Notes on Computer Networks

Bob Dickerson

January 2005

Preface

These notes formed the main material for a one semester GemPaience course on networks. The
course was last taught in the academic year 2005-6. Theewas primarily about the Internet, the
TCP/IP protocol family. The rest of the preface is part of tiigjinal written for the course (or “elective
module” as it was called) and it tries to show how the matémittiese notes relates to the units that made up
the course, and references to sections or chapters in boatqgrovide better, or alternative, explanations.

The notes and books

This is a description of the teaching material, its orgaisaand how it relates to the units in the Open
Systems and Networks elective module.

The main material for the module is provided by these notbks.nbtes try to cover the range of material
that | think is appropriate to this course (module), and taieymeant to be at a suitable level, ie. depth of
treatment of each topic. This means that there isegoiredtextbook.

However the notes are written by me (Bob Dickerson) and fhegét is possible that they are: shallow,
incomplete, difficult to understand and perhaps wrong. E¥#rey are not as bad as that it is still very
useful to have alternative explanations for some topics@m recommending some books as supporting
material. Since the books are only meant to supplement dgfycthe notes you should really only consult
relevant sections or chapters of the boafter reading the notes; this is because they might have a differen
emphasis and on individual topics have too much or too litizeerial. Because the use of a textbook is just
to reinforce the notes it is not compulsory, if you are brday, or, in fact, the notes are enough, you can
try to manage without extra reading. All the following boa@g quite good, you can use bits of whichever
one you want;

1. Douglas E. Comer.Computer Networks and Internets with Internet ApplicasiorPrentice Hall,
fourth edition, 2003. Good introduction, mainly TCP/IPnsostuff on data transmission.

2. James F. Kurose and Keith W. RosSomputer Networking: A Top-Down Approach Featuring the
Internet Addison-Wesley, third edition, 2005. Good introductibias some deeper treatment, no
data transmission stuff.

3. L. L. Peterson and B. S. Davie€Computer networks, a systems approadhorgan Kaufman, third
edition, 2003. Good introduction, practical implemergatexamples, mainly TCP/IP, not much on
data transmission stuff.

4. William Stallings. Computer Networking with Internet ProtocolBrentice Hall, first edition, 2004.
Less conventional introduction, more advanced, has dpeltégters on congestion and quality of
service, no data transmission stuff.

5. A. S. TanenbaumComputer networksPrentice-Hall, fourth edition, 2003. Very good introdoat,
wide coverage, some data communications stuff too.

The units

This is a list of the units, links to the related notes andrexiees to chapters or sections in the books. It
is possible to vary the order of presentation of topics. Irshimoks (Comer, Tanenbaum and Peterson)
they are presented “bottom-up”, starting from the lowestleor (in Kurose and Rose, and Stallings) “top-
down”, starting with high-level application protocols. éfvas | type this | cannot decide how to do it this
time ..., wait while | decide ..., OK bottom up but with an oview of some general concepts first.

Another choice is whether to include any material on datastrdssion, this is about how binary data
is actually transmitted by “guided” media (wires or fibre iopbr by “unguided” media (wireless). This
course (module) doesn’t cover the topic. This is a seriousdbliberate omission. There is not space or
time to discuss signal propogation, noise, bandwidth, rtadidun etc. These topics not required for the
assessment but if you feel unhappy reading about sendiaggiat network connections without knowing
how the bits are actually transmitted you can find some in&tion in the books:

Comer: chapter 4, 5, 6 and 7 deal with data transmission,

iv Notes on Computer Networks

Peterson & Davie: no chapter on data transmission, but some stuff about baimdwil latency in chapter
11

Kurose & Ross: no chapters on data transmission but one section on “Physex#ia” in chapter 1,
Tanenbaum: chapter 2, about 90 pages on data transmission, quite good,

Stallings: nothing on data transmission,

1. Introduction: layers and protocols
This unit includes a brief overview of what protocols anddies/are, and how a message moves down
through the layers acqiring different protocol headerse Wit introduces the concepts of:
o division of responsibility in networkingayersthat carry out different functions,
e equivalent layers on different machines calpegbrs
e protocolsthat allow peer layers on different machines to communijcate
e message encapsulatitime way layers attach their own headers to the messagesrhegled
to pass on by higher layers.

There is one chapter in the notes Introduction, layers aotbpols (chapter 1). Relevant material in
the textbooks:
Comer: these concepts are explained in chapter 16, “Protocols apering”,
Peterson & Davie: no separate chapter but the is a section on “Network ar¢hitgtin chapter 1,
Kurose & Ross: two separate sections on protocols and layers in chapter 1,
Tanenbaum: some stuff on layers in chapter 1,
Stallings: idea of protocols and layers in chapter 2.
2. Data link layer and network topologies

The data-link layer is responsible for sending packets gis)nof data between directly connected
machines, ethernet, PPP, and wireless 802.11 are datprbidcols. The issues dealt with are:

e network topologies,

the functions of data-link, simple encoding, framing aneechecking,
e how ethernet operates,

e ethernet bridges, hubs and switches,

e some stuff on wireless LANs

The chapter on data-link and ethernet is Data link layer agtdiork topologies (chapter 2). The
chapter on wireless LAN is 802.11 Local Area Wireless Neksdchapter 3).

Relevant material in the textbooks:

Comer: this topic is covered in Comer’s book in chapters 7, 8 and %enl¢hapter 10 deals with
physical connecting ethernets, chapter 11 with bridgeapt 12 and 13 are about longer
distance networks and are less relevant.

Peterson & Davie: direct data-link networks are dealt with in chapter 2 thiglsvant to the module,
chapter 3 is about more complicated networks like ATM, tliegbeyond what is required for
the module,

Kurose & Ross: chapter 5 is “The link layer and local area networks”, chaptes about wireless
and mobile networks and contains more material than is déthitin the module,

Tanenbaum: the treatment of data link is split into chapter 3 called “Tia¢a link layer”, and chapter
4 called “The medium access control sublayer” which acfuatintains most of the material
about ethernet and wireless. These chapters contain meeeiahéhan is needed by the module
so be guided by the coverage of the notes,

Stallings: datalink is covered in Part 6, the first chapter is 13 on “Widaanetworks” which is not
really necessary for this module (too “wide”?), chapter Déta link control” about issues in
data link is more useful, and chapter 15 on “Local area nétgids relevant too.

Notes on Computer Networks \

3. Network layer
Climbing up one level above data link layer is the networkifbernet) layer. This layer conveys a
packet across different networks to any addressable déistin This is split into two units, the first
about IP, and the second about routing; it is only split tovalinore time to cover it. The topics are:
e |P addressing,
e packet format,
e packet forwarding
e addressing on a LAN (ARP).

This is covered in the first part of the Network layer chapter 4
Relevant material in the textbooks:
Comer: this topic is covered in chapters 18, 19 and 20. There is iatdit material about IP frag-

mentation in chapter 21, interesting but not essentiallfir mmodule. Chapter 22 is about the
new version of IP called IPv6.

Peterson & Davie: in chapter 4 on “Internetworking” section 1,

Kurose & Ross: it is in chapter 4, but it is hard to disentangle routing frothey aspects of IP.
Perhaps read sections 4.1, 4.2 and 4.4 first,

Tanenbaum: in chapter 5. There is a lot more material than is needed fentbdule, so maybe just
look at sections 5.5 and 5.6,

Stallings: chapter 8, sections 8.1 and 8.2 are most relevant
4. Routing

This is still at the network layer, it is about how systemscdigr which connections to use for
forwarding packets—routing. Instead of examining the ietaf real protocols this looks at two
algorithms used for discovering routes. | hope to add sordéiadal notes about the real problems
of routing on the backbone of the Internet. The topics are:

e static link-state, or Dijkstra’s shortest routes algarith

e dynamic distance vector routing,

e something about Internet routing (I hope).

This is covered in the second part of the Network layer chapteection4.7

Comer: this is covered in two places, he covers the general routoyighms in chapter 13, and
then deals with IP Internet routing in chapter 27. There ig litle about backbone routing,

Peterson & Davie: more of chapter 4, sections 4.2 and 4.3,
Kurose & Ross: chapter 4, sections 4.3, 4.5 and 4.6,
Tanenbaum: chapter 5, section 5.2,

Stallings: chapter 11 and the chapter 12 section 12.1.

5. Transport layer
This layer is responsible for providing reliable, dataatns, from program to program. It builds this
out of the out-of-order unreliable computer to computeageams sent by the network layer. Topics:
e end to end messages usipgrt addresses,
e providing streams from packets,
o reliability and retransmission,
e congestion and flow control,

The chapter in my notes is Transport layer chapter6

Comer: chapter 25,

Peterson & Davie: chapter 5, sections 5.1 and 5.2, the later stuff on RPC instidi necessary.
Chapter 6 is also about transport layer problems but is nf@me ts needed, however 6.3 on
TCP congestion control is interesting,

Kurose & Ross: chapter 3, sections 3.1 to 3.5,

Vi

Notes on Computer Networks

Tanenbaum: chapter 6, sections 6.1 and 6.5,
Stallings: chapter 6, sections 6.1, 6.4 and 6.5

. Network programming

This describes the basic facilities used by nearly all netvapplications. These can be used in Java,
C++ or any other language. It introduces:

¢ the (almost) universal BSD socket interface used by all ogtapplications

the asymmetry of client and server programs,

the Java classes that provide sockets and how to use them

the concept of @oncurrent server
o threadsin Java and how they can be used to create a concurrent server.

The chapter in the notes is Network programming (chapter 7).

Comer: in chapters 28, 29 and 30, but he only provides program exesiplC++ not in Java.
Peterson & Davie: a bit in section 1.3 (in C),

Kurose & Ross: section 2.7, it does have some Java stuff,

Tanenbaum: a bit in subsection 6.1.4,

Stallings: in section 4.4

other perhaps the simplest way to get extra information about estywrogramming in Java is to
look at Sun’s Java tutorial and guide:

http://java.sun.com/docs/books/tutorial/networkindéx.html

. The application layer: HTTP

This says something about one application level protoeoldine that runs above and usessbeket
API). The application is the Web, the core of which is a very senpiotocol called HTTP. The
chapter in the notes says a bit about:

o the operation of the HTTPprotocol,

e the common format of the files (pages) which is currently HT,ldhd

e a bit about server-side functionality provided by CGI piogs or PHP.

The chapter in the notes is WWW, HTTP, HTML, CGI and PHP (cbeg}.

Comer: in chapters 35, 36 and 37, chapter 35 deals with HTTP, ch8gteleals with server-side
functionality like CGI, and chapter 37 covers client-sidadtionality like Javascript, it is not
so important for this module,

Peterson & Davie: in subsection 9.2.2,
Kurose & Ross: in section 2.2,
Tanenbaum: in section 7.3,

Stallings: section 4.1.

. Application layer: DNS etc.

This is another application level protocol like HTTP dissed earlier, although it is not an ordinary
application, this is the protocol that enables names (eds.ae.uk) to be used on the Internet. Also
other application protocols might be introduced for exarthbse supporting email (but these extra
notes don't yet exist). The chapter in my notes is The domameservice, DNS, chapter9

Comer: DNS in chapter 31, mail in 32,

Peterson & Davie: DNS in section 9.1, mail in subsection 9.2.1,
Kurose & Ross: DNS section 2.5, mail in section 2.4,
Tanenbaum: sections 7.1 and 7.2,

Stallings: section 4.2 for DNS and section 3.3 for mail.

Notes on Computer Networks vii

9.

10.

Application layer: P2P etc.

This unit considers the characteristics of peer-to-pesvarking and how it differs from the client-
server architecture. It also looks at an example of a fileisbaeer-to-peer system, Gnutella. Once
again, if | finish the notes there will some other protocolssidered, for example messaging systems
and or real-time protocols. In my notes the chapter is Ajgilin layer: P2P (chapter 10)

Comer: nothing about peer-to-peer protocols but chapter 33 istabmal time problem: Voice over
IP

Peterson & Davie: yes

Kurose & Ross: section 2.6,

Tanenbaum: 2 pages in chapter 1,

Stallings: | can't find anything.

Security

The problems of how systems connected can be attacked anttdftievcan be intercepted of spied

on. The notes say a little about cryptography and how it candeel to provide greater security. In
the notes this is in Security (chapter 11).

Comer: chapter 40,
Peterson & Davie: chapter 8,
Kurose & Ross: chapter 8,

Tanenbaum: chapter 8 is very good but too much. He covers all the releguits but provides too
much about each,

Stallings: chapter 16.

viii Notes on Computer Networks

Contents

1.1
1.2
1.3
1.4
15
1.6

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

51
5.2
53

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

Introduction: networks, layers and protocols

Networking e
Protocols e
Networking layers e
Message encapsulation e
The OSland TCP/IP layers e s e e e o e
Networks andinternets L e

The data-link layer

Functions of data-linklayer L
Topologies e e
Datatransmission L e e e
Encoding e e
Errordetection e e
Framing e e
Reliable transmission e
Local area networks including etherneto oL

802.11 Local Area Wireless Networks

The802.11standard. e e
802.11 architecture e
Services and protocols L e
802.11frameformats e
CSMA/CA and the problems of wirelessMAC
The basic DCF CSMA/CA protocol e e
The RTS/CTS part of the DCF protocol,

The network layer (IP)

Thelnternet e
IPaddresses e
IPpackets e e e
Forwardingtables e
Example of using forwardingtables
Sendingonan ethernet: ARP e
Building forwarding tables: routing L L a oo
Shortest route or link-stateroutingo o
Distance vectorrouting e

More about the network layer

Subnets and subnetrouting e e
The backbone ofthe Internet
Address spaceexhaustion L e e

The transport layer (TCP & UDP)

The functionofthe TCP layer e
End-to-end communication: portso e
TCP messageformat e e
Streamsinpackets e e
Packet acknowledgement & retransmission oL
Packet “windows”, theconcept e e
Packet “windows” in TCP e
Endtoendflowcontrol
Network congestion L e

10

11

CONTENTS

6.10 Openingandclosingconnections i e 42
Java Network programming with sockets 45
7.1 AAAressing e 45
7.2 SocketusageisasymmetriC e e e 45
7.3 Socketstreamsand datagrams e e 45
7.4 Unix sockets systemcallinterface 45
7.5 Javasockets APl e 46
7.6 Aclientexample e 47
7.7 AcutdownVversion e 49
7.8 ClientserverexampBrho e 49
7.9 Threads e 51
7.10 ACONCUITENESEIVEI o o et e e e e e e e e e e e e e e 52
WWW, HTTP, HTML, CGI and PHP 55
8.1 Overviewof WWW 55
8.2 HTML 56
8.3 URIsandwherefilesarekept L 57
8.4 HTTP e 58
8.5 Clientand server additionalservices oo 59
8.6 Serverside: using forms forinteraction L 60
8.7 Serverside: CGlprograms e i 61
8.8 Serverside: PHP e 65
8.9 Clientside (browser)Services o e e 67
The Domain Name Service DNS 69
9.1 DoOmainnames e e 69
9.2 ZonesandnNamesServerS v v it e e e e e 69
9.3 Resolvinganame e e 70
Peer to peer networks 73
10.1 Applicationarchitecture. 73
10.2 Instantmessage SyStemMS e e e e 73
10.3 Filesharing e 74
10.4 Gnutella L e 74
Network security 77
11.1 Some cryptographicconcepts e e 77
11.2 System security without networking L. 79
11.3 System security with networking e 79
11.4 How can networking be more secure? i e e 80
11.5 Firewalls, Proxies, and Masquerading« cieiei v i i e 80
11.6 Positionoffirewall e 80
11.7 Encrypting network connections L L e 81
11.8 Encrypting network traffic: IPSec oo oo 81
11.9 Encrypting network traffic: IPSec oL oo 82
11.10Application level encryption (SSL) e e 82
11.12USINg SSL o o e e 83
11.120penssh e e e 83

11.13Structure e e e e e 83

Chapter 1

Introduction: networks, layers and
protocols

1.1 Networking

Networking supports communication between two or more o3 running on physically distant ma-
chines. For example all the following require network suppo

e a WWW browser client using a WWW server,

mail from a user agent program to a remote mail box,

remote access to a data-base,

a remote shared file server system,

downloading an MP3 music file.

1.2 Protocols

To request any service or exchange any information betwgao@ams there must be an agreed set of
commands and data formats, this ip@mtocol So, for example, the commands and data sent between
a World Wide Web browser and a remote server are a protocoé bfowser (probably) uses the GET
command follow by the name of the required file (page), thigqurol is recognised and understood by the
web server program which responds appropriately. Sirgikiue format of packets sent between Ethernet
cards and their drivers are a protocol. The programs ex¢hgngessages are callpéers

1.3 Networking layers

Two very important concepts in understanding networkirgpantocolsandservice layersFigure 1.1 is a
simplified view of the layers of network service in TCP/IP.

]

Application ~_http Application

eg. Web browser protocol eg. Web server

Transport layer _ tep Transport layer
eg. TCP protocol eg. TCP
Network Layer | p Network Layer
eg. IP protocol eg. IP
Data-link layer ethernet Data-link layer
<€ - m e — - - >
eg. Ethernet driver protocol eg. Ethernet driver

physical network

]

<=| hardware

hardware [<==

Figure 1.1: Layers and protocols

2 CHAPTER 1. INTRODUCTION: NETWORKS, LAYERS AND PROTOCOLS

1.3.1 The functions of the layers
Each layer in the simple model provides facilities and egrdut certain tasks:

Hardware Bits of wire that can carry bits?

Data-link This layer is responsible for delivering packets for thenmek layer to other physically con-
nected machines. It is responsible for error checking aivihgrthe devices. Ethernet is a data-link
layer protocol, it can only send packets to machines thaplaysically attached to the same wire.

Network This “spans” different physical networks, it is a protoclat makes minimal assumptions so
it can work on any and all data-link networks. Its job is to gatkets from a machine on one
physical network to a machine on another—ithiter-networkprotocol IP. Its main job is finding and
maintaining routes to the remote systems.

Transport This layer turns IP packets into a “stream” of characters/ben differenprocessesn differ-
ent machines. This layer provides a “reliable” serviceng 8 datagrams are lost this layer must
recognise this and re-transmit them. The layer guarant®a®dy of all the data (for TCP anyway) in
the correct sequence by using sequence numbers. This laxed@s an interface to the application
and supports streams of data (TCP) or arbitrary lengthsimgissages (UDP) to selected services on
selected systems. The interface it provides is calledduketnterface.

Application These are either user programs or standard utilities ltketélnet, WWW browsers, network
file store, or mail programs, each provides its own applicatiriented protocol. All of them use the
transport layer service.

Usually all the layers upto and including the transport tagr@ in the kernel of the operating system and
the applications are programs. So the interface betweesually a set of system calls.

1.3.2 Why have layers?

One reason for having separate layers is that it makes thensysmpler to use by defining clear interfaces
for application or protocol developers.

Application Application Application
Web server telnet tftpd
Transport service Transport service
TCP UDP

™~

Network Layer Network Layer
IPX 1P
Data-link device driver Data-link device driver
Ethernet LAP from X25

Figure 1.2: Layers with alternative protocols

Another reason is that the separation simplifies the use@fative layers and protocols so that if the
network level determines that one site is connected via setkbéine it can pass a message packet to the
appropriate driver, whereas a message to a different ditbeypassed to a different data-link level protocol
driver, this is shown in figure 1.2. It also works in reversetwork (IP) packets contain a field in their

1.3. NETWORKING LAYERS 3

header identifying whivh transport level protocol they asel this is used to determine which level to pass
the packet up to (either TCP or UDP).

1.3.3 Relationship between protocols and layers

If a browser communicates with a web server they exchangesages (using the HTTP protocol), the
messages are simple character strings:

¢ Inorderforthe browser to send the HTTP message it must st thu the layer below it (the transport
layer) opens a connection to the server on the remote machine

e The transport layer has to communicate withpgeer, (the transport layer software on the remote
machine) to establish the connection to the web server. sReehe transport layer use the TCP
protocol.

e In order for the transport layer to send its TCP messagegéksrthem into “packets” and requests
that the network layer below it sends these packets to theteemachine which will pass them up to
the peer transport layer.

e The network layer uses the IPv4 (and soon IPv6) protocolsdt ases a routing protocol to work out
which machine to send to in order to get the remote end. andst ask the datalink layer . ..

This is very similar to using the Post Office to convey letters

e You write to your friend, the letter is your message (what gay in the letter and how they respond
is your “protocol”), you put it in an envelope, put the addres the front and pass it down to the next
“layer"—the postal service,

e The local postal service sorts the letters and puts themds b different destinations, these are
labelled. The bags are then given to an airline or a railway tises the labels to deliver them to the
remote postal service,

e The remote postal service unpacks the bags and deliversttesl

Notice that it is necessary to have a “protocol” that is ustieyd by the lower layer (TCP, or postal service
bag labels) in order for messages from a higher level to lieaded. Notice also that the layer below knows
nothing about the higher level protocol (whether it is HT®Rthe contents of your letter).

A PACKET S JOURNEY

Figure 1.3 shows the path of a packet through the networlvaoétlayers when a client application sends a
message to itpeer(the corresponding server) application. First the appibcecalls on the transport layer
on its machine to convey the message to the right prograne atetbtination, the transport layer will use the
network layer to send the packet to the correct host, theorktlayer, once it has found threext hopon the
journey to the destination, will call the appropriate dat& briver to send the packet.

client [nserver

T 1
! |
TCP | TeP
: i
T

orwqrding orwarding ‘orwarding ‘orwarding

able: P able | |p ‘abl,e,‘ P able 1IP
: L S ‘
; — T |
I : : ! ! :

DLX DLX DLY B DLY DLZ DLZ

—— P application messages
path of IP packet

——————— -

Figure 1.3: Packet encapsulation

4 CHAPTER 1. INTRODUCTION: NETWORKS, LAYERS AND PROTOCOLS

When the packet arrives at the next machine the data-lirde lagisses the packet to the network layer,
it examines the packet’s destination address, it findséxt hopand uses the appropriate data-link driver.
This continues until the packet arrives at the destinativen the network layer software will examine the
destination address and find that it is its own machine stedalsof forwarding it, it passes the packet up
to the transport layer software. The transport layer lodkbha transport message and determines which
application to give the message to.

1.4 Message encapsulation

As data are passed down from an application level throughréresport level, the network layer to the
data-link layer they arencapsulategdthis is shown in figure 1.4. In order to transmit the chanactee
transport layer puts a header on to communicate withbgermodule at the remote end. In this header will
be the port number. The transport module passes the dathgdder to the network module which puts on
its header containing the remote system address. Finalnwffis is passed to the data-link code another
header is added.

application layer

protocol, eg HTTP o
TCP flags application data
16 bit sender port
16 bit dest. port v
TCP
32 bit IP src addr header PP
32 bit IP dest addr
\/
frame type 1P TCP o
48 bitsrc addr | header header application data
48 bit dst Tddr
\'/
Ethernet IP TCP application data Ethgrnet
header header header trailer
= 14= =20= <= 20—=> = 4=

Figure 1.4: Packet encapsulation

1.4.1 Usingethereal to examine packets

There is a program callezthereal that can “capture” (which means: “take copies of”, not “res@?) all the

raw data data-link packets from a network interface. Sidictea higher level protocols are encapsulated
in, and carried by, the datalink packet agttiereal can decode all the protocols, it is therefore possible to
examine any or all the protocols.

The following pictures (figs 1.5 and 1.6) ethereal have a lot of detail but most should be ignored, the
only concept being examined is packet encapsulation: ossage, wrapped inside another.

In figure 1.5 the top window shows a list of packets that wepgw®d, one packet has been selected,
it is circled. More details of the selected packet are digpdan the middle window, Remember that each
“layer” of networking software has its own task and must caminate with the equivalent layer at the
recipient, so it attaches its own header. The middle windoows a decoding of each layer's header, each
can be “opened” (using the arrowhead at the left) to get metaild, here the application layer protocol,
HTTP, has been opened.

