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The advent of Bitcoin paved the way for a plethora of blockchain systems supporting diverse applications beyond cryptocur-
rencies. Although in-depth studies of the consensus protocols as well as the privacy of blockchain transactions are available,
there is no formal model of the transaction semantics that a blockchain is supposed to guarantee.

In this work, we fill this gap, motivated by the observation that the semantics of transactions in blockchain systems can be
captured by a directed acyclic graph. Such a transaction graph, or TDAG, generally consists of the states and the transactions
as transitions between the states, together with conditions for the consistency and validity of transactions. We instantiate the
TDAG model for three prominent blockchain systems: Bitcoin, Ethereum, and Hyperledger Fabric. We specify the states and
transactions as well as the validity conditions of the TDAG for each one. This demonstrates the applicability of the model
and formalizes the transaction-level semantics that these systems aim for.

1. INTRODUCTION
The success of Bitcoin [Nakamoto 2008] has sparked the development of many other blockchain
systems. Whereas the first blockchains after Bitcoin (called alt-coins) resembled the cryptocur-
rency functionality offered by Bitcoin and mostly differed in the choice of certain parameters,
Ethereum [Ethereum 2017] was the pioneer of so-called smart contract systems that support ar-
bitrary (deterministic) computation on the blockchain. Platforms for running smart contracts are
seen to be of wide-spread interest for replacing trusted parties, whether in public blockchains where
participation is open to anyone or in private blockchains inside a consortium.

Many recent blockchain platforms run generic computations, model specific asset classes, or add
cryptographic privacy guarantees; prominent systems today include Hyperledger Fabric [Cachin
2016], R3 Corda [Hearn and Brown 2019], Tendermint/Cosmos [Kwon and Buchman 2017], and
Chain Core [Chain 2017].

Blockchain systems have attracted attention not only from industry but also from academia. Many
works have analyzed blockchains from different perspectives, for example, focusing on the underly-
ing consensus protocols [Garay et al. 2015; Eyal et al. 2016; Cachin and Vukolić 2017], their privacy
guarantees [Meiklejohn et al. 2013; Ben-Sasson et al. 2014; Ruffing and Moreno-Sanchez 2017],
and many more aspects. This collection is necessarily partial; excellent surveys exist in the litera-
ture [Bonneau et al. 2015; Tschorsch and Scheuermann 2016; Armknecht et al. 2015; Narayanan
et al. 2016].

What is, surprisingly, missing to date is a formal model of the semantics of a blockchain, ad-
dressing the transaction-level consistency guarantees that they aim to achieve. These guarantees are
intuitive and easy to grasp in the context of Bitcoin: given a proper modeling of the mining of new
coins, the overall amount of bitcoins must remain invariant. For the newer, generic, and more com-
plex blockchains, such as Ethereum or Hyperledger Fabric, a proper model of the guarantees they
provide appear necessary. For instance, such a model should allow for reasoning whether the intu-
itively expected guarantees are indeed achieved. It should also model the operation of a blockchain
at an appropriate level, such that the properties of a system appear concisely and differences across
platforms become visible. In particular, it has to describe the criteria that determine whether a trans-
action that manipulates state is considered valid and consequently executed by the nodes.
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Our contributions. We introduce a formal model, called the transaction graph or TDAG for short,
a directed acyclic graph that models the transactions occurring on a blockchain and how they in-
teract through states. In a nutshell, a TDAG is a graph consisting of transactions that link states to
each other. Each transaction may consume, observe, or produce states, and occurs only with respect
to an external input that triggers the transaction. The model abstracts the transaction validation into
a predicate that can be evaluated locally in the graph, in the sense that validation only considers the
relevant states; this corresponds to how many blockchains work, during the process of transaction
validation and consensus, which must be efficient and based on local state. The TDAG is a generic
model to encode properties expected from every blockchain system, such as notions of validity and
consistency, and for characterizing the invariants that must be enforced in a blockchain.

We instantiate the TDAG model for three different prominent blockchains: Bitcoin, Ethereum,
and Hyperledger Fabric. For each system, we formally define the states and transactions of the
TDAG, specify the notion of consistency, and describe the validity of transactions. This shows the
broad applicability of our model, and results in an abstract description of these real-world systems.

Related work. Atzei et al. provided a formal transaction model for Bitcoin [Atzei et al. 2018].
While their model covers certain aspects of Bitcoin, like scripts and multi-signature, in more detail
than ours, it does not allow to model and compare with other blockchain systems. The TDAG can
be seen as a refinement of the precedence graph (or serialization graph) from database concur-
rency theory [Elmasri and Navathe 2011], which relates transactions with conflicting data access.
The TDAG in addition contains states as vertices, as one goal of the TDAG (besides formalizing
conflicts) is to make statements about the consistency of the states.

2. TRANSACTION GRAPHS
This section introduces the transaction directed acyclic graph, abbreviated transaction graph or
TDAG for representing the semantics of a blockchain. It models the context held by the blockchain
and its evolution through transactions that obey validation rules.

We start by introducing some notation. Let E ⊆ X ×Y be a relation between sets X and Y . For
the predicate (x,y) ∈ E , we also write xEy. Furthermore, we denote the set {y : xEy} by xE! and
its size by |xE!|.

2.1. Definition
A transaction graph or TDAG is a directed acyclic graph G = (V ,E). The vertices V can be
partitioned into states S and witnesses W , that is, V = S ∪̇W . At a high level the edges E represent
transitions between states. More precisely, an edge e ∈ E represents the relation between a state and
a witness in the context of a transaction, and an edge may connect a state to a witness or vice versa.
The edges can be partitioned into consuming, observing, and producing edges, denoted EC, EO, and
EP, respectively, such that E = EC ∪̇EO ∪̇EP. We now introduce the elements of G informally.

States ©. The first type of vertex, s ∈ S , denotes an atomic state represented by the blockchain
and is depicted by a circle ©. It models an individual asset, a digital coin, some coins controlled
by a particular cryptographic key, a variable of a smart contract at a moment in time, and so
on. The complete context of the blockchain consists of all states that exist at a particular time.
A state results from a transaction on the blockchain and can transition to other states through a
transaction.
There is a special genesis state sg ∈ S , which represents the initial state of the blockchain. There
is a single genesis state by intention because the blockchain system can be initialized exactly
once.
Witnesses □. The second kind of vertex, w∈W , denotes a witness in the context of a transaction
and is depicted by a rectangle □. It represents any data included in a transaction that is required
for the transaction to be valid according to the validation rules of the blockchain system. Every
transaction of the blockchain system contains exactly one witness.



Consuming edges ©−−−→□. A consuming edge e∈EC connects a state to a witness and mod-
els that the state © is consumed by the transaction that involves witness □, i.e., the unique trans-
action that corresponds to □. A state can be consumed exactly once, i.e., it is not available for
being consumed by another transaction once it has been consumed. Consuming a state means
that the state is “updated” or “overwritten” by the transaction.
Observing edges ©−−→□. An observing edge e ∈ EO also connects a state to a witness; it
models that the state enters into the transaction represented by the witness, but that it remains
available for consumption by another transaction. A state can be observed by many transactions,
independently of whether it is also consumed or not. Intuitively a transaction that observes a state
“reads” it.
Producing edges □−−−→©. A producing edge e ∈ EP connects a witness to a state, and de-
notes that the state is created or produced by the transaction corresponding to the witness. Every
state apart from the genesis state is produced exactly once.

With these notions, a transaction represents a transition from one state, or from some set of states,
in a TDAG to another set of states according to the blockchain system. The transaction is linked to
a unique witness, which makes it “valid” as described later. We say that a transaction has input
states that are consumed or observed by the transaction and output states that are produced by
the transaction. More formally, a transaction is also a weakly connected DAG, i.e., a DAG that is
connected as a graph.

