
Notes on Computer Networks

Bob Dickerson

January 2005

Preface

These notes formed the main material for a one semester Computer Science course on networks. The
course was last taught in the academic year 2005–6. The course was primarily about the Internet, the
TCP/IP protocol family. The rest of the preface is part of theoriginal written for the course (or “elective
module” as it was called) and it tries to show how the materialin these notes relates to the units that made up
the course, and references to sections or chapters in books that provide better, or alternative, explanations.

The notes and books
This is a description of the teaching material, its organisation and how it relates to the units in the Open
Systems and Networks elective module.

The main material for the module is provided by these notes. The notes try to cover the range of material
that I think is appropriate to this course (module), and theyare meant to be at a suitable level, ie. depth of
treatment of each topic. This means that there is norequiredtextbook.

However the notes are written by me (Bob Dickerson) and therefore it is possible that they are: shallow,
incomplete, difficult to understand and perhaps wrong. Evenif they are not as bad as that it is still very
useful to have alternative explanations for some topics so Iam recommending some books as supporting
material. Since the books are only meant to supplement or clarify the notes you should really only consult
relevant sections or chapters of the booksafter reading the notes; this is because they might have a different
emphasis and on individual topics have too much or too littlematerial. Because the use of a textbook is just
to reinforce the notes it is not compulsory, if you are brave,lazy, or, in fact, the notes are enough, you can
try to manage without extra reading. All the following booksare quite good, you can use bits of whichever
one you want:

1. Douglas E. Comer.Computer Networks and Internets with Internet Applications. Prentice Hall,
fourth edition, 2003. Good introduction, mainly TCP/IP, some stuff on data transmission.

2. James F. Kurose and Keith W. Ross.Computer Networking: A Top-Down Approach Featuring the
Internet. Addison-Wesley, third edition, 2005. Good introduction,has some deeper treatment, no
data transmission stuff.

3. L. L. Peterson and B. S. Davie.Computer networks, a systems approach. Morgan Kaufman, third
edition, 2003. Good introduction, practical implementation examples, mainly TCP/IP, not much on
data transmission stuff.

4. William Stallings. Computer Networking with Internet Protocols. Prentice Hall, first edition, 2004.
Less conventional introduction, more advanced, has special chapters on congestion and quality of
service, no data transmission stuff.

5. A. S. Tanenbaum.Computer networks. Prentice-Hall, fourth edition, 2003. Very good introduction,
wide coverage, some data communications stuff too.

The units
This is a list of the units, links to the related notes and references to chapters or sections in the books. It
is possible to vary the order of presentation of topics. In most books (Comer, Tanenbaum and Peterson)
they are presented “bottom-up”, starting from the lowest level, or (in Kurose and Rose, and Stallings) “top-
down”, starting with high-level application protocols. Even as I type this I cannot decide how to do it this
time . . . , wait while I decide . . . , OK bottom up but with an overview of some general concepts first.

Another choice is whether to include any material on data transmission, this is about how binary data
is actually transmitted by “guided” media (wires or fibre optic) or by “unguided” media (wireless). This
course (module) doesn’t cover the topic. This is a serious, but deliberate omission. There is not space or
time to discuss signal propogation, noise, bandwidth, modulation etc. These topics not required for the
assessment but if you feel unhappy reading about sending data over network connections without knowing
how the bits are actually transmitted you can find some information in the books:

Comer: chapter 4, 5, 6 and 7 deal with data transmission,

iii

iv Notes on Computer Networks

Peterson & Davie: no chapter on data transmission, but some stuff about bandwith and latency in chapter
1,

Kurose & Ross: no chapters on data transmission but one section on “Physical media” in chapter 1,

Tanenbaum: chapter 2, about 90 pages on data transmission, quite good,

Stallings: nothing on data transmission,

1. Introduction: layers and protocols
This unit includes a brief overview of what protocols and layers are, and how a message moves down
through the layers acqiring different protocol headers. The unit introduces the concepts of:

• division of responsibility in networking:layersthat carry out different functions,

• equivalent layers on different machines calledpeers,

• protocolsthat allow peer layers on different machines to communicate,

• message encapsulationthe way layers attach their own headers to the messages they are asked
to pass on by higher layers.

There is one chapter in the notes Introduction, layers and protocols (chapter 1). Relevant material in
the textbooks:

Comer: these concepts are explained in chapter 16, “Protocols and Layering”,

Peterson & Davie: no separate chapter but the is a section on “Network architecture” in chapter 1,

Kurose & Ross: two separate sections on protocols and layers in chapter 1,

Tanenbaum: some stuff on layers in chapter 1,

Stallings: idea of protocols and layers in chapter 2.

2. Data link layer and network topologies
The data-link layer is responsible for sending packets (lumps) of data between directly connected
machines, ethernet, PPP, and wireless 802.11 are data-linkprotocols. The issues dealt with are:

• network topologies,

• the functions of data-link, simple encoding, framing and error checking,

• how ethernet operates,

• ethernet bridges, hubs and switches,

• some stuff on wireless LANs

The chapter on data-link and ethernet is Data link layer and network topologies (chapter 2). The
chapter on wireless LAN is 802.11 Local Area Wireless Networks (chapter 3).

Relevant material in the textbooks:

Comer: this topic is covered in Comer’s book in chapters 7, 8 and 9. Then chapter 10 deals with
physical connecting ethernets, chapter 11 with bridges, chapter 12 and 13 are about longer
distance networks and are less relevant.

Peterson & Davie: direct data-link networks are dealt with in chapter 2 this isrelevant to the module,
chapter 3 is about more complicated networks like ATM, this goes beyond what is required for
the module,

Kurose & Ross: chapter 5 is “The link layer and local area networks”, chapter 6 is about wireless
and mobile networks and contains more material than is dealtwith in the module,

Tanenbaum: the treatment of data link is split into chapter 3 called “Thedata link layer”, and chapter
4 called “The medium access control sublayer” which actually contains most of the material
about ethernet and wireless. These chapters contain more material than is needed by the module
so be guided by the coverage of the notes,

Stallings: data link is covered in Part 6, the first chapter is 13 on “Wide area networks” which is not
really necessary for this module (too “wide”?), chapter 14 “Data link control” about issues in
data link is more useful, and chapter 15 on “Local area networks” is relevant too.

Notes on Computer Networks v

3. Network layer
Climbing up one level above data link layer is the network (orinternet) layer. This layer conveys a
packet across different networks to any addressable destination. This is split into two units, the first
about IP, and the second about routing; it is only split to allow more time to cover it. The topics are:

• IP addressing,

• packet format,

• packet forwarding

• addressing on a LAN (ARP).

This is covered in the first part of the Network layer chapter 4.

Relevant material in the textbooks:

Comer: this topic is covered in chapters 18, 19 and 20. There is additional material about IP frag-
mentation in chapter 21, interesting but not essential for this module. Chapter 22 is about the
new version of IP called IPv6.

Peterson & Davie: in chapter 4 on “Internetworking” section 1,

Kurose & Ross: it is in chapter 4, but it is hard to disentangle routing from other aspects of IP.
Perhaps read sections 4.1, 4.2 and 4.4 first,

Tanenbaum: in chapter 5. There is a lot more material than is needed for this module, so maybe just
look at sections 5.5 and 5.6,

Stallings: chapter 8, sections 8.1 and 8.2 are most relevant

4. Routing
This is still at the network layer, it is about how systems discover which connections to use for
forwarding packets—routing. Instead of examining the details of real protocols this looks at two
algorithms used for discovering routes. I hope to add some additional notes about the real problems
of routing on the backbone of the Internet. The topics are:

• static link-state, or Dijkstra’s shortest routes algorithm,

• dynamic distance vector routing,

• something about Internet routing (I hope).

This is covered in the second part of the Network layer chapter in section4.7

Comer: this is covered in two places, he covers the general routing algorithms in chapter 13, and
then deals with IP Internet routing in chapter 27. There is very little about backbone routing,

Peterson & Davie: more of chapter 4, sections 4.2 and 4.3,

Kurose & Ross: chapter 4, sections 4.3, 4.5 and 4.6,

Tanenbaum: chapter 5, section 5.2,

Stallings: chapter 11 and the chapter 12 section 12.1.

5. Transport layer
This layer is responsible for providing reliable, data-streams, from program to program. It builds this
out of the out-of-order unreliable computer to computer datagrams sent by the network layer. Topics:

• end to end messages usingport addresses,

• providing streams from packets,

• reliability and retransmission,

• congestion and flow control,

The chapter in my notes is Transport layer chapter6

Comer: chapter 25,

Peterson & Davie: chapter 5, sections 5.1 and 5.2, the later stuff on RPC in 5.3 is not necessary.
Chapter 6 is also about transport layer problems but is more than is needed, however 6.3 on
TCP congestion control is interesting,

Kurose & Ross: chapter 3, sections 3.1 to 3.5,

vi Notes on Computer Networks

Tanenbaum: chapter 6, sections 6.1 and 6.5,

Stallings: chapter 6, sections 6.1, 6.4 and 6.5

6. Network programming
This describes the basic facilities used by nearly all network applications. These can be used in Java,
C++ or any other language. It introduces:

• the (almost) universal BSD socket interface used by all network applications

• the asymmetry of client and server programs,

• the Java classes that provide sockets and how to use them

• the concept of aconcurrent server,

• threadsin Java and how they can be used to create a concurrent server.

The chapter in the notes is Network programming (chapter 7).

Comer: in chapters 28, 29 and 30, but he only provides program examples in C++ not in Java.

Peterson & Davie: a bit in section 1.3 (in C),

Kurose & Ross: section 2.7, it does have some Java stuff,

Tanenbaum: a bit in subsection 6.1.4,

Stallings: in section 4.4

other perhaps the simplest way to get extra information about network programming in Java is to
look at Sun’s Java tutorial and guide:

http://java.sun.com/docs/books/tutorial/networking/index.html

7. The application layer: HTTP
This says something about one application level protocol (ie. one that runs above and uses thesocket
API). The application is the Web, the core of which is a very simple protocol called HTTP. The
chapter in the notes says a bit about:

• the operation of the HTTPprotocol,

• the common format of the files (pages) which is currently HTML, and

• a bit about server-side functionality provided by CGI programs or PHP.

The chapter in the notes is WWW, HTTP, HTML, CGI and PHP (chapter 8).

Comer: in chapters 35, 36 and 37, chapter 35 deals with HTTP, chapter36 deals with server-side
functionality like CGI, and chapter 37 covers client-side functionality like Javascript, it is not
so important for this module,

Peterson & Davie: in subsection 9.2.2,

Kurose & Ross: in section 2.2,

Tanenbaum: in section 7.3,

Stallings: section 4.1.

8. Application layer: DNS etc.
This is another application level protocol like HTTP discussed earlier, although it is not an ordinary
application, this is the protocol that enables names (eg. herts.ac.uk) to be used on the Internet. Also
other application protocols might be introduced for example those supporting email (but these extra
notes don’t yet exist). The chapter in my notes is The domain name service, DNS, chapter9

Comer: DNS in chapter 31, mail in 32,

Peterson & Davie: DNS in section 9.1, mail in subsection 9.2.1,

Kurose & Ross: DNS section 2.5, mail in section 2.4,

Tanenbaum: sections 7.1 and 7.2,

Stallings: section 4.2 for DNS and section 3.3 for mail.

Notes on Computer Networks vii

9. Application layer: P2P etc.
This unit considers the characteristics of peer-to-peer networking and how it differs from the client-
server architecture. It also looks at an example of a file-sharing peer-to-peer system, Gnutella. Once
again, if I finish the notes there will some other protocols considered, for example messaging systems
and or real-time protocols. In my notes the chapter is Application layer: P2P (chapter 10)

Comer: nothing about peer-to-peer protocols but chapter 33 is about a real time problem: Voice over
IP

Peterson & Davie: yes

Kurose & Ross: section 2.6,

Tanenbaum: 2 pages in chapter 1,

Stallings: I can’t find anything.

10. Security
The problems of how systems connected can be attacked and howtraffic can be intercepted of spied
on. The notes say a little about cryptography and how it can beused to provide greater security. In
the notes this is in Security (chapter 11).

Comer: chapter 40,

Peterson & Davie: chapter 8,

Kurose & Ross: chapter 8,

Tanenbaum: chapter 8 is very good but too much. He covers all the relevanttopics but provides too
much about each,

Stallings: chapter 16.

viii Notes on Computer Networks

Contents

1 Introduction: networks, layers and protocols 1
1.1 Networking 1
1.2 Protocols 1
1.3 Networking layers 1
1.4 Message encapsulation 4
1.5 The OSI and TCP/IP layers 6
1.6 Networks and internets 6

2 The data-link layer 7
2.1 Functions of data-link layer 7
2.2 Topologies 7
2.3 Data transmission 9
2.4 Encoding 9
2.5 Error detection 10
2.6 Framing 10
2.7 Reliable transmission 11
2.8 Local area networks including ethernet 11

3 802.11 Local Area Wireless Networks 15
3.1 The 802.11 standard 15
3.2 802.11 architecture 15
3.3 Services and protocols 16
3.4 802.11 frame formats 16
3.5 CSMA/CA and the problems of wireless MAC 18
3.6 The basic DCF CSMA/CA protocol 18
3.7 The RTS/CTS part of the DCF protocol 19

4 The network layer (IP) 21
4.1 The Internet 21
4.2 IP addresses 21
4.3 IP packets 22
4.4 Forwarding tables 22
4.5 Example of using forwarding tables 23
4.6 Sending on an ethernet: ARP 24
4.7 Building forwarding tables: routing 24
4.8 Shortest route or link-state routing 25
4.9 Distance vector routing 27

5 More about the network layer 33
5.1 Subnets and subnet routing 33
5.2 The backbone of the Internet 34
5.3 Address space exhaustion 37

6 The transport layer (TCP & UDP) 39
6.1 The function of the TCP layer 39
6.2 End-to-end communication: ports 39
6.3 TCP message format 40
6.4 Streams in packets 40
6.5 Packet acknowledgement & retransmission 40
6.6 Packet “windows”, the concept 41
6.7 Packet “windows” in TCP 41
6.8 End to end flow control 42
6.9 Network congestion 42

ix

x CONTENTS

6.10 Opening and closing connections 42

7 Java Network programming with sockets 45
7.1 Addressing 45
7.2 Socket usage is asymmetric 45
7.3 Socket streams and datagrams 45
7.4 Unix sockets system call interface 45
7.5 Java sockets API 46
7.6 A client example 47
7.7 A cutdown version 49
7.8 Client server exampleecho . 49
7.9 Threads 51
7.10 A concurrent server 52

8 WWW, HTTP, HTML, CGI and PHP 55
8.1 Overview of WWW 55
8.2 HTML .. 56
8.3 URIs and where files are kept 57
8.4 HTTP .. 58
8.5 Client and server additional services 59
8.6 Server side: using forms for interaction 60
8.7 Server side: CGI programs 61
8.8 Server side: PHP 65
8.9 Client side (browser) services 67

9 The Domain Name Service DNS 69
9.1 Domain names 69
9.2 Zones and name servers 69
9.3 Resolving a name 70

10 Peer to peer networks 73
10.1 Application architecture 73
10.2 Instant message systems 73
10.3 File sharing 74
10.4 Gnutella 74

11 Network security 77
11.1 Some cryptographic concepts 77
11.2 System security without networking 79
11.3 System security with networking 79
11.4 How can networking be more secure? 80
11.5 Firewalls, Proxies, and Masquerading 80
11.6 Position of firewall 80
11.7 Encrypting network connections 81
11.8 Encrypting network traffic: IPSec 81
11.9 Encrypting network traffic: IPSec 82
11.10Application level encryption (SSL) 82
11.11Using SSL 83
11.12Openssh 83
11.13Structure 83

Chapter 1

Introduction: networks, layers and
protocols

1.1 Networking
Networking supports communication between two or more programs running on physically distant ma-
chines. For example all the following require network support:

• a WWW browser client using a WWW server,

• mail from a user agent program to a remote mail box,

• remote access to a data-base,

• a remote shared file server system,

• downloading an MP3 music file.

1.2 Protocols
To request any service or exchange any information between 2programs there must be an agreed set of
commands and data formats, this is aprotocol. So, for example, the commands and data sent between
a World Wide Web browser and a remote server are a protocol. The browser (probably) uses the GET
command follow by the name of the required file (page), this protocol is recognised and understood by the
web server program which responds appropriately. Similarly the format of packets sent between Ethernet
cards and their drivers are a protocol. The programs exchanging messages are calledpeers.

1.3 Networking layers
Two very important concepts in understanding networking are protocolsandservice layers. Figure 1.1 is a
simplified view of the layers of network service in TCP/IP.

Application

eg. Web browser

Application

eg. Web server

http

eg. TCP eg. TCP

Network Layer

eg. IP

Network Layer

eg. IP

hardware hardware
physical network

protocol

protocol

protocol

protocol

tcp

ip

ethernet

Transport layer Transport layer

Data−link layer Data−link layer

eg. Ethernet driver eg. Ethernet driver

Figure 1.1: Layers and protocols

1

2 CHAPTER 1. INTRODUCTION: NETWORKS, LAYERS AND PROTOCOLS

1.3.1 The functions of the layers
Each layer in the simple model provides facilities and carries out certain tasks:

Hardware Bits of wire that can carry bits?

Data-link This layer is responsible for delivering packets for the network layer to other physically con-
nected machines. It is responsible for error checking and driving the devices. Ethernet is a data-link
layer protocol, it can only send packets to machines that arephysically attached to the same wire.

Network This “spans” different physical networks, it is a protocol that makes minimal assumptions so
it can work on any and all data-link networks. Its job is to getpackets from a machine on one
physical network to a machine on another—theinter-networkprotocol IP. Its main job is finding and
maintaining routes to the remote systems.

Transport This layer turns IP packets into a “stream” of characters between differentprocesseson differ-
ent machines. This layer provides a “reliable” service, if any IP datagrams are lost this layer must
recognise this and re-transmit them. The layer guarantees delivery of all the data (for TCP anyway) in
the correct sequence by using sequence numbers. This layer provides an interface to the application
and supports streams of data (TCP) or arbitrary length single messages (UDP) to selected services on
selected systems. The interface it provides is called thesocketinterface.

Application These are either user programs or standard utilities like: ftp, telnet, WWW browsers, network
file store, or mail programs, each provides its own application oriented protocol. All of them use the
transport layer service.

Usually all the layers upto and including the transport layer are in the kernel of the operating system and
the applications are programs. So the interface between is usually a set of system calls.

1.3.2 Why have layers?
One reason for having separate layers is that it makes the system simpler to use by defining clear interfaces
for application or protocol developers.

Data-link device driverData-link device driver

ethernet leased line

LAP from X25Ethernet

Network Layer

IP

Network Layer

IPX

Transport service Transport service

UDPTCP

Application Application Application

Web server telnet tftpd

Figure 1.2: Layers with alternative protocols

Another reason is that the separation simplifies the use of alternative layers and protocols so that if the
network level determines that one site is connected via a leased line it can pass a message packet to the
appropriate driver, whereas a message to a different site will be passed to a different data-link level protocol
driver, this is shown in figure 1.2. It also works in reverse: network (IP) packets contain a field in their

1.3. NETWORKING LAYERS 3

header identifying whivh transport level protocol they useand this is used to determine which level to pass
the packet up to (either TCP or UDP).

1.3.3 Relationship between protocols and layers
If a browser communicates with a web server they exchange messages (using the HTTP protocol), the
messages are simple character strings:

• In order for the browser to send the HTTP message it must request that the layer below it (the transport
layer) opens a connection to the server on the remote machine.