In the bottom window there is a hexadecimal dump of the whale packet including all protocol
headers and data. When one of the protocols is selected imitlibe window the corresponding section of
the hex dump is highlighted, in the first picture the HTTP poot is selected so the final (most nested) part
is highlighted. But in the second ethereal picture the IRqul is selected in the middle window and so,
in the bottom window, only 20 bytes (the IP packet headertl®raye hightlighted.

The second picture in figure 1.6 shows the selection of theelér in the middle window and the
highlighting of a different section of the hexadecimal duimghe bottom window.

1.4. MESSAGE ENCAPSULATION

@ = (Untitled) - Ethereal

Eile Edit View Go Capture Analyze Statistics Help

Bk

B EEdxRE8 Qe DFLT/(QAQQEQ[BDH

* °

@Ei\ter: ltcp or hitp

:J ‘ﬂ'gxpression.” ‘ ‘&Q\ear| of App\y|

I»]

33127 > www [SYN] Seq=0 Ack=0 Win=5840 Len=0 MSS=1460 TSY=18617694 TSER=0 WS=7
wnw > 33121 [SYN, ACK] Seq=0 Ack=1 Win=0792 Len=0 M55=1460 TSY=2009173328 TSER=16¢

HTTPA.1 200 OK [textmtml)

‘Time ‘ Scource | Destination |’rotoco|‘ Info

16 2.283243 192.168.0.4 192.168.0.6 TCP

17 2.283406 192.168.0.6 192.168.0.4 TGP

18 168.0.4 192.168.0.6 TCP

21 2284297 192.168.04 182.168.0.6 HTTP

27 8.0.6 192.168.0.4 TGP

23 2.311965 192.168.0.6 192,168 HTTP

24 2.311981 192.168.0.4 192.168.0.6

25 2.322263 192.168.0.4 192.168.0.6 TCP

2R 2 300445 102 1RR N A 1021RA N4 TP

ww > 33

1 Ack=1 Win=5888 Len=0 TSY=16617604 TSER=2090173328

33131 > =
GET Ainy.html HTTP/A1.0
Wiy =

O=1 Ack=105 Win=5888 Len=0 T8V=2009173320 TSER=16617685

331271 > www [ACK] Seq=105 Ack=819 Win=7552 Len=0 TS¥=16617723 TSER=2090173356
ww [FIN, ACK] Seg=105 Ack=819 Win=7552 Len=0 TSV=16617733 TSER=2099173356
M ACKT Sar=R10 Ark=1NR Win=AR8A | en=rl TSV=2NO017A3R7 TEFR=1AR1773R L=l

[

b Frame 21 (170 bytes on wire, 170 bytes captured)
b Ethernet II, Src: 00:30:84:31.09:4h, Dst: 00:01:02:ae:85:27

User-Agent: Wgatf‘l‘g.w’\n
Host: frecklesiin

Accept: "/"vin
Connection: Keep-Aliveyrin
i

b \ntemetProtoco\ Src Addr: 192.168.0.4 (192.168.0.4), Dst Addr: 192.168.0.6 (192.168.0.6)
SreRad 35121 {33121), Dst Port: www (80), Seq: 1, Ack: 1, Len: 104

1. Select a pacKet

2. Select the nested

protocol

0010 009c 575140 00 4008 §1a
0020
0030

50d0a 0dO

3. The highlighted blocK.
of bytes is the one

representing the

selected protocol

[«]

Hypertext Transfer Pri 7D oM 0

Figure 1.5:

EITR R Py e [EVRTIZRIRN [EEIRTIIRIRT

Ethereal windows

e T SR TR I TR TR

I Frame 21 (170 bytes on wire, 170 bytes captured)

I> Ether S BT30ET ST 00.4b, Dst 00:01:02: 2885
Intarnet Protocel, Sre Addr: 182.168.0.4 (192.168.0.4),
I> Trarmsmmrest rotocal, Sre Port: 33121 (33121

I- Hypertext Transfer Protocol

0050 20 48 54 54 50 2131 2e 30 0d 0a 95 7365 72 2d
0060 41 67 65 6 74 32 20 57 6765 74 2131 2e 30 2e
0070 31 0d Oa 48 6f 73 74 3a 20 66 72 52 63 6h Ge 62
0080 73 0d 0a41 636362 70 74 3a 20 2a 21 2a 0d Oa

00a0 2d 471 6c 69 76 65 0d Da 0Od Oa

0040 d7 d0 4745 54 20 2f 74 69 6e 79 2e 68 74 Bd G

27
Dst Addr: 192.168.0.6 {192.168.0.6)
), Dst Port, wwlu_mm\

2. Select a different

001 02 ae 95 27 00 30 84 3109 40 08 00 2Ry .
00 q(57 51400040 06 61 a2 c0 al 00 04 c0 atyl..

s
.GETft iny. htrnl
HTTPA. 0..User-
Agent VY get/1.9,
1.Host: freckle
s.Accep & /.
00980 43 6fGe Ge 65 63 74 69 6f6e 32204b 6565 70 Connectl on: Keep

-Alive.. ..

level of nested protocol

3. A different block of
bytes is highlighted

Figure 1.6: Highlighting a different header

6 CHAPTER 1. INTRODUCTION: NETWORKS, LAYERS AND PROTOCOLS

1.5 The OSl and TCP/IP layers

There is another (less used) view of layers called the ISO@ystems Interconnection:

application 7 | application
7-5 or user- 6 | presentation
process 5 session
4 transport 4 transport
3 network 3 network
2-1| data-link 2 data-link
& hardware 1| hardware

The TCP/IP can be seen as a simplification of the OSI levels:

e The service level, 7-5 merged as the process or applicati@r.| They provide FTP, Telnet, NFS,
X11 and other higher level protocols.

e The transport layer, (the OSI layer 4) the link between diffé processes on different systems, the
bit provided by TCP.

e The network layer (OSl layer 3), that links systems acrogsaynmore networks, it providésternet
working. The IP bit.

e The data-link layer, (OSI layers 2 & 1). It is a network, foraexple Ethernet with its hardware and
low-level protocols for moving data between 2 directly cected systems.

1.6 Networks and internets

Networks might be campus networks, company networks, malior local. But in TCP/IP terms a network
is most easily though of as a collection of hosts joined diyetogether at the data-link level. So those
systems directly connected to a common Ethernet constitotdwork, or some PCs connected via a token
ring are a network. Therefore the Hatfield campus has moredha network, even though it is sometimes
referred to as one and treated as such for network admitinstre@asons. A group of interconnected net-
works is called annternet the most famous and largest internet, that grew from ARBA-is calledthe
Internet. The Hatfield internet is in turn connected to the Ulkversities national network Janet and, in
turn, to the Internet.

Chapter 2

The data-link layer

2.1 Functions of data-link layer

Thedata-linklayer, in networking software, is reponsible for transfegrdata from one machine to another
directly connected machine. In other words, the networlaggr above will pass it packets of data and the
name of a network interface and it must transmit the datas [Blyier must know how to drive the hardware.
In different systems the responsibilities might vary butlddnclude:

e encoding
¢ sending, receiving anfdlamingdata (all protocols),
e error checking using CR@yclic redundancy checks

e error recovery: acknowledgement and re-transmission Dh®l but not Ethernet).

In many types of network there is a big variation between hawimis done by hardware and how much by
software, for example an ethernet card will include lotshaf tunctions, but software must do most of the
work of driving a dial-up modem line. These notes will exaeihe logical problems (not electrical issues)
whether the functions are in a software of hardware devisedr

2.2 Topologies

The data-link level software in a computer must send datagatiifferent physical networks that its com-
puter is connected to. Thepologyof a network is its basic architecture, how components agieidly
connected. The simplest and oldest (and still widely usethjgpoint-to-point A system can be build from
an arbitrary number of dedicated machine to machine links.

Figure 2.1: Point to point connection

Point-to-pointconnections like simple serial or parallel lines that joidevice on one machine to a
device on another, these are commonly used to connect toarédenetworks, for example BT leased lines
or simple dial-up telephone links. The technology and speedvary from simple serial lines like RS232
at 9.6 Kbps. to fibre optic cables at 2.5 Gbps. A protocol usedialup lines PPP. A protocol used for long
distance backbone connections is SONET.

e some long distance links, dial-up modems, joining 2 parpbets (laplink), institutional network to
an exchange (our off-site link),

e simple, no addressing needed, if a machine sends on oné tinkyihas one destination,

e Advantages: robust: one lost link only affects that link,aomtention: can have all machines com-
municating at the same time, flexible: different technodésgian used for different links,

e BUT scales very badly, there are an exponential number afired|connections.

Thestar network, all machines are connected through a dedicatddfswi
These are typically used for local area nets and work at absitMbps or more. Actually they may
provide the data-link layer but they share some of the chariatics of the network layer.

7

8 CHAPTER 2. THE DATA-LINK LAYER

T

|
]

Figure 2.2: Star topology

e like ATM (there is one at Hatfield, in the middle of lots of ethets), can be used for local or
metropolitan or wide area nets,

e more scalable, fewer connections,
¢ the switch might provide some concurrent connections hstiéss parallel than point-to-point,

¢ needs some form of addressing, so virtual circuits can baseétween communicating machines or
packets can be directed to the correct recipient,

Theshared bugopology, all machines connect to a common carrier,

—

I I I

—N

Figure 2.3: Multiaccess shared bus topology

Multi-accessnets where lots of machines are connected to the same azakikr (it works a bit like a
computer bus). These are the commonest for local area rietwi@he different types includeken rings
like FDDI or single lines like Ethernet. Their differencediin the way they compete for and schedule
access to the common carrier between the different machiiese performance is between 10 and 1000m
bps. The performance of some ethernets is over 1Gb, these sis@lar protocol but they are not really
shared bus architectures.

used for local-area networks, the famous ethernet, notfesedetropolitan or wide-area nets,

very simple, very scalable, very cheap
e requires hardware addresses so the receiver can recogrised,

¢ |ots of contention, only one message between two systemmy/dinae, requires a fast medium

Thestore-and-forward packet switch@gtwork, the switches are high performance purpose buik&o
(by CISCO or 3COM or ..), they link with arbitrary toplogies tther switches OR they have “outside”
links to host computers, or other networks.

e very expensive, used for wide-area networks or metropoliets, they form the backbone of large
internets so they need inter-switch connections and wagsmecting to other nets.

e they usually work by switchingacketsof information, which can be briefly stored and forwarded
when alink is free,

e they must do routing: how to get from a machine or LAN on one $ala LAN or machine on the
other side,

2.2.1 Note on real topologies

The preceding descriptions of topologies are over-singglifogical structures. In reality there are many
variations and alternatives, and sometimes a differentedas the apparent physical topology and the
logical topology of operation of the network. For example:

e many store and forward WAN are made out of multiple poinptint connections,

2.3. DATA TRANSMISSION 9

|-
M

)
\C

b o

4

QRGP 1T
[

Figure 2.4: Store and forward WAN topology

e ATM networks can be connected to produce a structure thatrdtdeok like a star but resembles the
store-and-forward organisation,

e 100Mb ethernets that usribs(more later) to connect them look like physically like a diat really
do function as a broadcast shared bus toplogy,

e 100Mb ethernets that ussvitchegmore later) to connect them look like physically like a SAND
really do function as a star network NOT a shared bus ardhitec

2.3 Data transmission

The first problem is how are “bits” of digital data sent, thighe problem of data transmission. This is an
enormous subject that will not be dealt with here. It inckide

¢ the data transmission medium: radio signals, copper wivastéd or not), fibre optic cables etc.,
¢ the performance of the different media and their properties

e the problem of “noise” and how much information can be seritisTs a big topic and can involve
quite a lot of mathematical analysis,

e how data are represented: amplitude modulation, one sagreadgth for a “1” and a different signal
strength for “0”, phase modulation using a sine wave and gingrthe phase of the oscillation where
the change represents a bit, or frequency modulation ussigeawave and changing the frequency
of oscillation to indicate a bit.

Just ignore this for now, but you must know that the topic ahdaansmission is a major subject in its
own right and an area of overlap between the concerns ofiglglcind electronic engineers and computer
scientists. We will only assume that some how ones and zerobe represented and transmitted.

2.4 Encoding

To send a binary digit along a carrier the sender can varydhage or frequency for a fixed period of time,
the receiver must detect this change. To do this they mustsgnize clocks so the receiver samples at the
right time and duration.

The clock is probably a transition from one level to anothet tiiggers the sampling of the line. If the
line is at one level to long then the clocks at each end migfit dr

There are various forms of encoding:

e NRZ low level for 0, high for 1. But the signal can stay too Idngne state.
e NRZI change level for a 1, unchanged signal for 0. Solveslpralfor 1s but not Os.

e Manchester encoding which does an XOR of the bit with thelclkignal (which changesvery
interval). Clearly produces lots of transitions but clgamhly provides half the bit rate for any Baud
rate (the maximum number of transitions the line can makesiecand).

10 CHAPTER 2. THE DATA-LINK LAYER

Bits

o

=
__C.

=

NRZ
clock M_ L
|
Manch- :
|

ester

=
o
=
e ___o_

| | | | |
O 0 01 0

UL

UL
iy

NRZI

Figure 2.5: Simple digital encoding

e 4B/5B, every 4 bits of data are encoded in 5 bits of sighéfi0 as11110, 1111 as11101, 0001 as
01001. The codes are chosen to guarantee that there can be no tunense of 1s or 0s no matter
what the data is. FDDI uses this.

2.5 Error detection

Electrical signals can be corrupted or misread so it is resegd0 have a way of detecting any corruption.
This is usually done by computing and sendiadundaninformation, the receiver recalculates and checks.
The amount of redundant information and how it is calculaféeict the likelihood of detecting errors.

o Parity, add one extra bit for every byte (or whatever) sodlig@an even (or odd) number of 1s. Not
very strong.

e Checksum, add up all the bytes in a message and send the sttar. Be

e CRC (cyclic redundancy check), traabits of data as being represented bynan1 bit polynomial,
divide this by some smaller (carefully chosen) polynomiad ase this to check. (I don’t understand
the maths!). This can give quite strong checking of upto D2i6s with just 32 bits of redundancy.

2.6 Framing

How are bits of data sent? The receiver needs to know how ¢oprdt the sequence. One bit by itself
provides little information, it is necessary to send segesrof bits to represent useful data. The solution
is to send data iframeswith a given format. The next problem is to know when the segaethe frame,
starts and when it ends, there are three main ways:

e always send a fixed size frame, this is used by fast backbdm@reprotocols like SONET where
there is always loads of traffic,

e start with a marker pattern (a special byte) so the receivéfimd the start, then be followed by a
byte count, then the data. This is not so often used becaaaa the hard for the receiver to recover
if there is an error in the count (so it is said). All the bitsshbe sent as bytes so the counting can
work. One such protocol was DDCMP used by DEC. More commonly:

e send a special marker (a sequence of bits), then the data@mithate the sequence with another (or
the same) special sequence. These protocols can be Ipjtteeorienteddr bit-oriented bits can be
sent as bytes (always multiples of 8 bits), or as an arbitsaguence of bits representing binary or
character data. So PPP is a byte oriented protocol (alwajtiptes of 8) and uses the special byte
01111110 as both the start and end marker. IBM designed SDLC for mediistance links and it
was later standardised as HDLC, it is bit oriented, it useshilh sequenc1111110 (like PPP) as
both start and end markers. Figure 2.6 is an HDLC frame.

With any method that uses an end marker there is a problenf thatvalue of the end marker character or
byte sequence occurs in the data being transmitted thertleé/ing hardware will believe that the frame
has ended prematurely. To solve the problem with byte agtbptotocols a technique callbegite stuffings

2.7. RELIABLE TRANSMISSION 11

01111110 header data CRC 01111110

=8= <=— 16 —= =—— 16 —=<8>=
Figure 2.6: HDLC packet format

used: a speciascapeharacter (DLE in ASCII) is used. Whenever the end markarevatcurs in the data

it is replaced by the escape character followed by a codeatidg that the end marker was replaced. When

the receiver detects the escape it removes it and the folipeharacter and replaces it with the original

code required. (If the value of the escape occurs in the itiyaut it will be replaced by some other escape

sequence. NB this is just like the use, in C, of thescape character, whéneis a newliné \ is\ etc.)
Things are simpler with bit oriented protocols, they baestuffing The sender, to avoid the termination

sequence, for exampdd 111110, being sent in the data, will if five ones occail { 11) just stick in an extra

0. The receiver will be given the data and will remove any zbai occurs after five ones. It is now OK

because the start and end markers are the only things thdiavé six ones.

2.7 Reliable transmission

Depending on the networking system being used, it might pomtant for the data-link layer to be reliable
(not in the TCP context, but maybe others). The simplestismius to used amcknowledgementimeout
andretransmitsystem. This is done in the HDLC protocol. It will not be délsed here because it is dealt
with in chapter 6 on TCP.

2.8 Local area networks including ethernet

There have been many forms of local area network architectaken ring, FDDI, ATM, ethernet and now
wireless networks. However the one used most widely is réi€and increasingly wireless).

2.8.1 Standards

The IEEE, American Institute of Electrical and Electronitgiheers, has many standards that have become
international standards, (the “Unix” standard called PO®l an IEEE standard). IEEE have a set of
standards called 802 that cover many aspects of local atearks (and some wider network issues):

802.2 logical link layer, interface to layers above

802.3 CSMA/CD, the ethernet family, many sub-standards
802.3u 100Mbps ethernet

802.3z 1000Mbps ethernet

802.5 token ring network

802.11 wireless LAN

802.11x 802.11a, 802.11b, 802.11g etc. different wirdiezpiencies

in the 802 family there is an important distinction between:

e the LLC, the logical link control sub-layer, which speciftbe interface to the network layer in the
protocol stack. This is independent of the underlying nekviyppe and will be the same for all. And

¢ the MAC, medium access control sub-layer, which specifie®gieration of the protocol, data format
and data transmission. This is medium dependent and willffexeht for different network types.

This distinction is used in the 802.11 wireless protocdd, tietwork layer (usually IP) communicates with
the LLC layer which then passes LLC frames down to the 802. ACNayer. However this distinction is
not made by ethernet (802.3) because its design pre-dat@gitbduction of 802.2. So ethernet packets do
not encapsulate or contain LLC packets, higher levels (fRenteract directly with 802.3 not with 802.2.

2.8.2 802.3 (ethernet) features

Ethernet is a form o€arrier sense multi-accesegetwork withcollision detectioror CSMA/CD, “Ethernet”
was a brand name belonging to Xerox but it is so common it islyaedways used as the name instead of
CSMA/CD.

Since many machines can connect to the same Ethernet callbdkie to use source and destination
addressing. The address is 48 bits long and is built into Efeérnet card or device when it is manufactured
and is assumed to be unique. An Ethernet packet containsaapte which is a standard recognisable
sequence of bits so that devices detect the start of a pabketlestination and source addresses, a field

12 CHAPTER 2. THE DATA-LINK LAYER

Logical link control
Datalink
802.11 MAC protocols 802.3 rings, etc
ethernet
DCF and PCF CSMA/CD
10Base-T
others

Figure 2.7: IEEE 802 protocol stack

identifying the protocol of the message in the data, ie. IBoonething else, so it can be passed to the right
layer above.

sync. preamble | destaddr |source addr ftype data CRC

=8 —= =6=>= =6>=>= 2 46-1500 < 4=

Figure 2.8: Ethernet packet format (sizes in bytes)

2.8.3 Ethernet operation

Another problem arising from having lots of machines on tame cable is synchronising the use of it,
when one device puts a packet on the cable no other machindrcather words “collisions” can occur
and must be dealt with. The operation of sending is as follows

1. if the carrier is busy (ie. some other computer is sendimgn) wait, or,
2. if the carrier is idle then start sending bits,
3. while sending, monitor the carrier to see if any other &ftpear, if not then done.

4. otherwise there is a collision, some other device trattethat the same time; if so stop, put error bits
on the carrier jammingsignal) so all other devices know there is an error and theéhawveariable
time before going to step 1. The length of delay is random anckases with repeated collisions, it
is calledexponential back-aff

Ethernets are very successful and very widely used but tedgin very badly if they get much more
the half their load. This is because the rate of collisiorsgiexponentially as the load increases, and also
the consequent increase in re-transmissions.

2.8.4 Ethernet cable length

The method depends on a host being able to detect the collisire it stops sending, otherwise a collision
might have occurred at the receiver but the sender will ratse and not re-transmit. Consequently there
is a maximum length for a 10Mbps ethernet network of 25@@mha minimum length of frame of 512 bits
(64 bytes). Assume the worst case:

e the sender is at one end of a 2500m cable, and a second seatthvd@other end,
e the sender transmits at timhe

¢ the frame starts to arrive at the other sender at tirdewhered is the latency (time to reach the other
end), just after the second sender started to transmit,

e now the second sender will detect the collision and jam

e it will require anothed micro-seconds for the second sender’'s message to arrive fitdt sender, at
timet+2*d, the first sender must still be transmitting at this time ovilt not detect the collision.

2.8. LOCAL AREA NETWORKS INCLUDING ETHERNET 13

The time,d, taken for a bit to travel 2500m is 25.6 micro-secs, so thé deader must be still be sending
after2*d, 51.2 micro-seconds, On a 10Mbps ethernet 512 bits aremiitted in 51.2 micro-seconds so in
order to still be sending and detect the collision thieimumpacket length must be 512 bits.

This problem still applies for 100Mbps and 1000Mbps ethexrthey have maximum cable and min-
imum packet size limits. They also use additional ways tedetollisions, but the basic problem is the
same. So the 100Mbps system using hubs and switches andhguib@itimes faster can either have a
minimum frame length of 5120 bitsr a maximum length of 250m, it shortened the maximum length.

2.8.5 Ethernet bridges

A bridgeis a way of joining two or more ethernets. It appears to theneoted hosts that there is only one
network, they address, transmit and receive data in the sayeit doesn’t affect them if the receiver is
on the same or the other side of the bridge. The bridge workedsiving all packets from all networks,
buffering them and passing them on to the other networkss fis the very important consequence that
the combined networks can be more than 2500m. This is bethed®idge deals with the carrier sense,
collision detection and, if necessary, re-transmissiotherother ethernets.

A B C
1 = = =
b1-2
L 1T 1
D E

Figure 2.9: Ethernet bridge

So if host A on ethernet 1 sends a packet to host F using F'saslitrwill be intercepted by the bridge
b1-2 (because it grabs everything), retransmitted unaibyg the bridge on ethernet 2, and finally get to
F.

Most bridges ar@adaptive learning bridgesTheir basic operation is the same but they also record all
thesenderaddresses of all the packets sent on each ethernet, thisgvesaletirn which ethernet each host is
attached to. Then, when the must pass on a packet, they ex@meitlestinationaddress and only forward
it to the network that the destination host is on. So if hose@ds to host A it will be intercepted by the
bridge but it will not be forwarded on network 2 because thidd® has learnt that host A is on network 1.

2.8.6 Ethernet physical topologies

The basic original topology of the 10Mbps ethernet was tlaeeghbus structure, a coaxial cable, to which
every host is attached, see figure 2.10.

I I I I

Figure 2.10: Original ethernet topology

The 100Mbps uses UTP (twisted pair) cables that plug into @xadither ahubor aswitch The hubs
or switches can be connected together in a hierarchy or u€iNtpps links, see figure 2.11.

this looks like a star network topology, it is physically mgt logically. Logically and functionally it is
still a shared bus. When one host sends a packet it goes teeaither hosts.

Notice, in figure 2.12, that the link goes up the twisted patg the hub, back down one link in the next
twisted pair and back to the hub again. In other words it weskectly like the shared bus. Hubs can have
between 4 and 64 ports.