Definition 2.1 (Transaction). A weakly connected DAG T = (V ,E) with a set of input
states SI , a set of output states SO, and a witness w is called a transaction whenever

— Every input state in SI is a source (has indegree zero);
— Every output state in SO is a sink (has outdegree zero);
— V = SI ∪̇SO ∪̇{w};
— Every edge in E is either a consuming edge or an observing edge and links some input state si ∈ SI

to w, or it is a producing edge and links w to some output state so ∈ SO.

As the name suggests, a transaction graph consists of many transactions.

Definition 2.2 (TDAG). A transaction graph (TDAG) is a directed unweighted graph G =
(V ,E), where V = S ∪̇W are the vertices and E = EC ∪̇EO ∪̇EP are the edges. The set S denotes
the states and contains a special state sg called genesis. The set W denotes the witnesses. Edges are
partitioned into three subsets, where EC ⊆ S ×W denotes consuming edges, EO ⊆ S ×W denotes
observing edges, and EP ⊆ W ×S denotes the producing edges.

It satisfies the following conditions:

(1) sg does not have any producing or observing edges and it has a single consuming edge, i.e.,
|!EPsg|= 0∧ |sgEO!|= 0∧∃!w ∈ W : sgECw.

(2) Every state except for the genesis state has exactly one producing edge, i.e., ∀s ∈ S \{sg}∃!w ∈
W : wEPs.

(3) Every state except for the genesis state may have multiple successors, but at most one among
them is connected with a consuming edge, i.e., ∀s ∈ S : |sEC!|≤ 1.

(4) G is weakly connected.
(5) G has no cycles.

The consuming and observing edges incident to a state are also called the outgoing edges of that
state. Similarly, the consuming and observing edges incident to a witness are called incoming edges
of that witness. The producing edges of a witness are outgoing edges of the witness. There is no
order among the edges incident to a vertex in a TDAG. The set of all unconsumed states in a TDAG
are the states without an incident consuming edge.

In a TDAG every witness w corresponds to a unique transaction t(w). The next definition follows
naturally and is easily seen to be equivalent to Definition 2.1.



Definition 2.3 (Transaction in a TDAG). Given a TDAG G = (S ∪̇W ,E) and a witness w ∈
W , the transaction with witness w is the unique subgraph t = (S ′ ∪̇{w},E ′)⊆ G , where

— w ∈ W is the witness of the transaction;
— S ′ is the set of states connected to w, i.e., S ′ = {s ∈ S : sECw∨ sEOw∨wEPs}; and
— E ′ are the edges with both endpoints in S ′ ∪̇{w}.

The input states of t(w) are the states being observed or consumed by t(w), and the output states
of t(w) are the states being produced by t(w). With this terminology a transaction t ⊆ G can have
one of the following five types, which depends mostly on the number of input and output states:

INIT. A unique initialization transaction exists in every non-empty TDAG, consisting of a con-
suming edge that links the genesis state to a witness w and a set of producing edges that link w
to a set of states.
SISO. A single-input, single-output transaction consists of one consuming edge that links one
input state to a witness w and one producing edge that links w to an output state.
SIMO. A single-input, multi-output transaction consists of one consuming edge that links an
input state s to a witness w, and a set of producing edges that link w to a set of output states.
MISO. A multi-input, single-output transaction contains a set of multiple consuming and ob-
serving edges that link distinct input states to a witness w and one producing edge that links w
to an output state.
MIMO. A multi-input, multi-output transaction contains a set of multiple consuming and ob-
serving edges that link distinct input states to a witness w, and a set of producing edges that link
w to a set of output states.

Fig. 1 shows the possible transaction types in a TDAG. The initialization transaction plays a spe-
cial role; it represents the creation of the blockchain, which typically creates all assets represented
by the states. Modeling initialization through a specific transaction is a deliberate design choice that
will become clear later, in the context of transaction validation. The other types represent “ordi-
nary” transactions that consume (and possibly observe) one or more states and produce one or more
states. We note that SISO and SIMO transactions have a single input state and have no observing
edges. This models that a transaction must update or overwrite at least one state for it to make
sense of being included in the blockchain, as simple read queries can be handled by inspecting the
blockchain.

For the moment, it suffices to say that the initialization transaction typically creates all “assets”
modeled by the blockchain or the “states” that it holds, setting them to a predefined value. This
allows a subsequent transaction to be linked only with the state to which it refers and that it con-
sumes. Otherwise, all transactions that modify any state would be linked from the genesis state (with
a consuming edge), contrary to the condition that every state has at most one consuming edge. We
consider this an important property of the TDAG model. A further argument for modeling only one
initialization transaction goes as follows. If there were multiple INIT transactions, then it would

. . .

(a) INIT (b) SISO

. . .

(c) SIMO

. . .

(d) MISO

. . .

. . .

(e) MIMO

Fig. 1: Graphical representation of transactions. States are represented by circles and witnesses
are represented by boxes. Two concentric circles represent the genesis state. Observing edges are
represented with a dashed arrow whereas producing edges and consuming edges are represented
with solid arrows.
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Fig. 2: Illustrative example of a TDAG. Here, we use the same notation as in Fig. 1. Graphically,
each transaction ti(wi) is the subgraph where vertices are the set composed of wi along with the set
of states sharing an edge with wi; and edges are the set of incoming edges and outgoing edges for
wi.

not be easily possible to assess whether one INIT transaction is “valid” without looking also at the
other ones. For instance, an INIT transaction that creates a new asset is only valid if no other INIT
transaction has created the same asset beforehand.

Therefore, we purposely restrict the model so that it has a single initialization transaction for
simplicity, but without loss of generality as this unique initialization transaction can create as many
states as required throughout the lifetime of the blockchain.

Fig. 2 shows an illustrative example of a TDAG modeling a Bitcoin execution with four transac-
tions. First, t0(w0) represents the creation of the Bitcoin blockchain by minting all available bitcoins
into a Bitcoin address containing unmined bitcoins (s0). Here, w0 represents the Bitcoin creation
rules. Second, t1(w1) represents a transaction that transfers some unmined bitcoins (s0) to the Bit-
coin address of a user u that successfully mined the first Bitcoin block (s2); t1(w1) saves the re-
maining unmined bitcoins (s1) for subsequent block creations. Here, w1 represents proof-of-work in
the block mined by u. Third, t2(w2) represents a transaction where u transfers some of her bitcoins
(s2) to another Bitcoin address (s4). The associated transaction fee is modeled as another address
(s3). Here, w2 represents the authorization of the transaction in the form of a digital signature by u.
Finally, t3(w3) represents a transaction that rewards a user for creating a Bitcoin block containing
t2(w2). In that sense, t3(w3) is similar to t1(w1), with the difference that t3(w3) also captures the fact
that the user also receives the fees associated to t2(w2).

We note that this example does not contain any observing edge. This results from the fact that
read-only operations are not supported in Bitcoin.

2.2. Conflicts and validity
A central goal of blockchain systems is to prevent conflicts among transactions and to ensure validity
for all transactions, as a result of a consensus process executed among the participating entities. The
TDAG model permits to have a closer look at the semantics of conflicts and validity; modeling
consensus is outside the scope of this work.

Intuitively, a conflict in a blockchain underlying a cryptocurrency such as Bitcoin occurs in an
attempt to “double-spend” money. According to the example describing Bitcoin from before (and
expanded in Section 3), assume that a state s in a TDAG corresponds to bitcoins held by a particular
Bitcoin address. Two transactions that double-spend such bitcoins map to two transactions that both



consume s. But every state in a TDAG can be consumed at most once, hence, the TDAG model
already prevents this form of conflict.

In blockchains for arbitrary smart contracts, a conflict corresponds to a situation where generic
validation rules for transactions are violated. Such rules may refer to coins (such as an amount
of Ether in Ethereum) or to other assets modeled in the blockchain. The TDAG model for these
blockchains also imposes that every state can be consumed at most once.