• The transport layer has to communicate with itspeer, (the transport layer software on the remote
machine) to establish the connection to the web server. Peers at the transport layer use the TCP
protocol.

• In order for the transport layer to send its TCP messages it breaks them into “packets” and requests
that the network layer below it sends these packets to the remote machine which will pass them up to
the peer transport layer.

• The network layer uses the IPv4 (and soon IPv6) protocol. It also uses a routing protocol to work out
which machine to send to in order to get the remote end. and it must ask the datalink layer . . .

This is very similar to using the Post Office to convey letters.

• You write to your friend, the letter is your message (what yousay in the letter and how they respond
is your “protocol”), you put it in an envelope, put the address on the front and pass it down to the next
“layer”—the postal service,

• The local postal service sorts the letters and puts them in bags for different destinations, these are
labelled. The bags are then given to an airline or a railway that uses the labels to deliver them to the
remote postal service,

• The remote postal service unpacks the bags and delivers the letters.

Notice that it is necessary to have a “protocol” that is understood by the lower layer (TCP, or postal service
bag labels) in order for messages from a higher level to be delivered. Notice also that the layer below knows
nothing about the higher level protocol (whether it is HTTP,or the contents of your letter).

A PACKET’ S JOURNEY

Figure 1.3 shows the path of a packet through the network software layers when a client application sends a
message to itspeer(the corresponding server) application. First the application calls on the transport layer
on its machine to convey the message to the right program at the destination, the transport layer will use the
network layer to send the packet to the correct host, the network layer, once it has found thenext hopon the
journey to the destination, will call the appropriate data link driver to send the packet.

table
forwarding

table
forwarding

table
forwarding

table
forwarding

application messages

path of IP packet

IP IPIP IP

other app

server

other app

client

DLX DLX DLY DLY DLZ DLZ

TCP TCP

Figure 1.3: Packet encapsulation

4 CHAPTER 1. INTRODUCTION: NETWORKS, LAYERS AND PROTOCOLS

When the packet arrives at the next machine the data-link layer passes the packet to the network layer,
it examines the packet’s destination address, it finds thenext hopand uses the appropriate data-link driver.
This continues until the packet arrives at the destination,then the network layer software will examine the
destination address and find that it is its own machine so, instead of forwarding it, it passes the packet up
to the transport layer software. The transport layer looks at the transport message and determines which
application to give the message to.

1.4 Message encapsulation
As data are passed down from an application level through thetransport level, the network layer to the
data-link layer they areencapsulated, this is shown in figure 1.4. In order to transmit the characters the
transport layer puts a header on to communicate with itspeermodule at the remote end. In this header will
be the port number. The transport module passes the data plusheader to the network module which puts on
its header containing the remote system address. Finally when this is passed to the data-link code another
header is added.

TCP

header

TCP

header

TCP

header

IP

header

IP

header

Ethernet

header

Ethernet

trailer

20 2014 4

16 bit dest. port
16 bit sender port

TCP flags

protocol, eg HTTP
application layer

application data

application data

application data

application data

frame type
48 bit src addr
48 bit dst addr

32 bit IP dest addr
32 bit IP src addr.
IP stuff: TTL, etc

Figure 1.4: Packet encapsulation

1.4.1 Usingethereal to examine packets
There is a program calledethereal that can “capture” (which means: “take copies of”, not “remove”) all the
raw data data-link packets from a network interface. Since all the higher level protocols are encapsulated
in, and carried by, the datalink packet andethereal can decode all the protocols, it is therefore possible to
examine any or all the protocols.

The following pictures (figs 1.5 and 1.6) ofethereal have a lot of detail but most should be ignored, the
only concept being examined is packet encapsulation: one message, wrapped inside another.

In figure 1.5 the top window shows a list of packets that were captured, one packet has been selected,
it is circled. More details of the selected packet are displayed in the middle window, Remember that each
“layer” of networking software has its own task and must communicate with the equivalent layer at the
recipient, so it attaches its own header. The middle window shows a decoding of each layer’s header, each
can be “opened” (using the arrowhead at the left) to get more details, here the application layer protocol,
HTTP, has been opened.

In the bottom window there is a hexadecimal dump of the whole raw packet including all protocol
headers and data. When one of the protocols is selected in themiddle window the corresponding section of
the hex dump is highlighted, in the first picture the HTTP protocol is selected so the final (most nested) part
is highlighted. But in the second ethereal picture the IP protocol is selected in the middle window and so,
in the bottom window, only 20 bytes (the IP packet header length) are hightlighted.

The second picture in figure 1.6 shows the selection of the IP header in the middle window and the
highlighting of a different section of the hexadecimal dumpin the bottom window.

1.4. MESSAGE ENCAPSULATION 5

1. Select a packet

2. Select the nested
 protocol

3. The highlighted block

 representing the
 selected protocol

 of bytes is the one

Figure 1.5: Ethereal windows

2. Select a different
 level of nested protocol

3. A different block of
 bytes is highlighted

Figure 1.6: Highlighting a different header

6 CHAPTER 1. INTRODUCTION: NETWORKS, LAYERS AND PROTOCOLS

1.5 The OSI and TCP/IP layers
There is another (less used) view of layers called the ISO Open Systems Interconnection:

application
7–5 or user-

process
4 transport
3 network
2–1 data-link

& hardware

7 application
6 presentation
5 session
4 transport
3 network
2 data-link
1 hardware

The TCP/IP can be seen as a simplification of the OSI levels:

• The service level, 7–5 merged as the process or application layer. They provide FTP, Telnet, NFS,
X11 and other higher level protocols.

• The transport layer, (the OSI layer 4) the link between different processes on different systems, the
bit provided by TCP.

• The network layer (OSI layer 3), that links systems across one or more networks, it providesinternet
working. The IP bit.

• The data-link layer, (OSI layers 2 & 1). It is a network, for example Ethernet with its hardware and
low-level protocols for moving data between 2 directly connected systems.

1.6 Networks and internets
Networks might be campus networks, company networks, national or local. But in TCP/IP terms a network
is most easily though of as a collection of hosts joined directly together at the data-link level. So those
systems directly connected to a common Ethernet constitutea network, or some PCs connected via a token
ring are a network. Therefore the Hatfield campus has more than one network, even though it is sometimes
referred to as one and treated as such for network administrative reasons. A group of interconnected net-
works is called aninternet; the most famous and largest internet, that grew from ARPA-net, is calledthe
Internet. The Hatfield internet is in turn connected to the UKUniversities national network Janet and, in
turn, to the Internet.

Chapter 2

The data-link layer

2.1 Functions of data-link layer
Thedata-linklayer, in networking software, is reponsible for transferring data from one machine to another
directly connected machine. In other words, the networkinglayer above will pass it packets of data and the
name of a network interface and it must transmit the data. This layer must know how to drive the hardware.
In different systems the responsibilities might vary but could include:

• encoding

• sending, receiving andframingdata (all protocols),

• error checking using CRC (cyclic redundancy checks),

• error recovery: acknowledgement and re-transmission (in HDLC but not Ethernet).

In many types of network there is a big variation between how much is done by hardware and how much by
software, for example an ethernet card will include lots of the functions, but software must do most of the
work of driving a dial-up modem line. These notes will examine the logical problems (not electrical issues)
whether the functions are in a software of hardware device driver.

2.2 Topologies
The data-link level software in a computer must send data along different physical networks that its com-
puter is connected to. Thetopologyof a network is its basic architecture, how components are logically
connected. The simplest and oldest (and still widely used) is thepoint-to-point. A system can be build from
an arbitrary number of dedicated machine to machine links.

Figure 2.1: Point to point connection

Point-to-pointconnections like simple serial or parallel lines that join adevice on one machine to a
device on another, these are commonly used to connect to widearea networks, for example BT leased lines
or simple dial-up telephone links. The technology and speedcan vary from simple serial lines like RS232
at 9.6 Kbps. to fibre optic cables at 2.5 Gbps. A protocol used on dialup lines PPP. A protocol used for long
distance backbone connections is SONET.

• some long distance links, dial-up modems, joining 2 parallel ports (laplink), institutional network to
an exchange (our off-site link),

• simple, no addressing needed, if a machine sends on one link it only has one destination,

• Advantages: robust: one lost link only affects that link, nocontention: can have all machines com-
municating at the same time, flexible: different technologies can used for different links,

• BUT scales very badly, there are an exponential number of required connections.

Thestarnetwork, all machines are connected through a dedicated switch:
These are typically used for local area nets and work at about150 Mbps or more. Actually they may

provide the data-link layer but they share some of the characteristics of the network layer.

7

8 CHAPTER 2. THE DATA-LINK LAYER

Figure 2.2: Star topology

• like ATM (there is one at Hatfield, in the middle of lots of ethernets), can be used for local or
metropolitan or wide area nets,

• more scalable, fewer connections,

• the switch might provide some concurrent connections but itis less parallel than point-to-point,

• needs some form of addressing, so virtual circuits can be setup between communicating machines or
packets can be directed to the correct recipient,

Theshared bustopology, all machines connect to a common carrier,

Figure 2.3: Multiaccess shared bus topology

Multi-accessnets where lots of machines are connected to the same carriercable (it works a bit like a
computer bus). These are the commonest for local area networks. The different types includetoken rings
like FDDI or single lines like Ethernet. Their difference lies in the way they compete for and schedule
access to the common carrier between the different machines. There performance is between 10 and 1000m
bps. The performance of some ethernets is over 1Gb, these usea similar protocol but they are not really
shared bus architectures.

• used for local-area networks, the famous ethernet, not usedfor metropolitan or wide-area nets,

• very simple, very scalable, very cheap

• requires hardware addresses so the receiver can recognise its data,

• lots of contention, only one message between two systems at any time, requires a fast medium

Thestore-and-forward packet switchednetwork, the switches are high performance purpose built boxes
(by CISCO or 3COM or ..), they link with arbitrary toplogies to other switches OR they have “outside”
links to host computers, or other networks.

• very expensive, used for wide-area networks or metropolitan nets, they form the backbone of large
internets so they need inter-switch connections and ways ofconnecting to other nets.

• they usually work by switchingpacketsof information, which can be briefly stored and forwarded
when a link is free,

• they must do routing: how to get from a machine or LAN on one side to a LAN or machine on the
other side,

2.2.1 Note on real topologies
The preceding descriptions of topologies are over-simplified logical structures. In reality there are many
variations and alternatives, and sometimes a difference between the apparent physical topology and the
logical topology of operation of the network. For example:

• many store and forward WAN are made out of multiple point-to-point connections,

2.3. DATA TRANSMISSION 9

Figure 2.4: Store and forward WAN topology

• ATM networks can be connected to produce a structure that doesn’t look like a star but resembles the
store-and-forward organisation,

• 100Mb ethernets that usehubs(more later) to connect them look like physically like a starbut really
do function as a broadcast shared bus toplogy,

• 100Mb ethernets that useswitches(more later) to connect them look like physically like a starAND
really do function as a star network NOT a shared bus architecture,

2.3 Data transmission
The first problem is how are “bits” of digital data sent, this is the problem of data transmission. This is an
enormous subject that will not be dealt with here. It includes:

• the data transmission medium: radio signals, copper wires (twisted or not), fibre optic cables etc.,

• the performance of the different media and their properties,

• the problem of “noise” and how much information can be sent. This is a big topic and can involve
quite a lot of mathematical analysis,

• how data are represented: amplitude modulation, one signalstrength for a “1” and a different signal
strength for “0”, phase modulation using a sine wave and changing the phase of the oscillation where
the change represents a bit, or frequency modulation using asine wave and changing the frequency
of oscillation to indicate a bit.

Just ignore this for now, but you must know that the topic of data transmission is a major subject in its
own right and an area of overlap between the concerns of electrical and electronic engineers and computer
scientists. We will only assume that some how ones and zeros can be represented and transmitted.

2.4 Encoding
To send a binary digit along a carrier the sender can vary the voltage or frequency for a fixed period of time,
the receiver must detect this change. To do this they must synchronize clocks so the receiver samples at the
right time and duration.

The clock is probably a transition from one level to another and triggers the sampling of the line. If the
line is at one level to long then the clocks at each end might drift.

There are various forms of encoding:

• NRZ low level for 0, high for 1. But the signal can stay too longin one state.

• NRZI change level for a 1, unchanged signal for 0. Solves problem for 1s but not 0s.

• Manchester encoding which does an XOR of the bit with the clock signal (which changesevery
interval). Clearly produces lots of transitions but clearly only provides half the bit rate for any Baud
rate (the maximum number of transitions the line can make in asecond).

10 CHAPTER 2. THE DATA-LINK LAYER

0 0 1 0 1 1 1 1 0 1 0 0 0 0 1 0Bits

NRZ

clock

Manch-
ester

NRZI

Figure 2.5: Simple digital encoding

• 4B/5B, every 4 bits of data are encoded in 5 bits of signal:0000 as11110, 1111 as11101, 0001 as
01001. The codes are chosen to guarantee that there can be no long sequence of 1s or 0s no matter
what the data is. FDDI uses this.

2.5 Error detection
Electrical signals can be corrupted or misread so it is necessary to have a way of detecting any corruption.
This is usually done by computing and sendingredundantinformation, the receiver recalculates and checks.
The amount of redundant information and how it is calculatedaffect the likelihood of detecting errors.

• Parity, add one extra bit for every byte (or whatever) so there is an even (or odd) number of 1s. Not
very strong.

• Checksum, add up all the bytes in a message and send the sum. Better.

• CRC (cyclic redundancy check), treatn bits of data as being represented by ann−1 bit polynomial,
divide this by some smaller (carefully chosen) polynomial and use this to check. (I don’t understand
the maths!). This can give quite strong checking of upto 12000 bits with just 32 bits of redundancy.

2.6 Framing
How are bits of data sent? The receiver needs to know how to interpret the sequence. One bit by itself
provides little information, it is necessary to send sequences of bits to represent useful data. The solution
is to send data inframeswith a given format. The next problem is to know when the sequence, the frame,
starts and when it ends, there are three main ways:

• always send a fixed size frame, this is used by fast backbone network protocols like SONET where
there is always loads of traffic,

• start with a marker pattern (a special byte) so the receiver will find the start, then be followed by a
byte count, then the data. This is not so often used because itcan be hard for the receiver to recover
if there is an error in the count (so it is said). All the bits must be sent as bytes so the counting can
work. One such protocol was DDCMP used by DEC. More commonly:

• send a special marker (a sequence of bits), then the data and terminate the sequence with another (or
the same) special sequence. These protocols can be eitherbyte-orientedor bit-oriented: bits can be
sent as bytes (always multiples of 8 bits), or as an arbitrarysequence of bits representing binary or
character data. So PPP is a byte oriented protocol (always multiples of 8) and uses the special byte
01111110 as both the start and end marker. IBM designed SDLC for mediumdistance links and it
was later standardised as HDLC, it is bit oriented, it uses the bit sequence01111110 (like PPP) as
both start and end markers. Figure 2.6 is an HDLC frame.

With any method that uses an end marker there is a problem thatif the value of the end marker character or
byte sequence occurs in the data being transmitted then the receiving hardware will believe that the frame
has ended prematurely. To solve the problem with byte oriented protocols a technique calledbyte stuffingis

2.7. RELIABLE TRANSMISSION 11

data CRC

8 816 16

header01111110 01111110

Figure 2.6: HDLC packet format

used: a specialescapecharacter (DLE in ASCII) is used. Whenever the end marker value occurs in the data
it is replaced by the escape character followed by a code indicating that the end marker was replaced. When
the receiver detects the escape it removes it and the following character and replaces it with the original
code required. (If the value of the escape occurs in the inputthen it will be replaced by some other escape
sequence. NB this is just like the use, in C, of the\ escape character, where\n is a newline\\ is \ etc.)

Things are simpler with bit oriented protocols, they usebit stuffing. The sender, to avoid the termination
sequence, for example01111110, being sent in the data, will if five ones occur (11111) just stick in an extra
0. The receiver will be given the data and will remove any zerothat occurs after five ones. It is now OK
because the start and end markers are the only things that will have six ones.

2.7 Reliable transmission
Depending on the networking system being used, it might be important for the data-link layer to be reliable
(not in the TCP context, but maybe others). The simplest solution is to used anacknowledgement, timeout
andretransmitsystem. This is done in the HDLC protocol. It will not be described here because it is dealt
with in chapter 6 on TCP.

2.8 Local area networks including ethernet
There have been many forms of local area network architecture: token ring, FDDI, ATM, ethernet and now
wireless networks. However the one used most widely is ethernet (and increasingly wireless).

2.8.1 Standards
The IEEE, American Institute of Electrical and Electronic Engineers, has many standards that have become
international standards, (the “Unix” standard called POSIX is an IEEE standard). IEEE have a set of
standards called 802 that cover many aspects of local area networks (and some wider network issues):

802.2 logical link layer, interface to layers above
802.3 CSMA/CD, the ethernet family, many sub-standards
802.3u 100Mbps ethernet
802.3z 1000Mbps ethernet
802.5 token ring network
802.11 wireless LAN
802.11x 802.11a, 802.11b, 802.11g etc. different wirelessfrequencies

in the 802 family there is an important distinction between:

• the LLC, the logical link control sub-layer, which specifiesthe interface to the network layer in the
protocol stack. This is independent of the underlying network type and will be the same for all. And

• the MAC, medium access control sub-layer, which specifies the operation of the protocol, data format
and data transmission. This is medium dependent and will be different for different network types.

This distinction is used in the 802.11 wireless protocol, the network layer (usually IP) communicates with
the LLC layer which then passes LLC frames down to the 802.11 MAC layer. However this distinction is
not made by ethernet (802.3) because its design pre-dates the introduction of 802.2. So ethernet packets do
not encapsulate or contain LLC packets, higher levels (likeIP) interact directly with 802.3 not with 802.2.

2.8.2 802.3 (ethernet) features
Ethernet is a form ofcarrier sense multi-accessnetwork withcollision detectionor CSMA/CD, “Ethernet”
was a brand name belonging to Xerox but it is so common it is nearly always used as the name instead of
CSMA/CD.

Since many machines can connect to the same Ethernet cable they have to use source and destination
addressing. The address is 48 bits long and is built into eachEthernet card or device when it is manufactured
and is assumed to be unique. An Ethernet packet contains a preamble which is a standard recognisable
sequence of bits so that devices detect the start of a packet,the destination and source addresses, a field

12 CHAPTER 2. THE DATA-LINK LAYER

Physical

Datalink

Logical link control

802.11 MAC protocols

DCF and PCF

802.11b802.11a 802.11g

802.3
ethernet
CSMA/CD

10Base−T
and
others

rings, etc

Figure 2.7: IEEE 802 protocol stack

identifying the protocol of the message in the data, ie. IP orsomething else, so it can be passed to the right
layer above.

48 6 6 2 46−1500

source addrdest addr datasync. preamble CRCtype

Figure 2.8: Ethernet packet format (sizes in bytes)

2.8.3 Ethernet operation
Another problem arising from having lots of machines on the same cable is synchronising the use of it,
when one device puts a packet on the cable no other machine can. In other words “collisions” can occur
and must be dealt with. The operation of sending is as follows:

1. if the carrier is busy (ie. some other computer is sending)then wait, or,

2. if the carrier is idle then start sending bits,

3. while sending, monitor the carrier to see if any other bitsappear, if not then done.