14 CHAPTER 2. THE DATA-LINK LAYER

hub

uplink to
anot ost

hub

host 1 host 2 host 3 host 4

Figure 2.11: Ethernet hub

g | Tk
3 A ik |

1 2 3 4

Figure 2.12: Inside an ethernet hub

With a hub there is still contention, while one host is usimg hhub no other host can. By spending a bit
more money you can getsavitch A switch looks like a hub but internally it is totally diffent. A switch
still appears the same as any ethernet to the host but it sabis every host is on its own separate ethernet

with bridging between them, see figure 2.13.

host 1 5 5

Y
{

host 2 g—8—& [p1-3]

host 3

host 4

Figure 2.13: An ethernet switch

So if host 1 is sending to host 3 the packets go through a typgerhal adaptive bridge b1-3 and be-
cause b1-2 and b1-4 are adaptive they will not forward th>ad his means that host 2 can communicate

with host 4 at the same time without collisions.

Chapter 3

802.11 Local Area Wireless Networks

3.1 The 802.11 standard

There are various forms of “wireless” networking, they ugtectent frequencies, they work over different
distances, they use different techniques and they are wsadifferent types of network. There are long
distance links using micro-waves, they are infra-red linksveen laptops and desktop machines and there
are wireless local area networks based on the IEEE 802.4destd (the one considered here). The standard
is adata-linkprotocaol, it defines:

¢ the services and behaviour provided to the layer above étodtworklayer), hiding the lower details,
this is common to all 802 LAN standards (like ethernet, rirads.),

e the MAC (medium access contjoprotocols, ie. how the connected systems cooperate teigtth
exchange data. This includes messages to support movefterd station between cells (networks)
and support for authentication and privacy,

e it also specifies hardware behaviour, frequencies, engsedmodulation etc.

Logical link control
Datalink
802.11 MAC protocols 802.3 rings, etc
ethernet
DCF and PCF CSMA/CD
10Base-T
Physical 802.11a | 802.11b | 802.119 |and
others

Figure 3.1: 802 Protocol layers

There are various alternative 802.11 standards: 802.1d 2igbps, 802.11a (using orthogonal fre-
quency division multiplexing) upto 54Mbps, 802.11b (usilirgct sequence spread spectrum) upto 11Mbps,
and 802.11g upto 54Mbps. They all have similar MAC protoemid only differ in the hardware behaviour.

3.2 802.11 architecture

A cellis a group ofstations(computers) that can communicate with each other usindegis¢ransmission.
A cellis also called a BSSasic service seh 802.11.

A cell can have aaccess pointAP (often called a “base station”), which connects it totamonetwork,
usually a LAN like ethernet. The LAN to which a cell is conregtis called a distribution system or DS.
A cell with an AP connection is called anfrastructureBSS. Bothcell A andcell B in figure 3.2 are
infrastructure BSSs.

A cell with no AP is called aindependenBSS, also sometimes called ad hoc networkIn figure 3.2
stations 11 and12 are part of an independent BSS.

In picture 3.2 stations 2 and 3 can communicate directly IhAein cell B stations 6 and 8 are too
distant but can communicate via the base station. All thiéostain cell A andcell B can communicate
with the rest of the world using their APs and the DS.

3.2.1 Connection between wireless and ethernet

How does the AP access the DS? How do packets from the wirettasrk travel via the AP over the
ethernet? They have a different format. Are they encapsulldike IP packets in data-link packets? No,

15

16 CHAPTER 3. 802.11 LOCAL AREA WIRELESS NETWORKS

!
Infrastructure’

BSS,CellB |
6 to 8 via AP
'

2 to 3 direct
Infrastructure N

BSS, Cell A

:AR acces
point A
|

1
1
1
\

[staton12] ||

11 to.12 direct

N

Independent BSS
Ad hoc network

-

Figure 3.2: 802.11 cell architecture

both 802.11 and 802.3 are data link layers. Does it use somedbrouting? No, the AP doesn’t look
inside for IP addresses.

The AP works in a way similar to an ethernet bridge. The waglgses the same type of MAC address
as ethernet. If the destination MAC address is on the otlderdafithe AP the AP passes it on.

There is only one problem: the format is different. The AP titenslate the format of the message
from 802.11 to 802.3 and vice versa.

3.3 Services and protocols

In order to cope with the special problems of wireless traasion the 802.11 protocols are quite compli-
cated. They include:

e associatiorandreassociationthis is to enable stations (such as laptops) to find baserssavhen
they join or leave cells, this supports mobility,

e authenticationand encryption because wireless nets are so intrinsically insecure thig/s pass-
words and encryption to be used at the MAC level,

e distributionandintegration this determines how to route frames either via base swtiolirectly,
and also how they frames should be carried over an ordinbeymétt if they must be routed between
cells,

e transmission protocol@AC) to send packets, there is a basic set of CSMA/CA rulebtaio more
advanced protocols:

— DCEF distributed coordination functiomo allow packets to be sent directly between any two
stations or the base station. These notes will treat the D@Fa stages:

x basic CSMA/CA protocol to avoid packet collisions (or atdeaduce them), and
x the RTS/CTS exchange which improves collision avoidanchis 15 required from all
802.11 implementations, but does not have to be used,

— PCFpoint coordination functiorthis is when the base station takes charge of data transfer fo
inter-cell or intra-cell transfer. The base station “po#ach station in turn to see if they have
any data to transfer and it manages the transfer. It is cétledcontention frek part of the
protocol. It is optional and as far as | can tell (in 2004) iais1ost unused, why it is not used |
do not know since it can actually prevent collisions.

3.4 802.11 frame formats

The packet (in 802.11 they are calledmesbut | can’t help saying packet) format is very complicated,
firstly there are alternative formats for different purpgsend even within one format the meaning and use
of the fields changes depending on what type of packet it is.

In figure 3.3 the top frame is the most general form of packatia gackets are like this, the lower part of
the picture is an expansion of tframe control field. Only notice:

¢ the frame headers (and FCS) are very long, an overhead of a%dwytes. There is no preamble (the
8 bytes of “101010. ..") because, unlike ethernet, it is grthe hardware and not treated as part of
the data link packet,

3.4. 802.11 FRAME FORMATS 17

bytes: 2 2 6 6 6 2 6 <=2312 4

frame | dura- address 1 address 2 address 3 seq. address 4 frame FCS
control | ation usually Receiver | usually Transmitter [sometimes destination| control | usually missing | body
sometimes source

B e Bl RO B

T~ bits: 2 2 4 171

protocol | type subtype to |from|more| re— | pwr [more(WEPorder|
DS | DS |frag| try [mng|data

Figure 3.3: A common 802.11 frame (packet) format

¢ the frame format is given by thgpe field in theframe control field (see figure 3.3):

1. management, these are normally used for communicatitmtihe AP (access point, the base
station): there are frames for new stationas$sociatevith the network, and foauthentication

2. control, these are used during data transfers but dontagodata, these includeknowledge-
mentsand the RTS and CTS messages of DCF (see section 3.7)

3. data, this is like the top packet in figure 3.3, howeverdltae some variations for combining
the control functions of PCF with data.

o the duration field “reserves” the carrier for the length ofdiof the transfer and sometimes subsequent
packets in a transaction, see a later section about NAV,

e why four addresses?

— For many transfers only two are needed, for example trasbfetiwveen stations in one cell only
need two addresses, the first address is the receiver of te&ess signal and is also the final
destination, the second is the wireless transmitter amdthéssender.

— Ifastation, STA1, sends to the MAC address of a system, S¥Rthe DS (distribution system)
it must go via the AP see figure 3.4ddress 1 is the wireless receiver MAC of the AP, but
it is not the final destination, that MAC address is put in tleédfaddress 3, the transmitter
address and the sender STA1 MAC are the same indiddless 2 like between stations in the
same cell. When a station receives from an outside systeitih@iAP the use of addresses is
switched:address 1 is the destination and the receivaddress 2, the transmitter is the AP
MAC address, andddress 3,

Y \K base station

STA1 AP
MAC MAC| AP

gateway
GATE

station 1
STA1

SVR1 server
SVR1
MAC

distribution
system DS
aLAN

Figure 3.4: Transfers to and from the distribution system

— four addresses are needed if a wireless network is used agdgébbetween two LANS, see
figure 3.5. The wireless nodes are “transparently” passingackets from LAN1 to LAN2. It
is too long to explain but in the packet sent between STA1 dik®3he destination and sender
addresses in address fields 3 and 4 are the MAC addressessyisteens HO1 and HO2, the
MAC addresses in fields 1 and 2 are the MAC addresses of theveeead transmitter, STA1
and STA2.

18 CHAPTER 3. 802.11 LOCAL AREA WIRELESS NETWORKS

station Y \K station

STA1 STA2
STAT | e MAG | STAt

LAN2

host
HO1

host
HO2

distribution
system DS2

| distribution
system DS1

Figure 3.5: Using a wirelesswork net to join two LANs

3.5 CSMA/CA and the problems of wireless MAC

A wired shared medium protocol like ethernet uses CSMA/Carriér Sense Multi-Access with Collision
Detection, the wireless protocol uses CSMA/CA: CarriersgeMulti-Access with Collision Avoidance (it
is also known as MACAW, Multi Access with Collision Avoidagdor Wireless). What this means is:

multi-access -> collisionslike an ethernet, wireless is a shared transmission medaimof stations use
the same frequencies (instead of same wire) to send dataeGoantly there is the possibility of two
or more stations sending at the same time and scramblinggihals, this is aollision,

carrier sense use hardware to listen for signals, if there is traffic, waitilit finishes. Only send when the
carrier is idle,

collision avoidance don't just detect collisions and then recover like etherimettead try to avoid colli-
sions.

The only difference is how they deal with collisions, withhetnet collisions are easy to detect but with
wireless detecting collisions is difficult:

e there are weak signals, echoes, and interference so aeteotolliding signal is hard,

e in order to detect a collision it is necessary to be “recgjVat the same time as transmitting, (this is
calledfull duplex send and receive at the same time), this is expensive, geryireless cards can
do it, nearly all aréhalf-duplex

e and transmission distance problems, the remote systent gegh collision but the sender will not.

Consequently wireless has a protocol that triegwoid collisions.

There are further problems due to wireless transmissioa,i®the unreliable transmission. With a
wired ethernet the chances of a packet becoming corrupt@ugdnansmission are very low, with wireless
the chances of a packet becoming corrupted are very higk.réfuires changes to the basic protocol, see
the next section 3.6.

3.6 The basic DCF CSMA/CA protocol

The MAC protocol operates at the next level above the hargwitispecifies how data are transmitted,
packaged and how the stations respond. Basic rules of ggndin

acknowledgementsevery packet sent and successfully received must be imtefdecknowledged. If
after a short timeout period the sender doesn't get an adelgwment message it will retransmit the
packet. Every time a packet is re-sent the sender increraerdsnter, if the counter reaches some
limit the 802.11 data link tells the higher layer softwarsyally IP) that the transmission failed. This
is necessary because wireless cannot detect collisions.

sending when the carrier is idle a station is able to send, but it chseind immediately, it must wait for a
short period of time, called the DIFS (to be explained veryrgo If two or more stations have been
waiting to send then when the carrier has been idle for a D& they will all send at the same time
and cause a collision. So they all add an extra random timedioce the chance of collision.

backoffs when a sender doesn’t get an acknowledgement (probablypaduedlision so there will be other
stations also getting failures) it will retransmit. Where tbarrier is idle it will wait for a DIFS (not
sure, EIFS?) period to which it adds a further random timetbeatrandom time will probably be
longer—for every retransmission the range of values usethf random time is increased. This
increasing range of delays is called #@ntention windowWhen the packet is acknowledged, or it
gives up trying, the contention window is reset to its staytralue.

3.7. THE RTS/CTS PART OF THE DCF PROTOCOL 19

SIFS,PIFS,DIFS & EIFS between any two packet transmissions of any type there neustdiort delay
called aninter-frame spacéFS. There are 4 different IFS times: SIFS, PIFS, DIFS andSElFhe
reason for having four times is to permit higher prioritynsanissions to use the carrier. When a
station wants to send a new packet it waits for a DCF IFS (DH¥8¢. When a receiver sends an
acknowledgement it waits forghortIFS (SIFS). This guarantees that the acknowledgement will b
sent with no collisions from other packets as the SIFS istehtihan the DIFS. The lengths of the
intervals, in increasing time delay, are:

SIPS | short IFS used for acknowledgments and fragments
PIFS | PCFIFS used by the base station polling
DIFS | DCF IFS the “normal” delay

EIFS | extended IFS used after errors in transmission

The PIFS is between the SIFS and DIFS and is used when theth#ise & coordinating all stations
by polling, it won't preempt acknowledgements but it willevide ordinary transmissions.

In addition to the basic parts of the protocol that allow atatisns to send packets there are some extra
parts of the protocol to help reduce collisions or to copdwicket loss. These extra rules are required by
all wireless networks.

virtual sensing, NAV nearly all packet transmissions “reserve” time by inclgdadurationfield in the
packet, all other stations detecting a transmission sét tiework allocation vectorNAV, to this
value. The NAV is basically a timer, once set it counts dowréoo. A station will not even try
to do carrier sense if its NAV is non-zero, it is a sortvirtual carrier sense Why does this help?
Some MAC operations require more than one packet so this stibygr stations starting to send in
the middle of a transaction, for example a data packet saisadidn time that is the sum of times for
the packet transfeandthe acknowledgement. It is also used for for fragments, s&eitem and for
RTS-CTS, see next section 3.7,

packet fragmentation Because there is a low probability that a long data framelvélbent successfully
802.11 allows long frames to be broken into fragments anta®h acknowleged separately. Each
fragment will be sent and acknowledged separately so tHgtaosingle damaged fragment needs
resending. The sender only pauses for a SIFS interval diéeatknowledgement before sending
the next fragment (as always the receiver acknowledgesaff¢FS), this way the sender keeps the
channel. In addition each fragment contairduaation covering the time for the following fragment
and acknowledgement, so all other stations will set theivdAd not interfere.

3.7 The RTS/CTS part of the DCF protocol

DCF uses RTS/CTS to improve avoidance and solvéiitiéen statiorproblem. The picture 3.6 shows the
ranges of station A and station C, which both reach B but ndt ether. If A wants to send to B and carrier
sense shows that the medium is idle then it will send, C alsutsM@ send to B, it detects no traffic and
will send to B aswell, unfortunately B gets the scrambleaaldgrom both. This is called th@dden station
problem.

Figure 3.6: Host transmission ranges

This can be avoided in the DCF protocol which uses the folhgwnessages:

e RTS (request to send), if station A wants to send to B it waitsno traffic then sends RTS to B.
The RTS contains a duration value covering the whole timéefémaining steps of the transaction
(SIFS+CTS time+SIFS+data frame time+SIFS+Ack time) s@o#tations will set their NAVs. It
then waits,

20 CHAPTER 3. 802.11 LOCAL AREA WIRELESS NETWORKS

e CTS (clearto send), if B accepts the request it sends CTStbagkt also sends the NAV duration for
the remaining time (same as RTS NAV minus time the CTS takiésS&lata frame time+SIFS+Ack
time),

e when A receives the CTS from B it will send the data to B,

e ACK, when the data arrives successfully at B it will send aknagvledgement ACK back to A. The
transfer is complete.

e between each message there is a SIFS delay so no otherstiomterrupt.

If any station hears an RTS from another station it will wait & time long enough to allow the message
to finish before attempting to send. If a station hears a C®® fanother station it will wait for a suitable
length of time. This willavoid collisions. If collisions occur when two stations send RT8yt will not
know, because they don't try to detect it, but the intendediker(s) will fail to receive the RTS because of
the collision so it/they will not send a CTS, consequentéydhiginal senders of the RTS will know it failed
and they must retry.

Now consider how this deals with the problems of the “hiddiatien” above, if A sends RTS to B it
will not be detected by C, but C will detect the CTS that B selaisk to A and will therefore set its NAV
and wait until the transfer is over.

Chapter 4
The network layer (IP)

4.1 The Internet

What “internet” means is interconnected networks, but vitagpens if you join up a few thousand ether-
nets, point to point links, star networks (like ATM), etc.dtNing, they all have different packet formats,
addresses, protocols and capabilities, so they cannoargeltata. Itis necessary to have software on every
machine (hosts on networks and on machines that join nesytinkt can make them work together—this
software is IP. It is the network layer protocol IP tligthe Internet. How it works:

e every network has a unique address, every machine on eagbrikdtas a unique address. These two
addresses are combined together asRreddress

¢ all machines that will use the network have tReprotocolsoftware installed,
e datais sent it a fixed format “packet” known aslBdatagram

e each separate network is joined to one or more other netvibgrkee or moreoutersthat know how
to reach any network on the Internet,

e when an ordinary host sends a packet to an IP address the tiitprsoftware consults its local
forwarding tablethat tells it whether to send it direct to a machine on thelloe&work, or to send it
to a router.

All these topics will be discussed in the rest of this chagBeit first a bit of terminology because the word
“network” is used in different ways:

general usagea networkis any collection of interconnected computers, but thisd@simprecise so. ..

physical a networkis a just those computers connected by a physical netwarkalienachines on one
ethernet, the two machines at either end of a PPP (point td ponnection). This is what “network”
means when IP software connects two different data-linkoeks, but. . .

administrative usage anetworkis the collection of hosts with the same IP network addrekss i§ another
way the word is used about the Internet. A network numbetdgsaled to a company or organisation
and they have the responsibility of allocating the host nerslbo their computers. Such a network
will probably consist of manphysical networksand they will be calledubnetsn this context.

there are differentimportant usages, there isn’t one nmgasb be aware of the context when you meet the
word.

4.2 |P addresses

Every host connected to an internet must have a unique IPessldn that network. The address in
IPv4 is a 32 bit number. It is usually represented as 4, 8 hitbmers separated by dots, for example:
147.197. 205. 211 In order to address different networks on an internet theesdds structured into a net-
work part and a host part. So the University of Hertfordshaavork address is47. 197 and one host on it
is 205. 211. Not all networks have a 16 bit address. The NIC allocatesordtaddresses to organisations
which in turn are responsible for allocating their own hatdrsses.

type A If the first bit is O (the first 8 bit field is less than 127) theatth the network address and the host
address is 24 bits, there are only just over 100 of these arfdaza have over 16 million hosts on
their nets,

Type B If the first two bits are “10” then the network address is thetrdd bits that means there are about
16000 of these networks, each with upto 65000 hosts,

Type C For smaller organisations if the first 2 bits are “110” thae tietwork address is the following 22
bits and there is only an 8 bit host number, (work it out!).

21

22 CHAPTER 4. THE NETWORK LAYER (IP)

Type D and E If the first 3 bits are “111” then the remaining bits are usedsfiecial broadcast and multi-
cast addressing

This is the original basis of network address allocationrtaw (2004) type A address ranges are split to
make more network numbers available. This means findingeh&ark part of the address is not quite so
simple, the new way is used by CIDR (classless internet donaaiting), which you follow up if you wish.

4.3 |IP packets

The IP layer on one machine must send packets to the IP lapenther machines, to do this it uses the
IPv4 (and eventually IPv6) protocol. The format of an IPv4ssage is shown in figure 4.1. The important

Version| HLen TOS Length
Ident Flags Offset
TTL Protocol Checksum

SourceAddress

DestinationAddress

Options (variable length) Pad
Data

T e s

Figure 4.1: IP packet format

fields shown in figure 4.1 are:
HLen The length of the header, can vary because of options,
Length The length of the whole packet,

Flags One job they have is to indicate if this packet was broken tp fragments because it was larger
than the maximum size allowed for some physical networkg iftee offset field is used to indicate
which fragment.

Protocol Can be TCP or UDP so IP knows which higher layer to pass it to.

TTL “Time To Live”, it is hop-count, every IP layer in each routepasses through decrements it by 1,
when the count reaches 0 the packet is discarded.

Checksum Computed across the header.

4.4 Forwarding tables

Not all machines are directly connected to all others, sodha®s a machine that is only indirectly connected
to another know which intermediate machine to send to first®yTook up the address of the destination
network in aforwarding table which tells them where to send the packet on the first stefs géurney. In

a bit more detail:

¢ all forwarding is tonetworks once the packet gets to the right network it can be direcliyered,

e every host has éorwarding table(sometimes called a routing table) that lists how to get teot
networks on the Internet,

o aforwarding table specifies for every network what tiest-hogs,

o for ordinary hosts on atubnetwork (that's us) the forwarding table will have: its owetwork and
then any other networks that are linked by routers on itslloeg then there will be defaultroute
where all other packets are sent, this is usually the orgtaiss internet gateway,

e every machine that is connected to more than one networkastar, on the main backbone of the
internet routers have gigantic forwarding tables thatudelthe next-hop foeverynetwork attached
to the internet, they don't have default routes.

4.5. EXAMPLE OF USING FORWARDING TABLES 23

This is thevital function of IP, getting packets across one physical netwmdnother thereby creating an
internet

4.5 Example of using forwarding tables

This is a simplified example where the “internet” is just tvedworks connected via a router. The picture 4.2
illustrates packet forwarding, whei&1.9.0.8 (aka.62.0.0.1) is the router attached to both r&2.0.0.0
and131.9.0.0. Note that on an internet a system has one IP addressafdretwork it is connected to.
All systems have #orwarding tablewith all the networks it can reach. In this example there anlg two
networks,131.9.0.0 and62.0.0.0 so each table has two entries. The format of forwarding tedliemns:

eurydice
network: 131.9.0.0 131.90.11
eth1]131.9.0.8
Net no. Gateway Mask Dev
131.9.0.0 0.0.0.0 255.255.0.0 ethl
62.0.0.0 0.0.0.0 255.0.0.0 eth0
cerberos
eth0 | 62.0.0.1
network: 62.0.0.0
62.0.0.2 62.0.0.3
Net no. Gateway Mask Dev
131.9.00 62.0.0.1 255.255.0.0 eth0
62.0.0.0 0.0.0.0 255.0.0.0 eth0
orpheus

Figure 4.2: Packet forwarding example

e The first field of a forwarding table is the destination netkvoEvery IP address has two parts,
network and host. Note thaB1.9 is a type B address ar@? is type A,

e The second table field contains thatewayto use, this is th@ext hop usually a router, if the system
is directly attached to the network the gatewa®.8.0.0. In cerberos which is directly connected
to both networks botlgateway fields are0.0.0.0. In orpheus the gateway for network131.9.0.0
has the address o&rberos,

e The third entry is anetwork masklt is used by the forwarding software to find which entry te.us
The destination address of every incoming packetnd-edwith each mask in turn and the result
compared with the first column network number to get a matcbcaBse of the use of subnets in
networks and the splitting of type A addresses it is not fsdb use the type A, B, or C bits to
determine the network part, so every network destinatiaritsawn mask. In this example it is easy,
131.9.0.0 is a type B address and the mask5.255.0.0 (first 16 bits all binary “1”, last 16 bits
all “0") which means any any address suchl84.9.0.11 and-ed with the mask will leave just the
top 16 bits,131.9.0.0, for comparison.

e The last field in the forwarding table is the NIC (network ifidee card) address, in other words it
tells the IP software which datalink to use.

Assume thabrpheus, 62.0.0.2, wishes to send teurydice, 131.9.0.11, then:
e the transport layer passes an IP datagram to the IP softw#2.0.0.2,

e the destination addred481.9.0.11 is compared with each line of the forwarding table in turmp(to
down, order matters). Each time the mask is applied, so:

131.9.0.11 A 255.255.0.0 =131.9.0.0

this matches on line one, so the packet is se®2t®.0.1 via deviceethO. NB this doesn’t change
the destination address, it is stilB1.9.0.11, just where it is sent.

24 CHAPTER 4. THE NETWORK LAYER (IP)

e When the packet arrives 62.0.0.1 the same procedure is applied, it masks the addrés9.0.11
and matches on the first line of the table which says there gateway, just send it on dataliekhl,
and it arrives at the destination.

