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Structure 
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1.1 Unit Objectives   

1.2 Riemann-Stieltjes integral 

1.2.1 Definitions and Notations 

 Partition P,  P* finer than P, Common refinement, Norm (or Mesh) 

 Lower and Upper Riemann-Stieltjes Sums and Integrals 

 Riemann-Stieltjes integral 

1.3 Existence and properties 

1.3.1 Characterization of upper and lower Stieltjes sums and upper and lower Stieltjes integrals 

1.3.2 Integrability of continuous and monotonic functions along with properties of Riemann-
Stieltjes integrals 
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 First Mean Value Theorem for Riemann-Stieltjes Integral 

 Second Mean Value Theorem for Riemann-Stieltjes Integral 

1.5.3 Change of variables 
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1.6.1 Fundamental theorem of integral calculus for vector valued function 

1.7 Rectifiable Curves 

1.8 References 

1.0 Introduction 

In this unit, we will deal with the Riemann-Stieltjes integral and study its existence and properties. The 
Riemann-Stieltjes integral is a generalization of Riemann integral named after Bernhard Riemann and 
Thomas Joannes Stieltjes. The reason for introducing this concept is to get a more unified approach to 
the theory of random variables. Fundamental Theorem of the Integral Calculus is discussed later on. 
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1.1 Unit Objectives 

After going through this unit, one will be able to 

 define Riemann-Stieltjes integral and characterize its properties. 

 recognize Riemann-Stieltjes integral as a limit of sums. 

 know about Fundamental Theorem of the Integral Calculus and Mean Value Theorems . 

 understand the concept of Rectifiable Curves 

1.2 Riemann-Stieltjes integral  

We have already studied the Riemann integrals in our undergraduate level studies in Mathematics. Now 
we consider a more general concept than that of Riemann. This concept is known as Riemann-Stieltjes 
integral which involve two functions f  and . In what follows, we shall consider only real-valued 
functions. 

1.2.1 Definitions and Notations 

Definition1. Let [ , ]a b  be a given interval. By a partition (or subdivision) P of [ , ]a b , we mean a finite 
set of points 

0 1{ , ,........, }nP x x x  

such that 

 0 1 2 1........ n na x x x x x b      . 

Definition 2. A partition *P  of [ , ]a b  is said to be finer than P (or a refinement of P) if *P P , that is , 
if every point of P is a point of *P  i.e. P  *P  . 

Definition 3. The 1P  and 2P  be two partitions of an interval [ , ]a b . Then a partition *P  is called their 

common refinement of 1P  and 2P  if *
1 2P P P  . 

Definition 4. The length of the largest subinterval of a partition 0 1{ , ,...., }nP x x x  of [ , ]a b  is called the 

Norm (or Mesh) of P. We denote norm of P by P . Thus 

  1max max{ : 1,2,...., }i i iP x x x i n      

We notice that if *P P , then *P P . Thus refinement of a partition decreases its norm.  

Definition 5. Lower and Upper Riemann-Stieltjes Sums and Integrals 

 Let f  be a bounded real function defined on a closed interval[ , ]a b . Corresponding to each 
partition P of [ , ]a b , we put 

lub ( )iM f x   1( )i ix x x    
glb ( )im f x   1( )i ix x x   . 



Mathematical Analysis 3 

Let  be monotonically increasing function on [ , ]a b . Then  is bounded on [ , ]a b  since ( )a  and ( )b
are finite. 

Corresponding to each partition P={x0,x1,…………,xn } of [a, b], we put 

1( ) ( )i i ix x      . 

The monotonicity of  implies that 0i  . 

For any real valued bounded function f on [ , ]a b , we take 

  1
( , , )

n

i i
i

L P f m 


   

  1
( , , )

n

i i
i

U P f M 


  , 

where im  and iM  are bounds of f defined above. The sums ( , , )L P f   and ( , , )U P f  are respectively 
called Lower Stieltjes sum and Upper Stieltjes sum corresponding to the partition P. We further define 

  lub ( , , )
b

a

fd L P f   

  
glb ( , , )

b

a

fd U P f  , 

where lub and glb are taken over all possible partitions P of [ , ]a b . Then 
b

a

fd and 
b

a

fd are 

respectively called Lower integral and Upper integrals of f with respect to  . 

If the lower and upper integrals are equal, then their common value, denoted by 
b

a

fd , is called the 

Riemann-Stieltjes integral of f with respect to  , over [ , ]a b  and in that case we say that f is 
integrable with respect to  , in the Riemann sense and we write ( )f  . 

The functions f and  are known as the integrand and the integrator respectively. 

In the special case, when ( )x x  , the Riemann-Stieltjes integral reduces to Riemann-integral. In such 

a case, we write ( , ),L P f ( , ),U P f ,
b

a

f
b

a

f and f  respectively in place of  ( , , ),L P f  ( , , ),U P f 

,
b

a

fd
b

a

fd and ( )f  . 
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Clearly, the numerical value of fd depends only on , ,f  a andb and does not depend on the symbol 

x. In fact x is a “dummy variable” and may be replaced by any other convenient symbol. 

1.3 Existence and properties 

1.3.1 In this section, we shall study characterization of upper and lower Stieltjes sums, and upper and 
lower Stieltjes integrals. 

The next theorem shows that for increasing function , refinement of the partition increases the lower 
sums and decreases the upper sums. 

Theorem1. If  P   is a refinement of P, f is bounded real valued function on  ba,  and   is 
monotonically increasing function defined on  ba,  . Then, 

                    
   
   



,,,,
,,,,
fPUfPU

fPLfPL







.
 

Proof.  Let },..........,.........,{ 10 nxxxP   be a partition  of   ba, . Further, let  P   be a refinement of P 
having one more point. 

Let x  be such that point in the sub-interval  1[ , ]i ix x  that is 

}......,,.........,,..,,.........,{ 110 nii xxxxxxP 


    . Then, let 

    im  g.l.b. of  f  in  ii xx ,1  

1w  g.l.b. of f  in *
1,ix x    

2w  g.l.b of  f  in *, ix x   . 

Obviously, 1 2;i im w m w   .  

Then, 

 

         

1 1 2 2 1 1

1 1 2 2 1 1 1 1 2

, , ............ ............

, , ............

i i i i n n

i i i i

L P f m m m m m

L P f m m m w x x w x x

     

       

 

  
  

           

                 

 

                       nnii mm    ...................11  

Thus, 

                  1211,,,, 



  iiiii xxmxxwxxwfPLfPL   

                                          


  xxmwxxmw iiii  211  

Now, 1 0iw m   ;    02  imw  
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Also,   is monotonically increasing function and   ii xxx  
1  . So, 

                  
   
    0

01









xx
xx

i

i




 

   
   



,,,,
0,,,,

fPLfPL
fPLfPL








 

Similarly,     ,,,, fPUfPU  . 

If P  contains more points, then similar process holds and so the result follows. 

Theorem 2.  For any two partitions 1P  and 2P  of  ba, , let f  be a bounded real valued function defined 
on  ba,  and   is monotonically increasing function defined on  ba, , then  

                     ,,,, 21 fPUfPL  . 

Proof. Let P be the common refinement of 1P  and 2P , that is, 1 2P P P  . Then, using Theorem 1, we 
have 

  1 2( , , ) ( , , ) ( , , ) ( , , )L P f L P f U P f U P f      . 

Remark 1. If   Mxfm  . Then, 

                 abMfPUfPLabm   ,,,, . 

Proof . By hypothesis 

              MMmm ii   

             

1 1 1 1

, , , ,

i i i i i i

n n n n

i i i i i i
i i i i

m m M M

m m M M

m b a L P f U P f M b a

   

   

     

   

       

       

     

   

.

 

Theorem 3. If f is bounded real valued function defined on  ba,  and   is monotonic function defined 
on  ba, . Then, 

                    





b

aa

b
fdfd 

.

 

Proof . Let  baP ,  denotes the set of all partition of  ba, . For   baPPP ,, 21  , we know that 
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                 1 2, , , , 1L P f U P f   

This holds for each  baPP ,1  , keeping 2P  fixed, it follows  from   1 that  2, ,U P f   is an upper 

bound of the set     1 1{ , , : , }L P f P P a b  . 

But least upper bound of this set is   


b

a
dxf  . 

i.e,      1 1. . .{ , , : , }
b

f x d l u b L P f P P a b
a

 



   

Since, least upper bound     any upper bound 

                 1, , 2
b

f x d U P f
a

 



  

This holds for each  baPP ,2  . So, it follows from  2   that   d
a

xf
b




 is a lower bound of the set 

    baPPfPU ,:,, 22  . 

But greatest lower bound of this set is 



b
fd

a

 . 

i.e,     2 2. . . , , : ,
a

b
fd g l b U P f P P a b 



   

Since, any lower bound   greatest lower bound. 

So,   





b

aa

b
fdfd  . 

Example 1. Let ( )x x   and define f on [0,1]  by 

   

1,
( )

0,
x Q

f x
x Q


  
 

Then for every partition P of [0,1] , we have 

0im  , 1iM  , because every subinterval 1[ , ]i ix x  contain both rational and irrational number. 
Therefore 



Mathematical Analysis 7 

  1
( , , )

n

i i
i

L P f m x


   

         0  

  1
( , , )

n

i i
i

U P f M x


   

        1 0
1

( ) 1 0 1
n

i i n
i

x x x x


        

Hence, in this case 

  
fd fd 





  . 

Theorem 4. Let   is monotonically increasing on  ba,  then ( )f   iff for any 0 , there exists a 
partition  P of  ba,   such that 

                           ,,,, fPLfPU  

Proof.  The condition is necessary:  

Let f  be integrable on  ba,  i.e,   f  on  ba, , 

so that  1
b b

a a

b
fd fd fd

a
  





     

Let 0  be given. 

Since   sup{ , , :
b

fd L P f P
a

 



  is a partition of   [a,b]} 

So, by definition of l.u.b., there exists a partition 1P  of  ba,  such that  

 1, ,
2 2

b b

a

L P f fd fd
a

   



                          (by (1)) 

 

   

1

1

, ,
2

, , 2
2

b

a

b

a

L P f fd

L P f fd

 

 

  

  





 

Again,  
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    Since  inf{ , , :
a

b
fd U P f P 



  is a partition of [a,b]}. 

By the definition of g.l.b., there exists a partition 2P  of  ba,  such that 

      
 

   

2

2

, ,
2 2

, , 3
2

b

a a
b

a

b
U P f fd fd

U P f fd

   

 



   

  

 


 

Let 21 PPP   be the common refinement of 1P  and 2P  , so that 

                      2, , , , 4U P f U P f   

And               1, , , , 5L P f L P f   

Now, we have 

   2, , , ,
2

b

a

U P f U P f fd                           (by (3)) 

              
22

,,1
  fPL                                   (by (2)) 

            1, ,L P f     

             , ,L P f                                               (by (5)) 

   , , , ,U P f L P f      

or        , , , ,U P f L P f    . 

The condition is sufficient:  

Let  0  be any number. Let P be a partition of   ba,  such that 

                     , , , , 6U P f L P f     

Since lower integral condition exceed the upper integral. 

So,     





b

aa

b
fdfd  . 
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 0 7
b

a

b
fd fd

a
 





     

Now, we know that 

          

   

     

, , , ,

, , , , 8

b

a

b

a

b
L P f fd fd U P f

a

b
fd fd U P f L P f

a

   

    









  

    

 

 

 

From  (7)  and (8) , we have 

                       






b

a
fdfd

a

b

0  

The non – negative number  






b

a
fdfd

a

b

  being less than every positive number   must be zero, 

 i.e,   0 




b

a a
fd

b
fd   

 






b

a
fdfd

a

b

 . 

1.3.2 In this section, we shall discuss integrability of continuous and monotonic functions along with 
properties of Riemann-Stieltjes integrals. 

Theorem 1. If f is continuous on [ , ]a b , then  

(i) ( )f   

(ii) to every 0  there corresponds a 0   such that 

  
1

( )
bn

i i
i a

f t fd 


     

for every partition P of [ , ]a b  with P   and for all 1[ , ]i i it x x . 
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Proof. (i) Let 0  and select 0   such that 

 [ ( ) ( )] (1)b a      

which is possible by monotonicity of  on [ , ]a b . Also f is continuous on compact set [ , ]a b . 

Hence f  is uniformly continuous on [ , ]a b . Therefore there exists a 0   such that 

( ) ( )f x f t    whenever x t    for all [ , ]x a b , [ , ]t a b                        (2). 

Choose a partition P with P  . Then (2) implies 

  i iM m    ( 1, 2,......, )i n  

Hence 

  
1 1

( , , ) ( , , )
n n

i i i i
i i

U P f L P f M m   
 

       

     
1 1

( )
n n

i i i i
i i

M m   
 

       

     1
1
[ ( ) ( )]

n

i i i
i

x x   


   

     [ ( ) ( )]b a     

     .



 , 

which is necessary and sufficient condition for ( )f  . 

(ii) We have 

  
1

( , , ) ( ) ( , , )
n

i i
i

L P f f t U P f  


    

 and 

  ( , , ) ( , , )
b

a

L P f fd U P f     

Since ( )f  , for each 0  there exists 0   such that for all partition P with P  , we have 

  ( , , ) ( , , )U P f L P f   

Thus 

 
1

( ) ( , , ) ( , , )
bn

i i
i a

f t fd U P f L P f   
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Thus for continuous functions f , 0
1

lim ( )
n

i iP
i

f t 


  exists and is equal to 
b

a

fd . 

Theorem 2. If f is monotonic on [ , ]a b  and if   is both monotonic and continuous on [ , ]a b , then 
( )f  . 

Proof. Let  be a given positive number. For any positive integer n, choose a partition P of [ , ]a b  such 
that 

  ( ) ( )
i

b a
n

  
  ( 1, 2,......, )i n . 

This is possible since   is continuous and monotonic on [ , ]a b  and so assumes every value between its 
bounds ( )a and ( )b . It is sufficient to prove the result for monotonically increasing function f , the 
proof for monotonically decreasing function being analogous. The bounds of f  in 1[ , ]i ix x  are then 

  1( )i im f x  , ( )i iM f x , 1, 2,......,i n . 

Hence 

  
1

( , , ) ( , , ) ( )
n

i i i
i

U P f L P f M m  


     

     
1

( ) ( ) ( )
n

i i
i

b a M m
n

 



   

     1
1

( ) ( ) [ ( ) ( )]
n

i i
i

b a f x f x
n

 





   

     ( ) ( ) [ ( ) ( )]b a f b f a
n

 
   

        for large n. 

Hence ( )f  . 

Example 1. Let f  be a function defined by 

  *( ) 1f x  and ( ) 0f x   for *x x , *a x b  . 

Suppose   is increasing on [ , ]a b  and is continuous at *x . Then ( )f   over [ , ]a b  and 0
b

a

fd  . 

Solution. Let 0 1{ , ,......, }nP x x x  be a partition of [ , ]a b  and let *
ix x . Since   is continuous at *x , 

to each 0  there exists 0   such that 
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   *( ) ( )
2

x x  
 

  
whenever  *x x    

Again since   is an increasing function,  

  *( ) ( )
2

x x  
   for *0 x x     

and 

  *( ) ( )
2

x x  
 

 
for *0 x x     

Then for a partition P of [ , ]a b , 

  1( ) ( )i i ix x       

  * *
1( ) ( ) ( ) ( )i ix x x x         

  
2 2
 

  . 

Therefore 
*

*
1

0,
( )

,

n
i

i i
i i i

t x
f t

t x




   
 

  

that is, 

  
1

( ) 0
n

i i
i

f t 


    

Hence 

  0
1

lim ( ) 0
bn

i iP
i a

f t fd 


     

and so ( )f   and  0
b

a

fd  . 

Theorem 3. Let 1 ( )f   and 2 ( )f  on [ , ]a b , then 1 2( ) ( )f f    and 

  1 2 1 2( )
b b b

a a a

f f d f d f d        

Proof. Let 0 1{ , ,......, }nP a x x x b   be any partition of [ , ]a b . Suppose further that ' ' " ", , ,i i i iM m M m and 
,i iM m are the bounds of 1 2,f f and 1 2f f respectively in the subinterval 1[ , ]i ix x . If 1 2 1, [ , ]i ix x   , 

then 

  1 2 2 2 1 1 2 1[ ( ) ( )] [ ( ) ( )]f f f f       
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   1 2 1 1 2 2 2 1( ) ( ) ( ) ( )f f f f        

   ' ' " "( ) ( )i i i iM m M m     

Therefore, since this hold for all 1 2 1, [ , ]i ix x   , we have 

  ' ' " "( ) ( )i i i i i iM m M m M m                   (1) 

Since 1 2, ( )f f  , there exists a partition 1P  and 2P  of [ , ]a b  such that 

  
1 1 1 1

2 2 2 2

( , , ) ( , , )
2 (2)

( , , ) ( , , )
2

U P f L P f

U P f L P f

 

 

  
   


 

These inequalities hold if 1P  and 2P  are replaced by their common refinement P. 

Thus using (1), we have for 1 2f f f  , 

1
( , , ) ( , , ) ( )

n

i i i
i

U P f L P f M m  


     

     ' ' " "

1 1
( ) ( )

n n

i i i i i i
i i

M m M m 
 

        

     
2 2
 

   (using (2)) 

      . 

Hence 1 2 ( )f f f    . 

Further, we note that  
' " ' "
i i i i i im m m M M M      

Multiplying by i and adding for 1, 2,......, ,i n we get 

 1 2( , , ) ( , , ) ( , , ) ( , , )L P f L P f L P f U P f       

     1 1 2( , , ) ( , , ) ( , , )U P f U P f U P f                  (3) 

Also 

  1 1( , , )
2

b

a

U P f f d  
 

                                                                          
(4)

        
 

             2 2( , , )
2

b

a

U P f f d  
 

                                                                         
(5) 
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Combining (3), (4) and (5), we have 

  1 2( , , ) ( , , ) ( , , )
b

a

fd U P f U P f U P f       

    1 2 2 2

b b

a a

f d f d   
      

Since is arbitrary positive number, we have 

 1 2

b b b

a a a

fd f d f d     
                                                                          

(6) 

Proceeding with 1 2( ), ( )f f  in place of 1f and 2f respectively, we have 

  1 2( ) ( ) ( )
b b b

a a a

f d f d f d          

or 

 1 2

b b b

a a a

fd f d f d     
                                                                 

(7) 

Now (6) and (7) yield 

1 2 1 2( )
b b b b

a a a a

fd f f d f d f d          . 

Theorem 4.If ( )f  and ( )f  then ( )f    and 

  ( )
b b b

a a a

fd fd fd        . 

Proof. Since ( )f  and ( )f  , there exist partitions 1P  and 2P  such that 

  1 1( , , ) ( , , )
2

U P f L P f  
   

  2 2( , , ) ( , , )
2

U P f L P f  
   

These inequalities hold if 1P  and 2P  are replaced by their common refinement P. 

Also 

  1 1( ) [ ( ) ( )] [ ( ) ( )]i i i i i ix x x x             

Hence, if iM  and im  are bounds of f in 1[ , ]i ix x , 
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1

( , , ( )) ( , , ( )) ( ) ( )
n

i i i i
i

U P f L P f M m     


        

      
1 1

( ) ( )
n n

i i i i i i
i i

M m M m 
 

         

      
2 2
 

  . 

Hence ( )f    . 

Further 

   ( , , )
2

b

a

U P f fd  
   

   ( , , )
2

b

a

U P f fd  
   

and 

   ( , , ) i i i iU P f M M          

Also, then 

   ( ) ( , , ) ( , , ) ( , , )
b

a

fd U P f U P f U P f           

       
2 2

b b

a a

fd fd  
      

       
b b

a a

fd fd      

Since  is arbitrary positive number, therefore 

  ( )
b b b

a a a

fd fd fd        . 

Replacing f by f , this inequality is reversed and hence 

  ( )
b b b

a a a

fd fd fd        . 

Theorem 5. If ( )f  on [ , ]a b , then ( )f  on [ , ]a c  and ( )f  on [ , ]c b  where c is a point of 
[ , ]a b  and 

  
b c b

a a c

fd fd fd      . 
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Proof. Since ( )f  , there exists a partition P such that 

  ( , , ) ( , , )U P f L P f  , 0 . 

Let *P  be a refinement of P such that * { }P P c  . Then 

  * *( , , ) ( , , ) ( , , ) ( , , )L P f L P f U P f U P f       

which yields 

 *( , , ) ( *, , ) ( , , ) ( , , )U P f L P f U P f L P f                                (1) 

       

Let 1P  and 2P  denote the sets of points of *P between[ , ]a c , [ , ]c b  respectively. Then 1P  and 2P  are 

partitions of [ , ]a c  and [ , ]c b and *
1 2P P P  . Also 

 *
1 2( , , ) ( , , ) ( , , )U P f U P f U P f                                                  (2) 

and 

             *
1 2( , , ) ( , , ) ( , , )L P f L P f L P f                                          (3) 

Then (1), (2) and (3) imply that 

 * *
1 1 2 2( , , ) ( , , ) [ ( , , ) ( , , )] [ ( , , ) ( , , )]U P f L P f U P f L P f U P f L P f           

      

Since each of 1 1( , , ) ( , , )U P f L P f  and 2 2( , , ) ( , , )U P f L P f  is non-negative, it follows that 

  1 1( , , ) ( , , )U P f L P f    

and 

  2 2( , , ) ( , , )U P f L P f    

Hence f is integrable on [ , ]a c  and [ , ]c b . 

Taking inf for all partitions, the relation (2) yields 

 
a

b

a c

b c

fd fd fd     
                                                                 

(4) 

But since f is integrable on [ , ]a c  and [ , ]c b , we have 

 
b c b

a a c

fd fd fd     
                                                          

(5) 

The relation (3) similarly yields 
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b c b

a a c

fd fd fd     
                                                          

(6) 

Hence (5) and (6) imply that 

  
b c b

a a c

fd fd fd      . 

Theorem 6. If ( )f  , then 

(i) ( )cf  and ( )
b b

a a

cf d c fd   , for every constant c, 

(ii) If in addition ( )f x K on [ , ]a b , then 

  [ ( ) ( )]
b

a

fd K b a    . 

Proof.(i) Let ( )f  and let g cf . Then 

  '

1 1
( , , )

n n

i i i i
i i

U P g M cM  
 

      

     
1

n

i i
i

c M 


   

     ( , , )cU P f   

Similarly 

  ( , , ) ( , , )L P g cL P f   

Since ( )f  ,   a partition P such that for every 0 , 

  ( , , ) ( , , )U P f L P f
c

  
   

Hence 

  ( , , ) ( , , ) [ ( , , ) ( , , )]U P g L P g c U P f L P f       

     .c
c


 . 

Hence ( )g cf   . 

Further, since ( , , )
2

b

a

U P f fd  
   , 



18  The Riemann-Stieltjes Integral 

  ( , , ) ( , , )
b

a

gd U P g cU P f     

   
2

b

a

c fd
 

  
 
  

Since  is arbitrary  

  
b b

a a

gd c fd    

Replacing f  by f , we get 

  
b b

a a

gd c fd    

Hence ( )
b b

a a

cf d c fd   . 

(ii) If M and m are bounds of ( )f  on [ , ]a b , then it follows that 

 [ ( ) ( )] [ ( ) ( )]
b

a

m b a fd M b a         for b a                          (1). 

In fact, if a b , then (1) is trivial. If b a , then for any partition P, we have 

  
1

[ ( ) ( )] ( , , )
n

i i
i

m b a m L P f   


     

    
b

a

fd   

    ( , , ) ii
U P f M     

    [ ( ) ( )]M b a    

which yields 

                      [ ( ) ( )] [ ( ) ( )]
b

a

m b a fd M b a      
                                               

(2) 

Since ( )f x K  for all ( , )x a b , we have 

    ( )K f x K    

so if m and M are the bounds of f  in ( , )a b , 
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   ( )K m f x M K     for all ( , )x a b . 

If b a , then ( ) ( ) 0b a    and we have by (2) 

   [ ( ) ( )] [ ( ) ( )]
b

a

K b a m b a fd           

     [ ( ) ( )] [ ( ) ( )]M b a K b a        

Hence 

    [ ( ) ( )]
b

a

fd K b a    . 

Theorem 7. Suppose ( )f  on[ , ]a b , m f M  ,   is continuous on [ , ]m M  and ( ) [ ( )]h x f x  on 
[ , ]a b . Then ( )h  on [ , ]a b . 

Proof. Let 0 . Since   is continuous on closed and bounded interval [ , ]m M , it is uniformly 
continuous on [ , ]m M . Therefore there exists 0   such that   and 

  ( ) ( )s t    if  s t   , , [ , ]s t m M . 

Since ( )f  , there is a partition 0 1{ , ,........, }nP x x x  of [ , ]a b  such that 

                       2( , , ) ( , , )U P f L P f                              (1). 

Let ,i iM m  and * *,i iM m  be the lub, glb of ( )f x and ( )x respectively in 1[ , ]i ix x . Divide the number 
1,2,……,n into two classes: 

  i A if i iM m    

and 

  i B if i iM m   . 

For i A , our choice of  implies that * *
i iM m . Also, for i B , * * 2i iM m k   where lub ( )k t , 

[ , ]t m M . Hence, using (1), we have 

                      2( )i i i i
i B i B

M m   
 

     
                      

(2) 

so that i
i B

 


  . Then we have 

* * * *( , , ) ( , , ) ( ) ( )i i i i i i
i A i B

U P h L P h M m M m   
 

         

   [ ( ) ( )] 2b a k      

   [[ ( ) ( )] 2 ]b a k      
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Since  was arbitrary, 

 *( , , ) ( , , )U P h L P h   , * 0  . 

Hence ( )h f  . 

Theorem 8. If ( )f  and ( )g   on [ , ]a b , then ( ),fg  ( )f  and 

  
b b

a a

fd f d   . 

Proof. Let  be defined by 2( )t t  on [ , ]a b . Then 2( ) [ ( )] ( )h x f x f    by Theorem7(in section 
1.3.2). Also 

  2 21 [( ) ( ) ]
4

fg f g f g    . 

Since , ( )f g  , ( )f g   , ( )f g   . Then 2( )f g and 2( ) ( )f g   and so their 

difference multiplied by 1
4

 also belong to ( )  proving that ( )fg  . 

If we take ( )f t  , again Theorem 7 implies that ( )f  . We choose 1c    so that 

  0c fd   

Then 

  fd c fd cfd f d          

because cf f . 

1.3.3. Riemann-Stieltjes integral as limit of sums. In this section, we shall show that Riemann-

Stieltjes integral fd can be considered as the limit of a sequence of sums in which ,i iM m  involved in 

the definition of fd are replaced by the values of f . 

Definition 1. Let 0 1{ , ,........, }nP a x x x b    be a partition of [ , ]a b  and let points 1 2, ,......, nt t t  be such 

that 1[ , ]i i it x x . Then the sum 

  
1

( , , ) ( )
n

i i
i

S P f f t 


   

is called a Riemann-Stieltjes sum of f with respect to  .  
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Definition 2. We say that 

  0lim ( , , )P S P f A   

If for every 0 , there exists a 0  such that P  implies 

  ( , , )S P f A  . 

Theorem 1. If 0lim ( , , )P S P f  exists, then ( )f  and 

  0lim ( , , )
b

P
a

S P f fd    . 

Proof. Suppose 0lim ( , , )P S P f  exists and is equal to A. Then given 0 there exists a 0  such 

that P  implies 

  ( , , )
2

S P f A 
   

or 

  ( , , )
2 2

A S P f A 
   

                                               
(1) 

If we choose partition P satisfying P  and if we allow the points it  to range over 1[ , ]i ix x , taking lub 

and glb of the numbers ( , , )S P f  obtained in this way, the relation (1) gives 

  ( , , ) ( , , )
2 2

A L P f U P f A  
      

and so 

  ( , , ) ( , , )
2 2

U P f L P f   
    

Hence ( )f  . Further 

  ( , , ) ( , , )
2 2

A L P f fd U P f A   
       

which yields 

  
2 2

A fd A 
     

or 

  0lim ( , , )Pfd A S P f   . 
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Theorem 2. If 

(i) f is continuous, then 

  0lim ( , , )
b

P
a

S P f fd     

(ii) ( )f  and is continuous on [ , ]a b , then 

  0lim ( , , )
b

P
a

S P f fd    . 

Proof. Part (i) is already proved in Theorem 1(ii) of section 1.3.2 of this unit. 

(ii) Let ( )f  ,  be continuous and 0 . Then there exists a partition *P such that 

              *( , , )
4

U P f fd  
                                        

(1) 

Now,  being uniformly continuous, there exists 1 0   such that for any partition P of [ , ]a b  with 

1P  , we have 

  1( ) ( )
4i i ix x

Mn
   


    for all i 

where n is the number of intervals into which P* divides [ , ]a b . Consider the sum ( , , )U P f  . Those 
intervals of P which contains a point of *P in their interior contribute no more than: 

 ( 1)( 1) max .
4 4i

n Mn M
Mn

   
     to U(P*,f, )                               (2) 

Then (1) and (2) yield 

                    ( , , )
2

U P f fd  
                                         

(3) 

for all P with 1P  . 

Similarly, we can show that there exists a 2 0   such that 

 ( , , )
2

L P f fd  
                                                 

(4) 

for all P with 2P  . 

Taking 1 2min{ , }   , it follows that (2) and (3) hold for every P such that P  . 

Since 

  ( , , ) ( , , ) ( , , )L P f S P f U P f     
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(3) and (4) yield 

  ( , , )
2

S P f fd  
   

and 

   

Hence 

   

for all P such that  and so 

   

This completes the proof of the theorem. 

The Abel’s Transformation (Partial Summation Formula) for sequences reads as follows: 

Let  and  be sequences and let 

   , 

then 

   

1.4 Integration and Differentiation. In this section, we show that integration and differentiation are 
inverse operations. 

Definition 1. If on , then the function F defined by 

  ,  

is called the “Integral Function” of the function f.  

Theorem 1. If on , then the integral function F of is continuous on . 

Proof. We have 

   

Since , it is bounded and therefore there exists a number M such that for all x in , 
. 

( , , )
2

S P f fd  
 

( , , )
2

S P f fd  
 

P 

0lim ( , , )P S P f fd   

na  nb 

0 1 ........n nA a a a    1( 0)A 

1

1 1( )
q q

n n n n n q q p p
n p n p

a b A b b A b A b


 
 

    

f  [ , ]a b

( ) ( )
t

a

F t f x dx  [ , ]t a b

f  [ , ]a b f [ , ]a b

( ) ( )
t

a

F t f x dx 

f  [ , ]a b

( )f x M

> 
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Let  be any positive number and c be any point of . Then 

  ,  

Therefore 

  

    

    

       if  . 