4. otherwise there is a collision, some other device transmitted at the same time; if so stop, put error bits
on the carrier (jammingsignal) so all other devices know there is an error and then wait a variable
time before going to step 1. The length of delay is random and increases with repeated collisions, it
is calledexponential back-off.

Ethernets are very successful and very widely used but they perform very badly if they get much more
the half their load. This is because the rate of collisions rises exponentially as the load increases, and also
the consequent increase in re-transmissions.

2.8.4 Ethernet cable length
The method depends on a host being able to detect the collision before it stops sending, otherwise a collision
might have occurred at the receiver but the sender will not realise and not re-transmit. Consequently there
is a maximum length for a 10Mbps ethernet network of 2500manda minimum length of frame of 512 bits
(64 bytes). Assume the worst case:

• the sender is at one end of a 2500m cable, and a second sender isat the other end,

• the sender transmits at timet,

• the frame starts to arrive at the other sender at timet+d, whered is the latency (time to reach the other
end), just after the second sender started to transmit,

• now the second sender will detect the collision and jam

• it will require anotherd micro-seconds for the second sender’s message to arrive at the first sender, at
time t+2*d , the first sender must still be transmitting at this time or itwill not detect the collision.

2.8. LOCAL AREA NETWORKS INCLUDING ETHERNET 13

The time,d, taken for a bit to travel 2500m is 25.6 micro-secs, so the first sender must be still be sending
after2*d, 51.2 micro-seconds, On a 10Mbps ethernet 512 bits are transmitted in 51.2 micro-seconds so in
order to still be sending and detect the collision theminimumpacket length must be 512 bits.

This problem still applies for 100Mbps and 1000Mbps ethernets, they have maximum cable and min-
imum packet size limits. They also use additional ways to detect collisions, but the basic problem is the
same. So the 100Mbps system using hubs and switches and running 10 times faster can either have a
minimum frame length of 5120 bitsor a maximum length of 250m, it shortened the maximum length.

2.8.5 Ethernet bridges
A bridge is a way of joining two or more ethernets. It appears to the connected hosts that there is only one
network, they address, transmit and receive data in the sameway, it doesn’t affect them if the receiver is
on the same or the other side of the bridge. The bridge works byreceiving all packets from all networks,
buffering them and passing them on to the other networks. This has the very important consequence that
the combined networks can be more than 2500m. This is becausethe bridge deals with the carrier sense,
collision detection and, if necessary, re-transmission onthe other ethernets.

1

2

b1−2

A B C

E GD F

Figure 2.9: Ethernet bridge

So if host A on ethernet 1 sends a packet to host F using F’s address it will be intercepted by the bridge
b1-2 (because it grabs everything), retransmitted unchanged by the bridge on ethernet 2, and finally get to
F.

Most bridges areadaptive learning bridges. Their basic operation is the same but they also record all
thesenderaddresses of all the packets sent on each ethernet, this way they learn which ethernet each host is
attached to. Then, when the must pass on a packet, they examine thedestinationaddress and only forward
it to the network that the destination host is on. So if host C sends to host A it will be intercepted by the
bridge but it will not be forwarded on network 2 because the bridge has learnt that host A is on network 1.

2.8.6 Ethernet physical topologies
The basic original topology of the 10Mbps ethernet was the shared bus structure, a coaxial cable, to which
every host is attached, see figure 2.10.

Figure 2.10: Original ethernet topology

The 100Mbps uses UTP (twisted pair) cables that plug into a a box, either ahubor aswitch. The hubs
or switches can be connected together in a hierarchy or using10Mbps links, see figure 2.11.

this looks like a star network topology, it is physically butnot logically. Logically and functionally it is
still a shared bus. When one host sends a packet it goes to all the other hosts.

Notice, in figure 2.12, that the link goes up the twisted pair,into the hub, back down one link in the next
twisted pair and back to the hub again. In other words it worksexactly like the shared bus. Hubs can have
between 4 and 64 ports.

14 CHAPTER 2. THE DATA-LINK LAYER

hub

host 1 host 2 host 3 host 4

hub

uplink to
another host

Figure 2.11: Ethernet hub

1 2 43

Figure 2.12: Inside an ethernet hub

With a hub there is still contention, while one host is using the hub no other host can. By spending a bit
more money you can get aswitch. A switch looks like a hub but internally it is totally different. A switch
still appears the same as any ethernet to the host but it is almost as every host is on its own separate ethernet
with bridging between them, see figure 2.13.

b1−2

b2−3

b3−4

b2−4

b1−3

b1−4

host 1

host 2

host 3

host 4

Figure 2.13: An ethernet switch

So if host 1 is sending to host 3 the packets go through a type ofinternal adaptive bridge b1-3 and be-
cause b1-2 and b1-4 are adaptive they will not forward the packet. This means that host 2 can communicate
with host 4 at the same time without collisions.

Chapter 3

802.11 Local Area Wireless Networks

3.1 The 802.11 standard
There are various forms of “wireless” networking, they use different frequencies, they work over different
distances, they use different techniques and they are used for different types of network. There are long
distance links using micro-waves, they are infra-red linksbetween laptops and desktop machines and there
are wireless local area networks based on the IEEE 802.11 standard (the one considered here). The standard
is adata-linkprotocol, it defines:

• the services and behaviour provided to the layer above (to thenetworklayer), hiding the lower details,
this is common to all 802 LAN standards (like ethernet, rings, etc.),

• the MAC (medium access control) protocols, ie. how the connected systems cooperate together to
exchange data. This includes messages to support movement of one station between cells (networks)
and support for authentication and privacy,

• it also specifies hardware behaviour, frequencies, encodings, modulation etc.

Physical

Datalink

Logical link control

802.11 MAC protocols

DCF and PCF

802.11b802.11a 802.11g

802.3
ethernet
CSMA/CD

10Base−T
and
others

rings, etc

Figure 3.1: 802 Protocol layers

There are various alternative 802.11 standards: 802.11 upto 2Mbps, 802.11a (using orthogonal fre-
quency division multiplexing) upto 54Mbps, 802.11b (usingdirect sequence spread spectrum) upto 11Mbps,
and 802.11g upto 54Mbps. They all have similar MAC protocolsand only differ in the hardware behaviour.

3.2 802.11 architecture
A cell is a group ofstations(computers) that can communicate with each other using wireless transmission.
A cell is also called a BSS,basic service setin 802.11.

A cell can have anaccess point, AP (often called a “base station”), which connects it to another network,
usually a LAN like ethernet. The LAN to which a cell is connected is called a distribution system or DS.
A cell with an AP connection is called aninfrastructureBSS. Bothcell A andcell B in figure 3.2 are
infrastructure BSSs.

A cell with no AP is called anindependentBSS, also sometimes called anad hoc network. In figure 3.2
stations 11 and12 are part of an independent BSS.

In picture 3.2 stations 2 and 3 can communicate directly in cell A, in cell B stations 6 and 8 are too
distant but can communicate via the base station. All the stations in cell A andcell B can communicate
with the rest of the world using their APs and the DS.

3.2.1 Connection between wireless and ethernet
How does the AP access the DS? How do packets from the wirelessnetwork travel via the AP over the
ethernet? They have a different format. Are they encapsulated, like IP packets in data-link packets? No,

15

16 CHAPTER 3. 802.11 LOCAL AREA WIRELESS NETWORKS

station 3

1 to 7 using the DS (ethernet)

station 5
station 7

station 8

station 6

station 4
station 11

station 12

11 to 12 direct

point A
AP access AP access

point B

station 2

2 to 3 direct
Infrastructure

station 1

BSS, Cell A
Infrastructure

6 to 8 via AP
BSS, Cell B

Ad hoc network
Independent BSS

Figure 3.2: 802.11 cell architecture

both 802.11 and 802.3 are data link layers. Does it use some form of routing? No, the AP doesn’t look
inside for IP addresses.

The AP works in a way similar to an ethernet bridge. The wireless uses the same type of MAC address
as ethernet. If the destination MAC address is on the other side of the AP the AP passes it on.

There is only one problem: the format is different. The AP must translate the format of the message
from 802.11 to 802.3 and vice versa.

3.3 Services and protocols
In order to cope with the special problems of wireless transmission the 802.11 protocols are quite compli-
cated. They include:

• associationandreassociation, this is to enable stations (such as laptops) to find base stations when
they join or leave cells, this supports mobility,

• authenticationandencryption, because wireless nets are so intrinsically insecure this allows pass-
words and encryption to be used at the MAC level,

• distributionandintegration, this determines how to route frames either via base stations or directly,
and also how they frames should be carried over an ordinary ethernet if they must be routed between
cells,

• transmission protocols(MAC) to send packets, there is a basic set of CSMA/CA rules and two more
advanced protocols:

– DCF distributed coordination functionto allow packets to be sent directly between any two
stations or the base station. These notes will treat the DCF in two stages:

∗ basic CSMA/CA protocol to avoid packet collisions (or at least reduce them), and
∗ the RTS/CTS exchange which improves collision avoidance. This is required from all

802.11 implementations, but does not have to be used,

– PCFpoint coordination functionthis is when the base station takes charge of data transfer for
inter-cell or intra-cell transfer. The base station “polls” each station in turn to see if they have
any data to transfer and it manages the transfer. It is calledthe “contention free” part of the
protocol. It is optional and as far as I can tell (in 2004) it isalmost unused, why it is not used I
do not know since it can actually prevent collisions.

3.4 802.11 frame formats
The packet (in 802.11 they are calledframesbut I can’t help saying packet) format is very complicated,
firstly there are alternative formats for different purposes, and even within one format the meaning and use
of the fields changes depending on what type of packet it is.
In figure 3.3 the top frame is the most general form of packet, data packets are like this, the lower part of
the picture is an expansion of theframe control field. Only notice:

• the frame headers (and FCS) are very long, an overhead of about 34 bytes. There is no preamble (the
8 bytes of “101010. . . ”) because, unlike ethernet, it is sentby the hardware and not treated as part of
the data link packet,

3.4. 802.11 FRAME FORMATS 17

dura−

ation

frame

control

address 1

usually Receiver

address 2

usually Transmitter

seq.

control

address 4

usually missing

sometimes source

frame

body

FCS

bytes: 2 2 6 6 66 2 <= 2312 4

sometimes destination

address 3

2 2bits: 4 1 1 1 1 1 1 1 1

protocol type subtype to

DS DS

re−

try

from more

frag

pwr more

data

WEPorder

mng

Figure 3.3: A common 802.11 frame (packet) format

• the frame format is given by thetype field in theframe control field (see figure 3.3):

1. management, these are normally used for communication with the AP (access point, the base
station): there are frames for new stations toassociatewith the network, and forauthentication,

2. control, these are used during data transfers but don’t contain data, these includeacknowledge-
mentsand the RTS and CTS messages of DCF (see section 3.7)

3. data, this is like the top packet in figure 3.3, however there are some variations for combining
the control functions of PCF with data.

• the duration field “reserves” the carrier for the length of time of the transfer and sometimes subsequent
packets in a transaction, see a later section about NAV,

• why four addresses?

– For many transfers only two are needed, for example transfers between stations in one cell only
need two addresses, the first address is the receiver of the wireless signal and is also the final
destination, the second is the wireless transmitter and also the sender.

– If a station, STA1, sends to the MAC address of a system, SVR1,on the DS (distribution system)
it must go via the AP see figure 3.4,address 1 is the wireless receiver MAC of the AP, but
it is not the final destination, that MAC address is put in the field address 3, the transmitter
address and the sender STA1 MAC are the same in fieldaddress 2 like between stations in the
same cell. When a station receives from an outside system viathe AP the use of addresses is
switched:address 1 is the destination and the receiver,address 2, the transmitter is the AP
MAC address, andaddress 3,

station 1
STA1 STA1

MAC

base station

APAP
MAC

server
SVR1

MAC

SVR1

gateway

GATE

a LAN

system DS

distribution

Figure 3.4: Transfers to and from the distribution system

– four addresses are needed if a wireless network is used as a “bridge” between two LANs, see
figure 3.5. The wireless nodes are “transparently” passing on packets from LAN1 to LAN2. It
is too long to explain but in the packet sent between STA1 and STA2 the destination and sender
addresses in address fields 3 and 4 are the MAC addresses of thesystems HO1 and HO2, the
MAC addresses in fields 1 and 2 are the MAC addresses of the receiver and transmitter, STA1
and STA2.

18 CHAPTER 3. 802.11 LOCAL AREA WIRELESS NETWORKS

MAC

LAN1 LAN2

system DS1

distribution

system DS2

distribution

station station

STA1 STA1STA1
MAC

STA2

host

HO1

host

HO2

Figure 3.5: Using a wirelesswork net to join two LANs

3.5 CSMA/CA and the problems of wireless MAC
A wired shared medium protocol like ethernet uses CSMA/CD: Carrier Sense Multi-Access with Collision
Detection, the wireless protocol uses CSMA/CA: Carrier Sense Multi-Access with Collision Avoidance (it
is also known as MACAW, Multi Access with Collision Avoidance, for Wireless). What this means is:

multi-access -> collisionslike an ethernet, wireless is a shared transmission medium,lots of stations use
the same frequencies (instead of same wire) to send data. Consequently there is the possibility of two
or more stations sending at the same time and scrambling the signals, this is acollision,

carrier sense use hardware to listen for signals, if there is traffic, wait until it finishes. Only send when the
carrier is idle,

collision avoidance don’t just detect collisions and then recover like ethernet, instead try to avoid colli-
sions.

The only difference is how they deal with collisions, with ethernet collisions are easy to detect but with
wireless detecting collisions is difficult:

• there are weak signals, echoes, and interference so detecting a colliding signal is hard,

• in order to detect a collision it is necessary to be “receiving” at the same time as transmitting, (this is
calledfull duplex, send and receive at the same time), this is expensive, very few wireless cards can
do it, nearly all arehalf-duplex

• and transmission distance problems, the remote system might get a collision but the sender will not.

Consequently wireless has a protocol that tries toavoidcollisions.
There are further problems due to wireless transmission, one is the unreliable transmission. With a

wired ethernet the chances of a packet becoming corrupted during transmission are very low, with wireless
the chances of a packet becoming corrupted are very high. This requires changes to the basic protocol, see
the next section 3.6.

3.6 The basic DCF CSMA/CA protocol
The MAC protocol operates at the next level above the hardware, it specifies how data are transmitted,
packaged and how the stations respond. Basic rules of sending:

acknowledgementsevery packet sent and successfully received must be immediately acknowledged. If
after a short timeout period the sender doesn’t get an acknowledgement message it will retransmit the
packet. Every time a packet is re-sent the sender incrementsa counter, if the counter reaches some
limit the 802.11 data link tells the higher layer software (usually IP) that the transmission failed. This
is necessary because wireless cannot detect collisions.

sending when the carrier is idle a station is able to send, but it cannot send immediately, it must wait for a
short period of time, called the DIFS (to be explained very soon). If two or more stations have been
waiting to send then when the carrier has been idle for a DIFS time they will all send at the same time
and cause a collision. So they all add an extra random time to reduce the chance of collision.

backoffs when a sender doesn’t get an acknowledgement (probably due to a collision so there will be other
stations also getting failures) it will retransmit. When the carrier is idle it will wait for a DIFS (not
sure, EIFS?) period to which it adds a further random time butthe random time will probably be
longer—for every retransmission the range of values used for the random time is increased. This
increasing range of delays is called thecontention window. When the packet is acknowledged, or it
gives up trying, the contention window is reset to its starting value.

3.7. THE RTS/CTS PART OF THE DCF PROTOCOL 19

SIFS,PIFS,DIFS & EIFS between any two packet transmissions of any type there must be a short delay
called aninter-frame spaceIFS. There are 4 different IFS times: SIFS, PIFS, DIFS and EIFS. The
reason for having four times is to permit higher priority transmissions to use the carrier. When a
station wants to send a new packet it waits for a DCF IFS (DIFS)time. When a receiver sends an
acknowledgement it waits for ashort IFS (SIFS). This guarantees that the acknowledgement will be
sent with no collisions from other packets as the SIFS is shorter than the DIFS. The lengths of the
intervals, in increasing time delay, are:

SIPS short IFS used for acknowledgments and fragments
PIFS PCF IFS used by the base station polling
DIFS DCF IFS the “normal” delay
EIFS extended IFS used after errors in transmission

The PIFS is between the SIFS and DIFS and is used when the base station is coordinating all stations
by polling, it won’t preempt acknowledgements but it will override ordinary transmissions.

In addition to the basic parts of the protocol that allow any stations to send packets there are some extra
parts of the protocol to help reduce collisions or to cope with packet loss. These extra rules are required by
all wireless networks.

virtual sensing, NAV nearly all packet transmissions “reserve” time by including a durationfield in the
packet, all other stations detecting a transmission set their network allocation vector, NAV, to this
value. The NAV is basically a timer, once set it counts down tozero. A station will not even try
to do carrier sense if its NAV is non-zero, it is a sort ofvirtual carrier sense. Why does this help?
Some MAC operations require more than one packet so this stops other stations starting to send in
the middle of a transaction, for example a data packet sets a duration time that is the sum of times for
the packet transferandthe acknowledgement. It is also used for for fragments, see next item and for
RTS-CTS, see next section 3.7,

packet fragmentation Because there is a low probability that a long data frame willbe sent successfully
802.11 allows long frames to be broken into fragments and sent and acknowleged separately. Each
fragment will be sent and acknowledged separately so that only a single damaged fragment needs
resending. The sender only pauses for a SIFS interval after the acknowledgement before sending
the next fragment (as always the receiver acknowledges after a SIFS), this way the sender keeps the
channel. In addition each fragment contains adurationcovering the time for the following fragment
and acknowledgement, so all other stations will set their NAV and not interfere.

3.7 The RTS/CTS part of the DCF protocol
DCF uses RTS/CTS to improve avoidance and solve thehidden stationproblem. The picture 3.6 shows the
ranges of station A and station C, which both reach B but not each other. If A wants to send to B and carrier
sense shows that the medium is idle then it will send, C also wants to send to B, it detects no traffic and
will send to B aswell, unfortunately B gets the scrambled signal from both. This is called thehidden station
problem.

A B C

Figure 3.6: Host transmission ranges

This can be avoided in the DCF protocol which uses the following messages:

• RTS (request to send), if station A wants to send to B it waits for no traffic then sends RTS to B.
The RTS contains a duration value covering the whole time of the remaining steps of the transaction
(SIFS+CTS time+SIFS+data frame time+SIFS+Ack time) so other stations will set their NAVs. It
then waits,

20 CHAPTER 3. 802.11 LOCAL AREA WIRELESS NETWORKS

• CTS (clear to send), if B accepts the request it sends CTS backto A, it also sends the NAV duration for
the remaining time (same as RTS NAV minus time the CTS takes: SIFS+data frame time+SIFS+Ack
time),

• when A receives the CTS from B it will send the data to B,

• ACK, when the data arrives successfully at B it will send an acknowledgement ACK back to A. The
transfer is complete.

• between each message there is a SIFS delay so no other stations can interrupt.

If any station hears an RTS from another station it will wait for a time long enough to allow the message
to finish before attempting to send. If a station hears a CTS from another station it will wait for a suitable
length of time. This willavoid collisions. If collisions occur when two stations send RTS they will not
know, because they don’t try to detect it, but the intended receiver(s) will fail to receive the RTS because of
the collision so it/they will not send a CTS, consequently the original senders of the RTS will know it failed
and they must retry.

Now consider how this deals with the problems of the “hidden station” above, if A sends RTS to B it
will not be detected by C, but C will detect the CTS that B sendsback to A and will therefore set its NAV
and wait until the transfer is over.