When one considers an arbitrary set of transactions (not arising from the same transaction graph),
such as transactions that have merely been proposed and are not executed on the blockchain yet,
then conflicts among them could exist. This is the case in a cryptocurrency like Bitcoin when a
miner searches for the next block, for example, and two transactions might be floating around in the
network that both attempt to consume the same state s. Similarly, conflicting transactions exist in
smart-contract platforms during the process of reaching consensus on a valid blockchain execution.

We now consider a set of transactions (in the form of a graph) and define what it means for them
to be conflict-free.

Definition 2.4 (Conflict-freedom). Consider a DAG T = (ST ∪̇WT ,ET ) with states ST , wit-
nesses WT , producing edges EP ⊆ ET and consuming edges EC ⊆ ET that contains a transaction
for every witness w ∈ WT . We say that T has no conflicts if every state has at most one producing
edge and one consuming edge, i.e., ∀s ∈ ST : |!EPs|≤ 1∧ |sEC!|≤ 1.

A conflict-free set of transactions can be added to a TDAG. To ensure that its addition does not
cause any conflicts with the TDAG only simple and local conditions have to be verified.

Definition 2.5 (Adding transactions to a TDAG). Consider a TDAG G = (S ∪̇ W ,E) and a
DAG T = (ST ∪̇WT ,ET ) containing a conflict-free set of transactions such that

(1) No witness of T is in G , i.e., W ∩WT = /0;
(2) Every input state of T is an unconsumed output state of G , i.e., {s ∈ ST : |!EPs| = 0} ⊆ {s ∈

S : |sEC ! |= 0};
(3) The output states of T do not exist in G , i.e., {s ∈ ST : |sEC ! |= 0}∩S = /0.

Then the result of adding T to G is the DAG Ḡ = (S̄ ∪̇ W̄ , Ē), with S̄ = S ∪ST , W̄ = W ∪̇WT ,
and Ē = E ∪̇ET .

THEOREM 2.6. When a conflict-free set of transactions T = (ST ∪̇WT ,ET ) is added to a TDAG
G = (S ∪̇W ,E), then the resulting graph Ḡ = (S̄ ∪̇W̄ , Ē) is also a TDAG.

PROOF. Here we show that Ḡ satisfies the conditions to be a TDAG.

(1) The genesis state must not have producing or observing edges and it must have a single con-
suming edge. This condition is fulfilled since G is a TDAG and T does not contain the genesis
state if it is already consumed in G .

(2) Every state, other than genesis, must have a single producing edge. This condition is fulfilled
in G and in T by definition. Now, the addition of t to G does not create new edges. Therefore,
this condition holds also in Ḡ .

(3) Every state, other than the genesis, can have multiple successors, but at most one among them
is connected with a consuming edge. It is easy to see that Ḡ fulfills this condition following an
argument similar as before.

(4) The graph must be weakly connected. Note that by the definition of TDAG, each vertex v ∈
S ∪̇ W is weakly connected to every unconsumed state in G . Moreover, every vertex v′ in
ST ∪̇WT is weakly connected to at least one input state of T . Now, as the set of input states in
T is a subset of the unconsumed states in G , it follows that Ḡ is weakly connected.

(5) The graph must not have cycles. According to the assumptions on T and because G is a DAG,
and through the way in which Ḡ is constructed, it is easy to see that Ḡ has no cycles.



We now introduce the notion of validity for transactions in a TDAG, which models the fact that
on a blockchain only “valid” transactions are executed. As an important design choice of the model,
the validity of a transaction in a TDAG must be decidable locally, that is, from the transaction alone,
considering only its input states, the witness, and the output states. To capture this, we assume that
the blockchain context defines a boolean validation predicate P(·) on the space of all transactions.

Definition 2.7 (Validity). Let t be a transaction in a TDAG G . Then t is valid whenever P(t) =
TRUE. Furthermore, G is a valid transaction graph if all transactions in G are valid.

Combined with the locally checkable conditions for adding transactions to a TDAG, the fact
that the validity of a transaction is locally decidable defines, in an influential way, how many
blockchain systems work during consensus, validation, and execution of new transactions. The only
steps needed for validation are to ensure the validity predicate of a candidate transaction plus the
checks according to Definition 2.5 involving the states to which the transaction refers.

Transaction validation also relies on the property that all states in the TDAG are distinct. In a
typical blockchain, the validation function relies on a cryptographic hash of the states to which
it refers; this directly ensures uniqueness. For example, consider an execution of a smart contract
that holds state on the blockchain in the form of a local variable var. The contract may update var
multiple times, and it may write the same value to var more than once. To make the resulting states
in the TDAG different, the model will usually include a version number in the state that makes each
assignment unique.

At this point, let us review our design choice of a single INIT transaction. Using a single transac-
tion to create all assets represented by the states enables to locally check the validity of the initial-
ization of the blockchain as well as preserve the locally checkable conditions for further transactions
consuming those states.

2.3. Composition of transaction graphs
In Bitcoin (and many other cryptocurrencies), all the miners participate in the consensus protocol
to decide about the validity of every single transaction. The permissionless nature of this consensus
mechanism heavily limits the transaction throughput. One alternative to overcome this scalability
issue is called sharding and consists in organizing disjoint sets of miners, letting each of these sets
reach consensus about a subset of the transactions. The composition of those subsets of transactions
is required then to shape the blockchain.

In the following, we describe the composition of transaction graphs, which states the conditions
under which two TDAGs can be merged into a single one. One may then reason about their con-
sistency and validity in a unified manner. Composition of transaction graphs can be used to model
the goal of protocols for cross-chain transactions, namely that the combined state of both chains
achieves the expected consistency properties.

Definition 2.8 (TDAG composition). Consider two TDAGs G := (S ∪̇W ,E) and G ′ := (S ′ ∪̇
W ′,E ′). Assume that t(w) denotes the INIT transaction in G and t ′(w′) denotes the INIT transaction
in G ′. Further assume that !t(!w) denotes a INIT transaction where !w = (w,w′) and the output states
are the union of output states from t(w) and t ′(w′). Then, the composition of G and G ′ is the TDAG
!G = TG \{t(w)}∪TG ′ \{t ′(w′)}∪!t(!w).

THEOREM 2.9 (COMPOSITION OF TWO TDAGS INTO ONE TDAG). The composition of two
TDAGs G and G ′ results in a graph !G , which is also a TDAG.

PROOF. Here we show that !G satisfies the conditions to be a TDAG.

(1) The genesis state must not have producing or observing edges and it must have a single con-
suming edge. This condition is fulfilled by our definition of the INIT transaction !t(!w).



(2) Every state, other than genesis, must have a single producing edge. As G and G ′ are two TDAGs,
it is easy to see that each state in TG \ {t(w)} and TG ′ \ {t ′(w′)} has a single producing edge.
Moreover, by definition of INIT transaction, each output state in !t(!w) has a single producing
edge.

(3) Every state, other than the genesis, can have multiple successors, but at most one among them is
connected with a consuming edge. It is easy to see that !G fulfills this condition along the lines
of previous argument.

(4) The graph must be weakly connected. TG \ {t(w)} and TG ′ \ {t ′(w′)} are connected by defini-
tion, as G and G ′ are two TDAGs. Moreover, the definition of the INIT transaction!t(!w) ensures
that any vertex in TG \{t(w)} is connected to any vertex in TG ′ \{t ′(w′)} through !w.

(5) The graph must not have cycles. TG \{t(w)} and TG ′ \{t ′(w′)} are acyclic by definition, as G
and G ′ are two TDAGs. Moreover, the addition of !t(!w) clearly does not introduce any cycle.