4.6 Sending on an ethernet: ARP

If the forwarding (routing) lookup finds the IP address of ttext hop is on the same LAN, eg. ethernet,
then itis necessary to find its ethernet address. This isara by the data-link layer it is the job of software
in the IP layer (though not the IP protocol itself).

Ethernet MAC addresses are 48 bit numbers built into thevianel of the controllers, they have no
relationship to the IP addresses being used by the netweek le

One solution would be for every machine to have a fixed tablppimg IP addresses to Ethernet ones
for its network. However every time systems were added ooxeu from the net all tables would need
updating.

Instead the sending system uses a special protocol callédl (ARdress Resolution Protocol) which
sends an ethernet broadcast message to the whole LAN saying:

Who is 147.197.236.2367

All systems on the ethernet must check all ARP packets far thember, if it is their's they will respond
with their Ethernet address, saying:

lam 147.197.236.236, my MAC is: 00:01:02:AE:95:BE

This information is used and then cached infRP tableby the sender so it won't need to ask again for
sometime.

4.7 Building forwarding tables: routing

There must be a way of constructing the forwarding table® dimplest method that is suitable for many
systems on local ethernets with one link to the internet imanually add (or use the DHCP protocol—look
it up!) adefaultroute.

Kernel IP routing table

Destination Gateway CGenmask Metr Iface
147.197.232.0 * 255.255.248.0 0 etho
def aul t 147.197.232.1 0.0.0.0 0 etho

Which means any address that match48.197.232.0 (ie. anything on a local ethernet) is sent directly.
But anything elselefault is send tal47.197.232.1.

If there are lots of separate ethernets or other LANSs joingdther as subnets of a larger network then
creating the tables manually won't work, instead each systeist run aouting program that can talk to
other routing programs and together they can build thew#oding tables. For small autonomous systems
there are two protocols often used: RIP, old and weak butlsingmd OSPF which is much better but
more complicated. In the case of main backbone interneérsgbmpletely different routing programs are
needed, they must have enormous tables so they know for eeemprk which next router to send to. The
current method is called BGP4 (Border Gateway Protocol 4).

4.7.1 A routing simplification

Internet routing is between separate networks or subnetfsatone byroutersto networksnot hosts. The
following sections present the principles of routing alfons and it is easier to treat routing as occurring
between host computers. However the principles of routiggrahms are applicable to real networks
situations.

Figure 4.3 shows a collection of networks joined by routedetwork d is connected to network
by routerV, but this is simplified in the graph on the right and is show a&®anection (link, edge, arc
...) betweerd andc. In other words the networks have become nodes and the scartedinks. But in
the following notes these nodes will often be called “conepsit or “hosts” not “networks”, however the
routing issues are still the same.

4.7.2 Note about “distances”

Most routing decisions depend on the “cost” of using a linkeen any pair of systems, so that they can
work out the best route. The costs that can be used vary:

e Money cost of using a link

e Speed of the link, so the fastest links are preferred,

4.8. SHORTEST ROUTE OR LINK-STATE ROUTING 25

Figure 4.3: Two representations of connections betweemarks

e Delay, even though some links are fast they might be oveddads the “cost” to be minimized is
delay time,

e The number of links that must be crossed to reach the ddsiinathere the cost of every link is 1,
this is callechop countand is the commonest.

4.8 Shortest route or link-state routing

A network can be represented by an undirected graph, whehmeaerepresents a host and easdigeis
a network connection, we are using the simplification désctin section 4.7.1.

()
81J\5

Ul
ol
\l

6 8 @
Figure 4.4: Example network

In figure4.4 node A is connected to node B with a “cost” of 8 tén@ost might be financial, time-delay
or physical distance), this is written as cost(A,B)=8.

If a host has all of the above information it can compute thst hext-hop for every node in the network
using Dijkstra’s shortest route algorithm developed inXB60s for any graph, not just computer networks.

The algorithm keeps a s8tof “open” or “unexplored” nodes, an arrdist of distances from the start
to each node, and an arr&f of the next-hop to all nodes. The arrays are indexed by the nathes or
numbers. On each cycle of the algorithm the closest “unegplnode is chosen, it is callad then each
of the open nodeg adjacent tau are examined to see if there is a shorter route to thenu.viafter the
closest node has been examined it is “closed”, ie. removed from theSset

Initialize set Sto contain all nodes except source;

26

Initialize array Dist so Dist[v] is the "cost" of the edge
fromsource to v, set toinfinity if no edge to v;
Initialize array Rt so Ri[v] is set tov if thereis
an edge fromsource to v, and set to O otherwi se;

while(! S.empty()) {
select a node u fromS so that Dist[u] is mninmm
if(Dist{ul==infinity) {
fail: no path to all nodes in S; exit;
}
S.remove(u); // renmove u fromsS
foreach node v such that there is an edge (u,v) {
if(S nenber(v)) {
cost = Dist[u] + cost(u,v);
if(cost < Dist[v]) {
R[v] = R[u];
}
}

}
} /] done forwarding table is Rt

Dist[v] = cost;

Now if the algorithm is applied for a couple of iterations:

1. initialise S, Dist andRt

CHAPTER 4. THE NETWORK LAYER (IP)

giving: S={B,C,D,E,F,G} A B C D E F G
Dist: |0 |8 [11 |5 | o [0 | 00
Rt: |A|B|C [D|- |- |-
2. Choosei =D, removeD from S,
considew = C: cost= Dist[D] + costD,C) =5+4=9< 11,
so0: Rt[C] = Rt|D], Dist[C] =9
considerv = F: cost= Dist[D] + costD,F) =5+7=12< o,
so: Rt[F] = Rt[D], Dist[F] = 12
giving: S={B,C,E,F,G} A B C D E F G
Dist= 0 |8 |9 [5 | |12]
R=|A|B|D|D|- |D |-
3. Choosal = B, removeB from S,
considetv = E: cost= Dist[B] + costB,E) =8+5= 13 < o,
so: Rt[E] = Rt[B], Dist[E] = 13
giving: S={C,E,F,G} A B C D E F G
Dist=|0 8|9 |5 [13|12]
R=|A|B|D|D|B |D |-
4. Choosal = C, removeC from S,
considew = D: ignore, not inS
considev =E: cost=9+5=14 < 13,
so: no change
giving: S={E,F,G} A B C D E F G
Dist=|0 |89 |5 [13|12]
R=|A|B|D|D|B |D |-
5. Choosai=F, removeF from S,
considew = D: ignore, not inS
considev = E: cost=12+6=18 £ 13, so: no change
considen = G: cost= D[F] +cost(F,G) = 12+ 8= 20 < o,
s0: Rt[G] = Rt[F], Dist[E] = 20
giving: S={E,G} A B C D E F G
Dist=|0 |89 |5 (13|12 20
R=|A|B|D|D|B |D |D

(NOTE: Rt[G] = Rt[F] = D, since we want the “next hop”, although
we found the route t& from F we usethe route to FnotF itself.)

4.9. DISTANCE VECTOR ROUTING 27

6. Choosai=E, no changes...
7. Chooseal = G, no changes...

The algorithm continues until there are no nodes leBwith a value less thaw.

4.8.1 Using shortest route algorithm for routing

The shortest path algorithmit, by itself, a routing algorithm or protocol.

The main problem is that the information about all the linktsahat each node uses to find the shortest
paths is unknown, each node only knows about its own immediatnections. To be useful as a routing
method there must be a way to collect all link costs. One wajotthis is to have a protocol where every
node sends packets about its links to all its neighbourgy,ithurn pass these packets on unchanged. All
systems learn about all the links. In order to stop the paatistulating for ever each has a counter (a TTL,
time-to-live) that is decremented each time it is passeduren it is zero the packet is dropped. This is
calledreliable flooding

There is a practical routing technique called OSPF (opeortest path first) that uses the shortest
route algorithm, and includes a protocol to periodicalljlext information about network changes using
reliable flooding. It can be used on quite complicated netadin the administrative sense) consisting of
many subnets (networks in the physical sense). Becausdéisigned for large networks OSPF supports
hierarchical structures of networks. Even OSPF is not Blgittor the backbone of the internet, it cannot
route between administrative networks, only within them.

4.9 Distance vector routing

The following is a simplified description of a routing algwin. It is called adistance vectomethod. RIP
uses a method a bit like this (but note this is not RIP whichdudtional features). The whole algorithm
doesn’t require a global picture, all participating rostenly know about their direct connections to their
neighbours and no others. Finding the shortest routalistebutedtask, all routers exchange information
and incrementally improve their forwarding tables untéytare stable.

In this treatment it is assumed that hosts are connectedsts hs described in section 4.7.1. The format
of theforwarding tableused here is:

dest| cost| goto dest| cost| goto
A 0 A A 0 A
B 6 B B 5 C
C 3 C C 3 C
D 00 D 7 C
E 00 E 12 | C
(a) The network (b) Initial table at A (c) Final state at A

Figure 4.5: Simple example network

In figure 4.5 a simple network is shown with versions of theMamding table from one nodé,. The
first table shows an initial state based only on knowledgdefitardware connections. The second table
represents the optimal routes, the ones we hope will resutt & successful routing algorithm, frofnto
all other nodes in the net. Remember that the forwardingtably shows the first node on the best path,
thenext hop Initially The entry forB says the route is co$tand go straight t@. If the route is unknown
it is infinity co. However after the routing algorithm the entry says the route is coStand go toC first.
Notice further that the final state has the routes to all atiogles and the costs. In the forwarding table the
cost from a node to itself, & to get to , is0.

4.9.1 Anexample network
Figure 4.6 shows a simple network, it will be the example tplax distance vector routing.
Notes about the bits in each host that will be used for routing

e Each node contains at the bottom centre its forwarding tdbléigure 4.6 infinity,co is shown as .
Since this first map shows an initial state only directly ceected systems are known.

e There is also a small connection list giving the hardwarkslia node has to other nodes and the
“cost” of the link.

28 CHAPTER 4. THE NETWORK LAYER (IP)

J
V|Astt | [Csft | |Dstt |
I
'lAlo] [A[3] [A[™]
|Ble| [B]2| [B]7]
ricls] |clo cl4|,
1| D|-| | D| 4] |D|O],
I
L E[7] LE[7] [E|5]!
A 6] A links
et S B Blo|B Ale| /T T~
'|Bsft | |Csft } cl2|c cl2 TTestt | [ost | st ||
:AG A3 : D/ 7|D D| 7 Ialel [Al3 NEE
| BlO | 6 El” 7 [Blo| |B|2| |B|-]|!
11 clz2yclo } lcla||clof|cla|!
11017, 1014 ! '|D|7||D|4||D|5)
CLELCLET] 2 VLEL) LE[~) [Efo]
AlO|A links |/~ T Al ™ links
A B|6|B B| 6 :A’sﬂ B’s ft D’sfl: D B|7|B B| 7
C|3|C C|l3 Al O Al 6 Al | Cl4|C Cl4
D| - 3 i[8l6]| [B]o] [B]7] 4 D| 0| D E|5
- |
E [cl3|cl2]|cl4f! EIS|E
1| o[-] [o]7] [D[o]:
5
A|3|A links
C Bl2|B Al3
Clo|C B| 2 \VD'sﬂ 777777777 :
b| 4] D D| 4 ANE |
E[™ 137 :
el |
i [plo |
EE |
Al - links
E Bl - D| 5
Cl =
p|s|p| L1 J
E|0|E

Figure 4.6: An example network for routing

e At the “top” of each host is a list of the forwarding tables tsema node by each of its immediate
neighbours. So that as A only has links to B and C (2 entrieeeércbnnections table) it has copies
of their tables, but E only has one neighbour, D, so it has mdgived one forwarding table. Notice

that initially each system has its neighbours tables buashlt yet used them to update its own table,
see the next section 4.9.2.

4.9.2 The algorithm

The basis of the algorithm is:

if your immediately connected neighbours have routes astduices to a place X and you add
your link cost to each of those distances and select the est#élfien your best route will be via
the neighbour whose distance plus the link cost was the least

An algorithm based on this idea is called a Bellman-Fordritigm after two of the inventors. But how do

they get the shortest routes? Answer: all the nodes in a methoothis minimising, basing their forwarding

table on tables from their neighbours, and in turn sendieg forwarding table. This is calledistributed

Bellman-Ford odistance vectarProving that the distributed version is correct is hardiag been done.
The steps of the algorithm. Every nowill:

1. initially set its forwarding table distance to the linkst@f the direct connections: to the link cost
from the node<to each neighbour node All other entries are set t®, infinity.

2. atfixed intervals repeat:

(a) send a copy of its forwarding table to all its neighbours,

(b) receive copies of the forwarding tables from all neiginiso

4.9. DISTANCE VECTOR ROUTING 29

(c) for each destination on the nefind each neighbour’s cost to(from the copy of their table)
and add the cost of the link to the neighbour,

(d) select the minimum of all these sums andx&forwarding table entry foy to the minimum
distance and set the next hop to the neighbour whose tabéetigassmallest sum.

Another way of expressing the algorithm. Whekgy) is the forwarding table distance at noxl¢o
nodey; c(x,V) is cost of the direct link fronx to neighbouw. Every nodex will:

1. initially setdy(v) to c(x,Vv), All other entries ind not inc are set tao.
2. atfixed intervals repeat:

(a) send a copy daly to all direct neighboursy,
(b) receive tabled, from all neighbourg,
(c) for eachy select the minimum af(x,v) + dy(y) for all neighbours. Setdy(y) to the minimum:

dx(y) = min,(c(x,v) + dy(y))
Set the next hop te.

4.9.3 Using the algorithm with example net

1. Consider the network in figure 4.6, look at nddldt has initialised its forwarding table to the links
to neighbours. Further it has just started the first cyclerandived copies of the tables fragnand
C (with the “next hops” removed since they are not used).

2. it will consider each host in turn:

(a) A, don't bother we can't get a shorter route, this is us,

(b) B, consider tables:

B's DV to Bis O + link(B,6) = 6,

C'sDVtoBis2 +link(C,3) =5,

C is the minimum so set table distanceBdo 5 and the next hop t€,
(c) C, find the minimum, vidB itis 2 + 6, viaC itis 0 + 3, it doesn’t change,
(d) D, consider tables:

B's DVtoDis7 + link(B,6) = 13,

CsDVtoDis4 +1ink(C,3) =7,

C is the minimum so set table distancelldo 7 and the next hop t€,

(e) E, both table copies frorB andC for D are infinity.

This produces the new table At

m| O| 0| .| >
8| ~|lw|lo|o
ellellelpd

this is the end of cycle one dh

3. cycle two starts, however realise tihatvon’t get the same forwarding tables a second time fBom
andC because they too have, in parallel, updated their forwgridibles. The forwarding tables Bt
andC now are:

On hostB On hostC
Al5 |C A|l3|A
B|O [B B|2|B
cl|2 |C c|o0|C
D|6 |C D|4|D
E|12| D E|9|D

4. A now sends its new table and receives the new tables BamdC.

30 CHAPTER 4. THE NETWORK LAYER (IP)

5. it will consider each host in turn:

(a) A, don't bother we can'’t get a shorter route, this is us,

(b) B, the copied tables are the same as last timeBfep the result will be the same, distance 5
next hopC,

(c) C, find the minimum, vidB itis 2 + 6, viaC it is 0 + 3, it doesn’t change, same as last time,
(d) D, NB. B’s table has changed:
B's DV to D is 6 + link(B,6) =12,
CsDVtoDis4 +1ink(C,3) =7,
C is the minimum so set table distancelldo 7 and the next hop t€, but the outcome is the
same,
(e) E, consider tables:
B's DV to E is 12 + link(B,6) = 18,
C'sDVtoBis9 +1ink(C,3) =12,
C is the minimum so set table distanceBdo 12 and the next hop t€,

This produces the new table At

m| O O| ®| >
P ~|w|ul|o
0000 >

this is the end of cycle two oA.

6. this can continue but unless there are changes in the reth@tables won't change.

4.9.4 Another way to visualise the algorithm

Instead of dealing with one node step by step it is possilgéctore the tables of all nodes at once. In some
ways this is more appropriate since all the updates take@ancurrently. For the network of picture 4.6
the initial state can be shown as:

On hostA On hostB On hostC On hostD On hostE
A0 |A Alb6 |A Al3 A A | A | ©
B|6|B B|{O|B B2 |B B|7 |B B | o
c|3|C c|2|C c|0|C c|4|C C| o
D| o D|(7 |D D4 |D DO |D D|5|D
E | o E | o E | x E|5|D E|O|E

then after all the systems send their tables, and do theatapance the new state of all the systems is:

On hostA On hostB On hostC On hostD On hoste
A|lO0|A Al|l5 | C A|3|A Al7]|C A | o
B|5|C B|0O |B B|2|B B|6|C B|12|D
cC|3]|C cl|2 |C c|o0|C cl4]|C C|9 |D
D|7|C D|6 |C D|4|D D|O0|D D|5 |D
E| o E|12| D E|9|D E|5|D E|O0O | E

after one cycle quite a lot of information has propogated®and E still don’t know about each other.

On hostA On hostB On hostC On hostD On hostE
A0 | A A|l5 |C A|l3]|A Al7]|C Al|12| D
B|5 |C B|O |B B|2|B B|6]|C B|12| D
c|3 |C c|2 |C c|o|C cl|4|C cC|9 |D
D|7 |C D|{6 |C D|4|D D|O0|D D|5 |D
E|12| C E|11|C E|9|D E|5|D E|O0 |E

the tables have reached a stable state. The normal ruledoatigm as part of a real routing protocol would
be to periodically send the table to neighbours, or whenawftange occurs.

4.9. DISTANCE VECTOR ROUTING 31

4.9.5 Broken links

Nodes monitor their direct connections and if a node goeswtbey reset their connections table. This also
means they won't receive a copy of the forwarding table framnode at the end of the broken link. This
means that when they calculate their new forwarding tabléllinot use the broken route.

Sometimes other nodes can pass back incorrect routes toé¢hehat lost a link. Consider that¥’s
link to E is broken, on the next cyclé will send its table td saying that it can get t& with a cost of 9.
The simplicity of the algorithm doesn’t & know that the route t& learnt fromC actually goes through
D. This leads to instabilities that take some time to settlerddt is sometimes called theount to infinity
problem

In order to reduce instability a technique calkgalit horizonis used where a node doesn't tell another
about a route that involves it, ie. when copies of a forwagdable are passed on by nad® neighbouw,
remove all entries where the next hoprisSo, for exampleC will never pas®D routes wher® is the next
hop. This can help prevent the algorithm becoming unstédtde lareaks. There is another version where a
route is sent to the neighbour that is the next-hop but itaiastoso it will never be used, this is calleglit
horizon with poison reverse

32

CHAPTER 4. THE NETWORK LAYER (IP)

Chapter 5
More about the network layer

These are a few additional notes about the network layeifHBre is a loose structure: subnets, subnet
masks, CIDR, and routing on the backbone of the internet.

5.1 Subnets and subnet routing

Many Internet networks, in particular type A and type B, canduite large with many hosts, they must
be separated intsub-netsbecause it is not workable to have thousands of hosts ontoységal LAN. In
many ways one administrative internet network éatonomous systenwith subnets is itself ainternet
there must be subnet routers.

5.1.1 Subnet addresses

The first problem is to divide the host address space, this fliikestype A, B and C nets) be a power of two.
Consider figure 5.1. So if thieerts.ac.uk net address i$47. 197. 0. 0, 16 bits give the network address
and 16 bits the host, the host is further divided into a 5 Hitn&i number (giving upto 32 subnets) and an
11 bit host address (giving upto 2048 hosts on each subnet).

a) type B IP address

16 bits 16 bits

1001001 131 100010111110110 031 1110000
147 197 236 240

b) same IP showing subnet address

16 bits =< 5bits—™= =—— 11 bits———=
1001001 131 100010 1‘1 110 1‘1 0 031 1110000
147 197 29 1264

(but NEVER written like this!)

¢) 21 subnet mask

16 bits < B5bits—™= =—— 11 bits———=
1111111 131 1111111/121111/00 030 0000000
255 255 248 0

d) (b) & (c) = 21 network/subnet address

16 bits = 5 bits—™ 11 bits
1001001 131 1000101/1110100 030 0000000
147 197 232 0

Figure 5.1: Subnet addresses

An exampleherts.ac.uk address (B type) is given in part (a) of the picturéy. 197. 236. 240. The
subnet part is shown in part (b), note that this is just a €n32l bit number, it is only by convention that it
is written as four 8 bit numbers in decimal, therefore we daaly this is subnet 29 (the 5 bits), host 1264
(given by the 11 bits), but that would be confusing so it il stiitten conventionally.

33

34 CHAPTER 5. MORE ABOUT THE NETWORK LAYER

5.1.2 Packet forwarding with subnets

The rest of the Internet doesn’t know or care about the sslmreindividual networks, routing from outside
is still to the whole network but all the systems on the nekanoust be aware of the subnets—they must
forward to the correct subnet.

The way that packet forwarding occurs is to comparentsvorkpart of the address with entries in the
forwarding table to select the destination, but what is teevork part?

Itis only possible to sendirectlyto a system on a LAN if it is on the sansebnet so it is necessary to
examine the net and subnet number, at Hatfield the networkwmkt part is 21 bits long, but how does the
IP routing software know? It must be provided witlnaskthat when and-ed with the address leaves only
the net+subnet part which can be compared with the netwarkoess. For the Hatfield subnet the subnet
mask is 21 bits long, when written in conventional IP notaiis 255. 255. 248. 0, sub-picture (c) shows
the binary value of the mask. The result of and-ing the mask thie example addredd7. 197. 236. 240
is shown in binary in (d), in conventional IP notation itlié7. 197. 232. 0.

It is also possible to examine the forwarding table on A48t 197. 236. 240, it shows the local subnet
number and the subnet mask applied to destination addresses

Destination Gat eway Genmask Flags Metric Use Iface
147.197.232.0 0.0.0.0 255.255.248.0 U 0 0 ethl
0.0.0.0 147.197.232.1 0.0.0.0 UG 0 0 ethl

If this machinel49. 197. 236. 240 sends td 49. 197. 239. 69 then the forwarding table will mask the desti-
nation address with the subnet mask. 255. 248. 0 giving147. 197. 232. 0 which will be sent out directly
(no gateway). If, however, the destinatiori#&7. 197. 200. 44 the mask will producé47. 197. 200. 0, this
won’t match the first network destination so the last lind Wé used instead and the packet will be for-
warded to the gateway47. 197. 232. 1. Note that this treats the problem of routing to other subaat to
other networks in the same way, in both cases the packetstbe gateway and it must decide to forward
to another subnet or go out to the Internet.

5.1.3 Another notation for subnet addresses

Note that forwarding with subnets blurs the distinctionden thenetworkandhostparts of an address. If
subnets are used it is not enough to recognise a type A, B od@ssland know what the network address
is. Consequently there is a different way to write networliradses that makes absolutely clear what the
network (maybe with subnet) part is:

full-network-addres®iumber-of-bits-of-network-part

for example the address of the subnet my machine usddis197. 232. 0/ 21 which gives the length of
the network+subnet part. It gives two things: the subneknlasgth 21), ie255. 255. 248. 0, and it gives
the value of the 21 bits—the network number.

5.2 The backbone of the Internet

There is an important concept on the backbone of the intetinet of anautonomous syste(abbreviated
as “AS"), which is a network or group of networks administeosllectively. Autonomous systems are of
two main types:

stub this is an autonomous system, usually of only one networlf) wmly one router connection to the
rest of the internet, a network like Hatfield, or an ISP that gupports direct customer lines,

transit this is an autonomous system, usually made of many netwitrkishas many connections to other
ASs and its primary job is to carry through traffic (usually fwofit),

there are some autonomous systems that are hybrid, caliddhomedthey have more than one connec-
tion to the rest of the internet but they don’t permit thromigtfic.