Chapter 4

The network layer (IP)

4.1 The Internet
What “internet” means is interconnected networks, but whathappens if you join up a few thousand ether-
nets, point to point links, star networks (like ATM), etc.? Nothing, they all have different packet formats,
addresses, protocols and capabilities, so they cannot exchange data. It is necessary to have software on every
machine (hosts on networks and on machines that join networks) that can make them work together—this
software is IP. It is the network layer protocol IP thatis the Internet. How it works:

• every network has a unique address, every machine on each network has a unique address. These two
addresses are combined together as theIP address,

• all machines that will use the network have theIP protocolsoftware installed,

• data is sent it a fixed format “packet” known as anIP datagram,

• each separate network is joined to one or more other networksby one or moreroutersthat know how
to reach any network on the Internet,

• when an ordinary host sends a packet to an IP address the IP protocol software consults its local
forwarding tablethat tells it whether to send it direct to a machine on the local network, or to send it
to a router.

All these topics will be discussed in the rest of this chapter. But first a bit of terminology because the word
“network” is used in different ways:

general usagea networkis any collection of interconnected computers, but this is too imprecise so. . .

physical a networkis a just those computers connected by a physical network, ie. all machines on one
ethernet, the two machines at either end of a PPP (point to point connection). This is what “network”
means when IP software connects two different data-link networks, but. . .

administrative usage anetworkis the collection of hosts with the same IP network address. This is another
way the word is used about the Internet. A network number is allocated to a company or organisation
and they have the responsibility of allocating the host numbers to their computers. Such a network
will probably consist of manyphysical networks, and they will be calledsubnetsin this context.

there are different important usages, there isn’t one meaning, so be aware of the context when you meet the
word.

4.2 IP addresses
Every host connected to an internet must have a unique IP address on that network. The address in
IPv4 is a 32 bit number. It is usually represented as 4, 8 bit numbers separated by dots, for example:
147.197.205.211 In order to address different networks on an internet the address is structured into a net-
work part and a host part. So the University of Hertfordshirenetwork address is147.197 and one host on it
is 205.211. Not all networks have a 16 bit address. The NIC allocates network addresses to organisations
which in turn are responsible for allocating their own host addresses.

type A If the first bit is 0 (the first 8 bit field is less than 127) then that’s the network address and the host
address is 24 bits, there are only just over 100 of these and each can have over 16 million hosts on
their nets,

Type B If the first two bits are “10” then the network address is the next 14 bits that means there are about
16000 of these networks, each with upto 65000 hosts,

Type C For smaller organisations if the first 2 bits are “110” than the network address is the following 22
bits and there is only an 8 bit host number, (work it out!).

21

22 CHAPTER 4. THE NETWORK LAYER (IP)

Type D and E If the first 3 bits are “111” then the remaining bits are used for special broadcast and multi-
cast addressing

This is the original basis of network address allocation butnow (2004) type A address ranges are split to
make more network numbers available. This means finding the network part of the address is not quite so
simple, the new way is used by CIDR (classless internet domain routing), which you follow up if you wish.

4.3 IP packets
The IP layer on one machine must send packets to the IP layers on other machines, to do this it uses the
IPv4 (and eventually IPv6) protocol. The format of an IPv4 message is shown in figure 4.1. The important

Data

Options (variable length) Pad

DestinationAddress

SourceAddress

Checksum

Offset

Length

Flags

ProtocolTTL

Ident

TOSHLenVersion

Figure 4.1: IP packet format

fields shown in figure 4.1 are:

HLen The length of the header, can vary because of options,

Length The length of the whole packet,

Flags One job they have is to indicate if this packet was broken up into fragments because it was larger
than the maximum size allowed for some physical network, if so the offset field is used to indicate
which fragment.

Protocol Can be TCP or UDP so IP knows which higher layer to pass it to.

TTL “Time To Live”, it is hop-count, every IP layer in each routerit passes through decrements it by 1,
when the count reaches 0 the packet is discarded.

Checksum Computed across the header.

4.4 Forwarding tables
Not all machines are directly connected to all others, so howdoes a machine that is only indirectly connected
to another know which intermediate machine to send to first? They look up the address of the destination
network in aforwarding table, which tells them where to send the packet on the first step of its journey. In
a bit more detail:

• all forwarding is tonetworks, once the packet gets to the right network it can be directly delivered,

• every host has aforwarding table(sometimes called a routing table) that lists how to get to other
networks on the Internet,

• a forwarding table specifies for every network what thenext-hopis,

• for ordinary hosts on astubnetwork (that’s us) the forwarding table will have: its own network and
then any other networks that are linked by routers on its local net, then there will be adefaultroute
where all other packets are sent, this is usually the organisations internet gateway,

• every machine that is connected to more than one network is arouter, on the main backbone of the
internet routers have gigantic forwarding tables that include the next-hop foreverynetwork attached
to the internet, they don’t have default routes.

4.5. EXAMPLE OF USING FORWARDING TABLES 23

This is thevital function of IP, getting packets across one physical networkto another thereby creating an
internet.

4.5 Example of using forwarding tables
This is a simplified example where the “internet” is just two networks connected via a router. The picture 4.2
illustrates packet forwarding, where131.9.0.8 (aka.62.0.0.1) is the router attached to both net62.0.0.0
and131.9.0.0. Note that on an internet a system has one IP address foreachnetwork it is connected to.
All systems have aforwarding tablewith all the networks it can reach. In this example there are only two
networks,131.9.0.0 and62.0.0.0 so each table has two entries. The format of forwarding tablecolumns:

62.0.0.3

network: 62.0.0.0

network: 131.9.0.0

131.9.0.8

62.0.0.1

62.0.0.2

131.9.0.11

eth0

eth0

131.9.0.0

62.0.0.0

62.0.0.1

Gateway Mask

255.255.0.0

255.0.0.0

Net no. Dev

0.0.0.0

131.9.0.0

62.0.0.0

Gateway Mask

255.255.0.0

255.0.0.0

Net no. Dev

0.0.0.0

0.0.0.0

orpheus

cerberos

eurydice

eth0

eth1

eth1

eth0

Figure 4.2: Packet forwarding example

• The first field of a forwarding table is the destination network. Every IP address has two parts,
network and host. Note that131.9 is a type B address and62 is type A,

• The second table field contains thegatewayto use, this is thenext hop, usually a router, if the system
is directly attached to the network the gateway is0.0.0.0. In cerberos which is directly connected
to both networks bothgateway fields are0.0.0.0. In orpheus thegateway for network131.9.0.0
has the address ofcerberos,

• The third entry is anetwork mask. It is used by the forwarding software to find which entry to use.
The destination address of every incoming packet isand-edwith each mask in turn and the result
compared with the first column network number to get a match. Because of the use of subnets in
networks and the splitting of type A addresses it is not possible to use the type A, B, or C bits to
determine the network part, so every network destination has its own mask. In this example it is easy,
131.9.0.0 is a type B address and the mask is255.255.0.0 (first 16 bits all binary “1”, last 16 bits
all “0”) which means any any address such as131.9.0.11 and-ed with the mask will leave just the
top 16 bits,131.9.0.0, for comparison.

• The last field in the forwarding table is the NIC (network interface card) address, in other words it
tells the IP software which datalink to use.

Assume thatorpheus, 62.0.0.2, wishes to send toeurydice, 131.9.0.11, then:

• the transport layer passes an IP datagram to the IP software on 62.0.0.2,

• the destination address131.9.0.11 is compared with each line of the forwarding table in turn (top
down, order matters). Each time the mask is applied, so:

131.9.0.11∧255.255.0.0 = 131.9.0.0

this matches on line one, so the packet is sent to62.0.0.1 via deviceeth0. NB this doesn’t change
the destination address, it is still131.9.0.11, just where it is sent.

24 CHAPTER 4. THE NETWORK LAYER (IP)

• When the packet arrives at62.0.0.1 the same procedure is applied, it masks the address131.9.0.11
and matches on the first line of the table which says there is nogateway, just send it on datalinketh1,
and it arrives at the destination.

4.6 Sending on an ethernet: ARP
If the forwarding (routing) lookup finds the IP address of thenext hop is on the same LAN, eg. ethernet,
then it is necessary to find its ethernet address. This is not done by the data-link layer it is the job of software
in the IP layer (though not the IP protocol itself).

Ethernet MAC addresses are 48 bit numbers built into the hardware of the controllers, they have no
relationship to the IP addresses being used by the network level.

One solution would be for every machine to have a fixed table mapping IP addresses to Ethernet ones
for its network. However every time systems were added or removed from the net all tables would need
updating.

Instead the sending system uses a special protocol called ARP (Address Resolution Protocol) which
sends an ethernet broadcast message to the whole LAN saying:

Who is 147.197.236.236?

All systems on the ethernet must check all ARP packets for their number, if it is their’s they will respond
with their Ethernet address, saying:

I am 147.197.236.236, my MAC is: 00:01:02:AE:95:BE

This information is used and then câched in anARP tableby the sender so it won’t need to ask again for
sometime.

4.7 Building forwarding tables: routing
There must be a way of constructing the forwarding tables. The simplest method that is suitable for many
systems on local ethernets with one link to the internet is tomanually add (or use the DHCP protocol—look
it up!) a defaultroute.

Kernel IP routing table
Destination Gateway Genmask Metr Iface
147.197.232.0 * 255.255.248.0 0 eth0
default 147.197.232.1 0.0.0.0 0 eth0

Which means any address that matches147.197.232.0 (ie. anything on a local ethernet) is sent directly.
But anything elsedefault is send to147.197.232.1.

If there are lots of separate ethernets or other LANs joined together as subnets of a larger network then
creating the tables manually won’t work, instead each system must run arouting program that can talk to
other routing programs and together they can build their forwarding tables. For small autonomous systems
there are two protocols often used: RIP, old and weak but simple, and OSPF which is much better but
more complicated. In the case of main backbone internet routers completely different routing programs are
needed, they must have enormous tables so they know for everynetwork which next router to send to. The
current method is called BGP4 (Border Gateway Protocol 4).

4.7.1 A routing simplification
Internet routing is between separate networks or subnets and is done byroutersto networksnot hosts. The
following sections present the principles of routing algorithms and it is easier to treat routing as occurring
between host computers. However the principles of routing algorithms are applicable to real networks
situations.

Figure 4.3 shows a collection of networks joined by routers.Network d is connected to networkc
by routerV, but this is simplified in the graph on the right and is show as aconnection (link, edge, arc
. . .) betweend andc. In other words the networks have become nodes and the routers are links. But in
the following notes these nodes will often be called “computers” or “hosts” not “networks”, however the
routing issues are still the same.

4.7.2 Note about “distances”
Most routing decisions depend on the “cost” of using a link between any pair of systems, so that they can
work out the best route. The costs that can be used vary:

• Money cost of using a link

• Speed of the link, so the fastest links are preferred,

4.8. SHORTEST ROUTE OR LINK-STATE ROUTING 25

a

b

c

d
e

f

Z

X Y

V W

T U

g

a

c

b

d e

f

g

Figure 4.3: Two representations of connections between networks

• Delay, even though some links are fast they might be overloaded as the “cost” to be minimized is
delay time,

• The number of links that must be crossed to reach the destination, where the cost of every link is 1,
this is calledhop countand is the commonest.

4.8 Shortest route or link-state routing
A network can be represented by an undirected graph, where each noderepresents a host and eachedgeis
a network connection, we are using the simplification described in section 4.7.1.

5

6

5

8

4

8

5

A

B C D

E F G

11

7

Figure 4.4: Example network

In figure4.4 node A is connected to node B with a “cost” of 8, (note: cost might be financial, time-delay
or physical distance), this is written as cost(A,B)=8.

If a host has all of the above information it can compute the best next-hop for every node in the network
using Dijkstra’s shortest route algorithm developed in the1960s for any graph, not just computer networks.

The algorithm keeps a setSof “open” or “unexplored” nodes, an arrayDist of distances from the start
to each node, and an arrayRt of the next-hop to all nodes. The arrays are indexed by the node names or
numbers. On each cycle of the algorithm the closest “unexplored” node is chosen, it is calledu, then each
of the open nodesv adjacent tou are examined to see if there is a shorter route to them viau. After the
closest nodeu has been examined it is “closed”, ie. removed from the setS.

Initialize set S to contain all nodes except source;

26 CHAPTER 4. THE NETWORK LAYER (IP)

Initialize array Dist so Dist[v] is the "cost" of the edge
from source to v, set to infinity if no edge to v;

Initialize array Rt so Rt[v] is set to v if there is
an edge from source to v, and set to 0 otherwise;

while(! S.empty()) {
select a node u from S so that Dist[u] is minimum;
if(Dist[u]==infinity) {

fail: no path to all nodes in S; exit;
}
S.remove(u); // remove u from S
foreach node v such that there is an edge (u,v) {

if(S.member(v)) {
cost = Dist[u] + cost(u,v);
if(cost < Dist[v]) {
Rt[v] = Rt[u]; Dist[v] = cost;

}
}

}
} // done forwarding table is Rt

Now if the algorithm is applied for a couple of iterations:

1. initialiseS, Dist andRt
giving: S= {B,C,D,E,F,G} A B C D E F G

Dist : 0 8 11 5 ∞ ∞ ∞
Rt : A B C D - - -

2. Chooseu = D, removeD from S,
considerv = C: cost= Dist[D]+cost(D,C) = 5+4= 9 < 11,

so: Rt[C] = Rt[D], Dist[C] = 9
considerv = F : cost= Dist[D]+cost(D,F) = 5+7= 12< ∞,

so: Rt[F] = Rt[D], Dist[F] = 12
giving: S= {B,C,E,F,G} A B C D E F G

Dist= 0 8 9 5 ∞ 12 ∞
Rt= A B D D - D -

3. Chooseu = B, removeB from S,
considerv = E: cost= Dist[B]+cost(B,E) = 8+5= 13< ∞,

so: Rt[E] = Rt[B], Dist[E] = 13
giving: S= {C,E,F,G} A B C D E F G

Dist= 0 8 9 5 13 12 ∞
Rt= A B D D B D -

4. Chooseu = C, removeC from S,
considerv = D: ignore, not inS
considerv = E: cost= 9+5= 14≮ 13,

so: no change
giving: S= {E,F,G} A B C D E F G

Dist= 0 8 9 5 13 12 ∞
Rt= A B D D B D -

5. Chooseu = F, removeF from S,
considerv = D: ignore, not inS
considerv = E: cost= 12+6= 18≮ 13, so: no change
considerv = G: cost= D[F]+cost(F,G) = 12+8= 20< ∞,

so: Rt[G] = Rt[F], Dist[E] = 20
giving: S= {E,G} A B C D E F G

Dist= 0 8 9 5 13 12 20
Rt= A B D D B D D

(NOTE:Rt[G] = Rt[F] = D, since we want the “next hop”, although
we found the route toG from F we usethe route to Fnot F itself.)

4.9. DISTANCE VECTOR ROUTING 27

6. Chooseu = E, no changes . . .

7. Chooseu = G, no changes . . .

The algorithm continues until there are no nodes left inSwith a value less than∞.

4.8.1 Using shortest route algorithm for routing
The shortest path algorithm isnot, by itself, a routing algorithm or protocol.

The main problem is that the information about all the link costs that each node uses to find the shortest
paths is unknown, each node only knows about its own immediate connections. To be useful as a routing
method there must be a way to collect all link costs. One way todo this is to have a protocol where every
node sends packets about its links to all its neighbours, they in turn pass these packets on unchanged. All
systems learn about all the links. In order to stop the packets circulating for ever each has a counter (a TTL,
time-to-live) that is decremented each time it is passed on,when it is zero the packet is dropped. This is
calledreliable flooding.

There is a practical routing technique called OSPF (open, shortest path first) that uses the shortest
route algorithm, and includes a protocol to periodically collect information about network changes using
reliable flooding. It can be used on quite complicated networks (in the administrative sense) consisting of
many subnets (networks in the physical sense). Because it isdesigned for large networks OSPF supports
hierarchical structures of networks. Even OSPF is not suitable for the backbone of the internet, it cannot
route between administrative networks, only within them.

4.9 Distance vector routing
The following is a simplified description of a routing algorithm. It is called adistance vectormethod. RIP
uses a method a bit like this (but note this is not RIP which hasadditional features). The whole algorithm
doesn’t require a global picture, all participating routers only know about their direct connections to their
neighbours and no others. Finding the shortest route is adistributedtask, all routers exchange information
and incrementally improve their forwarding tables until they are stable.

In this treatment it is assumed that hosts are connected to hosts as described in section 4.7.1. The format
of theforwarding tableused here is:

6

3

2

4

7

5

A

B

C

D

E

(a) The network

dest cost goto
A 0 A
B 6 B
C 3 C
D ∞
E ∞

(b) Initial table at A

dest cost goto
A 0 A
B 5 C
C 3 C
D 7 C
E 12 C

(c) Final state at A

Figure 4.5: Simple example network

In figure 4.5 a simple network is shown with versions of the forwarding table from one node,A. The
first table shows an initial state based only on knowledge of the hardware connections. The second table
represents the optimal routes, the ones we hope will result from a successful routing algorithm, fromA to
all other nodes in the net. Remember that the forwarding table only shows the first node on the best path,
thenext hop. Initially The entry forB says the route is cost6 and go straight toB. If the route is unknown
it is infinity ∞. However after the routing algorithm the entry forB says the route is cost5 and go toC first.
Notice further that the final state has the routes to all othernodes and the costs. In the forwarding table the
cost from a node to itself, atA to get to , is0.

4.9.1 An example network
Figure 4.6 shows a simple network, it will be the example to explain distance vector routing.

Notes about the bits in each host that will be used for routing:

• Each node contains at the bottom centre its forwarding table. In figure 4.6 infinity,∞ is shown as .
Since this first map shows an initial state only directly connected systems are known.

• There is also a small connection list giving the hardware links a node has to other nodes and the
“cost” of the link.

28 CHAPTER 4. THE NETWORK LAYER (IP)

A

B

C

D

E

0

6

3

¬
¬

A

B

C

links

links

links

links

links

A’s ft

A

B

C

D

E

0

6

3

¬
¬

A

B

C

D

E

D’s ft

7

4

0

¬

5

A

B

C

D

E ¬

0

2

3

4

C’s ft

A’s ft

A

B

C

D

E

0

6

3

¬
¬

A

B

C

D

E

6

0

2

7
¬

B’s ft

A

B

C

D

E

D’s ft

7

4

0

¬

5

A

B

C

D

E

6

0

2

7
¬

B’s ft

A

B

C

D

E ¬

0

2

3

4

C’s ft

A

B

C

D

E

¬

¬

¬

5

0

E’s ft

A

B

C

D

E

D’s ft

7

4

0

¬

5

A

B

C

D

E

B

C

A

D

B

C

A

D

A

B

C

D

E

6

0

2

7
¬

A B

C

6

3

B

C

B

C

D

E

A

B

C

D

E ¬

0

2

3

4

A 6

C 2

D 7

D 4

A 3

B 2

7

4

5E

D 5

A

B

C

D

E

B

C

7

4

0

¬

5

6

3

7

4

5

2

D

E

¬

¬

¬

5

0

A

B

C

D

E ¬

0

2

3

4

C’s ft

A

B

C

D

E

6

0

2

7
¬

B’s ft

D

E

Figure 4.6: An example network for routing

• At the “top” of each host is a list of the forwarding tables sent to a node by each of its immediate
neighbours. So that as A only has links to B and C (2 entries in the connections table) it has copies
of their tables, but E only has one neighbour, D, so it has onlyreceived one forwarding table. Notice
that initially each system has its neighbours tables but it hasn’t yet used them to update its own table,
see the next section 4.9.2.