Thus  implies . Hence F is continuous at any point  

and is so continuous in the interval . 

Theorem 2. If is continuous on , then the integral function F is differentiable and  

  , . 

Proof. Let be continuous at  in . Then there exists  for every  such that 

                                       (1) 

whenever . Let  and , then 

   

     

   ,  

          (using (1)). 

Hence . This completes the proof of the theorem. 

Definition 2. A derivable function F such that  is equal to a given function in  is called 
Primitive of . 

 [ , ]a b

( ) ( )
c

a

F c f x dx  ( ) ( )
c h

a

F c h f x dx


  

( ) ( ) ( ) ( )
c h c

a a

F c h F c f x dx f x dx


    

( )
c h

c

f x dx


 

M h

 h
M




( )c h c
M

 
    ( ) ( )F c h F c   [ , ]c a b

[ , ]a b

f [ , ]a b

0 0( ) ( )F x f x  [ , ]x a b

f 0x [ , ]a b 0  0

0( ) ( )f t f x 

0t x   0 0 0x s x t x       a s t b  

0 0
( ) ( ) 1( ) ( ) ( )

t

s

F t F s f x f x dx f x
t s t s


  
  

0
1 1( ) ( )

t t

s s

f x dx f x dx
t s t s

 
  

0 0
1 1[ ( ) ( )] [ ( ) ( )]

t t

s s

f x f x dx f x f x dx
t s t s

    
  

0 0( ) ( )F x f x 

'F f [ , ]a b
f
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Thus the above theorem asserts that “Every continuous function possesses a Primitive, viz the integral 

function .” 

Furthermore, the continuity of a function is not necessary for the existence of primitive. In other words, 
the function possessing primitive is not necessary continuous. For example, consider the function on 

defined by 

   

It has primitive 

   

Clearly but  is not continuous at , i.e.,  is not continuous in . 

1.5 Fundamental Theorem of the Integral Calculus  

Theorem 1 (Fundamental Theorem of the Integral Calculus). If f ∈ R on  and if there is a 
differential function F on  such that , then 

  . 

Proof. Let P be a partition of  and choose ,  such that . Then, by 
Lagrange’s Mean Value Theorem, we have 

   (Since ). 

Further 

   

    

    

and the last sum tends to  as , by theorem 1 of section 1.3.3, taking . Hence  

f

( )
t

a

f x dx

f
[0,1]

1 12 sin cos , 0
( )

0, 0

x x
f x x x

x

   
 

2 1sin , 0
( )

0, 0

x x
F x x

x

  
 

' ( ) ( )F x f x ( )f x 0x  f [0,1]

[ , ]a b
[ , ]a b F f 

( ) ( ) ( )
b

a

f x dx F b F a 

[ , ]a b it ( 1, 2,......, )i n 1i i ix t x  

1 1 1( ) ( ) ( ) ( ) ( ) ( )i i i i i i i iF x F x x x F t x x f t       F f 

1
1

( ) ( ) [ ( ) ( )]
n

i i
i

F b F a F x F x 


  

1
1

( )( )
n

i i i
i

f t x x 


 

1
( )

n

i i
i

f t x


 

( )
b

a

f x dx 0P  ( )x x 
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  . 

This completes the proof of the theorem. 

The next theorem tells us that the symbols can be replaced by  in the Riemann-Stieltjes 

integral . This is the situation in which Riemann-Stieltjes integral reduces to Riemann 

integral. 

Theorem 2. If and on , then and 

   

Proof. Since , , it follows that their product . Let be given. Choose M such 

that . Since and , using Theorem 2(ii) of section 1.3.3 for integrator as x, we 
have 

                                (1). 

if  and and 

                                      (2). 

if and . Letting  vary in (2), we have 

                                                         (3). 

if and . From (2) and (3) it follows that 

   

     

     

or 

                                                  (4). 

if  and , . 

Now choose a partition P so that and choose . By Mean Value 
Theorem, 

( ) ( ) ( )
b

a

f x dx F b F a 

( )d x ( )x dx

( ) ( )
b

a

f x d x

f   [ , ]a b ( )f 

( ) ( )
b b

a a

fd f x x dx  

f   f 0

f M f 

( ) ( )i i if t t x f     

1P  1i i ix t x  

( )i it x     

2P  1i i ix t x   it

( )i is x     

2P  1i i ix s x  

( ) ( )i i i it x s x            

( ) ( )i i i it x s x             
2 

( ) ( ) 2i i it s x     

2P  1i i ix t x   1i i ix s x  

1 2min{ , }P     1[ , ]i i it x x
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Then, we have 

                (5). 

Thus, by (1) and (4), it follows that 

 

   

Hence 

   

or 

   . 

Example 1. Evaluate (i) , (ii) . 

Solution. We know that  

   

Therefore 

   

    . 

and 

   

    

    

1 1( ) ( ) ( )( )i i i i i ix x s x x        

( )i is x 

( ) ( ) ( ) ( )[ ( ) ( )]i i i i i i i i if t f t t x f t s t x            

( ) ( ) ( ) ( )[ ( ) ( )]i i i i i i i i if t f f t t x f f t s t x                   
2 (1 2 )M M   

0lim ( ) ( ) ( )
b

i iP
a

f t x f x x dx
  

( ) ( )
b b

a a

fd f x x dx  
2

2 2

0

x dx
2

2

0

[ ]x dx

( ) ( )
b b

a a

fd f x x dx  

2 2 2
2 2 2 3

0 0 0

(2 ) 2x dx x x dx x dx   
24

0

2 8
4
x

 

2 2
2

0 0

[ ] [ ]2x dx x xdx 
1 2

0 1

[ ]2 [ ]2x xdx x xdx  
22 2

1 1

0 2 0 2
2
xxdx   
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   =0+3 = 3. 

We now establish a connection between the integrand and the integrator in a Riemann-Stieltjes integral. 
We shall show that existence of implies the existence of . 

We recall that Abel’s transformation (Partial Summation Formula) for sequences reads as follows: 

“Let  and  be two sequences and let . Then 

                             (*).” 

1.5.1 Theorem (Integration by parts). If on , then on  and 

   

(Due to analogy with (*), the above expression is also known as Partial Integration Formula). 

Proof. Let be a partition of . Choose  such that  
and take , . Suppose Q is the partition of . By  

partial summation, we have 

 

  

since . If , , then 

 and . 

Hence 

  . 

1.5.2 Mean Value Theorems for Riemann-Stieltjes Integrals. In this section, we establish Mean 
Value Theorems which are used to get estimate value of an integral rather than its exact value. 

Theorem 1.5.2(a). (First Mean Value Theorem for Riemann-Stieltjes Integral). If  is continuous 
and real valued and be is monotonically increasing on , then there exists a point x in  such 
that 

  . 

Proof. If , the theorem holds trivially, both sides being 0 in that case (  become constant 
and so ). Hence we assume that . Let 

  , .  

fd df

na  nb  0 1 ......n nA a a a    1( 0)A 

1

1 1( )
q q

n n n n n q q p p
n p n p

a b A b b A b A b


 
 

    

( )f  [ , ]a b ( )f  [ , ]a b

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )f x d x f b b f a a x df x      

0 1{ , ,......, }nP a x x x b   [ , ]a b 1 2, ,......, nt t t 1i i ix t x  

0t a 1nt b  1 2 1{ , ,......, }nt t t  [ , ]a b

1

1 1 1
1 1

( , , ) ( )[ ( ) ( )] ( ) ( ) ( ) ( ) ( )[ ( ) ( )]
n n

i i i i i i
i i

S P f f t x x f b b f a a x f t f t     


  
 

      

( ) ( ) ( ) ( ) ( , , )f b b f a a S Q f    

1 1i i it x t   0P  0Q 

( , , )S P f fd   ( , , )S Q f df  

( ) ( ) ( ) ( )fd f b b f a a df      

f
 [ , ]a b [ , ]a b

( )[ ( ) ( )]
b

a

fd f x b a   

( ) ( )a b  
0d  ( ) ( )a b 

lub ( )M f x glb ( )m f x a x b 
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Then  

   

or 

   

Hence there exists some c satisfying  such that  

   

Since is continuous, there is a point  such that  and so we have 

   

This completes the proof of the theorem. 

Theorem 1.5.2(b) (Second Mean Value Theorem for Riemann-Stieltjes Integral). Let be 
monotonic and be real and continuous. Then there is a point  such that 

   

Proof. By Partial Integration Formula, we have 

   

The use of First Mean Value Theorem for Riemann-Stieltjes Integral yields that there is x in  such 
that 

   

Hence, for some , we have 

   

    

which proves the theorem. 

1.5.3  We discuss now change of variable. In this direction we prove the following result. 

Theorem 1. Let and  be continuous on . If  is strictly increasing on , where 
,  b   , then  

( )m f x M 

[ ( ) ( )] [ ( ) ( )]m b a fd M b a       
m c M 

[ ( ) ( )]
b

a

fd c b a   

f [ , ]x a b ( )f x c

( ) ( ) ( )[ ( ) ( )]
b

a

f x d x f x b a   

f
 [ , ]x a b

( )[ ( ) ( )] ( )[ ( ) ( )]
b

a

fd f a x a f b b x       

( ) ( ) ( ) ( )
b b

a a

fd f b b f a a df      

[ , ]a b

( )[ ( ) ( )]
b

a

df x f b f a  

[ , ]x a b

( ) ( ) ( ) ( ) ( )[ ( ) ( )]
b

a

fd f b b f a a x f b f a      

( )[ ( ) ( )] ( )[ ( ) ( )]f a x a f b b x      

f  [ , ]a b  [ , ] 

( )a  
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(this corresponds to change of variable in  by taking ). 

Proof. Since  is strictly monotonically increasing, it is invertible and so 

  , . 

Let be any partition of  and be the 

corresponding partition of , where . Then 

   

   

  i  . 

Let for any , , where . Putting , we have 

                                   (1) 

     

     

     

Continuity of implies that  as  and continuity of implies that 

  as . 

Since uniform continuity of  on  implies that as . Hence letting  in (1), 
we have 

   

This completes the proof of the theorem. 

1.6 Integration of Vector –Valued Functions. Let  be real valued functions defined on 
 and let be the corresponding mapping of  into . 

( ) ( ( )) ( )
b

a

f x dx f y d y




  

( )
b

a

f x dx ( )x y



1( )a  1( )b 

0 1{ , ,......, }nP a x x x b   [ , ]a b 0 1{ , ,......, }nQ y y y   

[ , ]  1( )i iy x 

1i i ix x x   

1( ) ( )i iy y   

i ic x i id y ( )i ic d ( ) [ ( )]g y f y

1
( , ) ( )

n

i i
i

S P f f c x


 

( ( ))i i
i

f d  

( )i i
i

g d  

( , , )S Q g 

f ( , ) ( )
b

a

S P f f x dx  0P  g

( , , ) ( )S Q g g y d




   0Q 

 [ , ]a b 0Q  0P  0P 

( ) ( ) ( ( )) ( )
b

a

f x dx g y d f y d y
 

 

     

1 2, ,......, kf f f
[ , ]a b 1 2( , ,......, )kf f f f [ , ]a b kR
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Let be monotonically increasing function on . If  for , we say that 
and then the integral of is defined as  

  . 

Thus  is the point in whose ith coordinate is . 

It can be shown that if , , 

then 

 (i)  

 (ii) , . 

 (iii) if , , then  
and 

   

To prove these results, we have to apply earlier results to each coordinate of . Also, fundamental 
theorem of integral calculus holds for vector valued function . We have 

Theorem 1. If and F map  into , if if , then  

   

Theorem 2. If maps  into and if for some monotonically increasing function on 
, then and 

  . 

Proof. Let 

  . 

Then 

   

 [ , ]a b ( )if  1, 2,......,i k
( )f  f

1 2( , ,........, )
b b b b

k
a a a a

fd f d f d f d      
b

a

fd kR
b

i
a

f d

( )f  ( )g 

( )
b b b

a a a

f g d fd gd      
b c b

a a c

fd fd fd      a c b 

1( )f  2( )f  1 2( )f   

1 2 1 2( )
b b b

a a a

fd fd fd       

f
f

f [ , ]a b k ( )f  F f 

( ) ( ) ( )
b

a

f t dt F b F a 

f [ , ]a b kR ( )f R  
[ , ]a b ( )f R 

b b

a a

fd f d  

1( ,......, )kf f f

2 2 1/2
1( ...... )kf f f  
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Since each , the function and so their sum . Since is a 
continuous function of x, the square root function is continuous on  for every real M. Therefore

. 

Now, let , where , then 

     

and 

    

     

But, by Schwarz inequality 

  ,  

Then 

                                                        (1)   

If , then the result follows. If , then divide (1) by and get 

    

          or . 

1.7 Rectifiable Curves. The aim of this section is to consider application of results studied in this 
chapter to geometry. 

Definition 1. A continuous mapping of an interval  into is called a curve in . 

If is continuous and one-to-one, then it is called an arc. 

If for a curve , 

   

but 

 1 2( ) ( )t t   

for every other pair of distinct points in , then the curve is called a simple closed curve. 

Definition 2. Let be a map. If is a partition of , then 

 , 

( )if R  2 ( )if R  2 2
1 ...... ( )kf f R    2x
[0, ]M

( )f R 

1 2( , ,.... )ky y y y i iy f d 
y fd 

2 2
i i i

i
y y y f d   

( )i iy f d 

( ) ( )i iy f t y f t ( )a t b 

2y y f d 
0y  0y  y

y f d 
b b

a a

fd f d  

 [ , ]a b kR kR

:[ , ] ka b R 

:[ , ] ka b R 

( ) ( )a b 

1 2,t t [ , ]a b 

:[ , ] kf a b R 0 1{ , ,...., }nP x x x [ , ]a b

1
1

( , , ) lub ( ) ( )
n

i i
i

V f a b f x f x 
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where the lub is taken over all possible partitions of , is called total variation of on . The 
function is said to be of bounded variation on  if . 

Definition 3. A curve is called rectifiable if is of bounded variation. The length of a 
rectifiable curve is defined as total variation of , i.e., . Thus length of rectifiable curve 

for the partition . 

The ith term in this sum is the distance in between the points and . 

Further  is the length of a polygon whose vertices are at the points

. As the norm of our partition tends to zero, then those polygons approach the 
range of  more and more closely. 

Theorem 1. Let be a curve in . If is continuous on , then is rectifiable and has length 

  . 

Proof. It is sufficient to show that . So, let be a partition of . 

Using Fundamental Theorem of Calculus for vector valued function, we have  

   

     

     

Thus 

                                        (1).  . 

To prove the reverse inequality, let  be a positive number. Since  is uniformly continuous on , 
there exists  such that 

  , if . 

If mesh (norm) of the partition P is less than  and , then we have 

  , 

[ , ]a b f [ , ]a b
f [ , ]a b ( , , )V f a b  

:[ , ] ka b R  
  ( , , )V a b

1
1

lub ( ) ( )
n

i i
i

x x   


  0 1( .... )na x x x b    

1( ) ( )i ix x   kR 1( )ix  ( )ix

1
1

( ) ( )
n

i i
i

x x  




0 1( ), ( ),...., ( )nx x x  


 kR   [ , ]a b 

( )
b

a

t dt 

( , , )V a b   0{ ,...., }nx x [ , ]a b

1

1
1 1

( ) ( ) ( )
i

i

xn n

i i
i i x

x x t dt  



 

   

1
1

( )
i

i

xn

i x

t dt




 

( )
b

a

t dt  

( , , )V a b   
   [ , ]a b

0 

( ) ( )s t    s t  

 1i ix t x  

( ) ( )it x   
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so that 

 

   

   

   

Adding these inequalities for , we get 

   

    

Since  is arbitrary, it follows that 

                                    (2).   

Combining (1) and (2), we have 

   

Hence the length of  is . 
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2.0 Introduction 

In this unit, we will consider sequence and series of functions whose terms depend on a variable. 
Uniform convergence of sequence or series is a concept of great importance in its domain. With the help 
of tests for uniform convergence, we will naturally inquire how we can determine whether the given 
sequence or series does or does not converge uniformly in a given interval. The Weierstrass 
approximation theorem describes that every continuous function can be “uniformly approximated” by 
polynomials to within any degree of accuracy. 

2.1 Unit Objectives   

After going through this unit, one will be able to 

 learn about pointwise and uniform convergence of sequence and series of functions 

 examine uniform convergence through various tests for uniform convergence. 

 study uniform convergence and continuity. 

 understand importance of  Weierstrass approximation theorem. 

2.2 Sequence and Series of Functions  

Let fn be a real valued function defined on an interval I (or on a subset D of R ) and for each n N , then 
<f1, f2,……… ,fn,……..> is called a sequence of real valued functions on I. It is denoted by {fn} or <fn>.  
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If <fn> is a sequence of real valued functions on an interval I, then f1+ f2+……… +fn+……..is called a 

series of real valued functions defined on I. This series is denoted by 
1

n
n

f



 or simply nf . That is, we 

shall consider sequences whose terms are functions rather than real numbers. These sequences are useful 
in obtaining approximations to a given function. 

2.3 Pointwise and Uniform Convergence of Sequences of Functions 

We shall study two different notations of convergence for a sequence of functions: Pointwise 
convergence and uniform convergence. 

Definition 1. Let A R  and suppose that for each n N  there is a function nf : A R . Then nf   is 
called a sequence of functions on A. For each x A , this sequence gives rise to a sequence of real 
numbers, namely the sequence  nf x  . 

Definition 2. Let A R and let nf   be a sequence of functions on A. Let 0A A and suppose

0f : A R . Then the sequence nf   is said to converge on 0A  to f if for each 0x A , the sequence 

 nf x   converges to f(x) in R. 

In such a case f is called the limit function on 0A of the sequence nf  . 

When such a function f exists, we say that the sequence nf   is convergent on 0A  or that nf   

converges pointwise on 0A  to f and we write    n nf x lim f x , 0x A .  

Similarly, if  nf x  converges for every 0x A , and if    n 1 nf x f x
 , 0x A .  The function f is 

called the sum of the series nf . 

The question arises: If each function of a sequence nf  has certain property, such as continuity, 
differentiability or integrability, then to what extent is this property transferred to the limit function? For 
example, if each function nf is continuous at a point 0x , is the limit function f also continuous at 0x ? In 
general, it is not true. Thus, pointwise convergence is not so strong concept which transfers above 
mentioned property to the limit function. Therefore some stronger methods of convergence are needed. 
One of these methods is the notion of uniform convergence: 

We know that nf  is continuous at 0x  if    
0x x n n 0lim f x f x .  On the other hand, 

 f is continuous at 0x  if    
0x x 0lim f x f x (1)   

But (1) can be written as  

   
0 0x x n n n x x nlim lim f x lim lim f x (2)     
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Thus our question of continuity reduces to “can we interchange the limit symbols in (2)?” or “Is the 
order in which limit processes are carried out immaterial “. The following examples show that the limit 
symbols cannot in general be interchanged. 

Example 1. A sequence of continuous functions whose limit function is discontinuous: 

 Let  

 
2n

n 2n

xf x , x R,
1 x

 


 n = 1, 2, ……… 

We note that  

   n n

0 if | x | 1
1lim f x f x if | x | 1.
2
1 if | x | 1




  




 

Each nf  is continuous on R but the limit function f is discontinuous at x = 1 and x = -1. 

Example 2. A double sequence in which limit process cannot be interchanged: 

For m =1, 2,….,  

n = 1, 2,3,..., let us consider the double sequence 

mn
mS .

m n



 

For every fixed n, we have 

m mnlim S 1   

and so 

n m mnlim lim S 1    

On the other hand, for every fixed m, we have 

n mn n
1lim S lim 0n1
m

  


 

and so  

m n mnlim lim S 0    

Hence   n m mn m n mnlim lim S lim lim S     
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Example 3. A sequence of functions for which limit of the integral is not equal to integral of the 
limit:  Let 

     n2
nf x n x 1 x , x R, n 1, 2,......     

If 0 x 1,    then 

   n nf x lim f x 0   

and so  

1

0

f (x) dx 0.  

But     
1 1

n2
n

0 0

f (x) dx n x 1 x dx    

   

2 2n n
n 1 n 2

 
 

 

 
2n

(n 1) n 2


  .
 

and so 
1

n n
0

lim f (x) dx 1   

Hence 
1 1

n n n n
0 0

lim f (x) dx (lim f (x)) dx   . 

Example 4. A sequence of differentiable functions { nf } with limit 0 for which { '
nf } diverges. 

Let  

 n
sin nxf x if x R,

n
    n = 1, 2,  

Then  n nlim f x 0   for all x. 

But  '
nf x n cosnx  

and so                          '
n nlim f x  does not exist for any x. 
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Definition 3. A sequence of functions  nf  is said to converge uniformly to a function f on a set E if for 

every ε> 0 there exists an integer N (depending only on ε) such that n > N implies 

                               n for allf x f x x E (*).     

Geometrical Interpretation of uniform convergence: 

 

If each term of the sequence nf   is real-valued, then the expression (*) can be written as  

     nf x f x f x      for all n > N and for all x E .  

This shows that the entire graph of nf  lies between a “band” of height 2ε situated symmetrically about 
the graph of f. 

Definition 4.  A series  nf x  is said to converge uniformly on E if the sequence  nS of partial sums 

defined by    
n

n i
i 1

S x f x


  converges uniformly on E. 

Theorem 1. Every uniformly convergent sequence is pointwise convergent but not conversely. 

Proof.  Let }{ nf  be a sequence of functions which converges uniformly to f on E.  

    For given 0  , there exists a positive integer N (depending only on  )  such that  

                       ( ) ( )nf x f x     for all Nn       ………….(1) 

Since (1) is true for all x E . 

                         xfxf n      for all Nn   

is true for every x E , 

Hence nf  converges pointwise to f on E. 

The converse is not true which is shown by following example. 
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Example 5. Consider the sequence  nf  defined by  

        10,
1

1



 x

nx
xfn  

Then,        0
1

1limlim)( 



 nx

xfxf
nnn

 

Hence,  nf   converges pointwise to 0 for all   10  x . 

Let 0  be given. Then for convergence, we have  

                      xfxfn  , 0nn   

or       


0
1

1
nx

  , 0.n n  

or          1 .
1nx




 

or            
nx
1  

or           1 .nx


  

or          1 .n
x

  

 If  0n  is taken as integer greater than 
x
1   , then  

                         xfxfn    for all  0.n n  

Since 0n  depends both on    &  x  in (0,1) , so nf  does not converge uniformly on (0,1). 

Example 6. Consider the sequence nS   defined by  n
1S x

x n



in any interval [a, b], a > 0. Then  

   nn n

1S x limS x lim 0
x n 

  


 

For the convergence, we must have 

                            
   n 0S x S x , n n                                   (1) 

 or                        0
1 0 , n n

x n
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or                         1
x n

 


 

or                         1x n 


 

or                         1n x 


 

If we select 0n  as integer next higher to 1


, then (1) is satisfied for m(integer) greater than 1


 which 

does not depend on x [a, b] . Hence the sequence nS  is uniformly convergent to S(x) in [a, b]. 

Example 7. Consider the sequence nf   defined by  

                                      
 n

xf x , x 0
1 nx

 


 

Then  

                                      
 

n

xf x lim 0
1 nx

 


 for all x 0 . 

Then nf   converges pointwise to 0 for all x 0 . Let 0  , then for convergence we must have                               

     n 0f x f x , n n     

or  0
x 0 , n n

1 nx
   


 

 
x

1 nx
 


 

 x nx     

 nx x     

 
xn
x
 




 

 
x 1n
x

 
 

 

If 0n  is taken as integer greater than 1


, then 

   nf x f x ,    for all 0n n  and for all  x 0,   

Hence nf   converges uniformly to f on 0, . 
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Example 8. Consider the sequence nf   defined by 

                                                    n
nf x x , 0 x 1    

Then  

                          
  n

n n

0 if 0 x 1
f x lim x

1 if x 1

 
   

 

Let 0  be given. Then for convergence, we must have 

                                                nf x f x ,   0n n  

or                                                nx    

or                                               
n1 1

x
     

 

or                                               

1log
n .1log

x

  

Thus we should take 0n  to be an integer next higher to 

1log
.1log

x

  If we take x = 1, then m does not exist. 

Thus the sequence in question is not uniformly convergent to f in the interval which contains 1. 

Definition 5 (Point of non–uniform convergence).   A point which is such as the sequence is non – 
uniformly convergent in any interval containing that point is called a point of non–uniform convergence. 

In the following example x = 0 is a point of non–uniform convergence. 

Example 9. Consider the sequence nf   defined by  n 2 2

nxf x , 0 x a
1 n x

  


. 

Then if x = 0, then        nf x 0  

and so                             n nf x lim f x 0.   

If x 0  , then 

   n n n 2 2
nxf x lim f x lim 0.

1 n x   


 

Thus f is continuous at x = 0. For convergence, we must have 

                                             nf x f x ,   0n n .  
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 or                                              2 2
nx .

1 n x
 


 

or                                                 2 2 nx1 n x 0.  


 

or                                                  2
1 1 1nx 4.
2 2

  
 

 

Thus we can find an upper bound for n in any interval 0 a x b   , but the upper bound is infinite if the 
interval includes 0. Hence the given sequence is non-uniformly convergent in any interval which 
includes the origin. So 0 is the point of non-uniform convergence for this sequence. 

Example 10. Consider the sequence nf   defined by 

     1
nf x tan nx, 0 x a.    

Then 

   

   nn

if x 0
f x lim f x .2

0 if x 0


   
 

 

Thus the function is discontinuous at x = 0. 

For convergence, we must have for 0  ,  

    nf x f x ,   0n n  

or 1tan nx
2


    

or 1cot nx    

or 1nx
tan




 

or 1 1n
tan x

     
 

Thus no upper bound can be found for the function on the right if 0 is an end point of the interval. Hence 
the convergence is non-uniform in any interval which includes 0. So, here 0 is the point of non-uniform 
convergence. 

Definition 6. A sequence  nf  is said to be uniformly bounded on E if there exists a constant  

M > 0 such that  nf x M  for all x in E and all n. The number M is called a uniform bound for nf . 
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For example, the sequence nf   defined by  nf x sin nx, x R  is uniformly bounded. Infact,  

 nf x sin nx 1   for all x R  and for all n N . 

If each individual function is bounded and if nf f uniformly on E, then it can be shown that  nf  is 
uniformly bounded on E. This result generally helps us to conclude that a sequence is not uniformly 
convergent. 

2.4 Cauchy Criterion for Uniform Convergence  

            We now find necessary and sufficient condition for uniform convergence of a sequence of 
functions. 

Theorem 1 (Cauchy criterion for uniform convergence).  The sequence of functions nf , defined on 

E, converges uniformly if and only if for every 0   there exists an integer N such that
m N, n N, x E    imply     n mf x f x .    

Proof. Suppose first that nf   converges uniformly on E to f. Then to each 0  there exists an integer 
N such that n > N implies  

                              
   nf x f x ,

2


   for all x E  

Similarly for m > N implies  

                             
   mf x f x ,

2


   for all x E  

Hence, for n > N, m > N, we have 

                                         n m n mf x f x f x f x f x f x      

                                                              n mf x f x f x f x     

                                                       / 2 / 2       for all x E  
Hence the condition is necessary. 
Conversely, suppose that the given condition holds. Therefore {fn(x)} is a Cauchy sequence in R for 
each x   E. Since R is complete, it follows that {fn(x)} converges to some value f(x), for each x   E  & 
{fn} converges to f pointwise. We need only to show that the convergence is uniform. to show this let  
 >0 be given, then by hypothesis, n0   N (depending only on  ) such that 

                            
   n mf x f x ,            n, m > N and x E  

Let n be fixed and let m  , then we have 

    nf x f x          x E  

Hence nf f uniformly on E. 
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We now find necessary and sufficient condition for uniform convergence of a series of functions. 

Theorem 2 (Cauchy criterion for uniform convergence). A series of real functions nf , each 

defined on a set X converges uniformly on X iff  for every  ,0  Nn 0  (depending  only on )  

such that 

             1 2 .............n n n mf x f x f x              for Xxmnn  ,1,0 . 

Proof.  Let         XxxfxfxfxS nn  ,...........21   be a partial sum 

                         1 2
1

............... ,
n

i n
i

f x f x f x f x x X


      

so that    xSn  is a sequence of partial sums of the series 


1n
nf . Now the series  nf  is uniformly 

convergent iff the sequence  nS  is uniformly convergent. 

i.e., for given  ,0  a positive integer m such that mn   

         ..,.........2,1,  mxSxS nmn    [By Cauchy criteria of uniform converge of sequence] 

      ,........2,1,.............21   mxfxfxf mnnn   

This completes the proof of Cauchy’s Criteria for Series. 

2.5 Tests for Uniform Convergence 

In this section, we study Mn-test, Weierstrass M-test, Abel’s Test and Dirichlet’s Test for uniform 
convergence and some examples which emphasis on the applications of these tests.    

Theorem 1. Suppose    nn
limf x f x , x E


   and let    n nx E
M lub f x f x


  . Then nf f uniformly 

on E if and only if nM 0  as n   . (This result is known as nM - Test for uniform convergence) 

Proof. We have  

                        
   n nx E

lub f x f x M 0


    as n  .  

Hence                 nn
lim f x f x 0


   for all x E . 

Hence to each 0  , there exists an integer N such that n > N, x E  imply 

     nf x f x    

Hence nf f uniformly on E. 
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Example 1.  By using Mn – test, show that the sequences  }{ nf  where  

  221 xn
nxxfn 

   is not uniformly convergent on any interval containing 0. 

Solution.   Here      221
limlim

xn
nxxfxf

nnn 



 

                                      0
/1

/lim 22 



 xn

nx
n

 

Thus the sequence  nf  converges pointwise to the function f identically 0. 

Now 
 

   xfxfM n
bax

n 
 ,
sup  

             
    22

,
22

, 1
sup0

1
sup

xn
nx

xn
nx

baxbax 






 

Let us find the maximum value of  221 xn
nx


 by second derivative test. 

Let    221 xn
nxx


  

       
 222

222

1
2.1'

xn
xnnxnxnx




  

Put   0' x . 

Then we have,     021 222  xnnxnxn  

                     

   2 2 2

2 2 2 2 2 2

2
2

1 2

1 2 1

1 1 .

n x x xn

x n n x n x

x x
n n

 

   

    

 

  or     1 1 .x or
n n

   

Also, 

                          
 

22 2 2 2 2 2 4 3

42 2

1 . 2 1 4 4
"

1

n x n n x n n x n x n x
x

n x


    



 



Mathematical Analysis 47 

                           
    

 

23 2 2 2 2 2 4 3

42 2

2 1 1 4 4
.