Figure 5.2 shows an internet with stub and transit ASs. dstto show that the transit ASs on the
backbone of the internet have complicated internal streatansisting of many networks each with its own
internal structure. In addition the geography is not Is=di some long haul telecomms companies have
autonomous systems that span continents. Also notice #tat @itonomous system has a unique 16 bit
network number, an ASN, only transit AS need numbers, theyat assigned to stub ASs. Another thing
to note about the picture is that within backbone networkg some routers are connected to neighbouring
networks, others are purely internal.

5.2. THE BACKBONE OF THE INTERNET 35

? q 0000 %

147.197.0.0/16

211..44.0/24 <‘ ‘”‘g\
DR

'4~ 133.77.0.0/16
L 0
\ "'ﬁ 131.411.0.0/16 &
81.101.128.0/18 \ 99.0.0.0/8

=N

O O
O 235.11.8.0/24 235.11.9.0/24 Oooo @
oDooo Q) Q O

Figure 5.2: The structure of Internet

5.2.1 Routing on the backbone of the Internet

From the point of view of routing all the stub networks aret jdsstinations they do not participate in the
routing, only the transit ASs do internet routing. The jobrofiting on the backbone of the internet is
two-level: firstly there are routdsetweenASs, this routing is calleéxterior routing and then there is the
problem of routingwithin each AS, this is callethterior routing. There need to be two levels of routing
protocol:

e to manage the complexity, any router that handles intereAfimg needs a forwarding table of all the
possible network destinations, currently (2004) about,0®0, to make thousands of routers handle
this and exchange the information would be impossible, stricting it to a few makes it more
manageable,

e because each AS is managed by a different organisation arefthe runs its own internal networks
differently, the routing algorithms within adjacent ASsgii be incompatible consequently the sep-
aration is necessary, and

e because interior protocols within one organisation just flre best route but exterior routing needs
protocols that can implement policies, for example: “dasé AS9999 because it hasn't paid us for
six months”, or “don’t send US government traffic through & iA Iran”.

The interior routing protocols can be whatever the operafttihe autonomous system wants, but OPSF is
the most widely used, it is powerful enough to cope with nogithetween and within the separate networks
that might make up one autonomous system. The current (29Qdjior routing protocol used on the
internet is called BGP-4 (the Border Gateway Protocols #dmetimes calledgath vectomprotocol it has
some similarities withdistance vectolike exchanging table changes with its neighbduusit exchanges
the full paths to destinations not just the next-hops.

5.2.2 How BGP-4 works

Each BGP-4 router has a forwarding table with an entry foryedéstinct network address on the internet,
each entry has a path of AS numbers between itself and thimalésh. The reason for the path is so that
policy decisions can be made by the administrator of the ASsing a route through certain systems and
avoiding others. For example, here is an edited textuabsgmtation of part of a BGP table:

PREFI X: 147.197.0.0/16
FROM 129. 250.0. 232 AS2914
ASPATH: 2914 3356 786
NEXT_HOP: 129. 250. 0. 232

36 CHAPTER 5. MORE ABOUT THE NETWORK LAYER

PREFI X: 147.197.0.0/16
FROM 168. 209. 255. 2 AS3741
ASPATH: 3741 702 786
NEXT_HOP: 168. 209. 255. 2

PREFI X: 147.198.0.0/16

FROM 64.211.147. 146 AS3549
ASPATH:. 3549 209 568 721 1505
NEXT_HOP: 64.211.147. 146

There are no metrics or costs (or in other words the metrilevayes 1), this is because they are meaningless,
each “hop” means crossing a whole AS which could be using atyior routing protocol that attached
totally different meaning to its metrics from any other AS.

Each AS has at least oi®GP speakethat exchanges information with BGP speakers in other au-
tonomous systems; there may be many more BGP routers in anuidy®ball will exchange information
with neighbouring ASs. Each BGP speaker establishes semignent TCP connections to its neighbour
AS BGP speakers to exchange information. If changes ocautable it will pass the changes to its neigh-
bours, they will update their tables to find alternative esuthat satisfy their policies. Note that a whole
AS becomes just one point in an AS route, so from a routingtpefiniew figure 5.3 is equivalent to the
previous picture: As an example of route propogation:

147.197.0.0 222.112.112.0

133.77.0.0

16.0.0.0/8
172.111.0.0

211.199.44.0

81.101.128.0

131.411.0.0

235.11.8.0 235.11.9.0

Figure 5.3: Routing through Autonomous Systems

e ASG6 will tell its neighbours, AS3 and AS5 that it has a netwbrRk. 111. 0. 0,

AS3 will tell AS4, AS7, AS2 that it has a path:

172.111.0.0: AS3, AS6

AS4 will in turn tell AS1 that it has the path:

172.111.0.0: AS4, AS3, AS6

Also, AS5 will tell AS1 it has a route:

172.111.0.0: AS5, AS6

e now AS1 has a choice of routes: [AS5, AS6] or [AS4, AS3, ASE] @will choose one depending
on its site’s policy.

Also notice that the sending of full paths makes the protognle stable, if an AS receives a route that
contains its own number it will discard the route.

The figure 5.4 shows the paths from AS786 (Janet) to othesitr&®s, notice the average AS path
length is only 3 or 4.

5.3. ADDRESS SPACE EXHAUSTION 37

Figure 5.4: AS routes from Janet

5.3 Address space exhaustion

In the 1990s it was realised that the internet would run owdifresses, so a new internet protocol was
agreed to replace the IPv4 protocol which used 32 bit addseSshe new protocol is IPv6 which uses 128
bit addresses, however there has been a delay in moving t@thetandard. In the meantime two measures
have enabled the internet to keep growing:

e CIDR, Classless Internet Domain Routing, which allows iregito occur to network addresses that
do not conform to the standard IP address classes, and

e connection sharingpr masqueradingvhich allow a small network to share (or hide behind) one
internet address.

5.3.1 CIDR

BGP-4 doesn't use the address classes to select networsaadr all destination networks are written in the
subnet formatnetwork-number/length-of-addres¥hen the forwarding table is searched for a destination
address every entry has an implied mask which is used to rhask¢oming address and see if it matches
the table entry. Longer masks are always tested first to erthat small networks are not missed. This
means that a fragment of a type A address can be allocated es aatwork and will be found in the
routing table.

One reason for the exhaustion of addresses was the wasteftdtmn of type A and B network ad-
dresses (7 and 14 bits respectively) to organisations tbatdanever fully use them. CIDR has allowed
some of these to be sold off and broken into smaller netwarges, for example here are some real network
numbers taken from part of one type A address space:

12.0.17.0/ 24
12.0.19. 0/ 24
12.0.28.0/ 24

38 CHAPTER 5. MORE ABOUT THE NETWORK LAYER

12.0.48.0/ 20
12.0.153.0/ 24
12.0.252.0/ 23
12.1.83.0/ 24

This works well but it does have the consequence that BGRretve a very very difficult job to match
an address, the incoming address must be masked with mas&satgel from each (or many) entries and
the result compared with the table entry. It is no longer fisd0 select a network number by looking at
the first bit or the first two bits. Many BGP routers have spdugadware to help them search their tables.

It also means that tables get longer as type A networks ageneated. However using CIDR can in
some cases shorten the tables, consider the previous saetpierk picture, in the AS4 there are two close
type C addresse&35. 11. 8. 0/ 24 and235. 11. 9. 0/ 24. These have the same network prefix if the a 23 bit
mask is used, they are botk35. 11. 8. 0/ 23. This is calledaggregation all other ASs’ routers need only
one entry in their tables:

235.11.8.0/23: ..., AA

because it will match both network addresses and forwanm ttoevards AS4, when the destination is
reached AS4 can use a 24 bit mask to find the correct one.

5.3.2 Connection sharing

There are some addresses called “private” addresses thditecased for “disconnected” networks, they
must not be used on the intern&2. 168. 10. 0 is one of them. Airewall or gatewayhas a single legal IP
address and a private network behind it, see figure 5.5.

192.168.10. 2

Firewall/Gateway

connection
to internet

81.101.163. 108 192.168.10.1 192.168. 10. 3

192.168.10. 4

src: 81.101. 163. 108
dst: 147.197.200. 44

src: 192.168.10. 4
dst: 147.197. 200. 44

Src: 147.197. 200. 44 src: 147.197. 200. 44
dst: 81.101. 163. 108 dst: 192.168.10. 4

Figure 5.5: Connection sharing

The gateway machine translates genderaddress of every packet sent from the private net to the
internet. It changes the private network address to its éeddress and records this imetwork address
translationtable. When reply packets arrive back it looks up the tabteramerses the translation, changing
the destination from its own IP address to the correct peinatwork address.

Chapter 6
The transport layer (TCP & UDP)

6.1 The function of the TCP layer

From “above” application programs require that the tramslager provide reliable streams of data to spe-
cific services on specific systems. The network layer (IR)I0Ww”, provides for theunreliabletransmission

of fixed-sizegbackets, irany orderto specific remotsystemgnot ports) andiny protocol family (not just
TCP). It is the job of the transport protocol software to ggdhe gap.

application

socket, bind, streams of characters
programs accept or to and from ports on
Transport layer $ connect calls $ remote systems

transport protocol code
packets to and from

protocol code
Network layer on remote systems

network protocol code

The functions of the TCP protocol software are therefore:

e create and bind sockets for local applications and awaiheciion request packets from remote
programs,

e to establish connections from local programs to remoteetsck

e from programs, accept streams of characters on establshetections and reliably transmit them
to remote programs using “unreliable” packets providedigyrtetwork layer below.

6.2 End-to-end communication: ports

TCP connections are between processes, IP datagrams aeehdiosts. Therefore the TCP layer must
support distributing the arriving datagrams to the appaterserver program. It usgmrt numbersThis
is not a process number because they are transitory anditveryg “conventional” number that selects a
service, there are fixed numbers for well known services2ikdor FTP, 80 for WWW and 23 for telnet.
Numbers below 1024 are reserved, higher numbers can be ysed/body (but might clash with existing
services, see the filetc/services). A process that provides a service informs the systemthall accept
connections to a given port number. When a remote processttyiask for a service on the machine it
must give the port number aswell as the address and the trdhayper uses this to select which process to
connect to.

TCP must record for every connection which process is boaralort. It uses a unique 4 tuple to
identify all connections:

< src-port, src-ipaddr, dst-port, dst-ipaddr

a server port is obvious but the port of the client is not obgjovhat TCP does is to create a unique port
number for every outgoing client connection. Consequehtine computer makes 2 telnet connections
to the same remote machine each connection will have a eliffel-tuple to identify it, here is part of the
output from thenet st at program:

rabbit(318)$ nore netstat-n. out

Active Internet connections (W o servers)

Pro RQ SQ Local Address Foreign Address State
tcp O 0 192.168.1.2:1513 192.168.1.1:23 ESTAB
tcp 0 0 192.168.1.2:1514 192.168.1.1:23 ESTAB
tcp 32 0 62.252.84.12: 1486 62.253.162.16: 119 CLS W

39

40 CHAPTER 6. THE TRANSPORT LAYER (TCP & UDP)

6.3 TCP message format

In order to create the reliable data stream the TCP layerasgds messages with its “peer”. These mes-
sages are sent in IP datagrams and have a fixed format. Thegeddo establish connections, send data,
send acknowledgements and close connections.

0 4 10 16 24 31

SOURCE PORT DESTINATION PORT

SEQUENCE NUMBER

ACKNOWLEDGEMENT NUMBER

HLEN | RESERV CODES WINDOW
CHECKSUM URGENT POINTER
OPTIONAL OPTIONS PADDING
DATA

6.4 Streams in packets

The transport software, if it only has a packet-based nétbayrer, must accept characters from the layer
above and send them in a sequence of packets. However becawste area networks there are alternative
routes the first packet sent might arrive after the secondsoni®r checking it will include a sequence
number. In addition the network link (IP) can only send to mote system so the transport layer must
include the sender and recipient port numbers.

In the following picture the application on the right is atfeting to send the stream of characters:
abcdef ghi j k to a program on the system on the left:

application s
a K |application
Transport layer\ € Transport layer |
Network layer Network layer

i IP |dest| src |seq| qof | = IP |dest| src | seq
'stuff | port | port| 4 'stuff | port | port| 7

6.4.1 Problems

There can be problems: (i) the packets can go out of sequ@igmckets might get lost and never arrive,
(iii) they might arrive but be corrupt, and (iv) packets mtgirive faster than the receiver can deal with
them. All of these are problems that must be solved by thespram (TCP) level software. The solution is
to require acknowledgement of receipt of the packets anettamrsmit them if they are not acknowledged.

6.5 Packet acknowledgement & retransmission
The simplest solution is that the sender can only transraintéxt packet when the previous one has been

acknowledged (ACK-ed):

sender tive receiver

send 1 \
getl

/ send ack 1
getack 1
send 2 \
get 2
/ send ack 2

get ack 2

6.6. PACKET “WINDOWS”, THE CONCEPT 41

Whenever a packet is sent a timer is started, if a timeoutrsdoefore an acknowledgement is received
(which suggests a lost packet) the sender must re-trarisenist packet.

However this is very slow and wasteful, there might be sdymekets to send but they cannot be sent
until the ACK is returned, that means waiting for the full R{réund trip time) for the packet to reach the
receiver and the ACK to get back.

6.6 Packet “windows”, the concept

An improvementis to havewindowof packets awaiting acknowledgement. Both ends will agremeow
size ofn packets (in the next exampte=3), this is the number of packets the sender can send widrout
acknowledgement. In the following diagram the sender s8mutsckets but must then wait for an ACK for
packet 1 from the receiver. As soon as it gets the ACK it caricoa to transmit packet 4.

sender receiver
send 1
send 2

send 3 get 1. send ack 1

get 2, send ack 2

getack 1, send 4 get 3, send ack 3

getack 2, send 5

get ack 3, send 6 get 4, send ack 4

get 5, send ack 5

N

get ack 4, send 7 get 6, send ack 6

The additional overheads of this are that the sender muptdlethe packets sent but not yet acknowledged.
Packet windows also cope with out of sequence packets. &hisres that the receiver will save packets
got ahead of the sequence number it expects and furthet thatsn’'t acknowledge until it has got all the
ones up to the current sequence number.

sender receiver
send 1
send 2

send 3 get 1. send ack 1

get 3 out of seq

getack 1, send 4 get 2, send ack 3

get ack 3, send 5 get 4, send ack 4

send 6

iy

get ack 4, send 7 get 5, send ack 5

6.7 Packet “windows” in TCP

TCP does not use a packet count for its sliding window, it tisesiumber of bytes in the stream of data it
is sending; the acknowledgements are not for packets, tiecpareceipt of all bytes upto a position in the
sequence. Depending on the speed of generation of dataenthttimum packet size a sliding window of
4000 bytes might go in 40 packets or 1000 packets. Howevedydhie operation is exactly the same as for
packet based windows.

42 CHAPTER 6. THE TRANSPORT LAYER (TCP & UDP)

time
host 1 $ host 2

Sen~
send 2000-2499 242000
Seq~
send 2500-3499—=34=2500 ACK 2500
send 3500-3999
wait...

get ACK 2500 so
send 4000-4499

ACK 3500
ACK 4000

current window size=2000 bytes

In the above picture the sequence at the start is 2000. Thaowisize is 2000 bytes, sent in 3 packets:
500 bytes, 1000 bytes and 500 bytes, then the sender hadttantiathe acknowledgement of the bytes
2000-2499 (they were acknowledged by sending the numb&eaféxt byte expected: 2500). When the
ACK was received the sender could send upto 500 more bytes.

6.8 End to end flow control

If the receiving host on one connection cannot keep up wighrétte of arrival of packets because it has
limited buffer space and its application isn’t consuming tfata fast enough then it can ask the sender to
reduce the window size so it will not receive so much dataiit, if necessary, reduce the window to zero.
It does this by using the WINDOW field in ACK packets.

6.9 Network congestion

DO NOT confuse with flow control. Sometimes Internet IP packeters get overloaded and congested,
if that happens they will have to discard some packets. Waltdchappen, if the sliding window packet
retransmission software is too simple, is that it will imrizdly respond by retransmitting all the lost
packets. This will make the congestion worse! All “good” ilmmentations of TCP should respond more
gently—if packets timeout then the TCP sender will redueextndow size and delay before retransmitting,
if it still has timeouts it delay even longer. It will only stancreasing the window size and cutting the delay
when it starts receiving acknowledgements again.

6.10 Opening and closing connections

To open a TCP connection the server execlitss en andaccept , this causes the TCP layer to “passively”
open a connection, later a client executesnect, this is an “active”. The TCP code carries out a 3-way
hand-shake:

) time)
active passive

S

send YN Seq=y
SYN
-y get SYN
et SN sed send SYN
LSYN RC and ACK
ge
and ACK ACK Y+1
send ACK

get ACK

e A special packet flag is used SYN,

e each participant must select a random starting numberdeeijuence number (reduces risk of acci-
dental capture of old packets from previous connections),

¢ the 3 messages ensure both sides know the connection ifiststdba lost SYN or ACK will cause
retransmission.

Closing a connection is even more complicated:

6.10. OPENING AND CLOSING CONNECTIONS 43

time
initiator ¢ responder
close —FIN seqs,
from app \
get FIN
ACK ¥+l send ACK
get ACK 00 omej,“\‘/ai 7 tell app
ta ca st O°=-
datd >=- -~
| 9e
this side
s 0=y closes
wait..
ACK y11

e the close sequence uses a special flag: FIN,
e aclose is only complete whdiothends agree to close it,

e a connection is full duplex, one side might close its sendimg of a connection if it has no more to
send, but the other side might continue to send to it untl finished,

e delays are needed to guarantee that no final packets are sivenaeund and might be picked up by
a later connection,

¢ the intermediate ACK, from responder, even though it is eadly to send a FIN is to prevent the
initiator resending the FIN.

44

CHAPTER 6. THE TRANSPORT LAYER (TCP & UDP)

Chapter 7
Java Network programming with sockets

The “socket interface to TCP/IP dates from the early BSD Unix systenat fivst implemented TCP/IP
about 1980. It is the primary interface between applicaimgrams and the transport layer. The transport
layer is usually in the kernel of operating systems wheragken level protocols are implemented by
programs so theocketinterface is usually a set sf/stem call¢although on some systems like Sun Solaris
or Windows Winsock it is a library with slightly differentansport layer system calls below). In Java the
socket library provides a slightly higher level view of setkbut is still quite close to the underlying system
calls.

7.1 Addressing

A server must offer a service onpart address, and a client must connect to the servessaddress and
port.

7.1.1 The host address
Is a 32 bit number. Itis usually represented as 4, 8 bit numbgparated by dots, for example:

147.197. 205. 101

all TCP/IP socket connections only use the IP number, threre@host names in TCP/IP (they are provided
for users by a higher level application protocol). Howeveder certain circumstances Java allows names
or numbers to be used.

7.1.2 The port number:

The port number is used to select a process on a host. It iss@éational” number that selects a service,
there are fixed numbers for well known services like 21 for FBPfor WWW and 23 for telnet. Numbers
below 1024 are reserved, higher numbers can be used by angiaadnight clash with existing services,
see the filgetc/services). A process that provides a service informs the system thnli iaccept connec-
tions to a given port number. When a remote process asks @wecs on the machine it must give the port
number aswell as the address and the transport layer usds #@lect which process to connect to.

7.2 Socket usage is asymmetric

No matter whether the network applicationdéent-serveror peer-to-peemwhenever one program must
contact another there is asymmetry in the use of socketswingait to accepta connection and another
mustconnecto it.

7.3 Socket streams and datagrams
There are 2 forms of transport level network interprocesmeaction with the TCP/IP family of protocols:

TCP a bi-directional stream connection. The stream is “realthich means the underlying network
level requires acknowledgement of each packet sent in tearst if any are lost then they are re-
transmitted transparently to the process using the stream.

UDP a connectionless single message, or datagram. There isanargee of delivery of a UDP datagram
(although in practice nearly all packets get through).

7.4 Unix sockets system call interface

A socketappears to a user process as a file descriptor on wieads andw i t es can be performed. There
are various calls to set up a connection on a socket and use it:

fd=socket (proto, type, ?) creates an unconnected socket,

45

46 CHAPTER 7. JAVA NETWORK PROGRAMMING WITH SOCKETS

bind(fd, struct sockaddr *ptr,|en) associates a port number with a socket. It is used by a process
to inform the operating system it will deal with any connens to a port and provide the service.

listen(fd, conn_g) used by a process to indicate that it is prepared to receinpamions, that it is a
server. It doesn’t waiaccept doesthat...

fd2=accept (fdl, struct sockaddr *sender,|en) thiscauses a processtowaitforaconnection. When
if arrives the connecting process’s address is returndueisdckaddr address structure. Also a new
file descriptor is created that can be used to talk to the repraicess,

connect (fd, struct sockaddr, | en) this is used by a process to make a connection on a socket to an
address contained in tlseckaddr structure.

Once the connection is established characters can bemigttnd read from it using threead() andwite
and other system calls.

Notice that the asymmetry of the client server communicaisoreflected in which system calls are
used. This is is illustrated in the picture 7.1.

Server
socket()
bind()
listen()
accept() Client
process blocks socket()
until a connection
is made from a client d/
et connect()
== write()
read() — - J/
process request make reuest

lots of reads & writes

V

T read()

lots of reatsz & writes

write() - _

Figure 7.1: System call sequence

7.5 Java sockets API

The BSD sockets are available in Java throughjdtia.net.* package. There are two main class&xket
for connected sockets, asdr ver Socket for listening sockets.

e Server Socket when created it is bound to a port and it will receive incomioginections to that
port. It uses the BSD callsocket , bi nd andl i st en. The main operation is:

connSock = serverSock. accept () ;

7.6. ACLIENT EXAMPLE 47

which waits for an incoming connection. When one arrivestitims an ordinargocket connected
to the remote program.

e Socket a connected socket, a bi-directional communication strbatween two possibly remote
programs. There are 2 ways to create a connesdekket :

— get one back from 8er ver Socket accept,
— to create one and attempt to connect to a remote system:

Socket sock;
sock = new Socket (host nane, port);

which will attempt to establish a connection to the remoteyphost nane on theirport .

e whichever way a connected socket is produced there are detboget an nput St reamand an
Qut put St r eamfrom it usingget | nput St r eamand arget Qut put St r eamrespectively. These streams
are exactly the same as the streams returned when you oprafilg they can be used in the same
way withr ead andwr i t e. Exceptr eading andwr i t eing these streams will receive and send data to
the other program to which the socket is connected.