3. APPLICATIONS
In this section, we describe how executions of different blockchain systems are modeled by trans-
action graphs. We cover three prominent blockchains: Bitcoin, Ethereum, and Hyperledger Fabric
(HLF). They differ in how they store assets in their state. Bitcoin, for example, does not have state
“variables” but maintains an asset only in the context of the transaction that created it. Ethereum, on
the other hand, uses variables and accounts for its state. The data model in HLF is a key-value store
(KVS), which can be mapped to local database on each node. Due to lack of space, this section only
gives a short overview and more details appear in the full version [Cachin et al. 2017].

Throughout this section, we denote by y←H(x) a cryptographic, collision-free hash function that
takes as input a bit-string x ∈ {0,1}∗ of arbitrary length and returns a fixed-length string y ∈ {0,1}l .

3.1. Bitcoin
Since Bitcoin (bitcoin.org) is the prototype of all blockchain systems, there are many publicly avail-
able descriptions [Nakamoto 2008; Antonopoulos 2014] and we keep the background short. Like-
wise, the discussion here applies to all alt-coins patterned after Bitcoin.

Bitcoin combines transaction validation, coin mining, and agreement on the ledger with the
“Nakamoto protocol” that uses proof-of-work and ensures consensus. A block in Bitcoin can hold
two types of transactions:

— A coinbase transaction that transfers yet unmined bitcoins to a Bitcoin address as chosen by the
miner of the corresponding block, as a reward for creating the block. This transaction is valid
if (i) it transfers a number of bitcoins according to the height of the block to a Bitcoin address,
and (ii) is accompanied by the solution to the proof-of-work puzzle for successful mining of the
block.

— A regular transaction transfers bitcoins from a set of Bitcoin (input) addresses to another set
of Bitcoin (output) addresses. It also incurs a fee, defined as the difference between the bitcoin
amounts in the input and output, which is assigned to the miner of the block in which the trans-
action appears. A regular transaction is valid if it includes a confirmation for each input for the
amount and output and if it does not create new bitcoins.

Bitcoin value exists in the blockchain in the form of unspent transaction output, often abbreviated
UTXO, which has been assigned to an address, representing a digital-signature public key. This
value is controlled by the holder of the corresponding private key. It can be spent and transferred to
another address by signing a transaction with the private key.

In the TDAG modeling Bitcoin, we let every state be a tuple of the form

(addr,val,hash,height) .



where addr denotes an address, val denotes the amount of bitcoins held in this state, hash is the cryp-
tographic hash of other states (whose UTXO is transferred by the transaction), and height denotes
the index of the block in which the state was produced.

In contrast to the Bitcoin code, we model transaction fees and unmined bitcoins as held by or
associated to an (imaginary) address. This allows a coherent model for the TDAG. Thus, the state
resulting from the special INIT transaction is fixed to (ADDR0,21M,H( /0),0), holding all 21M bit-
coins that ever exist.

The form of a witness depends on the transaction type: The witness for a coinbase transaction
is the solution for the proof-of-work to assign the bitcoins to the address designated by the miner.
For a regular transaction, the witness consists of a set of confirmations for the transfer of bitcoin, in
the form of a digital signature for each UTXO, over the input and output addresses of the transfer.
Finally, the INIT transaction does not require any witness.

The TDAG for Bitcoin contains producing and consuming edges but no observing edges. For a
coinbase transaction, the input states are the unconsumed state of unmined bitcoins and the fee states
for the transactions included in the mined block. One producing edge leads to a state for collecting
the fees and the mining reward, another one to a state containing the remaining unmined bitcoins.
Its witness is the mining proof. For a regular transaction, the input states are the unconsumed states
representing the transaction inputs and the produced output states correspond to the transactions
output addresses. The witness holds a set of confirmations (digital signatures), confirming for each
input state the transfer of some bitcoins to the corresponding output addresses.

The transaction predicate incorporates the validation rules of Bitcoin, as expressed in the states,
witnesses, and transactions of the TDAG.

With these definitions, one can then show the intuitive result that except with negligible probabil-
ity, every (legal) execution of Bitcoin, considering only bitcoin transactions that are “deep enough”
in the blockchain (e.g., six blocks deep) [Garay et al. 2015] gives rise to a TDAG constructed like
this. The formal analysis of this result exploits that the DAG formed by the hash-function applica-
tions among states has no cycles, and therefore satisfies the properties of a TDAG.

3.2. Ethereum
Ethereum [Ethereum 2017] is the most prominent public blockchain and cryptocurrency supporting
generic smart contracts today (ethereum.org). In Ethereum there exist two types of accounts, called
externally owned accounts and contract accounts. Externally owned accounts largely resemble the
accounts of other cryptocurrencies such as Bitcoin, in which users maintain their currency balance
in Ether, owned by them. But the main innovation of Ethereum lies in contract accounts, which
represent a smart contract (an arbitrary piece of code in the platform-specific language) and that ex-
ecutes a set of instructions upon receiving suitable input. A contract account also holds and controls
its own Ether balance and specifies a gas price, which determines the cost of executing its code for
anyone that invokes the contract.

Ethereum supports several types of transactions. First, a transaction in Ethereum can be used to
transfer Ether between two externally owned accounts. This type of transaction is like the exchange
of coins in other cryptocurrencies. Second, a transaction can be used to create a contract with the
code of the contract and an externally owned account as inputs. It outputs a contract account with
the information required to initialize the implemented code (e.g., the inputs for the init function).
Finally, a transaction can be used to invoke an existing contract on the blockchain.

An Ethereum transaction includes as input the sender’s address (an externally owned account), a
recipient address (another account), a transaction value to be transferred from the sender’s address
to the recipient, some arguments with parameters for the contract, and a gas limit, specifying a
maximum price for the execution. A contract may also call functions of other contracts; however,
this will not give rise to new transactions, as these calls take place in the context of the original
transaction.



To model an Ethereum execution as a TDAG, we let each state consist of a tuple

(addr,account-type,code, local-state,gas-price,val) .

Here, addr denotes the account address that produced the state, account-type determines whether
this is a state of an external account or a contract account, code is a hash of the smart contract’s
code, local-state denotes collectively all variables held by the contract, gas-price is the price for
executing transactions with this contract, and val is the Ether balance held by the account after the
execution that produced the state. If account-type specifies an externally owned account, then the
smart contract is the fixed logic to validate payments from such accounts.

There is also a genesis state that models the creation of an Ethereum blockchain. In contrast to
Bitcoin, there is currently no bound on the amount of Ether that will exist in the public Ethereum
blockchain; the creation of new Ether is therefore subsumed into the mining operation and its vali-
dation.

A transaction in the TDAG is determined by the witness. It corresponds to an invocation of a
smart contract and contains a gas limit and regular input arguments that validate the transaction. For
instance, these arguments must contain a digital signature valid under the public key associated to
the invoking external account that runs the transaction.

The transaction contains the state of the invoking account and the state of the contract as input
states, with consuming edges to the witness. It also produces two states, an updated state of the
invoking account and an updated state of the contract, as resulting from running the contract with
the given gas limit and input arguments. If the contract calls functions of other contracts and they
modify their state, then the states representing these contracts are also part of the transaction in the
TDAG (as input states and output states). The validation predicate simply executes the code.

For mining new Ether, running transactions, and collecting the corresponding fees, similar states
and validation logic as in the TDAG model of Bitcoin are added. Given these notions one can show
that every (legal) execution of Ethereum, considering as in Bitcoin only those transactions that are
deep enough in the blockchain, produces a valid TDAG.

3.3. Hyperledger Fabric
Hyperledger Fabric (www.hyperledger.org/projects/fabric), or HLF for short, is a permissioned
blockchain framework, designed to support modular implementations of different components, in-
cluding its consensus protocol, membership provider, and cryptography library [Cachin 2016]. The
nodes executing the HLF blockchain are called peers.

An instance of HLF may contain multiple channels that may run on different sets of peers, where
each channel operates like a blockchain system independent of the others, apart from using some of
the same code infrastructure, ordering protocol, and other components. We therefore consider only
one channel here, modeling one blockchain.

