charac-

teristic times are given by ∆tcharge = R1C and ∆tcharge = R2C.

7.2 DC circuits

7.2.1 Resistors in series and parallel

More complicated circuits include many components. Let us see now what happens if

you connect several resistors in series. In that case the current going through all of
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them is the same. On the other hand the potential difference across the system is the

sum of the potential differences across each resistors. For example if we look at fig. 36

we see that the potential difference

∆V = Va − Vd = (Va − Vb) + (Vb − Vc) + (Vc − Vd) = ∆V1 + ∆V2 + ∆V3. (7.1)

Using Ohm’s law we find

∆V1 = IR1, ∆V2 = IR2, ∆V3 = IR3, (7.2)

from where we obtain

∆V = IR1 + IR2 + IR3 = I(R1 +R2 +R3) = IR (7.3)

So the total resistance is R = R1 + R2 + R3 a simple rule to remember!. Notice that

I, the current is the same for all resistors since charge is conserved therefore the same

amount of charge has to circulate per unit time in each point of the circuit. This is not

true if the circuit branches as we see in fig.37 a connection known as parallel. In this

case the potential difference across all of resistors is the same as is easily seen if you

remember that all points connected by a cable are at the same potential. The total

current however is split between the three branches as:

I = I1 + I2 + I3 (7.4)

Again, this is because charge is conserved so the total charge entering the circuit is

distributed among the three resistors. Again using Ohm’s law we have

I =
∆V

R1

+
∆V

R2

+
∆V

R3

= ∆V

(
1

R1

+
1

R2

+
1

R3

)
= ∆V

1

R
(7.5)

So we find
1

R
=

1

R1

+
1

R2

+
1

R3

(7.6)

another easy rule to remember. However it requires more computations than just

adding the resistance as when they are in series. By the way, if you have the time

an interest it is easy and relatively cheap to buy a multimeter and a few resistors and

check these by yourself.

It is useful to remember the case where all resistors are equal R1 = R2 = R3 where

we get

R =
R1

3
(7.7)

This is the same if we out any number of resistors, for example with two resistors in

parallel the resistance is half etc.
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Figure 36: Resistors in series. The total resistance is the sum of the individual resistances.
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2

3

Figure 37: Resistors in parallel. The inverse of the total resistance is the sum of the inverse

of the individual resistances.

7.2.2 Kirchhoff’s laws

More complicated circuits can be treated similarly. Many times one can split the

circuits in resistors in series and parallel. For example consider the situation in fig.38

that is self-explanatory. Another example is fig.39. Notice that we get the same total
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resistance. The reason is that because of the values of the resistors the points (a) and

(b) have the same potential already in fig.38 so no current actually circulates through

the cable in the middle. However if one resistor changes slightly its value then a current

will circulate through the cable in the middle which can be used to detect those small

variations.

Although this can take you a long way analyzing circuits, some circuits just cannot

be analyzed in this way. Consider fig.40. In this case one cannot use the idea of

resistors in parallel or series. However we can use similar rules as those used to derive

what happens for resistors in series and parallel. This can be cast in a set of rules

which are known as Kirchhoff’s laws and read as follows:

• The total potential difference between two points connected by a path is the sum

of the potential differences between the circuit components in the path. Therefore

for any close loop the sum of the potential difference of its components have to

add up to zero.

• Charge is conserved. Therefore in each node or connections where cables come

together the total current coming in has to equal the total current coming out.

These laws allow us to write as many equations as variables we need to determine.

Care should be taken to write equations which are independent namely not equivalent

to each other. If the component is a battery then the resistance across it is fixed. If it

is a resistor it is given by Ohm’s law.

Going back to the example of the figure we can write the following equations:

I = I1 + I3 (7.8)

I1 = I2 + I5 (7.9)

I3 + I5 = I4 (7.10)

I1R1 + I5R5 + ∆Vb2 − I3R3 = 0 (7.11)

I2R2 − I4R4 −∆Vb2 − I5R5 = 0 (7.12)

I1R1 + I2R2 −∆Vb1 = 0 (7.13)

The first three are obtained by looking at the currents in each node. The last three by

looking at the loops shown in the figure. We imagine that we go down in potential so

we get for example for the loop colored pink, I1R1 when we go through R1 but −I3R3

when we go through R3 because we go against the current so the potential increases.

You can imagine you are in a hill and go up and down across each resistor or battery

and have to come back at the same height when you return to the same point. Be sure
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you understand exactly how each equation is derived. These equations are not difficult

to solve. One uses each equation to eliminate one variable and replace it in the other

equations. At the end we have only one equation and one variable and we can solve it.

Although not difficult it is tedious, instead one can use a computer algebra program to

find the solution (for example Maple, Mathematica, Matlab etc). For example, in this

case the current I is:

I =
((R1 +R3)(R2 +R4) + (R1 +R2 +R3 +R4)R5)∆Vb1 + (R1R4 −R3R2)∆Vb2

R5(r1 +R2)(R3 +R4) +R1R2R4 +R3R2R4 +R3R2R1 +R1R3R4

(7.14)

+ −

5k 10k

5k 10k

+ −

15k

15kΩ

ΩΩ

Ω Ω

Ω

+ −

7.5kΩ

Figure 38: Resistors in series and parallel.

+ −

5k 10k

5k 10k

+ −

Ω

ΩΩ

Ω

+ −

7.5kΩ2.5k 5kΩ Ω

Figure 39: Resistors in series and parallel.

7.3 Example of circuit using charge and discharge of a capacitor

Here we describe how to build a simple circuit that charges and discharges a capacitor.

The time constants depend on variable resistors that we can control by hand and also

on the value of the capacity. Building the circuit is beyond the contents of the course

but I’ll briefly describe how to do it because it is easy to do and you can have fun with

it if you decide to do it. It can also open the possibility to do many other small projects

you can find in the Internet, books etc.
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Figure 40: More complicated circuit. The closed loops used to write the equations are shown

in color.

7.3.1 Oscillator using the 555 chip

The circuit is diagrammed in fig. 41. The 555 chip senses the voltage in one of its legs

and when it goes above 2/3 of the supply voltage (here 5v) discharges the capacitor.

When the voltage goes below 1/3 of 5 volts it charges it back again. The timing is

regulated by the value of the resistors R1 and R2. In our case we put two variable

resistors of maximum value 10kΩ.

7.3.2 Actual construction

To build the circuit we use a breadboard. All holes in each column are connected to

each other except that the top and bottom parts are separate. The top and lower rails

area also single conductors that usually are connected to positive and negative (ground)

of the power supply. The supply voltage we need is 5V but the battery is 9V. So we

use a regulator 78L05 which takes the 9V and supplies 5V. The legs of the 555 chip are

labeled counterclockwise as in fig.41. Then it is a matter of patience and putting all

components on the breadboard to have the circuit built, tested and working. One can
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Figure 41: Oscillator circuit using the 555 chip. The legs of the 555 are numbered counter-

clockwise. The 78L05 is used to get 5V supply from a 9V standard battery.

use the multimeter to check the voltage across the capacitor and see how it increases

and decreases. This timing circuit can be used for many applications such and beepers,

timing circuit for a microcomputer or for example for a joystick. A computer can be

connected where the beeper is and by measuring the period of oscillations determine the

value of the resistor. If the variable resistor is connected to the stick of a joystick, then

the computer can sense its position. For more information on the 555 you can look at

the specifications with circuit examples http://www.national.com/ds/LM/LM555.pdf

and for the 78L05: http://www.national.com/ds/LM/LM78L05.pdf
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Figure 42: Oscillator circuit using the 555 chip. The two capacitors on the right are not

part of the circuit, they are there to replace the working capacitor and check how the period

changes.

Capacitor Variable resistors

Beeper

Led55578L05

Figure 43: Oscillator circuit using the 555 chip.
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Figure 44: With a multimeter one can easily check that the capacitor charges and discharges.
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8. Lecture 8

8.1 Capacitors in series and parallel

In the same way that one can analyze resistors in series and parallel one can understand

what happens for capacitors in series and parallel. Notice that whereas Ohm’s law is

∆V = IR we have Q = C∆V . So the potential difference or voltage ∆V is proportional

to R but inversely proportional to C. As a consequence, and working with the circuits

in fig.45 one finds that

Series: 1
C

= 1
C1

+ 1
C2

+ 1
C3

Parallel: C = C1 + C2 + C3

Try to derive these relations as an exercise. As a hint notice that when the capacitors

are in series, the conductors in the middle are neutral so the charge in each capacitor

is the same (see fig.45).

3

C C C
1 2 3

C

C

C

1

2

3

+Q +Q +Q

+Q

+Q

+Q

−Q −Q −Q

−Q

−Q

−Q

1 1

2 2

3

Figure 45: Capacitors in series and parallel. In parallel they add and in series their inverse

add. Notice the difference with the case of resistors.
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8.2 Magnetic field

Magnetism is a well-known phenomenon, for example the magnetic field of the Earth has

provided orientation through the use of the compass for thousands of years. Magnetic

fields can be generated by permanent magnets, electric currents and time dependent

electric fields. In the case of the magnet the magnetic field looks like the one in fig.46

(see also the demo in fig. 48). Outside the magnet it is very similar to the one of

a dipole electric field. But inside it is not. The lines of magnetic field close, they

do not start or terminate at any point. Without knowing that, one might, at first

sight, think that cutting in half a magnet will separate two opposite magnetic charges.

Traditionally they are called the North and South pole. A pure North pole would

have a magnetic field as the one in fig.47 However such object has never been observed

in Nature. In particle physics there are theoretical indications that heavy particles

with the properties of magnetic monopoles might exists. For that reason it is still an

open question if monopoles (as they are called) exist or not. In any case if they do

exist they are not common objects and we are not going to consider them here. The

question naturally arises of what happens if we keep dividing the magnet, do we find

an ”elementary magnet”?. The answer is yes, in fact the elementary magnet is our

old friend the electron. Electrons not only have charge but they also behave as a tiny

magnet. The superposition of the magnetic fields of all electrons creates the field of the

magnet. Proton and neutrons are also tiny magnets but their strength is 2000 times

smaller than the one of the electrons.

An important consequence of the fact that there are no magnetic monopoles is that

the flux of the magnetic field through a closed surface is always zero. This is because a

theorem similar to Gauss’ theorem applies. The total flux is proportional to the total

magnetic charge enclosed but since there is no magnetic charge, the flux is always zero,

namely for each closed surface the same amount of magnetic flux comes in as it goes

out.

The magnetic field is a vector usually denoted as ~B. It can be detected by the

effect it causes on charges. When a charge moves in a magnetic field it experiences a

force equal to

~F = q ~E + q~v × ~B (8.1)

where ~v is the velocity, q the charge and ~B the magnetic field. We included also an

electric field ~E for completeness. We need to explain what the operation ~v × ~B is. It

is known as a vector product and given two vectors it gives another vector:

~v × ~B = |~v|| ~B| sin θn̂ (8.2)
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Figure 46: Magnetic field of a permanent magnet. Outside is similar to an electric dipole

but inside there are no charges where the lines end. They lines of magnetic field are actually

closed.

Its magnitude is the product of the modulus of ~v, ~B and the sine of the angle between

them that we denote as θ. Its orientation we denote by the unit vector n̂ and is

perpendicular to both ~v and ~B. We write that as

n̂ ⊥ ~v, n̂ ⊥ ~B (8.3)

Its orientation is given by the right-hand rule. If we move our fingers in a screw motion

going from ~v to ~B then our thumb points in the direction of the force. This is illustrated

in fig.50. Some important consequences are

• If the particle is at rest then ~v = 0 and there is no magnetic force.

• If the velocity is parallel to ~B then θ = 0 and also there is no force.

• The magnetic force is always perpendicular to the velocity so it never does work!.
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Figure 47: A conjectured magnetic monopole will have all lines of magnetic field coming

out. It has not yet been observed in Nature but theoretical ideas suggest it might be an

actual but exotic particle.

Figure 48: The lines of magnetic field can be made evident using iron filings which orient

themselves parallel to the magnetic field.

Also form the form of the Lorentz force we see that the magnetic field is measured

in units of Ns
Cm

, such unit is known as a Tesla:

1T = 1
Ns

Cm
= 1

Kg

Cs
(8.4)

where we used 1N = 1Kgm
s2

. To have an idea the magnetic field of the Earth is around

10−5T but in the lab fields of 10T can be produced.

Since the magnetic force is perpendicular to the velocity it will change its direction

but not its magnitude. Therefore, if there are no other forces present, the kinetic energy
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Figure 49: A particle moving in a magnetic field ~B experiences a force perpendicular to the

velocity and to ~B. Its orientation is given by the right-hand rule.

E = 1
2
mv2 will remain constant, a consequence of the fact that the magnetic force does

no work. Furthermore, if the magnetic field is constant the magnitude of the force will

be constant and the trajectory of the particle will be a circle in a plane perpendicular

to the magnetic field. Indeed, in fig.49 we see that if the particle moves in circles then

the force points always toward the center keeping the particle in its trajectory in the

same way that we can tie an object at the end of a rope and make it move in circles.

Using Newton’s law
~F = m~a (8.5)

we can compute the the period of motion in a similar manner that we discussed at

the beginning of the course for the Moon orbiting the Earth. the acceleration is in the

radial direction, namely it is centripetal acceleration whose magnitude is

|~a| = v2

r
(8.6)

as we remember from the mechanics course. Since the force point in the same direction

we only need to equate their magnitudes:

|~F | = qvB = m
v2

r
(8.7)

giving

v =
qBr

m
(8.8)
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Figure 50: Example of the right-hand rule. The force is the vector product of the velocity

and the magnetic field and has the orientation indicated here.

The period of motion is how long does it take for a particle to go around the circle. It

is given by

∆t =
2πr

v
= 2πr

m

qBr
=

2πm

qB
(8.9)

amazingly it is independent of the radius. Namely if the radius is large the particle

moves faster and takes the same time to go around. Notice that a peculiar property of

this motion is that the particle can move in circles only in one direction. If one tries

to move the particle around the circle in opposite direction then the force will point

outward, it will not stay in the trajectory. Actually will again describe a circle in the

“correct” direction. On the other hand the motion in the other direction is precisely

what happens for a particle of opposite charge.