7.6 Aclient example

The following example just illustrates a simple client praxg, it takes as arguments: an internet address
and a WWW page name.

inport java.io.*;
import java.net.*;

public class HITPGet2 {
public static void main(String[] args) {

final int BUFSIZ=8192;

Socket socket = null;

Qut put Stream toServer = null;

I nput Stream fronServer = null;
int rc, port =0;

String request;

byte buffer[] = new byte[BUFSI Z];

if(args.length == 0) {
System out. println(
"Usage: HTTPGet2 server file [port]");
Systemexit(1);

} else if(args.length == 3) {
port = Integer.parselnt(args[2]);
} else {
port = 80;
}
try {

socket = new Socket (args[0], port);
toServer = socket.getQutput Strean();
fronBerver = socket.getlnputStream);
request = "CGET " + args[1] + " HITP/1.1\r\n"
+ "Host: " + args[0] + "\r\n"
+ "Connection: Close\r\n\r\n";

toServer.wite(request.getBytes());

rc = fronBerver.read(buffer, 0, BUFSI 2);
while (rc > 0) {
Systemout.wite(buffer,0,rc);
rc = fronBerver.read(buffer, 0, BUFSI 2);
}
toServer.close();
fronBerver. cl ose();
socket. cl ose();

48 CHAPTER 7. JAVA NETWORK PROGRAMMING WITH SOCKETS

} catch (UnknownHost Exception e) {
Systemerr.printin("Can't find: " + args[0]);
Systemexit(1);

} catch (1 CException e) {
Systemerr.printIn("l1Oerror");
Systemexit(1);

}

}
}

The program is in the fil(ITTPGet2.java. This program will act as a dumb client. It will send a request
to a remote http server. To compile and run the program:

sal ly(373)$ javac HTTPGet2.java
sal1y(374)$ java HTTPGet2 slink.feis.herts.ac.uk /tiny.htn
HTTP/1.1 200 K

Date: Sun, 16 Mar 2003 23:32:10 GV

Server: Apache/1.3.26 (Unix) Debian GNU Li nux
Last-Modified: Wed, 08 May 2002 23:45:10 GVl
Accept - Ranges: bytes

Cont ent - Lengt h: 492

Content-Type: text/html; charset=i so-8859-1

Connection: close

<H1> Exanpl e Page </H1>
This is the first paragraph, it is terninated by a

which will gettiny.html from slink.feis.herts.ac.uk. Notes:

o first it checks the command line arguments, if there is nopamber provided the program will use
80,

¢ all the code to open the connection and read and write thersrenight produce horribkxceptions
so the body of the program is surrounded by{. . }catch{. .},

o first attempt to connect to the server by creating a new sackieg the remote system name (or
number) and the port:

socket = new Socket (args[0], port);
if this fails an exception will be raised,
e now extract the input and output streams:

toServer = socket.get Qutput Stream();
fronBerver = socket.getlnputStrean();

e now build a full HTTP file request as a stringriequest ,
e and send it to the server:
toServer.wite(request.getBytes());

note that since it is a stream we uge t e which requires an array of byteget Byt es will get such
an array out of the stringequest . Now the message is sent to the server,

o if the server exists and if it reads the request, and if itkhiour request well-formed and if it has
such a file then it will send it down the same connected sodketmustr ead the socket to get the
returning file:

rc = fronServer.read(buffer, 0, BUFSI 2);

read puts the characters read into a pre-allocated array of bltge callecbuf fer. The return
result, putinr c, is the number of characters actually pubiri f er . The client cannot know how big
the file is (if it's an MPEG video it might be megabytes), soeiads in “chunks” of 8Kk, that is why
there is a loop, that reads and then printSytet em out ,

e when we can read no moreg(> 0 is not true) we close everything and finish.

7.7. ACUTDOWN VERSION 49

7.7 A cutdown version

This is the same as the previous version but all the checKirgguments and exception handling is re-
moved. Not good, but maybe it is easier to focus on the neteode:

inport java.io.*;
inport java.net.*;

public class HTTPGetO {
public static void main(String args[])
throws Exception {
Socket socket = null;
Qut put Stream toServer = null;
I nput Stream fronServer = null;
int rc, port = Integer.parselnt(args[2]);
String request;
byte buffer[] = new byte[8192];

socket = new Socket (args[0], port);
toServer = socket.getQutputStrean);
fronBerver = socket.getlnputStream);
request = "GET " + args[1] + " HITP/1.1\r\n"
+ "Host: " + args[0] + "\r\n"

+ "Connection: Cose\r\n\r\n";

toServer.wite(request.getBytes());

rc = fronBerver.read(buffer,0,8192);
while (rc > 0) {
Systemout.wite(buffer,0,rc);
rc = fronBerver.read(buffer,0,8192);
}
toServer.close();
fronBerver.cl ose();
socket. cl ose();

}
The program is in the fileITTPGet0.java.

7.8 Client server exampkxho

This example consists of a server and a client. They do vitlgy éixcept show how a stream connection is
set up. The server awaitadcept) a connection, reads lines from the client and immediatehds them
back again. When the connection from a client is closedi(& return fromr eadLi ne) the server loops to
accept the next connection from another client. The client makesraection and then loops each time:
reading from the user, writing this text to the server, ragdhe server’s response (which should be the
same) and then printing it. The server:

inport java.io.*;
inport java.net.*;

public class EchoServer {
public static void main(String[] args) {

Server Socket serverSock = null;
Socket connSock = null;
PrintWiter out = null;

Buf f eredReader in = null;

int echoPort = -1;

String froniser;

if(args.length 1= 1) {
Systemout. println("Usage: EchoServer port");
Systemexit(1);

} else {
echoPort = Integer.parselnt(args[0]);

50 CHAPTER 7. JAVA NETWORK PROGRAMMING WITH SOCKETS

}

try {
server Sock = new Server Socket (echoPort, 10);

while(true) {
connSock = server Sock. accept();
Systemout. println("Got connection from"
+ connSock. get | net Addr ess() . get Host Nane()) ;
out = new PrintWiter(
connSock. get Qut put Strean(), true);
in = new Buf f eredReader (new | nput StreanReader (
connSock. get I nput Strean()));

fromdser = in.readLine();

while (frombser !'= null) {
out.println(fronser);
fromdser = in.readLine();

}

out.close();
in. close();
connSock. cl ose();

}
} catch (1 COException e) {
Systemerr.println("EchoServer: error opening,"
+ " accepting or reading socket");
Systemexit(1);

}

The program is in the fil&choServer.java.
e notice that the server loops forever:
while(true) {

nearly all servers are like this, deal with one request aod to “accept ” the next,

e this is a server so it must creaté&er ver Socket bound to a port number. The port number to use is
provided as an argument. It then waits by callaegept ,

e this network program reads and writes lines not single dtars, it could have used characters but |
thought a bit of variety would be fun. So it has to creaBei&f er edReader and aPrintWiter,

e it then loops reading lines from the client and writing theeck again. When it getsul | from
r eadLi ne (which would be end of file for a file) it means the client closed connection.

Now the client, this is a cutdown, non-error checking one:

inport java.io.*;
inport java.net.*;

public class EchoCient0 {
public static void main(String[] args)throws Exception{
Socket echoSocket = null;
PrintWiter out = null;
Buf f eredReader in = null;

echoSocket = new Socket (args[0],
I nteger.parselnt(args[1]));
out = new PrintWiter(
echoSocket . get Qut put Strean(), true);
in = new Buf f eredReader (new | nput St reanReader (
echoSocket . get | nput Stream()));

Buf f eredReader stdln = new
Buf f er edReader (new | nput StreanReader (Systemin));

7.9. THREADS 51

String userlnput;

userlnput = stdln.readLine();

while (userlnput !'=null) {
out.println(userlnput);
Systemout. printIn("echo: " + in.readLine());
userlnput = stdin.readLine();

}

out. close();

in.close();

stdln. close();

echoSocket . cl ose();

}
}

The program is in the fil&choClient0.java. This is very similar ttHTTPGet.java except, of course, it
reads from a user, writes to the server, reads the respodshsplays it. To test the client server programs:
compile them both, run the server with an arbitrary port nemb

tink(257)$ java EchoServer 3333
Cot connection from 147.197. 236. 188

Then in anothexterm run the client:

slink(258)$ java EchodientO tink 3333
hel I o
echo: hello

the line *hel | 0” is read from the user, sent to the server returned by it, fiead the socket by the client
and then printedécho: hel | 0”. Unlike the server the client only deals with one sessibonly has one
loop to read and echo, when the user finishes (by typing cledtttd” on Unix) the loop finishes and the
program finishes.

7.9 Threads

A threadenables one part of a program to be executed logically inllpaveth another part. If we create
a new thread and start it then it will share CPU time with thempsogram (also a thread) and any other
threads. There are two ways to write Java threads (ijpdementheRunnabl e interface, or (ii) to inherit
from theThr ead class. We will show the second because it is slightly simpler

In order to write a thread it is necessary to provide (i) a tmresor to set any attributes, and (ii) a single
function:publ i ¢ voi d run() which will be the separately scheduled code. Here is a verglsiexample
that declares one thread class, then creates and startsriveal tobjects:

inport java.net.*;
inport java.io.*;

class Loopy extends Thread {
String nessage;

Loopy(String mess) {
nmessage = ness;

public void run() {
while(true) {
System out. println(message);

}
}
}
public class ThreadsO {
public static void main(String[] args) {
Thread threadl = new Loopy("One
Thread thread2 = new Loopy(" Two");
threadl.start();
thread2.start();

~

}
}

52 CHAPTER 7. JAVA NETWORK PROGRAMMING WITH SOCKETS

The program is in the fil&hreads0.java. When the threads are started they execute thairroutine

for ever repeatedly printing out their message. If this impded and run it can produce almost any output
sequences deoending on how the threadselreduledwhich means how they are allocated a share of the
CPU time. Here is part of one sequence:

Two

Two

Two

Two
One

Two
One

Two
One

7.10 A concurrent server

If a server has to deal with a long transaction for a clienpiving lots of waits for reading and writing files

and sockets, it will be unable sxcept new requests. One simple solution is to change the servéaso t
after theaccept it creates a “childthread This new thread uses the new “connected” socket to setvéice t
clients request, and then dies. The parent thread goes tvackdpt to await another connection. This is
called aconcurrent server

inport java.io.*;
inport java.net.*;

class ServiceThread extends Thread {
Socket conn;

public ServiceThread(Socket ¢) {
super ("EchoServer service thread");
conn = c;
}
public void run() {
String fronmlser;
PrintWiter out = null;
Buf f eredReader in = null;
try {
Systemout. println("CGot connection from"
+ conn. get | net Addr ess() . get Host Nane()) ;
out = new PrintWiter(conn.getQutputStrean(), true);
in = new Buf f er edReader (
new | nput St r eanReader (conn. get I nput Stream()));

fromdser = in.readLine()
while (frombser !'= null) {
out. println(fronlser);
fromdser = in.readLine();

1
’

}

out.close();
in.close();
conn. cl ose();

} catch (1 COException e) {
Systemerr.println("EchoServer: socket error");
Systemexit(1);

}

}

public class EchoServerConcO {
public static void main(String[] args)throws Exception{

Socket connSock = null;

int echoPort = Integer.parselnt(args[0]);

Server Socket server Sock = new Server Socket (echoPort, 10);
Servi ceThread serve = null;

while(true) {

7.10. A CONCURRENT SERVER 53

connSock = server Sock. accept();
serve = new Servi ceThread(connSock);
serve.start();

}
}
}

The program is in the fil&choServerConcO0.java.

e After theaccept a new thread is created and given the connected sockaSock,
e the new thread is nowt art ed, and runs in parallel with other threads amdn,
e the parent (main) thread loops to docept again,

e the child thread runs and handles the client transactioenvihis is finished it reaches the end and
terminates.

54

CHAPTER 7. JAVA NETWORK PROGRAMMING WITH SOCKETS

Chapter 8
WWW, HTTP, HTML, CGI and PHP

These notes are an introduction to how the World-wide-wetkadl he treatment of topics is not uniform,
the notes are meant to survey nearly all aspects of the Wein anldlition a more detailed treatment of CGI
programs work. The material is organised as follows:

e A brief description of HTML, used for writing Web files,
e Something on HTTP,

e Quite a lot about CGI, the way in which programs are executea web server.

8.1 Overview of WWW

The World-Wide Web is based on a simple protocol called HTA& &allows browser programs such as
netscape, kfm or internet explorer, to fetch files from remote server programs, for exanapiache, and

to view them (the files are often callpéges which is odd because they are files!). WWW files are named
by URIs which have a special format that includes the remeitees name and the name of the file (note:
a URI is sometimes called a URL). The files can be written in eci& document description language
called HTML that is interpreted by the browser to give an alipg visual effect on a graphical display.
The HTML files can contain embedded URIs that refer to other Whiles, these are usually highlighted
by the browser and if selected will cause retrieval of the edfile. Such references are sometimes called
hyper-links it is the use of these that produce a “web” and give the webT®TURIS, and HTML) its
power.

Example Page file.htm|

This is an example page. -

This is a new paragraph- 1 www.xy.net

alink --~ Server program,

[}

' render page o:n screen C @

|
Client program
eg. netscape

fetching tiny.html
from blink

<Hl> Exanpl e Page </H1>

This is an exanpl e page

<p>

This is a new

Client request par agr aph.

<p>

a |ink

Server System, blipk.cs.herts.ac.uk

Server program,
eg. apache

Client system

Server response and file.

Figure 8.1: A client and a server

Figure 8.1 shows a client program requesting a fitg,.html from a server system. The file is a text
file on the server’s disc, it contains source HTML. The clibas sent an HTTP protocol request to the

55

56 CHAPTER 8. WWW, HTTP, HTML, CGI AND PHP

server, the server sent the file to the client, and the cliesgnam fetscape) has interpreted the HTML
and displayed the result on the client computer’s screea fildtiny.html contains aHREF, a hyper-link:

 a |ink

that if selected will cause the browser to retrieve a file fremwv.xy.net.

8.2 HTML

Any type of file can be retrieved by a browser from a server:gesa sound files, text files, or PDF; the
action taken depends on settings in the browser and its digab For example most browsers can interpret
JPEG files themselves but with an MPEG movie they will exealgeparate viewer program.

However, by far the commonest content of web files is HTML. HT M a mark-uplanguage, which
means it describes the layout of pages that can be intedi@roduce a readable image. Other examples
of mark-up language aregX, IATEX, SGML (which is a meta markup language) and XML. Nearly all
web browsers can interpret and display HTML, though thegesame text-oriented browsers likex that
interpret HTML but only display the results in a non-bitmaggisplay form.

HTML is a simple language:

e ordinary text is interpreted as itself and rendered in threeru font and size,

e anything surrounded by. . > brackets is a formatting instruction.
Many formatting instructions “bracket” the text they appdy For example:

<Hl1> This is a Heading </HL>
Will cause the texthis i s a Headi ng to be set as a “level one heading”, meaning bold and largecélot
that the formatting is introduced BH1> and ended by the same directive with in front: </ H1>.

8.2.1 HTML file example

These notes are not intended to provide a proper introdutti¢iTML, they are just an overview so the
simplest way is by example. The result of looking at the filthwietscape is presented first followed by
the text of the file:

File Edit Wiew GO Communicator

Back Fomyand Reload Harne seanch DMletscape

F " Bookmarks A@ Location: ;[nttp:_ffluca]_host, {l

=] What's Ralated

T 4 Members ¢ WebMail ¢ Connections ¢ BizJournal o SmartUpdate 4

Tux’s web page
This is a simple example web page, it contains a picnrre, & list and & fewr lnks.

Here iz o picture of Tux:

Some of Tux™s links in a st

& Lo Mreshmestnet for news about new Linux software,

& htp:ismasite orguk!is a sike with copies of the files from many other sites,
® limxgazette com Linux Gazere Bronr Page,

® lindinks. corn Lirny Links - The Linnx Portal Site.

= O e)

8.3. URIS AND WHERE FILES ARE KEPT 57

The above picture used the URittp://localhost/example.html to retrieve the file from the server on my
own machine buhttp://blink.feis.herts.ac.uk/example.html should get a very similar file. Now the source
of the file:

<body bgcol or =" #FFFFFF" >

<hl align="center"> Tux's web page </hl>

<p>

This is a sinple exanple web page, it contains a picture,

alist and a few links.

<p>

Here is a picture of Tux:

<p>

<inmg w dt h=128 hei ght =150 src="Pengui nMascot.gi f">

<p>

Sone of Tux's links in alist:

 http://freshneat.net
for news about new Linux software,

 http://sunsite.org. uk/ </ A>
is asitewth copies of the files frommny other sites,

 |inuxgazette.conk/ A>
Li nux Gazette Front Page,

 |inuxlinks.conk/A>
Li nux Links - The Linux Portal Site

</ body>
Notes:
1. The language is not case-sensitiidl> means the same &h1>.

2. The file contents are surrounded<bpdy> .. </ body>; the opening declaration is followed by an
option that sets the background cologloody bgcol or =" #FFFFFF" >. Other options can be set.

3. The<h1> surrounds text that will be set large and beaib2> is slightly less large, etc. Like tHeody
declaration it can be followed by an option, in this case tutieethe heading.

4. The<p> starts a new paragraph, it is one of the few directives thasd® need a matching “slash”
terminator.

5. Images can be included using #ierg .. > directive. Once again there is no terminator.
6. The.. </ ul > is a “bullet” list. Each item of the list is introduced by i >.

7. The<a..>..</ a> is a link. TheHREF selects the destination of the link, the rest of the text keetw
<a ..>and</ a> is displayed underlined so:

 freshneat </ A>
will display: freshmeabn the screen, which will, if clicked, retrieve the index fflem fresh-

meat.net.

8.3 URIs and where files are kept

8.3.1 URI
URI stands for universal resource identifier, they are ateno€alled URLs but according to the HTTP
standard they are URIs and there is no important differeflce format is:

scheme// hosthamég : port] / path
whereschemés the protocolhtt p orft p, hostnamean be a fully qualified domain name or a numeric IP
address, the port number is optional and if omitted defaal&0, andpathis a /" separated list of names
selecting the required file or directory. For example:

http://hunbol t.nl.linux.org/Linux-MMinternals. htm

The URI is taken apart by the browser which uses the schereddotshe protocol, the hostname and port
to make the connection so all it actually sends in a requéleipath.

58 CHAPTER 8. WWW, HTTP, HTML, CGI AND PHP

8.3.2 Where files are stored

The server program chooses how to interpret the path. Usitdias a special directory tree where all
its files are kept and the requested path is prefixed by that. “fidot” can be anywhere, some common
examples arethome/www, /usr/local/htdocs. So the requested pathinux-MM/internals.html might
map to a host fildhome/www/Linux-MM/internals.html.

Some servers allow files to be requested from users “homectiries. If the path contains alfsernamé
this is interpreted as a request for a filaisernamis home directory. To avoid remote access to all a user’s
files the request is usually mapped to a sub-directory of ttmehdirectory calleghublic_html, so:

http://blink.cs. herts.ac.uk/~aa9zz/ny. htm
might be mapped to:
/ hone/ st udent / aa9zz/ public_htm /my. ht n

8.3.3 Directories anthdex.html

Very often URI request paths actually name directories. Miheeturned in these cases? Some servers
will look for a file calledindex.html in the named directory and return that file. So the simple esgju
htt p: / www. w3. or g/ will retrieve a file calledindex.html from the “root” of www. w3. or g's server file
hierarchy. If a directory is named and there isindex.html then some servers will read the directory
contents and turn it into HTML form with each name turned iato*href” and return that.

8.4 HTTP

HTTP is the protocol used to communicate between a clientasetver. HTTP defines what characters
can be sent along the socket stream connection.

The basic protocol isequestandresponse The server accepts a connection and the client sends a
request command line, various optional MIME lines and thblaak. The server must then send a response
line giving a success or failure code, followed by additiamational lines, then the blank line and finally,
if a file was successfully requested, the file contents (wdretfT ML, GIF or whatever).

That's it. Except to look at a request and a response...

Using a “dumb server” it is possible to capture and print tiHé&'R sent by clients. The program binds
a high numbered port, say 8080, and accepts connectiohenljust reads all the data from the socket and
prints it on the standard output. Then it just closes theasbakd causes the client to report an error.

This is the HTTP request and options sent froetscape when it was given a URI like:

http://1ocal host: 8080/ abc. ht m
The standard output from the “dumb server” was:

GET /abc.htm HITP/ 1.0

Connection: Keep-Alive

User-Agent: Mzilla/4.7 [en] (X11; I; Linux 2.3.34 i686)

Host: | ocal host: 8080

Accept: image/gif, imgel/x-xbitmap, image/jpeg, inagel/pjpeg, image/ png, */*
Accept - Encodi ng: gzip

Accept - Language: en

Accept - Charset: is0-8859-1,*, utf-8

There are only 2 really essential parts:

1. the requestline. It include the command, in this ¢ca@3g the request file name, herebc. ht M and
the protocol version.

2. the other essential part is the blank line at the end.

The other lines are optional. Some are very important anfiiLiset are not obligatory.

Similarly it is possible to examine thesponsegrom servers by using a “dumb client” that sends a
request to a server and prints out the complete responss.wilhshow the HTTP response line with the
status code, various optional lines, a blank line then theéexed file if any. It is not possible to see the
reponse from servers using a normal browser because theggsrthe response lines and don’t show them.
The exampl@apache responded to:

GET /tiny.htm HTTP/ 1.0

8.5. CLIENT AND SERVER ADDITIONAL SERVICES 59

By sending back:

HTTP/ 1.1 200 OK

Date: Wed, 19 Jan 2000 01:43:00 GMr

Server: Apache/1.3.9 (Unix)

Last-Mdified: Sun, 09 Jan 2000 23:41:23 GVl
ETag: "d112-1lec-38791ca3"

Accept - Ranges: bytes

Cont ent - Lengt h: 492

Connection: close

Cont ent - Type: text/htm

<H1> Exanpl e Page </H1>

This is the first
paragraph, it is termnated by a

8.5 Client and server additional services

Very early in the history of the web it was discovered that pesurning HTML pages was very limited.
People wanted to add more computational power so that useld interact with the web. One of the first
such additional features added were CGI programs that &llowser requests to cause programs to execute
on the web server. This revolution enabled people to devedapch engines, database access through the
web, and sites providing e-commerce. In addition more @signg web pages were provided by allowing
programs, sent in web pages, to be executed by the browser.alldtwed animation and other dynamic
features. There are different forms of these extensionetofunctionality:

e server-sidefacilities, these allow programs to be executed on the welesghat can access and
update databases or carry out financial transactions. Hnersvo main ways this is now provided:

— CGI programs, these can be written in any language, andinngtrtain security limits, carry
out almost any task. When a client request is sent the URI aarera CGI program rather than
an HTML page, it is then executed. They are very powerful lamtlze hard to write.

— server-side includesr SSI, these are HTML files with special additions thatwaltther files
to included. This facility permits, for example, a site teusandard headers and footers on
all their pages and to change the appearance of all of thehoutithaving to edit them all
separately. However they do not have the power to executgaumes, they provide a different
functionality.

— executable web pagealso calledactive-server pageShese consist of HTML and a program-
ming language interleaved in the same file (or page). Whembihese files is named by a URI,
sent with a client request, the server program itself (orexisp interpreter run by the server
program) “executes” the page. This “execution” involvesdirg any HTML straight back to
the client browser and executing any bits of the programrfanguage found. This allows a
simple way of sending back HTML and and at the same time ekxgcabmmands that can for
example access a database.

There are alternative languages available, some examgles a

x PHP, an open source, free system that works with the Apachesarmeer on any platform,
x Microsoft's ASP which uses VBScript, and
+x JSP, Java Server Pages.

e client-sideservices, these involve extensions to, or commands in, dlHfile sent to the client's
browser. When the browser encounters these it will “exéciiiiem. This has entirely different
advantages from the server side facilities: they can be wsadimate pages, they can check user’s
input before it is sent back to the server, and many othersta3key cannot be an alternative to
central server programs, they are executed in the browhereTare two forms:

— languages that can be embedded in the page and executeddvgurser, Javascript (not related
to Java) is the most widely used example of this,

— special purpose languages or programs that need a browsgirpto interpret them. Flash is
one example of this as is Java.

In the following sections some of these will be examined dther. First, CGl, and then some PHP, a bit
of SSI and lastly a tiny bit of Javascript.