1

n x n x n n x n x n x

n x

    



 

At  1 , " 0x x
n

  . Therefore d(x) is maximum when 
n

x 1
 . 

Also 
2
11









n
   

Thus we take an interval [a,b]  containing zero ,then  

 
   

 
2 2

, ,

1sup sup ,
1 2n n

x a b x a b

nxM f x f x
n x 

   


 

which does not tend to zero as n . 

Hence by Mn – test the sequence  nf  is not uniformly continuous in any interval containing zero. 

Example 2.  Show that the sequence  nf , where 

               21 nx
xxfn 

  converges uniformly on R. 

Solution. Here pointwise limit is  

                     2lim 0 .
1n

xf x x R
nx

   


 

Let       21 nx
xxfxfx n 

 . 

For maximum & minimum of  x , we have 

   
 

0
1

210' 22

22







nx
nxnxx  

               
 

2
2

22

1 10 1 0 .
1

nx nx x
nnx


       


 

Now,   
 

 
   

22

2 2 22 2 2

11 2' .
1 1 1

nxnxx
nx nx nx


 

  
  

 

                         
   22 2

1 2 .
1 1nx nx

  
 

 

    
   2 32 2

2 8'' .
1 1

nx nxx
nx nx

  
 

. 
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Put 
n

x 1
 , 

    2 3
1 2 8''

2 2 2 2
n n n nn

n
  

      
 

 

ve
n








 1''   maximum. 

Hence max.    
1/ 1

1 1/ 2
nx

n n n
  


.  

Thus     xfxfM n
Rx

n 


sup  

                
n

x
nx
x

RxRx 2
1sup0

1
sup 2 





  

Also so 0
2

1limlim 
 n

M
nnn  

Hence by nM   test, the sequence   xfn  uniformly converges on R. 

Example 3.  Show that 0 is a point of non – uniformly convergent of the sequence   xfn , where

  0;   xnxexf nx
n . 

Solution. Here pointwise limit,  

        nx

nnn
nxexfxf 


 limlim                 .form 

  
 

By L’Hospital rule, we get  

               0lim 
 nxn xe

x  

For maximum & minimum value of  x , where 

             
     

    nxnx

nx
n

nenenxx

nxexfxfx









'


 

Now      00' 2 
 nx

nexenx nx  

                      
n

x
nen

nex nx

nx 11
2 




 



 

Now           nxnxnx enennexnx   222''  
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                  nxnx enxen   23 2  

e
n

e
n

en
n

n

22
3 21.1.1'' 






  

  vex  ''   i.e., maximum at 
n

x 1
  

Hence max. of  
e

e
n

nx 11. 1   . 

Thus    xfxfM n
Rx

n 


sup  

                  
e

xnxe
Rx

nx

Rx

1sup0sup 





  

So 011limlim 
 ee

M
nnn

 

Hence by nM test, the sequence of function is not uniform convergent on R. 

Weierstrass contributed a very convenient test for the uniformly convergence of infinite series of 
functions. 

Theorem 2 (Weierstrass M-test). Let nf   be a sequence of functions defined on E and suppose

 n nf x M  ( x E , n = 1, 2, 3,……), where nM  is independent of x. Then nf converges uniformly 

as well as absolutely on E if nM converges. 

Proof. Absolute convergence follows immediately from comparison test. 

To prove uniform convergence, we note that  

                  
     

m m

m n n n
i 1 i 1

S x S x f x f .
 

     

                                                n 1 n 2 mf x f x .... f x      

                                           n 1 n 2 mM M ... M .      

But since nM is convergent, given 0  , there exists N (independent of x) such that 

                  n 1 n 2 mM M ... M , n N.        

Hence  

                     m nS x S x , n N, x E      



50  Sequence & Series of Functions 

and so  nf x converges uniformly by Cauchy criterion for uniform convergence. 

Example 4. Consider the series p
n 1

cosn
n





 . We observe that 

p p
cosn 1 .

n n

  

Also, we know that p
n 1

1
n




  is convergent if p > 1. Hence, by Weierstrass M-Test, the series p

cosn
n



converges absolutely and uniformly for all real values of θ if p > 1.   Similarly, the series p
n 1

sin n
n





  

converges absolutely and uniformly by Weierstrass’s M-Test. 

Example 5. Taking n
nM r , 0 < r < 1, it can be shown by Weierstrass’s M-Test that the series 

n n n 2 n 2r cosn , r sin n , r cos n , r sin n        converge uniformly and absolutely. 

Example 6. Consider
 2

n 1

x , x R
n 1 nx








 . 

We assume that x is positive, for if x is negative, we can change signs of all the terms. We have 

   n 2

xf x
n 1 nx




 and    nf ' x 0 implies 2nx  = 1. Thus maximum value of  nf x  is 3/2
1 .

2n
 

Hence                       n 3/2

1 f
2n

 x   

Since 3/2

1
n  is convergent, Weierstrass’s M-Test implies that 

 2
n 1

x
n 1 nx



 
  is uniformly convergent 

for all x R . 

Example 7. Consider the series
 22n 1

x , x R
n x








 .  We have 

                                       

 
 n 22

xf x
n x




 

and so                    
   

 

22 2

n 42

n x 2x n x 2x
f ' x

n x

  



 

Thus  nf ' x 0  gives 
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                                        4 2 2 2 4x n 2nx 4nx 4x 0      

                                               2 2 4n 2nx 3x 0    

                                              4 2 23x 2nx n 0    

                                            
2 nx

3
  or nx .

3
  

Also  nf '' x  is negative. Hence maximum value of  nf x is 3/2
3 3

16n
  . Since 3/2

1
n is convergent, it 

follows by Weierstrass’s M-Test that the given series is uniformly convergent. 

Example 8. The series 
n

n
2n

n 1

a x
1 x



   and 
2n

n
2n

n 1

a x
1 x



   

converge uniformly for all real values of x and na is absolutely convergent. The solution follow the 
same line as for example 7. 

Lemma 1 (Abel’s Lemma). If 1 2 nv , v ,...., v be positive and decreasing, the sum 1 1 2 2 n nu v u v .... u v    
lies between A 1v  and B 1v , where A and B are the greatest and least of the quantities  

1 1 2 1 2 3 1 2 nu , u u , u u u ,....., u u .... u      . 

Proof. Write  

                              n 1 2 nS u u .... u .     

Therefore 

                               1 1 2 2 1 n n n 1u S , u S S ,....., u S S .      

Hence  

                               

n

i i 1 1 2 2 n n
i 1

u v u v u v .... u v .


     

                                          1 1 2 1 2 3 2 3 n n 1 nS v (S S )v (S S )v ..... (S S )v         

                                             1 1 2 2 2 3 n 1 n 1 n n nS (v v ) S v v ..... S v v S v          

                                          1 2 2 3 n 1 n nA v v v v .... v v v .         

                                          1Av .  

Similarly, we can show that  

                               

n

i i 1
i 1

u v Bv .


  

Hence the result follows. 
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Theorem 3 (Abel’s Test). The series    n n
n 1

u x v x



 converges uniformly on E if  

(i)   nv x  is a positive decreasing sequence for all values of x E  

(ii)  nu x  is uniformly convergent 

(iii)  1v x  is bounded for all x E , i.e.,  1v x M . 

Proof. Consider the series    n nu x v x , where   nv x  is a positive decreasing sequence for each 

x E . By Abel’s Lemma 

                             n n n 1 n 1 m m nu x v x u x v x .... u x v x A v x ,      

where A is greatest of the magnitudes 

                           n n n 1 n n 1 mu x , u x u x ,...., u x u x .... u x .      

Clearly A is function of x. 

Since  nu x  is uniformly convergent, it follows that 

               
     n n 1 mu x u x .... u x

M


     for all n > N, x E  

and so  A
M


  for all n > N (independent of x) and for all x E . Also, since   nv x  is decreasing, 

   n 1v x v x M   since  1v x is bounded for all x E  

Hence  

                          n n n 1 n 1 m mu x v x u x v x .... u x v x       

for n > N and all  x E  and so    n n
n 1

u x v x



  is uniformly convergent. 

Example 9. Consider the series 

 n 2n

p 2n
n 1

1 x .
n 1 x






  

We note that if p > 1, then 
 n

p

1
n


  is absolutely convergent and is independent of x. Hence, by 

Weierstrass’s M-Test, the given series is uniformly convergent for all x R . 

If 0 p 1  , the series 
 n

p

1
n


  is convergent but not absolutely. Let  
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2n

n 2n

xv x
1 x




 

Then  nv x   is monotonically decreasing sequence for |x| < 1, because  

                           
   

2n 2n 2

n n 1 2n 2n 2

x xv x v x
1 x 1 x



   
 

 

                                                     

 
 

2n 2

2n 2n 2

x 1 x

(1 x ) 1 x 




 
         (+ve) 

Also                                     
2

1 2
xv x 1.

1 x
 


 

Hence, by Abel’s Test, the series 
 n 2n

p 2n
n 1

1 x.
n 1 x







  is uniformly convergent for 0 p 1   and   |x| < 1. 

Example 10. Consider the series 
n

n 2n

xa .
1 x , under the condition that  na  is convergent. Let 

                                              
 

n

n 2n

xv x
1 x




 

Then  

                                           

 
 

2n 2
n

2n
n 1

v x 1 x
v x x(1 x )









 

and so 

                                      

 
 

  2n 1
n

2n
n 1

1 x 1 xv x
1

v x x(1 x )





 
 


 

which is positive if 0 < x < 1. Hence n n 1v v   and so  nv x   is monotonically decreasing and positive. 

Also  1 2

xv x
1 x




is bounded. Hence, by Abel’s test, the series 
n

n 2n

xa .
1 x  is uniformly convergent 

in (0, 1) if na is convergent. 

Example 11. Consider the series 
 n 1

n n

nx 1 x
a

1 x

 

  under the condition that na is convergent. We 

have  

                                        
   n 1

n n

nx 1 x
v x .

1 x

 



 

Then  
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n 1
n

n
n 1

v x n 1 x. .
v x (n 1)x (1 x )








 
 

Since n 0
(n 1)




 as n  , taking n sufficient large 

                                       

 
 

 n 1
n

n
n 1

1 xv x
1

v x (1 x )






 


 if 0 < x < 1. 

Hence <vn(x)> is monotonically decreasing and positive. Hence, by Abel’s Test, the given series 
converges uniformly in (0, 1). 

Theorem 4. (Dirichlet’s Test for uniform convergence). The series    n n
n 1

u x v x



 converges 

uniformly on E if  

(i)   nv x  is a positive decreasing sequence for all values of x E , which tends to zero 
uniformly on E 

(ii)  nu x  oscillates or converges in such a way that the moduli of its limits of oscillation 
remains less than a fixed number M for all x E . 

Proof. Consider the series 
1

( ) ( )n n

n

u x v x



  where   nv x  is a positive decreasing sequence tending to 

zero uniformly on E. By Abel’s Lemma 

              n n n 1 n 1 m m nu x v x u x v x .... u x v x Av x ,      

where A is greatest of the magnitudes 

            n n n 1 n n 1 mu x , u x u x ,...., u x u x .... u x      

and A is a function of x. 

Since  nu x  converges or oscillates finitely in such a way that  
s

n
r

u x M  for all x E , 

therefore A is less than M. Furthermore, since  nv x 0  uniformly as n   , to each 0   there 
exists an integer N such that 

 
 nv x

M


  for all n > N and all x E.  

Hence  

 
           n n n 1 n 1 m mu x v x u x v x .... u x v x . M

M 


       

for all n > N and x E  and so 
1

( ) ( )n n

n

u x v x



  is uniformly convergent on E. 
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Another way of Dirichlet’s Test for uniform convergence with proof. 

Statement. If   xVn  is a monotonic function of  x  for each fixed value of x in  ba,  and   xVn  
converges uniformly to zero for bxa   and if there is a number M > 0 s.t.  

   
1

& ,
n

r
r

U x M n x a b


   , then the series      xUxV nn   is uniformly convergent on [a,b]. 

Proof. Since   xVn  converges uniformly to zero thus for any  ,0  an integer N (Independent of x) 

s.t. for all  bax ,  

                  ...................... 1 .
4nV x n N

M


    

Let    
1

& ,
n

n r
r

S U x n N x a b


     

so that     ........................ 2 .nS x M n   

Now consider              xUxVxUxVxUxV pnpnnn

pn

nr
rr 





 ...........11
1

 

 

 

 

   

   

1

1

2

2

.
4 4 2

n n p

n n p

M V x V x

M V x V x

M
M M





   

 

 

  

    

      

 

       

         

             

     

1 1 2 2 1 1

1 1 2 1 1 1

1 1
1

1

.........

...........

n n n n n n n p n p n p

n n n n n n p n p n p n p n p

n+p-1

r r r n n n p n p
r   n

n  p

r r r
r   n

V x S S V x S S V x S S

V S V x V x S V x V x S V x S

V x V x S x V x S x V x S x

V x U x V x

        

          

   
 



 

        

            

     

  



            

   

1

1 1
1

1

1
1

. .
4 4

n   p

r r n n n p n p
r   n

n   p

r r
r   n

V x S x V x S x V x S x

V x V x M M M n N
M M
 

 

   


 




 

     





 x

(By (1)&(2))
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Hence by Cauchy Criteria, the series    




pn

nr
rr xUxV

1
  converges uniformly on [a,b]. 

Remark 1. The statement    
1

,
n

r
r

U x K x a b


    & n  is equivalent to saying that the sequence of 

partial sum of series  nU x  is bounded for each value of  bax ,  i.e, for every point  baxi , , 

there is a number ik  such that  
1

n

r i i
r

U x k


  and there exists a number  k  such that ik k i  . 

This fact is also stated as the partial sum of the series is uniformly bounded. 

This, in turm is equivalent to saying that the series   xun  either converges uniformly or oscillates 
finitely. 

So Dirichlet’s test can be states also as “If  nV x  is a monotonic function of n for each fixed value of x 

in [a,b] and  xVn  converges uniformly to zero for  bax ,  and if Un(x) either uniformly converges 
to zero or oscillates finitely in [a,b]. Then the series     xUxV nn  is uniformly convergent on [a,b]. 

Example 12. Prove that the series  pn
Cosn  and  pn

Sinn  converges uniformly for all values of p > 0 

in an interval   2,  for  0 . 

Solution. When, p > 1 , By Weierstrass M-test at once prove both the  series uniformly converge for all 
values of  . 

When 10  p ,      CosrUr    

Take pn n
b 1

  and CosnU n   or  Sinn  

Then by Dirichlet’s test pn
1  is positive and monotonic decreasing and uniformly tending to zero with  

    CosnCosCosCosnU
n

r

n

r
r  



..............2
11

 

              

 

 
2

.
2

2

2
...

2

2










nCos
Sin

Sinn

angleLastangleIstCos
Sin

Sinn







 

               nCo  2sec                ( Sin 1 Cos 1n and   ). 
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Thus all the conditions of Dirichlet’s test are fulfilled and the series  pn
Cosn  and   pn

Sinn  

converges on   2, . 

2.6 Uniform Convergence and Continuity  

We know that if f and g are continuous functions, then f + g is also continuous and this result holds for 
the sum of finite number of functions. The question arises “Is the sum of infinite number of continuous 
function a continuous function?”. The answer is not necessary. The aim of this section is to obtain 
sufficient condition for the sum function of an infinite series of continuous functions to be continuous. 

Theorem 1. Let nf   be a sequence of continuous functions on a set E R and suppose that nf   
converges uniformly on E to a function f : E R . Then the limit function f is continuous.  

Proof. Let c E be an arbitrary point. If c is an isolated point of E, then f is automatically continuous at 
c. So suppose that c is an accumulation point of E. We shall show that f is continuous at c. Since nf f

uniformly, for every 0   there is an integer N such that n N  implies  

 
   nf x f x

3


   for all  x E . 

Since Mf  is continuous at c, there is a neighbourhood  S c  such that  x S c E  (since c is limit 
point) implies  

 
   M Mf x f c

3


  . 

By triangle inequality, we have 

             M M M Mf x f c f x f x f x f c f c f (c)        

          M M M Mf x f x f x f c f c f (c)       

 3 3 3
  

      

Hence 

      f x f c , x S E       

which proves the continuity of f at arbitrary point c E . 

Remark 1. Uniform convergence of nf   in above theorem is sufficient but not necessary to transmit 

continuity from the individual terms to the limit function. For example, let  nf : 0,1 R be defined for 

n 2  by  
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2

2
n

1n x for 0 x
n

2 1 2f x n x for x .
n n n

20 for x 1
n

  

        

 


 


 

Each of the function nf  is continuous on [0, 1]. Also  nf x 0  as n  for all  x 0,1 . Hence the 

limit function f vanishes identically and is continuous. But the convergence nf f is non-uniform. 

The series version of Theorem 1 is the following: 

Theorem 2. If the series  nf x  of continuous functions is uniformly convergent to a function f on  
[a, b], then the sum function f is also continuous on [a, b]. 

Proof. Let  and let 0  . Since nf converges uniformly to f on [a, b], there 

exists a positive integer N such that  

                              nS x f x
3


     for all n N and  x a,b (1) . 

Let c be any point of [a, b], then (1) implies  

                                    nS c f c
3


     for all n N (2).  

Since nf  is continuous on [a, b] for each n, the partial sum 

          n 1 2 nS x f x f x .... f x     

is also continuous on [a, b] for all n. Hence to each 0   there exists a 0   such that 

                                     n nS x S c
3


   whenever x c                        (3). 

Now, by triangle inequality, and using (1), (2) and (3), we have 

             n n n nf x f c f x S x S x S c S c f (c)        

                             n n n nf x S x S x S c S c f (c)       

                    3 3 3
  

     , whenever x c .    

Hence f is continuous at c. Since c is arbitrary point in [a, b], f is continuous on [a, b]. 

However, the converse of Theorem 1 is true with some additional condition on the sequence nf   of 
continuous functions. The required result goes as follows: 

   
n

n n
i 1

S x f x , n N


  i
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Theorem 3. (Dini‘s theorem on uniform convergence of subsequences (first form)). Let E be 
compact and let  nf be a sequence of functions continuous on E which converges to a continuous 

function f on E. If    n n 1f x f x  for n = 1, 2, 3, …, and for every x E , then nf f uniformly on E. 

Proof. Take 

      n ng x f x f x  . 

Being the difference of two continuous functions  ng x  is continuous. Also ng 0  and n n 1g g  . We 
shall show that ng 0  uniformly on E. 

Let 0   be given. Since ng 0 , there exists an integer xn N  such that  

                                                      ng x 0 / 2    

In particular  

                                                      
xNg x 0 / 2    

i.e.                                              
xN0 g x / 2.    

The continuity and monotonicity of the sequence  ng imply that there exists an open set J(x) containing 
x such that  

  n0 g t    

if t J(x)  and n xN . 

Since E is compact, there exists a finite set of points 1 2 mx , x ,...., x  such that  

 1 2 mE J(x ) J(x ) ... J(x ).     

Taking  

  1 2 mx x xN max N , N ,..., N .  

it follows that   

  n0 g t    

for all t E and n N . Hence ng 0  uniformly on E and so nf f uniformly on E. 

Theorem 4. If a sequence  nf  of real valued function converges uniformly to f in [a,b] and let 0x  be a 
point of [a,b] s.t.    

0

lim ; 1,2,......... .n nx x
f x a n


   .  

Then (i)  }{ na  converges. 

        (ii)    
0

lim lim .nx x n
f x a
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i.e,    xfxf nxxnnnxx 00

limlimlimlim


 . 

Proof. (i)  The sequence  nf  converges uniformly on [a,b] .Therefore for 0  , there exists an 

integer m (independent of x ) s.t. for all  bax ,  

              , 1n pf x f x n m p         (By Cauchy’s Criterion). 

Keeping n, p fixed and tending 0xx  , we get  

           , 1n p na a n m p       

So that  na  is a Cauchy sequence and therefore converges to A. 

(ii)  Since  nf  converges uniformly to f. 

Thus for given 0  , there exists an integer 1N  s.t. for all  bax , . 

                

Now the sequence  na   converges to A. So there exists an integer 2N  s.t. 

              

Now take a no. N such that    21,.max NNN   

Since we have , 

                    nnxx
axf 

 0

lim  

In particular,   NNxx
axf 

 0

lim  

  for   ,0  a 0  such that  

  3
 NN axf   whenever  0 3x x    

Now,          AaaxfxfxfAxf NNNN   

                        Aaaxfxfxf NNNN   

             


333
   whenever  0xx  

 xf
xx 0

lim


   exists and is equal to A. 

Thus   Aaxf nnxx



limlim

0
. 

                  Hence the Proof. 

     1 1
3nf x f x n N

   

2 (2)
3na A n N
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Theorem 5. If a series 


1n
nf  converges uniformly to f in [a,b] and 0x  is a point of [a,b] such that 

   ......,.........2,1;lim
0




naxf nnxx
 

Then  (i)  


1n
na  converges 

(ii)    






10

lim
n

nxx
axf  

Proof. (i)  Given that the series  nf  converges uniformly on [a,b], for given 0 , there exists an 

integer m such that for all  bax ,   

                     (By Cauchy’s Criterion)  

Keeping n,p fixed and taking the limits 0xx  , we obtain 

 
  





pn

nr
r xa

1
 

 the series  na  converges to A. 

(ii)  Since the series 
1n




 nf  converges uniformly to f, therefore for 0 , there exists an integer 1N  

such that  bax , , we have,  

                 

Again  na  converges to A. 

 for  such that  

          2.................
3 2

1
NnAa

n

r
r 




 

Also it is given that 

             .,.........2,1;lim
0




naxf nnxx
 

  for the given  ,0  a 0i   such that for i = 1,2,…….. 

22, N  0

   
3 1 

x f x f 
n 

r 
r  



 


 
1 

 


 

xf 
p n 

n r 
r     1,  pmn

 1 .....................1Nn 
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Such that   whenever ixx  0 . 
If we take  N ......,.........,.min 21 , then we have 

              
N

axf nn 3


   for   0xx  

Thus       3............
33

.
11 1


  

  N
Naxfaxf

N

r
rr

N

r

N

r
rr  

Now for  0xx , we have 

         
 


N

r
r

N

r

N

r
rr

N

r
r AaaxfxfxfAxf

11 11 .
 

Using (1),(2) & (3) , we get 

        f x A    

 xf
xx 0

lim


  exists and is equal to A. 

We have seen earlier that if sequence  nf  is a sequence of continuous functions which converges 
pointwise to the function f, then it is not necessary for f to be continuous. However, the concept of 
uniform convergence is of much importance as the property of continuity transfers to the limit function 
if the given sequence converges. 

Theorem 6. If the sequence of continuous function  nf   is uniformly convergent to a function f on 
[a,b] then f is continuous on [a,b]. 

Proof. Let 0  be given.  

Now given that sequence  nf  is uniformly convergent to f on [a, b], then there exists a positive integer 
m such that 

                 & , 1
3nf x f x n m x a b

       

Let 0x  be any point of [a, b]. 

In particular then from (1), 

                  (2) 

Now nf  is continuous at ],[0 bax  .So, there exists  0  such that 

   
3nf x0 f x0 n m

   

 
3N 

 
  n n  a x f 
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30


 xfxf nn   whenever  0 3x x    

Hence for  0xx , we have 

               0000 xfxfxfxfxfxfxfxf nnnn   

                             000 xfxfxfxfxfxf nnnn   

                 


333
           (from (1), (2)& (3)) 

We get      0xfxf  whenever  0xx  

Hence f is continuous at  bax ,0    

  f is continuous on [a,b]. 

Theorem 7. If a series 


1n
nf  of continuous function is uniformly convergent to a function f on [a, b], 

then the sum function f is also continuous on [a, b]. 

Proof. Since the series  nf  converges uniformly on [a, b] to f on [a, b]. 

Thus given 0 , we can choose m such that  

[ , ]for all x a b                     
1

. 1
3

n

r
r

f x f x n m


     

Let x0 be any point in [a,b], then from (1),we have n = N 

                     0 0
1

2
3

N

r
r

f x f x n m


     

Now it is given that each fn is continuous on [a,b]  and in particular at x0. 

Hence 0 , there exists 0  such that 

     
31 1

0


 
 

N

r

N

r
rr xfxf  whenever  0 3x x    

Hence for  0xx , 

                  
   


N

r

N

r

N

r

N

r
rrrr xfxfxfxfxfxfxfxf

1 1 1 1
0000  
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N

r

N

r
rr

N

r
r

N

r
r xfxfxfxfxfxf

1 1
0

1
00

1
 

Thus from (1), (2) & (3) , we get 

              


333  

     0xfxf  

 f is continuous at x0 on [a,b]. Since x0 was chosen arbitrary. 

  Hence the proof. 

Remark 1. (i) Uniform convergence of the sequence  nf  is sufficient but not a necessary condition for 
the limit function to be continuous. This means that a sequence of continuous functions may have a 
continuous limit function without uniform convergence. 

However the above theorem yields a negative test for uniform convergence of a sequence namely “If the 
sequence of continuous functions is discontinuous, the sequence cannot be uniformly convergent.” 

(ii) The same argument hold good in the case of infinite series 


1n
nf . 

The following examples illustrate the same: 

(1)  The sequence  nx  of continuous functions has a discontinuous limit function f which is given by  

              0, 0 1
1, 1

if x
f x

if x
 

   . 

Then the sequence cannot uniformly convergent on [0, 1]. 

(2) The sequence 








 221 xn
nx

 of continuous functions has a continuous limit function but the given 

sequence is not uniformly convergent. 

(3)  The sum of the functions of the series  





1

1
n

nxx  of the continuous functions. 

                  1, 0
0, 0

if x
f x

if x


  
 

which is discontinuous on [0,1]. Therefore the series is not uniformly convergent on [0,1]. 

Note 1.     ...........111 2

1
 





xxxxx
n

n  
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                                  11 1.
1

x
x

     
 

Some important results  

Here we state some results which we shall use in the following theorems & examples: 

(1) Every monotonically increasing sequence bounded above converges to the least upper bound 
(l.u.b.). 

(2) Every monotonically decreasing sequence bounded below converges to greatest lower bound 
(g.l.b). 

(3) A real no.    is said to be a limit point of a sequence  na  if given any 0  and a +ve integer 

m, there exists a +ve integer k > m such that  ka . 

(4) Every bounded sequence has a cluster point. 

(5) If a seq.  na  converges to L or diverges to or   then every subsequence of  na  also 
converges to L or diverges to .or   

(6)   Consider the geometric series 

            ........................... 12  nararara  
This series 

(i) converges  if r < 1. 

(ii) diverges to   if  1r . 

(iii) oscillate finitely if r = -1. 

(iv) oscillates infinitely if r < -1. 

(7)   Leibnitz’s Rule. The alternative series   n

n

n
a

1

1
1




   is convergent if 

(i) naa nn 1  

(ii) 0na  as  n  

(8)  For every limit point of a sequence we can form a subsequence converging to limit point. Limit 
point is also called subsequential limit. 

Theorem 8 (Dini’s theorem on uniform convergence of subsequences(2nd form)). If a sequence of 
continuous function  nf  defined on [a,b] is monotonically increasing & converges pointwise to a 
continuous function  f, then the convergence is uniform on [a,b]. 
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Proof. The sequence  nf  is monotonically increasing and converges to f on [a,b]. 

Therefore, for any 0  and for a point  bax ,  there is an integer N s.t. 

                        0 1nf x f x n N      

We consider    xfxfR nn   ;   n = 1,2,………….. 

Since the sequence  nf  is monotonically increasing. So, the seq.   xRn  is monotonically decreasing. 

i.e,          1 2 3 ........... 2nR x R x R x R x    . 

Also, the sequence   xRn  is bounded below by 0. 

Hence the seq.  nR  converges  pointwise to 0 on [a,b]. 

We claim that this convergence is uniform. 

Suppose if possible for a fixed  ,00a  no integer N which works for all  bax , . 

Then for each n = 1,2,3,………, there exists  baxn ,  such that 

                           0 3n nR x a  

The seq.  nx  of points belonging to the interval [a,b] is bounded and thus has atleast one limit say ''  
in [a,b]. 

Consequently, we can assume that there is a subsequence  
knx  of seq.  nx  converges to ''   

i.e,  
knx  as .k   

Now the function, 

              xfxfxR nn   is continuous being the difference of two continuous functions and thus for 
every fixed m, we have 

     mnmk
RxR

k



lim              

knx   as  k . 

Now for every m and any sufficiently large k, we have 

                mkmnk  , . 

Since  mR  is a decreasing sequence, we have 

               0axRxR
kkk nnnm              (from (3))  

           0axR
knm  . 

But this is contradiction to the fact that sequence  mR  converges pointwise to 0 i.e.,  
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                              0lim 


mn
R  

Thus the convergence must be uniform and this completes the proof. 

Theorem 9 (Dini’s theorem on uniform convergence for series). If the sum function of a series  

 nf  with non negative terms defined on an interval [a, b] is continuous on [a,b], then the series is 
uniformly convergent on the interval [a, b]. 

Proof. Consider the partial sum of the given series  

                



n

r
rn xfxS

1
 

Since all the function rf  are non –ve . So, the seq. of partial sum  nS  should be increasing. 

Therefore,    1n nS x S x n   

i.e., nS  is an increasing sequence of continuous functions converges pointwise to a continuous function 
f. Hence by Theorem 8, the sequence nS  converges uniformly and the given series is also uniformly 
convergent. 

        This completes the proof. 

Example 1. Show that the series  

       ...................
11 24

4

4

4
4 







x
x

x
xx  

is not uniformly convergent on [a,b]. 

Solution.  The terms of the given series are quotient of two polynomials and hence continuous (Since 
the polynomials are continuous and quotient of two continuous function is continuous). 

Now, Let us find the sum function for the given series. Let,  xf  denotes the sum function of the given 
series. 

If 0x  then the series is a geometric series with common ratio 41
1
x  and  1,01

1
1

4 


x
x . 

Hence the sum function is given by  

                 4

4

4

1

1
11

x

x

xxf 




  

Thus,    
41 0

0, 0
x if x

f x
if x

  
 


 

which is discontinuous on 0 and hence on [0,1] . So, the series cannot converge uniformly on [0,1]. 



68  Sequence & Series of Functions 

Example 2.  Show that the series       111 xnnx
x

 is uniformly convergent on any interval [a, b], 

0 < a < b, but only pointwise on [0, b]. 