Although rather simple this idea has had numerous applications. The most sig-

nificant one perhaps is in particle accelerators where magnetic fields keep particles in

circular trajectories while at the same time electric fields accelerate them at higher

and higher energies. When these particles collide with fixed targets (or two opposite

beams are brought into collision) new particles are created revealing the fundamental

constituents of matter and their interactions.
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Figure 51: A free particle moving in a constant magnetic field ~B moves in circles since the

magnetic force is oriented toward the center.
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9. Lecture 9

9.1 Magnetic forces on an electric current

Since an electric current is charges in motion it follows that a wire through which a

current circulates will experience a force in the presence of a magnetic field. In fact an

interesting demo (fig.52) makes this effect evident. More precisely, suppose that, inside

the conductor, an electric charge density (charge per unit volume) ρ is moving with

velocity v. Then, during time ∆t all the charge contained in a volume v∆tA will pass

through a cross section of area A as can be seen in fig.53. The electric current, namely

the amount of charge going through a section of the conductor of area A per unit time

is therefore

I =
∆Q

∆t
=
ρv∆tA

∆t
= ρvA (9.1)

On the other hand the magnetic force on a moving charge is

|~F | = q|~v|| ~B| sin θ = ρAL|~v|| ~B| sin θ = IL| ~B| sin θ (9.2)

where we used that the total charge is given by q = ρLA for a conductor of length L.

Therefore the force is proportional to the current and the length, one can define a force

per unit length as
|~F |
L

= I| ~B| sin θ (9.3)

The direction and orientation of the force is given by exactly the same right-hand rule

as before. Only that instead of the velocity we use the direction of the current.

A very interesting observation is that the magnetic field allows to determine the

sign of the charge density ρ responsible for the current. This is illustrated in fig.54 and

known as the Hall effect. The same current can be produced by positive carriers moving

in one direction along a wire or by negative ones moving in the opposite direction.

However, the magnetic force on the wire is the same in both cases and for that purpose

we do not need to know the sign of the carriers. On the other hand it means that

the carriers would like to accumulate on one side of the wire and therefore if that

side becomes positively charged the carriers are positive and if it becomes negatively

charged they are negative. The experiment shows that the carriers are negative as we

know since they are electrons.

9.2 Magnetic field created by a current

9.2.1 Ampere’s law

We mentioned that an electric current creates a magnetic field as can be seen with an

electromagnet, a coil through which a current circulates behaves as a magnet. The
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Figure 52: This interesting demo shows that a current feels a force in the presence of a

magnetic field. By switching the direction of the current the direction of the force changes

and the aluminum bar rolls one way and then the other.

I

ρvΔt

L

A
v

Figure 53: A current is a charge density ρ moving with velocity ~v through a conductor of

cross section A and length L. The charge contained in a volume |~v|∆t A goes through the

cross section A during a time ∆t. This gives I = ρ|~v|A.

intensity of the magnetic field is given by Ampere’s law. We mentioned that the flux of

the magnetic field through a surface is zero. However given a vector field there is another

important quantity known as the circulation. Given a closed path one multiplies the

component of the magnetic field in the direction of the path times the displacement

and sums over all portions of the path:

Circulation around a path =
∑
| ~B|∆` cos θ (9.4)

where ∆` is the displacement, θ the angle between the magnetic field and the direction

of the path and the sum is over all portions in which we divide the path for convenience
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Figure 54: The same current is produced by positive charges moving to the right as by

negative charges moving to the left. In a magnetic field both feel a force as indicated meaning

that different charge accumulates on the sides of the conductor depending on the sign of the

carriers. This is the Hall effect and allows to determine the sign of the particles responsible

for the current.

of the calculation (see fig.55). It is exactly the same type of formula used to compute

the work done by a force when you move and object from one place to another. Only

that here we use the magnetic field and not the force in the computation (the magnetic

force does no work anyway). What Ampere’s law says is that the circulation around

any closed path is proportional to the current that pierces through any surface whose

boundary is the given path. ∑
| ~B|∆` cos θ = µ0I (9.5)

where the constant µ0 is

µ0 = 4π 10−7Tm

A
(9.6)

9.2.2 Displacement current

Maxwell realized that Ampere’s law contains an ambiguity and should actually be

amended to be true in all cases. Indeed, the circulation of the current around a closed

path is equal to the current piercing a surface whose boundary is the loop. However

there are many such surfaces. In fig. 56 we see two surfaces ending in the circular path.

One (S1) is just a disk whereas S2 is a dome-shaped surface. By charge conservation,

if the current going through S1 is not the same as the one going through S2, charge

has to accumulate in the volume between the two surfaces. For example, if we put
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Figure 55: The circulation of the magnetic field is defined in a similar way as the work of a

force along a path. In fact the circulation along a path can be defined for any vector field.

a capacitor as in the figure, we can charge the capacitor and no current would go

through S2 whereas, at the same time, current I is going through S1. This makes

Ampere’s law unclear since which surface should we use?. Here Maxwell realized that

a time dependent electric field would be piercing surface S2 since the capacitor is being

charged and an increasing electric field exists between the two plates of the capacitor.

So he proposed that the circulation of the electric field should be equal to the current

plus the variation of the electric flux through the surface. He also realized that this had

profound consequences, a varying electric field creates a magnetic field. We are going to

see that a varying magnetic field creates an electric field and so on. This process gives

rises to a wave that propagates in space. In this way Maxwell predicted the existence of

radio waves and later also suggested that light could be such an electromagnetic wave.

It is important to study this reasoning in detail. It illustrates perfectly the way

that theoretical physics works. Starting from Ampere’s law that had been verified
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experimentally, Maxwell realized an ambiguity, corrected it therefore predicting the

existence of a new phenomenon, electromagnetic waves, which was later verified by

Hertz. It is very instructive and a great scientific achievement.

Figure 56: The current through two surfaces, S1 and S2 is different but through S2 there is

a time varying electric flux.

9.2.3 Magnetic field of a wire and a solenoid (coil)

We can use Ampere’s law to compute the magnetic field surrounding a cable. For a

straight cable the magnetic field goes around as indicated in fig.57. Using Ampere’s

law for a circular path around the cable we get

circulation = 2πrB = µ0I (9.7)

We then have

| ~B| = µ0I

2πr
(9.8)

We can create a stronger magnetic field by putting several cables such that their mag-

netic fields add up. In fact we do not need to put different wires, we can take one
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wire and form a coil as in fig.58. In that case the magnetic field is non-zero inside and

outside is very small (if the coil is very long). Using a path as in the figure we get from

Ampere’s law:

BL = µ0IN (9.9)

where N is the number of turns of the coil and L is its length. Therefore, the magnetic

field inside the coil is
~B = µ0I

N

L
ẑ (9.10)

I

Figure 57: Magnetic field produced by straight wire.

– 67 –



I

I

B

B=0
L

Figure 58: Using Ampere’s law to find the magnetic field inside a coil.
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10. Lecture 10

10.1 Force between currents

We saw that a current circulating along a wire creates a magnetic field. If another

current is in its vicinity it experiences a force. In fig.59 we see a simple configuration of

two parallel wires carrying currents in the same direction. As discussed in the previous

lecture, the magnetic field produced by wire 1 has the direction indicated in the figure

and its intensity is

| ~B| = µ0

2πr
I1 (10.1)

According to the right-hand rule, the force experienced by the second wire is directed

toward the first one (attractive force) and is

|~F | = I2L| ~B| =
µ0

2π

L

r
I1I2 (10.2)

where r is the distance between the cables, L their length and I1,2 the respective

currents. Suppose they are separated by 1cm, they are 1m long and I1 = I2 = 10A.

Using that µ0
2π

= 2× 10−7mT
A

we find

|~F | = 2× 10−7mT

A

1m

1cm
102A2 = 2× 10−3mTA = 2× 10−3N (10.3)

A very small but measurable force.

10.2 Magnetic induction

If we move a cable through a magnetic field, the charges in the cable will feel a force and

then, if the cable forms a closed loop, a current will circulate. Consider the example of

fig.60. The force on a charge inside the cable is

|~F | = qvB (10.4)

Since the same force would be produced by an electric field of magnitude | ~E| = vB

such force can move charges against a potential difference ∆V = vBL where L is the

length of the cable. Namely if we have a resistor R in the rest of the circuit a current

I = ∆V
R

will circulate. This is in fact an electric generator!. Not very practical but

conceptually simple. In reality, it is better to move the cable in a circular motion so

that it comes back to the original position and can keep moving. Notice that from

the direction of the induced current we see that the moving cable acts as an effective

battery whose positive terminal is in the lower cable.
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Figure 59: Two parallel wires attract if current circulate in the same direction. They repel

is the current circulates in opposite direction.

A deeper insight into the problem can be obtained if we compute the magnetic flux

through the loop. Since the magnetic field is constant and perpendicular to the loop,

the flux is simply:

Flux = Φ = | ~B|Ld (10.5)

where L is the length of the moving conductor and d is its distance to the resistor. The

distance d changes in time such that

∆d

∆t
= v (10.6)

where v is the velocity of the moving wire. Since the loop becomes bigger, namely d is

growing we see that the flux changes as

∆Φ

∆t
= | ~B|Lv (10.7)

which is nothing else but the emf or voltage between the end points of the moving cable.

Moreover, we see that the current generated in the cable will itself create a magnetic

field in the loop which is opposite to the one already present, namely it creates an extra

field that opposes the increase in flux. This phenomenon can be exemplified by a demo

(see fig.61 and fig.62) where a loop of wire is moved in the proximity of a magnet and

a current is detected by an Ammeter. The same experiment shows that if we move the

– 70 –



magnet instead of the loop of wire then the effect is the same. Although this appears

more or less evident it is not clear in the latter case which force is moving the charges

in the loop. Thinking about this problem was one of the reasons Einstein came up with

the theory of relativity that we are going to discuss later in the course.

vF

I

R

B

Figure 60: When a conductor moves in a magnetic field, the charges inside it feel a force

that induces a current. The resulting emf can be computed from the Lorentz force or from the

Faraday law with identical results. Notice that the induced current also creates a magnetic

field, indicated with the green arrows, which opposes the change in flux.

For the moment we can summarize these finding in two important laws, the Faraday

and Lenz law.

Faraday’s law says that if the magnetic flux through a loop changes in time then

an electromotive force is generated proportional to the rate of variation of the flux:

|emf| =
∣∣∣∣∆ Φ

∆t

∣∣∣∣ (10.8)

where the Greek letter Φ is used to denote flux. It is completely equivalent as if we put

a battery with ∆V = emf. It is important to know also in which direction the force goes

or equivalently, in such effective battery which is the positive and which the negative

pole. This is given by Lenz law. It says that the current generated in the loop creates
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a magnetic field that opposes the change in flux. Namely if the flux increases, the

magnetic field created by the current is opposite to the magnetic field already present

and vice versa, if the flux decreases, the current tend to reinforce the magnetic field.

This phenomenon is known as magnetic induction, a magnetic field induces a current.

To exemplify this issues further we can use two interesting demos (see fig.63 and

64). In the first the current induced in a ring creates a repulsion that shoots the ring

into the air. In the second the same repulsion is used to stop a pendulum showing how

magnetic braking works.

Figure 61: Demo. A current is induced in a loop if we move it in the presence of a magnetic

field. See also fig. 62.
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Figure 62: A current is induced in the loop if we either move the magnet or the loop. In

both cases the magnetic flux through the loop changes.
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Figure 63: Demo. Starting up the current through the coil induces a current on a ring

producing a repulsive force and shooting the ring in the air. Cooling the ring decreases the

resistance therefore increasing the induced current and the height reached by the ring.
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Figure 64: Demo. The current induced in the pendulum when it goes through the poles of

the magnet creates a repulsive force that brakes the pendulum halting it. The same principle

can be used in electric car brakes. In that case, the induced current can charge the battery

and the energy reused to propel the car.
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11. Lecture 11

11.1 Inductors

A solenoid a part of a circuit is also called an inductor. Its purpose is to store energy

similarly to a capacitor. However it stores energy in a magnetic field as opposed to a

capacitor which stores energy in an electric field. This makes its electrical characteristic

different from the capacitor. Indeed, we know that the magnetic field produced inside

the solenoid is given by

~B =
µ0IN

`
ẑ (11.1)

where N is the number of turns, ` is the length of the solenoid and I is the current.

If the current changes, the magnetic field and therefore its flux changes (see fig65)

producing a voltage between the terminals of the solenoid. Using Faraday’s law, Lenz

law and looking at the figure we conclude that

Va − Vb =
∆Φ

∆t
= NA

∆| ~B|
∆t

= NAµ0
N

`

∆I

∆t
= L

∆I

∆t
(11.2)

where A is the cross section area of the solenoid. We defined the quantity

L = µ0
N2A

`
(11.3)

which is given in terms of the area A, the length ` and the number of turns. It is a

property of the solenoid and is called the inductance. It is measured in Henrys (H):

1H = 1
V s

A
(11.4)

as can be seen from eq.(11.3). Going back to that formula we see that if we have a DC

current, namely ∆I
∆t

= 0 then ∆V = 0, that is, it essentially acts as a cable. However

any change in current will generate a potential difference that opposes that change. To

compare with a capacitor we recall that

Q = C∆V (11.5)

If a current goes into a capacitor it will increase its charge so we find

∆Q

∆t
= I = C

∆V

∆t
(11.6)

Comparing with eq.(11.3) we see that the current is proportional to the change in

voltage whereas for a solenoid it is the other way around. Although both capacitors and

solenoids both store energy, this important difference in their voltage to current relation

makes solenoids play a different role in electric circuits. An important application of

solenoids is in transformers which we now study.

– 76 –



I

I

B
(a)

(b)
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ΔI
Δta b

Figure 65: A coil through which a variable current circulates produces a voltage across its

terminals given by Faraday’s law.