On a channel, a configuration transaction (configtx) sets the initial values used for transaction
processing, such as the credentials of the peers or organizations controlling the channel, the im-
plementation of its ordering service, and so on. Once a channel has been prepared like this, it is
ready to execute operations on its peers. Transactions in HLF are executed by smart contracts called
chaincode.

Chaincode is first installed on the peer and may later be upgraded; it must be instantiated for a
specific channel before it can process transactions. Once instantiated on the channel, a chaincode
supports two types of transactions: init and invoke. An init transaction is executed once after the
chaincode has been installed or upgraded; it specifies an endorsement policy that determines how
any subsequent transaction of this chaincode should be authorized. A chaincode determines through
the endorsement policy on which peers it executes: whether all peers in the channel execute it, or
only some, and which peers or which set of peers are sufficient to authorize the execution of the
transaction.

An invoke transaction is used to execute a computation that may read and modify the state of the
chaincode, which is a set of key-value pairs. The operations to access the state are GETSTATE(k)→



v (given a key k, return the last value v written to it) and PUTSTATE(k,v) (write the value v to storage
under the key k).

The processing of a transaction on HLF proceeds like this [Androulaki et al. 2016]:

(1) A client creates and signs a transaction for a particular chaincode and sends it to the respective
endorsing peers.

(2) The endorsing peers simulate the transaction on their current current copy of the key-value store
(KVS), verifying that the client is authorized to execute it. If successful, each endorsing peer
returns the result of the execution to the client. This is also called an endorsement. It comes in
the form of a signed readset and writeset (with the key-value pairs accessed during simulation,
including a version for every value in the readset, determined by the logical time when this value
was written). The endorsement serves as a static representation of the chaincode execution.

(3) When the client has assembled enough endorsements that produce the same KVS changes and
that satisfy the endorsement policy, it combines them to a transaction proposal. Then the client
broadcasts this transaction proposal to the ordering service, which simply orders transactions
without considering their semantics. Currently an ordering service based on Apache Kafka
(kafka.apache.org) running in a cluster is supported and an ordering service using BFT con-
sensus is under development [Vukolić 2017; Cachin and Vukolić 2017].

(4) The ordering service disseminates an ordered stream of transactions (grouped into blocks) to
the peers on the channel. Each peer on its own then validates each transaction, by verifying
that the endorsement policy is satisfied and that there were no changes to the key-value pairs
contained in the readset (since transaction simulation).

(5) If successful, the peer appends the block to the blockchain (of the channel) and performs the
updates from the writeset to its local copy of the KVS. This assigns a version to the modified
key-value pairs. Since the validation is deterministic, the states and versions are the same for all
correct peers.

In the TDAG for HLF, the states correspond to the entries in the KVS. Every state is a tuple
containing at least

(key,version) .

It is assumed that an init transaction implicitly initializes every key used by the chaincode later with
a default value (−). The init transaction is always valid.

Furthermore, every invoke transaction that reads or writes a set of keys K , contains an ob-
serving edge for every k ∈ K accessed by an operation GETSTATE(k) but not by an oper-
ation PUTSTATE(k,!), and a consuming edge for every k that is written using an operation
PUTSTATE(k,!). In other words, every key is implicitly read before it is written and, thus, a trans-
action in the TDAG modeling an HLF execution has the same number of consuming edges as the
number of producing edges.

A witness in the TDAG corresponds to a valid endorsement, in the form of signatures from the
endorsers issued on the same readset/writeset pair from the transaction proposal. The validation
predicate P(·) contains the steps that each peer takes to validate a transaction coming from the
ordering service, with respect to its local KVS. Notice that this validation only accesses the versions
in the readset, but no other state entry in the KVS. Since these states are also contained in the
transaction in the TDAG, the evaluation of P(·) in the graph is local.

Given that the ordering service of HLF outputs the same stream of blocks with transactions to
every connected peer, it is easy to verify that the graph resulting from any execution of HLF is
a TDAG.

4. CONCLUSION
Blockchains and distributed ledger platforms are of great interest for the financial industry today,
due to their role as trustless intermediaries gained from their resilience to attacks and subversion.
For gaining confidence in a new technology, it is paramount to study its security with formal models.



This work has proposed transaction graphs or TDAGs as a discrete model for the semantics of
the interactions in a blockchain system. In contrast to existing event-based models for generic dis-
tributed and concurrent systems, it explicitly takes into account the validation of transactions, which
is an important aspect of blockchains. For instance, the TDAG model allows to model assets and
their transfer among different entities. It also facilitates comparisons among different technologies
available today.

We envision that richer semantics can be expressed by refining the TDAG model. For instance,
one may argue about further invariants of the blockchain system as properties of the TDAG, sim-
ilar to modeling Bitcoin’s fixed coin supply. One might also use a TDAG to formally model the
provenance for generic assets that are handled by smart contracts, building on the paths through
which the asset was transferred in the TDAG. One could also leverage a TDAG to formally describe
the guarantees provided by a blockchain equipped with a pruning mechanism, reasoning about the
remaining states in the TDAG after pruning. Finally, we additionally foresee that the TDAG can be
extended to model invariants required for payment channels, for instance payment channel transac-
tions should be free of conflicts with those included in the TDAG.
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A. TRANSACTION GRAPH FOR BITCOIN
We start with the description of an execution of the Bitcoin system as represented by the corre-
sponding blockchain. A Bitcoin blockchain is composed of blocks, where each block is created as
a result of successfully executing the Bitcoin mining process [Nakamoto 2008]. The miner of such
block (i.e., user showing a valid proof of successful mining) chooses a set of regular transactions to
be added in the block along with a single coinbase transaction. There exists a special block, denoted
as genesis block, that represents the initialization of the blockchain.

A coinbase transaction transfers unmined bitcoins to a (set of) Bitcoin address, chosen by the cor-
responding miner, as a reward for creating the block. A coinbase transaction is valid if it transfers
only the number of bitcoins set as reward according to the height of the mined blocked. A regular
transaction transfers bitcoins from a set of Bitcoin addresses (i.e., input addresses) to another set of
Bitcoin addresses (i.e., output addresses). A regular transaction is valid if: (i) it includes a confirma-
tion for each input address; (ii) it does not create new bitcoins. Finally, a regular transaction has an
associated fee (i.e., between the bitcoins held at input and output addresses).

Definition A.1 (Bitcoin execution). A Bitcoin execution LBTC is a set of blocks B :=
{Bg,B1, . . . ,Bn}, where Bg denotes the genesis block and contains a single initialization transaction.
Each other block Bi := (MP, {CBTX, RTX1, . . . ,RTXn}) is a tuple composed of a proof of successful
mining MP, and a set of transactions containing a coinbase transaction CBTX and regular transac-
tions RTXi. A CBTX contains a Bitcoin address ADDR. A RTX is a tuple (ADDRin, F , ADDRout),
where ADDRin and ADDRout are two sets of Bitcoin addresses and F is a set of confirmations CF.

We now describe our modeling of a given execution of Bitcoin as a TDAG. A state represents a
Bitcoin address that holds a group of bitcoins, a transaction fee or the yet unmined bitcoins. We note
that fees and unmined Bitcoins are not associated to an address in the real Bitcoin, but we model
them as held by an address to have a coherent transaction graph model. The genesis state repre-
sents a Bitcoin address holding the 21M bitcoins ever existing in the Bitcoin system. Each witness
represents either a proof of successful mining for a block or the (set of) confirmations required in
a regular transaction. Finally, we consider two types of edges: producing and consuming edges. A
producing edge links unconsumed addresses for unmined bitcoins and transaction fees to the mining
proof for the corresponding coinbase transaction; or an input address to the corresponding confir-
mation in a regular transaction. A consuming edge links a mining proof to the Bitcoin addresses
getting the reward, or a set of confirmations to the corresponding output addresses receiving (part
of) the transferred bitcoins.