4.9.2 The algorithm
The basis of the algorithm is:

if your immediately connected neighbours have routes and distances to a place X and you add
your link cost to each of those distances and select the smallest then your best route will be via
the neighbour whose distance plus the link cost was the least.

An algorithm based on this idea is called a Bellman-Ford algorithm after two of the inventors. But how do
they get the shortest routes? Answer: all the nodes in a network do this minimising, basing their forwarding
table on tables from their neighbours, and in turn sending their forwarding table. This is calleddistributed
Bellman-Ford ordistance vector. Proving that the distributed version is correct is hard buthas been done.

The steps of the algorithm. Every nodex will:

1. initially set its forwarding table distance to the link cost of the direct connections: to the link cost
from the nodex to each neighbour nodev, All other entries are set to∞, infinity.

2. at fixed intervals repeat:

(a) send a copy of its forwarding table to all its neighbours,

(b) receive copies of the forwarding tables from all neighbours,

4.9. DISTANCE VECTOR ROUTING 29

(c) for each destination on the nety find each neighbour’s cost toy (from the copy of their table)
and add the cost of the link to the neighbour,

(d) select the minimum of all these sums and setx’s forwarding table entry fory to the minimum
distance and set the next hop to the neighbour whose table gave the smallest sum.

Another way of expressing the algorithm. Wheredx(y) is the forwarding table distance at nodex to
nodey; c(x,v) is cost of the direct link fromx to neighbourv. Every nodex will:

1. initially setdx(v) to c(x,v), All other entries ind not in c are set to∞.

2. at fixed intervals repeat:

(a) send a copy ofdx to all direct neighbours,v,

(b) receive tablesdv from all neighboursv,

(c) for eachy select the minimum ofc(x,v)+dv(y) for all neighboursv. Setdx(y) to the minimum:

dx(y) = minv(c(x,v)+dv(y))

Set the next hop tov.

4.9.3 Using the algorithm with example net
1. Consider the network in figure 4.6, look at nodeA, it has initialised its forwarding table to the links

to neighbours. Further it has just started the first cycle andreceived copies of the tables fromB and
C (with the “next hops” removed since they are not used).

2. it will consider each host in turn:

(a) A, don’t bother we can’t get a shorter route, this is us,

(b) B, consider tables:
B’s DV to B is 0 + link(B,6) = 6,
C’s DV to B is 2 + link(C,3) = 5,
C is the minimum so set table distance toB to 5 and the next hop toC,

(c) C, find the minimum, viaB it is 2 + 6, viaC it is 0 + 3, it doesn’t change,

(d) D, consider tables:
B’s DV to D is 7 + link(B,6) = 13,
C’s DV to D is 4 + link(C,3) = 7,
C is the minimum so set table distance toD to 7 and the next hop toC,

(e) E, both table copies fromB andC for D are infinity.

This produces the new table atA:

A 0 A
B 5 C
C 3 C
D 7 C
E ∞

this is the end of cycle one onA.

3. cycle two starts, however realise thatA won’t get the same forwarding tables a second time fromB
andC because they too have, in parallel, updated their forwarding tables. The forwarding tables atB
andC now are:

On hostB
A 5 C
B 0 B
C 2 C
D 6 C
E 12 D

On hostC
A 3 A
B 2 B
C 0 C
D 4 D
E 9 D

4. A now sends its new table and receives the new tables fromB andC.

30 CHAPTER 4. THE NETWORK LAYER (IP)

5. it will consider each host in turn:

(a) A, don’t bother we can’t get a shorter route, this is us,

(b) B, the copied tables are the same as last time forB so the result will be the same, distance 5
next hopC,

(c) C, find the minimum, viaB it is 2 + 6, viaC it is 0 + 3, it doesn’t change, same as last time,

(d) D, NB. B’s table has changed:
B’s DV to D is 6 + link(B,6) = 12,
C’s DV to D is 4 + link(C,3) = 7,
C is the minimum so set table distance toD to 7 and the next hop toC, but the outcome is the
same,

(e) E, consider tables:
B’s DV to E is 12 + link(B,6) = 18,
C’s DV to B is 9 + link(C,3) = 12,
C is the minimum so set table distance toB to 12 and the next hop toC,

This produces the new table atA:

A 0 A
B 5 C
C 3 C
D 7 C
E 12 C

this is the end of cycle two onA.

6. this can continue but unless there are changes in the network the tables won’t change.

4.9.4 Another way to visualise the algorithm
Instead of dealing with one node step by step it is possible topicture the tables of all nodes at once. In some
ways this is more appropriate since all the updates take place concurrently. For the network of picture 4.6
the initial state can be shown as:

On hostA
A 0 A
B 6 B
C 3 C
D ∞
E ∞

On hostB
A 6 A
B 0 B
C 2 C
D 7 D
E ∞

On hostC
A 3 A
B 2 B
C 0 C
D 4 D
E ∞

On hostD
A ∞
B 7 B
C 4 C
D 0 D
E 5 D

On hostE
A ∞
B ∞
C ∞
D 5 D
E 0 E

then after all the systems send their tables, and do their updates once the new state of all the systems is:

On hostA
A 0 A
B 5 C
C 3 C
D 7 C
E ∞

On hostB
A 5 C
B 0 B
C 2 C
D 6 C
E 12 D

On hostC
A 3 A
B 2 B
C 0 C
D 4 D
E 9 D

On hostD
A 7 C
B 6 C
C 4 C
D 0 D
E 5 D

On hostE
A ∞
B 12 D
C 9 D
D 5 D
E 0 E

after one cycle quite a lot of information has propogated butA and E still don’t know about each other.

On hostA
A 0 A
B 5 C
C 3 C
D 7 C
E 12 C

On hostB
A 5 C
B 0 B
C 2 C
D 6 C
E 11 C

On hostC
A 3 A
B 2 B
C 0 C
D 4 D
E 9 D

On hostD
A 7 C
B 6 C
C 4 C
D 0 D
E 5 D

On hostE
A 12 D
B 12 D
C 9 D
D 5 D
E 0 E

the tables have reached a stable state. The normal rule for operation as part of a real routing protocol would
be to periodically send the table to neighbours, or whenevera change occurs.

4.9. DISTANCE VECTOR ROUTING 31

4.9.5 Broken links
Nodes monitor their direct connections and if a node goes down they reset their connections table. This also
means they won’t receive a copy of the forwarding table from the node at the end of the broken link. This
means that when they calculate their new forwarding table itwill not use the broken route.

Sometimes other nodes can pass back incorrect routes to the one that lost a link. Consider that ifD’s
link to E is broken, on the next cycleC will send its table toD saying that it can get toE with a cost of 9.
The simplicity of the algorithm doesn’t letD know that the route toE learnt fromC actually goes through
D. This leads to instabilities that take some time to settle down. It is sometimes called thecount to infinity
problem.

In order to reduce instability a technique calledsplit horizonis used where a node doesn’t tell another
about a route that involves it, ie. when copies of a forwarding table are passed on by nodex to neighbourv,
remove all entries where the next hop isv. So, for example,C will never passD routes whereD is the next
hop. This can help prevent the algorithm becoming unstable after breaks. There is another version where a
route is sent to the neighbour that is the next-hop but it contains∞so it will never be used, this is calledsplit
horizon with poison reverse.

32 CHAPTER 4. THE NETWORK LAYER (IP)

Chapter 5

More about the network layer

These are a few additional notes about the network layer, IP.There is a loose structure: subnets, subnet
masks, CIDR, and routing on the backbone of the internet.

5.1 Subnets and subnet routing
Many Internet networks, in particular type A and type B, can be quite large with many hosts, they must
be separated intosub-nets, because it is not workable to have thousands of hosts on one physical LAN. In
many ways one administrative internet network (anautonomous system) with subnets is itself aninternet,
there must be subnet routers.

5.1.1 Subnet addresses
The first problem is to divide the host address space, this must (like type A, B and C nets) be a power of two.
Consider figure 5.1. So if theherts.ac.uk net address is147.197.0.0, 16 bits give the network address
and 16 bits the host, the host is further divided into a 5 bit subnet number (giving upto 32 subnets) and an
11 bit host address (giving upto 2048 hosts on each subnet).

16 bits 16 bits

1 0 01 1 0 0 0 0

16 bits

1 0 0 1 0 0 1 1 1 0 0 0 1 101 1 0

5 bits 11 bits

0 0 0 0 0

147 197 232 0

1 0 01 1 0 0 01 1 1 1 1 1 11

16 bits

1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

5 bits 11 bits

255 255 248 0

1 1 0 011 1 0 1 0 1 1 0 0

16 bits

1 0 0 1 0 0 1 1 1 0 0 0 1 101 1 0

5 bits 11 bits

197147 29 1264
(but NEVER written like this!)

147 197 236 240

1 1 0 011 1 0 1 0 1 1 0 01 0 0 1 0 0 1 1 1 0 0 0 1 101 1 0

a) type B IP address

c) 21 subnet mask

d) (b) & (c) = 21 network/subnet address

b) same IP showing subnet address

Figure 5.1: Subnet addresses

An exampleherts.ac.uk address (B type) is given in part (a) of the picture,147.197.236.240. The
subnet part is shown in part (b), note that this is just a simple 32 bit number, it is only by convention that it
is written as four 8 bit numbers in decimal, therefore we could say this is subnet 29 (the 5 bits), host 1264
(given by the 11 bits), but that would be confusing so it is still written conventionally.

33

34 CHAPTER 5. MORE ABOUT THE NETWORK LAYER

5.1.2 Packet forwarding with subnets
The rest of the Internet doesn’t know or care about the subnets on individual networks, routing from outside
is still to the whole network but all the systems on the network must be aware of the subnets—they must
forward to the correct subnet.

The way that packet forwarding occurs is to compare thenetworkpart of the address with entries in the
forwarding table to select the destination, but what is the network part?

It is only possible to senddirectly to a system on a LAN if it is on the samesubnet, so it is necessary to
examine the net and subnet number, at Hatfield the network andsubnet part is 21 bits long, but how does the
IP routing software know? It must be provided with amaskthat when and-ed with the address leaves only
the net+subnet part which can be compared with the network numbers. For the Hatfield subnet the subnet
mask is 21 bits long, when written in conventional IP notation is is255.255.248.0, sub-picture (c) shows
the binary value of the mask. The result of and-ing the mask with the example address147.197.236.240
is shown in binary in (d), in conventional IP notation it is147.197.232.0.

It is also possible to examine the forwarding table on host149.197.236.240, it shows the local subnet
number and the subnet mask applied to destination addresses.

Destination Gateway Genmask Flags Metric Use Iface
147.197.232.0 0.0.0.0 255.255.248.0 U 0 0 eth1
0.0.0.0 147.197.232.1 0.0.0.0 UG 0 0 eth1

If this machine149.197.236.240 sends to149.197.239.69 then the forwarding table will mask the desti-
nation address with the subnet mask255.255.248.0 giving147.197.232.0 which will be sent out directly
(no gateway). If, however, the destination is147.197.200.44 the mask will produce147.197.200.0, this
won’t match the first network destination so the last line will be used instead and the packet will be for-
warded to the gateway147.197.232.1. Note that this treats the problem of routing to other subnets and to
other networks in the same way, in both cases the packets go tothe gateway and it must decide to forward
to another subnet or go out to the Internet.

5.1.3 Another notation for subnet addresses
Note that forwarding with subnets blurs the distinction between thenetworkandhostparts of an address. If
subnets are used it is not enough to recognise a type A, B or C address and know what the network address
is. Consequently there is a different way to write network addresses that makes absolutely clear what the
network (maybe with subnet) part is:

full-network-address/number-of-bits-of-network-part

for example the address of the subnet my machine uses is:147.197.232.0/21 which gives the length of
the network+subnet part. It gives two things: the subnet mask (length 21), ie.255.255.248.0, and it gives
the value of the 21 bits—the network number.

5.2 The backbone of the Internet
There is an important concept on the backbone of the internet: that of anautonomous system(abbreviated
as “AS”), which is a network or group of networks administered collectively. Autonomous systems are of
two main types:

stub this is an autonomous system, usually of only one network, with only one router connection to the
rest of the internet, a network like Hatfield, or an ISP that just supports direct customer lines,

transit this is an autonomous system, usually made of many networks,that has many connections to other
ASs and its primary job is to carry through traffic (usually for profit),

there are some autonomous systems that are hybrid, calledmulti-homed, they have more than one connec-
tion to the rest of the internet but they don’t permit throughtraffic.

Figure 5.2 shows an internet with stub and transit ASs. It tries to show that the transit ASs on the
backbone of the internet have complicated internal structure consisting of many networks each with its own
internal structure. In addition the geography is not localised, some long haul telecomms companies have
autonomous systems that span continents. Also notice that each autonomous system has a unique 16 bit
network number, an ASN, only transit AS need numbers, they are not assigned to stub ASs. Another thing
to note about the picture is that within backbone networks only some routers are connected to neighbouring
networks, others are purely internal.

5.2. THE BACKBONE OF THE INTERNET 35

AS1

AS2

AS4

81.101.128.0/18
131.411.0.0/16

133.77.0.0/16

172.111.0.0/16

222.112.112.0/24

147.197.0.0/16

211.4.6.0/24

16.0.0.0/8

235.11.8.0/24 235.11.9.0/24

211.199.44.0/24

99.0.0.0/8

AS6
AS5

AS3

AS7

Figure 5.2: The structure of Internet

5.2.1 Routing on the backbone of the Internet
From the point of view of routing all the stub networks are just destinations they do not participate in the
routing, only the transit ASs do internet routing. The job ofrouting on the backbone of the internet is
two-level: firstly there are routesbetweenASs, this routing is calledexterior routing, and then there is the
problem of routingwithin each AS, this is calledinterior routing. There need to be two levels of routing
protocol:

• to manage the complexity, any router that handles inter-AS routing needs a forwarding table of all the
possible network destinations, currently (2004) about 150,000, to make thousands of routers handle
this and exchange the information would be impossible, so restricting it to a few makes it more
manageable,

• because each AS is managed by a different organisation and therefore runs its own internal networks
differently, the routing algorithms within adjacent ASs might be incompatible consequently the sep-
aration is necessary, and

• because interior protocols within one organisation just find the best route but exterior routing needs
protocols that can implement policies, for example: “don’tuse AS9999 because it hasn’t paid us for
six months”, or “don’t send US government traffic through an AS in Iran”.

The interior routing protocols can be whatever the operatorof the autonomous system wants, but OPSF is
the most widely used, it is powerful enough to cope with routing between and within the separate networks
that might make up one autonomous system. The current (2004)exterior routing protocol used on the
internet is called BGP-4 (the Border Gateway Protocol). It is sometimes called apath vectorprotocol it has
some similarities withdistance vectorlike exchanging table changes with its neighboursbut it exchanges
the full paths to destinations not just the next-hops.

5.2.2 How BGP-4 works
Each BGP-4 router has a forwarding table with an entry for every distinct network address on the internet,
each entry has a path of AS numbers between itself and the destination. The reason for the path is so that
policy decisions can be made by the administrator of the AS, chosing a route through certain systems and
avoiding others. For example, here is an edited textual representation of part of a BGP table:

PREFIX: 147.197.0.0/16
FROM: 129.250.0.232 AS2914
ASPATH: 2914 3356 786
NEXT_HOP: 129.250.0.232
...

36 CHAPTER 5. MORE ABOUT THE NETWORK LAYER

PREFIX: 147.197.0.0/16
FROM: 168.209.255.2 AS3741
ASPATH: 3741 702 786
NEXT_HOP: 168.209.255.2
...
PREFIX: 147.198.0.0/16
FROM: 64.211.147.146 AS3549
ASPATH: 3549 209 568 721 1505
NEXT_HOP: 64.211.147.146
...

There are no metrics or costs (or in other words the metric is always 1), this is because they are meaningless,
each “hop” means crossing a whole AS which could be using any interior routing protocol that attached
totally different meaning to its metrics from any other AS.

Each AS has at least oneBGP speakerthat exchanges information with BGP speakers in other au-
tonomous systems; there may be many more BGP routers in an AS but not all will exchange information
with neighbouring ASs. Each BGP speaker establishes semi-permanent TCP connections to its neighbour
AS BGP speakers to exchange information. If changes occur toa table it will pass the changes to its neigh-
bours, they will update their tables to find alternative routes that satisfy their policies. Note that a whole
AS becomes just one point in an AS route, so from a routing point of view figure 5.3 is equivalent to the
previous picture: As an example of route propogation:

AS3
AS7

AS1

AS2

81.101.128.0

16.0.0.0/8

211.199.44.0

235.11.8.0 235.11.9.0

131.411.0.0

99.0.0.0

172.111.0.0

133.77.0.0

222.112.112.0147.197.0.0
211.4.6.0

AS4

AS5

AS6

Figure 5.3: Routing through Autonomous Systems

• AS6 will tell its neighbours, AS3 and AS5 that it has a network172.111.0.0,

• AS3 will tell AS4, AS7, AS2 that it has a path:

172.111.0.0: AS3, AS6

• AS4 will in turn tell AS1 that it has the path:

172.111.0.0: AS4, AS3, AS6

• Also, AS5 will tell AS1 it has a route:

172.111.0.0: AS5, AS6

• now AS1 has a choice of routes: [AS5, AS6] or [AS4, AS3, AS6] and it will choose one depending
on its site’s policy.

Also notice that the sending of full paths makes the protocolquite stable, if an AS receives a route that
contains its own number it will discard the route.

The figure 5.4 shows the paths from AS786 (Janet) to other transit ASs, notice the average AS path
length is only 3 or 4.

5.3. ADDRESS SPACE EXHAUSTION 37

Figure 5.4: AS routes from Janet

5.3 Address space exhaustion
In the 1990s it was realised that the internet would run out ofaddresses, so a new internet protocol was
agreed to replace the IPv4 protocol which used 32 bit addresses. The new protocol is IPv6 which uses 128
bit addresses, however there has been a delay in moving to thenew standard. In the meantime two measures
have enabled the internet to keep growing:

• CIDR, Classless Internet Domain Routing, which allows routing to occur to network addresses that
do not conform to the standard IP address classes, and

• connection sharingor masqueradingwhich allow a small network to share (or hide behind) one
internet address.

5.3.1 CIDR
BGP-4 doesn’t use the address classes to select network addresses, all destination networks are written in the
subnet format:network-number/length-of-address. When the forwarding table is searched for a destination
address every entry has an implied mask which is used to mask the incoming address and see if it matches
the table entry. Longer masks are always tested first to ensure that small networks are not missed. This
means that a fragment of a type A address can be allocated as a new network and will be found in the
routing table.

One reason for the exhaustion of addresses was the wasteful allocation of type A and B network ad-
dresses (7 and 14 bits respectively) to organisations that would never fully use them. CIDR has allowed
some of these to be sold off and broken into smaller network ranges, for example here are some real network
numbers taken from part of one type A address space:

12.0.17.0/24
12.0.19.0/24
12.0.28.0/24

38 CHAPTER 5. MORE ABOUT THE NETWORK LAYER

12.0.48.0/20
12.0.153.0/24
12.0.252.0/23
12.1.83.0/24
...