11.2 Transformers

A transformer consists of two solenoids as indicates in fig.66. Through one solenoid,

called the primary, we pass a time dependent current which creates a time dependent

magnetic flux through the other solenoid called the secondary. This time dependent

flux induces a voltage in the secondary which then acts as a battery. The interesting

point however is that the voltage in the secondary is not the same as in the primary.

Indeed using Faraday’s law we find for the voltage in the primary and secondary:

Va − Vb = N1A
∆B

∆t
(11.7)

Vc − Vd = N2A
∆B

∆t
(11.8)
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Their ratio is given by
Va − Vb
Vc − Vd

=
N1

N2

(11.9)

So we see that by having different number of turns in the secondary we can increase

or decrease the voltage. In the demo we see a transformer that increase the voltage

from 120V to 15, 000V producing an interesting display. Stepping up the voltage is not

just for show, it is very important in power transmission. When transmitting power

through a line, we can consider that the resistance of the line is in series with the load.

Therefore the current going through both is the same. To minimize the power lost

in the line we need to minimize the current since the power lost is P = I2/R. On

the other hand we need to maintain the same power at the load. The only way is to

increase the voltage of the line and for that one can use a transformer to step up the

voltage to typical values of a few hundred kilovolts.

I

I

B
(a)

(b)

(c)

(d)

Figure 66: Two coils wrapped around each other constitute a transformer. If a variable

current goes through one of them, the other acts as a battery with a variable voltage. The

ratio of the voltages in the primary and secondary is given by the ration in the number of

turns of each of them.
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Figure 67: Demo. A transformer can be used to increase the voltage of an oscillating

(alternate) current. The increased voltage can be used to create an interesting display.
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12. Lecture 12

12.1 LR circuit, comparison with RC

An inductor stores energy in the form of a magnetic field similarly as a capacitor stores

energy in the form of an electric field. In both cases we can ”charge” the device by

loading energy into it taking it it for example from a battery. In the case of a capacitor

we did that through a resistor in an RC circuit. The charging time is given by τ = RC.

See the fig.68 to remind yourself how the current and voltage behave as a function of

time in such case.

C

R

I

V
ΔV

τ = RC

Figure 68: AS seen before, energy from a battery can be stored in a capacitor using an RC

circuit. The time constant of the circuit is given by τ = RC. Compare with the RL circuit

below.

We can do the same for an inductor by using an RL circuit, a resistor in series

with an inductor. See fig.69. Initially, when we turn on the switch, the battery tries

to increase the current in the circuit and that will occur almost instantaneously if the

inductor is replaced by a cable. However such large changes in current are opposed by

the inductor which creates between its terminals a voltage that opposes the increase in

current. For that reason the current increases at a slow rate until it reaches its final

value given by:

If =
1

R
∆Vbattery (12.1)

at that time the current does no change anymore and the inductor behaves as a cable,

namely no voltage cross it terminals. However the inductor is generating a magnetic

field so it has energy stored in it. To see how long it takes to reach such a stationary

state, consider the voltage across the inductor

Va − Vb = L
∆I

∆t
(12.2)
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Initially, as we said, the inductor opposes the battery and does not allow any current

to circulate. This means that Va − Vb = ∆Vbattery and the initial slope with which

the current start increasing is then:

∆I

∆t

∣∣∣∣ =
1

L
∆Vbattery (12.3)

As the current increases, this slope decreases as can be see in the plot in fig.69. However,

we get a good estimate of the time it takes to reach the steady state if we assume the

slope to be constant and ask how long it would take with that slope to reach the current

If . It is

∆t =
If
∆I
∆t

=
∆Vbattery

R

1
∆Vbattery

L

=
L

R
(12.4)

So we find the characteristic time for an RL circuit is

τ =
L

R
(12.5)

The larger the inductance the longer it takes to charge. If the resistance is small it also

takes longer since we want to reach a larger current in the end.

L

R

I

V

I

τ = 
R
L

f

τ  t

Figure 69: Energy from a battery can be loaded in an inductor using an RL circuit. The

time constant of the circuit is given by τ = R
L . Pay attention to the different voltage and

current curves compared to the capacitor case.

12.2 Using the oscilloscope

A very useful tool to check what we discussed in the previous section is the oscilloscope

(sometimes called simply ”scope”). It measures the voltage across its terminals and

plots it as a function of time. One terminal is usually grounded and the other, which is

called a probe, has a conducting pin that you can touch to different parts of the circuit

to measure the voltage. Digital oscilloscopes have integrated circuits called analog to
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digital converters which take the voltage and covert it into a number which they store

in a memory. The instrument then displays the voltage as a function of time using

an LCD display. On the screen the horizontal scale is time and the vertical scale is

voltage. The scale can be set manually or can be left automatic (easier). In the past,

and also for high frequencies oscilloscopes work with a vacuum tube where an electron

beam was directed toward a screen. The path of the beam was changed by a potential

applied to two parallel plates. In the horizontal direction is was moved back and forth

at a constant rate (backward much faster than forward). In the vertical direction it

was moved according to the input voltage. The resulting point on the screen traces the

voltage as a function of time. Both type of oscilloscopes are perfectly good for looking

at the RL circuit. In the demo we do that and check the voltage and current as a

function of time. notice that to measure the current we can use Ohm’s law:

∆V = IR (12.6)

So we can just measure the voltage cross the resistor to know the current. The humble

resistor can be though as a current to voltage converter!.

Figure 70: Demo. An RL circuit is analyzed with the aid of an oscilloscope.

12.3 Energy contained in a solenoid

We mentioned several times that a solenoid or inductor contain energy. We are going

to derive that such energy is given by

U =
1

2
LI2 (12.7)

where L is the inductance and I the current circulating through the solenoid. To see

how this works recall that for a solenoid of area A, length ` and number of turns N ,
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Figure 71: Demo. A vacuum tube where an electron beam is directed toward a screen

producing a bright spot. The beam can be deflected by electric and magnetic fields. This

allows to build an oscilloscope by using external input to deflect the beam.

the inductance is given by

L = µ0
N2A

`
(12.8)

The energy therefore should be given by

U =
1

2
µ0
N2A

`
I2 (12.9)

To verify this result we are going to is a procedure analogous to what we did for a

capacitor. In that case we computed how much energy was required to separate the

parallel plates by a small distance ∆d. This allowed us to compute the energy in the

capacitor. Here we can see how much energy is required to expand the solenoid so that

the area is increased by ∆A. The reason we do that is that, from eq.(12.9) we expect

that the energy is linear in A so it should be easy to compute the energy necessary to

change A. The first consideration is that if we increase A, the flux through the solenoid

changes and therefore a voltage is induced:

Va − Vb =
∆Φ

∆t
= −N | ~B|∆A

∆t
= −µ0

N2

`
I

∆A

∆t
(12.10)
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This means that as we do this, we need to push the current against such potential

difference. The power necessary to do that is

P = I(Va − Vb) = µ0
N2

`
I2 ∆A

∆t
(12.11)

Since power is energy consumed in unit time, to get the total energy necessary to do

this we multiply the power by ∆t obtaining

∆U1 = P∆t = µ0
N2

`
I2∆A (12.12)

This energy we loose, so it is incorporated into the solenoid. If we compare with

eq.(12.9) we see that there is a factor of two. So we must be gaining energy somewhere

else because we overestimated the energy we needed to do this. The reason is that the

magnetic field exerts a force on the solenoid that tends to expand it. This forces does

work when we expand the solenoid and therefore we get energy form there. Let us see

how much this is. The force on a small portion of the cable is radial and per unit length

equal to

|~F |
λ

= | ~B′|I (12.13)

The magnetic field is indicated as ~B′ because we should not consider the magnetic field

created by the small portion of cable itself. To see what this is we can use Ampere’s law

to compute the magnetic field generated by a small piece of the solenoid (see fig.72).

It gives:

2| ~B|∆` = µ0
N

`
∆`I (12.14)

implying that

| ~B| = µ0N

2`
I (12.15)

which is precisely half the magnetic field of the solenoid!. What that from the magnetic

field acting on a small portion of the cable, half is created by the rest of the solenoid

and half is created by itself and should be excluded (because the small portion of cable

cannot make a force on itself). We conclude that

| ~B′| = µ0N

2`
I (12.16)

We can now compute the force

|~F |
l

=
µ0N

2`
I2 (12.17)
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The length of each turn is 2πR where R is the radius of the coil. The displacement if

we increase the radius by ∆R is precisely ∆R. We can the compute the work as

W =
|~F |
l

2πR∆R =
µ0N

2`
I2∆A (12.18)

where we used that, if we change the radius by ∆R, the area changes precisely by

∆A = 2πR∆R (assuming ∆R � R). This is work done by the solenoid, so we gain

energy. Therefore the total change in the energy of the solenoid is

∆U = ∆U1 −W =
µ0N

2`
I2∆A (12.19)

If we now assume that U = 0 when A = 0 because when A = 0 there is no magnetic

field to speak of, we obtain that

U =
µ0N

2`
I2A =

1

2
LI2 (12.20)

as we wanted to show. Admittedly this derivation is a bit lengthy but is a very useful

exercise if you want to understand several properties of magnetic field, work, energy,

etc. If you go through it carefully, the basic idea should appear quite simple and then

one has to do the calculations with great care.
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Figure 72: Energy contained in a coil. There is a force trying to expand the coil. It is

created by the magnetic field acting on the current. However the magnetic field created by

the small piece of coil considered should be excluded. If we expand the coil this force does

work and the energy of the coil is reduced. On the other hand, a voltage is induced and we

need to do work to keep the current circulating. In total the energy of the coil increases. It

is given by U = 1
2LI

2.
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13. Lecture 13

13.1 Electric generators and alternate current

We discussed before that a cable moving in a magnetic field acts as a battery since

the magnetic field creates a force that moves the charges along the cable. This is the

principle of the electric generator. It is more efficient to move the cable in circles so

the motion is repetitive. In figs.73, 74, 75 we have a simple generator (see fig.76 for

an actual example). A rectangular loop moves inside a magnetic field an a voltage is

generated between terminals (a) and (b). We can find the voltage from Faraday’s law

or equivalent from the Lorentz force.

a

b

B

Figure 73: Schematic AC generator. A cable in the shape of a loop rotates inside a magnetic

field. View in perspective.

The magnetic flux going through the loop is given by

Φ = A| ~B| cosφ (13.1)

where A is the area of the loop, | ~B| is the modulus of the magnetic field (created

for example by a permanent magnet) and φ is the angle between the normal to the

loop and the magnetic field. If the loop is horizontal the flux is maximum and if it is

vertical the flux is zero. If the loop rotates with angular velocity ω we have φ = ωt.

The flux changes in time and, according to Faraday’s law a voltage is appears between

the terminals:

Va − Vb =
∆Φ

∆t
= A| ~B|∆ cosωt

∆t
(13.2)

The only complication is that we need to compute the variation in time of cosωt.

This can be done by using a mechanical analog. Indeed, if the position of an object

is given by

x = cosωt (13.3)
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φ=ωt

B

Figure 74: Schematic AC generator. A cable in the shape of a loop rotates inside a magnetic

field. Front view.

a b
a

a ab
b b

ΔΦ
Δt < 0

V -V > 0a b

ΔΦ
Δt > 0

V -V > 0a b

ΔΦ
Δt < 0

V -V < 0a b

ΔΦ
Δt > 0

V -V < 0a b

Figure 75: Schematic AC generator. The variation in flux creates a potential between

terminals (a) and (b). The polarity alternates as seen in this figure. The symbols at the end

of the conductor indicate if the current goes into the page
⊕

or out of the page
⊙

.

then its velocity is given by

vx =
∆x

∆t
=

∆ cosωt

∆t
(13.4)

We know how to do this, we just need to consider a particle moving in circles as in

fig.77. If it rotates with angular velocity

omega, the position is given by

x = R cosωt (13.5)

y = R sinωt (13.6)
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Figure 76: Demo. Actual AC generator. Cranking the handle creates enough power to light

up a small light bulb.

The modulus of the velocity is given by the fact that it goes around the circle in time

T = 2π
ω

. The length of the circle is ` = 2πR so the velocity is

|~v| = 2πR

T
= ωR (13.7)

The direction of the velocity is as in the figure. Projecting over the x and y axis we

get for the velocity:

vx = −ωR sinωt (13.8)

vy = ωR cosωt (13.9)

We then derived the following very important formulas

∆ cosωt

∆t
= −ω sinωt (13.10)

∆ sinωt

∆t
= ω cosωt (13.11)
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φ=ωt

φ

x=R cos ωt

y=R sin ωt

v =-ωR sin ωt

v =ωR cos ωt

x

y

Figure 77: For a particle rotating in circle sit is easy to compute the velocity. This gives us

same useful formulas that we can apply in other situations.

The notation is not very precise but what it means is that is something moves as cosωt

then its velocity is −ω sinωt and similarly for the sine. This mechanical analog allows

us then to compute the voltage as

Va − Vb = −A| ~B|ω sinωt (13.12)

It is clearly seen form the nature of the motion that the relative polarity of (a) and

(b) alternates. For that reason this is called an AC generator. AC stands for alternate

current. If connected to a resistor the current circulates in one direction and then the

other, that is why it is is called alternate current. The household current alternates 60

times a second. This is called the frequency and is measured in Hertz:

1Hz = 1
1

s
(13.13)

The household current therefore has a frequency of 60Hz. It should be noticed that the

function

V = V0 sinωt (13.14)
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repeats itself when we shift t→ t+ 2π
ω

(since sine is a function that repeats itself when

the argument is shifted by 2π). therefore the period and frequency of the current are

defined as:

T =
2π

ω
, f =

1

T
=

ω

2π
(13.15)

13.2 AC resistor circuit

An AC generator connected to a resistor dissipates power. Notice that power is dissi-

pated no matter the direction of the current. According to Ohm’s law we have

∆V = IR (13.16)

For the generator we have

∆V = V0 sinωt (13.17)

therefore

I =
1

R
V0 sinωt (13.18)

the power dissipated is

P = I∆V =
1

R
V 2

0 sin2 ωt (13.19)

It changes in time but we can compute the average power dissipated. To average over

one cycle we notice that, if instead of a sine we had a cosine, the power dissipated

would be the same. But we have (denoting average with parenthesis):

〈sin2 ωt+ cos2 ωt〉 = 〈1〉 ⇒ 〈sin2 ωt〉 =
1

2
(13.20)

We get then

〈P 〉 =
V 2

0

2R
=
Vrms
R

(13.21)

where we defined

Vrms =
1√
2
V0 (13.22)

which is known as root mean square voltage (and V0 is known as peak voltage).
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14. Lecture 14

14.1 AC circuits: capacitors and inductors

14.1.1 Capacitors

Consider a circuit as in fig.78 which is called a low-pass filter for reasons we will see

shortly. The AC generator determines the potential

Va = V0 sinωt (14.1)

and we want to understand the behavior of the potential Vb at point (b). It is first

convenient to see what happens if, instead of a sine we have a square wave as in fig.79.