Definition A.2 (Transaction graph for Bitcoin). We model an execution of Bitcoin system as a
graph GBTC := (SBTC ∪̇WBTC,EBTC) defined as follows:

State. Each state s ∈ SBTC is defined as a tuple (addr, val, hash, height), where addr denotes
a Bitcoin address, val denotes the amount of Bitcoins held at addr, hash denotes the result of



applying H to a set of vertices S ′
BTC ∪̇{w} with S ′

BTC ⊂ SBTC, and height denotes a block index.
The genesis state sg is defined as the fixed tuple (ADDR0,21M,H( /0),0).
Witness. Each witness w ∈ WBTC is defined by a tuple (txtype, F ), where txtype denotes the
type of the transaction and determines the content of F . In particular, (TINITX, /0) is the witness
for the initialization transaction; (TCBTX, MP) denotes a witness for a coinbase transaction and
(TRTX, {CFi}) denotes the witness for a regular transaction.
Edge. Each edge e ∈ E is defined either as consuming edge or producing edge.

The transaction graph presented here determines the modeling of the possible transactions in a
Bitcoin execution. The next definition maps transaction in a Bitcoin execution to transaction types
supported in a TDAG.

Definition A.3 (Transaction types). A coinbase transaction is modeled as a SIMO transaction.
A regular transaction is modeled as a SISO, SIMO, MISO or MIMO transaction depending on
|ADDRin| and |ADDRout|. For instance, SISO models a regular transaction where |ADDRin| = 1∧
|ADDRout| = 1. The rest are derived accordingly. Finally, we define the initialization transaction
included in the genesis block as an INIT transaction of the form t := ({sg,s,w},{(sg,w),(w,s)}),
where (sg,w) ∈ EC, (w,s) ∈ EP and s := (ADDRm,21M,H({sg,w}),0), where ADDRm denotes a
Bitcoin address that contains unmined bitcoins. sg and w are as defined in Theorem A.2.

Finally, we complete our description of the Bitcoin context with the corresponding transaction
predicate P. For that, we use VerifyContract (ADDR, CF) as a function that on input a Bitcoin
address ADDR and a confirmation CF, returns TRUE if CF encodes a valid confirmation to spend
the bitcoins held at ADDR. Otherwise, it returns FALSE. Additionally, we use VerifyWork (MP) as
a function that on input a mining proof MP, returns TRUE if MP is a valid proof-of-work for the
corresponding block, or FALSE otherwise. We thereby abstract away the implementation details for
validation of Bitcoin scripts and mining proofs.

Definition A.4 (Transaction predicate in Bitcoin). Consider a transaction t := (S ∪̇ {w},E).
Then, P(t) returns TRUE if the following conditions hold and FALSE otherwise.

(1) If t is a regular transaction (w.txtype = TRTX), the witness holds a valid confirmation for each
input state i.e., ∀s ∈ !Ew,∃CF ∈ w.F : VerifyContract(s.addr, CF).

(2) If t is a coinbase transaction (w.txtype = TCBTX), the witness contains a valid mining proof, i.e.,
w.F := {MP}∧VerifyWork(MP).

(3) Each output state represents a positive number of bitcoins, i.e., ∀s ∈ wE! : s.val > 0.
(4) The sum of bitcoins held at the input states must be equal to the sum of bitcoins held at the

output states, i.e., ∑s∈!Ew s.val = ∑s′∈wE! s′.val
(5) Each output state contains the evaluation of the hash function over input states and the witness,

i.e., ∀s ∈ wE! : s.hash = H(!Ew ∪̇{w}).

A.1. Model analysis
We star this section by analyzing the definition of transaction graph presented in the previous sec-
tion. We start by showing that it is a TDAG. Here, we consider legal, a Bitcoin execution that
contains only transactions that are “deep enough” in the blockchain (e.g., six blocks deep). We
thereby enable the study of any Bitcoin execution in terms of the properties of a TDAG such as
conflict-freedom or validity.

THEOREM A.5. Assume H is a collision-resistant hash function [Goldwasser and Bellare ] and
assume that LBTC is a legal Bitcoin execution. Then, the graph GBTC resulting from modeling LBTC

is a TDAG.

PROOF. Here, we show that GBTC = (SBTC ∪̇WBTC,EBTC) fulfills the conditions to be a TDAG.



(1) The genesis state must not have producing or observing edges and it must have a single produc-
ing edge. Our designed INIT transaction ensures this.

(2) Every state, other than the genesis, must have a single producing edge. Assume by contradiction
that it is not fulfilled. Then, there is a state s ∈ SBTC with at least two producing edges and
that implies that there exists two different sets V := S ∪̇ {w} and V ′ := S ′ ∪̇ {w′} such that
H(V ) = H(V ′). However, V and V ′ contradict the assumption that H is collision resistant.

(3) Every state other than the genesis can have multiple successors, but at most one among them
is connected with a consuming edge. Each Bitcoin address is consumed only once in a legal
Bitcoin execution. Therefore, this condition is fulfilled.

(4) The graph must be weakly connected. Each new transaction consumes a previously unconsumed
state in the graph , i.e., either a unspent Bitcoin address or mines yet unmined bitcoins and
consumes unclaimed fees. Therefore, the overall graph is weakly connected.

(5) The graph must not have cycles. Assume by contradiction that there is a cycle in GBTC. This,
however, implies that there are two different transactions t and t ′ that produce the same state.
However, as we have seen before, this contradicts the fact that H is collision resistant.

Remember from Theorem 2.7 that a TDAG is valid if each transaction individually is valid ac-
cording to a transaction predicate P. Next, we show that validating Bitcoin transactions individually
in our model, suffices to safely consider that unconsumed states represent all bitcoins in the system.

Definition A.6 (Unspent bitcoins). Consider GBTC a TDAG modeling a Bitcoin execution.
Then, the unspent bitcoins in GBTC are the sum of bitcoins held at unconsumed states of GBTC.

THEOREM A.7 (UNSPENT BITCOINS ARE ALL BITCOINS IN THE SYSTEM). Consider GBTC

a valid TDAG that models a Bitcoin execution. Then, the amount of unspent bitcoins in GBTC is
equal to all bitcoins ever existing in the system. More formally, let S ′ be the set of unconsumed
states in GBTC, then ∑s∈S s.val = sg.val.

PROOF. Assume by contradiction that Theorem A.7 does not hold. Then, there must exist a trans-
action t := (S ∪̇ {w},E) in TGBTC

such that ∑s∈!Ew s.val ∕= ∑s′∈wE! s′.val. This, however, clearly
implies that P(t) returns FALSE, which contradicts the assumption that GBTC is a valid TDAG.

A.2. Modeling an example of bitcoin execution
Here, we describe our modeling for an illustrative example of Bitcoin execution. We assume for
simplicity that the block reward is fixed to a value of 50 bitcoins as it was the first reward set in
the Bitcoin system. Additionally, we assume that the transaction fee is fixed to 1 bitcoin. We stress,
however, that the TDAG model is expressive enough to relax these assumptions.

We focus in the illustrative example depicted in Fig. 3. In particular, Fig. 3a shows a pos-
sible Bitcoin execution LBTC := {Bg,B1,B2}, where Bg := ( /0,{t0}),B1 := (MP,{t1}) and B2 :=
(MP′,{t2, t3, t4}). We note that this example is similar to that in Fig. 2 and due to lack of space we
do not describe it here again. However, we remark that it is expanded here with an extra MIMO
transaction (i.e., t3(w3)) to show how we model transactions that involve multiple payers and multi-
ple payees. Instead, we focus on the description of GBTC := (S ∪̇W ,EP ∪̇EC), a transaction graph
modeling the aforementioned Bitcoin execution as depicted in Fig. 3b.