Solution. Let          1
1

11
1

111 








nxxnxnnx
xxfn  

Therefore nth partial  sum is  

             



n

r
nrn xfxfxfxfxS

1
21 ..........  

             

 

1
11

1
1

11
1..........

12
1

1
1

1
11









































nx

nxxnxxx

 

The sum function     xSxf nn 
 lim  

                                   
1

11lim













n nx
 

   
1 0
0, 0

if x
if x


  

 

Clearly f is discontinuous at x = 0 and hence discontinuous on [0, b]. 
This implies that the convergence is not uniform on [0, b] i.e, it is only pointwise. 
Now take the interval [a,b] such that 0 < a < b, then the given series is uniformly convergent on [a,b] if 
for given 0 . 

                    



1

1
nx

xfxSn  

i.e,  if  





  111
x

n  

Now, 





 111
x  decreasing with x and its maximum value is  

0
1 1 1 m
a 
   
 

(say). 

If we take 0mm   then for all  bax ,   

                 .nS x f x n m     
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Hence the series converges uniformly on [a,b] s.t. 0 < a < b. 

Example 3. Show that the series 
 










1
2

11
n

n

xn  is uniformly convergent but not absolutely for all real 

values of x. 

Solution. The given series is 
 










1
2

11
n

n

xn . 

Let 2
1 .na

n x


  

   naa nn 1  and  0na  as n . 

Hence by Leibnitz’s rule, the alternative series
 










1
2

11
n

n

xn  is convergent. 

We know that a series 


1n
na  is said to be absolutely convergent if the series 



1n
na  is convergent. 

       Now, 
  1

2 2
1 1

1 1
n

n nn x n x

 

 




    which behaves like  n
1  and hence is divergent. 

It remains to prove that the given series is uniformly convergent. 

Let  xSn  denotes the partial sum and  xS  denote the sum of the series. 

Now, consider 

 

 

   

2 2 2 2 2 2

2 2 2 2 2 2 2

1 1 1 1 1.............
1 2 3 4 2

1 1 1 1 1 1.................
1 2 3 4 2 1 2

n

n

S x
x x x x n x

S x
x x x x n x n x

     
    

                            

 

Now, note that each bracket in the above expression is positive. Hence  xS n2  is positive and increasing 
to the sum  xS . 

    02  xSxS n  

Also           ......
32
1

22
1

12
1

3222 









xnxnxn

xSxS n  

                              ...........
32
1

22
1

12
1

222 
















xnxnxn  
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                        212
1

xn 
  

                      
1 .

2 1n


  

So,      2
10 1 .

2 1nS x S x
n

  
  

Also, consider  

          ..............
42
1

32
1

22
1

22212 








 xnxnxn
xSxS n  

                        ..............
52
1

42
1

32
1

22
1

2222 


























xnxnxnxn  

      212 22
1

xn
xSxS n 


1 .
2 2n


  

     2 1
1 10 2 .

2 2 2 1nS x S x
n n    
   

Inequality (1) & (2) yield that for any 0 , 

we can choose an integer m s.t. for all values of x. 

               
  The series converges uniformly for all real values of x. 

Example 4. Consider the seq.  nf  where 

                       2 2 .
1n

nxf x
n x


  

Show that the sequence of differentiable functions  nf  does not converge uniformly in an interval 
containing zero. 

Solution. Here   221 xn
nxxfn 

  

    0lim 


xfxf nn  

  0'  xf  for all real x 

   xS xS  n     mn 
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Now,     
   

2 2 2 3 2 2 2

2 242 2 2 2

1 2 . 1/ 2'
1 1/

n

n x n nx n x n n x xf x
nn x n x

      
   

 

Now   0'lim 


xfnn   for  0x . 

Thus    xfxf nn
''lim 

  

But at x=0;   nxf n '  and   


0'lim nn
f  

Thus at    0; ' lim 'nn
x f x f x


  . 

Hence the sequence 'nf  does not converges uniformly in an interval that contains zero. 

2.7 Uniform Convergence and Integrability. 

            We know that if f and g are integrable, then  f g f g      and this result holds for the sum 

of a finite number of functions.  

The aim of this section is to find sufficient condition to extend this result to an infinite number of 
functions. 

Theorem 1. Let α be monotonically increasing on [a, b]. Suppose that each term of the sequence  

 nf  is a real valued function such that nf R( )   on [a, b] for n = 1, 2,.. and suppose nf f uniformly 

on [a, b]. Then f R( )   on [a, b] and  

                     

b b

nn
a a

f d lim f d


    , 

that is,         
b b

n nn n
a a

lim f (x) d (x) lim f (x) d (x)
 

     

(Thus limit and integral can be interchanged in this case. This property is generally described by saying 
that a uniformly convergent sequence can be integrated term by term). 

Proof. Let  be a positive number. Choose 0   such that  

                                  b a
3

1           
       

This is possible since   is monotonically increasing. Since nf f uniformly on [a, b], to each 0   
there exists an integer n such that  

                                nf x f x   ,   x a,b                  (2)       

Since  nf R  , we choose a partition P of [a, b] such that 



72  Sequence & Series of Functions 

                                     n nU P,f , L P,f ,
3


      (3) 

The expression (2) implies  

                                        n nf x f x f x       

Now    nf x f x   implies, by (1) that 

                                  
   nU P, f , U P,f ,

3


   
                    

(4)  

Similarly,    nf x f x   implies 

                                      nL P,f , L P, f ,
3


                         (5)  

Combining (3), (4) and (5), we get  

                                      U P, f , L P, f ,      

Hence  f R  on [a, b]. 

Further uniform convergence implies that to each 0  , there exists an integer N such that n N  

    
   

   
 nf x f x , x a, b

b a


  
    

 

Then for n > N,  

 
b b b b

n n n
a a a a

f d f d f f d f f d             

                                                       
 

b

a

d x dx
b a


 
   

  

                                                      

   
   

b a
b a

     
  

   . 

Hence                         
b b

nn
a a

f d lim f d


   
 

and the result follows. 
The series version of Theorem 1 is  

Theorem 2. Let nf R , n = 1, 2, … If nf converges uniformly to f on [a, b], then f R and  

   
b b

n
n 1a a

f x d f x d




    ,i.e., the series nf is integrable term by term. 
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Proof. Let nS   denotes the sequence of partial sums of nf . Since nf converges uniformly to f on 

[a, b], the sequence nS  converges uniformly to f. Then nS  being the sum of n integrable functions is 
integrable for each n. Therefore, by theorem 1, f is also integrable in Riemann sense and        

                               
   

b b

nn
a a

f x dx lim S x dx


   

But                           

 
 

bn

i
i 1 a

f x dx



 

                                 
 

b

a

f x dx   
bn

in
i 1 a

f x dxlim 



 

                                                
 

b

i
i 1 a

f x d




   

and the proof of the theorem is complete. 

Example 1. Consider the sequence nf   for which    2nx
nf x nxe , n N, x 0,1   . We note that                           

 
   nn

f x lim f x


  

 

 2 2 4n

nxlim 0, x 0,1
nx n x1 ......
1! 2!


  

  
 

Then   

 
 

1

0

f x dx 0  

 
 

 

n
t 2

0

1 e dt, t nx
2

   

 
n1 1 e

2
     

Therefore 

 
  n

nn n

1lim f x dx lim 1 e
2



 
      

1 .
2

  

       
b b b b

n 1 2
a a a a
S x dx f x dx f x dx .... f x dx       n

n 
2

1 1
nx

0 0

f x dx nxe dx 
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If nf   were uniformly convergent, then  
1

0

f x dx should have been equal to  nn
lim f x dx
  . 

But it is not the case. Hence the given sequence is not uniformly convergent to f. In fact, x = 0 is the 
point of non-uniform convergence. 

Example 2. Consider the series
 22n 1

x

n x



 
 . This series is uniformly convergent and so is integrable 

term by term. Thus 

    
1 1m

2 2m2 2n 1 n 10 0

x xdx lim
n x n x




 

 
  
   
    

 
 

1m 22

m n 1 0

lim x n x dx





   

 

 
112m

m n 1
0

n x
lim

2






 
 
 
 

  

 

m

m n 1

1 1 1lim
2 n n 1



    
  

 
m

1 1 1 1 1 1lim 1 ...
2 2 2 3 m m 1

                        
 

 m

1 1 1lim 1
2 m 1 2

     
 

Example 3. Consider the series
 

 
  2 2 2 2n 1

n 1 xnx , a x 1.
1 n x 1 n 1 x





         
  

Let  nS x  denote the partial sum of the series. Then  

   n 2 2

nxS x
1 n x




 

and so                            nn
f x lim S x 0


    for all  x 0,1  

As we know that 0 is point of non-uniform convergence of the sequence  nS x  , the given series is not 

uniformly convergent on [0, 1]. But 
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1 1

0 0

f x dx 0 dx 0    

and     
1 1

n 2 2
0 0

nxS x dx dx
1 n x


   

  
1 2

2 2
0

1 2n x dx
2n 1 n x


  

 
  12 2

0

1 log 1 n x
2n

     

 
 21 log 1 n .

2n
     

Hence   

                                            
   

1
2

nn n
0

1lim S x dx lim log 1 n
2n 

    form 
  

 

 2n

nlim
1 n




form 
  

 

 n

1lim 0.
2n

   

Thus    

 
   

1 1

nn
0 0

f x dx lim S x dx


  , 

and so the series is integrable term by term although 0 is a point of non-uniform convergence. 

Theorem 3. Let  ng  be a sequence of functions of bounded variation on [a, b] such that  ng a 0 , 

and suppose that there is a function g such that  

     
 nn

lim V g g 0


   

and g(a) = 0. Then for every continuous function f on [a, b], we have 

 

b b

nn n
a a

lim f dg lim f dg
 

   

and ng g uniformly on [a, b]. 

Proof. If V denotes the total variation on [a, b], then 
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      n nV g V g V g g    

Since ng  is of bounded variation and  nn
lim V g g 0


   it follows that total variation of g is finite and 

so g is of bounded variation on [a, b]. Thus the integrals in the assertion of the theorem exist. 

Suppose  f x M  on [a, b]. Then   

                         
 

b b b

n n
a a a

f dg f dg f d g g      

                                                    nM V g g  . 

Since  nV g g 0   as n   , it follows that  

                                       

b b

nn
a a

f dg lim f dg .


   

Furthermore,  

                               n ng x g x V g g , a x b      

Therefore, as n   , we have 

ng g  uniformly. 

2.8. Uniform Convergence and Differentiation 

If f and g are derivable, then 

                                      
       d d df x g x f x g x

dx dx dx
      

and that this can be extended to finite number of derivable functions.  

In this section, we shall extend this phenomenon under some suitable condition to infinite number of 
functions. 

Theorem 1. Suppose  nf is a sequence of functions, differentiable on [a, b] and such that   n 0f x  

converges for some point 0x  on [a, b]. If  nf '  converges uniformly on [a, b], then  nf converges 

uniformly on [a, b], to a function f, and  

   
     nn

f ' x lim f ' x a x b


   . 

Proof. Let 0  be given. Choose N such that n N, m N   implies  

                                      n 0 m 0f x f x
2


 
                                      

(1)   
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and  

 
     n mf ' t f ' t

2 b a


 


 a t b                                        (2).                           

Application of mean value theorem to the function n mf f , (2) yields 

                
(3)          

for any x and t on [a, b] if n N, m N  . Since 

                n m n m n 0 m 0 n 0 m 0f x f x f x f x f x f x f x f x .        

the relation (1) and (3) imply for n N, m N  , 

    n mf x f x / 2 / 2        a x b  . 

Hence, by Cauchy criterion for uniform convergence, it follows that  nf converges uniformly on [a, b]. 

Let 

 
     nn

f x lim f x a x b


   . 

For a fixed point  x a,b , let us define  

                 n n
n

f t f x
t

t x


 


,                        f t f x
t

t x


 
                              

(4)   

for a t b, t x   . Then 

                     n n
n nt x t x

f t f x
lim t lim f ' x

t x 


  


                 (n = 1, 2,…)                (5)               

Further, (3) implies 

 
   n mt t

2(b a)


   


n N, m N  . 

Hence  n converges uniformly for t x . We have proved just now that  nf  converges to f uniformly 

on [a, b]. Therefore (4) implies that  

 
   nn

lim t t


  
                                                                            

(6)         

uniformly for  a t b  , t x . Therefore using uniform convergence of n  and (5), we have                                 
    nt x t x n

lim t lim lim t
  

    

 
 nn t x

lim lim t
 

   

         n m n m

x t
2 b a 2

      


f x f x f t f t
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 nn

lim f ' x .


  

But  
t x
lim t f '(x)


  . Hence  

 
   nn

f ' x lim f ' x .


  

Remark 1. If in addition to the above hypothesis, each nf '  is continuous, then the proof becomes 
simpler. Infact, we have then 

Theorem 2. Let nf   be a sequence of functions such that  

(i) each nf is differentiable on [a, b]. 

(ii) each nf '  is continuous on [a, b]. 

(iii) nf   converges to f on [a, b]. 

(iv) nf '   converges uniformly to g on [a, b], then f is differentiable and    nf ' x g x  for all 

 x a,b . 

Proof. Since each '
nf  is continuous on [a, b] and '

nf   converges uniformly to g on [a, b], the 
application of Theorem 1 of section 2.6 of this unit implies that g is continuous and hence Riemann 
integrable. Therefore, Theorem 1 of section 2.7 of this unit implies  

                                           
   

t t

nn
a a

g x dx lim f ' x dx


   

But, by Fundamental theorem of integral calculus,  

                                          
     

t

n n n
a

f ' x dx f t f a   

Hence  

                                            
     

t

n nn
a

g x dx lim f t f a


     

Since nf   converges to f on [a, b], we have  

                                        
   nn

lim f t f t


  and    nn
lim f a f a .


  

Hence  

    
     

t

a

g x dx f t f a   

and so   
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t

a

d g x dx f ' t
dt
 

 
 
  

or         g t f ' t , t a, b .   

This completes the proof of the theorem. 

           The series version of Theorem 2 is 

Theorem 3. If a series nf converges to f on [a, b] and  

(i) each nf  is differentiable on [a, b] 

(ii) each  nf '  is continuous on [a, b] 

(iii)the series nf '  converges uniformly to g on [a, b] 

then f is differentiable on [a, b] and    f ' x g x  for all  x a,b . 

Proof. Let nS  be the sequence of partial sums of the series n
n 1

f



 . Since nf converges to f on [a, b], 

the sequence nS  converges to f on [a, b]. Further, since nf '  converges uniformly to g on [a, b], the 

sequence nS '   of partial sums converges uniformly to g on [a, b].  

Hence, theorem 2 is applicable and we have 

                                           f ' x g x  for all  x a,b .  

Example 1. Consider the series 
 

 
  2 2 2 2n 1

n 1 xnx .
1 n x 1 n 1 x





       
  

For this series, we have  

                                        
   n 2 2

nxS x , 0 x 1
1 n x

  


 

We have seen that 0 is a point of non-uniform convergence for this sequence. We have  

                                      
     n 2 2n n

nxf x limS x lim
1 n x 

 


 

                                                      0 for 0 x 1.   

Therefore  

                                             f ' 0 0  
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     n n

n h

S 0 h S 0
S ' 0 lim

h

 
  

                                                        2 2h 0

nlim n
1 n h

 


 

Hence  

 
 nn

limS ' 0 .


  

Then  

 
   nn

f ' 0 limS ' 0


 . 

Example 2. Consider the series 3
n 1

sin nx, x R
n





 . We have  

                                                     
 n 3

sin nxf x
n

  

                                                    
 n 2

cos nxf ' x .
n

  

Thus  

 
 n 2

cos nxf ' x
n

   

Since 2 2

cos nx 1
n n

  and 2

1
n is convergent, therefore, by Weierstrass’s M-test the series  nf ' x  is 

uniformly as well as absolutely convergent for all x R  and so nf can be differentiated term by 

term. 

Hence                                     
'

n n
n 1 n 1

f f '
 

 

 
 

 
   

or                                      
'

3 2
n 1 n 1

sin nx cos nx
n n

 

 

 
 

 
   

2.9 Weierstrass’s Approximation Theorem  

Weierstrass proved an important result regarding approximation of continuous function which has many 
applications in numerical methods and other branches of mathematics. 

The following computation shall be required for the proof of Weierstrass’s approximation theroem. 

For any p,q R , we have, by Binomial Theorem 
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0

( ) ,k nk
n

n

k
p

n
q p q

k




 
  

 
 ,          n I ,              (1) 

where  

                        
!

! !
n n
k k n k
 

   
 

Differentiating with respect to p, we obtain 

 
1 1

0
( )

n
n n

k

k kn
k pp q n q

k
  



 
  

 
 , 

which implies 

 
1

0
( ) ,

n
n k nk

k

nk q p p q n Ip
kn

 



 
   

 


                            
(2). 

Differentiating once more, we have 

 

2
11 2

0
( 1)( ) ( )

n
n n n

k

k knk q p n p q
k

p p q
n

   



 
     

 
  

and so 

 

2
2 2 1

2
0

1(1 )( ) ( )
n

k n

k

k n nnk pq p p q p q
n

p
kn n

  



 
     

 


                             
(3).             

Now if x [0,1] , take p = x and q = 1-x. Then (1),  (2) and (3) yield 

 

 

 

 

0

0

2
2

2
0

1 1

1

11 1
n

k
n

n k

k

n
n k

k

k

k

k

n

k

n
x x

k

nk x x x
kn
nk xx x x
kn n n













  
   

 
      

 
              






                                                  

(4). 

On expanding
2k x

n
  
 

, it follows from (4) that  

 
   2

0

1
1

n
n k

k

kn x xk x x x
kn n





      
   

  0 x 1                               (5). 

For any f [0,1] , we define a sequence of polynomials  n n 1
B 


as follows: 
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0
1 ,

k

k
n

n k
n

n kB x x x f
k n





       
  

              0 x 1, n I                      (6). 

The polynomial nB  is called the nth Bernstein Polynomial for f. 

We are in a position to state and prove Weierstrass’s Theorem. 

Theorem 1 (Weierstrass’s Approximation Theorem). If f is real continuous function defined on [a,b] 
then there exists a sequence of real polynomials  nP  which converges uniformly to f(x) on [a,b] 

i.e.,     xfxPnn



lim   uniformly on [a,b]. 

Proof. If a = b, then f(x) = f(a). 

Then, the theorem is true by taking  xPn  to be a constant polynomial defined by 

    nP x f a n   

Thus we assume that a < b 

 ab
axf




  is continuous mapping of [a,b] onto [0,1]. 

So, in our discussion W.L.O.G. we take a = 0, b = 1. 

Now we know that for positive integer n and k where nk 0 , the binomial coefficients 







k
n

 i.e,  

    kcn  is defined as  !!
!

knk
n

k
n











 

Now, we define the polynomial nB  where 

 
     1 n kk

n

n kB x x x f
k n

        
  

  

The polynomial defined in (*) is called Bernstain polynomial as shown in above equation (6). 
We shall prove that certain Bernstain polynomial exists which uniformly converges to f on [0,1]. 
Now consider the identity 

      
0

1 1 1 1
n nn kk

k

n
x x x x

k




 
        

 
  

 [This is the binomial exp. of  nxx  1 ] 
Differentiating w.r.t. x, we get 
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n

k

knk

n

k

knkknk

nxkxx
k
n

xxknxkx
k
n

0

11

0

11

01

011

 

Multiplying by x(1-x) yields 

 
     

0
1 0 2

n
n kk

k

n
x x k nx

k




          
  

Differentiating again w.r.t. x, we get 

 
      



 






n

k

knkknk nxkxxxnx
k
n

0

211 011  

which on applying (1),we get 

 
    



 






n

k

knk nnxkxx
k
n

0

211 1  

Multiplying by x(1-x), we get 

 

     

     

2

0

2

0

1 1

1
1 3

n
n kk

k

n
n kk

k

n
x x k nx nx x

k

n x xkx x x
k n n









 
    

 

         
  





 

Since the maximum value of x(1-x) in  [0,1] is ¼. 

     
 

 

1 , ' 1 2

' 0 1 2 0

1/ 2 1/ 2 1/ 4.

f x x x f x x

f x x

x f

   

    

   
 

So, (3) can be written as 

 
   

2

0

11 4
4

n
n kk

k

n kx x x
k n n





         
  

  

Now f is continuous on [0,1]. So, f is bounded and uniformly continuous on [0,1]. 
0K   such that 

    0,1f x K x    

and by uniform continuity for given 0 , there exists 0  such that for all  1,0x . 
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2










n
kfxf  whenever  5 .kx

n
   

Now for any fixed but arbitrary x in [0,1], then n- values 0,1,2,………..,n of k can be divided into two 
parts as follows: 

Let A be the set of values of k for which 
kx
n

  and B be the set of remaining values for which 


n
kx . 

Now for Bk  , we get by (4) 

 

   

   

2
2

2

11 1
4

11 6
4

n k n kk k

k B k B

n kk

k B

n n kx x x x x
k k n n

n
x x

k n





 

 





              
    

 
   

 

 



 

Now  

 

       

   





















































n

k

knk

n

k

knk
n

n
kfxfxx

k
n

n
kfxx

k
n

xfxBxf

0

0

1

1.1

(By (1)) 

 
        















 


 n

kfxfxx
k
n

xBxf knk
n

k
n 1

0
 

We split the summation on R.H.S into two parts accordingly as 

       
n
kx   or  

n
kx  

 Let Ak   or Bk  .  
Thus we have 

 

           

   

1 1

1 2 1
2

n k kk k
n

k A k B

n k n kk k

k A k B

n nk kf x B x x x f x f x x f x f
k kn n

n n
x x K x x

k k




 

 

 

                  
      

   
      

   

 

 
 

 
2

2
2 4

K
n

 


    for all values of  2
Kn 
 . 
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Thus   xBn  converges uniformly to f(x) on [0, 1]. 

 Hence the proof. 

Example1. If f is continuous on [0,1] and if   0 dxxfxn
 for n=0,1,2,………. Then show that f(x) = 0 

on [0,1]. 

Solution. Let   n
n xaxaxaaxp  ...............2

210   be a polynomial with real co-efficients defined 
on [0,1], then 

           dxxfxadxxfxp
n

n
n  














1

0 0

1

0
 

                    
1

0 00

.0 0.n
n n

n n
a x f x dx a

 

 

     

Thus the integral of product of f with any polynomial is zero. 

Now, since f is continuous on [0,1], therefore by Weierstrass’s approximation theorem, there exists a 
seq. np   of real polynomial such that fpn   uniformly on [0,1]. 

                 2ffpn   is uniformly on [0,1] 

Since f being continuous and bounded on [0,1], therefore  

                   0.lim
1

0
.

1

0

2   
dxfpdxf nn  

Therefore,   02 xf  on [0,1]. 

Hence f(x) = 0 on [0,1]. 
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UUNNIITT  ––  IIIIII  
 POWER SERIES AND FUNCTION OF SEVERAL VARIABLES 

Structure 

3.0 Introduction 

3.1 Unit Objectives   

3.2 Power Series 

3.2.1 Power series 
3.2.2 Uniform convergence and uniqueness theorem  
3.2.3 Abel theorem 
3.2.4 Tauber theorem 

3.3 Function of several variables 

3.3.1 Linear transformation 

 Euclidean space Rn  

3.3.2 Derivatives in an open subset E of Rn 

 Chain rule 

3.3.3 Partial derivatives  

 Continuously differentiable mapping 

 Young theorem  

 Schwarz theorem 
3.4 References 

3.0 Introduction 

In this unit, we study convergence and divergence of a power series and applications of Abel’s theorem. 
Tauber showed that the converse of Abel’s theorem can be obtained by imposing additional condition on 
coefficients, whenever the converse of Abel’s theorem is false in general. Many of the concepts i.e., 
continuity, differentiability, chain rule, partial derivatives etc are extended to functions of more than one 
independent variable. 

3.1 Unit Objectives 

After going through this unit, one will be able to 

 understand the concept of power series and radius of convergence.  
  identify the notation associated with functions of several variables 
 familiar with the chain rule, partial derivatives and concept of derivation in an open subset of Rn. 
 know the features of Young and Schwarz’s Theorems. 
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3.2 Power Series 

A very important class of series to study is power series. A power series is a type of series with terms 
involving a variable. Evidently, if the variable is x, then all the terms of the series involve powers of x. 
So we can say that a power series can be design of as an infinite polynomial. In this section we will give 
the definition of the power series as well as the definition of the radius of convergence, uniform 
convergence and uniqueness theorem, Abel and Tauber theorems. 

Definition 1. A power series is an infinite series of the form 


0n

n
n xa  where san '  are called its 

coefficients. 

Definition 2 (Convergence of power series). It is clear that for x = 0, every power series is convergent, 
independent of the values of the coefficients. Now, we are given three possible cases about the 
convergence of a power series. 

(a) The series converges for only x = 0 which is trivial point of convergence, then it is called 
“nowhere convergent”  

e.g.  nxn! converges only for x = 0 and for 0x , we have 

           lim ! .n

n
n x


   

Thus the terms of the series do not converge for 0x  and thus the series converges only for x = 
0. Hence it is ‘Nowhere convergent’ series. 

(b) The series converges absolutely for all values of x, then it is called “Everywhere convergent”. 

e.g. The series converges absolutely for all values of x,  

             

1

1

1
1

,
! 1!

( 1)! 1lim .
!

n n

n n

n
n

nn
n

x xu u
n n
u x n n

u n x x








 

 

    
 

By D-Ratio test, the series converges for all values of x. So, it is called “Everywhere convergent” 
series. 

(c) The series converges for some values of x and diverges for others. 

e.g. The series 


0n

nx  converges for x < 1 and diverges for x > 1. 

The collection of points x for which the series is convergent is called its “Region of 
convergence”. 
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Definition 3. Let n
n

n 0
a x




  be a power series. Then, applying Cauchy’s root test, we observe that the 

power series n
n

n 0
a x




 is convergent if 

                                                              1x ,
L

  

where 

                                                              1/n
nL lim a  . 

The series is divergent if 1x .
L

  

Taking  

                                                              1/n
n

1R
lim a

  . 

We will prove that the power series is absolutely convergent if x R and divergent if x R . If 

0 1a ,a ,.... are all real and if x is real, we get an interval R x R   inside which the series is convergent. 

If x is replaced by a complex number z, the power series n
n

n 0
a z




  converges absolutely at all points z 

inside the circle z R  and does not converge at any point outside this circle. The circle is known as 

circle of convergence and R is called radius of convergence. In case of real power series, the interval 
(-R, R) is called interval of convergence. 

If 1/n
nlim a 0,  then R   and the power series converges for all finite values of x. The function 

represented by the sum of series is then called an Entire function or an integral function. For example, 
ze ,sin z  and cosz  are integral functions. 

If 1/n
nlim a , R 0,    the power series does not converge for any value of x except x = 0. 

Definition 4. Let R be the radius of convergence of the power series n
n

n 0
a z ,




 then the open interval  

(-R, R) is called the interval of convergence for the given power series. 

Theorem 1. Let  n
n xa  be a power series such that 

R
a n

nn

1lim /1 


. 

Then the power series is convergent with radius of convergence R. 
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Proof. Given that  

                     
R

a n
nn

1lim /1 


 

So,            
R
x

xa
nn

nn




/1
lim  

Hence by Cauchy’s Root test, the series  n
n xa  is convergence if 1

R
x

and divergent if 1
R
x

 i.e, 

convergent if Rx  and divergent if Rx  . Hence by definition, R is radius of convergence of the 

given power series. 

Remark 1. (i) From the proof of above theorem, it follows that if for the series  n
n xa , 

                            
R

a n
nn

1lim /1 


 

then the series is absolutely convergent. 

(ii)  In view of the last theorem, we define the power series of convergence in the following way: 

   Consider the power series n
n xa , then the radius of convergence of this series is given by 

          n
na

R /1lim
1

  when 0lim /1 n
na  

               0   when  n
na /1lim  

                  when  1/lim 0.n
na   

Obviously R  for an “everywhere convergent” and 0R  for a “nowhere convergent” series. 

Theorem 2. If a power series  n
n xa converges for 0xx   then it is absolutely convergent for every

1xx   where 01 xx  . 

Proof. Given that the series  n
n xa  is convergent. 

Thus 00 n
n xa   as  n . 

Hence for 2/1 (say), there exists an integer N such that  

                        Nnxa n
n 

2
1

0   

Thus, we have  
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n

n
n

n
n x

xxaxa
0

1
01   

                              1

0

1 (*)
2

n
x n N
x

    

Now  1
0

1
01 

x
xxx . 

Thus 
n

x
x

0

1  is geometric series with common ratio less than 1. So, it is convergent. By comparison 

test, the series  n
n xa 1  converges. 

n
n xa  is absolutely convergent for every 1xx   where 01 xx  . 

Theorem 3. If a power series  n
n xa  diverges for 'xx  then it diverges for every "xx   , where 

'" xx  . 

Proof. Given that the series  n
n xa diverges at 'xx  . 

Let  "x  be such that '" xx  . 

Let if possible, the series is convergent for "xx  , then by theorem 2, it must be convergent for all x 

such that "xx  . 

In particular, it must be convergent at 'x  which is contradiction to the given hypothesis. 

Hence the series diverges for every "xx  , where '" xx  . 

Definition 5 (Radius of Convergence). 

For the power series  n
n xa , the radius of convergence is also defined by the relation 

1

lim





n

n

n a
a

R , 

provided the limit exists. 

This definition is commonly used for numerical purpose as illustrated below: 

Find the radius of convergence of following: 

(1) ...............
!3!2

32


xxx  

(2) ....................!3!21 32  xxx  
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(3) .................
8.5.2
5.3.1

5.2
3.1

2
1 32  xxx  

(4) 2 3 4
2 3 4

1 1.2 1.2.3 ...............
2 3 4

x x x x     

Solution. (1) Here 
!

1
n

an   

                                    





!1
!

1limlim
1

n
na

a
R

n
n

n

n
 

The series converges for all values of  x i.e, everywhere convergent. 

(2) Here !nan   

             0
!1

!lim 



 n

nR
n

 

So, the series converges for no value of x other than zero. So, it is nowhere convergent series. 

(3) Here  
 13.................8.5.2

12...................5.3.1




n
nan  

              
 
 

  
  1212................5.3.1

2313..............8.5.2
13................8.5.2
12................5.3.1lim









 nn

nn
n
nR

n
 

                 
2
3

/12
/23lim 





 n

n
n

 

So series converges for all x where 
2
3

x . 