This is equivalent to putting a battery which periodically switches polarities as we see

in the same figure. When the battery is of one polarity it charges the capacitor in time

τ = RC as we saw before. After the capacitor charges nothing else happens and Vb
remains equal to V0. When the battery switches polarity the capacitor first discharges

and then it charges with the opposite sign so Vb = −V0 and Vb continues to be −V0 until

the battery switches back again. We see that, except for a small delay of τ = RC the

potential Vb follows the value at Va. In that sense the capacitor, for time scales t� RC

behaves as an open circuit. This last point should be emphasized, we assumed that

the period with which we switched the battery was much larger than τ = RC. If we

switch the battery very fast then the capacitor has no time to charge and discharge and

the potential across it is zero. Namely Vb = 0 and the capacitor is like a short-circuit,

namely a cable.

To summarize:

Capacitor

{
T � τ ; ω � 1

RC
; Capacitor → open circuit

T � τ ; ω � 1
RC

; Capacitor → short-circuit (cable)
(14.2)

Using this information, if we go back to the circuit in fig.78 we conclude that

Vb =

{
Va = V0 sinωt if ω � 1

RC

0 if ω � 1
RC

(14.3)

For that reason it is called a low-pass filter, any high frequency signal does not appear

at point (b). On the other hand if we have a circuit as in fig.80 we have, using the same

rules:

Vb =

{
0 if ω � 1

RC

Va = V0 sinωt if ω � 1
RC

(14.4)

For that reason it is called a high-pass filter. Low frequencies, and in particular DC

potentials are blocked by the capacitor. A typical application of the last circuit is in
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what is called AC coupling. Suppose we have an audio signal mounted on a DC voltage.

If we need to input that to an amplifier but we do not want to keep the DC voltage

because it might affect the amplifier then we can use a high pass filter as in fig.81. The

capacitor and resistors should be chosen so that they do not cut the frequencies we are

interested in.

AC

R

V

C

b
V =V sin ωta 0

low-pass filter   τ=RC

Figure 78: AC generator connected to an RC circuit. Low-pass filter, allows only low

frequencies to go through.

14.1.2 Inductors

Inductors behave in the opposite way as capacitors. At low frequencies, including DC

current, they behave as a short circuit, just like a cable. There is no voltage across its

terminals. At high frequency however, there is no current, because any such current

will vary very rapidly and would create a very large voltage across its terminals. What

actually happens is that the voltage generated is enough to cancel any voltage applied

and very little or no current circulates. So:

Inductor

{
T � τ = L

R
; ω � R

L
; Inductor → short-circuit (cable)

T � τ = L
R

; ω � R
L

; Inductor → open circuit
(14.5)

Again, looking at the example of fig.82 we have

Vb =

{
0 if ω � R

L

Va = V0 sinωt if ω � R
L

(14.6)
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Figure 79: Previous circuit connected to a square wave generator. It is equivalent to a

battery that flips polarity. If the flips are at long intervals then the capacitor charges and

discharges following the voltage. If they are very frequent then the capacitor has no time to

charge and discharge and the voltage across it is very small.

This is called a low-pass filter. In the case of fig.83 we have instead:

Vb =

{
Va = V0 sinωt if ω � R

L

0 if ω � R
L

(14.7)

This is a high-pass filter.

All these ideas are very nicely illustrated in the demo of fig.84 where changing the

frequency of the generator we can see how the behavior of the capacitor and inductor

changes according to the rules we saw before. It is interesting to find out the cut-

off frequency for the capacitor. From the circuit one can see that C = 220µF . The

light-bulb is a resistor. It is a 23W light-bulb when operated at 12V. From here we

find:

P = 25W, V = 12V, P =
V 2

R
, R = 6Ω (14.8)

Therefore

ω =
1

RC
= 800Hz (14.9)
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AC R

V

C

b
V =V sin ωta 0

high-pass filter   τ=RC

Figure 80: AC generator connected to an RC circuit. High-pass filter, allows only high

frequencies to go through.

+

amplifier

voltage divider 
to raise the DC point

Vinput

Figure 81: Example of AC coupling. If an AC signal is mounted on top of a DC voltage,

only the AC part goes through (for adequate values of the capacitance and resistance).

The frequency, as we saw before is

f =
ω

2π
=

800

2π
Hz ' 130Hz (14.10)

which can be easily verified in the demo by changing the frequency of the generator.
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Figure 82: AC generator connected to an RL circuit. High-pass filter, allows only low

frequencies to go through.

AC R

V
L

b
V =V sin ωta 0

low-pass filter   τ= LR

Figure 83: AC generator connected to an RL circuit. Low-pass filter, allows only high

frequencies to go through.
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Figure 84: Demo: Variable frequency AC generator connected to an RL and RC circuit to

demonstrate the AC properties of capacitors and inductors.
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15. Lecture 15

15.1 Demo: Sound transmission with (laser) light

Consider the circuit in figure 85 where and audio source drives the primary of a trans-

former. The secondary of the transformer is in series with a battery and a laser or LED

light. Since the secondary of the transformer acts as a battery whose voltage fluctuates

following the original sound, the intensity of the light will also fluctuate accordingly.

This fluctuations are small and too fast to be seen by the eye, so the laser pointer seems

to be working as usual but in fact contains the information about the sound. This can

be detected by using a solar cell. The solar cell generates a voltage that is proportional

to the intensity of the light and that therefore fluctuates as the original voltage. If we

connect to any device (in this case a children’s toy) that has an input for a microphone,

it will be the sound manifest either on a loudspeaker (as we do) or by recording it. The

idea for this interesting circuit can be found in several websites:

http://www.i-hacked.com/index.php?option=com content&task=view&id=162&Itemid=44,

http://www.wikihow.com/Transmit-Audio-With-a-Laser-Pen, etc. It is always inter-

esting to look around and try to see how the ideas we learn can be used in simple ways

to produce interesting results.

15.2 Electromagnetic waves

A varying electric field produces a magnetic field, a (varying) magnetic field. A varying

magnetic field creates a (varying) electric field. This gives rise to a periodic wave that

propagates in space. In vacuum they propagate at speed c ' 3×108m
s

. This is the speed

of light which is an example of an electromagnetic wave. The speed of propagation can

be written as

c =
1

√
µ0ε0

(15.1)

Generically a wave is profile that propagates (see fig.86). The intensity of the field

oscillates in time and also changes in space. The distance between to crests is called

the wave-length λ. At a given point the intensity oscillates in time and the interval

between two maxima is called the period. It is clear that, if the profile propagate at

velocity c, the two maxima separated by a distance λ will arrive at a time interval of

T = λ
c
. The inverse of the period is called the frequency

f =
1

T
=
c

λ
(15.2)

and is measured in Hertz, where 1Hz = 11
s

a unit of frequency we already saw for

AC current. As a simple example consider a FM radio station transmitting at f =
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battery 3x1.5V

laser pointer / led

Audio output transformer
Radio-Shack 273-1380
(cable colors may be different)  

audio in solar cell

to mic in

red

white

blue

green

black 
(not connected)

Figure 85: Demo. A transformer is used to modulate, that is to change the intensity, of

a laser following an audio input. The variations in the intensity of the light are detected

by a solar cell (or photoelectric panel) and converted into sound by an amplifier. The same

principle works if we use a LED but the laser beam stay narrow at much longer distances and

transmits the signal more effectively.

100MHz = 108Hz. The period is T = 1
f

= 10−8s. In that time the wave travels

λ = cT = 3m which is the wavelength of that particular radio station. In the case

of electromagnetic waves the fields that oscillate are the electric and magnetic fields.

For that reason we need to know, not only their intensity but also their orientation.

Both from theory and experiment it appears that electromagnetic waves are such that

the electric and magnetic field are perpendicular to each other and perpendicular to

the direction of propagation. The direction of propagation k̂ is given by the right

hand rule: k̂ ‖ ~E × ~B. In fig. 87 we see a depiction of an e.m. wave. The electric

field can point in any direction contained in the plane perpendicular to the direction
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wave length   λ

c

Figure 86: Generic periodic wave. A disturbance propagates with velocity c. The distance

between to peaks is called the wave-length λ. At a fixed point the time interval between the

passage of two peaks is called the period T = λ
c .

of propagation of light. If it points always in the same direction then it is said that

the wave is linearly polarized and the direction of polarization is the direction of the

electric field. In general any wave can be consider as a superposition of two waves with

orthogonal polarizations. That is, suppose that the wave propagates in direction ẑ,

then the electric field can point in the direction of x̂ or y or can be a superposition of

two waves, one polarized along x̂ and the other along ŷ. For example, an interesting

case is circular polarization where the electric field rotates in the (xy) plane. This can

be considered as a superposition of two oscillations, one in x and the other in y which

are out of phase (this is just from projecting ~E in its two components along x̂ and ŷ).

A simple demo show how this works (see fig.??). The e.m. wave is detected by putting

two metallic rods connected by a light-bulb. When a electric field is present it moves

the electrons in the metal and generates a current that lights up the electric bulb. The

current has a maximum when the rods are parallel to the electric field which allows

us to find its direction. Other important facts about e.m. waves are that modulus of

electric and magnetic fields are related by:

| ~E| = c| ~B| (15.3)

and that the intensity of the wave is given by

I =
1

2
ε0c| ~E|2 (15.4)
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Is is measured in W
m2 = J

m2 s
and determines how much energy crosses a given area per

unit time. For example for a solar cell this gives the power generated by square meter

of solar cell (up to the efficiency factor since part of the energy is converted into heat).

E

B

wave length  λ

c

Figure 87: Electromagnetic wave. The electric and magnetic field are perpendicular to each

other and to the direction of propagation.

Although electromagnetic waves of different wave-length represent the same phys-

ical phenomenon, they interact (namely are generated and absorbed) with matter in

a different way since they tend to interact with objects of the size of order the wave-

length and/or with processes whose timescale is similar to the period of the wave. For

that reason they are known with different names. For example γ-rays interact with the

atomic nucleus and therefor have wave-length of order λ ∼ 10−15m or shorter. X-rays

and light interact with atoms and therefore have wave-length in the order of 10−10m

up to 10−6m. Radio waves are generated by oscillating circuits and antennas and have

wave-length in the meters or even kilometers. Fig.88 gives a more precise classification.

15.3 Light as an electromagnetic wave

In the previous section we saw that light are electromagnetic in a particular narrow

region of wave-length. It happens to be the range to which our eyes are sensitive to. The

main reason seems to be that water is more transparent in that region allowing us to

see under water and also in the atmosphere (which has large amounts of water vapor).

In the case of light the polarization can be detected by a polarizer, a medium with

a prefer direction which allows only the passage of waves polarized in that direction.

If the wave is polarized in a different direction, only the component of the electric

field parallel to the preferred direction goes through. That is (see fig.89), if the angle

between the electric field and the preferred direction is θ, the magnitude of the electric

field after the wave goes through the polarizer if | ~Eout| = | ~Eout| cos θ. the intensity is
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Figure 88: Electromagnetic spectrum from wikipedia. Electromagnetic waves of different

wave-length interact with matter differently and also have different applications.

proportional to the square of the electric field (see eq.(15.4)) and therefore:

Iout
Iin

= cos2 θ (15.5)

15.3.1 Index of refraction

An important fact about light propagating in a medium is that its speed cm is slower

that c the speed of light in vacuum. The ratio is called the index of refraction:

n =
c

cm
(15.6)

The change in speed gives rise to a phenomenon known as refraction. A wave crossing

a medium interfaces is bent. The change in angle is given by Snell’s law:

n1 sin θ1 = n2 sin θ2 (15.7)

where n1,2 are the index of refraction of the two media and the angles are defined in

figure 90. This is nicely illustrated in a demo where we can also see that for a given

angle the light emerges from the liquid parallel to the interface and for larger angles it

does not emerge at all, a phenomenon known as total reflection.

– 102 –



in out
θE E

Figure 89: A polarizer lets through only the component of the electric field parallel to a

preferred direction (indicated with red).

15.3.2 Fermat’s principle

A problem that works in a similar way to the refraction of light is the following. Looking

at fig. 92 suppose you need to reach a buoy some distance from the shore in the shortest

possible time. If you are in the water you swim straight to it since a straight line is

the shortest path. If you are in-land however, you first need to run to shore and since

you run faster than swim it is better to take a somewhat longest path on land if it cuts

your swimming leg. It turns out that, as pointed out by Fermat already in the sixteen

hundreds, the path of least time is such that Snell’s law is obeyed. Therefore, if we

assume that a ray of light takes always the path of least time then we can derive Snell’s

law as suggested by Fermat. On small correction is that in certain cases a ray of light

would take actually take also the path of largest time. These are generically called

extremal paths. A more sever objection is that such principle seems more appropriate

to particles rather than waves. We will see later on how to derive Snell’s law using that

light is a wave. Nevertheless Fermat’s principle was a great idea and had a profound

impact physics. In fact, most of modern physics is based in similar extremal principles.