— t0 := ({sg,s0,w},{(sg,w),(w,s0)}), where (sg,w) ∈ EC and (w,s0) ∈ EP. This represents the
initialization transaction where sg := (ADDR0,21M, H( /0),0), w0 := (TINITX, /0) and s0 :=
(ADDRm,21M,H({sg,w0}),0).

— t1 :=({s0,s1,s2,w1},{(s0,w1),(w1,s1),(w1,s2)}), where (s0,w1)∈EC and {(w1,s1),(w1,s2)}⊆
EP. A SIMO transaction that issues bitcoins to Alice after she has successfully mined a block.
In a bit more detail, w1 := (TCBTX,MP), s1 := (ADDRm,(21M − 50),H({s0,w1}),1) and s2 :=
(ADDRAlice, 50, H({s0,w1}),1), where ADDRAlice denotes a Bitcoin address owned by Alice. We



(a) Example of Bitcoin execution LBTC := {Bg,B1,B2}. Only
involved blocks and graphical description of transactions t1 –
t4 have been shown. Here, t0 represents the initialization trans-
action.
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(b) Example of a GBTC instance.

Fig. 3: Illustrative example of our modeling of an execution of the Bitcoin system.

follow this notion in the rest of the example for the addresses owned by the example users. s0 is
defined as in t0.

— t2 := ({s2,s3,s4,s5,w2},{(s2,w2),(w2,s3),(w2,s4),(w2,s5)}), where (s2,w2) ∈ EC
and {(w2,s3),(w2,s4),(w2,s5)} ⊆ EP. A SIMO transaction that pays 2 bitcoins
to Bob and the remaining bitcoins are sent back to Alice. In a bit more detail,
w2 := (TRTX,{CFAlice}), s3 := (ADDR′

m,1,H({s2,w2}),2), s4 := (ADDRBob,2, H({s2,w2}),2)
and s5 := (ADDR′

Alice,47,H({s2,w2}),2). The rest of states are defined as in previous transac-
tions.

— t3 := ({s4,s5,s6,s7,s8,s9,w3},{(s4,w3),(s5,w3),(w3,s6),(w3,s7),(w3,s8), (w3,s9)}),
where {(s4,w3),(s5,w3)} ⊆ EC and {(w3,s6),(w3,s7),(w3,s8), (w3,s9)} ⊆ EP. A
MIMO transaction that pays 3 bitcoins to Charles, jointly by Alice and Bob. In a
bit more detail, w3 := (TRTX,{CF′Alice,CFBob}), s6 := (ADDR′′

m,1,H({s4,s5,w3}),2),
s7 := (ADDR′

Bob,1,H({s4,s5,w3}),2), s8 := (ADDR′′
Alice,44,H({s4,s5,w3}),2), and

s9 := (ADDRCharles,3,H({s4,s5,w3}), 2). The rest of states are defined as previous trans-
actions.

— t4 := ({s1,s3,s6,s10,s11,w4},{(s1,w4),(s3,w4),(s6,w4),(w4,s10),(w4,s11}), where
{(s1,w4),(s3,w4),(s6,w4)} ∈ EC and {(w4,s10),(w4,s11} ⊆ EP. A MIMO transaction that
issues bitcoins to Diana after she has successfully mined a block. Additionally, Diana claims
the transaction fees for transactions t2 and t3. In a bit more detail, w4 := (TCBTX,MP),
s10 := (ADDR′′′

m , (21M−100),H({s0,w4}),2), and s11 := (ADDRDiana,52,H({s0,w4}),2).

B. TRANSACTION GRAPH FOR HYPERLEDGER FABRIC
In this section, we study the Hyperledger Fabric (HLF) [Cachin 2016] blockchain-based system.
We start by the description of an execution of HLF. An execution of HLF is represented as a set
of blockchains, one per channel. However, as each single blockchain evolves independently from



each other, we restrict our description here to a single blockchain. This description, however, can be
easily extended to model a HLF execution with multiple channels.

A blockchain is composed of blocks. We denote the first block as genesis block and each sub-
sequent block is created by the ordering service. Such ordering service chooses the sorted set of
transactions to be included in each block. HLF supports two types of transactions: Init and Invoke.
An init transaction is included in the genesis block and it is used to initialize every key used in
the blockchain to a default value − and includes an endorsement policy, that determines how any
subsequent transaction should be authorized. We consider that an initialization transaction is always
valid.

An invoke transaction is used to carry out updates in a set of key-value pairs for the local current
key-value store (KVS) through two operations: (i) GETSTATE(k)→ v, that given a key k provides
the most current value v associated to it; and (ii) PUTSTATE(k,v), that updates value associated to
a given key k to the newly provided value v. An invoke transaction is valid if it contains enough
endorsements from the set of endorsers specified in the endorsement policy.

Definition B.1 (HLF execution). A HLF execution LHLF is a set of blocks B := {Bg,B1, . . . ,Bn},
where Bg denotes the genesis block that contains a single init transaction, denoted by INITX.
Each block Bi := {INVTX1, . . . , INVTXn} is a set of invoke transactions INVTXi. An INITX
contains a single endorsement policy EP. Each transaction INVTXi is defined as a tuple (F ,
U), where F denotes the set of endorsements ({END1, . . . ,ENDn}), and U denotes the set of
{GETSTATE(!),PUTSTATE(!,!)} operations to update key-value pairs.

We continue by describing the modeling of a HLF execution. Informally, each state in our model
represents a key-value pair. Each witness represents the set of endorsements required for a transac-
tion to be valid. Finally, here we consider three type of edges: observing, consuming and producing
edges. An observing edge links a key k to the endorsement specified in a transaction that reads k but
does not modify it (e.g., an invoke transaction that contains only a GETSTATE(k) operation). If the
key k is modified (e.g., an invoke transaction that contains PUTSTATE(k,!) operation), a consum-
ing edge links then the key k with the endorsements for such transaction. Finally, a producing edge
links the endorsements to a key k a transaction has modified it (e.g., by means of a PUTSTATE(k,!)
operation).

Definition B.2 (Model for HLF execution). We model a HLF execution LHLF as a graph
GHLF := (SHLF ∪̇WHLF,EHLF) defined as follows:

States:. Each state s ∈ SHLF is defined as a tuple (key, version), where key denotes the key part
of a key-value pair and version denotes the current version number of the key-value pair. The
genesis state is defined as sg := (params,0) and denotes a special key-value pair that holds the
configuration parameters for a channel as indicated in channel initialization.
Witness:. Each witness w ∈ WHLF is defined as a tuple (txtype, F ), where txtype set to TINITX
indicates an init transaction and set to TINVTX indicates an invoke transaction. F denotes an
endorsement policy EP if txtype = TINITX or a set of endorsements {ENDi} if txtype = TINVTX.
For simplicity, we assume that an endorsement END also contains the corresponding set of
operations GETSTATE(!) and PUTSTATE(!,!).
Edges:. Each edge e ∈ EHLF is defined as either observing, consuming or producing edge.

Definition B.3 (Transaction types). An invoke transaction is modeled as a SISO, MISO or
MIMO transaction depending on the set of operations GETSTATE(!) and PUTSTATE(!,!) that
it uses. For instance, a SISO transaction models a transaction that uses a single PUTSTATE(k,!)
operation for a key k. A MISO transaction models a transaction that updates a single key k and
reads at least one additional key k′ (e.g., {GETSTATE(k),PUTSTATE(k′,v)}). Finally, a MIMO
transaction models a transaction that updates several keys and possibly reads other additional
keys (e.g., {GETSTATE(k),PUTSTATE(k′,v),PUTSTATE(k′′,v′)}). An init transaction is of type
INIT and is defined as t := ({sg,w} ∪̇ {si},{(sg,w)} ∪̇ {(w,s1), . . . ,(w,sn)}), where (sg,w) ∈ EC,



{(w,s1), . . . ,(w,sn)}⊆ EP, w := (TINITX,EP), and each si := (ki,−). The genesis state sg is defined
in Theorem B.2.