(4) Here  
nn n

na !1
  

            1 11 ! 1 1lim lim 1 .
!

n n

nn n

n n
R e

n n n

 

 

        
 

      

So the series is convergent for all x where x e . 

Definition 6. Let f(x) be a function which can be express in terms of the power series as  

                           
0

,n
n

n
f x a x





   

then f(x) is called sum function of the power series n
n xa . 
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Remark 2. We have defined the uniform convergence of a series in a closed interval always. Thus, if a 
power series converges uniformly for Rx  , then we must express this fact by saying that the series 

converges uniformly in closed interval    RR , , where 0  may be arbitrary chosen, however 

if a power series converges absolutely for Rx  , then we can directly say that the series converges 

absolutely in (-R, R). 

Theorem 4. Suppose the series n
n

n 0
a x




  converges for x R  and define  

                                           
 n

n
n 0

f (x) a x x R .




 
 

Then  

(i) n
n

n 0
a x




  converges uniformly on [ R ,R ], 0.      

(ii) The function f in continuous and differentiable in (-R, R)  

(iii) 
   

 ' n 1
n

n 1
f (x) na x x R






   

Proof. (i)  Let  be a positive number. If x R ,   we have 

                                                  
 nn

n na x a R 
 

Since every power series converges absolutely in interior of its interval of convergence by Cauchy’s root 
test, the series  n

na R   converges absolutely and so, by Weierstrass’s M-test, n
na x converges 

uniformly on [ R ,R ].    

 (ii) Also then the sum f(x) of n
na x  is continuous and differentiable on (-R, R) and n

na x is 

uniformly convergent on ,R R    . 

Therefore, its sum function is continuous and differentiable on (-R, R). 

(iii) Now consider the series 1n
n xna . 

Since  1/nn 1 as n ,   we have 

                                                         1/n 1/n
n nlim n | a | lim | a |  

Hence the series n
na x  and n 1

nna x   have the same interval of convergence. Since n 1
nna x   is a 

power series, it converges uniformly in ,R R     for every 0. Then, by term by term 
differentiation yields 
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                                                    n 1
nna x f '(x) if x R .     

But, given any x such that x R  we can find an 0 such that x R . Hence 

                                                   n 1
nna x f '(x) if x R.    

Note. It follows from the above theorem 4 that by repeated application of the theorem f can be 
differentiable any number of time and series obtained by differentiation at each step has the same radius 
of convergence as series  n

n xa . 

Theorem 5. Under the hypothesis of Theorem 4, f has derivative of all orders in (-R, R) which are given 
by 

                                                (k ) n k
n

n k
f (x) n(n 1)(n 2)...(n k 1)a x






      . 

In particular 

                                                ( ) (0) , 0,1, 2,...........k
kf k a k   

Proof.  Let  

                        
                         0

( ) n
n

n
f x na x





  . 

Then by theorem 4, 

                                                  ' 1

1
( ) .n

n
n

f x n a x






   

Again applying theorem 4 to 'f (x) , we have  

                                                

" 2

2

( )

( ) ( 1)

........................................

........................................

........................................

( ) ( 1)( 2)......( 1) .

n
n

n

k n k
n

n k

f x n n a x

f x n n n n k a x











 

    





 

Clearly ( ) (0)k
kf k a  the other sum vanish at x = 0. 

Remark 3. If the coefficients of a power series are known, the values of the derivatives of f at the centre 
of the interval of convergence can be found from the relation 

                                                 ( ) (0)k
kf k a . 

Also we can find coefficient from the values at origin of , ', ",...f f f  
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Theorem 6 (Uniqueness theorem). If n
na x  and n

nb x  converge on some interval (-R, R),     R > 0 
to some function f, then 

    n na b for all n . N
  

Proof. Under the given condition, the function f have derivatives of all order in (-R, R) given by  

                                        ( ) ( ) ( 1)( 2)......( 1) .k n k
n

n k
f x n n n n k a x






      

Putting x = 0, this yields  

                                       (k ) (k )
k kf (0) k!a and f (0) k!b . 

 
 

for all k .N  Hence 

                                               k ka b for all k . N
 

This completes the proof of the theorem. 

Theorem 7 (Abel’s Theorem (First form)).  If a power series 


on

n
n xa  converges at the point R of the 

interval of convergence (-R, R), then it uniformly converges in the interval [0, R]. 

Proof. Consider the sum  

          1 2
, 1 2 .......... ; 1,2,................n n n p

n p n n n pS a R a R a R p  
        

Then, we have 

         
2

2
1

12,

1
11,













n

n
n

nn

n
nn

RaRaS

RaS
 

and so on. 

This gives  

               

1
1 ,1

2
2 ,2 ,1

, , 1

.............................. (1)

.............................

n
n n

n
n n n

n p
n p n p n p

a R S

a R S S

a R S S








 




  




 


 

Let є > 0 be given. 

Now the series 


0n

n
n xa  is convergent at x = R. 
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The series of numbers 
0

n
n

n
a R




  is convergent and hence by Cauchy’s general principle of convergence, 

there exists an integer N such that 

                1 2
1 2 ....... 1, 2,..........n n n q

n n n qa R a R a R n N q  
           

   , & 1,2,..........n qS n N q                                         (2) 

Now if we take  0,x R  i.e, Rx 0 , then we have 

        
1 1

............. 1. 3
n p n p nx x x

R R R

   
             
     

 

Now, consider for all Nn  , 

  pn
pn

n
n

n
n xaxaxa 







  ...............2
2

1
1  

                             

   

1 2
1 2

1 2

1 2

,1 ,2 ,1 , , 1

1 2 2

,1 ,2

............

............

n n n p
n n n p

n n n p

n n n p

n n n n p n p

n n n

n n

x x xa R a R a R
R R R

x x xS S S S S
R R R

x x xS S
R R R

  
  

  

  



  

             
     

               
     

               
       

3

,

1 2 2 3

,1 ,2 ,

1 2 2 3

........

.........

.

n n p

n p

n n n n n p

n n n p

n n n n

x xS
R R

x x x x xS S S
R R R R R

x x x x
R R R R



 

    

   

           
     

                                
               

                  
       

1

..........
n p n p n px x x

R R R

                  
       

 

  .1x
R

       
 

     (by (3)) 

Thus we have proved that  

 1 2
1 2 ......... 1, 0, .n n n p

n n n pa x a x a x p x R  
           

Hence by Cauchy’s criterion of convergence of series, the series 
0

n
n

n
a x




  converges uniformly on [0, R]. 

Remark 4. (i) In case, a power series with interval of convergence (-R, R) converges at Rx  , then 
the series is uniformly convergent in [-R, 0]. 
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Similarly, if a series convergent at the end points  -R and R, then the series is uniformly convergent on [-
R, R]. 

(ii) If a power series with interval of convergence (-R, R) diverges at end point Rx  , then it cannot be 
uniformly convergent on [0, R]. 

For, if the series is uniformly convergent on [0, R], it will converge at x = R. A contradiction to the 
given hypothesis. 

Theorem 8 (Abel’s theorem (second form)). Let 
0

n
n

n
a x




 be a power series with finite radius of 

convergence R and let   ; .n
nf x a x x R   If the series n

n
xa  converges at end point x = R then 

 lim .n
nx R

f x a R


  

Proof. First we show that there is no loss of generality if we take 1R . 

           n
n

nn
n

n
n ybyRaxa   where n

nn Rab  . 

Now, this is a power series with radius R’, where 

 1/ 1/
1 1' 1.

limlim
n nn

nn

RR
Ra Ra R

     

So, if any series is given, we can transform it in another power series with unit radius of convergence. 
Hence we can take R = 1. 

Thus, now it is sufficient to prove that let 
0

n
n

n
a x




  be a power series with unit radius of convergence and 

let     1; xxaxf n
n , if the series  na  converges then  

1 0
lim .nx n

f x a




 

   .Let us proceed to prove 

the same. 

            nn aaaS  ............10  

             01 S  and  
0

.n
n

a S




  

Then     
 


m

n

m

n

n
nn

n
n xSSxa

0 0
1  

                        
 


m

n

m

n

n
n

n
n xSxS

0 0
1  
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1
1

1
0 0

1
1

1
0 0

1 1

1
0 0

1

0

0

1 .

m m
n m n

n m n
n n

m m
n n m

n n m
n n

m m
n n m

n n m
n n

m
n m

n m
n

S x S x x S x

S x x S x S x

S x x S x S x S

x S x S x





 





 

 


 





  

  

   

  

 

 

 





 

Now, for 0;1  mxx   as  m  and SSm  . 

    

 

     

1

0 0

0

lim lim 1 lim

1 1

m m
n n m

n n mm m mn n

n
n

n

a x x S x S x

f x x S x



  
 





   

  

 



 

Now, since SSn  , therefore for 0 , there exists integer N such that 

         (2)
2nS S n N

     

Also, we have 

            
   

0
1 1 3n

n
x x





 
 

Hence for Nn  , we have 

                SxSxSxf
n

n
n  



0
1  

                                                  









00

11
n

n

n

n
n SxxxSx              (by (3)) 
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0

0 1

0

1

1 (1 )
2

1
2

n
n

n

N
n n

n
n n N

N
n

n
n

x S S x

x S S x x x

x S S x











  



  

    

   



 



 

Now for a fixed N,    n
N

n
n xSSx 




0

1  is continuous function of x having zero value at x = 1. 

Thus, there exists 0  such that 11  x . 

                 
2

1
0


 



n
N

n
n xSSx  

     


22
Sxf   whenever  11  x  

Hence,         
1 0

lim n
nx

f x aS






  . 

Remark 5. We state some result related to Cauchy product of two series which will use in following 
theorem, which is infact an application of Abel’s theorem. 

(i) Let 
0

n
n

a



  and 

0
n

n
b




 , then the series 

0
n

n

c



  where  0 1 1 0..........n n n nc a b a b a b     is called 

Cauchy product  of series 
0 0

&n n
n n

a b
 

 
  . 

(ii) Cauchy’s Theorem. Let 
0 0

&n n
n n

a b
 

 
   be absolutely convergent series such that 

   BbAa nn , , then Cauchy’s product series 
n

nc  is also absolutely convergent and 

ABc
n

n  . 

Theorem 9. If  






 00
&

n
n

n
n ba  and 



0n
nc  converges to sum A, B & C respectively and if  nc  be 

Cauchy product of  na   and   nb  then AB = C. 

Proof. 


0n
nc  is the Cauchy product of 



0n
na  and 



0n
nb . 
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 0110 .......... bababac nnnn    

Let      









00

,
n

n
n

n

n
n xbxgxaxf   and   10;

0
 





xxcxh
n

n
n . 

For 1x  , the three series converge absolutely  

          xgxfxc n
n   (By Cauchy’s theorem in Remark 5(ii)) 

              . ;0 1. (1)h x f x g x x     

Now by Abel’s theorem 

   
1 0

lim nx n
f x a f x A





 

     as  1x   

Similarly,    ,g x B h x C   as  1 2x   

Thus from (1) & (2), we have 

             AB = C. 

Example 1. Show that  

.........
7
1

5
1

3
11

4
)(

..............
753

tan)(
753

1





ii

xxxxxi

 

Solution. (i) We know that 

     
12 2 4 61 1 ........; 1 1x x x x x


      
 

The series on the right is a power series with radius of convergence 1, so it is absolutely convergent in (-
1, 1) and uniformly convergent in [-k, k] where │k│< 1. 
Now integrating (1), we get 

    
1..;..........

753
tan

753
1  xxxxxcx

 
Putting x = 0, we obtain c = 0, so that 

  
1.....;..........

753
tan

753
1  xxxxxx

 
The series on R.H.S is a power series with radius of convergence equal to 1. However, the series 

             
...........

753

753


xxxx

 
is convergent at ±1. 
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Hence by Abel’s theorem, it is uniformly convergent in [-1, 1] and hence 

      
11........;..........

753
tan

753
1  xxxxxx

  
(ii) At x = 1. By Abel’s theorem (Second form) 

               

1 1

1
tan lim tan

1 1 11 ..........
4 3 5 7

x
x x





 




    
 

Example 2. Show that for  -1≤ x ≤ 1, 

...........
4
1

3
1

2
112log)(

.........
432

)1log()(
432





ii

xxxxxi

 

Solution. (i) We know that 

       
  11......;..........11 321   xxxxx

 On integrating, we get 

       
  11.......;..........

32
1log

32

 xxxxx
 

The power series on R.H.S. converges at x = 1. 
So, by Abel’s theorem 

     
  11.....;..........

32
1log

32

 xxxxx
 

(ii) Put x = 1, in above series we get result 

           

  1 1 1log 1 1 1 ............; 1 1
2 3 4

1 1 1log 2 1 ................; 1 1.
2 3 4

x

x

        

          

Tauber’s Theorem. The converse of Abel’s theorem proved above is false in general. If f is given by 

                                                   n
n

n 0
f (x) a x , r x r





   
 

the limit f (r )  may exists but yet the series n
n

n 0
a r




  may fail to converge. For example, if  

 

 
     






0

1,1
n

nnn
n xxfa
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.............1

1,

32

0



 




xxx

xx
n

n

 

       
Then 

 1( ) , 1 1.
1

f x x
x

   


 

                                           

  
   

1 1

11 lim lim .
1x x

f f x
x 



 
 

  
Put x = 1- h,   if x→1-,      h→0 

              2
1

11
1lim

0





 hh  

 1 .f exists
 

However, 

 
0 0

        1  11  & .n
n

n n
is not convergent because this is oscillating betweena

 

 

   
  

Tauber showed that the converse of Abel’s theorem can be obtained by imposing additional condition on 
coefficients na .  A large number of such results are known now a days as Tauberian Theorems. We 
present here only Tauber’s first theorem. 

Theorem 10 (Tauber). Let n
n

n 0
f (x) a x , for 1 x 1





     and suppose that n nlim na 0.   If  

f (x) S as x 1 ,   then n
n 0

a



  converges and has the sum S.  

Proof. Let n k
k 0

n k a .




   Then 0 . (1)n as n    

 Also, 1lim ( ) 1 . (2)n nn
f x S where x

n
                        

     , 1 , ( )n nwhen n x f x S   . 

Therefore to each 0,  we can choose an integer N such that n N  implies  

                                             0 , ( ) , 0
3 3 3n n nf x S na   
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i.e.,  

       
, ( ) , . (3)

3 3 3n n nf x S n a n N   
     

 

Let  
0

.
n

n k
k

S a


   Then for 1 x 1,    we have 

       

0

0 0

0 0 1

0 1

0 1

( )

( )

( ) (1 ) .

( ) (1 ) . (4)

n

n k
k
n

k
k k

k k
n n

k k
k k k

k k k n
n

k k
k k

k k n

n
k k

n k k
k k n

S S a S

a S f x a x

f x S a a x a x

f x S a x a x

S S f x S a x a x





 



   



  



  

  

   

    

    

     



 

  

 

 

 

Let x (0,1).  Then 

                                          1(1 ) (1 )(1 ........ ) (1 )k kx x x x k x         

for each k. Therefore, if n N and 0 x 1,   we have 

         

0 1

0 1

0 1

0 1

0 1

0

( ) (1 )

( ) (1 )

( ) (1 )

( ) (1 )

( ) (1 )
3

( ) (1 )
3 (1 )

n
k k

n k k
k k n

n
k k

k k
k k n

n
k

k k
k k n

n
k

k k
k k n

n
k

k
k k n

n

k
k

S S f x S a x a x

f x S a x a x

f x S a k x a x

f x S x k a a x

f x S x k a x
n

f x S x k a
n x



  



  



  



  



  



     

    

    

    


    


    



 

 

 

 

 

 .

 

Putting n
1x x 1 ,
n

    we find that 

                                1(1 )x
n
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0
( ) 13 .

.
3 3 3

n
k

n
k

k a
S S f x S

n n
n




    

  
   


 

          
0

k
n

a



 converges & has sum S, which completes the proof. 

3.3 Functions of Several Variables 

This section is devoted to calculus of functions of several variables in which we study derivatives and 
partial derivatives of functions of several variables along with their properties. The notation for a 
function of two or more variables is similar to that for a function of a single variable. A function of two 
variables is a rule that assigns a real number f(x, y) to each pair of real numbers (x, y) in the domain of 
the function which can be extended to three and more variables.  

3.3.1 Linear transformation 

Definition 1. A mapping f of a vector space X into a vector space Y is said to be a linear transformation 
if  

                                   1 2 1 2f (x x ) f (x ) f (x ),
f (cx) cf (x)

  


 

for all 1 2x, x , x X and all scalars c. 

Clearly, if f is linear transformation, then f(0) = 0. 

A linear transformation of a vector space X into X is called linear operator on X. 

If a linear operator T on a vector space X is one-to-one and onto, then T is invertible and its inverse is 
denoted by 1T . Clearly, 1T (Tx) x   for all x X.  Also, if T is linear, then 1T  is also linear. 

Theorem 1. A linear operator T on a finite dimensional vector space X is one-to-one if and only if the 
range of T is equal to X. i.e, T(X) = X.  

Proof. Let R(T) denotes range of T. Let  1 2 nx , x ,..., x  be basis of X. Since T is linear the set 

 1 2 nTx ,Tx ,...,Tx spans R(T). The range of T will be whole of X if and only if  1 2 nTx ,Tx ,...,Tx is 
linearly independent. 

So, suppose first that T is one-to-one. We shall prove that  1 2 nTx ,Tx ,...,Tx is linearly independent. 
Hence, let 

                                            1 1 2 2 n nc Tx c Tx ... c Tx 0     

Since T is linear, this yields 
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                                             1 1 2 2 n nT(c x c x ... c x ) 0     

and so                                    1 1 2 2 n nc x c x ... c x 0     

Since  1 2 nx , x ,..., x is linearly independent, we have, 1 2 nc c ...c 0.    

Thus  1 2 nTx ,Tx ,...,Tx is linearly independent and so R(T) = X if T is one-to-one. 

Conversely, suppose that  1 2 nTx ,Tx ,...,Tx is linearly independent and so 

1 1 2 2 n nc Tx c Tx ... c Tx 0                                        (1) 

implies 1 2 nc c ...c 0.    Since T is linear (1) implies 

                                                 1 1 2 2 n nT(c x c x ... c x ) 0     

1 1 2 2 n nc x c x ... c x 0      

Thus T(x) = 0 only if x = 0. Now 

                     
T(x) T(y) T(x y) 0 x y 0 x y          

and so T is one-to-one. This completes the proof of theorem. 

Definition 2. Let L(X, Y) be the set of all linear transformations of the vector space X into the vector 
space Y. If  T1, T2 ∈  L(X,Y)  and if  c1,c2 are scalars, then 

 (c1T1+c2T2)(x)= c1T1x+c2 T2x ;  x ∈ X. It can be shown that c1T1+c2T2∈ L(X, Y).  

Definition 3. Let X, Y and Z be vector spaces over the same field. If S, T ∈ L(X,Y), then we define their 
product ST by  

                                                ST(x) = S(T(x)); x ∈ X. 
, ( , ).Also ST L X Y  

Euclidean space Rn. A point in two dimensional space is an ordered pair of real no. (x1, x2). Similarly, a 
point in three dimensional space is an ordered triplet of real no. (x1, x2, x3). It is just as easy to consider 
an ordered n-tuple of real no. (x1,  x2,……, xn) and refer to this as a point in n-dimensional space. 

Definition 4. Let n > 0 be an integer. An ordered set of  n real no. (x1, x2,…….., xn) is called an n-
dimensional point or a vector with n-component points. Vector will usually be denoted by single bold 
face letter. 

e.g.   x = (x1, x2,………., xn) 

        y = (y1, y2,…………, yn) 

The number xk is called the kth co-ordinate of point x or kth component of the vector x. 

The set of all n-dimensional point is called n-dimensional Euclidean space or n-space and is denoted by Rn. 
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Algebraic operations in Rn - n-dimensional Euclidean space are as follow: 

Let x = (x1,x2,……,xn) and y = (y1,y2,…………,yn) be in Rn. 

We define  

(a) Equality x = y iff x1 = y1, x2 = y2, …………., xn = yn. 

(b) Sum x + y = ((x1 + y1, x2 + y2,………,xn + yn) 

(c) Multiplication by real no. (Scalar): 

ax = a(x1, x2,……., xn) = (ax1,ax2,……., axn) 

(d) Difference x - y =  x+( -)y 

(e) Zero vector or origin 0 = (0, 0, ……. ,0). 

(f) Inner product or dot product  

1
.

n

k k
k

xy x y


 
 

(g) For all x ϵ Rn. Also if λ is such that 

                                     
nTx | x |, x R , then T .     

(h) Norm or length 

If T∈ L(Rn, Rm). Then 

                                 nlub Tx : x R , x 1   
is called Norm of T and is denoted by ||T||. The inequality 

                                                   Tx T x  
and  

         

1/2
2

1
.

n

k
k

x x


 
  
 
  

The norm x y   is called the distance between x & y. 
(i) Also, Let x and y denote points in Rn, then the following results hold: 

(i) 0 0 0.x and x iff x    

(ii) .ax a x   for every real a. 
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(iii) xyyx   
(iv) Cauchy Schwarz Inequality: 

2. .x y x y    

(v) .x y x y  
 

Note 1. Sometimes the triangle inequality is written in the form  

             .x z x y y z      
This follows form (v) by replacing x by x-y and y by y-z. We also have 

                 yxyx   
Definition 5. The unit co-ordinate vector uk in Rn is the vector whose kth component is 1 and remaining 
components are zero. Then  

         

 
 

 

1

2

1, 0, 0, ......., 0

0, 1, 0,........, 0
..........................
..........................

0, 0, .............. ,1 .n

u

u

u







 

 1 2, ,............, ,nIf x x x x then  

            

1 1 2 2

1 1 2 2

.........
&

, ,...........,

n n

n n

x x u x u x u

x xu x xu x xu

   

  
. 

The vectors u1, u2,………,un are also called basis vectors. 

Theorem 2. Let n mT,S L(R , R ) and c be a scalar. Then  
( ) .

( ) .
( ) ( , ) , .

n ma T and T is uniformly continuous mappings of R and R

b T S T S and cT c T

c If d T S T S then d is a metric

 

   

 
 

Proof. (a) Let {e1, e2,….,en} be the standard basis in Rn and let x ϵ Rn. Then 
n

i i
i 1

x c e .


    

i

i i i i

i

Suppose x 1 so that c 1 for i 1,2,..., n. Then

Tx c Te c . Te

Te
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    , 1

.

n

i

Taking lub over xx R

Tx Te

 

     

Further 

( ) ; , nTx Ty T x y T x y x y R       

,So if x y then
T


   

; , .nTx Ty x y R    
Hence, T is uniformly continuous. 

(b) We have 

                                             

 

(T S)x Tx Sy

Tx Sx

T x S x

T S x

  

 

 

 

 

 1,

.

   ,nTaki x we hng lub over x aveR

T S T S



  


 

Similarly, it can be shown that 

cT c T .  

n m

(c) We have d(T,S) T S 0 and d(T,S) T S 0 T S.

Also d(T,S) T S S T d(S,T)

Further, if S,T, U L(R ,R ), then
S U S T T U

S T T U

       

    



    

   

 

Hence, d is a metric. 

Theorem 3. If T ϵ L(Rn, Rm) and S ϵ L(Rn, Rm), then 

ST S T  
Proof. We have 

(ST)x S(Tx) S Tx
S T x
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 sup  , 1,
.

Takin x we have

S

g ove

T

x

T

r

S



  

In theorem 2, we have seen that the set of linear transformation form a metric space. Hence the concepts 
of convergence, continuity, open sets etc. make sense in Rn. 

Theorem 4. Let C be the collection of all invertible linear operators on Rn. 

1 n m

n m 1

1(a) If T C, T , S L(R , R ) and S T , then S C.

(b) C is an open subset of L(R , R ) and mapping T T is continuous on C.

 






      

  

Proof. We note that  
1 1

n

x T Tx T Tx

1 Tx for all x R


  

 
    

and so 

( )

( )

. (1)n

x x x

Tx x

Tx S T x

Sx x R

   



  

 

  

    
Thus kernel of S consists of 0 only. Hence S is one-to-one. Then Theorem 1 implies that S is also onto. 
Hence S is invertible and so S ϵ C. But this holds for all S satisfying ||S - T|| < α. Hence every point of C 
is an interior point and so C is open. 
Replacing x by S-1y in (1), we have 

1 1

1

1

1 1 1 1

( ) S y SS y y

y
or S y

1and so S

sin ce S T S (T S)T

 

 

 

 





   

  







    
We have 

                                           

1 1 1 1

. (2)
( )

S T S T S T


  

     


  

Thus if f is the mapping which maps T → T-1, then (2) implies 
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S T
f (S) f (T)

( )  


 
 . 

Hence, if ||S –T|| → 0 then f(S) → f(T) and so f is continuous. This completes the proof of the theorem. 

3.3.2 Derivatives in an open subset E of Rn 

In one-dimensional case, a function f with a derivative at c can be approximated by a linear 
polynomial. In fact if fʹ(c) exists, let r(h) denotes the difference 

                        
'( ) ( )( ) ( ) 0 (1)f x h f xr h f x if h

h
 

                                                     

and let r(0) = 0. Then we have 

                      
'( ) ( ) ( ) ( ), (2)f x h f x h f x hr h     

an equation which holds also for h = 0. The equation (2) is called the First order Taylor formula for 
approximating f(x + h) – f(x) by h fʹ(x). The error committed in this approximation is h r(h). From (1), 
we observe that r(h) → 0 as h → 0. The error h r(h) is said to be of smaller order than h as h → 0. We 
also note that h fʹ(x) is a linear function of h. Thus, if we write Ah = h fʹ(x), then 

21 2 1A(ah bh ) aAh bAh    
Here, the aim is to study total derivative of a function f from Rn to Rm in such a way that the above said 
properties of hfʹ(x) and hr(h) are preserved. 

Definition 1(Open ball and open sets in Rn). Let ‘a’ be a given point in Rn and let r be a given positive 
number, then the set of all points x in Rn such that 

                    rax   is called an open n-ball of radius ‘r’  and centre ‘a’. 

We denote this set by B(a) or B(a, r) . The B (a, r) consists of all points whose distance from ‘a’ is less 
than r. 

In R1, this is simply an open interval with centre at a. 

In R2, it is a circular disc. 

In R3, it is a spherical solid with centre at a and radius r. 

Definition 2 (Interior point). Let E be a subset of Rn and assume that a ∈ E, then a is called an interior 
point of E if there is an open ball with centre surrounded by an n-ball. i.e., 

                   .B a E  
The set of all interior points of E, is called the interior of E and is denoted by int E. 

Any set containing a ball with centre ‘a’ is sometime called a neighbourhood of a. 

Definition 3 (Open set). A set E in Rn is called open if all points are interior points. 



110  Power Series & Function of Several Variables 

Note 1. A set E is open if and only if E = interior of E.  

        Every open n-ball is an open set in Rn. 

The cartesian product    nn bababa ,..............,),( 2211   of n-dimensional open interval 
(a1,b1),…………,(an,bn) is an open set is Rn called n-dimensional open interval, we denote it by (a, b) 
where 

               
 
 

1 2

1 2

, ,.............,

, ,.................., .
n

n

a a a a

b b b b



  

Remark 1. (i)  Union of any collection of open sets is an open set. 

(ii) The intersection of a finite collection of open sets is open. 

(iii) Arbitrary intersection of open sets need not be open. 

e.g.  Consider the seq. of open interval such that          

              1 1, ;nG n N
n n

    
 

 

Clearly each Gn is open set but 1 2............. {0}nG G G  , which is being a finite set is not open. 

Definition 4 (The structure of open sets in R’).  In R’ the union of countable collection of disjoint 
open interval is an open set in R’ can be obtained in this way.  

     First we introduce the concept of a component interval. 

Definition 5 (Component interval). Let E be an open subset in R’ and open interval I (which may be 
finite or infinite) is called a component interval of E 

   . . . If I E and if there is no J I s tinterv Eal I J    
In other words, a component interval of E is not a proper subset of any other open interval contained in E. 

Remark 2. (i)  Every point of a nonempty open set E belongs to one and only one component interval of 
E. 

(ii) Representative theorem for open sets on the real line. 

 Every nonempty open set E in R’ is the union of a countable collection of disjoint intervals of E. 

Definition 6(Closed set). A set in Rn is called closed if and only if its complement Rn - E is open. 

Remark 3. (i) The union of a finite collection of closed sets is closed and the intersection of an arbitrary 
collection of closed set is closed. 

(ii) If A is open and B is closed, then A - B is open and B-A is closed. 

                          .cA B A B    
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Definition 7 (Adherent point). Let E be a subset of Rn and x is point in Rn, x is not necessary in E. 
Then x is said to be adherent to E if every n-ball B(x) contains atleast one point of E. 

E.g. (i) If xєE, then x adherenes to E for the trivial reason that every n-ball B(x) contains x. 

(ii) If E is a subset of R which is bounded above. Then sup.E is adherent to E. 

Some points adheres to E because every ball B(x) contains points of E distinct from x these are called 
adherent points. 

Definition 8 (Accumulation point/Limit point). Let E be a subset of Rn and x is a point in Rn, then x is 
called an accumulation point of E if every n-ball B(x) contains atleast one point of E distinct from x.  

In other words, x is an accumulation point of E if and only if x adheres to E-{x}. 

If x є E, but x is not an accumulation point of E, then x is called an isolated point of E. 

e.g.  (i) The set of numbers of the form 1/n (n=1,2,……..) has 0 as an accumulation point. 

( ii) The set of rational numbers has every real number as accumulation point. 

(iii) Every point of the closed interval [a, b] is an accumulation point of the set of numbers in the open 
interval (a, b). 

Remark 4. If x is an accumulation point of E, then every n-ball B(x) contains infinitely many points of 
E. 

Definition 9 (Closure of a set). The set of all adherent points of a set E is called a closure of E 
__

.   and is deno by Eted  
Definition 10 (Derived set). The set of all accumulation points of a set E is called the derived set of E 
and is denoted by E’.  

 Remark 5. (i) A set E in Rn is closed if and only if it contains all its adherent points. 

      
__

( )     . ii A set E is c Elosed f Eif    
(iii) A set E in Rn is closed iff it contains all its accumulation points. 

Definition 11. Suppose E is an open set in Rn and let f : E → Rn be a function defined on a set E in Rn 
with values in Rm. Let x ϵ E and h be a point in Rn such that |h| < r and x + h ϵ B(x, r). Then f is said to 
be differentiable at x if there exists a linear transformation A of Rn into Rn such that 

                                         f(x+h)=f(x)+Ah+r(h)                                                             (1) 

where the reminder r(h) is small in the sense that 

h 0
| r(h) |lim 0.

| h | 
 

We write fʹ(x) = A. 