That is for a certain physical system one finds a quantity called the action such that

the system always follows the paths of extremal action.
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ϴ ϴ
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2

1

n

n2

1

Figure 90: Refraction of light in the interface between two media. Snell’s law determines

that n1 sin θ1 = n2 sin θ2. Part of the light is also reflected and the angle of reflection is the

same as the angle of incidence θ1.

Figure 91: Demo: Refraction of light in the interface between two media. Illustrates Snell’s

law.
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start

buoy

water

land

Figure 92: Fermat’s principle can be illustrated with a simple consideration. If a person

needs to get to a buoy in the water and part of the path is on land where he/she can run a

fast and part in the water which slows them down, which is the optimal path?. It turns out

that the optimal path is given by Snell’s law!.
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16. Lecture 16

16.1 Refraction

Let’s have a a look at Snell’s law

n1 sin θ1 = n2 sin θ2 (16.1)

from the point of view of waves. First we can define a wave front as the surface where

the waves have maximum amplitude. Such wave front moves with the speed of light.

A wave-length behind it there is another wave front where the amplitude is maximum

etc., there are in fact many wave fronts. When the wave reaches the interface (see fig.93,

each part of the front does so at a different time. Therefore, two arbitrary points A,B

separated by a distance L on the interface are not in phase, namely if A is a maximum

B is not. In fact B is behind A by a time ∆t determined by

c1∆t = L sin θ1 (16.2)

To see that we can use some geometry to prove that the angle of incidence θ1 is the same

as the other angle labeled as θ1 in the figure. On the other hand, the same oscillations

of the field are seen from the other side of the interface. This implies that the phase

difference between A and B given by ∆t has to also be equal to

c2∆t = L sin θ2 (16.3)

From here we derive that
L

c1

sin θ1 =
L

c2

sin θ2 (16.4)

and, canceling L and multiplying by c the speed of light in the vacuum we derive that

c

c1

sin θ1 =
c

c2

sin θ2 ⇒ n1 sin θ1 = n2 sin θ2 (16.5)

which is Snell’s law. Notice that part of the light is always reflected form the interface.

In the case where n1 > n2 (for example light going from water to air) we see that

sin θ2 =
n1

n2

sin θ1 (16.6)

Since n2

n1
< 1 there is a critical angle θ1 = θc such that

sin θc =
n2

n1

(16.7)

– 106 –



In that case we get θ2 = pi
2

namely the transmitted light emerges parallel to the

interface. For angles θ1 > θc there is no value of θ2 that satisfies Snell’s law because

sin θ2 ≤ 1 (sine is always smaller than one). In that case we have a phenomenon known

as total reflection, all the light is reflected and nothing is transmitted. You can verify

that when you go to a swimming pool and look up while being under water. There is

am angle beyond which you cannot see outside.

1

2

1

n

n2

1

A BL

θ1 c Δt 
1

c 
Δ

t
2

θ θ

θ

θ2

Figure 93: Refraction of light in the interface between two media. Snell’s law can be derived

from the wave nature of light. The dotted lines represent wave fronts.

16.2 Mirrors

A mirror can be thought as an interface that reflects all the incoming light, that is,

nothing is transmitted. There are several types of mirror characterized by their shapes.

16.2.1 Flat mirror

Flat mirrors are the most common ones. As we already discussed, the reflected ray

forms the same angle with the normal as the incident ray. This follows form the same
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principles used to derive refraction. if we look at the front wave now the speed of light

is the same so the angle is the same. A consequence of this is that, as we all know, a

flat mirror gives an image identical to the original only that is reversed front to back.

The image appears to be at the same distance behind the mirror as the original object

in front. To see why this is so we can look at figure 94. If you look at the reflected

rays originating from a point A, they appear to come from point A’. So you interpret

this information as if there were another object in point A’ although of course there is

none. This method to analyze the formation of images is applied to more complicated

cases as we discussed now.

A

A'

flat mirror

Figure 94: Reflection of light by a flat mirror. The reflected rays appear to emanate from

the point A′ which is the image of point A.

16.2.2 Concave mirror

A concave mirror has the shape of a section of a spherical surface. They are charac-

terized by R the radius of the corresponding sphere (see fig. 95). The center of the

sphere is called the center of curvature of the mirror and R the radius of curvature. If

we look at what happens for a ray that originates in point A and moves parallel to the

horizontal axis in the same figure, we see that, after being reflected it intersects the

horizontal axis at a point which approximately R
2

away from the mirror. Such point is

called the focal point. The proof of that is that, from the figure we have α = 2θ and

then

sin θ =
h

R
(16.8)
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sin 2θ =
h

`
(16.9)

Now we have to use an important formula valid when an angle is small (in radians):

sin θ ' θ when θ � 1 (16.10)

Using this we find
θ ' h

R
,

2θ ' h
`

}
⇒ ` =

R

2
(16.11)

From the triangle drawn in the figure we find that the focal point is at the same distance

` from the center of curvature. Therefore the focal point is at a distance f ' R
2

from

the mirror. In the approximation of small angles all ray parallel to the horizontal axis

are reflected toward the focal point.

R

f
θ

θ
θ

α=2θ
h

Figure 95: Reflection of light by a concave mirror. A ray parallel to the horizontal axis

is reflected toward the focal point at a distance f = R
2 of the mirror. The two segments

highlighted in green have the same length (denoted as ` in the text).
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Figure 96: Demo: Reflection of light by a concave mirror.
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Figure 97: Demo: an interesting effect of real images. The image of a small object can be

easily confused with the real thing.
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17. Lecture 17

17.1 Concave mirror

Continuing with our study of the concave mirror we can find now where the image

is formed. In the approximation of small angles we are using, all the rays of light

emanating from the object that are reflected in the mirror intersect at a point which is

the position of the image. To find such position we need to us at least two rays. This is

illustrated in fig.98. One is the ray that is parallel to the horizontal axis that is reflected

toward the focal point. Another one is the one that goes through the focal point which

is reflected parallel to the horizontal axis. This is so because the path of the light can

always be backtracked, so if it arrives parallel then goes to the focus implies that if it

comes from the focus it reflects parallel. Where these two rays intersect is where the

image is located. Another ray that can be used is the one that hits the center of the

mirror which reflect with the same angle as it arrives. This is because at that point

the normal to the mirror is horizontal so a ray hitting the center behaves as if it were

reflecting from a vertical flat mirror. Just to be clear when we say “horizontal” or

“vertical” we are assuming that the axis of the mirror is the horizontal direction in the

picture. From the figure we see that, in this case, the image is real, namely it is formed

in front of the mirror. On the other hand, looking at figure 99 we find that, if the object

is closer to the mirror than the focal distance f , then the image is virtual. In the next

section we will be more precise and find a mathematical equation that determines the

position and height of the image.

h

h'

s f

s'

Figure 98: Image of an object by a concave mirror when the object is further than the focal

point. Follow the rays and see how the image is constructed. The highlighted triangles are

similar to each other and used in deriving the mirror equation.
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h
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Figure 99: Image of an object by a concave mirror when the object is closer than the focal

point.

17.2 Mirror equation

Consider the case of the concave mirror that we have already discussed and illustrated

in fig.98. If we put an object of height h at a distance s from the mirror we are

interested in finding the height h′ and position s′ of the image. Before starting let us

discuss how we set up the sign conventions. We are going to take s′ > 0 if the image

is formed on the same side as the object (real image) and s′ < 0 if it is formed behind

the mirror (virtual image). Furthermore, if the image is upright we take h′ > 0 and if

it is inverted we take h′ < 0.

We can now proceed to find the position and height of the image. From fig.98,

using that the highlighted triangles are similar (namely they have the same angles and

their sides are proportional) we find that:

h

s− f
=
−h′

f
(17.1)

Here we took into account that h′ < 0 so the length of the corresponding side of the

triangle is actually −h′. If we do the same with the image we find another equality:

−h′

s′ − f
=
h

f
(17.2)
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which actually is the same as the previous equation after interchanging s↔ s′, h↔ −h′.
From eq.(17.1) we find

h′ = − hf

s− f
(17.3)

replacing this value of h′ in the eq.(17.2) we find:

hf

(s′ − f)(s− f)
=
h

f
⇒ hf

s− f
=
h(s′ − f)

f
⇒ s′ =

f 2

s− f
+ f (17.4)

Taking common denominator in the expression for s′ we finally find

s′ =
sf

s− f
(17.5)

h′ = − hf

s− f
(17.6)

where we included eq.(17.3). These two equations completely determine the position

and size of the image. Although we derived them for the case where s > f , it is straight-

forward to check they also work when s < f . It is conventional to rewrite them in a

way that makes more evident the symmetry between the object and the image:

s′ =
sf

s− f
⇒ 1

s′
=
s− f
sf

=
1

f
− 1

s
⇒ 1

s
+

1

s′
=

1

f
(17.7)

For the height we have:
h′

s′
= − hf

s− f
s− f
sf

= −h
s

(17.8)

So we get the equivalent equations:

1

s
+

1

s′
=

1

f
(17.9)

−h′

s′
=
h

s
(17.10)

17.3 Convex mirror

A convex mirror is shaped as the exterior of a sphere. Rays which arrive parallel to the

axis are divergent after being reflected. They appear to originate from a point behind

the mirror called the focal point. On the other hand, a ray that is directed toward the

focal point will be reflected parallel. In fig.100 we see that in this case the image is

always virtual and upright. With some algebra and using the same ideas as before we

can derive that the convex mirror obeys the same mirror equation as the concave one

with the only change being that now f < 0.
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s

f<0

s'<0

Figure 100: Image of an object by a convex mirror. The image is always virtual and upright.

In this case f < 0.

17.4 Convergent lens

Another important optical component is the lens. In the ideal situation, rays arriving

parallel to the axis of the lens are transmitted and converge into a single point called

the focal point. The lens works using the laws of refraction. Typically it is made of

glass or a similar material. The rays of light are refracted twice, once in each surface

of the lens and that produces the desired effect. As with the mirror, the behavior of

the lens is only approximate and valid for rays which are not too far from the axis

and/or arrive at small angles. If the rays arrive from the other side of the lens they will

converge into another focal point situated at the same distance as the one we already

discussed but on the other side of the lens. Furthermore, if a ray goes through a focal

point, it will become parallel to the axis after crossing the lens. Finally, a ray going

through the center of the lens is transmitted right through. The rules to construct

images are similar as with the mirrors. In the figures 101 and 102 we see two cases,

one where the object is far from the lens and the other when it is closer that f .
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h'

s>0

f
s'>0
f

Figure 101: Image of an object by a convergent lens when the object is further than the

focal point.

h
h'

s>0

f

s'<0

f

Figure 102: Image of an object by a convergent lens when the object is closer than the focal

point.
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Figure 103: Demo illustrating the properties of lenses
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18. Lecture 18

18.1 Lens equation

Going back to the convergent lens, we can once again find an equation that determines

the position and size of the image given the position and size of the object. The sign

convention for the image’s position is now that s′ > 0 if the image is on opposite sides

of the lens as the object and s′ < 0 if the image is on the same side of the object. This

makes sense because we look at the lens from behind whereas we looked at the mirror

from the front. That is a real image has s′ > 0 in both cases. With these conventions

and looking at figure 101 we can derive, similarly as for the mirror:

h

s− f
=
−h′

f
(18.1)

and also
−h′

s′ − f
=
h

f
(18.2)

Since the equations are the same as for the mirror we can immediately derive

s′ =
sf

s− f
(18.3)

h′ = − hf

s− f
(18.4)

or equivalently:

1

s
+

1

s′
=

1

f
(18.5)

−h′

s′
=
h

s
(18.6)

It is easy to see that once again these equations are valid if s > f or s < f .

18.2 Divergent Lens

When rays arrive parallel to the axis into a divergent lens they become divergent and

seem to originate from a focal point situated on the same side of the lens from where

the rays arrived. As seen in fig. 104 the image is always virtual and up-right. The

equation for the lens can be applied to this case if we take f < 0.
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Figure 104: Image of an object by a divergent lens. It is always virtual and upright.

18.3 Camera, microscope, telescope

There are numerous application of lenses and mirrors. The photographic camera is

one of them. It actually works on the same principle as our eye. It creates an image

on a surface sensitive to light. The image is then read electronically or chemically by

producing a reaction on a film. The minimal setup is a convergent lens which creates

a real image as in fig.101. The screen is positioned at the point where the image is

formed.

Another application is the microscope. The minimal setup in this case is a con-

vergent lens as in fig.102. Actually this is also the usual magnifying glass. Actual

microscopes have more lenses that increase the magnification but work on the same

principle.

Finally we have the telescope which is used to look at objects far away. When

a point is far away, the rays coming from such point, for all practical purposes are

parallel to each other. On the other hand if we have an extended object far away, and

the object is large enough, the rays originating from different points of the object arrive

with different angles. In that way we can talk about the angular size of an object which

is the difference in angles between rays arriving from opposite edges of the object. As

seen in figure 105, out of parallel rays, a convergent lens forms an image on its focal

plane. This is how our eyes form images for objects at infinity. The angular size of

the object is determines the size of the image on our retina. In that way we see for
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example the Moon as an object which has an apparent size which does not seem too

big compared to everyday objects even if we know it is much larger than any object we

can handle. The reason of course being that the Moon is much further away that any

everyday object.

If, as in figure 105 we introduce another lens whose focal point coincides with the

one of the first lens, the rays will once again be parallel but now the angular size will

be different. We want the angular size to be larger so the object will appear larger and

we will be able to see more details. From fig.105 we can derive that

tan θ =
h

f
, tan θ′ =

h

f ′
(18.7)

where h is the height of the image created by the first lens and f , f ′ are the focal

distances of both lenses. The angles θ and θ′ are the angles at which a given ray arrives

and then emerges from the telescope. Since we always consider small angles we have

tan θ ' θ, tan θ′ ' θ′ (18.8)

which implies

magnification =
θ′

θ
=
f

f ′
(18.9)

which is defined as the magnification of the telescope. If we have f ′ < f then we also

have θ′ > θ as we wanted.