This works well but it does have the consequence that BGP routers have a very very difficult job to match
an address, the incoming address must be masked with masks generated from each (or many) entries and
the result compared with the table entry. It is no longer possible to select a network number by looking at
the first bit or the first two bits. Many BGP routers have special hardware to help them search their tables.

It also means that tables get longer as type A networks are fragmented. However using CIDR can in
some cases shorten the tables, consider the previous samplenetwork picture, in the AS4 there are two close
type C addresses:235.11.8.0/24 and235.11.9.0/24. These have the same network prefix if the a 23 bit
mask is used, they are both:235.11.8.0/23. This is calledaggregation, all other ASs’ routers need only
one entry in their tables:

235.11.8.0/23: ..., AS4

because it will match both network addresses and forward them towards AS4, when the destination is
reached AS4 can use a 24 bit mask to find the correct one.

5.3.2 Connection sharing
There are some addresses called “private” addresses that can be used for “disconnected” networks, they
must not be used on the internet,192.168.10.0 is one of them. Afirewall or gatewayhas a single legal IP
address and a private network behind it, see figure 5.5.

connection
to internet

source
network
address

translation

Firewall/Gateway
192.168.10.2

192.168.10.3

192.168.10.4

192.168.10.181.101.163.108

147.197.200.44
src:
dst:

src:
dst:

147.197.200.44
192.168.10.4src:

dst:

src:
dst:

81.101.163.108

147.197.200.44
81.101.163.108

147.197.200.44
192.168.10.4

Figure 5.5: Connection sharing

The gateway machine translates thesenderaddress of every packet sent from the private net to the
internet. It changes the private network address to its own IP address and records this in anetwork address
translationtable. When reply packets arrive back it looks up the table and reverses the translation, changing
the destination from its own IP address to the correct private network address.

Chapter 6

The transport layer (TCP & UDP)

6.1 The function of the TCP layer
From “above” application programs require that the transport layer provide reliable streams of data to spe-
cific services on specific systems. The network layer (IP), “below”, provides for theunreliabletransmission
of fixed-sizedpackets, inany orderto specific remotesystems(not ports) andanyprotocol family (not just
TCP). It is the job of the transport protocol software to bridge the gap.

streams of characters
to and from ports on
remote systemsTransport layer

Network layer

socket, bind,
accept or
connect calls

on remote systems
protocol code
packets to and from

transport protocol code

network protocol code

application
programs

The functions of the TCP protocol software are therefore:

• create and bind sockets for local applications and await connection request packets from remote
programs,

• to establish connections from local programs to remote sockets,

• from programs, accept streams of characters on establishedconnections and reliably transmit them
to remote programs using “unreliable” packets provided by the network layer below.

6.2 End-to-end communication: ports
TCP connections are between processes, IP datagrams are between hosts. Therefore the TCP layer must
support distributing the arriving datagrams to the appropriate server program. It usesport numbers, This
is not a process number because they are transitory and vary,it is a “conventional” number that selects a
service, there are fixed numbers for well known services like21 for FTP, 80 for WWW and 23 for telnet.
Numbers below 1024 are reserved, higher numbers can be used by anybody (but might clash with existing
services, see the file/etc/services). A process that provides a service informs the system that it will accept
connections to a given port number. When a remote process tries to ask for a service on the machine it
must give the port number aswell as the address and the transport layer uses this to select which process to
connect to.

TCP must record for every connection which process is bound to a port. It uses a unique 4 tuple to
identify all connections:

< src-port, src-ipaddr, dst-port, dst-ipaddr>
a server port is obvious but the port of the client is not obvious, what TCP does is to create a unique port
number for every outgoing client connection. Consequentlyif one computer makes 2 telnet connections
to the same remote machine each connection will have a different 4-tuple to identify it, here is part of the
output from thenetstat program:

rabbit(318)$ more netstat-n.out
Active Internet connections (w/o servers)
Pro RQ SQ Local Address Foreign Address State
tcp 0 0 192.168.1.2:1513 192.168.1.1:23 ESTAB
tcp 0 0 192.168.1.2:1514 192.168.1.1:23 ESTAB
tcp 32 0 62.252.84.12:1486 62.253.162.16:119 CLS_WT
...

39

40 CHAPTER 6. THE TRANSPORT LAYER (TCP & UDP)

6.3 TCP message format
In order to create the reliable data stream the TCP layer exchanges messages with its “peer”. These mes-
sages are sent in IP datagrams and have a fixed format. They areused to establish connections, send data,
send acknowledgements and close connections.

0 3116 244 10

SEQUENCE NUMBER

SOURCE PORT DESTINATION PORT

ACKNOWLEDGEMENT NUMBER

HLEN RESERV CODES WINDOW

CHECKSUM URGENT POINTER

PADDINGOPTIONAL OPTIONS

DATA

...

6.4 Streams in packets
The transport software, if it only has a packet-based network layer, must accept characters from the layer
above and send them in a sequence of packets. However becauseon wide area networks there are alternative
routes the first packet sent might arrive after the second oneso for checking it will include a sequence
number. In addition the network link (IP) can only send to a remote system so the transport layer must
include the sender and recipient port numbers.

In the following picture the application on the right is attempting to send the stream of characters:
abcdefghijk to a program on the system on the left:

IP
stuff

dest
port

IP
stuff

dest
port

Transport layer

port

Transport layer

port

a b
c

def ghi

j
k l

src srcseq seq

Network layer Network layer

application application

4 7

6.4.1 Problems
There can be problems: (i) the packets can go out of sequence,(ii) packets might get lost and never arrive,
(iii) they might arrive but be corrupt, and (iv) packets might arrive faster than the receiver can deal with
them. All of these are problems that must be solved by the transport (TCP) level software. The solution is
to require acknowledgement of receipt of the packets and to retransmit them if they are not acknowledged.

6.5 Packet acknowledgement & retransmission
The simplest solution is that the sender can only transmit the next packet when the previous one has been
acknowledged (ACK-ed):

sender receiver

send 1

get ack 1
send 2

get ack 2

get 1
send ack 1

get 2
send ack 2

time

6.6. PACKET “WINDOWS”, THE CONCEPT 41

Whenever a packet is sent a timer is started, if a timeout occurs before an acknowledgement is received
(which suggests a lost packet) the sender must re-transmit the last packet.

However this is very slow and wasteful, there might be several packets to send but they cannot be sent
until the ACK is returned, that means waiting for the full RTT(round trip time) for the packet to reach the
receiver and the ACK to get back.

6.6 Packet “windows”, the concept

An improvement is to have awindowof packets awaiting acknowledgement. Both ends will agree awindow
size ofn packets (in the next examplen=3), this is the number of packets the sender can send withoutan
acknowledgement. In the following diagram the sender sends3 packets but must then wait for an ACK for
packet 1 from the receiver. As soon as it gets the ACK it can continue to transmit packet 4.

sender receiver

send 2

get ack 1, send 4

send 1

send 3 get 1. send ack 1

get 2, send ack 2

get 3, send ack 3

get ack 2, send 5

get ack 3, send 6 get 4, send ack 4

get 6, send ack 6

get 5, send ack 5

get ack 4, send 7

The additional overheads of this are that the sender must keep all the packets sent but not yet acknowledged.
Packet windows also cope with out of sequence packets. This requires that the receiver will save packets
got ahead of the sequence number it expects and further that it doesn’t acknowledge until it has got all the
ones up to the current sequence number.

sender receiver

send 2

get ack 1, send 4

send 1

send 3 get 1. send ack 1

get 4, send ack 4

get ack 4, send 7

get 3 out of seq

get 2, send ack 3

get ack 3, send 5

send 6

get 5, send ack 5

6.7 Packet “windows” in TCP

TCP does not use a packet count for its sliding window, it usesthe number of bytes in the stream of data it
is sending; the acknowledgements are not for packets, they are for receipt of all bytes upto a position in the
sequence. Depending on the speed of generation of data and the maximum packet size a sliding window of
4000 bytes might go in 40 packets or 1000 packets. However thebasic operation is exactly the same as for
packet based windows.

42 CHAPTER 6. THE TRANSPORT LAYER (TCP & UDP)

time
host 1 host 2

send 3500−3999

send 2500−3499

send 2000−2499
seq=2000

ACK 2500

ACK 3500

ACK 4000

get ACK 2500 so
send 4000−4499

ACK 2500

ACK 3500

ACK 4000

seq=2500
seq=3500

wait...

current window size=2000 bytes

In the above picture the sequence at the start is 2000. The window size is 2000 bytes, sent in 3 packets:
500 bytes, 1000 bytes and 500 bytes, then the sender had to wait until the acknowledgement of the bytes
2000–2499 (they were acknowledged by sending the number of the next byte expected: 2500). When the
ACK was received the sender could send upto 500 more bytes.

6.8 End to end flow control
If the receiving host on one connection cannot keep up with the rate of arrival of packets because it has
limited buffer space and its application isn’t consuming the data fast enough then it can ask the sender to
reduce the window size so it will not receive so much data, it can, if necessary, reduce the window to zero.
It does this by using the WINDOW field in ACK packets.

6.9 Network congestion
DO NOT confuse with flow control. Sometimes Internet IP packet routers get overloaded and congested,
if that happens they will have to discard some packets. What could happen, if the sliding window packet
retransmission software is too simple, is that it will immediately respond by retransmitting all the lost
packets. This will make the congestion worse! All “good” implementations of TCP should respond more
gently—if packets timeout then the TCP sender will reduce the window size and delay before retransmitting,
if it still has timeouts it delay even longer. It will only start increasing the window size and cutting the delay
when it starts receiving acknowledgements again.

6.10 Opening and closing connections
To open a TCP connection the server executeslisten andaccept, this causes the TCP layer to “passively”
open a connection, later a client executesconnect, this is an “active”. The TCP code carries out a 3-way
hand-shake:

active passive

send
SYN

get SYN
send SYN
and ACK

and ACK
get SYN

send ACK

get ACK

time

ACK x+1 SYN seq=y

SYN seq=x

ACK y+1

• A special packet flag is used SYN,

• each participant must select a random starting number for its sequence number (reduces risk of acci-
dental capture of old packets from previous connections),

• the 3 messages ensure both sides know the connection is established, a lost SYN or ACK will cause
retransmission.

Closing a connection is even more complicated:

6.10. OPENING AND CLOSING CONNECTIONS 43

time
initiator responder

FIN seq=x

get FIN
send ACKACK x+1

get ACK

close
from app

data can still go other way
tell app

this side
closes

FIN seq=y

ACK y+1

wait..

• the close sequence uses a special flag: FIN,

• a close is only complete whenbothends agree to close it,

• a connection is full duplex, one side might close its sendingend of a connection if it has no more to
send, but the other side might continue to send to it until it is finished,

• delays are needed to guarantee that no final packets are wandering around and might be picked up by
a later connection,

• the intermediate ACK, from responder, even though it is not ready to send a FIN is to prevent the
initiator resending the FIN.

44 CHAPTER 6. THE TRANSPORT LAYER (TCP & UDP)

Chapter 7

Java Network programming with sockets

The “socket” interface to TCP/IP dates from the early BSD Unix systems that first implemented TCP/IP
about 1980. It is the primary interface between applicationprograms and the transport layer. The transport
layer is usually in the kernel of operating systems whereas higher level protocols are implemented by
programs so thesocketinterface is usually a set ofsystem calls(although on some systems like Sun Solaris
or Windows Winsock it is a library with slightly different transport layer system calls below). In Java the
socket library provides a slightly higher level view of sockets but is still quite close to the underlying system
calls.

7.1 Addressing
A server must offer a service on aport address, and a client must connect to the servershostaddress and
port.

7.1.1 The host address
Is a 32 bit number. It is usually represented as 4, 8 bit numbers separated by dots, for example:

147.197.205.101

all TCP/IP socket connections only use the IP number, there are no host names in TCP/IP (they are provided
for users by a higher level application protocol). However under certain circumstances Java allows names
or numbers to be used.

7.1.2 The port number:
The port number is used to select a process on a host. It is a “conventional” number that selects a service,
there are fixed numbers for well known services like 21 for FTP, 80 for WWW and 23 for telnet. Numbers
below 1024 are reserved, higher numbers can be used by anybody (but might clash with existing services,
see the file/etc/services). A process that provides a service informs the system that it will accept connec-
tions to a given port number. When a remote process asks for a service on the machine it must give the port
number aswell as the address and the transport layer uses this to select which process to connect to.

7.2 Socket usage is asymmetric
No matter whether the network application isclient-serveror peer-to-peerwhenever one program must
contact another there is asymmetry in the use of sockets. Onewill wait to accepta connection and another
mustconnectto it.

7.3 Socket streams and datagrams
There are 2 forms of transport level network interprocess connection with the TCP/IP family of protocols:

TCP a bi-directional stream connection. The stream is “reliable” which means the underlying network
level requires acknowledgement of each packet sent in the stream, if any are lost then they are re-
transmitted transparently to the process using the stream.

UDP a connectionless single message, or datagram. There is no guarantee of delivery of a UDP datagram
(although in practice nearly all packets get through).

7.4 Unix sockets system call interface
A socketappears to a user process as a file descriptor on whichreads andwrites can be performed. There
are various calls to set up a connection on a socket and use it:

fd=socket(proto,type,?) creates an unconnected socket,

45

46 CHAPTER 7. JAVA NETWORK PROGRAMMING WITH SOCKETS

bind(fd,struct sockaddr *ptr,len) associates a port number with a socket. It is used by a process
to inform the operating system it will deal with any connections to a port and provide the service.

listen(fd,conn_q) used by a process to indicate that it is prepared to receive connections, that it is a
server. It doesn’t wait,accept does that . . .

fd2=accept(fd1,struct sockaddr *sender,len) this causes a process to wait for a connection. When
if arrives the connecting process’s address is returned in thesockaddr address structure. Also a new
file descriptor is created that can be used to talk to the remote process,

connect(fd,struct sockaddr,len) this is used by a process to make a connection on a socket to an
address contained in thesockaddr structure.

Once the connection is established characters can be written to and read from it using theread() andwrite
and other system calls.

Notice that the asymmetry of the client server communication is reflected in which system calls are
used. This is is illustrated in the picture 7.1.

socket()

bind()

listen()

accept()

read()

write()

write()

read()

connect()

socket()

process request
make reuest

process blocks

until a connection

is made from a client

Server

Client

lots of reads & writes
lots of reads & writes

Figure 7.1: System call sequence

7.5 Java sockets API
The BSD sockets are available in Java through thejava.net.* package. There are two main classes:Socket
for connected sockets, andServerSocket for listening sockets.

• ServerSocket when created it is bound to a port and it will receive incomingconnections to that
port. It uses the BSD calls:socket, bind andlisten. The main operation is:

connSock = serverSock.accept();

7.6. A CLIENT EXAMPLE 47

which waits for an incoming connection. When one arrives it returns an ordinarySocket connected
to the remote program.

• Socket a connected socket, a bi-directional communication streambetween two possibly remote
programs. There are 2 ways to create a connectedSocket:

– get one back from aServerSocket accept,

– to create one and attempt to connect to a remote system:

Socket sock;
sock = new Socket(hostname,port);

which will attempt to establish a connection to the remote systemhostname on theirport.

• whichever way a connected socket is produced there are methods to get anInputStream and an
OutputStream from it usinggetInputStream and angetOutputStream respectively. These streams
are exactly the same as the streams returned when you open files, and they can be used in the same
way withread andwrite. Exceptreading andwriteing these streams will receive and send data to
the other program to which the socket is connected.

7.6 A client example
The following example just illustrates a simple client program, it takes as arguments: an internet address
and a WWW page name.

import java.io.*;
import java.net.*;

public class HTTPGet2 {
public static void main(String[] args) {

final int BUFSIZ=8192;
Socket socket = null;
OutputStream toServer = null;
InputStream fromServer = null;
int rc, port = 0;
String request;
byte buffer[] = new byte[BUFSIZ];

if(args.length == 0) {
System.out.println(

"Usage: HTTPGet2 server file [port]");
System.exit(1);

} else if(args.length == 3) {
port = Integer.parseInt(args[2]);

} else {
port = 80;

}
try {

socket = new Socket(args[0], port);
toServer = socket.getOutputStream();
fromServer = socket.getInputStream();
request = "GET " + args[1] + " HTTP/1.1\r\n"

+ "Host: " + args[0] + "\r\n"
+ "Connection: Close\r\n\r\n";

toServer.write(request.getBytes());

rc = fromServer.read(buffer,0,BUFSIZ);
while (rc > 0) {

System.out.write(buffer,0,rc);
rc = fromServer.read(buffer,0,BUFSIZ);

}
toServer.close();
fromServer.close();
socket.close();

48 CHAPTER 7. JAVA NETWORK PROGRAMMING WITH SOCKETS

} catch (UnknownHostException e) {
System.err.println("Can’t find: " + args[0]);
System.exit(1);

} catch (IOException e) {
System.err.println("IO error");
System.exit(1);

}
}

}

The program is in the fileHTTPGet2.java. This program will act as a dumb client. It will send a request
to a remote http server. To compile and run the program:

sally(373)$ javac HTTPGet2.java
sally(374)$ java HTTPGet2 slink.feis.herts.ac.uk /tiny.html
HTTP/1.1 200 OK
Date: Sun, 16 Mar 2003 23:32:10 GMT
Server: Apache/1.3.26 (Unix) Debian GNU/Linux
Last-Modified: Wed, 08 May 2002 23:45:10 GMT
Accept-Ranges: bytes
Content-Length: 492
Content-Type: text/html; charset=iso-8859-1
Connection: close

<H1> Example Page </H1>
This is the first paragraph, it is terminated by a
...

which will get tiny.html from slink.feis.herts.ac.uk. Notes:

• first it checks the command line arguments, if there is no portnumber provided the program will use
80,

• all the code to open the connection and read and write the streams might produce horribleexceptions
so the body of the program is surrounded bytry{..}catch{..},

• first attempt to connect to the server by creating a new socketusing the remote system name (or
number) and the port:

socket = new Socket(args[0], port);

if this fails an exception will be raised,

• now extract the input and output streams:

toServer = socket.getOutputStream();
fromServer = socket.getInputStream();

• now build a full HTTP file request as a string inrequest,

• and send it to the server:

toServer.write(request.getBytes());

note that since it is a stream we usewrite which requires an array of bytes,getBytes will get such
an array out of the stringrequest. Now the message is sent to the server,

• if the server exists and if it reads the request, and if it thinks our request well-formed and if it has
such a file then it will send it down the same connected socket.We mustread the socket to get the
returning file:

rc = fromServer.read(buffer,0,BUFSIZ);

read puts the characters read into a pre-allocated array of bytes, here calledbuffer. The return
result, put inrc, is the number of characters actually put inbuffer. The client cannot know how big
the file is (if it’s an MPEG video it might be megabytes), so it reads in “chunks” of 8k, that is why
there is a loop, that reads and then prints toSystem.out,

• when we can read no more (rc > 0 is not true) we close everything and finish.

7.7. A CUTDOWN VERSION 49

7.7 A cutdown version
This is the same as the previous version but all the checking of arguments and exception handling is re-
moved. Not good, but maybe it is easier to focus on the networkcode:

import java.io.*;
import java.net.*;

public class HTTPGet0 {
public static void main(String args[])

throws Exception {
Socket socket = null;
OutputStream toServer = null;
InputStream fromServer = null;
int rc, port = Integer.parseInt(args[2]);
String request;
byte buffer[] = new byte[8192];

socket = new Socket(args[0], port);
toServer = socket.getOutputStream();
fromServer = socket.getInputStream();

request = "GET " + args[1] + " HTTP/1.1\r\n"
+ "Host: " + args[0] + "\r\n"
+ "Connection: Close\r\n\r\n";

toServer.write(request.getBytes());

rc = fromServer.read(buffer,0,8192);
while (rc > 0) {

System.out.write(buffer,0,rc);
rc = fromServer.read(buffer,0,8192);

}
toServer.close();
fromServer.close();
socket.close();

}
}

The program is in the fileHTTPGet0.java.