60 CHAPTER 8. WWW, HTTP, HTML, CGI AND PHP

8.6 Server side: using forms for interaction

Before starting on the details of CGI or PHP this section wilmmarise how “executable” server-side
features are invoked and how users interact with them. Imlynell cases server-side programs require
some input from the user, this must be sent from the browseg@mmonest method is to use the HTML

form. A form displays boxes or buttons on the browser scrbanthe user can fill in. There is a button

to send the values from the form back to the server along wittRhas part of an HTTP request. The

requested file (page) is usually an executable (CGI, PHP &)A8e server program executes it and gives
it the input from the form. The executable will run, carryiogt its task, and send some HTML back to the
browser as a response. See figure 8.2. Here is an example of simple HTML file with a form in it:

server client browser

initial request

la-" . HTML page with form
< <HTM_>

<FORM ACTI ONE user fills in form fields
<| NPUT NAME=

RS N PN 7T

request to execute -
CGl with T
formdata .-~

CGl program /G:_l”/ cgi ..name="jo Smth"
executes s

- response from
~~.__ CGlprogram

T~ Thank you Jo
Tl Smith

~~~al 1000000 pounds

has been

taken from your

account

—NO  =NO =N

! time

Figure 8.2: Interaction using a form

<HL ALI G\="CENTER'>Silly fornxg/HL>

<FORM ACTI ON="htt p: / /| ocal host / ~bob/ cpp-print.cgi/" METHOD=GET>
Nane <I NPUT NAME="nane" Sl ZE=64> <P>
Address <I NPUT NAME="address" S| ZE=64> <P>
<I NPUT TYPE=SUBM T VALUE="Send" ><P>

</ FORM>

the above form is the sort of thing sent to the browser firsts phoduces a simple screen like:



8.7. SERVER SIDE: CGI PROGRAMS 61

e N . P [T Can PP

mfv Coakrrarks .& Lozation: [htts s/cabbit.cs. hi=rts ac. vk/vhob/simple—feorm. hitml

Silly form

Name| o Blocgs

Addeegs |11 The Avence

If data is entered and the “Send” button is pressed the browilegenerate a GET request and saradre
andaddr ess values td ocal host . The requested URI will normally be for an “executable”, GGBIPHP,
which will run, get the arguments (see later for how it getl, and send back so response to the client.

8.7 Server side: CGI programs

Very early on in the history of the web additional functiahaivas added to the server. One of the first
simple enhancements was the Common Gateway Interface (€@fgable programs to be executed on the
server and their output sent back to the browser. The praogeaenstarted by the server but not interpreted
“inside” the server so they can be written in any languagéwhihexecute on the machine that runs the
server. CGI programs can be used to access central databasddack the results of searches, carry out
online transactions and many other jobs.

8.7.1 Starting a CGI program
The browser sends a hormal HTTP request buthtimaeof the requested file is used to decide if it is a CGl
program. There are different ways CGI programs are named:

e Historically servers have a special directory callegi-bin/ where programs are kept and any request
for one of those files results in its execution. So:

http://blink.cs. herts.ac. uk/cgi-bin/printenv

would resultin running the prograptintenv (if there is one omlink). Normally this server directory
is protected from users.

e Some servers enable ordinary users to lagiebin sub-directories in thejpublic_html directories.
This is not always permitted on some safety conscious sysbemause CGI programs are regarded
as potential security risks. So if allowed:

http://blink.cs.herts.ac.uk/~fred/cgi-bin/hello

would run usefred’s hello CGI program.

e Lastly files in any accessible directory with a name endinthaextensioncgi are treated as CGI
programs. Once again this is sometimes not allowed for ggeeasons. So:

http://ww. cs. herts.ac. uk/~bill/test.cgi
might run the prograrntest.cgi from bill's public_html directory.

8.7.2 “scripts”
On Unix systems there are lots of types of file that can be dzddn addition to binary machine code
“a.out” files. When a file is “exec-ed” the kernel examines fingt line of the file to find the name of a

language interpreter, if there is one it is run and given tleediinterpret. The format of the first line lig
followed by the full path to the interpreter, so:

#!/ bi n/ bash

will cause the shebash to be executed and given the file of shell commands to interpre

Very often such programs in interpreted languages areccatlgpts it is because such “scripts” are
often used for CGI that the programs are sometimes calleiebiogscripts”. There are loads of interpreted
languages used on Unix: Unix shell (@ash) command files, PERL, TCL, Awk, Python, and many more.



62 CHAPTER 8. WWW, HTTP, HTML, CGI AND PHP

8.7.3 A small CGI program

The following shell command scripiello.cgi will be used as an example:

#!'/ bi n/ bash

echo "Content-type: text/htm"

echo

echo "<H1> Hello </HL>"

echo "<H3> from $SERVER_NAME </ h3>"
echo "<p>"

echo "the date and time are: ‘date'"

Notes:
e For now ignoreCont ent - t ype: , that will be discussed soon.

e Theecho command just writes its argumentsgtandard outpytthe server must put the connected
client socket on the standard output (ustup or dup?) for the script before it is executed (using
exec) so that all the standard output will go down the connectiothé client.

e Unix shells have variables (arehvironmentariables, more later) their value can be accessed by
preceding them with a dollar, so
$SERVER_NAME

is replaced by the value 8ERVER _NAME which is set by the server to the hostname.

¢ In a Unix shell script prog-nameé is replaced by the standard output that results from exagtitie
command namedrog-name Amazing! (Well | think so). The command:

‘n

echo "the date and time are: ‘date

will be transformed during execution to:
echo "the date and tine are: Wed Jan 19 10:30: 07 GVI 2000"

and then of course written to the standard output.

o for a shell script to be run by the server it must have execetmissions set for all:

chmod a+x hell o. cgi

If, to test your script, you run it directly from your home éatory, the output will be:

rabbit(2133)$ public_htn /hello.cg
Content-type: text/htm

<H1> Hel |l o </HI1>

<H3> from </h3>

<p>

the date and tine are: Wed Jan 19 10:30: 07 GMI 2000

Notice that there was no value fBERVER_NAME because it was not executed by a web server. If you invoke
it via a browser it might look like:

4 Back  Forward  Reload Home Search  MNetscape
Y w" Bookmarks .,&'. Location: fhttp: //lacalhost/whoh/hella. cqi
_!- ----------

Hello

from rahhit.cs.herts.ac.uk

the date and ome are: Wed Jan 19 10:27:34 GMIT 2000

Alternatively you can use binary executable files insteashefl scripts. The following C++ program,
cpp-hello.cc, will produce output almost identical to thello script.



8.7. SERVER SIDE: CGI PROGRAMS 63

#incl ude <iostream h>
#include <stdlib.h>
int main(int argc, char *argv[]) {
cout << "Content-type: text/htm\n";
cout << "\n";
cout << "<HI> C++ Hello </H1>\n";
cout << "<H3> from" << getenv("SERVER NAME') << "</h3>\n";
cout << "<p>\n";

cout << "the date and time are: "; cout.flush();
systen("date");
cout << "\n";
}
Note:
e If users’ home directories are networked and NFS mountedffgreint types of machine there can

be problems with binary executable files. If you compile ther@rogram on a Sun computer but
test it by calling a web server on an Intel system it will falllrong binary machine instructions. So
make sure that both the system you compile on and the systegetlaer runs on are the same.

e The system library routingyst en(..) causes the named shell command to be executed (by a hidden
sub-shell) and the results sent to the standard output.

e The system functioget env() returns the string value (actually itthar *) of the named environ-
ment variable. (more on environment variables next).

8.7.4 The program environment and Environment variables

In the high virtual memory of every process there is a list aifp of names and values called thevi-
ronment variables A program can lookup the value of a variable and might thentbe value to change
its behaviour. The current settings of all environmentaalés can be examined with the shell command
printenv, try it.

The variables are used to modify or tailor a user’'s programgneinvironment. One very important
variable isPATH which is used by shells (and other programs) to search forutable programs. If the
user typeg++ .. to a shell prompt the shell will use the valueR#TH to look forg++. This is necessary
because there are many directories that hold programs.igatygalue might be:

rabbit(2121)$ echo $PATH
lusr/local /bin:/usr/XL1R6/ bi n:/bin:/usr/bin:/usr/local/javalbin:

Note that thisPATH contains ©” which means the shell will look in the current directory. ré® systems

don't, by default, have “.", you must add it to your own stag-dot files. Environment variables can be set
in bash by usingexport :

export PATH=~/ bi n: $PATH

will prefix the bin directory in your home directory to the current valueRAfTH and then re-assign to
PATH. Environment variables are automatically “inheritedfr¢he parent process whenever a new process
is started. So environment variables usually only need tedbence during login, they are then passed
automatically to every program run thereafter. Users ntiyroae the file. bash_profile or.profile to
set their environment. However if necessary a program cdmmadhange environment variables after k
but beforeexec using the system library routimit env so that the environment of the new process will be
different, or to pass extra information to it.

Web servers must set certain environment variables for €&jrams. Here is a little CGI program that
prints out some of the environment variables set by the serve

#!/bin/sh

echo Content-type: text/plain

echo

echo CA/1.0 part of the environnent:
echo

echo SERVER SOFTWARE = $SERVER SOFTWARE
echo SERVER NAME = $SERVER NAME

echo SERVER PROTOCOL = $SERVER PROTOCOL
echo SERVER PORT = $SERVER PORT

echo REQUEST METHOD = $REQUEST METHCD
echo SCRIPT_NAME = "$SCRI PT_NAME"

echo QUERY_STRING = "$QUERY_STRI NG'
echo REMOTE_HOST = $REMOTE_HOST

echo REMOTE_ADDR = $REMOTE_ADDR



64 CHAPTER 8. WWW, HTTP, HTML, CGI AND PHP

And its output in a browser:

[

mt' Bookmarks ‘u" Location: [http: //localhost/«bob/ocgi-enw. cqi

CCIZL. O part of the enwironment:

SERVER SOFTWARE = Apaches1 3. 9 (Unix)
SERVER WMAME = rabbit. cs.hects. ac, uk
SERVER PROTOCOL = HTTP/1.0
SERVER_PORT = 20

EEQUEST METHOD = GET

| PATH IMFD -

SCRIBT MAME = /~hob/cgi-env. col
QUEEY STRING =

EENMOTE_HOST =

FEMOTE A00R = 127.0.0.1

Notice that this program doesn’t send HTML and therefore e@mssiderate enough to tell the browser by
sendingCont ent -type: text/plainandnotext/htn.

8.7.5 How CGI programs are executed
When a server receives a request and determines that itas3@l program it must:

e fork toproduce a child process (it may already have done thisabvath the request if it is a simple
concurrent server, if so it doesn’t need to do it again).

e Check what sort of HTTP request it is. It might be the GET or B@ST method (for the CS2
coursework assume it can only be GET, say “not implementdw®ravise).

e It then prepares the environment by setting special enmeont variables, eg:
put env( " SERVER SOFTWARE=MyServer version 0.1");

or if a value is in a variable read from the connection:

char env_str[64];
sprintf(env_str,"REQUEST_URI =%",file); putenv(env_str);
e Send the correct HTTP response down the new socket to thre. dig:

HTTP/ 1.0 200 K
Date: Ved, 19 Jan 2000 13:13:44 GVI
Server: MServer version 0.1

NB it is the job of the server to send the response line and maytouple of MIME lines. But it
doesn’t send the vitalont ent - t ype: and blank line, it can't, it doesn’t know what content will be
generated by the CGI program. These linasstbe sent by the CGI program immediately it starts,
that's why all the scripts start with:

echo "Content-type: text/htm"
echo

e “re-plumb” the input and output for the CGI program. Thishiilvolve closing and duplicating file
descriptors. At the very least put the new socket on the arahoutputdup2( newsock, 1) .

¢ Finally exec the requested program.

8.7.6 CGl input, forms, GET and POST

It is important and useful for input or arguments to be padseh the client to the program. This is
solved by providing extra data from the client at the end efliRl. Here is an example of the type of URI
generated for a search engine request:

http://ww. al tavi sta. com cgi - bi n/ quer y?pg=g&what =web&q=j +s+bach
e The proper URI is terminated by*,
e The actual path sent in the GET request will not have the hoséretc., it is just:

cgi - bi n/ quer y?pg=g&what =web&g=j +s+bach



8.8. SERVER SIDE: PHP 65

e The query consists of name value papg=q, what =web andq=j +s+bach, The pairs are separated
by “&”.

e Spaces have been replaced by, “

The query string is split from the program file name by the seand given to the program via an envi-
ronment variable QUERY_STRI NG. There are numerous packages and library functions alaifab CGl
programs to carry out the separation of all the name valus pad the re-replacement of*by spaces.

HOW FORMS GENERATE THEGET QUERY STRING

Because it is so complicated to formulate the query stringbeé client there is a facility in HTML to get
input from the user and send it to a remote CGI program, itestlor n». . </ f or m>. Here is an example
of avery simple HTML file with a form in it:

<HL ALI G\="CENTER'>Si | |y fornx/H1>
<FORM ACTI ON="ht t p: / /| ocal host / ~bob/ cpp-print.cgi/" METHOD=GET>
Nare <INPUT NAME="name" S| ZE=64> <P>
Address <I NPUT NAMVE="address" S| ZE=64> <P>
<INPUT TYPE=SUBM T VALUE="Send"><P>
</ FORW>

this is the same form as used in section 8.6. If data is entarddhe “Send” button is pressed the browser
will generate the following URI query string:

| ~bob/ cpp- print. cgi / ?2nane=Jo+Bl oggs&addr ess=11+The+Avenue

and send it in a GET commandltocal host .

How FORMS SEND DATA WITHPOST

An alternative way to send data to a CGI, ASP or PHP programusé thé>CST in HTTP, this is similar to
CET but is normally only used to invoke executable pages and #end data. The POST does not encode
the data as an extension to the URI but rather it sends it ibdlg of the request. It can be used to send
larger quantities of more complicated data. So if the pnevidtle form was changed to:

<HL ALI G\="CENTER'>Silly fornx/HL>
<FORM ACTI ON="ht t p: / /| ocal host / ~bob/ cpp-print.cgi/" METHOD=PCST>
Nane <INPUT NAME="name" S| ZE=64> <P>

everything else is the same but tM&THOD attribute has been changedR@ST. If this is filled in and then
sent by a browser the HTTP request might look like this:

PCST /cpp-print.cgi HTTP/1.1

Host: | ocal host

User-Agent: Mzilla/5.0 Gecko/ 20030624 Netscape/ 7.1
Accept: text/xn,application/xn,...

Connection: keep-alive

Referer: http://local host/~bob/fp. htm

Cont ent - Type: appl i cation/ x-wwmwf orm url encoded
Content - Length: 41

name=Tony+Bl ai r &addr ess=10+Downi ng+St r eet

the CGI, PHP or JSP program must know how the data is sentggk¢he method used.

8.8 Server side: PHP

PHP is a programming language, it looks a bit like C (as do npaogramming languages), it has dynamic
typing (a variable can hold any type, the type is checked atime). What makes it different is that is
is designed to be embedded in HTML files (pages). The PHPpratar processes the file, any HTML is
sent to standard output (connected by the web server toithre browser), any PHP is executed. Here is a
simple example:

<htn >
<head> <title>PHP Test</title> </head>
<body>

<h2> Powers of 2 </h2>

<p>



66 CHAPTER 8. WWW, HTTP, HTML, CGI AND PHP

<?php
$pot = 1;
whi | e($pot < 10000) {
print("  $pot <br>\n");
$pot = $pot * 2;
}

7>
</ body>
</htnl >

and here is the output when it is requested from a browser:

. File Edit wiew Go Bookmiarks Tools Window Help

Q @ Q | hitp Mocalhast'-bab/phpipat.php

- @ AMal @ Home Gy Search: Fo Baookmarks
& [ % PHP Test |

Powers of 2

Note that:

e a PHP file is basically HTML with bits of code in the middle,

e PHP code is surrounded by:
<?php

7>

e variable names are precededdyand they don't need to be declared,
¢ the output of the print statement goes down the connectithretalient with the surrounding HTML.

Here is another example, this one examines an element in-defireed array. When PHP programs are
executed many special values are set, this one is the tye 6fTTP request, eith&ET or POST. Further
note that PHP arrays can be indexed by numbers or by strihigstype of array is sometimes called an
associative array).

<htm >
<head> <title>PHP Test</title> </head>
<body>
<h2> Wi ch nethod was used </ h2>
<p>
<?php
$rm = $_SERVER] " REQUEST_METHOD'] ;
if( $rm) {
print("Request method was: $rm <br>\n" )
} else {
print (" REQUEST_METHOD not set <br>\n" )
}

7>
</ body>
</htnl >



8.9. CLIENT SIDE (BROWSER) SERVICES 67

and here is the output when it is requested from a browser:
. File Edit Mew Go Bookmarks Tools Window Help

a @ Q | nmpaiacalhast~bab/phpimethad-check.php

o By EMal @ Home G Search | FjBaokmarks

.j_[ % PHP Test |
Which method was used

Request method waa: GET

The PHP interpreter can be run outside the web server. It eandood way to debug programs. Also,
in this case, it shows the HTML being sent to the standardwugtich will normally be the browser
connection, but here is the console.

sal 1 y(309)$ php4 net hod- check. php
X- Power ed-By: PHP/4.1.2
Content-type: text/htm

<htm >
<head> <title>PHP Test</title> </head>
<body>
<h2> Which method was used </ h2>
<p>
REQUEST_METHOD not set <br>
</ body>
</ htm >
sal 1y(310)$

8.9 Client side (browser) services
Client side web facilities are sent from the server but threyexecuted or interpreted in the browser.

Javascript which is a language that can be embedded in HTML code betwssean pt > and</ scri pt >.
Javascript source code is interpreted by the browser. Tigaibge has no existence outside HTML. It
is usually used to add checking or animation to an HTML fild.aftributes of the currently displayed
HTML: links, images, colours etc., are accessible from desipt making it a very powerful tool for
manipulating pages.

browser plugins these vary from movie players that are run when a video is tiaded, to complicated
interpreters for animations like flash that are integrated the display. In fact Java is implemented
using a Java byte code interpreter plugin.

Java Java is a complete programming language, it exists outgioeders and HTML. However most
browser have a built-in interpreter for the byte-code foifmdava. Java is less closely integrated into
HTML and the browser however it is musch more general purfarsguage than Javascript making
it better for more complicated applications.

8.9.1 Javascript example

Apart from making the page display more interesting cligté services can reduce network traffic. The
following Javascript example checks the values enteredsriorm, this can reduce the need for a server to
check and send back an error page from the server. Here imanfith Javascipt checking code:

<! DOCTYPE htm  PUBLIC "-//WC//DTD HTM. 4.0 transitional//EN'>
<HTM.>

<HEAD>

<TI TLE>Test Page for Post args to cgi-bhin</TI TLE>

<SCRI PT LANGUAGE = "JavaScript">

function checkage() {
var a;
a = parselnt(docunent. okform age. val ue);



68 CHAPTER 8. WWW, HTTP, HTML, CGI AND PHP

if (a<=2 || a>=110) {
wi ndow. al ert ("age between 3 and 109 pl ease");
docunent . okf orm nane.value = "";
docunent . okform age.value = ""
return fal se;
} else {
return true;
}
}
</ SCRI PT>
</ HEAD>
<BCODY>
<HL ALI G\="CENTER'>Si |y fornx/HL>

<FORM NAME="okf ormf ONSUBM T="return checkage()"
ACTI ON="ht t p: / /| ocal host/ ~bob/ showenv. cgi " METHOD=POST>
Name <I NPUT TYPE="text" NAME="name" S| ZE=64> <P>
Age <INPUT TYPE="text" NAME="age" SIZE=4> <P>
<INPUT TYPE=SUBM T VALUE="Send"><P>
</ FORW>
</ BODY>
</ HTM.>

This is the output if the form is loaded into a browser, givesuitable input and then the “send” button is
pressed:

. File Edit Mew Go Bookmarks Toals Window Help

G Ci O | hitpacalhastbabAarm-checked2 himl 2 | €l Search |

. B, E=Mal 4 Home € Search [Bookrarks
] | %3 TestPage for Post args 1o ogi-bin ]

Silly form

Marme ETony Blair

Age |1
Send I | [davaScript-Application]

Elarments: r‘: age hetween & and 109 please
. -




Chapter 9

The Domain Name Service DNS

9.1 Domain names

The DNS (Domain Name Service) maps host names to addressése kevel of TCP/IP connections on
the Internet all addresses are the (IPV4) 32 numbers, thenecahost names, the names are provided by
the DNS. Once upon a time very large central tables were kephe network, but now this has become
impossible due to their size and rapidity of change. Now titerhet uses a protocol between systems called
the DNS which queries remote systems about how to map a naaneumber.

Names are read left-to-right from smallest domain (or uoityvidest:sl i nk. fei s. herts. ac. uk is
a systemsl i nk in the domain administered by the our facultyei s. , in the campus network domain
administered by the University of Hertfordshitgrts in the UK academic communitgc. uk. Now
although the University has a class B address, there is notste, correspondence or mapping between
parts of it and thac. uk bit of the name.

Usually there is a domain for every separateonomous systenr network administrative authority,
ie. 147.197 (a B address) is herts.ac.uk. But above thattlewelomains have a structure not related to IP
addresses. The actual domains have grown up over time arftbfievel” domains are countries or the
US names: com . edu, . or g etc. Figure 9.1 is a picture of part of the domain name hiésarc

org

/\ A

google sun debian

//'\ packages K ww
herts /\
A -

feis  www gemini

pclab099 lawn slink

Figure 9.1: Domain name hierarchy

9.2 Zones and name servers

The hierarchy is divided intaoneseach zone belongs to some administrative authority, eittempany,
university or network organisation. A zone is responsible f

¢ allocating names and numbers to systems that belong in tie @opointing (delegating) to the name
servers in sub-zones,

e maintaining two or mor@ame serverto translate name requests to addresses of systems or of name
servers for sub-zones.

69



70 CHAPTER 9. THE DOMAIN NAME SERVICE DNS

This organisation can cope with the dynamic distributedireatf the network structure, the responsibility
for translating names is passed down to the groups who &lo@ames and numbers to systems.

In order to enable end user zones to be found various netwgangsations provide intermediate zones,
at the “top” there are about 20 name servers that know abautdéind the next level name serversom
. uk etc. A zone doesn’t always correspond to one domain name Igve possible for one zone to have
two or more levels of name hierarchy supported by its names&r In picture 9.2 there is one zone to

_ feis >~ www_gemini

- ~

- ~
- ~
~ ~

Figure 9.2: DNS zones

manage all the levels of thiebi an hierarchy.
The name servers in each zone hold a table mapping host namambers, or sub-domain names to
their name servers. The responsibility of a name serverdsabwith requests from two sources:

¢ local applications in that zone that need to begin resolvacallor remote name, the name server
must, if necessary, contact other name servers on theitfbeha

e other name servers that need to find out about the names imthe servers domain.

9.3 Resolving a name

Every system connected to the internet has address(es)ofromore local name servers and software
libraries to contact this server if any program wanteegolve(translate) a name. The server then deals with
the request. There are alternative programs to provide M@ But the basic operation of all is probably:

o ifitis a local name in this system'’s zone, lookup the tablé ggturn the number,
e search the cache to see if it has been recently requestedeed s
e contact a “top-level” server (all DNS programs know thesmbars), and ask for the name,

o the top-level server will probably not know the full answeut lit will know somebody who does
know, in other words it will match the rightmost part of thengain name and provide the address of
the name server for the next zone,

¢ the original name server then sends the same query to thisamre server, and either get the answer
or another name server address,

¢ this continues until it either fails or gets the answer.
For example consider the picture 9.3.

e Some system on the internet has an application that askscit$ hame server for the address of
slink.feis.herts.ac. uk.



9.3.

RESOLVING A NAME 71

application asks local S

nameserver for i
slink.feis.herts.ac.uk L |
1474197 236.188 oo \)\(\ v 1984104 _z _Uk_y ___gov__ mil__ com.
GSRERT ) ’ A h
o . N
sllnk \\“\(\\e\ zﬂg G ) - -
’\ -
V ‘\0‘ s\\nk feis.f herts.ac-4% 217]916413)1 At _ . google
local _{ 1 5
name- | ior ac.uk. 138185, 3
server | -slink.teis.herts.ac.uk ..
= for herts.ac.uk 147.197. 2'0'0'2'
< forf | slm_k fels_h_e_rf.s. ac.uk 7 g . N
elS.herts." e |
< Slink fe,ZCI;Uk 147.197.23¢ 64 helios_feis ~ ~ W gemml
.'_'.j-~.'__ert3.ac uk .7 N
47197 5y -7 AN

Figure 9.3: DNS query

it isn’t a local name and the name is not cached so

the name server contacts a top-level server, in thist@&etl. 0. 4. The top-level server knows the
zone servers faruk so returns one of the addres243. 79. 164. 131

the local name server then sends the full reque&t7079. 164. 131 which doesn’t know the answer
but does know the name servers fac. uk one of which is:128. 16. 5. 32,

the local name server again sends the full name and gets thressdofhel i 0s on our campus,
147.197. 200. 2,

it contactshel i os which returns the address of the server for feis.hertkathis isl awn in computer
science and its addressli47. 197. 236. 64,

the poor tired local server then sends its request agagtjthe tol awn, now| awn does know the an-
swer, it is in its zone. It replies with47. 197. 236. 188, the number fosl i nk. fei s. herts. ac. uk

the server passes this address to the program that askib@n(itollapses from exhaustion).



72

CHAPTER 9. THE DOMAIN NAME SERVICE DNS



Chapter 10

Peer to peer networks

10.1 Application architecture

There are two contrasting network application architextizlient-serverandpeer-to-peerThe definition

of what actually constututes peer-to-peer can be a bit anclde important characteristic seems to be that
a in client-server the client system always initiates therict by sending a request, the server accepts the
connection and sends a response:

O O O .=

response -7 -

- /, . request

o ‘ Q
response

%'\ response
request \\Q

O O @ O

With the peer-to-peer architecture any system can initeqeests or act as a server and receive requests:

request
O O

response L7 response

O request

o O O O