18.4 Aberrations

We insist once again that all the equations and image formation we nave studied for

mirrors and lenses are approximations for small angles. Sometimes these are called the

laws of ideal mirrors and lenses whereas actual ones do not behave exactly the same.

The differences between the ideal and actual behavior are called aberrations. Let us

discuss two simple ones. First, we said that a spherical mirror forms a sharp image

only if the rays arrive close to the axis. namely the mirror is small compared to the

radius of curvature. This is illustrated in fig.106 where we see that the rays emanating

from the object do not all cross at the same point. For rays reaching the mirror further

from the axis this is evident. This is called spherical aberration. If we put a screen or

photographic plate at the position of the image the image will be blurred for such a big

mirror. On the other hand, if we just take a look from the left with our own eyes this

might not be so evident because our eyes are quite small and will only capture a few

of the rays. Such rays would intersect at the image point and the image will appear

sharp essentially because our eyes are taking advantage only of the central part of the

mirror.
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Figure 105: Simple refractive telescope. Two lenses increase the angular size of objects

situated at infinity

Another kind of aberration is called color or chromatic aberration. It applies only

to lenses. Although we did not discuss this in detail it turns out that the index of

refraction is different for different colors as seen in a prism which separate the different

colors from white light. A lens works similarly and therefore the focal point is slightly

different for different colors. This distorts the images produced by lenses and needs

to be corrected in some applications by putting several lenses such that their color

aberrations cancel each other.
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Figure 106: Spherical mirror. Images formed by a big mirror (compared with its curvature

radius) are not sharp.
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19. Lecture 19

19.1 Interference

The principle of superposition implies than when two electromagnetic waves meet each

other, the total electric and magnetic fields are the sum of the electric and magnetic

field of each wave. This is quite important since, for example, the electric fields can

add up or subtract depending on how they are oriented. When they are opposite and

of the same strength they cancel each other and we have the very surprising property

that two beams of light can cancel each other and give a dark spot. This is called

destructive interference (whereas constructive is when they add up). However it does

not seem to be something we see everyday!. In fact we know that two light bulbs always

illuminate more than one. So what is going on?. The situation is that in a light bulb

the atoms of the filament are emitting light independently, so from each light bulb we

have an enormous number of pulses or wave packets that are not in phase with each

other. So wave packets from different sources sometimes add up and sometimes cancel

each other. In average the intensities just add up. Notice that this is not constructive

interference. In constructive interference the electric fields add up. But the intensity

is proportional to the square of the electric field so two beams of equal intensity give

through constructive interference a beam of four times the intensity. On the other hand

random interference gives just twice the intensity.

In fig.107 we see the case of two wave packets interfering constructively, destruc-

tively or an intermediate case.

The question is now if we can actually see interference and cancel light with light.

The trick is to split each wave packet in two parts and then join them back so essen-

tially each packet interferes with itself. How to do so we know from when we studied

refraction, an incident beam is split into a reflected beam an a transmitted beam. This

is the principle used in the interferometer.

19.1.1 Interferometer

The interferometer (see fig.108) works by splitting a beam into two using a partially

reflecting mirror (drawn in blue). The two beams are reflected from flat mirrors (drawn

in green) and joined back together using the same partially reflective mirror. Part of

the beam will be sent back to the source and lost. After the two beams are joined

they are projected onto a screen. If the difference in the length of the two arms

of the interferometer is an integer multiple of the wave-length then the interference

in constructive. If it is a half-integer multiple is destructive. Otherwise we have an

intermediate situation. The trick is that all wave packets emitted by the source interfere

in the same way provided that the source is monochromatic, namely has a single wave
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Figure 107: Two wave packets can interfere constructively or destructively. Also there are

many intermediate situations as illustrated in the third plot.

length. It is also important that the difference in length between the two arms of the

interferometer is smaller than the typical length of the wave-packets (also known as

coherence length). Otherwise a packet cannot interfere with itself. To summarize:

∆L =

{
mλ → Constructive(
m+ 1

2

)
λ → Destructive

(19.1)

where m is an arbitrary integer. The wave length for visible light is of the order of

500nm so by moving the mirror so slightly one can go from constructive to destructive
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interference. Not only is the interferometer a clear proof of the wave-like nature of light

but it also provides a very sensitive instrument to measure length. Although this is

not practical to use in everyday life, for certain physics experiments it is very useful.

One such experiment which is under way is the detection of gravitational waves. Such

waves would make the mirrors move and such motion can be detected. It requires great

care since, for example, even small vibrations that change the position of the mirrors

are enough to destroy the interference pattern.

mirror

mirror

light
source

screen

L

L

1

2

Figure 108: Interferometer.

19.1.2 Thin films

Other situation where interference appears and is actually very easy to see is in thin

films. For example soapy water on glass can form a thin film. It is known that when

illuminated with white light such films appear colored as a rainbow (e.g. soap bubbles).

The reason is that we have interference as shown in fig.109. The two reflected beams

will interfere constructively or destructively. The difference in path length is

∆L =
2d

cos θ′
(19.2)
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where d is the thickness of the film and θ′ is the angle of refraction (given by Snell’s

law). There is a subtlety which is that, as we are going to see later, when a beam is

reflected from an interface there could be a phase shift of 180o equivalent to a half-

wave length shift. The rule is that when coming from medium 1 and reflecting from an

interface with medium 2:

n1 < n2 → 180o phase shift (19.3)

n1 > n2 → no phase shift (19.4)

(19.5)

where n1,2 are the indices of refraction of the two media. The other point to take into

account is that the wave-length changes when going to a different medium. The wave

length is related to the frequency through

λ =
c

f
(19.6)

where c is the speed of light in the medium and f is the frequency which is the same

in all regions (since the boundary conditions enforce that the electric and magnetic

field oscillate in unison in all media). If we use λ1 the wave-length in medium 1 as a

reference, the wave-length λ2 in medium two is given by

λ2 =
c2

c1

λ1 =
n1

n2

λ (19.7)

since the speed of light is inversely proportional to the refraction index. Of medium 1

is air we take n1 = 1 and obtain

If n1 < n2 < n3, or n1 > n2 > n3 then

{
∆L = 2d

cos θ′
= m λ

n2
→ Constructive

∆L = 2d
cos θ′

=
(
m+ 1

2

)
λ
n2
→ Destructive

If n1 < n2 > n3, or n1 > n2 < n3 then

{
∆L = 2d

cos θ′
= m λ

n2
→ Destructive

∆L = 2d
cos θ′

=
(
m+ 1

2

)
λ
n2
→ Constructive

Since the angle at which there is constructive interference depends on the wavelength,

different colors will be seen at different angles giving rise to the rainbow effect. The

same happens for example for two flat glass surfaces separated by a thin layer of air.

In fact the effect is more evident if the surfaces are not parallel but slightly at angle.

Then dark and bright bands appear. An example is when a lens is positioned over a

flat surface as seen in fig.111.
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Figure 109: Thin-film interference. Care should be taken to include the extra 180o phase

shift introduce when reflecting form a material of larger index of refraction.

19.1.3 Two slits

Another experiment is the two slit experiment also knows an Young’s experiment. Light

is shone toward an opaque surface with two very thin slits close to each other. A screen

on the other side shows alternative bright and dark bands produces by interference.

From fig.112 we see that the bright bands appear whenever2 :

∆L = d sin θM = mλ (19.8)

where d is the distance between slits and θM is the angle at which we find a maximum.

Also the integer m is known as the order of the maximum. The bright and dark bands

are also called fringes.

2Remember that in these formulas it is conventional to use m to denote an arbitrary integer.
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Figure 110: Demo: Thin-film interference. The rainbow colors are produced by interference

maxima located at different positions for different wave-lengths.
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Figure 111: A thin film of air can be obtained between a lens and a flat specular surface.

The interference pattern is known as Newton’s rings.
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Figure 112: Young’s experiment, interference between light coming from two slits illumi-

nated by the same source.
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20. Lecture 20

20.0.4 Fresnel Equations

In the previous lecture we discussed that light can experience a 1800 phase shift when

reflected from an interface. Here we are going to show that this follows from the

properties of light as an electromagnetic wave. Typical media that we consider are air,

water, glass, etc. which are dielectrics. Namely they are made of tiny dipoles that

orient themselves with the electric field. In the presence of an electromagnetic wave

they oscillate producing a slow down of light and the property of refraction. What is

important for us here is that they generate a surface charge and therefore the normal

component of the electric field can have a jump at the interface. On the other hand

the component of the electric field parallel to the interface is continuous. Besides, the

magnetic field is also continuous since the materials we consider are not magnetic and

therefore generate no magnetic fields at the interface. To understand the calculation we

draw fig.113 were we consider the case when the electric field is parallel to the interface

in which case it has to be continuous:

Ei + Er = Et (20.1)

that is, the electric field in medium 1 is the sum of the incident and reflected ones and

has to be equal to the electric field in medium two which is the transmitted one. The

magnetic field has two components and we have

−Bi cos θ +Br cos θ = −Bt cos θ′ (20.2)

−Bi sin θ −Br sin θ = −Bt sin θ′ (20.3)

Notice that the direction of the magnetic field is determined by the fact that ~E × ~B

points in the direction of propagation of the wave. Moreover, the strength of the

magnetic field is related to the electric field by the speed of light:

Bi =
Ei
c1

, Br =
Er
c1

, Bt =
Et
c2

. (20.4)

Using eq.(20.4) to replace the magnetic field in eqns.(20.2) and (20.3) we get

−Ei
c1

cos θ +
Er
c1

cos θ = −Et
c2

cos θ′ (20.5)

−Ei
c1

sin θ − Er
c1

sin θ = −Et
c2

sin θ′ (20.6)

Taking into account that the speed of light c1,2 in each media are given in terms of the

index of refraction by

c1,2 =
c

n1,2

⇒ c1

c2

=
n2

n1

(20.7)
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we find that eq.(20.6) reduces to

n1 sin θ (Ei + Er) = n2 sin θ′Et (20.8)

Comparing with eq.(20.1) we see that we need to satisfy

n1 sin θ = n2 sin θ′ (20.9)

which is Snell’s law!. Therefore we are left with two equations:

Ei + Er = Et (20.10)

−Ei cos θ + Er cos θ = −n2

n1

Et cos θ′ (20.11)

namely eqns.(20.1) and (20.2). We have two equations and we need to compute two

quantities, Er and Et, it is then just a matter of algebra. Before proceeding we can

take the simplest case of normal incidence when θ = θ′ = 0. This gives

Ei + Er = Et (20.12)

−Ei + Er = −n2

n1

Et (20.13)

from where we derive

Et =
2n1

n1 + n2

Ei (20.14)

Er =
n1 − n2

n1 + n2

Ei (20.15)

which in particular implies that, if n2 > n1 the reflected electric field is opposite to

the incident one, namely a 180o phase shift. Equivalent to shifting the wave by a half

wave-length. If the incidence is not normal the same calculation gives for the reflected

electric field

Er =
n1 cos θ − n2 cos θ′

n1 cos θ − n2 cos θ′
Ei (20.16)

=
sin θ′ cos θ − sin θ cos θ′

sin θ′ cos θ − sin θ cos θ′
Ei (20.17)

=
sin(θ′ − θ)
sin(θ′ + θ)

Ei (20.18)

where we used Snell’s law and the identity sin(α + β) = sinα cos β + cosα sin β. We

again derive that

n1 > n2 ⇒ θ < θ′ ⇒ Er, Ei same sign ⇒ no phase shift

n1 < n2 ⇒ θ > θ′ ⇒ Er, Ei opposite sign ⇒ 180o phase shift
(20.19)

Besides, from Er and Et we can also compute how much of the wave is reflected and

how much transmitted. That this calculations agree with the experiment leave very

little doubt that light is indeed an electromagnetic wave.
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Figure 113: Refraction of an electromagnetic wave.

20.1 Gratings

A grating is a special device composed of a large number of slits parallel to each other.

It works similarly to the two slits but it is very effective at separating light in its

different constituent colors because the interference maxima are quite narrow. Typical

gratings have hundreds of slits per millimeter. In fig.114 we see that the difference in

path length between two neighboring rays is given by

∆L = d sin θ (20.20)

If it is an integer number m of wave-lengths

d sin θM = mλ (20.21)

then two consecutive paths interfere constructively. Moreover it is easy to see that any

path will interfere constructively with any other one and then we will have a maximum.
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It is also clear that if we change the angle slightly then consecutive paths might still

interfere constructively but not paths originating from far apart slits because the path

difference would be larger. This makes the peaks very narrow. This phenomenon is

very important to decompose light in its component wave-lengths. This way we can

study light coming from distant stars and understand their chemical composition. The

reason is that each element absorbs particular wave-lengths and therefore leave their

characteristic imprint in the spectrum. Sort of a “fingerprinting” for chemical elements.

Gratings can also be reflective, an everyday example is a CD which has parallel grooves

very close together. If you look at light reflected from a CD it is easy to see a rainbow-

like pattern. Prisms work similarly using that the refraction index depends on the

wave-length but they are not efficient because to separate the spectrum they have to

be thick and therefore absorb too much light. Nevertheless the actual rainbow in the

sky is produced in this way by refraction inside tiny drops of water.

θ
d

Figure 114: Grating. The angles corresponding to maxima are easily computed as d sin θM =

nλ.
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Figure 115: A laser has longer coherence length than a light bulb and makes it easier to

look at the interference patterns of gratings as seen in the next figure.

20.2 Diffraction

Interference can also occur when light goes through only one slit in which case is known

as diffraction. By shining light on a slit one can see on a screen behind a pattern of

light and dark stripes as schematically indicated in fig.117. If we divide the slit into

tiny imaginary slits we see that, if a ray coming from the top of the slit interferes

destructively with a ray coming from the middle, then for every ray in the top half of

the slit there is a ray in the bottom half that cancels it. This gives the condition for a

minimum as
a

2
sin θm =

(
m+

1

2

)
λ (20.22)

where a is the width of the slit and m is an integer. The first minimum or dark band

appears at an angle

sin θm =
λ

a
(20.23)

Since the opening is usually significantly larger than the wave-length the angle is small

and we can use the approximation sin θm ' θm giving

θm '
λ

a
(20.24)
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Figure 116: Pattern generated by laser light going through a grating.