We make two observations in the definition of the transaction types. First, MISO and MIMO types
are restricted in the sense that they must have the same number of consuming and producing edges.
This is due to the fact that we model each PUTSTATE(!,!) operation as a consuming edge from the
state of the key being updated and a producing edge to the state corresponding to the updated key-
value pair. We note, however, that this is a characteristic inherent to all systems based on key-value
stores and not a particular limitation of HLF.

Second, as any system based in a key-value store, each key must exist only once. For that, we
model our initialization transaction such that all the keys used in the given HLF’s execution are
created and initialized to a fixed initial value (−).

Now, we finalize the description of our model by defining the transaction predicate for HLF.
Here, we denote by VerifyEndorsement({ENDi}) a boolean function that takes a set of endorse-
ments {ENDi} and returns TRUE if {ENDi} represents a valid set of endorsements according to
the endorsement policy EP, and FALSE otherwise. Here, we assume that EP is obtained from the
initialization transaction included in the corresponding HLF execution.

Definition B.4 (Transaction predicate in HLF). Consider a transaction t := (S ∪̇{w},EO ∪̇EP ∪̇
EC). Then, P(t) returns TRUE if the following conditions hold and FALSE otherwise.

(1) If t is an invoke transaction, the witness must contain a set of valid endorsements, i.e., w.txtype=
TINVTX ⇒ VerifyEndorsement(w.F ).

(2) If t is an invoke transaction, each output state must represent an update of a key included in
a input state. Moreover, the version number for the output state must be bigger than the ver-
sion number for the input state representing the same key, i.e., w.txtype = TINVTX ⇒ ∀s′ ∈
wEP!,∃s ∈ !ECw : s′.key = s.key∧ s′.version > s.version.

B.1. Model Analysis
In this section we analyze our model for the execution of the HLF system. We start by showing that
any legal HLF execution modeled as aforementioned results in a TDAG. Here, we consider as legal
a HLF execution that contains only blocks included in the blockchain that have been produced by
the ordering service.

THEOREM B.5. Assume that LHLF is a legal HLF execution. Then, the GHLF instance modeling
LHLF is a TDAG.

PROOF. Here, we show that GHLF fulfills all the conditions required in Theorem 2.2.

(1) The genesis state must not have any producing or observing edges and it must have a single
producing edge. This condition is ensured by our definition of initialization transaction.

(2) Every state, other than the genesis, must have a single producing edge. Assume by contradiction
that ∃s ∈ SHLF \ {sg} : |!EPs| > 1.1 This implies that there are at least two transactions t and
t ′ in GHLF that update the same key-value pair simultaneously. This, however, contradicts the
assumption that a valid execution contains only transactions sorted by an ordering service.

(3) Every state other than the genesis can have multiple successors, but at most one among them is
connected with a consuming edge. The proof for this condition holds along the same lines as
for the previous condition.

(4) The graph must be weakly connected. Each new transaction reads our updates a key represented
by an unconsumed state in the graph. Therefore, the overall graph is weakly connected.

(5) The graph must not have cycles. Assume by contradiction that there is a cycle in GHLF. This
necessarily implies that there are two transactions that produce the same state. However, as we

1We rule out the case |!EPs|= 0 because a state only exists in GHLF if it has been produced by a transaction.



argued before, this contradicts the fact that the ordering service establishes a total order among
the transactions.

As we did with the Bitcoin model, here we show that validating HLF transactions individually
suffices to reason about properties of the complete HLF execution. In particular, we show that if
GHLF is a valid TDAG, then the highest version number (i.e., most recent) for any given key is
represented in a unconsumed state of GHLF.

Definition B.6 (Most recent key-value pairs). Consider that GHLF is a TDAG modeling a HLF
execution. Then, we define the states representing the most recent key-value pairs as the set of
states with the highest version number for each key, i.e., {s ∈ SHLF : s′ ∈ SHLF ∧ s.key = s′.key ⇒
s.version > s′.version}.

THEOREM B.7 (UNCONSUMED STATES REPRESENT MOST RECENT KEY-VALUE PAIRS).
Assume that GHLF is a valid TDAG and models a legal HLF execution LHLF. Then, the unconsumed
states of GHLF represent the most recent key-value pairs.

PROOF. Assume by contradiction that Theorem B.7 does not hold. Then, there must exist at least
a transaction where the version field in the output state for a key is smaller than the version field in
the input state for the same key, i.e., ∃t := (S ∪̇ {w},E) ∈ TGHLF

,∃s,s′ ∈ S : (s,w) ∈ E ∧ (w,s′) ∈
E ∧ s.key = s′.key∧ s.version < s′.version. However, P(t) would return FALSE, which contradicts
the fact that GHLF is a valid TDAG.

B.2. Modeling an Example of Execution for HLF
Here we describe how we model an illustrative example of HLF execution. We assume for simplicity
that the endorsement policy requires a single endorsement for each transaction.

Throughout our description, we focus in the illustrative example depicted in Fig. 4. In particu-
lar, Fig. 4b shows the HLF execution LHLF := {Bg,B1,B2}, where Bg := {t0 := EP}, B1 := {t1 :=
(END, f1)} and B2 := {t2 := (END′, f2)}. In a bit more detail, t0 represents the initialization trans-
action that initializes the key-value pairs used later in the execution and it is included in the genesis
block. Moreover, t1 represents an invoke transaction that calls the function f1 and t2 represents
another invoke transaction that calls f2 in this case.

Now, we describe how we model such HLF execution as an instance of GHLF as shown in Fig. 4c:

— t0 := ({sg,s0,s1,s2,w0},{(sg,w0),(w0,s0),(w0,s1),(w0,s2)}), where (sg,w0) ∈ EC and
{(w0,s0),(w0,s1),(w0,s2)} ⊆ EP. It represents the initialization transaction as described above.
In more detail, sg := (params,0), w0 := (TINITX,EP), s0 := (a,1), s1 := (b,1) and s2 := (c,1).

— t1 := ({s0,s1,s2,s3,s4,s5w1},{(s0,w1),(s1,w1),(s2,w1), (w1,s3),(w1,s4), (w1,s5)}), where
{(s0,w1),(s1,w1),(s2,w1)} ⊆ EC and {(w1,s3),(w1,s4), (w1,s5)} ⊆ EP. A MIMO transaction
that updates the values associates to keys a, b, c. In a bit more detail, w1 := (TINVTX,END),
s3 := (a,2), s4 := (b,2) and s5 := (c,2). The rest of states are defined as described for t0.

— t2 := ({s3,s4,s5,s6,w2},{(s3,w2),(s4,w2),(s5,w2),(w2,s6)}), where (s3,w2) ∈ EC,
{(s4,w2),(s5,w2)} ⊆ EO and (w2,s6) ∈ EP. A MISO transaction that reads the values as-
sociates to keys a, b, c, and updates the value associated to key a. In a bit more detail,
w2 := (TINVTX,END′) and s6 := (a,3). The rest of states are defines as described for t1.



ALGORITHM 1: Function f1
PUTSTATE (“a”, 0);
PUTSTATE (“b”, 5);
PUTSTATE (“c”, 3);

ALGORITHM 2: Function f2
a ← GETSTATE (“a”);
b ← GETSTATE (“b”);
c ← GETSTATE (“c”);
PUTSTATE (“a”, a+b+ c);

(a) Set of GETSTATE and PUTSTATE operations
for each function defined in this example.

(b) Example HLF execution
LHLF := {Bg,B1,B2}. Here, t1
invokes f1 and t2 invokes f2.

w0

s0 s1 s2

w1

s3 s4 s5

w2

s6

(c) Example of GHLF

instance.

Fig. 4: Illustrative example of the modeling of an execution of HLF. We model an execution that
contains the setup transaction (t0), followed by an invocation to f1 (modeled in t1) and finally an
invocation to f2 (modeled in t2).