7.8 Client server exampleecho
This example consists of a server and a client. They do very little except show how a stream connection is
set up. The server awaits (accept) a connection, reads lines from the client and immediately sends them
back again. When the connection from a client is closed (anull return fromreadLine) the server loops to
accept the next connection from another client. The client makes a connection and then loops each time:
reading from the user, writing this text to the server, reading the server’s response (which should be the
same) and then printing it. The server:

import java.io.*;
import java.net.*;

public class EchoServer {
public static void main(String[] args) {

ServerSocket serverSock = null;
Socket connSock = null;
PrintWriter out = null;
BufferedReader in = null;
int echoPort = -1;
String fromUser;

if(args.length != 1) {
System.out.println("Usage: EchoServer port");
System.exit(1);

} else {
echoPort = Integer.parseInt(args[0]);

50 CHAPTER 7. JAVA NETWORK PROGRAMMING WITH SOCKETS

}
try {

serverSock = new ServerSocket(echoPort, 10);

while(true) {
connSock = serverSock.accept();
System.out.println("Got connection from "
+ connSock.getInetAddress().getHostName());
out = new PrintWriter(

connSock.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(

connSock.getInputStream()));

fromUser = in.readLine();
while (fromUser != null) {

out.println(fromUser);
fromUser = in.readLine();

}
out.close();
in.close();
connSock.close();

}
} catch (IOException e) {

System.err.println("EchoServer: error opening,"
+ " accepting or reading socket");

System.exit(1);
}

}
}

The program is in the fileEchoServer.java.

• notice that the server loops forever:

while(true) {
...

nearly all servers are like this, deal with one request and loop to “accept” the next,

• this is a server so it must create aServerSocket bound to a port number. The port number to use is
provided as an argument. It then waits by callingaccept,

• this network program reads and writes lines not single characters, it could have used characters but I
thought a bit of variety would be fun. So it has to create aBufferedReader and aPrintWriter,

• it then loops reading lines from the client and writing them back again. When it getsnull from
readLine (which would be end of file for a file) it means the client closedthe connection.

Now the client, this is a cutdown, non-error checking one:

import java.io.*;
import java.net.*;

public class EchoClient0 {
public static void main(String[] args)throws Exception{

Socket echoSocket = null;
PrintWriter out = null;
BufferedReader in = null;

echoSocket = new Socket(args[0],
Integer.parseInt(args[1]));

out = new PrintWriter(
echoSocket.getOutputStream(), true);

in = new BufferedReader(new InputStreamReader(
echoSocket.getInputStream()));

BufferedReader stdIn = new
BufferedReader(new InputStreamReader(System.in));

7.9. THREADS 51

String userInput;

userInput = stdIn.readLine();
while (userInput != null) {

out.println(userInput);
System.out.println("echo: " + in.readLine());
userInput = stdIn.readLine();

}
out.close();
in.close();
stdIn.close();
echoSocket.close();

}
}

The program is in the fileEchoClient0.java. This is very similar toHTTPGet.java except, of course, it
reads from a user, writes to the server, reads the response and displays it. To test the client server programs:
compile them both, run the server with an arbitrary port number:

tink(257)$ java EchoServer 3333
Got connection from 147.197.236.188

Then in anotherxterm run the client:

slink(258)$ java EchoClient0 tink 3333
hello
echo: hello
...

the line “hello” is read from the user, sent to the server returned by it, readfrom the socket by the client
and then printed “echo: hello”. Unlike the server the client only deals with one session, it only has one
loop to read and echo, when the user finishes (by typing control-d “^d” on Unix) the loop finishes and the
program finishes.

7.9 Threads
A threadenables one part of a program to be executed logically in parallel with another part. If we create
a new thread and start it then it will share CPU time with the main program (also a thread) and any other
threads. There are two ways to write Java threads (i) toimplementtheRunnable interface, or (ii) to inherit
from theThread class. We will show the second because it is slightly simpler.

In order to write a thread it is necessary to provide (i) a constructor to set any attributes, and (ii) a single
function:public void run() which will be the separately scheduled code. Here is a very simple example
that declares one thread class, then creates and starts two thread objects:

import java.net.*;
import java.io.*;

class Loopy extends Thread {
String message;

Loopy(String mess) {
message = mess;

}
public void run() {

while(true) {
System.out.println(message);

}
}

}
public class Threads0 {

public static void main(String[] args) {
Thread thread1 = new Loopy("One ");
Thread thread2 = new Loopy(" Two");
thread1.start();
thread2.start();

}
}

52 CHAPTER 7. JAVA NETWORK PROGRAMMING WITH SOCKETS

The program is in the fileThreads0.java. When the threads are started they execute theirrun routine
for ever repeatedly printing out their message. If this is compiled and run it can produce almost any output
sequences deoending on how the threads arescheduled, which means how they are allocated a share of the
CPU time. Here is part of one sequence:

Two
Two
Two
Two

One
Two

One
Two

One

7.10 A concurrent server
If a server has to deal with a long transaction for a client, involving lots of waits for reading and writing files
and sockets, it will be unable toaccept new requests. One simple solution is to change the server so that
after theaccept it creates a “child”thread. This new thread uses the new “connected” socket to service the
clients request, and then dies. The parent thread goes back to accept to await another connection. This is
called aconcurrent server.

import java.io.*;
import java.net.*;

class ServiceThread extends Thread {
Socket conn;

public ServiceThread(Socket c) {
super("EchoServer service thread");
conn = c;

}
public void run() {

String fromUser;
PrintWriter out = null;
BufferedReader in = null;
try {

System.out.println("Got connection from "
+ conn.getInetAddress().getHostName());

out = new PrintWriter(conn.getOutputStream(), true);
in = new BufferedReader(

new InputStreamReader(conn.getInputStream()));

fromUser = in.readLine();
while (fromUser != null) {

out.println(fromUser);
fromUser = in.readLine();

}
out.close();
in.close();
conn.close();

} catch (IOException e) {
System.err.println("EchoServer: socket error");
System.exit(1);

}
}

}
public class EchoServerConc0 {

public static void main(String[] args)throws Exception{

Socket connSock = null;
int echoPort = Integer.parseInt(args[0]);
ServerSocket serverSock = new ServerSocket(echoPort, 10);
ServiceThread serve = null;

while(true) {

7.10. A CONCURRENT SERVER 53

connSock = serverSock.accept();
serve = new ServiceThread(connSock);
serve.start();

}
}

}

The program is in the fileEchoServerConc0.java.

• After theaccept a new thread is created and given the connected socketconnSock,

• the new thread is nowstarted, and runs in parallel with other threads andmain,

• the parent (main) thread loops to doaccept again,

• the child thread runs and handles the client transaction, when this is finished it reaches the end and
terminates.

54 CHAPTER 7. JAVA NETWORK PROGRAMMING WITH SOCKETS

Chapter 8

WWW, HTTP, HTML, CGI and PHP

These notes are an introduction to how the World-wide-web works. The treatment of topics is not uniform,
the notes are meant to survey nearly all aspects of the Web andin addition a more detailed treatment of CGI
programs work. The material is organised as follows:

• A brief description of HTML, used for writing Web files,

• Something on HTTP,

• Quite a lot about CGI, the way in which programs are executed on a web server.

8.1 Overview of WWW
The World-Wide Web is based on a simple protocol called HTTP that allows browser programs such as
netscape, kfm or internet explorer, to fetch files from remote server programs, for exampleapache, and
to view them (the files are often calledpages, which is odd because they are files!). WWW files are named
by URIs which have a special format that includes the remote server name and the name of the file (note:
a URI is sometimes called a URL). The files can be written in a special document description language
called HTML that is interpreted by the browser to give an appealing visual effect on a graphical display.
The HTML files can contain embedded URIs that refer to other WWW files, these are usually highlighted
by the browser and if selected will cause retrieval of the named file. Such references are sometimes called
hyper-links, it is the use of these that produce a “web” and give the web (HTTP, URIs, and HTML) its
power.

Client system

Example Page

This is a new paragraph.

This is an example page.

Server response and file.

Client request

Server program,
eg. apache

Server System, blink.cs.herts.ac.uk

<H1> Example Page </H1>

<p>
This is an example page

This is a new
paragraph.
<p>

 a link

Server program,a link

render page on screen

Client program

eg. netscape

from blink

tiny.html

fetching tiny.html

www.xy.net

file.html

Figure 8.1: A client and a server

Figure 8.1 shows a client program requesting a file,tiny.html from a server system. The file is a text
file on the server’s disc, it contains source HTML. The clienthas sent an HTTP protocol request to the

55

56 CHAPTER 8. WWW, HTTP, HTML, CGI AND PHP

server, the server sent the file to the client, and the client program (netscape) has interpreted the HTML
and displayed the result on the client computer’s screen. The file tiny.html contains anHREF, a hyper-link:

 a link

that if selected will cause the browser to retrieve a file fromwww.xy.net.

8.2 HTML
Any type of file can be retrieved by a browser from a server: images, sound files, text files, or PDF; the
action taken depends on settings in the browser and its capabilities. For example most browsers can interpret
JPEG files themselves but with an MPEG movie they will executea separate viewer program.

However, by far the commonest content of web files is HTML. HTML is a mark-uplanguage, which
means it describes the layout of pages that can be interpreted to produce a readable image. Other examples
of mark-up language are TEX, LATEX, SGML (which is a meta markup language) and XML. Nearly all
web browsers can interpret and display HTML, though there are some text-oriented browsers likelynx that
interpret HTML but only display the results in a non-bitmapped display form.

HTML is a simple language:

• ordinary text is interpreted as itself and rendered in the current font and size,

• anything surrounded by<..> brackets is a formatting instruction.

Many formatting instructions “bracket” the text they applyto. For example:

<H1> This is a Heading </H1>

Will cause the textThis is a Heading to be set as a “level one heading”, meaning bold and large. Notice
that the formatting is introduced by<H1> and ended by the same directive with “/” in front: </H1>.

8.2.1 HTML file example
These notes are not intended to provide a proper introduction to HTML, they are just an overview so the
simplest way is by example. The result of looking at the file with netscape is presented first followed by
the text of the file:

8.3. URIS AND WHERE FILES ARE KEPT 57

The above picture used the URIhttp://localhost/example.html to retrieve the file from the server on my
own machine buthttp://blink.feis.herts.ac.uk/example.html should get a very similar file. Now the source
of the file:

<body bgcolor="#FFFFFF" >

<h1 align="center"> Tux’s web page </h1>
<p>
This is a simple example web page, it contains a picture,
a list and a few links.
<p>
Here is a picture of Tux:
<p>

<p>
Some of Tux’s links in a list:

 http://freshmeat.net
for news about new Linux software,

 http://sunsite.org.uk/
is a site with copies of the files from many other sites,

 linuxgazette.com
Linux Gazette Front Page,

 linuxlinks.com
Linux Links - The Linux Portal Site

</body>

Notes:

1. The language is not case-sensitive,<H1> means the same as<h1>.

2. The file contents are surrounded by<body> .. </body>; the opening declaration is followed by an
option that sets the background colour:<body bgcolor="#FFFFFF">. Other options can be set.

3. The<h1> surrounds text that will be set large and bold,<h2> is slightly less large, etc. Like thebody
declaration it can be followed by an option, in this case to centre the heading.

4. The<p> starts a new paragraph, it is one of the few directives that doesn’t need a matching “slash”
terminator.

5. Images can be included using the directive. Once again there is no terminator.

6. The.. is a “bullet” list. Each item of the list is introduced by.

7. The<a..>.. is a link. TheHREF selects the destination of the link, the rest of the text between
<a ..> and is displayed underlined so:

 freshmeat
will display: freshmeaton the screen, which will, if clicked, retrieve the index filefrom fresh-
meat.net.

8.3 URIs and where files are kept
8.3.1 URI
URI stands for universal resource identifier, they are are often called URLs but according to the HTTP
standard they are URIs and there is no important difference.The format is:

scheme:// hostname[: port] / path
whereschemeis the protocol,http or ftp, hostnamecan be a fully qualified domain name or a numeric IP
address, the port number is optional and if omitted defaultsto 80, andpath is a “/” separated list of names
selecting the required file or directory. For example:

http://humbolt.nl.linux.org/Linux-MM/internals.html

The URI is taken apart by the browser which uses the scheme to select the protocol, the hostname and port
to make the connection so all it actually sends in a request isthe path.

58 CHAPTER 8. WWW, HTTP, HTML, CGI AND PHP

8.3.2 Where files are stored
The server program chooses how to interpret the path. Usually it has a special directory tree where all
its files are kept and the requested path is prefixed by that. The “root” can be anywhere, some common
examples are:/home/www, /usr/local/htdocs. So the requested path/Linux-MM/internals.html might
map to a host file/home/www/Linux-MM/internals.html.

Some servers allow files to be requested from users “home” directories. If the path contains a “~username”
this is interpreted as a request for a file inusername’s home directory. To avoid remote access to all a user’s
files the request is usually mapped to a sub-directory of the home directory calledpublic_html, so:

http://blink.cs.herts.ac.uk/~aa9zz/my.html

might be mapped to:

/home/student/aa9zz/public_html/my.html

8.3.3 Directories andindex.html
Very often URI request paths actually name directories. What is returned in these cases? Some servers
will look for a file called index.html in the named directory and return that file. So the simple request
http:/www.w3.org/ will retrieve a file calledindex.html from the “root” of www.w3.org’s server file
hierarchy. If a directory is named and there is noindex.html then some servers will read the directory
contents and turn it into HTML form with each name turned intoan “href” and return that.

8.4 HTTP
HTTP is the protocol used to communicate between a client anda server. HTTP defines what characters
can be sent along the socket stream connection.

The basic protocol isrequestand response. The server accepts a connection and the client sends a
request command line, various optional MIME lines and then ablank. The server must then send a response
line giving a success or failure code, followed by additional optional lines, then the blank line and finally,
if a file was successfully requested, the file contents (whether HTML, GIF or whatever).

That’s it. Except to look at a request and a response...
Using a “dumb server” it is possible to capture and print the HTTP sent by clients. The program binds

a high numbered port, say 8080, and accepts connections. It then just reads all the data from the socket and
prints it on the standard output. Then it just closes the socket and causes the client to report an error.

This is the HTTP request and options sent fromnetscape when it was given a URI like:

http://localhost:8080/abc.html

The standard output from the “dumb server” was:

GET /abc.html HTTP/1.0
Connection: Keep-Alive
User-Agent: Mozilla/4.7 [en] (X11; I; Linux 2.3.34 i686)
Host: localhost:8080
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*
Accept-Encoding: gzip
Accept-Language: en
Accept-Charset: iso-8859-1,*,utf-8

There are only 2 really essential parts:

1. the request line. It include the command, in this caseGET, the request file name, here/abc.html and
the protocol version.

2. the other essential part is the blank line at the end.

The other lines are optional. Some are very important and useful but are not obligatory.
Similarly it is possible to examine theresponsesfrom servers by using a “dumb client” that sends a

request to a server and prints out the complete response. This will show the HTTP response line with the
status code, various optional lines, a blank line then the retrieved file if any. It is not possible to see the
reponse from servers using a normal browser because they process the response lines and don’t show them.
The exampleapache responded to:

GET /tiny.html HTTP/1.0

8.5. CLIENT AND SERVER ADDITIONAL SERVICES 59

By sending back:

HTTP/1.1 200 OK
Date: Wed, 19 Jan 2000 01:43:00 GMT
Server: Apache/1.3.9 (Unix)
Last-Modified: Sun, 09 Jan 2000 23:41:23 GMT
ETag: "d112-1ec-38791ca3"
Accept-Ranges: bytes
Content-Length: 492
Connection: close
Content-Type: text/html

<H1> Example Page </H1>

This is the first
paragraph, it is terminated by a
...

8.5 Client and server additional services
Very early in the history of the web it was discovered that just returning HTML pages was very limited.
People wanted to add more computational power so that users could interact with the web. One of the first
such additional features added were CGI programs that allowbrowser requests to cause programs to execute
on the web server. This revolution enabled people to developsearch engines, database access through the
web, and sites providing e-commerce. In addition more interesting web pages were provided by allowing
programs, sent in web pages, to be executed by the browser. This allowed animation and other dynamic
features. There are different forms of these extensions to web functionality:

• server-sidefacilities, these allow programs to be executed on the web server that can access and
update databases or carry out financial transactions. Thereare two main ways this is now provided:

– CGI programs, these can be written in any language, and, within certain security limits, carry
out almost any task. When a client request is sent the URI can name a CGI program rather than
an HTML page, it is then executed. They are very powerful but can be hard to write.

– server-side includes, or SSI, these are HTML files with special additions that allow other files
to included. This facility permits, for example, a site to use standard headers and footers on
all their pages and to change the appearance of all of them without having to edit them all
separately. However they do not have the power to execute programs, they provide a different
functionality.

– executable web pages, also calledactive-server pages. These consist of HTML and a program-
ming language interleaved in the same file (or page). When oneof these files is named by a URI,
sent with a client request, the server program itself (or a special interpreter run by the server
program) “executes” the page. This “execution” involves sending any HTML straight back to
the client browser and executing any bits of the programminglanguage found. This allows a
simple way of sending back HTML and and at the same time executing commands that can for
example access a database.
There are alternative languages available, some examples are:

∗ PHP, an open source, free system that works with the Apache web server on any platform,
∗ Microsoft’s ASP which uses VBScript, and
∗ JSP, Java Server Pages.

• client-sideservices, these involve extensions to, or commands in, the HTML file sent to the client’s
browser. When the browser encounters these it will “execute” them. This has entirely different
advantages from the server side facilities: they can be usedto animate pages, they can check user’s
input before it is sent back to the server, and many other tasks. They cannot be an alternative to
central server programs, they are executed in the browser. There are two forms:

– languages that can be embedded in the page and executed by thebrowser, Javascript (not related
to Java) is the most widely used example of this,

– special purpose languages or programs that need a browser “plugin” to interpret them. Flash is
one example of this as is Java.

In the following sections some of these will be examined a bitfurther. First, CGI, and then some PHP, a bit
of SSI and lastly a tiny bit of Javascript.

60 CHAPTER 8. WWW, HTTP, HTML, CGI AND PHP

8.6 Server side: using forms for interaction

Before starting on the details of CGI or PHP this section willsummarise how “executable” server-side
features are invoked and how users interact with them. In nearly all cases server-side programs require
some input from the user, this must be sent from the browser, the commonest method is to use the HTML
form. A form displays boxes or buttons on the browser screen that the user can fill in. There is a button
to send the values from the form back to the server along with aURI as part of an HTTP request. The
requested file (page) is usually an executable (CGI, PHP or ASP), the server program executes it and gives
it the input from the form. The executable will run, carryingout its task, and send some HTML back to the
browser as a response. See figure 8.2. Here is an example of a very simple HTML file with a form in it:

request to execute

CGI with

form data

Jo Smith

time

HTML page with form

initial request

user fills in form fields

response from

 CGI program

CGI program

executes

client browser

name:

GET /cgi ..name="jo Smith"

Thank you Jo
Smith
1000000 pounds
has been
taken from your
account

<HTML>
...
<FORM ACTION=
<INPUT NAME=

</FORM>

server

Figure 8.2: Interaction using a form

<H1 ALIGN="CENTER">Silly form</H1>

<FORM ACTION="http://localhost/~bob/cpp-print.cgi/" METHOD=GET>
Name <INPUT NAME="name" SIZE=64> <P>
Address <INPUT NAME="address" SIZE=64> <P>
<INPUT TYPE=SUBMIT VALUE="Send"><P>

</FORM>

the above form is the sort of thing sent to the browser first. This produces a simple screen like:

8.7. SERVER SIDE: CGI PROGRAMS 61

If data is entered and the “Send” button is pressed the browser will generate a GET request and sendname
andaddress values tolocalhost. The requested URI will normally be for an “executable”, CGIor PHP,
which will run, get the arguments (see later for how it gets them), and send back so response to the client.