If we put a screen at a distance D the width h of the bright band in the middle is

h = 2D tan θm '
2λD

a
(20.25)

– 136 –



screen

central band

first dark band

first dark band

θ

a

θ

light
source

Figure 117: Diffraction through a slit.

– 137 –



21. Lecture 21

21.1 Diffraction and optical instruments

In the last lecture we saw that parallel rays after going through a slit are not parallel

anymore but have a range in angles from zero to θm = λ
a
. Either experiment or a more

involved calculation show that, if the hole is round instead of a slit, then the minima

occurs at an angle

θm ' 1.22
λ

a
, circular hole (21.1)

Since any optical instrument, for example a telescope has a hole through which light

comes in, even perfect parallel rays produce an image blurred as if they were not

actually parallel. For example in the simple case of a convergent lens shown in fig.118,

horizontal parallel rays produce an image of size r given by

r = 1.22
λ

a
f (21.2)

where f is the focal distance and a is the diameter of the lens. Namely, although rays

arrive parallel to the lens axis, after going through the lens diffraction spreads them

over a cone. In fact the image is a solid circle of radius r surrounded by diffraction rings.

These rings would make clear that the blurring is from diffraction and not from the

other aberrations we have already encountered. Since the wave-length λ is small this

blurring does not seem to be very important but we should remember that a telescope

further enlarges the image produced by the initial lens or mirror. Diffraction puts

a limit to how much this image can be enlarged because once we reach a resolution

where we can see the diffraction pattern, further enlargement would be useless. This is

sometimes called a theoretical limit, as opposed to other aberrations, nothing can be

done to improve it (other than making the telescope wider). Notice also that spherical

aberration requires using mostly the region of the lens close to its center. Restricting

the opening would accomplish that at the expense of increased diffraction.

One simple but very important device to consider is our own eye. Since the pupil

has a diameter of approximately 4mm then the image projected on the retina cannot

have more angular resolution than

θm ' 1.22
λ

4mm
' 1.22

400nm

4mm
' 10−4 (21.3)

in radians. This is quite small. It also implies that, if Nature was kind to us, we would

have enough cells in the retina to reach such resolution. A simple check is to consider,

at night, how far we would be able to see the two headlight of an incoming car as
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separate sources. If the headlights are separated by 1m the distance at which we can

resolve them is

D =
1m

θm
= 104m = 10Km ' 6miles (21.4)

which is the right order of magnitude as we know from our driving experience. This

means that the human eye indeed reaches close to its theoretical resolution limit. To

improve we would need bigger eyes which would make focusing more complicated.

f

θ
r ~ θ f

Figure 118: Diffraction through the lens imply that perfectly parallel rays will give rise

to a blurred image even for a perfect lens. The effect is very small but detectable when we

enlarge the image or look at it with enough resolution. This gives a theoretical limit to the

magnification of any optical device (in terms of its width).

21.2 Light-matter interaction: Photoelectric effect

Up to know we have studied the properties of light when it propagates through a

medium. However, light interacts with matter in many different ways, for example it

is important to study how light is emitted an absorbed by matter. We start this study

by considering the photoelectric effect. As we discussed at the beginning of the course,

electrons are free to move inside a metal, which explains why they are conductors.

When light shines on a metal these electrons can be ripped off the metal. This is

called the photoelectric effect. Notice that electrons normally do not leave a metal

mainly because if they do so, the metal would be positively charged and would attract

them back. Light can kicked them out. In fact certain night-vision systems work in

this way by accelerating the electrons and amplifying the resulting current. From a

physical point of view we will be mainly concerned with the energy of the electrons

which are ripped off the metal. It turns out that the number of electrons coming out
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is proportional to the intensity of light but their energy is proportional to frequency of

the light. This is rather surprising since the intensity of light describes precisely how

much energy reaches a certain area of the metal. It make sense that the total energy

transmitted to the electrons is proportional to the intensity. In fact it is because the

larger the intensity the larger the number of electrons. It is surprising however that

the energy of each individual electron depends only on the frequency of light and not

the intensity. The experimental result is described in fig.119. No electrons emerge for

frequencies smaller than a cut-off fc. For larger frequencies f the energy of the electrons

is given by

Eel. = h(f − fc) (21.5)

The explanation of this fact was given by Einstein. He proposed that light is made out

of quanta which behave similarly as particles. Each quantum is called a photon and

has an energy given by

Eph. = hf =
h

2π
ω = ~ω (21.6)

where h is a universal constant known as Planck’s constant. We also used the relation

between frequency and angular frequency ω = 2πf and defined

~ =
h

2π
(21.7)

This is an entirely new physical description. Planck had already observed that light is

emitted and absorbed in discrete amounts but Einstein took the photons as the real

picture of what light is made of. Now the explanation of the photoelectric effect is very

simple. To extract an electron of the metal a minimal energy W of needed to overcome

the Coulomb attraction. This energy W is called the work function and depends on

the substance. If the frequency of the light is smaller that

fc =
W

h
(21.8)

then a photon has not enough energy to kick out an electron. Two or more photons

would be needed but the probability of two photons hitting the same electron at the

same time turns out to be very small and can be ignored. If the photon has larger

energy than W the excess energy is transfered to the electron as kinetic energy:

Eph. = hf = W + Eel. = hfc + Eel. (21.9)

from where eq.21.5 follows.
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Figure 119: Photoelectric effect. Electrons are ejected from the metal by incident light. For

frequencies smaller that fc no electrons are ejected, for larger frequencies f , the energy of the

electrons is given by the formula Eel. = h(f − fc)
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22. Lecture 22

22.1 Photons

As already discussed, the correct explanation of the photoelectric effect is that electro-

magnetic waves are made of small quanta called photons. Each photon has energy and

momentum given in terms of the frequency and wave-length by:

Eph. = ~ω = hf, Pph. =
Eph.

c
=
h

λ
(22.1)

That photons have momentum can be seen by shining light on a reflective surface and

observing that light exerts a pressure over the surface, namely transfers momentum to

it. The value of ~, the Planck constant is given

~c = 197MeV fm (22.2)

where c is the speed of light and as usual 1MeV = 106eV , 1fm = 10−15m. Notice that

~ has units of Energy × time as expected from the formula Eph. = ~ω. It turns out

that usual electromagnetic waves are constituted by huge number of photons and for

that reason the particle nature of light is not apparent. However, when interacting with

electrons, each photon interacts with an individual electron and the quantum nature

of light becomes manifest.

22.2 Hydrogen spectrum and Bohr atomic theory

Now we consider the interaction of light with the simplest atom, namely hydrogen,

which is made out of a proton and an electron orbiting around it. When a photon

hits the electron it can break it free from the atom in the hydrogen version of the

photoelectric effect. However, if the energy is not enough the electron will jump to

another orbit and stay bounded to the proton. Similarly, once excited it can decay to

a lower orbit and emit a photon. According to classical mechanics the energy of the

emitted photon can take any value, the spectrum of energies is continuous. However,

very surprisingly at the time, it was observed that when heated up, hydrogen emits

photon of very well defined frequencies (or wave-lengths) as shown in fig.120. The

same happens with absorption, the same frequencies which are emitted are also the

ones that are absorbed by the atom. In fact, experimentally it is seen that the energy

of the emitted or absorbed photons fit the very simple formula:

Eph. = 13.6 eV

(
1

n2
1

− 1

n2
2

)
(22.3)
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where n1,2 are two positive integers such that n2 > n1. As Bohr pointed out, the only

explanation is that the electron cannot be in any arbitrary orbit but only in orbits with

energy:

Eel. = −13.6eV

n2
, n = 1, 2, 3, . . . (22.4)

The negative sign means that the electron has less energy than a free electron, namely

it is bounded to the proton. When an electron jumps from one orbit to another it can

only emit or absorb photons of energies equal to the difference in energy between two of

these orbits thus explaining eq.(22.3). Although this explains the hydrogen spectrum it

is quite extraordinary. The first surprising point is that the lowest energy is attained for

n = 1 called the ground state. Classically the electron would radiate all its energy and

get stuck to the proton in a state of infinite negative energy. In quantum mechanics this

is not what happens, there is a minimum energy that is attained. An explanation for

this fact is given in the next subsection in terms of Heisenberg’s uncertainty principle.

Moreover, above the minimal energy only very specific energies are allowed as we will

explain in terms of the de Broglie proposal that particles behave also as waves. To

summarize, we are in a realm where Newtonian mechanics does not apply any more

and we have to discuss which principles allow us to understand the physical reality at

the atomic scale.

22.3 Uncertainty principle

One of the basic principles of quantum mechanics is the uncertainty principle proposed

by Heisenberg. In classical mechanics the state of a system is determined by giving the

position and momentum (or velocity) of each particle. In a quantum mechanical state,

however, the position and momentum of a particle are not simultaneously well defined.

If the particle is localized at a point then the momentum is completely undetermined

and vice versa if the momentum is well defined, the particle is completely unlocalized.

For that reason in quantum mechanics we talk about the probability distribution of

position and momentum. If the particle is localized in a region of size ∆x and the

momentum is in the range (p, p+ ∆p) then the uncertainty principle establishes that

∆x∆p ≥ ~
2

(22.5)

We can make ∆x small at the expense of making ∆p large and vice versa.

Consider now the case of the hydrogen atom. The Coulomb potential is attractive

and tries to localize the electron as close to the proton as possible. However, if we

localize the electron very close to the proton, the momentum distribution is very spread.

Since the kinetic energy is given by K = p2

2m
that means that the average value of the
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Figure 120: When light is emitted by hydrogen only certain wave-lengths are present as

seen in this spectrum where hydrogen light is split using a grating or other similar device.

kinetic energy will be large. This is the way in which the Heisenberg principle operates.

The potential energy tends to localize particles at the minimum of the potential. On

the other hand the kinetic energy prefers that the particle is spread. For example in

metals the conduction electrons are spread all over the metal and conduct electricity

whereas there are other electrons which are localized around the atoms and do not

contribute to the current. The more we want to localize a particle the stronger the

potential we need. For that reason to study the physics at very small scales large

energies per particle are required.

Going back to the hydrogen atom we can make a quantitative prediction if we write

the total energy as

E =
1

2
mv2 − e2

4πε0r
=

p2

2m
− ē2

r
(22.6)

where we used that the momentum is p = mv and also defined

ē2 =
e2

4πε0
= 1.44MeV fm (22.7)

The last value is computed using the electron charge e = −1.6 × 10−19C. It has the

correct units of energy × length. If we localize the electron in a region of size r, the
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absorption

Figure 121: Bohr proposed that only certain discrete orbits are possible based on a quanti-

zation principle.

momentum will be spread ∆p ∼ ~
r

and therefore we estimate:

p2 ∼ ~2

r2
(22.8)

The total energy therefore is

E ' ~2

2mr2
− ē2

r
= ē2

(
~2

2mē2r2
− 1

r

)
=
ē2

r0

(
r2

0

r2
− r0

r

)
(22.9)

where we defined

r0 =
~2

2mē2
(22.10)

The radius r0 has the value

r0 =
~2

2mē2
=

(~c)2

2mc2ē2
=

1972MeV 2fm2

1MeV 1.44MeV fm
= 2.7× 104fm = 2.7× 10−11m (22.11)
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where we used that mc2 = 0.5MeV , the energy equivalent of the electron mass. We

see now more quantitatively what happens. If r is very small the kinetic energy grows,

if r is large then the potential energy grows. We plot the function f(x) = 1
x2
− 1

x
where

x = r
r0

in fig.122 and see that it attains a minimum at x = r
r0

= 2. If we replace r ' 2r0

in the previous computation of the energy we obtain

E ' ē2

r0

(
1

4
− 1

2

)
= − ē2

4r0

= −13.6eV (22.12)

in very good agreement with the experimental result in eq.(22.4) for n = 1, the ground

state. To be completely honest the full agreement is a coincidence. The uncertainty

principle only allows us to get an estimate and this should work well. Namely we expect

the energy to be of order of tens of electron volts and it is. That it comes exactly equal

is as we said a coincidence and does not always work that way.

In any case, summarizing, the uncertainty principle tells us that we need energy to

localize a particle therefore there is a compromise radius where the particle is localized

so that the Coulomb energy is low but not too localized that the kinetic energy will

grow. Given the mass of the electron and the strength of the interaction (given by the

charge) the radius is of order 10−10m and the energy of order 10 eV .

This principle allows us to understand why there is a minimum energy but we still

do not have a principle that tells us that the higher energy states are quantized. We

now have to introduce the idea of wave mechanics.
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Figure 122: The function f(x) = 1
x2
− 1

x is plotted and seen to have a minimum at x = 2

with f(2) = −1/4.
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23. Lecture 23

23.1 De Broglie waves

We have seen that light appears to be a wave but, under careful examination, behaves

as if composed of particles. Nevertheless all the wave properties of interference and

diffraction are still valid. In view of this “particle-wave” duality, de Broglie proposed

that particles should also behave as waves. The frequency and wave-length are given

by the same relation as for photons:

Eel. = ~ω, Pel. =
h

λ
(23.1)

In the case of the photon we were more familiar with ω, λ and computed E,P . In

the case of the electron we are more familiar with E,P and compute the associated

angular frequency ω and wave-length λ. Although these relations are the same as for

the photon, it should be emphasized that the relation between energy and momentum

is different:

Eel. =
P 2

el.
2m

, Eph. =
Pph.

c
(23.2)

This was a very strange proposal but it received spectacular experimental confirmation

when an experiment analogous to the two slit experiment showed an interference pattern

for electrons exactly the same as for light. In fact any experiment of diffraction and

interference of electrons can be analyzed in the same way as for light. We only need to

compute the wave-length using λ = h
p
.