in the above picture each participant is calleseavent, and servent B is acting as a server for servent C,
receiving a request and sending a response, but also bghas/anclient and sending a request to servent A.
The definition concerns the way the parts of a network apidicanteract, the nature of their protocol, it
is not necessarily about how the user perceives the systésmpdssible to have a person-to-person system
such as a network message exchange where each participam beth to send and receive messages,
however the program implementation could involve a cergeaVer that routes the messages, the client
programs initiate the connections to the central servey, tton’t receive incoming requests.
In addition the difference between client-server and pegreer is not anything to do with the under-
lying network operation or topology below the applicatiagér where all systems can be considered to to
uniformly connected and all can open or receive connections

10.2 Instant message systems

These are systems that allow people to hold remote coni@rsatith each other using typed text messages,
example are Micros**t Messenger, ICQ (bought out by AOL)MAfrom AOL, Yahoo Messenger, and
the open standard Jabber. In some ways most of these arellyopder-to-peer systems as suggested
above. However some have more peer-to-peer features tharsotn most the conversations between client

l“servent” is a term used in the Gnutella file sharing systémytord seems to be a mixture of “server” and “client”.

73



74 CHAPTER 10. PEER TO PEER NETWORKS

programs go through special purpose central servers biswygport direct client to client connections for
file transfers or video links.

p-2-p
for file
transfer

<+ ---->

- - interactive messages
- A-B and B-A via
the server

Possible reasons for using a central server might be that:

o if extra clients (people) can be invited to join a conveimathen the required number of inter-client
links would rise very fast if peer-to-peer connections wesed,

o there is less need to avoid legal attacks on a central sys@mith file sharing systems (see later),
¢ the actual data passing through the central server is ngthigin

e a central server is essential for notifying other when a nser logs in.

10.3 File sharing

These systems are quite recent but have spread and evolitedagi. They enable users to search for
and download files (usually music or film files) from other $aystems on a network. Examples are
(or have been, because with fast evolution there seem te guitw deaths): Napster, Gnutella, Freenet,
Audiogalaxy and the Fastrack-Kazaa-(old)Morpheus family

The earliest widely used system was Napster, it was usedtodar access to mp3 music files. How it
operated:

e a client program would login to one of several central sexagrd upload a list of files the client was
prepared to make available,

e when a user wanted to search for a file they would send thelseagoest to the central server and
receive a list of client machine addresses,

¢ the user would choose one of the systems and the client progoauld download directly from the
other system.

Initially because files were transfered from one individisalnother it was hoped it would avoid copy-
right laws however the American music industry paid enoagbykrs enough money for long enough that
eventually the Napster site was forced to close. This eragmd more decentralisation in peer-to-peer ap-
plication design, newer systems do not have a central seritiera list of all available files, the search
became peer-to-peer aswell as the file transfers. With aegthwle (or no role at all) for a central server it
is hoped that the systems are less vulnerable to attack lyetaw

10.4 Gnutella

Gnutella is an application network sitting on the interiitdias a continually changing topology as systems
are turned on and join or are disconnected, in addition insele generate a lot of traffic. Each active node
(servent, client or wahtever it is called) tries to maintaismall number of open TCP connections to other
nodes, usually between 3 and 10, this produces the netwoid{ste, if connections break (systems turned
off) a node establish new connections. There is no centreéseand at the moment, no login procedure.

10.4.1 Distributed search
This section describes just the distributed search andditester, how the connections are found, set up and
maintained will be summarised afterwards. So to search:

e a node transmits a search request to all its connected raighl3—10), the search request has a
unigue number, it also has TTL (time to live) count,



10.4. GNUTELLA 75

¢ the neighbours propogate or forward the message, each will;

— record the unique message number in a table with the adaoeasithich it was received,
— decrement the TTL count, and if it is not zero. ..

— pass the request on to all their neighbours (except on tkeHey received it on),

Note that if the same search request is received on anotheection, which is highly likely because
of the tangled, arbitrary structure of the net, it can edsdydiscarded because the search request’s
unigue number has been recorded in the table.

e each node that receives the search request also perforreedhzh on its files, and forms a search
response with a variable length list of files satisfying tearsh. The response will include the search
request’s unique identifier and also the address of nodefigrthe reply. The response will be sent
back only on the connection from which it was received,

e any intermediate node will, in addition to forming its owraseh response, receive responses from
other systems it propogated the original search to. It Wit forward these responses back to the
originator by using the unique number to look up its tablege which connection it got the original
request on.

e When the responses arrive back at the initiator they willlomw to the user who will select which
one to fetch. The file transfer uses the HTTP protocol's GEjlest; each node program contains its
own code to act as a little HTTP server and client to deal viigfile transfers. The HTTP connection
will be a single new direct connection to the selected fil@der-no viral propogation this time; this
is possible because the necessary IP address was incluthedsearch response.

10.4.2 Finding and maintaining connections
There is an unsettled question: how does a servent (nodé¥ @einnections? There is a special message:
“GNUTELLA CONNECT” that is sent to any other existing nodatttan be accepted “GNUTELLA OK”
or rejected. But how does a new node known what system to s&ntb? There has to be a handful of
“well-known addresses” of systems that are always runnimy@nnected. These are the initial contact
points. In some sense these are like special servers aliibere role is very limited; that is the problem of
a very distributed system—how to contact it. So some “séisestill needed until some efficient broadcast
method can be devised.

The whole problem is not solved, the new node only has oneemdiam, where does it get the others?
There is a special message called “PING” (not the ICMP pingictv works like a contentless search
request, it:

e has a unigque number
e hasa TTL field

e is propogated like a search request, every node recordifigabming connection and number it the
table,

The use is that recipients respond to it with “PONG” repli@$ONG reply contains:

e the unique number of the PING it’s replying to,

¢ the IP address of the node that is replying, and

e the number, and total size of offered files on the replyingesys
These PONG messages get returned to the iniiator just ldeelseeplies. When PONGs get back the system
that started the PING it will have loads of IP addressesithan use these to try to open connections using
“GNUTELLA CONNECT".

Additionally PINGs can be sent out later to get more IP adsie# nodes that are used for connections
are turned off.



76 CHAPTER 10. PEER TO PEER NETWORKS

10.4.3 Summary of protocol

e to open a new TCP connection there is the GNUTELLA CONNECTgags, these is a before the
real protocol can be used,

e once a connectionis open fixed format binary messages canbétsese constitute the real protocol.
They all have a unique number, a TTL, a length field and a mesygg. The message types are:

— PING, to discover more addresses, they are propogated,
— PONG, the reply to PING containing the reponders IP address,
— SEARCH, containing a file search string, propogated like®IN

— SEARCH REPLY, that contains the names of files, and machideead, from each node re-
sponding to the search,

— PUSH, used to start data transfers from systems that aradé&hewalls, necessary but not a
major part of the operation.

These constitute the messages sent along the TCP conrsection

e Lastly there are HTTP GET request and replies that will ba& derctly between systems to fetch
files once they have been found.

10.4.4 Issues in Gnutella

e It is very decentralised, it is very robust, connections andes come and go but the network is
always there,

e itis an open published protocol and there are many cliergnars (servents) available,

e it is more secure against attacks from lawyers, the lack adfrenpnent central server containing all
the search functions means it is harder to find anybody tottakeurt,

e at the moment it doesn’t contain much internal security,baly can connect (good) but anybody
could write programs that flood the system with corrupt se@sor pings (bad),

e additionally this basic version of Gnutella might not scafevery well as the number of users in-
creases the traffic they produce rises exponentially. Eealch spreads across the net like a virus
(until the TTL gets to zero). Also each machine that runs at@tauclient (servent) program is going
to be used by other systems to search and pass on searchasnyoe program, sit back, do nothing,
but your machine and network connection are immediately kasy.

e there are already some improvements and suggestions foowempents in the protocol that might
reduce the load on the internet,

e itis a very new idea and there is not yet enough experiencedw lexactly how things like this will
evolve.

There are a couple or links for further information:
http://ww.gnutelliums.com/, http://www.limewire.com/,
http://mww.rixsoft.com/Knowbuddy/gnutellafag.html,
http://www.gnutelladev.com/protocol/gnutella-protocol.html,
and the current home of the standard:
http://rfc-gnutella.sourceforge.net/.



Chapter 11

Network security

11.1 Some cryptographic concepts

A very important component in any secure system will be sooma fof encryption the use of &eyto
“mangle” a message so that nobody else can read it excepbealyelse having a suitable decoding key.
There are many different encryption schemes and algorithithsvery different properties. The following
brief notes summarise three schemes (no details of thelatiomithm, I’'m not a mathematican).

11.1.1 Secret key encryption

This scheme uses one algorithm and key that can both encddeande a message. So if Alice wants to
send a message to Bob, she encrypts the message:

E = encrypt{K,M)

whereM is the “plain-text” messag« is the keyE is the encrypted message, atry ptis the secret key
encryption algorithm, for example DES. The only way the mgsscan be decrypted is with the same key
K, Bob has the key aswell so he does:
M = decryp(K,E)
and can read the message. Nobody else can read it, unledsitheyhe secret key. Features of secret key:
¢ quite efficient and fast, can encode streams of data,

¢ has the problem dfey distribution how do you pass secret keys around safely?

11.1.2 Public/private key encryption
This scheme generates a complementary pair of keys, caléguliblic keyand theprivate key with the
property that anything encrypted with the private key caly be decrypted using the matching public key
and vice versa. One of the most famous algorithms is RSA.
Public private key pairs belong to individuals, and theyl milblish, or make available, their public key
but hide their private key.
E = encry p{Kpriv, M)
whereM is the “plain-text” messagépriy is the keyE is the encrypted message, to decrypt: aswell so he
does:
M = decryp(Kpun, E)

Also the converse holds:
M = decryp{(Kpriv, encry pt{Kpup, M))

How can it be used? Firstly if Alice wants to send a messageotntBat only he will be able to read she
encodes it using Bob’s public key knowing that nobody but Bible owner of the matching private key)
will be able to decode it. So Alice does:

E = encryp(Kpub-bob, M)

and sends it to Bob, he decodes it:
M = decryp(Kpriv—bob, E)

Alternatively Alice might want to send a message to Bob irhsaavay that he will know she is the only
one that could have sent it, thisrigessage authenticatiorlso she will not be able to deny that she sent
it, this is non-repudiation (These are only the case so long as her private key is ndbsgést) So she will

encrypt it with her private key: E — encryptKor.aice.M)
- priv—alice

and Bob (or anybody else) will be able to decode it:

M= decryp(KpukFalice, E)
The 2 can be put together. Alice will encrypt with her privigy and then encrypt the result with Bob'’s
public key:

77



78 CHAPTER 11. NETWORK SECURITY

E = encry p{Kpub-bob, €ncry p{ Kpriv—alice; M))

so that only Bob can decode it. Secret and authenticated.
Features of secret key:

¢ quite inefficient and slow, can only encode small amountsatd d
e provides a solution to the problem kdy distribution

o there still remains the problem of knowing that the person alaims to own a public key really does
own it.

11.1.3 Message digests

A message diges a a speciahash coddormed from a message, a sort of cryptographic checksum. One
widely used digest algorithm is MD5. If:
D =MD(M)

whereM is the message, the document, the fill) is a message digest function abds the computed
message digest hash code. The digest usually at least 128 bits long, it is not possible to infeything
aboutM from D, it is almost impossible that any other documbtitwill produce the sam®, any change
to M, however small, will changB. You could almost say it is a unique fingerprint.

One use of message digest is to reassure users of the sadedytirenticity of files and programs that
are being distributed. If the file distributor, Alice, hasle f+ to distribute they calculate the digd3tand
“sign” it using their private key producing D which they put on the server along with

ED = encry p{Kpriv—alice,; MD(F)

Now Bob wants to download the progrdfand be confident nobody has altered it or added a virus, so he
dowmloadd= andED. He first computes thB of F using the same algorithmMD, then decrypt& D using
Alice’s public key, and finally compares them.

MD(F) = decryptKpub-alice; ED)

If they are the same he knows nobody has tamperedfwitince Alice calculat®, and nobody but Alice
could have done it.

11.1.4 Certificates

There is a remaining problem: how to you know that a public lkepngs to the person who presents it?
The solution is to use a “well known authority” to verify thajpublic key belongs to a specific person. It
uses aertificate If Bob wants a certificate he:

goes to a well known authority (there are many, including panies like Verisign)

proves who he is using an ID card, a driving license or somgtalse,

has a public-private key pair generated for him

pays some money, and receives a certificate consisting ptibigc key and a statement of his identity
(name, email, address etc.) all hashed and signed with We@key of the authenticating company
(the “well known authority”).

Then Alice (or anybody else) can verify his public key belstig him, they compute the hash key, and
compare it with the “signature” decoded with the public kéyhe authenticator.

11.1.5 SSL

There are many protocols and applications of encryptioiM RIEd PGP can be used to encrypt e-mail,
IPSec encrypts IP network connections, Kerberos dealswsigh authentication, and many others. One of
the best known protocols is SSL (and its newer standardisesion TLS), it is used for authenticating and
encrypting program to program (transport) connections.rearly always used by Web servers that require
a credit card number to be submitted.

The server system (being run by Bob) has its own certifica¢s gomputers can have certificates).
Alice wants to buy a Linux palm computer from his site so shi initiate an HTTPS connection (one
using SSL):



11.2. SYSTEM SECURITY WITHOUT NETWORKING 79

browser message server
— algo. preferences R. —
— algo. choice Rg «— server chooses algorithm
check certificate— server certificate —
— request client cert. ordone «—
assume no reg- encry p{Kpub-serw SK) —
SK= f(SK,R;,Rs) SK= f(SK, R, Rs)
— use encryption wittsK —
— done SSL handshake —
— acknowledge done SSL —

exchange data encypted with SK

¢ the client sends initial request and suggests some enorypteferences, also a random numBgr
the random number is used later,

e server responds with a choice from encryption prefererazesjts random numbéRg

e server sends certificate which is checked by the clientgfsbrver wants the client to authenticate
itself using its certificate it asks for it now, the procesd W similar, otherwise it says “done” so
they can move on to the next step,

e client sends a value to be used as a secret key (stage 1) fgmpéng the whole session after the
handshake is complete. This is encrypted with the servaidiigpkey.

e now both ends can compute the final secret session key bastha sandom numbers exchanged
earlier and the stage 1 session key sent by the client,

e client says switch to using session key, server acknowkedge

¢ all the transaction messages encrypted using the symrsetriet key just generated.

11.2 System security without networking

Without networking the problem of policing an operatingtsys is relatively simple. If users can only
access the system through local terminals then they areréagihysically protect (no link tapping). Users
canonlyaccess the system through terminals (no network serveeptieg connections from elsewhere), so
good password security can stop unauthorised users. Theprailems arise from enforcing the different
access policies and authorisation within the system (af&dled “protection” in opsy textbooks).

11.3 System security with networking
With networking there are thousands of ways in.
e Use of stolen or unprotected user accountdefiaet and similar programs,

o At the data-link layer, for example Ethernet, packets caoliserved and examined by any system
attached to the Ethernet. These are cafladket sniffers Passwords, credit card numbers or confi-
dential data are stolen.

e At the network layer people can install false routing systémintercept and even change packets.
This can be done by masquerading as DNS servers.

e Systems can be flooded with traffic at the application or tAegport layer causing services to fail.
These are “denial of service attacks”.

e At the application layer there are many types of attack.

— CGI programs on WWW servers are often insecure,
— network filesystems (NFS, SMB etc.) can be very insecure,

— many server programs have known vulnerabilities that ailfdwders in,



80

CHAPTER 11. NETWORK SECURITY

11.4 How can networking be more secure?

Install audit programs so that attacks can be detected (and sometimedjeckpThey usually work
by recording the state of important files and checking forxpeeted changes,

Use better authentication for passwords and remove oldusadhaccounts,

Many systems have network servers that are not used or ale didfigured: remove any unused
services,

check that all local network fileservers are secure (dorrinitesetuid programs from insecure file
systems),

Use authenticated and encrypted network connectionsprteens that the only people making or
receiving connections to or from your systems are ones #rabeauthenticatednd afterwards you
are safe from sniffer attacks becausenp€ryption

Use firewalls to filter and monitor all network traffic entagiand leaving a local network. A firewall
is a system between a local network and the rest of the Irttdraecan monitor all packet traffic. It
can recognize attacks and reject packets.

read regular network security reports about newly disced@reaknesses in any server programs you
use and get new, fixed versions.

11.5 Firewalls, Proxies, and Masquerading
e Many related solutions depend on a “box” between the netwmide protected and the rest of the

internet.

The “box” provides more functions than a simple gateway oteq it must provide some privacy or
prevent some of the forms of attack from the outside,

The sorts of protection it can give are:

— to hide services and make it harder for port scanners,
— to prevent some of datagram fragment attacks,

— to prevent incorrect source address spoofing,

— to hide machine and their identities

— to prevent ICMP flooding,

Sometimes fancy routers also provide firewall functionsjstimes they are separated.

Very often firewalls are used to monitor and restrict outgaiacurity so that employers and owners
of networks can spy on, or control what their employees orausee doing.

11.6 Position of firewall

4o
AN AW | PPP gatel| |
| | | Firewall | (LAN | |
| Internet \----| System |--(HUB)--| Workstation |
L L P I I
(VARVARV |
I I I
+----| Workstation |

e Here is a simple ISDN, cable modem or phone line linking a nelvork to the internet.

e I've got one at home,

NANNAW | Router | | |
| | or | (DMZ) | Firewall | (LAN) | |
| Internet \--|Cable Mim-(HUB)-| System |-(HUB)-|Wrkstations|
I I

\_

A [



11.7. ENCRYPTING NETWORK CONNECTIONS 81

(VARYARV |
(CQut si de)
(Server)

e Here is a more complicated system with a special router
e there is a separate firewall to do packet filtering

o this is suitable for a large net with legal addresses.

11.7 Encrypting network connections

Use authenticated and encrypted network connectionantiéns that the only people making or receiving
connections to or from your systems are ones that caaubigenticatecand afterwards you are safe from
sniffers and man-in-the-middle attacks becausenaiyption There are 2 levels:

e application level authentication and encryption of cotioes, such as SSL between WWW servers
and browsers. The data is encrypted by the network applitsiti
— these are between individual programs, not systems or sites
— itis used by secure servers and browsers for passing ceedincimbers.
— a system needs no special encryption or prior arrangemémanother system.
e network level authentication and encryption, called IPG#so called: Virtual Private Networks
VPNSs). All traffic leaving a site to one or more remote sitesrisrypted.
— typically done on a firewall system as traffic enters and lsavsite,

— no extra work for applications, all traffic encrypted by fiagiv

— IPSec must be arranged between sites so it cannot be usediivary connections to single
remote server programs,

— traffic emerging from the firewall is vulnerable to attackidesthe local network before it
reaches the application

11.8 Encrypting network traffic: IPSec

e IPSec is also known as VPN virtual private networks,

e all IP packets to or from given destinations are encrypted decrypted at a gateway or firewall
system. Applications making connections to systems andgrpms on the remote destination site
will have all their packets made secure as they leave the site

o this only works between sites or dialup systems that haveenpaidr arrangements, for example:
different sites of a company of salesmen contacting theimédsite.

e |t supports traffic encryption and authentication of the o&sites to establish the secure link. Key
exchange and management is vital for links to be establisatsdy.

¢ systems often change the public key used to encrypt the ctionéo reduce the risk of cracking.



82 CHAPTER 11. NETWORK SECURITY

11.9 Encrypting network traffic: IPSec

other site

etwork

other site
etwork

} ! l !
| | | |
| I I I
| 1 1 |
| | | |
| I I I
| 1 1 |
| I I I
| Firewall with | ﬁ | | Firewall with |
: T \ T I
| I I I
! ! ‘ !
| | | i |
| | ! |

IPSEC IPSEC

other site

network

other site il s il
'| Dialup |
1| system with |
| IPSEC |
! I

network

other site

network

Here sites A and B and the remote host C share a secure pretsterk.

no other systems on the network can spy on their traffic ap#sas the internet,

any computer on site A contacting a computer on site B willhigsvtraffic encrypted,

connections can be made from computers on sites A or B toragstésewhere on the internet but
their traffic won't then be encrypted.

11.10 Application level encryption (SSL)

e SSL is alibrary of routines that applications can use to ns&oeire connections,

e the best known example is “HTTPS”, secure WWW connections,

¢ another example is OpenSSH (and the original SSH) that ges\secure encrypted login sessions, it
is a secure replacement figinet,

e it usessecret keyencryption for traffic and provides routines to support aatfcation usingublic
keyencryption,

e with WWW servers there are usually two main goals: encrypteffic and authenication of the
server so you don't give your credit card number to the wrong syst&ie validation and authen-
tication of the server is done usingrtificatesrecognised by browsers and issued by well known
authorities. This is support by SSL but is really part of thplacation.



11.11. USING SSL 83

11.11 Using SSL

other  site

etwork

other site

network

other site

network

other site

network
e the client program on a computer on site A connects to a pnograa computer on site B,

e no other programs or systems on each site know about thig eremded to support it.

11.12 Openssh

e openssh is an end to end secure replacementédmet, rlogin andrsh,

e it authenticates the human client and the remote server,

e it encrypts all the network traffic transmitted between tlient and the server,

e openssh is an open source derivative sgh that has become a commercial product,
e it supports 1024 bit user RSA public/private keys for authoation

e it has a choice of conventional cyphers for encrypting,enity 3DES and Blowfish,

e it is implemented on top adpenssl the open source Secure socket layer, it is SSL that enctypts t
data that is transmitted.

(unfortunately it doesn’t seem very easy to set up!).

11.13 Structure

There are two main programs:

e sshd the daemon that must be running on the server that receivegections. It must be run privi-
leged (asoot). This program is responsible for:

accepting connections

authenticating itself to clients

authenticating clients,
— establishing the session: starting a shell etc.

e ssh the client program that makes the connection. It is not legéd. It does:

— authenticating the remote server computer,

— depending on various local files and the users configuratieaelécts and tries different user
authentication methods on behalf of the user,

— it requests other secure channels from the server, if redufior X display etc.