The equation (1) is called a First order Taylor formula.  
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                       h→0
( ) ( )

0. (2)
f x h f x Ah

h
  

   

The equation (2) thus can be interpreted as “For fixed x and small h, f(x + h) – f(x) is approximately 
equal to fʹ(x)h, that is, the value of a linear function applied to h.” 

Also (1) shows that f is continuous at any point at which f is differentiable. 

The derivatives Ah derived by (1) or (2) is called total derivative of f at x or the differential of f at x. 

In particular, let f be a real valued function of three variables x, y, z say. Then f is differentiable at the 
point (x, y, z) if it possesses a determinant value in the neighbourhood of this point and if  

f f (x x, y y, z z) f (x, y, z) A x B y C z , where | x | | y | | z |,
0 as 0 and A, B,C are independent of x, y, z. In this case A x B y C z is called

 


                     
        
differential of f at (x, y, z). 

Theorem 1 (Uniqueness of derivative of a function). Let E be an open set in Rn and f maps E in Rm 
and x ϵ E. Suppose h ϵ Rn is small enough such that x + h ϵ E. Then f has a unique derivative. 

Proof. If possible, let there are two derivatives A1 and A2. Therefore  

1
h 0

2
h 0

f (x h) f (x) A h
lim 0

h
and

f (x h) f (x) A h
lim 0

h





  


  


 

Consider B = A1 - A2. Then 

Bh = A1h – A2h 

           = f(x + h)- f(x) +f(x)- f(x + h) + A1h – A2h 

          = f(x + h)- f(x) – A2h + f(x)- f(x + h) + A1h  

and so 

2 1( ) ( ) ( ) ( )Bh f x h f x A h f x h f x Ah         
which implies  

1
h 0

2
h 0

f (x h) f (x) h f (x h) f (x) h
lim lim

| h | | h
Bh

| | h
A

|
A

0

 

   
 







 

For fixed h ≠ 0, it follows that 

                                            
( )

0 0.
B th

as t
th

                                                (1) 
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The linearity of B shows that L.H.S of (1) is independent of t. Thus Bh = 0 for all h ϵ Rn. Hence B = 0, 
that is, A1 = A2, which proves uniqueness of the derivative. 

The following theorem, known as chain rule, tells us how to compute the total derivatives of the 
composition of two functions. 

Theorem 2 (Chain rule). Suppose E is an open set in Rn, f maps E into Rm, f is differentiable at x0 with 
total derivative fʹ(x0), g maps an open set containing f(E) into Rk and g is differentiable at f(x0) with total 
derivative gʹ(f(x0)). Then the composition map F = fog, a mapping E into Rk and defined by F(x) = 
g(f(x)) is differentiable at x0 and has the derivative 

                                                           Fʹ(x0) = gʹ(f(x0)) fʹ(x0). 
Proof. Take  
                                              y0 = f(x0), A = fʹ(x0), B = gʹ(y0) 
and define 

1 0 0

2 0 0

0 0

r (x) f (x) f (x ) A(x x )
r (y) g(y) g(y ) B(y y )
r(x) F(x) F(x ) BA(x x ).

   

   

   
 

To prove the theorem, it is sufficient to show that 
                                                           Fʹ(x0) = BA, 
that is, 

0
0

( ) 0r x as x x
x x

 
                                      (1) 

But, in term of definition of F(x), we have 

0 0 0

2 1

r(x) g(f (x)) g(y ) B(f (x) f (x ) A(x x ))
so that

r(x) r (f (x)) Br (x). (2)

     

 
 

If ϵ > 0, it follows from the definitions of A and B that there exists η > 0 and δ > 0 such that  

                     
2

0
0

( )r y
as y y

y y
 

  

2 0 0 0( ) . ., ( ) ( )or r y y y as y y i e f x f x        

 1and r x 0 0 .x x if x x      

2 0

1 0

2
0 0

( ( )) ( ) ( )

( ) ( )

( )

Hence
r f x f x f x

r x A x x

x x A x x

  

  

    

                             (3) 
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and 

   1 1

0 0

Br x B r x

B x x if x x



                                         (4) 

Using (3) and (4), the expression (2) yields 

   2
0 0 0

2

0

0

( )

( )

Hence
r x x x A x x B x x

r x
A B

x x

A B if x x 

      

   


      

 

0
0

,
( )

0

Hence
r x

as x x
x x

 


 

which in turn implies 

                                           Fʹ(x0) = BA = gʹ(f(x0)) fʹ(x0). 

3.3.3 Partial derivatives.  

Let 1 2{ , ,........ }ne e e  be the standard basis of Rn. Suppose f maps an open set E  Rn into Rm and 
let 1 2 mf , f ,..., f  be components of f. Define k iD f on E by 

0

( ) ( )( )( ) lim i k i
k i t

f x te f xD f x
t

 
                          (1) 

provided the limit exists. 

Writing  i 1 2 nf (x , x ,..., x )  in place of  if (x)  we observe that k iD f  is derivative of if  with respect to kx , 

keeping the other variable fixed. That is why, we use i

k

f
x



 frequently in place of k iD f .  

Since 1 2 nf (f , f ,..., f ),  we have  

                                    k k 1 k 2 k nD f (x) (D f (x), D f (x),..., D f (x))  

which is partial derivative of f with respect to xk. 

Furthermore, if f is differentiable at x, then the definition of f′(x) shows that  

0

( ) ( )lim '( )k
kt

f x th f x f x h
t

 
                    (2)

 If we take k kh e ,  taking components of vector in (2), it follows that 
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“If f is differentiable at x then all partial derivatives k iD f (x) exist”. 

In particular, if f is real valued (m=1), then (1) takes the form 

k t 0
f (x t) f (x)(D f )(x) lim

t

 


.
 For example, if f is a function of three variables x, y and z, then 

x 0

y 0

z 0

f (x x, y, z) f (x, y, z)Df (x) lim
x

f (x, y y, z) f (x, y, z)Df (y) lim
y

f (x, y, z z) f (x, y, z)and Df (z) lim
z

 

 

 

  



  




  




 

and are known respectively as partial derivatives of f with respect to x, y, z. 

The next theorem shows that  h ( )fA h x  is a linear combination of partial derivatives of f. 

Theorem 1. Let E   Rn and let f : E → Rn be differentiable at x (interior point of open set E). If 

1 1 2 2 n nh c e c e ... c e     where  1 2 ne ,e ,...,e  is a standard basis for Rn, then 

                                                  
n

k k
k 1

(h) c D f (f x).


 x  

Proof. Using the linearity of  f , x we have 

  k

n

k 1
n

k 1

k

k k

f f (x)(c e )

c f ( )e

(h)

x





 







x
 

But, by (2), 

 

  k

k k

n

k 1
k

e (D f )(x)

Hence (h) (x

f

f c D ( )f )










x

x  

If f is real valued (m = 1), we have 

  1 2 n(h) (D f (x), D f (x),..., D f (x ) .f ) h x  
Definition 1 (Continuously differentiable mapping). 
A differentiable mapping f of an open set E  Rn into Rm is said to be continuously differentiable in E 
if f′ is continuous mapping of E into L(Rn, Rm).  
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Thus to every ϵ > 0 and every x ϵ E there exists a δ > 0 such that
'( ) '( )f y f x if y E and y x      . 

In this case we say that f is a C′-mapping in E or that f ϵ C′(E). 
Theorem 2. Suppose f maps an open set E  Rn into Rm. Then f is continuously differentiable if and 
only if the partial derivatives Djfi exist and are continuous on E for 1 i m,1 j n.     

Proof. Suppose first that f is continuously differentiable in E. Therefore to each x ϵ E and ϵ > 0, there 
exists a δ > 0 such that 

iff (y) f (x) y E and y x .      

We have then 

                           

'( ) '( ) ( '( ) '( ))

'( ) '( )

'( ) '( ) .

j j j

j

f y e f x e f y f x e

f y f x e

f y f x if y E and y x 

  

 

     

(1) 

Since f is differentiable, partial derivatives Djfi exist. Taking components of vectors in (1), it follows that 

j i j i(D f )(y) D f (x) if y E and y x .      

Hence j iD f are continuous on E for 1 i m,1 j n.     

Conversely, suppose that j iD f are continuous on E for 1 i m,1 j n.     It is sufficient to consider one-
dimensional case, i.e., the case m = 1. Fix x ϵ E and ϵ > 0. Since E is open, x is an interior point of E and 
so there is an open ball BE with centre at x and radius R. The continuity of jD f  implies that R can be 
chosen so that 

                                         ( )( ) ( )( ) , 1 .j jD f y D f x if y B j n
n


                                        (2) 

j j 0

k 1 1 2 2 k k

Suppose h h e ,| h | R, and take v 0
and v h e h e .... h e for 1 k n.

   

       

Then  

               
1

1
( ) ( ) [ ( ) ( )].

n

j j
j

f x h f x f x v f x v 


     
                                                  (3) 

 
  1

1
( )j i j j j

j

n

f s v h e f x v 


     

Mean value theorem implies 
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         1
1

0,1j j j j j
j

n

jf x h f x h D f x v h e for some 


       

subtracting   
1

j
j

n

jh D f x

  

and then taking modulus, 

           

    

1
1 1

1
1

1

1

( )

| |

| | . | | | |

j j j j j j j j j j
j j

j j

n n

n

n

n

j j j j j
j

j
j

j

f x h f x h D f x h D f x v h e h D f x

h D f x v h e D f x

h
n

h n h h
n n






 








        

       




 
   

 







 

Hence f is differentiable at x and f'(x) is the linear function which assigns the number 

    
1

' j j
j

xf h fx h D




   when f'(x) is applied on h. Since         1 2, ..., nD f x D f x D f x  are 

continuous functions on E, it follows that f' is continuous and hence  ' .f C E  

Hence f is differentiable at x and f′(x) is the linear function which assigns the number j ih (D f )(x) to 

the vector j jh h e .   The matrix [f′(x)] consists of the row 1 2 n((D f )(x), (D f )(x)...., (D f )(x)) . Since 

1 2 n(D f )(x), (D f )(x)...., (D f )(x) are continuous functions on E, it follows that f′ is continuous and hence 
f )C (E .   

Classical theory for functions of more than one variable 

Consider a variable u connected with the three independent variables x, y and z by the functional 
relation 

                                                           u  = u(x, y, z) 
If arbitrary increment Δx, Δy, Δz are given to the independent variables, the corresponding increment 
Δu of the dependent variable of course depends upon three increments assigned to x, y, z. 

Definition 2 (Continuous function). Let : nu R R  be a function. Then u is said to be continuous at a 
point   n

n Rxxxx  ,........,, 21 . If given 0 , there exists a 0  such that 

           1 2 1 1 2 2, ,..........., , ,.........,n n nu x x x u x x x x x x     <   

whenever   22
2

2
1 ............. nxxx . 
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Definition 3 (Differentiable function). A function u = u(x, y, z) is said to be differentiable at point (x, 
y, z) if it posses a determinant value in the neighbourhood of this point and if   
                                              u A x B y C z ,         

where x y z , 0 as 0        and A, B, C are independent of x, y, z.    

In the above definition ρ may always be replaced by η, where 

                                                  2 2 2x y z        . 

So, if : nu R R  be a function, then u is said to be differentiable at a point   n
n Rxxxx  ..,,........., 21  if 

there exist constants nAAA .....,,........., 21 such that for given 0  

       1 1 2 2 1 2 1 1 2 2( , ,......, ) ( , ,...., ) ........n n n n nu x x x x x x u x x x A x A x A x              

where 2

1
& 0

n

i
i

x 


    whenever 0  . 

Definition 4 (Partial derivative). If the increment ratio 

                                               u(x x, y, z) u(x, y, z)
x

  


 

tends to a unique limit as x tends to zero, this limit is called the partial derivative  of u with respect to 

x and is written as x
u or u .
x



 

Similarly, u uand
y z
 
 

 can be defined.  

So, if : nu R R  be a function, we define a partial derivative as  

 

   1 2 1 2

0

, ,............, ,........, , ,............,
lim ; 1,2,......., .

i

i i n n

x
i i

u x x x x x u x x xu i n
x x 

 
 

 
. 

The differential coefficients. If in the relation 

                                               u A x B y C z          

we suppose that y z 0,    then, on the assumption that u is differentiable at the point (x, y, z),  

u u(x x, y, z) u(x, y, z)
A x x

    
  

 

and by the taking limit as x 0,  since 0 as x 0,   we get u A.
x





 

Similarly u uB and C.
y z
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Hence, when the function u = u(x, y, z) is differentiable, the partial derivatives u u u, ,
x y z
  
  

 are 

respectively the differential coefficients A, B, C and so 

                                            u u uu x y z
x y z

  
       

  
 

The differential of the dependent variable du is defined to be the principal part of Δu so that the above 
expression may be written as 

                                                            u du .    

Now as in the case of functions of one variable, the differentials of the independent variables are 
identical with the arbitrary increment of these variables. If we write u = x, u = y, u = z respectively, it 
follows that  

                                                   dx x,dy y,dz z       

Therefore, expression for du reduces to 

                                                  u u udu dx dy dz
x y z
  

  
   . 

Proposition 1. Let RRf n :  be a function. If f is differentiable at a point   n
n Rxxxx  ,.......,, 21  

then    nnn xxxfxxxxxxf ...,,.........,.,,........., 212211   

                                   











 n
n

x
x
fx

x
fx

x
f .........2

2
1

1

 

where  2

1

n

i
i

x


   and 0  as 0 . 

Proof.  Since f is differentiable at a point  nxxxx .,,........., 21 , by definition of differentiability, there 
exists constants nAAA ,,........., 21  such that, for given 0  

    nnn xxxfxxxxxxf .....,,.........,,.......,, 212211   

                           1 1 2 2 ........... *n nA x A x A x          

where   2
ix  and 0  as 0 .  

Taking 0 jx  for ij   for some fixed  ni ,.....,2,1 . 

Thus, we have 

  
   





i

i

nnii A
x

xxxfxxxxxf .,.........,.........,,............,,........., 2121  

Taking 0 ix  
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i

i

nnii

x
A

x
xxxfxxxxxf

i







...,,.........,....,,..........,,.........,lim 2121

0
 











0

00

ixor
as

 

 
i

i

A
x
f





     (By definition of partial derivative) 

This is true for every  ni ,,.........2,1  

 
n

n

A
x
fA

x
fA

x
f













 .......,,........., 2
2

1
1

 

Putting these value in equation (*), we get 

    nnn xxxfxxxxxxf ..,,.........,,,........., 212211   

                 











 n
n

x
x
fx

x
fx

x
f .............2

2
1

1

 

where   2/1 ix   and 0   as 0  . 

Remark 1. If the function  nxxxuu ....,,........., 21  is differentiable at point  nxxx ,,........., 21  then the 
partial derivative of u w.r.t. nxxx ....,,........., 21  certainly exist and are finite at this point, because by the 
above proposition, they are identical to constants nAAA ..,,........., 21  respectively. 

However converse of this is not true, i.e., partial derivatives may exist at a point but the function need 
not be differential at that point.  

In other words, we can say partial derivatives need not always be differential coefficients. 

The distinction between derivatives and differential coefficients 

We know that the necessary and sufficient condition that the function y = f(x) should be differentiable at 
the point x is that it possesses a finite definite derivative at that point. Thus for functions of one variable, 
the existence of derivative f′(x) implies the differentiability of f(x) at any given point. 

For functions of more than one variable this is not true. If the function u = u(x, y, z) is differentiable at 
the point (x, y, z), the partial derivatives of u with respect to x, y and z certainly exist and are finite at 
this point, for then they are identical with differential coefficients A, B and C respectively. The partial 
derivatives, however, may exist at a point when the function is not differentiable at that point. In other 
words, the partial derivatives need not always be differential coefficients. 

Example 1. Let f be a function defined by 
3 3

2 2
x yf (x, y) ,
x y





where x and y are not simultaneously zero, 

f(0, 0) = 0. 

If this function is differentiable at the origin, then, by definition, 

( , ) (0,0)f h k f Ah Bk                             (1) 

where 2 2h k   and 0 as 0.   
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Putting h cos ,k sin     in (1) and dividing through by and taking limit as 0 , we get 

                                                3 3cos sin Acos Bsin       

which is impossible, since θ is arbitrary. 

The function is therefore not differentiable at (0, 0). But the partial derivatives exist however, for 

                                      
x h 0 h 0

y k 0 k 0

f (h,0) f (0,0) h 0f (0,0) lim lim 1
h h

f (0,k) f (0,0) 0 kf (0,0) lim lim 1.
k k

 

 

 
  

 
   

 

Example 2.                         2 2

2 2

xy if x y 0
Let f (x, y) .x y

0 if x 0, y 0

   
  

 

Then                                   x yf (0, 0) 0 f (0, 0)   

and so partial derivatives exist. If it is different, then 

               x ydf f (h, k) f (0, 0) Ah Bk , where A f (0, 0), B f (0, 0).        

This yields 

                                      2 2 2 2

2 2

hk h k , h k
h k

   


 

or                                           2 2hk (h k )   

Putting k = mh, we get  

                                           2 2 2mh h (1 m )   

or                                      2
m

1 m



 

Hence k 0 2
mlim 0,

1 m 


which is impossible. Hence the function is not differentiable at the origin. 

Remark 2. (i)Thus the information given by the existence of the two first partial derivatives is limited. 
The values of x yf (x, y) and f (x, y)  depend only on the values of f(x, y) along two lines through the 
point (x, y) respectively parallel to the axes of x and y. This information is incomplete and tells us 
nothing at all about the behavior of the function f(x, y) as the point (x, y) is approached along a line 
which is inclined to the axis of x at any given angle θ which is not equal to 0 or / 2.  
(ii) Partial derivatives are also in general functions of x, y and z which may possess partial derivatives 
with respect to each of the three independent variables, we have the definition 
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a) x x
x 0

u (x x, y, z) u (x, y, z)u lim
x x x 

         
 

b) x x
y 0

u (x, y y, z) u (x, y, z)u lim
y x y 

         
 

c)    
0

, , , ,
lim x x

z

u x y z z u x y zu
z x z 

         
 

 provided that each of these limits exist. We shall denote the second order partial derivatives by 
2 2 2

xx yx zx2
u u uor u , or u and or u .

x y x z x
  
    

 

Similarly we may define higher order partial derivatives of u uand .
y z
 
 

 

The following example shows that certain second partial derivatives of a function may exist at a point at 
which the function is not continuous. 

Example 3. Let                  
3 3x y when (x, y) (0,0)
x y

0 when (x, y) (0
y

)
,  

0
x

, .


 
 

 

 

This function is discontinuous at the origin. To show this it is sufficient to prove that if the origin is 
approached along different paths, ϕ(x, y) does not tend to the same definite limit. For, if ϕ(x, y) were 
continuous at (0, 0), ϕ(x, y) would tend to zero (the value of the function at the origin) by whatever path 
the origin were approached. 

Let the origin be approached along the three curves 

                     2 3 4(i) y x x (ii) y x x (iii) y x x ;       

Then we have 

(i)  
3 4

2
2x 0(xx ) 0 as x 0

x
,  y 

    

(ii)  
3 4

3
2x 0(xx ) 2 as x 0

x
,  y 

    

(iii)  
3 4

4
2x 0(xx ) as x 0

x
,  y 

    

Certain partial derivatives, however, exist at (0, 0), for if xx denote 
x x

  
   

we have, for example 
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2

0 0

0 0

,0 0,0
0,0 lim lim 0

,0 0,0 20,0 lim lim 2,

x h h

x
xx h h

h h
h h

h h
h h

 


 


 

 


  


  

 

since 2
x(x, 0) x , (x, 0) 2x when x 0.     

The following example shows that uxy is not always equal to uyx. 

Example 4. Let                  
2 2

2 2
xy(x y ) when (x, y) (0,0)

f x y
0 when (x, y) (0,0).

x,  y
 

 
 

 

When the point (x, y) is not the origin, then 

   

2 2 2 2

2 2 2 2 2
4

( )
f x y x yy
x x y x y

  
                                      (1) 

   

2 2 2 2

2 2 2 2 2
4

( )
f x y x yx
y x y x y

  
                                      (2) 

while at origin, 

   0

( ,0) (0,0)(0,0) lim 0x h

f h ff
h


 

                    (3) 

and similarly yf (0,0) 0.  

From (1) and (2), we see that 

(0, ) ( 0) ( ,0) ( 0)x yf y y y and f x x x                                 (4) 

Now we have, using (3) and (4) 

y y
xy h 0 h 0

x x
yx k 0 h 0

f (h,0) f (0,0) hf (0,0) lim lim 1
h h

f (0,k) f (0,0) kf (0,0) lim lim 1.
k k

 

 


  

 
   

.

 

and so xy yxf (0, 0) f (0, 0).  

Example 5. Prove that the function 

                                                        f (x, y) xy  
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is not differentiable at the point (0, 0), but that f fand
x y
 
 

 both exist at the origin and have the value 

zero.  

Hence deduce that these two partial derivatives are continuous except at the origin. 

Solution. We have 

                                        

h 0

k 0

f f (h,0) f (0,0)(0,0) lim 0
x h
f f (0, k) f (0,0)(0,0) lim 0
y k





 
 


 

 


 

If f(x, y) is differentiable at (0, 0), then we must have 

                                        2 2f (h, k) 0.h 0.k h k     

where 2 20 as h k 0   . 

Now           
2 2

hk

h k



 

Putting h cos ,k sin ,     we get 

                     
0

cos sin

lim cos sin cos sin 0 which is impossible for arbitrary .

 

    



  
 

Hence, f is not differentiable. 

Now, suppose that (x, y) (0,0).  Then 

                               

h 0

h 0 h 0

f f (x h, y) f (x, y)lim
x h

(x h)y xy x h x
lim lim | y |

h (x h)y xy h x h x



 

  



   

 
   

 

Now, we can take h so small that x + h and x have the same sign. Hence the limit is 
y y1or .

2 x2 xy

Similarly, 
x xf 1or .

y 2 y2 xy





Both of these are continuous except at (0,0). We now prove two 

theorems, the object of which is to set out precisely under what conditions it is allowable to assume that 

                                                      xy yxf (a, b) f (a, b).  
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Theorem 3 (Young). If (i) x yf and f  exist in the neighbourhood of the point (a, b) and (ii) xf and yf  are 
differentiable at (a, b); then 

                                                           xy yxf f .  

Proof. We shall prove this theorem by taking equal increment h for both x and y and calculating 2f  in 
two different ways, where 

                                2f f (a h, b h) f (a h, b) f (a, b h) f (a, b).          

Let  

                                                 H(x) f (x,b h) f (x,b)    

Then  

                                                   2f H(a h) H(a).     

Since xf exists in the neighbourhood of (a, b), the function H(x) is derivable in (a,a h).  Applying mean 
value theorem to H(x) for 0 1,  we obtain 

                                                   H(a h) H(a) hH (a h)     

Therefore  
2 ' ( )

[ ( , ) ( , )]x x

f hH a h
h f a h b h f a h b


 

  
                                      (1)

 

By hypothesis (ii) of theorem, xf (x, y)  is differentiable at (a, b) so that 

                               x x xx yxf (a h, b h) f (a, b) hf (a, b) hf (a, b) h        

and 

                                   x x xxf (a h, b) f (a, b) hf (a, b) h,       

where  and  tend to zero as h → 0. Thus, we get (on subtracting) 
                               x x yxf (a h, b h) f (a h, b) hf (a, )b) ( h          

Putting this in (1), we obtain 
2 2 2

1yxf h f h                  (2) 

where ' ''
1 ,   so that 1 tends to zero with h. 

Similarly, if we take 
                                               K(y) f (a h, y) f (a, y)    
Then we can show that 

    
2 2 2

2xyf h f h                       (3) 
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 where 2 0  with h. 

From (2) and (3), we have 

                                                    
2

yx 1 xy 22
f f (a,b) f (a, b)

h


      

Taking limit as h 0, we have 

                                                 
2

h 0 yx xy2
flim f (a, b) f (a, b)

h


   

which establishes the theorem. 
Theorem 4 (Schwarz). If (i) x y yxf , f , f  all exist in the neighbourhood of the point (a, b) and (ii) yxf  is 
continuous at (a, b); then xyf also exist at (a, b) and xy yxf f .  

Proof. Let (a h,b k)  be point in neighbourhood of (a, b). Let (as in the above theorem)                         

                             2f f (a h, b k) f (a h, b) f (a, b k) f (a, b).           

and 
                                                 H(x) f (x,b k) f (x,b)    

so that we have  

                                                   2f H(a h) H(a).     

Since xf exists in the neighbourhood of (a, b), H(x) is derivable in (a,a h).  Applying Mean value 

theorem to H(x) for 0 1,  we have 

                                                   H(a h) H(a) hH (a h)     

and therefore  

                                  2
x xf hH (a h) h[f (a h, b k) f (a h, b)].           

Now, since yxf exists in the neighbourhood of (a, b), the function xf  is derivable with respect to y in 

(b,b k).  Applying mean value theorem, we have 

                                          2
yxf hkf (a h,b k), 0 1         

That is 

                    yx
1 f (a h, b k) f (a h, b) f (a, b k) f (a, b) f (a h, b )
h k k

k            
  

Taking limit as k tends to zero, we obtain 

'

0

1 [ ( , ) ( , )] lim ( , ) ( , )y y yx yxk
f a h b f a b f a h b k f a h b

h
  


           (1). 



Mathematical Analysis 127 

Since yxf is given to be continuous at (a, b), we have 

                                              yx yxf (a h, b) f (a, b) ,    

where 0  and h 0.  
Hence taking the limit h 0 in (1), we have 

                              y y
h 0 h 0 yx

f (a h, b) f (a, b)
lim lim [f (a, b) ]

h 

 
   

that is,                                    xy yxf (a, b) f (a, b)  

This completes the proof of the theorem. 
Remark 3. The conditions of Young or Schwarz’s Theorem are sufficient for xy yxf f  but they are not 
necessary. For example, consider the function 

                                                
2 2

2 2
x y , (x, y) (0,0)

f x y
0 , (x, y) (0,0

x,  
).

y


 
   

We have 

                                               

     

     
0

0

,0 0,0
0,0 lim 0

0, 0,0
0,0 lim 0

x h

y k

f h f
f

h
f k f

f
k






 


 

 

Also for (x, y) (0,0),  we have 

                                                       

2 2 2 2 2 4

2 2 2 2 2 2

4

2 2 2

x

y

(x y )2xy x y .2x 2xyf (x, y)

f (x, y)

(x y ) (x y )
2x y

(x y )

 
 

 




 

Again  

                              

x x
yx k 0

f (0, k) f (0,0)f (0,0) lim 0
k


  and xyf (0, 0) 0  

So that xy yxf (0, 0) f (0, 0).  

For (x, y) (0,0),  we have  

                             
3 2 2 2 4 2 2 3 3

2 2 4 2 2 3yx
8xy (x y ) 2xy 4y(x y ) 8x y

(x y )
f (x, y)

(x y )
  

 
 

 

Putting y = mx, we can show that 

                                       (x ,y ) (0,0) yx yxlim f (x, y) 0 f (0, 0)    
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so that xyf  is not continuous at (0, 0). Thus the condition of Schwarz’s theorem is not satisfied.  

To see that conditions of Young’s theorem are also not satisfied, we notice that 

                                       
x x

xx h 0
f (h,0) f (0,0)f (0,0) lim 0.

h


 

 

If xf  is differentiable at (0, 0), we should have
 

                                      
x x xx yx

4

2 2 2

f (h, k) f (0,0) hf (0,0) kf (0,0)

2hk ,
(h k )





   




 

where 2 2h k   and 0 as 0.   

Put h cos ,k sin     , then 2 2h k     

so we have 

                                    

4 4

4

4

2 cos . sin

2 cos .sin

    


 





 

Taking limit as ρ → 0, we have 

                                    42cos .sin 0    

which is impossible for arbitrary θ. 
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4.0 Introduction 

In this unit, we study most important mathematical tool of analysis i.e. Taylor theorem. As we know, 
Taylor series is an expression of a function as an infinite series whose terms are expressed in term of the 
values of the function’s derivatives at a single point. Also we shall be mainly concerned with the 
applications of differential calculus to functions of more than one variable such as how to find stationary 
points and extreme values of implicit functions, implicit function theorem, Jacobian and its properties etc. 

4.1 Unit Objectives   

After going through this unit, one will be able to 

 solve Taylor series expansions. 

  find the stationary points and extreme values of implicit functions. 

 understand Jacobian and its properties. 

 know about the local character of Implicit function i.e. the implicit function is a unique solution 
of a function  f(x, y)=0 in a certain neighbourhood. 
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4.2 Taylor Theorem  

In view of Taylor’s theorem for functions of one variable, it is not unnatural to expect the possibility of 
expanding a function of more than one variable f (x h, y k,z m),    in a series of ascending powers of 
h, k, m. To fix the ideas, consider a function of two variables only; the reasoning in general case is 
precisely the same. 

Theorem 1 (Taylor’s theorem). If f(x, y) and all its partial derivatives of order n are finite and 
continuous for all point (x, y) in domain a x a h,b y b k,       then 

               2 n 1
n

1 1f (a h, b k) f (a, b) df (a, b) d f (a, b) ... d f (a, b) R
2! (n 1)!

       


 

where                          n
n

1R d f (a h,b k),0 1.
n!

        

Proof. Consider a circular domain of centre (a, b) and radius large enough for the point (a h,b k)  to 
be also with in domain. Suppose that f(x, y) is a function such that all the partial derivatives of order n of 
f(x, y) are continuous in the domain. Write  

                                              x a ht, y b kt,     

so that, as t ranges from 0 to 1, the point (x, y) moves along the line joining the point (a, b) to the point 
(a h,b k)  ; then 

                                            f (x, y) f (a ht,b kt) (t).     

Now, f dx f dy f f(t) . . h k df
x dt y dt x y

   



    
   

 

and  

       
2 2 2 2

2 2

"( ) f f dx f f dyt h k h k
x x y dt y x y dt

f dx f dx f dy f dyh k h k
x dt x y dt y x dt y dt


        

              
   

   
     

 

                     
2 2 2 2

2 2
2 2
f f f fh hk hk k

x x y y x y
    

          
 

                     
2 2 2

2 2
2 22 ( ' )h hk k f by Schwarz s theorem

x x y y
   

       
 

                               
2

( , )h k f a ht b kt
x y

  
      

 

   and hence, similarly we get 

    
2 (n) n(t) d f ,..., (t) d f     
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Also, ϕ(t) and its n derivatives are continuous functions of t in the interval 0 t 1,  and so, by 
Maclaurin’s theorem 

                              
2 n

(n )t t(t) (0) t (0) (0) ... ( t) (1)
2! n!