Now we want to see how this helps us in the hydrogen atom. First think of a

string in a violin or guitar. It is well known that such a string only vibrates at specific

frequencies which is why is used in a musical instrument. In fact the lowest frequency

is such that the length of the string is half a wave-length. We say that the vibrations

of a string have a discrete spectrum of frequencies. The proposal is that the discrete

spectrum of the hydrogen atom is due precisely to the wave-like behavior of the electron.

More quantitatively, we require the the size of the orbit is an integer multiple of the

wave length of the electron. Namely in each orbit an integer number of wave-lengths

fit:

2πr = nλ, n = 1, 2, 3, 4, . . . (23.3)

Now we use the Newtonian relation

m
v2

r
=
ē2

r2
⇒ v =

√
ē2

mr
(23.4)
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to compute the velocity of the electron and thus the momentum and wave-length:

p = mv =

√
mē2

r
, λ =

2π~
p

= 2π~
√

r

mē2
(23.5)

Using now eq.(23.3), namely 2πr = nλ we get:

2πr = 2π~
√

r

mē2
n ⇒ r =

n2~2

mē2
(23.6)

We indeed find a discrete set of orbits!. The energy is computed by replacing the

velocity from eq.(23.4) into

E =
1

2
mv2 − ē2

r
= − ē

2

r
= − 1

n2

mē4

~2
= −13.6eV

1

n2
(23.7)

where we replaced the known values of ē, m and ~. Now we have the energy of all

possible orbits fitting precisely eq.(22.4)!. This is a good check that the discreteness of

the hydrogen spectrum is due to the wave-like nature of the electron.

23.2 Other results and applications

We basically have finished what we wanted to discuss about quantum mechanics. For

the last hundred years we have been improving our understanding of how quantum

mechanics applies to different physical phenomena. For example one can understand

the periodic table of the elements, chemistry, material science, particle physics, etc.

as fields where quantum mechanics is of paramount importance. However it has only

been recently that experimental progress has been enough that one can start thinking

of practical application in which controlling the state of a quantum system can be used

to our advantage. One such possibility would be to use quantum mechanics to create

better computers, a field which is still in its infancy. For illustration we will discuss

two devices which are practical applications of quantum mechanics: lasers and atomic

clocks.

A laser creates a beam of coherent light which is well collimated, namely does not

spread much. In quantum mechanical terms we generate a large number of photons

all in the same state. To understand how that is achieved we need another important

property: if an atom is in an excited state it can transition to a lower energy state by

emitting a photon with the corresponding energy. However, if there is already a number

of photons of that energy present, the probability of decay is enhanced for the photon

to go to the same state in which those photons are. A laser utilizes this by having a

material whose atoms are excited by electric discharges, light, electric fields, etc. In

fig. 125 we see an example, the active zone, where the material is excited, is situated
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Figure 123: The Bohr atom explained through the de Broglie hypothesis. An integer number

of wave-lengths fit into each orbit.

between two mirrors. A decay produces a photon. The other atoms, when they decay

prefer to emit the photon in the same state as the one already present. As more and

more photons accumulate on a state, more likely is for others to join. In this manner

light is amplified which gives its name to the device: Light Amplification by Stimulated

Emission of Radiation. The words stimulated emission of radiation makes reference to

the idea that a photon already present stimulates the atoms to emit radiation in the

same state. The mirrors can be thought as determining standing waves similarly as in

a sound waves in a pipe. Alternatively we can think that a beam of light goes back

and forth between them being amplified all the time. To extract the energy, one of

the mirrors is partially transparent. It is clear that only photons moving along the

cylinder, perpendicular to the mirrors are amplified. The others are lost since they are

not reflected back into the active zone. Furthermore, all the photons are in the same

state, so they are in phase and the light is coherent. This should be contrasted with
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the usual thermal emission in which the same medium is heated and each atom decays

independently of the others. In that case we have a large number of sources all emitting

independently. In the laser they all contribute to the same wave generating a highly

coherent pulse.

The same idea is used with microwaves. A resonant cavity as it is called contains

atoms and an alternating frequency is applied. When the external frequency agrees

with the energy of an atomic transition a resonance occurs that can be easily detected.

Since the frequency of the atomic transition is very precise, we can create an alternating

voltage with a very precise frequency or period. But a periodic signal with very precise

period is exactly what we need to build a clock. This type of clocks are called atomic

clocks and are the most precise clocks available at the moment. They are used in

numerous applications, for example atomic clocks aboard the GPS satellites produce

timig signals that allow us to determine our position by getting timing signals from

different satellites.

Finally, another phenomenon that we wanted to discuss is Compton scattering.

When photoelectric effect occurs but the energy of the photon is much larger than the

binding energy of the electron, the electron can be considered as a free particle. In such

situation, the photon cannot be absorbed and is deflected. If the deflection angle is θ,

see fig.124 then, conservation of energy and momentum give the relation between the

wave-length λ of the incoming photon and λ′ the wave-length of the outgoing photon:

λ′ − λ =
h

mc
(1− cos θ) (23.8)

Here, m is the mass of the electron. In fact to obtain this result you need to use the

relativistic relation between momentum an energy E =
√
m2c4 + p2c2. We leave this

as an exercise for anyone who is interested.
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Figure 124: Compton scattering is analogous to the photoelectric effect but the electron

either is not bound or the binding energy is small compared to the energy of the photon. The

photon deflected by an angle θ and changes its wave-length.

mirror
semi-transparent
mirror

+

-

Figure 125: Schematic of a laser. A beam of light goes back and forth in an active medium

which amplifies light. One of the mirrors is partially transparent and lets the laser light go

out.
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24. Lecture 24

24.1 Nuclear Physics

24.1.1 Constituents and binding energy

The atomic nucleus has a typical size of 10−15m and therefore is much smaller than the

typical atomic size 10−10m. Using the uncertainty principle we expect then that the

energies associated with the nucleus are much larger, of the order of MeV. The nucleus is

composed of protons which are positively charged and neutrons which are electrically

neutral. The total number of protons and neutrons is called the mass number and

denoted by an A. The number of protons is called the atomic number and is denoted

by a Z. The number of protons determines the charge and therefore the number of

electrons of the corresponding atom and with that its chemical properties. Therefore

Z gives the “name” to the nucleus. For example Carbon has six protons as depicted

schematically in fig.126. However the number of neutrons in Carbon can vary. In the

picture we depicted Carbon fourteen written usually as 14
6 C. For example there is also

Carbon twelve (the most common one). These are called isotopes, they have the same

of protons but different number of neutrons.

The mass of the proton and neutron is approximately similar and equal to mp ∼
mn ∼ 1.6 × 10−27Kg. Thus, the mass of the nucleus is given by the mass number

A. One important fact is that if one measures the mass of the nucleus Mnucleus with

precision one finds what is called a mass defect:

∆M = Zmp + (A− Z)mn −Mnucleus (24.1)

namely a difference between the mass of a corresponding number of protons and neu-

trons and the actual mass. To do this computation we should use more precise values

for the mass of the proton and neutron:

mpc
2 = 938.272MeV mnc

2 = 939.566MeV (24.2)

where we used the more convenient mass equivalent values given by Einstein’s formula

E = mc2. In fact Einstein formula gives us the clue to understand the mass defect.

Since mass and energy are equivalent, when protons and neutrons form the nucleus,

the total system has less energy and therefore less mass than the separate components.

Therefore Eb = ∆Mc2 is precisely the binding energy of the nucleus. If we want to

split it back in its components this is the energy that must be supplied. This happens

for any physical system but in the nucleus the binding energy is large enough that the

mass defect can actually be measured. Although they form a bound state not all nuclei

are stable. They can decay into other nuclei as discussed in the next section.
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Figure 126: A nucleus of 14
6 C (a radioactive form of carbon) is made out of six protons and

eight neutrons

24.1.2 Nuclear decays

Certain nuclei can spontaneously decay into others. Generically the nuclear decays are

classified into alpha, beta and gamma decays from the type of particle they produce.

Alpha particles are nuclei of Helium four, composed of two protons and two neutrons. It

is particularly stable nucleus. Beta particles are simply electrons and gamma particles

are photons. The reason for the names alpha, beta, gamma is that they were given

before the actual identity of the particles emitted was known.

Alpha decay occurs when a nucleus is unstable. An alpha particle is emitted and

the reaction is written:
226
88 Ra→222

86 Rn+4
! He (24.3)

We used the example of Radium (Ra) which a highly radioactive element discovered

by Marie Curie. Notice that as a result of alpha decay the nucleus loses two protons

and two neutrons. Generically an unstable nucleus X will decay as

A
ZX →A−4

Z−2 X +4
2He (24.4)

Beta decay occurs due to an interaction that we did not discuss yet. It is called the

weak interaction and is responsible for example for the instability of the neutron:

n0 → p+ + e− + ν̄ (24.5)
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A free neutron decays into a proton, an electron and an antineutrino (ν̄). The neutrons

bound in the nucleus generically do not decay because that would rise the energy of

the system. However in certain cases it is possible that a neutron is converted into a

proton as in
14
6 C →14

7 N + e− + ν̄ (24.6)

Notice that A stays the same but Z is increased by one. The electrons emitted are

highly energetic an can be detected as a hallmark of beta decay. It is also possible for

a proton in the nucleus to capture an electron an become a neutron. This is called

electronic capture. For example

40
19K + e− →40

18 Ar + ν (24.7)

Finally it can also occur that a proton becomes a neutron plus a positron and a neutrino:

22
11Na→22

10 Ne+ e+ + ν (24.8)

The last type of decay called gamma decay is simply the same electromagnetic decay

that we saw for the atom. In this case we can consider that for example a proton is

moving in an excited orbit an decays to a lower orbit emitting a photon or gamma ray.

Normally this decay occurs as a follow up of one of the other decays. Namely, after

alpha or beta decay, the resulting nucleus ends up in an excited state from which it

decays through emission of gamma rays.

Both alpha particles and beta particles (electrons) are charged and as such interact

electromagnetically with atoms. For that reason they are easily stopped by air for

example. However gamma rays, or photons are much more penetrating. They are

harmful and potentially lethal at high intensity. They are responsible for the “danger

radioactivity” signs. They can be stopped by lead for example.

For any type of decay we consider, quantum mechanics does not allow us to predict

the exact time when the decay will occur. However we can compute the probability of

a decay occurring and with that what is called the half-life. If we have a sample of N

radioactive nuclei, they will start decaying. After a certain time T 1
2

only half of the

nuclei will remain. This T 1
2

is defined as the half-life. If we want to be more precise, it

turns out that the number of radioactive nuclei in the sample decreases exponentially

with time:

N(t) = N0e
−λt (24.9)

where N0 is the initial number of nuclei and N(t) is the number remaining after time

t. It is easy to see that N(t) = 1
2
N0 when

t = T 1
2

=
ln 2

λ
(24.10)
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where ln 2 is the natural logarithm of two, namely eln 2 = 2. One interesting nucleus is
14
6 C whose half life is 5730 years. Knowing the initial amount of 14

6 C and the present

amount one can determine the age of a biological sample. The initial amount is usually

known by its ratio to the most common 12
6 C which is approximately stable in the

atmosphere. A live organism has the same ratio of 14
6 C to 12

6 C as the atmosphere but

after its death, no more interchange with the atmosphere occurs and the amount of
14
6 C decreases allowing to determine the time since the death occurred (as long as its

not much larger than 5730 years).

The number of decays occurring in 1 second is an important measure of the activity

of a radioactive source. In that way the activity is defined and measured in Curies or

Becquerels defined as:

1Ci = 3.7× 1010 decays

s
, 1Bq = 1

decays

s
(24.11)

24.1.3 Fission and Fusion

Besides the decays we mentioned before there are other two important nuclear phe-

nomena, fission and fusion. In fission a nucleus splits in two approximately equal size

nuclei. This can occur spontaneously but more commonly occurs when the nucleus

is bombarded with neutrons. Conversely, two light nuclei can join to form a heavier

nuclei, a process known as fusion. The most stable nuclei have masses close to iron (Fe)

so nuclei lighter than iron can fuse and heavier undergo fission. A notable example for

fission is Uranium which can undergo fission for example as:

1
0n+235

92 U →139
56 Ba+94

36 Kr + 3 1
0n (24.12)

When 235
92 U absorbs a neutron it splits in two releasing also three neutrons. Those

neutrons can split more nuclei creating more neutrons and accelerating the reaction.

However it should be noted that the most common form of Uranium is 238
92 U which does

not undergo fission. So in reality most of the neutrons are lost and do not produce

more fission. The only way to have a self sustaining reaction is to have large amounts

of Uranium so that the neutrons have more distance to travel before leaving the sample

or to “enrich” the Uranium by increasing the concentration of 235
92 U over 238

92 U . This

is the basis of a nuclear reactor which produce energy out of uranium fission. In fact

if the concentration of 235
92 U is highly increased the reaction is not only self-sustaining

but explosive which is the basis for nuclear weapons. In fact one gram of Uranium

completely undergoing fission produces 9× 1010J of energy to be compared with 1g of

TNT which produces 4200 J.

– 156 –



Fusion on the other hand occurs between light elements, for example hydrogen with

different amounts of neutrons can fuse:

2
1H +2

1 H →3
1 H +1

1 H (24.13)

In an exception to the usual rule, hydrogen with one or two extra neutrons have their

own names. They are called deuterium and tritium respectively. For example deu-

terium replaces one atom of hydrogen in what is called heavy water. Since the nuclei

undergoing fusion initially repel each other because they have the same charge, a large

amount of initial energy is required to produce the fusion. However more energy is

liberated afterward. In fact this is the source of energy for the Sun. It actually is

also the source of energy for the so called hydrogen bomb which uses a fission bomb

as initiator for the fusion. It should be very important to create a controlled fusion

reaction which produces more energy that the one put in. This is sometimes consider

the source of energy of the future. It has proved more difficult than expected but there

is a large international collaboration attempting such feat.
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