          
                                             

where 0 1.  Now put t = 1 and observe that 

2

(n) n

(1) f (a h,b k),
(0) f (a, b),
(0) df (a,b),
(0) d f (a,b),

.....
( t) d f (a h,b k).







   





  





  


 

It follows immediately from (1) that 

2 n 1
n

1 1f (a h, b k) f (a, b) df (a, b) d f (a, b) ... d f (a, b) R (2)
2! (n 1)!

       


 

where                          n
n

1R d f (a h,b k),0 1.
n!

      
 

Here, we assumed that all the partial derivatives of order n are continuous in the domain. Taylor 
expansion does not necessarily hold if these derivatives are not continuous.   

Remark 1. If we put a b 0,h x,k y,     from the equation (2), we get 

                 2 n 1
n

1 1f (x, y) f (0,0) df (0,0) d f (0,0) ... d f (0,0) R
2! (n 1)!

     


 

where                          n
n

1R d f ( x, y),0 1.
n!

    
 

This is known as Maclaurin’s theorem.
 

2. If we put a h x, b k y,     we get 

( , ) ( , ) ( ) ( ) ( , ) ........f x y f a b x a y b f a b
x y

  
        

 

                                   
1

1 ( ) ( ) ( , )
( 1)!

n

nx a y b f a b R
n x y


  

        
, 

where  1 ( ) ( ) ( ( ) , ( ) )
!

n

nR x a y b f a x a b y b
n x y

 
  

          
. 

This is called Taylor’s expansion of ( , )f x y about the point ( , )a b in power of ( )x a and ( )y b . 
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Example 1. If f (x, y) xy , prove that Taylor’s expansion about the point (x, x) is not valid in any 

domain which includes the origin. 

Solution. Given that ( , )f x y xy
. 

We find  
0

( ,0) (0,0)(0,0) lim 0x h

f h ff
h


   

   
0

(0, ) (0,0)(0,0) lim 0y k

f k ff
k


   

Now,  

1 , 0
2

( , )
1 , 0
2

x

y
x

x
f x y

y
x

x





 

 


 

Also  

1 , 0
2

( , )
1 , 0
2

y

x
y

y
f x y

x
y

y





 

 


 

Thus,  

1 , 0
2( , ) ( , )

1 , 0
2

x y

x
f x x f x x

x

   
 


 

Now, Taylor’s expansion about ( , )x x for 1n   is 

  ( , ) ( , ) ( , ) ( , )x yf x h x h f x x h f x h x h f x h x h             

 

, 0

, 0

, 0.

x h x h

x h x h x h

x x h







   


    
  

                                                                      (1) 

If the domain (( , ), ( , ))x x x h x h   contains origin then x  and x h  must be of opposite sign i.e.  

 x h x h   ,  x x   

or  ( )x h x h    , x x  

under these conditions none of the equality in (1) holds. 
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Hence the expansion is not possible because partial derivatives xf  and yf  are not continuous in any 
domain which contains origin. 

(Partial derivatives xf , yf are not continuous at origin and therefore Taylor’s theorem is not necessary 
valid). 

Example 2. Expand 2 3 2x y y   in power of ( 1), ( 2)x y  . 

Solution. Let us use Taylor’s expansion with 1a  , 2b   . 

Then, 2( , ) 3 2f x y x y y   , (1, 2) 10f     

  ( , ) 2xf x y xy ,  (1, 2) 4xf     

  2( , ) 3yf x y x  ,  (1, 2) 4yf    

  ( , ) 2xxf x y y ,  (1, 2) 4xxf     

  ( , ) 2xyf x y x ,   (1, 2) 2xyf    

  ( , ) 0yyf x y  ,   (1, 2) 0yyf    

  ( , ) 0xxxf x y  ,   (1, 2) 0xxxf    

  ( , ) 0yyyf x y  ,   (1, 2) 0yyyf    

  ( , ) 2yxxf x y  ,   (1, 2) 2yxxf    

  ( , ) 2xxyf x y  ,   (1, 2) 2xxyf   . 

All higher derivatives are zero. Thus, we have 
2 2 23 2 10 4( 1) 4( 2) 2( 1) 2( 1)( 2) ( 1) ( 2)x y y x y x x y x y                . 

4.3 Explicit and Implicit Functions 

The explicit function is one which is given in the independent variable. On the other hand, 
implicit functions are usually given in terms of both dependent and independent variables. Here we read 
in details:   

Explicit function  

If we consider set of  n  independent variables 1 2 3, , ......, nx x x x  and one dependent variable u , the 
equation 

                  1 2 3, , ......, (*)nu f x x x x                      

denotes the functional relation. In this case if 1 2 3, , ......, ny y y y are the n  arbitrarily assigned values of the 
independent variables, the corresponding values of the dependent variable u are determined by the 
functional relation. 
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The function represented by equation  *  is an Explicit function but where several variables are 
involved, then it is difficult to express one variable explicitly in terms of the others. Thus most of the 
functions of more than one variable are implicit function, that is to say we are given a functional relation 

                     1 2 3, , ......, 0nx x x x   

connecting the n variables 1 2 3, , ......, nx x x x and is not in general possible to solve this equation to find an 
explicit function which expresses one of these variables say 1x , in terms of the other 1n variables. 

Implicit function 
Let               1 2 nF(x , x ,..., x , u) 0 (1)   

be a functional relation between the n 1  variables 1 2 nx , x ,..., x , u and let 1 1 2 2x a , x a ,...,   n nx a  be 
a set of values such that the equation. 

                                1 2 nF(a , a ,..., a , u) 0 (2)  

is satisfied for at least one value of u, that is equation (2) in u has at least one root. We may consider u as 
a function of the 1 2 nx 's : u (x , x ,..., x ) defined in a certain domain, where 1 2 n(x , x ,..., x ) has 
assigned to it at any point 1 2 n(x , x ,..., x )  the roots u of the equation (1) at this point. We say that u is the 
implicit function defined by (1). It is, in general, a many valued function. 
More generally, consider the set of equations  
                      p 1 2 n 1 mF (x , x ,..., x , u ,..., u ) 0 (p 1, 2,..., m) (3)   

between the n m  variables 1 n 1 mx ,..., x , u ,..., u  and suppose that the set of equations (3) are such that 
there are points 1 2 n(x , x ,..., x )  for which these m equations are satisfied for at least one set of values 

1 2 mu , u ,..., u   We may consider the u’s as function of x’s. 

                                               p p 1 2 nu (x , x , ..., x ) (p 1, 2,..., m)   

where the function ϕ have assigned to them at the point 1 2 n(x , x ,..., x )  the values of the roots 

1 2 mu , u ,..., u  at this point. We say that 1 2 mu , u ,..., u  constitute a system of implicit functions defined by 
the set of equation (3). These functions are in general many valued. 

Definition 1 (Implicit function of two variables). Let ( , )f x y  be a function of two variables and 
( )y x  be a function of x  such that for every value of x  for which ( )x  is defined, ( , ( ))f x x  

vanishes identically i.e., ( )y x  is a root of the functional equation ( , ) 0f x y  . Then, ( )y x  is an 
implicit function defined by the functional equation ( , ) 0f x y  . 

4.3.1 Implicit function theorem. 

This theorem tells us that whenever we can solve the approximating linear equation for y as a function 
of x, then the original equation defines y implicitly as a function of x. This theorem also known as 
Existence theorem. 



Mathematical Analysis 135 

Theorem 1 (Implicit function theorem). Let F(u, x, y) be a continuous function of variables     u, x, y. 
Suppose that 

(i) 0( , , ) 0;F u a b   

(ii) F(u, a, b) is differentiable at 0( , , );u a b  

(iii) The partial derivative
.

0( , , ) 0.F u a b
u





 

Then there exists at least one function u = u(x, y) reducing to 0u  at the point (a, b) and which, in the 
neighbourhood of this point, satisfies the equation F(u, x, y) = 0 identically. 

Also, every function u which possesses these two properties is continuous and differentiable at the point 
(a, b).  

Proof. Since 0F(u ,a, b) 0  and 0
F (u ,a, b) 0,
u





 the function F is either an increasing or decreasing 

function of u when 0u u .  Thus there exists a positive number δ such that 0F(u ,a, b) and 

0F(u ,a, b)  have opposite signs. Since F is given to be continuous, a positive number η can be found 
so that the functions 

                                                 0F(u , x, y) and 0F(u , x, y)  

the values of which may be as near as we please to 

                                                 0F(u ,a, b) and 0F(u ,a, b)  

will also have opposite signs so long as x a   and y b .   

Let x, y be any two values satisfying the above conditions. Then F(u, x, y) is a continuous function of u 
which changes sign between 0u   and 0u   and so vanishes somewhere in this interval. Thus for 
these x and y there is a u in 0 0[u , u ]   for which F(u, x, y) = 0. Thus u is a function of x and y, say 
u(x, y) which reduces to 0u  at the point (a, b). 

Suppose that u, x, y   are the increments of such function u and of the variables x and y measured 
from the point (a, b). Since F is differentiable at 0(u ,a, b)  we have 

'
0 0 0[ ( , , ) ] [ ( , , ) ] [ ( , , ) "] 0.u x yF F u a b u F u a b x F u a b y           

Since  0F  because of F = 0. The numbers ",',  tend to zero with yxu  &,  and can be made 
as small as we please with  & . Let   and   be so small that the numbers ",',   are all less than

 0
1 , ,
2 uF u a b , which is not zero by our hypothesis. The above equation then shows that 0u  as 

0x  and 0y  which means that the function  yxuu ,  is continuous at (a, b). 
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Moreover, we have 

                        
   

 
0 0

0

, , ' , , "
, ,

x y

u

F u a b x F u a b y
u

F u a b

           


 

                            
 
 

 
  yxy

bauF
bauF

x
bauF
bauF

u

y

u

x  21
0

0

0

0

,,
,,

,,
,,

, 

1  and 2  tending to zero as x  and y  tend to zero. 

Hence u is differentiable at (a, b). 

Corollary 1. If 
u
F

  exists and is not zero in the neighbourhood of the point  bau ,,0 , the solution  u  of 

the equation F = 0 is unique. Suppose that there are two solutions 1u  and 2u . Then we should have, by 
mean value theorem, for 21 ' uuu   

                              1 2 1 20 , , , , ', ,uF u x y F u x y u u F u x y    , 

and so  yxuFu ,,  would vanish at some point in the neighbourhood of   bau ,,0  which is contrary to 
our hypothesis. 

Corollary 2.  If   yxuF ,,   is differentiable in the neighbourhood of   bau ,,0 , the function  yxuu ,  
is differentiable  in the neighbourhood of the point (a, b). 

This is immediate, because the preceding proof is then application at every point  yxu ,,   in that 
neighbourhood. 

4.3.2 Inverse function theorem. 

Corollary 1 is of great importance, for a function of two variables only,   0, xuF  and taking 
    xufxuF , , we can  express the fundamental theorem on inverse functions as follows: 

Theorem 1 (Inverse function theorem).  If, in the neighbourhood of 0uu  , the function  uf  is a 
continuous function of u and if  

(i)   auf 0  

(ii)   0' uf  

in the neighbourhood of the point 0uu  , then there exists a unique continuous function  xu  ,  
which is equal to 0u  when x = a, and which satisfies identically the equation 

                                  0 xuf , 

in the neighbourhood at the point  x = a. 

The function  xu    thus defined is called the inverse function of  ufx  . 
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4.4 Higher Order Differentials 

 Let ( , )z f x y  be a function of two independent variables x  and y  defined in a certain domain 
and let it be differentiable at the point ( , )x y  of the domain. The first differential coefficient of z  at the 
point ( , )x y  is defined as 

   z zdz dx dy
x y
 

 
 

                                                   (1) 

and if z
x



 and z
y



 are differentiable at the point ( , )x y , then the differential coefficient of dz is called 

second differential coefficient of z  and is denoted by 2d z  and is given by 

   2 z zd z d dx dy
x y

  
    

 

   
z zd dx d dy
x y

           
                                            (2) 

Now,   
2 2

2
z z zd dx dy
x x y x
          

 

and   
2 2

2 .z z zd dx dy
y x y y

   
       .

 

Putting these values in (2), we get 

     
2 2 2

2 22
2 22z z zd z dx dxdy dy

x y x y
  

  
   

 

Thus,   
2

2d z dx dy z
x y

  
    

 

Similarly,  
3

3d z dx dy z
x y

  
    

 

Proceeding in this manner, we define the successive differential coefficients 4 5, ,..........d z d z . 

Thus, the differential coefficient of nth order 
n

d z  exists if 1nd z  is differentiable i.e. if all the partial 
derivatives of (n-1)th order are differentiable. Thus, by mathematical induction, we have 

     21 2
1 2 2

( 1) ........
2!

n n n n
n nn n n

n n n n
z z n n z zd z dx n dx dy dx dy dy

x x y x y y
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n

dx dy z
x y

  
    

. 

4.4.1. Choice of independent variables 
   Let ( , , ) 0F x y z                                                        (1) 

  Differentiate (1), we get 

  0F F Fdx dy dz
x y z

  
  

  
                                                    (2) 

Now, if z  is dependent on the two independent variables x  and y  in such a way that the equation 
( , , ) 0F x y z   is satisfied by ( , )z z x y , then 

  z zdz dx dy
x y
 

 
 

                                                     (3) 

Now, equation (2) can be written as 

  yx

z z

FFdz dx dy
F F

        (4) 

Comparing (3) and (4), we get 

  x

z

Fz
x F


 


, y

z

Fz
y F


 


 

Similarly, if x  is dependent on y  and z  then  

  y

x

Fx
y F


 


, z

x

Fx
z F


 


 

Similarly, if y  is dependent on z  and x , then 

  x

y

Fy
x F


 


, z

y

Fy
z F


 


. 

4.4.2 Higher order derivatives of implicit functions 

Let ( , , ) 0f x y z   be a functional relation where z is dependent variable such that ( , )z z x y . 

We denote the partial derivatives z
x



, z
y



,
2

2
z

x



,
2 z

x y

 

,
2

2
z

y



 by p, q, r, s, t respectively. 

Now, we suppose that x  is dependent variable so that ( , )x x y z . Then, we will show that how to 
express partial derivatives of first and second order w.r.t. y  and z  in terms of p, q, r, s and t. 

 Since  ( , )z z x y  
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    .z zdz dx dy
x y
 

 
 

     (1) 

Now, we differentiate (1), taking x  as dependent variable, dy  and dz  as constant so that 

    20 z z zd dx d x d dy
x x y

              
 

      
2 2 2 2

2 22
2 2
z z z z zdx dydx d x dxdy dy

x x y x x y y
    

    
      

 

      2 2 22 . .r dx sdx dy t dy pd x       (2) 

Now, from (1) 

   dz pdx qdy       (3) 

     1dx dz qdy
p

       (4) 

Now, putting the value of dx  in (2), we get 

      
2

2 21 10 2r dz qdy s dz qdy dy t dy pd x
p p

   
        

   
 

          2 2 2 22 2
2

1 1. 2 . 2pd x r dz q dy qdz dy s dzdy q dy t dy
p p

            
 

    
2

2 2
2 2 2

2 2 2r rq sq s qrdz t dy dzdy
p p p p p

   
        

  
 

        2 2
2 2

2 2 2

2 2 2rq spq tp sp qrr dz dy dzdy
p p p

  
     

         2 2
2 22

3 3 3

2 2 2
.

pqs rq tp qr sprd x dz dy dzdy
p p p

  
                (5) 

From (4), we have 

 
x
z





Coefficient of dz  in (4)
 

 x
y





Coefficient of dy  in (4) .q
p

   

From (5), we have 

1 ; 
p 
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2

2
x

z





Coefficient of  2dz  in (5) 3
r
p

   

 
2

2
x

y





Coefficient of  2dy  in (5)
2 2

3
2 pqs rq p t

p
 

  

 
2 1

2
x

y z



 

Coefficient of dydz  in (5)  
3

2 21
2

qr sp
p


  

      3
qr sp

p


 . 

4.5 Change of Variables 

In problems involving change of variables it is frequently required to transform a particular 
expression involving a combination of derivatives with respect to a set of variables, in term of 
derivatives with respect to another set of variables.  

Example1. Let w  be a function of two variables x and y , then transform the expression 
2 2

2 2
w w

x y
 


 

 by 

the formula of polar transformation cosx u v , siny u v . 

Solution. Here, ( , )x x u v  

   x xdx du dv
u v
 

 
 

 

   cos . sin .v du u v dv      (1) 

 Since  ( , )y y u v  

  y ydy du dv
u v
 

 
 

 

  sin . cos .v du u v dv       (2) 

Multiplying (1) by cosv  and (2) by sin v  and adding, we get 

  cos ( ) sin ( )du v dx v dy      (3) 

Multiplying (1) by sin v  and (2) by cosv  and subtracting, we get 

   sin cos( )v vdv dx dy
u u

       (4) 

From (3) and (4), we get 

  cosu v
x





, sinu v
y
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  sinv v
x u


 


, cosv v
y u





 

Now,  . .w w u w v
x u x v x

    
 

    
 

  sincos w v wv
u u v
       

 

  sincos vv w
u u v
      

    (5) 

Similarly cossinw vv w
y u u v

        
    (6) 

Now  
2

2
w w

x x x
        

 

  sin sincos cosv w v wv v
u u v u u v
              

 

 
2 2 2

2
2 2

sin cos sin cos sin coscos w v v w v v w v v wv
u u u v u v u u v
   

   
     

 

  
2 2 2

2 2 2
sin sin cos sinv w v v w v w

u u u v u v
  

  
  

                   (7)

 
2 2 2 2 2

2
2 2 2

2sin cos sin sin 2sin coscos w v v w v w v w v wv
u u u v u u v u u u u
    

    
      

 

Similarly 
2 2 2 2

2
2 2 2

sin cos sin cos cossinw w v v w v v w v wv
y u u u v u v u u

    
   

     
 

   
2 2 2

2 2 2
sin cos cos sin cosv v w v v w v w

u u v u v u v
  

  
   

       (8) 

Adding (7) and (8), we get 

  
2 2 2 2

2 2 2 2 2
1 1w w w w w

x y u u u u v
    

   
    

. 

Example 2. Transform the expression 

  
2 22

2 2 2z z z zx a x y
x y x y

                           
 

by the substitution cosx r  , siny r  . 

Solution. We wish to express z  as a function of x  and y  where x  and y  are the functions of r  and 
  i.e. ( , )z z x y  and given ( , )x x r  , ( , )y y r  . 
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   x xdx dr d
r




 
 
 

 

   cos ( sin . )dr r d      

   cos sin .dr rd                           (1) 

Similarly  y ydy dr d
r




 
 
 

 

   sin cosdr r d                (2) 

Multiplying (1) by cos  and (2) by sin  and adding, we get 

   cos sindr dx dy              (3) 

Multiplying (1) by sin  and (2) by cos  and subtracting, we get 

   cos sind dy dx
r r
              (4) 

From (3) and (4), we get 

   cosr
x





, sinr

y





 

   cos
y r
 



, sin

x r
 
 


 

Now,   z z r z
x r x x




    
 

    
 

    sincos z z
r r




 
 

 
      (5) 

   
2 2sincosz z z

x r r



              

 

    
2 22 2

2
2

sin 2sin coscos z z z
r r r r

  
 

                
  (6) 

Similarly  z z r z
y r y y




    
 

    
 

    cossin z z
r r




 
 

 
      (7) 

   
2 2 22 2

2
2

cos 2sin cossinz z z z
y r r r r

  
 

                      
 (8) 



Mathematical Analysis 143 

Adding (6) and (8), we get 

   
22 2 2

2
1z z z z

x y r r 
                          

 

Multiplying 2 2( )a r  on both sides, 

   
22 2 2

2 2 2 2
2

1( ) ( )z z z za r a r
x y r r 

                                           
 (9) 

Multiplying (5) by x  and (7) by y  and adding, 

     1cos sin cos sinz z z zx y x y y x
x y r r

   


   
    

   
 

       2 2cos sin sin cos cos sinz r zr r
r r

     


 
   

 
 

    zr
r





 

Squaring on both sides, 

   
2 2

2z z zx y r
x y r

            
               (10) 

Adding (9) and (10), we get required result 
2 22 2 2 2

2 2 2
2

1( )z z z z z z zx y a r a
x y x y r r  

                                                               
 

          2 2 2r x y   

Example 3. If cosx r  , siny r   then prove that 

   
2 2 2 2 2

2 2 2
2 2 2 24u u u u u ux y xy r r

x y x y r r 
      

             
 

where u  is any twice differentiable function of x and y . 

Solution. Here,    ( , )x x r   

    x xdx dr d
r




 
 
 

 

    cos sindr r d                     (1) 

 Since    ( , )y y r   
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    y ydy dr d
r




 
 
 

 

    sin cosdr r d                                (2) 

Multiplying (1) by cos  and (2) by sin  and adding, we get 

    cos sindr dx dy        (3) 

Multiplying (1) by sin  and (2) by cos  and subtracting, we get 

    sin cosd dx dy
r r
          (4) 

From (3) and (4), we get 

   cosr
x





, sinr

y





 

   sin
x r
 
 


, cos

y r
 



 

Now,   u u r u
x r x x




    
 

    
 

    sincosu u
r r




 
 
 

 

    sincos u
r r




      
     (5) 

Similarly  cossinu u
y r r




        
     (6) 

Now,   
2

2
u u

x x x
        

 

    sin sincos cos u u
r r r r

  
 

              
 

 
2 2 2

2
2 2

sin cos sin cos sin coscos u u u u
r r r r r r

     
  

   
   

     
 

  
2 2 2

2 2 2
sin sin cos sinu u u

r r r r
   

 
  

  
  

    (7) 

Similarly 
2 2 2 2

2
2 2 2

sin cos sin cos cossinu u u u u
y r r r r r r
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2 2 2

2 2 2
sin cos cos sin cosu u u

r r r r
    

  
  

  
   

  (8) 

Subtracting (8) from (7), we get 
2 2 2 2 2

2 2 2 2
sin 2 sin 2 sin 2cos2u u u u u u

x y r r r r r r
  

  
      

             
 

    
2

2 2 2
cos 2 sin 2 cos 2u u u

r r r r
  

 
  

  
  

 

and we have  

    2 2 2 2 2 2cos sin cos 2x y r r       

 
2 2 2 2 2

2 2 2
2 2 2 2 2

2sin 2 2sin 2 cos 2cos 2 cos 2u u u u u u ux y r
x y r r r r r r

   
  

                                 
 

               
                      (9) 

Now,   
2u u

x y x y
   

      
 

    sin coscos sin u u
r r r r

  
 

              
 

  
2 2 2 2

2 2
cos cos sin coscos sin u u u u

r r r r r r
    

 
   

   
    

 

   
2 2 2 2

2 2 2
sin sin cos sinu u u

r r r r
   

  
  

  
   

 

 
2 2 2 2

2
2 2

1 cos4 2 sin 2 sin cos cos2u u u uxy r
x y r r r r

   
 

   
       

 

     
2 2

2 2 2
sin cos sin cos sinu u u

r r r r
    

 
  

      
 (10) 

Adding (9) and (10), we get required result. 

Example 4. If cosx r  , siny r  , then show that 

   
2

2 cos 2r
x y
 


 

. 

Solution. Here,    ( , )x x r   

    x xdx dr d
r
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    cos sindr r d                 (1) 

 Since    ( , )y y r   

    y ydy dr d
r




 
 
 

 

    sin cosdr r d                    (2) 
Multiplying (1) by cos  and (2) by sin  and adding, we get 

    cos sindr dx dy        (3) 

Multiplying (1) by sin  and (2) by cos  and subtracting, we get 

    sin cosd dx dy
r r
          (4) 

From (3) and (4), we get 

   cosr
x





, sinr

y





 

   sin
x r
 
 


, cos

y r
 



 

From (4), sin cos .rd dx dy      
Now differentiating, we get  

 dyddxdrddrd  sincos2   

              ddydx sincos   

    drdddydxrd  sincos2  

  

   

 

  





 





dy
r

dx
r

dydx

ddydx

ddydxddydx







cossinsincos2

sincos2

sincossincos

 

 
  dydxdydx

r
d  cossinsincos2

2
2   

        
 2 2

2
2 sin cos cos 2 sin cos .dx dxdy dy
r

          

As  
2 2 2

2 2 2
2 22d dx dxdy dy

x x y y
     

  
   

, so we get 
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2

2 cos 2 .r
x y
 

 
 

 

4.6 Extreme Values of Explicit Functions 

We now investigate the theory of extreme values for explicit functions of more than one variable. 

Definition 1. Let ( , )u f x y  be the equation which defines u  as a function of two independent variables 
x and y . Then, the function ( , )u f x y  has an extreme value at the point ( , )a b  if the increment 

( , ) ( , )f f a h b k f a b      preserves the same sign for all values of h and k such that h  , k   

where   is a sufficiently small positive number. If f  is negative then the value is maximum and if f  
is positive then the value is minimum. 

Necessary condition for extreme value 

The necessary condition that ( , )f a b  should be an extreme value is that both ( , )xf a b  and ( , )yf a b are 

zero. Values of ( , )x y  at which 0df   are called stationary values. 

Or A necessary condition for ( , )f x y  to have an extreme value at ( , )a b  is that ( , ) 0xf a b  , ( , ) 0yf a b   
provided that these partial derivatives exist. 

If ( , )f a b  is an extreme value of the function ( , )f x y  of two variables then it must also be an extreme 
value of both the functions ( , )f x b  and ( , )f a y  of one variable. 

But the necessary condition that these have extreme values at x a  and y b  respectively is 
( , ) 0xf a b   and ( , ) 0yf a b  . 

Sufficient condition for extreme value 

The value ( , )f a b  is an extreme value of ( , )f x y  if ( , ) 0xf a b  , ( , ) 0yf a b   and also  2
.xx yy xyf f f  

and the value is maximum or minimum according as xxf  or yyf  is negative or positive respectively. 

 Here, xxA f ,  yyC f ,   xyB f  

(i) If 2 0AC B  , then ( , )f a b  is a maximum value if 0A   and a minimum value if 0A  . 

(ii) If 2 0AC B  , then ( , )f a b  is not an extreme value. 

(iii) If 2 0AC B  , this is doubtful case, in which the sign of ( , ) ( , )f a h b k f a b    depends on h  
and k and requires further investigation. 

Example 1. Find the extreme value of the function 2 2( , ) 3 2 1f x y x xy y x y      . 

Solution. Here,  2 2( , ) 3 2 1f x y x xy y x y       

 2 3xf x y    , 2xxf   
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 2 2yf x y    , 2yyf  , 1xyf   . 

For extreme values, 0xf  ,   0yf   

  2 3x y    and 2 2x y    

  1
3

y  , 4
3

x    

Thus, the extreme point is 4 1,
3 3

  
 

. 

At 4 1,
3 3

  
 

,  2xxA f  , 1xyB f   , 2xyC f   

Now,   2 4 1 3 0AC B     and 2 0A     

4 1,
3 3

   
 

is a point of minimum and minimum value 4 1,
3 3

f    
 

  

       16 4 1 2 44 1
9 9 9 3 3

        . 

Example 2. Show that 4 2 2( , ) 2 3f x y x x y y    has neither maximum nor minimum at (0, 0). 

Solution. Here, 4 2 2( , ) 2 3f x y x x y y    

 38 6xf x xy   , 224 6xxf x y   

 23 2yf x y   , 2yyf  , 6xyf x   

For extreme values, 0xf  , 0yf   

 38 6 0x xy  and 23 2 0x y    

  22 4 3 0x x y  and
23

2
xy   

 0x  or
24

3
xy   

If 0 0x y    

If 
24

3
xy  and

23
2
xy 

2 24 3
3 2
x x

  , which is not possible. 

So, stationary point is (0,0). 

Now,  (0,0) 0xxA f  , (0, 0) 0xyB f  , (0, 0) 2yyC f   
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 2 0 0 0AC B      

So, doubtful case and further investigation is required. 

Now,  (0 ,0 ) (0,0)f f h k f      

  ( , ) (0,0)f h k f   

  4 2 2 2 22 3 (2 )( )h h k k h k h k       

If 2 0h k   and 22 0h k   i.e. 2h k  and 2

2
kh   then 0f  . 

If 2 0h k   and 22 0h k   i.e. 2h k  and 2

2
kh   then 0f  . 

So, for different values of h  and k , f  does not have the same sign. Hence, f  has neither maximum 
nor minimum at (0, 0). 

Example 3. Find the extreme value of 3 33 ; 0.x axy y a   . 

Solution. Here, 3 3( , ) 3f x y x axy y    

  23 3xf x ay   , 6xxf x  

  23 3yf y ax  , 6yyf y , 3xyf a   

For extreme value, we put 0xf  , 0yf   

   23 3 0x ay  and 23 3 0y ax   

    
2xy

a
 and

2yx
a

  

After solving, the stationary points are (0, 0) and ( , )a a . 

Now,  (0,0) 0xxA f  , (0, 0) 3xyB f a   , (0, 0) 0yyC f   

 2 29 0AC B a    at (0,0). 

So, given function has no extreme value at (0,0). 

Now,  ( , ) 6xxA f a a a  , ( , ) 3xyB f a a a   , ( , ) 6yyC f a a a   

 2 2 2 236 9 27 0AC B a a a      at ( , )a a . 

 & 6   0A a   

Hence, the given function has minimum value at ( , )a a . 
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Example 4. Let
3 3a au xy

x y
   , 

                               

3

2

3

2 .

u ay
x x
u ax
y y


 




 


  

Putting x= a, y = a 

Hence 
2 3 2 2 3

2 3 2 3
2 22, 1, 2.u a u u a

x x x y y y
  

    
   

 

Therefore r and t are positive when x = a = y and rt- ݏଶ = 2.2-1= 3 (positive). Therefore, there is a 
minimum value of u viz. u = 3ܽଶ. 

Example 5.  Let 

             ݂ሺݔ, ሻݕ ൌ ଶݕ	  ݕଶݔ   .ସݔ

It can be verified that    

                                              ௫݂ሺ0, 0ሻ ൌ 	0,	 ௬݂ሺ0, 0ሻ ൌ 0 

                                              ௫݂௫ሺ0, 0ሻ ൌ 0, ௬݂௬ሺ0, 0ሻ ൌ 2 

                                              ௫݂௬ሺ0, 0ሻ ൌ 0. 

So at the origin, we have 

                          ௫݂௫ ௬݂௬ ൌ 	 ௫݂௬
ଶ. 

However, on writing 

ଶݕ             ݕଶݔ  ସݔ ൌ 	 ሺݕ  ଵ

ଶ
ଶሻଶݔ 	ଷ௫

ర

ସ
. 

It is clear that f(x, y) has a minimum value at the origin, since 

 Δ݂ ൌ ݂ሺ݄,݇ሻ െ 	݂ሺ0, 0ሻ ൌ 	 ሺ݇  మ

ଶ
ሻଶ 	ଷ

ర

ସ
 

is greater than zero for all values of h and k. 

4.7 Stationary Values of Implicit Functions 

To find the stationary values of the function 

              mn uuuxxxf .....,,.........,,,,........., 2121                                                          (1) 

of    mn    variables which are connected by m differentiable equations 
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             1 2 1 2, ,............., , , ,.................., 0; 1,2,................,r n mx x x u u u r m             (2) 

If the m variables muuu ....,,........., 21  are determinate as functions of nxxx ..,,........., 21  from the system of 
m equations of (2), then f can be regarded as a function of n independent variables nxxx ,........,, 21 . 

At a stationary point of f, 0df . 

Hence at a stationary point, muunxxx dufdufdxfdxfdxfdf
mn

 .......................0 121 121
      

(3) 

Again differentiating the equation (2), we get 

        




































































0..................

....................................................................................

.....................................................................................

0...................

0.....................

1
1

1
1

2
1

1

22
1

1

2

1
1

1

11
1

1

1

m
m

mm
n

n

mm

m
m

n
n

m
m

n
n

du
u

du
u

dx
x

dx
x

du
u

du
u

dx
x

dx
x

du
u

du
u

dx
x

dx
x







                          (4) 

From these m equations of (4), the differentials mdududu ......,,........., 21  of the m dependent variables 
may be found in terms of the n differentials  ndxdxdx ,,........., 21  and are substituted in (3). This way df  
has been expressed in terms of the differentials of the independent variables, and since the differentials 
of the independent variables are arbitrary and 0df , the coefficients of each of these n differentials may 
be equated to zero. These n equations together with the m equations of (2) constitute a system of  mn   
equations to determine the  mn   coordinates of the stationary points of f. 

Example 1.  zyxF ,,  is a function subject to the constraint condition   , , 0G x y z  . Show that at a 
stationary point.  

                             0.x y y xF G F G   

Solution. We may consider z as a function of the independent variables x, y. 

At a stationary point, 0dF  

       0 . (1)x y zdF F dx F dy F dz     

Differentiating the relation   0,, zyxG ,we get 

               0. (2)x y zG dx G dy G dz    

Putting the values of dz from (2) into (1), or what is same thing, eliminating dz  from (1) and (2), we get 
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            0 dyFGGFdxFGGF zyzyzxzx   

Since dydx, (being differentials of independent variables) are arbitrary, therefore 

                                  
0
0

x z x z

y z y z

F G G F
F G G F

 

 
 

which gives             0.x y x yF G G F   

4.8 Lagrange Multipliers Method 

 In this method, we discuss the determination of stationary points from a modified point of view. This 
process consists in the introduction of undetermined multipliers, a method due to Lagrange. After his 
name, this method also called Lagrange’s method of undetermined multipliers. 

Let ݑ ൌ ϕሺ	xଵ, xଶ, … , x୬ሻ	be a function of n variables which are connected by m equations 

           ଵ݂ሺxଵ, xଶ, … , x୬ሻ ൌ 0, ଶ݂ሺxଵ, xଶ, … , x୬ሻ ൌ 0, … , ݂ሺxଵ, xଶ, … , x୬ሻ ൌ 0, 

So that only n-m variables are independent. 

When u is maximum or minimum 

ݑ݀                            ൌ డ௨

డ୶భ
	݀xଵ 

డ௨

డ୶మ
	݀xଶ 	

డ௨

డ୶య
	݀xଷ  ⋯ డ௨

డ୶
	݀x୬ ൌ 0 

Also                    ݀ ଵ݂ ൌ డభ
డ୶భ

	݀xଵ 
డభ
డ୶మ

	݀xଶ 	
డభ
డ୶య

	݀xଷ  ⋯ డభ
డ୶

	݀x୬ ൌ 0 

                          ݀ ଶ݂ ൌ డమ
డ୶భ

	݀xଵ 
డమ
డ୶మ

	݀xଶ 	
డమ
డ୶య

	݀xଷ  ⋯ డమ
డ୶

	݀x୬ ൌ 0 

                     ……………………………………………………………………. 

                    …………………………………………………………………….. 

                            ݀ ݂ ൌ డ
డ୶భ

	݀xଵ 
డ
డ୶మ

	݀xଶ 	
డ
డ୶య

	݀xଷ  ⋯ డ
డ୶

	݀x୬ ൌ 0 

Multiplying all these respectively by 1, ߣଵ, ,ଶߣ … ,    and adding, we get a result which may be writtenߣ

               ଵܲ	݀xଵ  ଶܲ	݀xଶ  ଷܲ	݀xଷ  ⋯	 ܲ݀x୬ ൌ 0, 

Where ܲ ൌ 	
డ௨

డ୶౨
	ߣଵ

డభ
డ୶౨

 ଶߣ
డమ
డ୶౨

 ⋯ ߣ
డ
డ୶౨

 

The m quantities ߣଵ, ,ଶߣ … ,  are of our choice. Let us choose them so as to satisfy the m linear	ߣ
equations 

P1 = P2 = ………….= Pm.                       

The above equation is now reduced to  

ܲାଵ݀ݔାଵ  ܲାଶ݀ݔାଶ  ⋯ ܲ݀ݔ ൌ 0 
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It is indifferent which n-m of the n variables are regarded as independent. Let them be 
,ାଵݔ ,ାଶݔ … , ,ାଶݔ݀,ାଵݔ݀ . Then since n-m quantitiesݔ   are all independent, theirݔ݀…
coefficients must be separately zero. Thus we obtain the additional n-m equations 

                                   Pm+1 = Pm+2 = ………….= Pn = 0. 

Thus the m+n equations f1 = f2 = ………….= fm=0 and P1 = P2 = ………….= Pn=0 determine the m 
multipliers ߣଵ, ,ଶߣ … , , and values of n variables xଵߣ xଶ, … , x୬ for which maximum and minimum 
values of u are possible. 

Example 1. Find the length of the axes of the section of the ellipsoid ௫
మ

మ
 ௬మ

మ
 ௭మ

మ
ൌ 1 by the plane 

ݔ݈  ݕ݉  ݖ݊ ൌ 0. 

Solution. We have to find the extreme values of the function ݎଶ where ݎଶ ൌ ଶݔ	  ଶݕ   ଶ, subject toݖ
the equations of the condition 

																																																								௫
మ

	మ
 ௬మ

మ
 ௭మ

మ
െ 1 ൌ 0, 

ݔ݈                                                   ݕ݉  ݖ݊ ൌ 0. 

Then                                      ݔ݀ݔ  ݕ݀ݕ  ݖ݀ݖ ൌ 0                                      (1) 

                                             ௫
	మ
ݔ݀  ௬

మ
ݕ݀  ௭

మ
ݖ݀ ൌ 0,                                (2) 

ݔ݈݀                                                ݕ݀݉  ݖ݀݊ ൌ 0                                     (3) 

Multiplying these equations by 1, ߣଵ,  ଶ and adding we getߣ

                                       1 22 0xx l
a

                                                        (4) 

                                       1 22 0yy m
b

                                                      (5) 

                                      1 22 0zz n
c

                                                        (6) 

Multiplying (4), (5) and (6) by x, y, z and adding we get  

                            ሺݔଶ  ଶݕ  ଶሻݖ  ଵߣ ቀ
௫మ

	మ
 ௬మ

మ
 ௭మ

మ
ቁ  ݔଶሺ݈ߣ  ݕ݉  ሻݖ݊ ൌ 0 

or   ݎଶ  ଵߣ ൌ ଵߣ	⟹ 0 ൌ െݎଶ. 

From (4), (5) and (6), we have 

ݔ          ൌ 	 ఒమ

ሺೝ
మ

ೌమ
ିଵሻ

ݕ ,  ൌ 	 ఒమ

ሺೝ
మ

್మ
ିଵሻ

ݖ , ൌ 	 ఒమ

ሺೝ
మ

మ
ିଵሻ
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But ݈ݔ  ݕ݉  ݖ݊ ൌ 0  
2 2 2 2

2

2

2 2 2 2 2

2

2 0
r b

l a m b
c

n c
r a r


 

     
 and since 2 0   the equation giving the 

values of  which are the squares of the length of semi-axes required (quadratic in r2) is 
2 2 2 2 2

2 2 22

2

2 2 0l a m b
r r b c

n c
a r

 
  

    
. 

Example 2. Investigate the maximum and minimum radii vector of the sector of “surface of elasticity” 
(x2+y2+z2)2=a2x2+y2b2+z2c2 made by the plane lx + my + nz = 0. 

Solution. We have 

  0xdx ydy zdz                    (1) 

  2 2 2 0a xdx b ydy c zdz    (2)    

  0ldx mdy ndz                (3) 

Multiplying these equations by 1,   1 2   and adding we get 

                                2
1 2 0x a x l     (4) 

                                2
1 2 0y b y m     (5) 

                                2
1 2 0z c z n     (6) 

Multiplying(4), (5) and (6) by x, y, z respectively and adding we get  

                                 2 2 2 2 2 2 2 2 2
1 2 0x y z a x y b z c lx my nz           

   2 4
1 1 2

10r r
r

        

         
2 2 2

2 2 2
2 2 2 2 2 2, , .lr mr nrx y z

a r b r c r
  

   
  

 

Then lx + my + nz = 0    
2 2 2 2 2 2

2 2 2
2 2 2 2 2 2 0.l r m r n r

a r b r c r
  

  
  

 

                         
2 2 2

2 2 2 2 2 2
l m n

r a r b r c
  

  
 

It is quadratic in r2 and give its required values. 

Example 3. Prove that the volume of the greatest rectangular parallelepiped that can be inscribed in the 

ellipsoid   
 

1 1 1
,
, ,


   

 
  

  
 

     
 

   
. 
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Solution. Volume of the parallelepiped . Its maximum value is to find under the condition that it 

is inscribed in the ellipsoid 
2 2 2

2 2 2 1x y z
a b c

   , we have 

               

             

Therefore  
                                    (1) 

                       1 2 2 2
2 2 2 0x y zdf dx dy dz
a b c

                         (2) 

Multiplying (1) by 1 and (2) by  and adding we get 

  2 0xyz
a

                                            (3)         

   2 0yzx
b

                                 (4) 

  
2 0zxy

c
                                     (5) 

From (3), (4) and (5), we get 
2 2 2a yz b zx c xy
x y z

        

and so 
2 2 2a yz b zx c xy
x y z

   

 Dividing throughout by xyz we get 

                                 
2 2 2 2 2 2

2 2 2 2 2 2 1 .a b c x y z
x y z a b c

 
     

 
  

 Hence 
2

2
3 1x
x

  or 
3

ax   .Similarly 
3

by  , 
3

cz   

It follows therefore that 88
3 3
abcu xyz   

Example 4. Find the point of the circle x2 +y2 + z2 = 1, 0lx my nz   at which the function  
u = ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy attains its greatest and least value. 
Solution. We have 

    u = ax2 + by2 + cz2 + 2fyz + 2gzx + 2hxy 

                                                 1f lx my nz         
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                                                 2
2

2 2  1yf x z    

Then 
...axdx bydy czdz fydz fzdy gzdx gxdz hxdy hydx          

                                  

                                  

      Multiplying these equations by 1, 1 2,  and adding, we get 

                             1 2 0ax hy gz l x       

                               

                             . 

Multiplying by x, y, z and adding we get 

                  = -u. 

Putting all the values in the above equation we have 
                                       

                              1( ) 0hx y b u fz m                 

                                       

                                  .     

Eliminating x, y, z and  ,we get 

 = 0. 

Example 5. If a, b, c are positive and  

          ,   

Show that a stationary value of u is given by  

                      

where  is the +ve root of the cubic  

                           

Solution. We have  

                                                                                (1) 

                                                                               (2) 
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Differentiating (1) we get 

                                      
2 2

3 2 2
1 0b c dx
x z y
 

  
 

  

which on multiplication with  yields 

    2 2 2 21 0b y c z dx
x

                                      (3) 

Differentiating (2) we have  

                                                                                            (4) 

Using Lagrange’s multiplier, we obtain 

                             

i.e.                                                 (5) 

                                                      (6) 

                                                       (7) 

Then (6) + (7) - (5) yields 

         = -  

                                          = 2(1 2 )ax      (By (2)) 

Therefore 

                                  =  

           . 

Similarly  and . 

Substituting these values of  in (2), we obtain   

             

which equals to  

                                                                (8) 

Since a, b, c are positive, any one of (5), (6), (7) shows that  must be positive. Hence  is a positive 
root of (8). 
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4.9 Jacobian and its Properties 

In this section, we give definition of Jacobian and discuss its properties.  

4.9.1 Jacobian 

If  be n differentiable functions of the n variables  then the determinant 

                                                   

1 1 1

1 2

2 2 2

1 2

1 2

, ,...,

, , ,

, , ,

n

n

n n n

n

u u u
x x x
u u u
x x x
u u u
x x x

   
    
   
 
   

   
     





 

is called the Jacobian of   1 2, , , nu u u  with regard to   1 2, , , nx x x . The determinant is often denoted by 

                                1 2 1 2

1 2 1 2

( , ,....., ) ( , ,....., )
( , ,....., ) ( , ,....., )

n n

n n

u u u u u uor J
x x x x x x




 

or shortly J, when there can be no doubt as to the variables referred to. 

Theorem 1. If   1 2, , , nu u u  be n differentiable functions of the n independent variables 1 2, , , nx x x  and 
there exists an identical differentiable functional relation   which does not involve 
the x’s explicitly, then the Jacobian 

                                                                           

vanishes identically provided that  as a function of the u’s has no stationary values in the domain 
considered. 

Proof. Since 

               

We have  

                               (1) 

But 

                             (2) 

On substituting these values in (1) we get an equation of the form 

                                (3)    



Mathematical Analysis 159 

And since  are arbitrary differentials of independent variables, it follows that  

 
In other words 

                             (4) 

And since by the hypothesis, we cannot have  

 
On eliminating the partial derivatives of  from the set of equation (4) we get  

                  

which establishes the theorem. 

Theorem 2. If  be n functions of n variables  say 

 and if  then if all differential coefficients 

concerned are continuous, there exists a functional relation connecting some or all of the variables 
 which is independent of . 

Proof. First we prove the theorem when n=2. We have  and   

                                                                    

If v does not depend on y, then  and so either  or else  In the former case u and v are 

the functions of x only, and the functional relation sought is obtained from 

                                            

By regarding x as a function of v and substituting in  In the latter case v is constant, and the 

functional relation is v = a. If v does depend on y, since  the equation v = g(x, y) defines y as a 

function of x and v, say 

                                                  

And on substituting in the other equation we get an equation of the form 

                           . 
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(The function F[x, g(x, y)] is the same function of x and y as f(x, y)) 

Then  

                                

(obtained on multiplying the second row by  and subtracting from the first ) and so, either  

which is contrary to hypothesis or else  so that F is a function of v only; hence the functional 

relation is  

                                                             u = F(v) 

Now assume that the theorem holds for n 1.  
Now nu must involve one of the variables at least, for if not there is a functional relation nu a.  Let one 

such variable be called nx since n

n

u 0
x





 we can solve the equation 

                                                           n n 1 2 nu f (x , x ,..., x )  

for nx in terms of 1 2 n 1x , x ,..., x  and nu , and on substituting this value in each of the other equations we 
get n 1  equations of the form  

          r r 1 2 n 1 nu g (x , x ,..., x , u ), (r 1, 2,..., n 1) (1)    

If now we substitute n 1 2 nf (x , x ,..., x )  for nu  the functions r 1 2 n 1 ng (x , x ,..., x , u )  become 

                                            r 1 2 n 1 nf (x , x ,..., x , x ), (r 1, 2,..., n 1)    

Then  

                                       

1 1 1

1 2 n

2 2 2

1 2 n

n n n

1 2 n

f f f,...,
x x x
f f f,...,
x x x0

...........................
f f f,...,
x x x
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1 1 n 1 1 n 1 n

1 n 1 n 1 n n 1 n n

2 2 n 2 2 n 2 n

1 n 1 n 1 n n 1 n n

g g u g g u g u. ,..., . , .
x u x x u x u x
g g u g g u g u. ,..., . , .
x u x x u x u x

.........................................................................

 

 

       
 

       
       

 
       

n n n

1 n 1 n

...
u u u, ..., ,
x x x

  
  

 

                                          

1 1

1 n 1

2 2

1 n 1

n n n

1 n 1 n

g g,..., , 0
x x
g g,..., , 0
x x

...........................
u u u,..., ,
x x x







 
 
 
 

  
  

 

by subtracting the elements of the last row multiplied by 

                                                         1 2 n

n n n

g g g, ...,
u u u
  
  

 

from each of the others. Hence  

                                                         
n 1 2 n 1

n 1 2 n 1

u (g ,g ,..., g ). 0.
x (x , x ,..., x )





 


   

Since n

n

u 0
x





 we must have 1 2 n 1

1 2 n 1

(g ,g ,..., g ) 0,
(x , x ,..., x )









 and so by hypothesis there is a functional relation 

between 1 2 n 1g ,g ,..., g ,  that is between 1 2 n 1u , u ,..., u   into which nu  may enter, because nu may occur in 
set of equation (1) as an auxiliary variable. We have therefore proved by induction that there is a relation 
between 1 2 nu , u ,..., u .  

4.9.2 Properties of Jacobian 

Lemma 1. If U and V are functions of u and v, where u and v are themselves functions of x and y, we  
have 

                                             (U, V) (U, V) (u, v).
(x, y) (u, v) (x, y)

  


  
 

Proof. Let                            U = f(u, v), V = F(u, v) 

                                              u (x, y), v (x, y)    

Then                                     U U u U v. .
x u x v x
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                                             U U u U v. .
y u y v y

    
 

    
 

                                            V V u V v. .
x u x v x

    
 

    
 

                                            V V u V v. .
y u y v y

    
 

    
 

and  

                   

u uU U
x y(U, V) (u, v) u v.

V V v v(u, v) (x, y)
u u x y
U u U v U u U v. . . .
u x v x u y v y
V u V v V u V v. . . .
u x v x u y v y
U U
x y (U, V)
V V (x, y)
x y

  
     

    
   

       
 

       

       

 
       

 
  

 
  
 

 

The same method of proof applies if there are several functions and the same number of variables. 

Lemma 2. If J is the Jacobian of system u, v with regard to x, y and J′ the Jacobian of x, y with regard to 
u, v, then J J′ = 1. 

Proof. Let u = f(x, y) and v = F(x, y), and suppose that these are solved for x and y giving 

                                           x (u, v) and y (u, v),    

we then have differentiating u = f(x, y) w.r.t u and v; v = F(x, y) w.r.t u and v 

                                      

u x u y1 . .
x u y u
u x u y0 . .
x v y v

          
     
    

 obtained from u = f(x, y)  

                                      

v x v y0 . .
x u y u
v x v y1 . .
x v y v

          
     
    

 obtained from v = F(x, y).  
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Also                           

u u x x
x y u v
v v y y
x y u v

J J

   
    
   
   

  

                                        

u x u y u x u y. . . .
x u y u x v y v
v x v y v x v y. . . .
x u y u x v y v

       
 

       

       

 
       

 

                                        
1 0

1
0 1

   

Example 1. If            u x 2y z, v x 2y 3z       

                                    2w 2xy xz 4yz 2z    , 

prove that (u, v, w) 0,
(x, y, z)





and find a relation between u, v, w. 

Solution. We have 

          

u u u
x y z

(u, v, w) v v v
(x, y, z) x y z

w w w
x y z

  
  

   


   
  
  

 

                         
1 2 1
1 2 3
2y z 2x 4z x 4y 4z

 
    

 

                                           
1 0 0
1 4 2
2y z 2x 6z 4y x 2y 3z

 
       

Performing 2 2 1 3 3 1c c 2c and c c c     

                       
4 2 0 2

2x 6z 4y x 2y 3z 0 x 2y 3z
0.


 

       

   

  
Performing 1 1 2c c 2c   

Hence a relation between u, v and w exists. 
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Now,  

                                       

u v 2x 4z
u v 4y 2z
w x(2y z) 2z(2y z)

(x 2z)(2y z)

  
  
   
  

 

2 2

4w (u v)(u v)
4w u v

   

  
 

which is the required relation. 

Example 2. Find the condition that the expression px qy rz,p x q y r z      are connected with the 
expression 2 2 2ax by cz 2fyz 2gzx 2hxy,     by a functional relation. 

Solution. Let  

                                           
2 2 2

u px qy rz
v p x q y r z
w ax by cz 2fyz 2gzx 2hxy

  
  

    





   

We know that the required condition is  

                                          (u, v, w) 0.
(x, y, z)





 

Therefore  

                                          

u u u
x y z
v v v 0.
x y z
w w w
x y z

  
  
  


  
  
  

 

But  

                                          u u up, q, r
x y z
  

  
  

 

                                          v v vp , q , r
x

.
y z

  
   

 
 


 

                                     w 2ax 2hy 2gz
x


  


 

w 2hx 2by 2fz
y


  


 



Mathematical Analysis 165 

w 2gx 2fy 2cz
z


  


 

Therefore 

p q r
p ' q ' r '
2ax 2hy 2gz 2hx 2by 2fz 2gx 2fy 2cz     

= 0 

         

p q r p q r p q r
p ' q ' r ' 0, p ' q ' r ' 0 , p ' q ' r ' 0
a h g h b f g f c

     

which is the required condition. 

Example 3. Prove that if f(0) = 0,   2
1x
x

f
1

' 


, then 

 x yf (x) f (y) f .
1 xy
 

    
 

Solution. Suppose that  

   u = f(x) +f(y) 

   x yv
1 xy





 

Now    

u u
x y

J u, v
v v
x y

 
 


 
 

 

   
2 2

2 2

2 2

1 1
1 x 1 y

0
1 y 1 x

(1 xy) (1 xy)

 
 

 
 

 

Therefore u and v are connected by a functional relation 

Let     u (v)  , that is,  

    x yf (x) f (y)
1 xy
 

    
 

Putting y = 0, we get 

   f (x) f (0) (x)    

 f (x) 0 (x)    because f(0) = 0 
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Hence      x yf (x) f (y) f .
1 xy
 

    
 

Example 4. The roots of the equation in   

        3 3 3x y z 0          

are u, v, w. Prove that   
 
u,v,w (y z)(z x)(x y)2 .
x, y,z (v w)(w u)(u v)

   
 

   
 

Solution. Here u, v, w are the roots of the equation     

     3 2 2 2 2 31(x y z) (x y z ) (x
3

          3 3y z ) 0    

Let  x y z ,    2 2 2x y z    ,  3 3 31 (x y z )
3

        (1) 

and then  u v w , vw wu uv , uvw              (2) 

Then from (1), 

  
2 2 2

1 1 1
( , , ) 2x 2y 2z 2(y z)(z x)(x y)
(x, y,z)

x y z

   
    


    (3) 

Again, from (2), we have 

  
1 1 1

( , , ) v w w u u v (v w)(w u)(u v)
(u, v, w)

vw wu uv

   
        


             (4) 

Then from (3) and (4) 

   (u,v,w) (u,v,w) ( , , ) (y z)(z x)(x y). 2
(x, y,z) ( , , ) (x, y,z) (v w)(w u)(u v)

        
  

        
 

Example 5. If , ,   are the roots of the equation yx z 1
a k b k c k

  
  

 in k, 

then 

    (x, y,z) ( )( )( ) .
( , , ) (a b)(b c)(c a)
        

 
      

 

Solution. The equation in k is 

 3 2k k (a b c x y z) k[ab bc ca x(b c) y(c a) z(a b)]                                   (1)      

      abc bcx cay abz 0.      
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Now , ,    are the roots of this equation. Therefore 
   (a b c) x y z             
   ab bc ca x(b c) y(c a) z(a b)               
and 
    abc bcx cay abz       
Then, we have 

   yx z1  
  
  

 

   yx z1  
  
  

 

yx z1  
  
  

 

 yx z(b c) (c a) (a b) 
         

  
 

 yx z(b c) (c a) (a b) 
         

  
 

 yx z(b c) (c a) (a b) 
        

  
 

 yx zbc ca ab 
   

  
 

 x y zbc ca ab  
   

  
 

 yx zbc ca ab 
   

  
 

Now,    

yx z

1 1 1
yx z (b c) (c a) (a b)

bc ca ab
yx z

 
  

 
     

  
 

  

 

1 1 1
         
  

 

Hence 

   (x, y, z) (b c)(c a)(a b) ( )( )( )
( , , )


             
   

(x, y, z) ( )( )( )
( , , ) (b c)(c a)(a b)
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Second Method.  After the equation (1),   

let a b c (x y z)        
ab bc ca x(b c) y(c a)       z(a b)    

abc bcx cay abz          (2) 

, , .                  (3) 

Then 
1 1 1

( , , ) (b c) (c a) (a b)
(x, y, z)

bc ca ab

  
   

      


  
 (a b)(b c)(c a)    . 

and 

  
 

1 1 1
,
, ,


   

 
  

  
 

     
 

   
 

   ( )( )( )           

Therefore  (x, y,z) (x, y,z) ( , , ) ( )( )( ). .
( , , ) ( , , ) ( , , ) (a b)(b c)(c a)
             

  
              

 

Example 6. Prove that the three functions U, V, W are connected by an identical functional relation if  
  U = x + y – z, V = x – y + z, W = x2 +y2+z2-2yz 
and find the functional relation. 
Solution. Here 

  

U U U
x y z

(U,V,W) V V V
(x, y,z) x y z

W W W
x y z

  
  

   


   
  
    

        

1 1 1
1 1 1
2x 2(y z) 2(z y)


 

 
        

     Performing 3 3 2c c c   

           
1 1 0

1 1 0 0
2x 2(y z) 0

  


 

Hence there exists some functional relation between U, V and W. 
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Moreover,  
  U + V =2x 

U – V = 2(y – z) 

  2 2 2 2 2(U V) (U V) 4(x y z 2yz)        

   = 4W 
which is the required functional relation. 
Example 7. Let V be a function of the two variables x and y. Transform the expression  

   
2 2

2 2

V V
x y

 


 
 

by the formulae of plane polar transformation 
   x r cos , y r sin    . 

Solution. We are given a function V which is function of x and y and therefore it is a function of r and θ. 
From x r cos , y r sin    , we have 

  2 2 1r x y , tan y / x.     

Now  

  V V r V. .
x r x x

    
 

    
 

   V sin V r sincos cos ,
r r x x r

                 
  

And   V V r V. .
y r y y

    
 

    
 

   V cos V r cossin sin ,
r r y y r

      
          

  

 

Therefore  sincos
x r r




        
 

   cossin
y r r




        
 

Hence   
2

2
sin sincos cosV V V

x r r r r
  

 
                

 

   sin sin sincos cos cosV V V V
r r r r r r
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2 2

2 2
sin sincos cos V V V

r r r r
  

 
   

       
 

   
2 2

2
sin cos sincos sinV V V V

r r r r r
   

  
    

         
 

   
2 2 2 2

2
2 2 2

sin cos sincos 2V V V
r r r r

  
 

  
  

   
 

     
2

2
sin 2sin cosV V

r r r
  


 

 
 

   (1) 

and   
2

2
cos cossin sinV V V

y r r r r
  

 
                

 

   cos cos cossin sin sinV V V V
r r r r r r

    
  

                      
 

   
2 2

2 2
cos cossin sin V V V

r r r r
  

 
   

       
 

   
2 2

2
cos sin cossin cos `V V V V

r r r r r
   

  
    

         
 

   
2 2

2
2 2

sin cos cos sinsin V V V
r r r r

   
 

  
  

   
 

   
2 2 2 2

2 2
cos sin cos cosV V V

r r r r r
   

 
  

  
   

 

   2
sin cos V

r
 







       (2) 

Adding (1) and (2), we obtain 

  
2 2 2 2

2 2 2 2 2
1 1.V V V V V

x y r r r r 
    

   
    

 

which is the required result. 
Example 8. Transform the expression 

   
2 22

2 2 2( )Z Z Z Zx y a x y
x y x y

                           
 

by the substitution cosx r  , siny r  . 

Solution. If V is a function of x, y, then 
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   V V x V y x V y V
r x r y r r x r y

      
   

      
 

    
V V Vr x y x y V
r x y x y

     
         

 

    r x y
r x y
  
 

  
 

Similarly  x y
y x

  
 

  
 

Now   sin. . cosZ Z r Z Z Z
x r x x r r

 
 

      
   

      
   (1) 

   cossinZ Z Z
y r r




  
 

  
      (2) 

Therefore  
22 2 2

2
1Z Z Z Z

x y r r 
                          

 

and the given expression is equal to 

   
2 2 2

2 2
2

1( )Z Z Zr a r
r r r 

                         
 

   
2 22

2
2 1Z a Za

r r 
                

. 

Example 9. If cosx r  , siny r  , prove that 

   
2 2 2 2 2

2 2 2
2 2 2 2( ) 4u u u u u ux y xy r r

x y x y r r 
      

             
 

where u is any twice differentiable function of x and y. 
Solution. We have  

  . .u u x u y
r x r y r
    

 
    

 

  cos sinu u x u y u
x y r x r y

    
   

   
 

   u u ur x y
r x y
  

 
  

        (1) 

Therefore 
u u ur r x y x y

r r x y x y
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u u u ux x y y x y

x x y y x y
        

              
 

   
2 2 2 2

2 2
2 2
u u u u u ux xy xy y x y

x x y y x y x y
     

     
       

 

Therefore 

  
2 2 2 2

2 2 2
2 2 22u u u u u u ur r x xy y x y

r r x x y y x y
      

     
       

   (2) 

   
2 2 2 2

2 2 2
2 2 22u u u ur x xy y

r x x y y
   

  
    

  (using (1)) 

Again,   . .u u x u y
x y  

    
 

    
 

   u ux y
y x
 

 
 

 

Therefore  
2

2
u u ux y x y

y x y x
      

          
 

    

   
u u u u ux x y y x y

y y x x y x
        

              
 

   
2 2 2

2 2
2 22u u u u ux xy y x y

y y x y x y
    

    
     

    (3) 

From (1), (2) and (3), we get the required result. 
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