8.7 Server side: CGI programs
Very early on in the history of the web additional functionality was added to the server. One of the first
simple enhancements was the Common Gateway Interface (CGI)to enable programs to be executed on the
server and their output sent back to the browser. The programs are started by the server but not interpreted
“inside” the server so they can be written in any language that will execute on the machine that runs the
server. CGI programs can be used to access central databases, send back the results of searches, carry out
online transactions and many other jobs.

8.7.1 Starting a CGI program
The browser sends a normal HTTP request but thenameof the requested file is used to decide if it is a CGI
program. There are different ways CGI programs are named:

• Historically servers have a special directory called/cgi-bin/ where programs are kept and any request
for one of those files results in its execution. So:

http://blink.cs.herts.ac.uk/cgi-bin/printenv

would result in running the programprintenv (if there is one onblink). Normally this server directory
is protected from users.

• Some servers enable ordinary users to havecgi-bin sub-directories in theirpublic_html directories.
This is not always permitted on some safety conscious systems because CGI programs are regarded
as potential security risks. So if allowed:

http://blink.cs.herts.ac.uk/~fred/cgi-bin/hello

would run userfred’s hello CGI program.

• Lastly files in any accessible directory with a name ending inthe extension.cgi are treated as CGI
programs. Once again this is sometimes not allowed for security reasons. So:

http://www.cs.herts.ac.uk/~bill/test.cgi

might run the programtest.cgi from bill’s public_html directory.

8.7.2 “scripts”
On Unix systems there are lots of types of file that can be executed in addition to binary machine code
“a.out” files. When a file is “exec-ed” the kernel examines thefirst line of the file to find the name of a
language interpreter, if there is one it is run and given the file to interpret. The format of the first line is!#
followed by the full path to the interpreter, so:

#!/bin/bash
..

will cause the shellbash to be executed and given the file of shell commands to interpret.
Very often such programs in interpreted languages are called scripts, it is because such “scripts” are

often used for CGI that the programs are sometimes called “cgi-bin scripts”. There are loads of interpreted
languages used on Unix: Unix shell (orbash) command files, PERL, TCL, Awk, Python, and many more.

62 CHAPTER 8. WWW, HTTP, HTML, CGI AND PHP

8.7.3 A small CGI program
The following shell command scripthello.cgi will be used as an example:

#!/bin/bash
echo "Content-type: text/html"
echo
echo "<H1> Hello </H1>"
echo "<H3> from $SERVER_NAME </h3>"
echo "<p>"
echo "the date and time are: ‘date‘"

Notes:
• For now ignoreContent-type:, that will be discussed soon.

• Theecho command just writes its arguments tostandard output; the server must put the connected
client socket on the standard output (usingdup or dup2) for the script before it is executed (using
exec) so that all the standard output will go down the connection to the client.

• Unix shells have variables (andenvironmentvariables, more later) their value can be accessed by
preceding them with a dollar, so

$SERVER_NAME

is replaced by the value ofSERVER_NAME which is set by the server to the hostname.

• In a Unix shell script‘prog-name‘ is replaced by the standard output that results from executing the
command named:prog-name. Amazing! (Well I think so). The command:

echo "the date and time are: ‘date‘"

will be transformed during execution to:

echo "the date and time are: Wed Jan 19 10:30:07 GMT 2000"

and then of course written to the standard output.

• for a shell script to be run by the server it must have execute permissions set for all:

chmod a+x hello.cgi

If, to test your script, you run it directly from your home directory, the output will be:

rabbit(2133)$ public_html/hello.cgi
Content-type: text/html

<H1> Hello </H1>
<H3> from </h3>
<p>
the date and time are: Wed Jan 19 10:30:07 GMT 2000

Notice that there was no value forSERVER_NAME because it was not executed by a web server. If you invoke
it via a browser it might look like:

Alternatively you can use binary executable files instead ofshell scripts. The following C++ program,
cpp-hello.cc, will produce output almost identical to thehello script.

8.7. SERVER SIDE: CGI PROGRAMS 63

#include <iostream.h>
#include <stdlib.h>
int main(int argc, char *argv[]) {

cout << "Content-type: text/html\n";
cout << "\n";
cout << "<H1> C++ Hello </H1>\n";
cout << "<H3> from " << getenv("SERVER_NAME") << "</h3>\n";
cout << "<p>\n";
cout << "the date and time are: "; cout.flush();
system("date");
cout << "\n";

}

Note:
• If users’ home directories are networked and NFS mounted by different types of machine there can

be problems with binary executable files. If you compile the C++ program on a Sun computer but
test it by calling a web server on an Intel system it will fail!Wrong binary machine instructions. So
make sure that both the system you compile on and the system the server runs on are the same.

• The system library routinesystem(..) causes the named shell command to be executed (by a hidden
sub-shell) and the results sent to the standard output.

• The system functiongetenv() returns the string value (actually it’schar *) of the named environ-
ment variable. (more on environment variables next).

8.7.4 The program environment and Environment variables
In the high virtual memory of every process there is a list of pairs of names and values called theenvi-
ronment variables. A program can lookup the value of a variable and might then use the value to change
its behaviour. The current settings of all environment variables can be examined with the shell command
printenv, try it.

The variables are used to modify or tailor a user’s programming environment. One very important
variable isPATH which is used by shells (and other programs) to search for executable programs. If the
user typesg++ .. to a shell prompt the shell will use the value ofPATH to look forg++. This is necessary
because there are many directories that hold programs. A typical value might be:

rabbit(2121)$ echo $PATH
/usr/local/bin:/usr/X11R6/bin:/bin:/usr/bin:/usr/local/java/bin:.

Note that thisPATH contains “.” which means the shell will look in the current directory. Some systems
don’t, by default, have “.”, you must add it to your own start-up dot files. Environment variables can be set
in bash by usingexport:

export PATH=~/bin:$PATH

will prefix the bin directory in your home directory to the current value ofPATH and then re-assign to
PATH. Environment variables are automatically “inherited” from the parent process whenever a new process
is started. So environment variables usually only need to beset once during login, they are then passed
automatically to every program run thereafter. Users normally use the file.bash_profile or .profile to
set their environment. However if necessary a program can add or change environment variables afterfork
but beforeexec using the system library routineputenv so that the environment of the new process will be
different, or to pass extra information to it.

Web servers must set certain environment variables for CGI programs. Here is a little CGI program that
prints out some of the environment variables set by the server:

#!/bin/sh
echo Content-type: text/plain
echo
echo CGI/1.0 part of the environment:
echo
echo SERVER_SOFTWARE = $SERVER_SOFTWARE
echo SERVER_NAME = $SERVER_NAME
echo SERVER_PROTOCOL = $SERVER_PROTOCOL
echo SERVER_PORT = $SERVER_PORT
echo REQUEST_METHOD = $REQUEST_METHOD
echo SCRIPT_NAME = "$SCRIPT_NAME"
echo QUERY_STRING = "$QUERY_STRING"
echo REMOTE_HOST = $REMOTE_HOST
echo REMOTE_ADDR = $REMOTE_ADDR

64 CHAPTER 8. WWW, HTTP, HTML, CGI AND PHP

And its output in a browser:

Notice that this program doesn’t send HTML and therefore wasconsiderate enough to tell the browser by
sendingContent-type: text/plain and nottext/html.

8.7.5 How CGI programs are executed
When a server receives a request and determines that it is fora CGI program it must:

• fork to produce a child process (it may already have done this to deal with the request if it is a simple
concurrent server, if so it doesn’t need to do it again).

• Check what sort of HTTP request it is. It might be the GET or thePOST method (for the CS2
coursework assume it can only be GET, say “not implemented” otherwise).

• It then prepares the environment by setting special environment variables, eg:

putenv("SERVER_SOFTWARE=MyServer version 0.1");

or if a value is in a variable read from the connection:

char env_str[64];
sprintf(env_str,"REQUEST_URI=%s",file); putenv(env_str);

• Send the correct HTTP response down the new socket to the client. Eg:

HTTP/1.0 200 OK
Date: Wed, 19 Jan 2000 13:13:44 GMT
Server: MyServer version 0.1

NB it is the job of the server to send the response line and maybe a couple of MIME lines. But it
doesn’t send the vitalContent-type: and blank line, it can’t, it doesn’t know what content will be
generated by the CGI program. These linesmustbe sent by the CGI program immediately it starts,
that’s why all the scripts start with:

echo "Content-type: text/html"
echo

• “re-plumb” the input and output for the CGI program. This will involve closing and duplicating file
descriptors. At the very least put the new socket on the standard output,dup2(newsock,1).

• Finally exec the requested program.

8.7.6 CGI input, forms, GET and POST
It is important and useful for input or arguments to be passedfrom the client to the program. This is
solved by providing extra data from the client at the end of the URI. Here is an example of the type of URI
generated for a search engine request:

http://www.altavista.com/cgi-bin/query?pg=q&what=web&q=j+s+bach

• The proper URI is terminated by “?”,

• The actual path sent in the GET request will not have the hostname etc., it is just:

cgi-bin/query?pg=q&what=web&q=j+s+bach

8.8. SERVER SIDE: PHP 65

• The query consists of name value pairs:pg=q, what=web andq=j+s+bach, The pairs are separated
by “&”.

• Spaces have been replaced by “+”.

The query string is split from the program file name by the server and given to the program via an envi-
ronment variable:QUERY_STRING. There are numerous packages and library functions available for CGI
programs to carry out the separation of all the name value pairs and the re-replacement of “+” by spaces.

HOW FORMS GENERATE THEGET QUERY STRING

Because it is so complicated to formulate the query strings in the client there is a facility in HTML to get
input from the user and send it to a remote CGI program, it is the <form>..</form>. Here is an example
of a very simple HTML file with a form in it:

<H1 ALIGN="CENTER">Silly form</H1>
<FORM ACTION="http://localhost/~bob/cpp-print.cgi/" METHOD=GET>
Name <INPUT NAME="name" SIZE=64> <P>
Address <INPUT NAME="address" SIZE=64> <P>
<INPUT TYPE=SUBMIT VALUE="Send"><P>

</FORM>

this is the same form as used in section 8.6. If data is enteredand the “Send” button is pressed the browser
will generate the following URI query string:

/~bob/cpp-print.cgi/?name=Jo+Bloggs&address=11+The+Avenue

and send it in a GET command tolocalhost.

HOW FORMS SEND DATA WITHPOST
An alternative way to send data to a CGI, ASP or PHP program is to use thePOST in HTTP, this is similar to
GET but is normally only used to invoke executable pages and sendthem data. The POST does not encode
the data as an extension to the URI but rather it sends it in thebody of the request. It can be used to send
larger quantities of more complicated data. So if the previous little form was changed to:

<H1 ALIGN="CENTER">Silly form</H1>
<FORM ACTION="http://localhost/~bob/cpp-print.cgi/" METHOD=POST>
Name <INPUT NAME="name" SIZE=64> <P>
...

everything else is the same but theMETHOD attribute has been changed toPOST. If this is filled in and then
sent by a browser the HTTP request might look like this:

POST /cpp-print.cgi HTTP/1.1
Host: localhost
User-Agent: Mozilla/5.0 Gecko/20030624 Netscape/7.1
Accept: text/xml,application/xml,...
...
Connection: keep-alive
Referer: http://localhost/~bob/fp.html
Content-Type: application/x-www-form-urlencoded
Content-Length: 41

name=Tony+Blair&address=10+Downing+Street

the CGI, PHP or JSP program must know how the data is sent, or check the method used.

8.8 Server side: PHP
PHP is a programming language, it looks a bit like C (as do manyprogramming languages), it has dynamic
typing (a variable can hold any type, the type is checked at runtime). What makes it different is that is
is designed to be embedded in HTML files (pages). The PHP interpreter processes the file, any HTML is
sent to standard output (connected by the web server to the client browser), any PHP is executed. Here is a
simple example:

<html>
<head> <title>PHP Test</title> </head>
<body>
<h2> Powers of 2 </h2>
<p>

66 CHAPTER 8. WWW, HTTP, HTML, CGI AND PHP

<?php
$pot = 1;
while($pot < 10000) {

print(" $pot
\n");
$pot = $pot * 2;

}
?>

</body>
</html>

and here is the output when it is requested from a browser:

Note that:

• a PHP file is basically HTML with bits of code in the middle,

• PHP code is surrounded by:
<?php

...
?>

• variable names are preceded by$, and they don’t need to be declared,

• the output of the print statement goes down the connection tothe client with the surrounding HTML.

Here is another example, this one examines an element in a pre-defined array. When PHP programs are
executed many special values are set, this one is the type of the HTTP request, eitherGET or POST. Further
note that PHP arrays can be indexed by numbers or by strings (this type of array is sometimes called an
associative array).

<html>
<head> <title>PHP Test</title> </head>
<body>
<h2> Which method was used </h2>
<p>
<?php

$rm = $_SERVER["REQUEST_METHOD"];
if($rm) {

print("Request method was: $rm
\n");
} else {

print("REQUEST_METHOD not set
\n");
}

?>
</body>

</html>

8.9. CLIENT SIDE (BROWSER) SERVICES 67

and here is the output when it is requested from a browser:

The PHP interpreter can be run outside the web server. It can be a good way to debug programs. Also,
in this case, it shows the HTML being sent to the standard output which will normally be the browser
connection, but here is the console.

sally(309)$ php4 method-check.php
X-Powered-By: PHP/4.1.2
Content-type: text/html

<html>
<head> <title>PHP Test</title> </head>
<body>
<h2> Which method was used </h2>
<p>
REQUEST_METHOD not set

</body>
</html>
sally(310)$

8.9 Client side (browser) services
Client side web facilities are sent from the server but they are executed or interpreted in the browser.

Javascript which is a language that can be embedded in HTML code between<script> and</script>.
Javascript source code is interpreted by the browser. The language has no existence outside HTML. It
is usually used to add checking or animation to an HTML file. All attributes of the currently displayed
HTML: links, images, colours etc., are accessible from Javascript making it a very powerful tool for
manipulating pages.

browser plugins these vary from movie players that are run when a video is downloaded, to complicated
interpreters for animations like flash that are integrated into the display. In fact Java is implemented
using a Java byte code interpreter plugin.

Java Java is a complete programming language, it exists outside browsers and HTML. However most
browser have a built-in interpreter for the byte-code form of Java. Java is less closely integrated into
HTML and the browser however it is musch more general purposelanguage than Javascript making
it better for more complicated applications.

8.9.1 Javascript example
Apart from making the page display more interesting client side services can reduce network traffic. The
following Javascript example checks the values entered into a form, this can reduce the need for a server to
check and send back an error page from the server. Here is a form with Javascipt checking code:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 transitional//EN">
<HTML>
<HEAD>
<TITLE>Test Page for Post args to cgi-bin</TITLE>
<SCRIPT LANGUAGE = "JavaScript">

function checkage() {
var a;
a = parseInt(document.okform.age.value);

68 CHAPTER 8. WWW, HTTP, HTML, CGI AND PHP

if (a<=2 || a>=110) {
window.alert("age between 3 and 109 please");
document.okform.name.value = "";
document.okform.age.value = "";
return false;

} else {
return true;

}
}

</SCRIPT>
</HEAD>
<BODY>
<H1 ALIGN="CENTER">Silly form</H1>

<FORM NAME="okform" ONSUBMIT="return checkage()"
ACTION="http://localhost/~bob/show-env.cgi" METHOD=POST>

Name <INPUT TYPE="text" NAME="name" SIZE=64> <P>
Age <INPUT TYPE="text" NAME="age" SIZE=4> <P>
<INPUT TYPE=SUBMIT VALUE="Send"><P>

</FORM>
</BODY>
</HTML>

This is the output if the form is loaded into a browser, given unsuitable input and then the “send” button is
pressed:

Chapter 9

The Domain Name Service DNS

9.1 Domain names
The DNS (Domain Name Service) maps host names to addresses. At the level of TCP/IP connections on
the Internet all addresses are the (IPV4) 32 numbers, there are no host names, the names are provided by
the DNS. Once upon a time very large central tables were kept on the network, but now this has become
impossible due to their size and rapidity of change. Now the Internet uses a protocol between systems called
the DNS which queries remote systems about how to map a name toa number.

Names are read left-to-right from smallest domain (or unit)to widest:slink.feis.herts.ac.uk is
a system,slink in the domain administered by the our faculty,.feis., in the campus network domain
administered by the University of Hertfordshire,herts in the UK academic community,ac.uk. Now
although the University has a class B address, there is no structure, correspondence or mapping between
parts of it and theac.uk bit of the name.

Usually there is a domain for every separateautonomous systemor network administrative authority,
ie. 147.197 (a B address) is herts.ac.uk. But above that level the domains have a structure not related to IP
addresses. The actual domains have grown up over time and the“top-level” domains are countries or the
US names:.com, .edu, .org etc. Figure 9.1 is a picture of part of the domain name hierarchy.

govde uk

hertsic ucl

mil

geminiwwwfeis

slinklawn

co ac

pclab099

google

orgneteducom

sun

uk

www

packages www

com

sun debian

Figure 9.1: Domain name hierarchy

9.2 Zones and name servers
The hierarchy is divided intozones, each zone belongs to some administrative authority, either a company,
university or network organisation. A zone is responsible for:

• allocating names and numbers to systems that belong in the zone, or pointing (delegating) to the name
servers in sub-zones,

• maintaining two or morename serversto translate name requests to addresses of systems or of name
servers for sub-zones.

69

70 CHAPTER 9. THE DOMAIN NAME SERVICE DNS

This organisation can cope with the dynamic distributed nature of the network structure, the responsibility
for translating names is passed down to the groups who allocate names and numbers to systems.

In order to enable end user zones to be found various network organisations provide intermediate zones,
at the “top” there are about 20 name servers that know about how to find the next level name servers,.com,
.uk etc. A zone doesn’t always correspond to one domain name level. It is possible for one zone to have
two or more levels of name hierarchy supported by its name servers. In picture 9.2 there is one zone to

govde uk

hertsic ucl

mil

geminiwwwfeis

slinklawn

co ac

pclab099

google

orgneteducom

sun

uk

www

packages www

com

sun debian

Figure 9.2: DNS zones

manage all the levels of thedebian hierarchy.
The name servers in each zone hold a table mapping host names to numbers, or sub-domain names to

their name servers. The responsibility of a name server is todeal with requests from two sources:

• local applications in that zone that need to begin resolve a local or remote name, the name server
must, if necessary, contact other name servers on their behalf, or

• other name servers that need to find out about the names in the name servers domain.

9.3 Resolving a name
Every system connected to the internet has address(es) of one or more local name servers and software
libraries to contact this server if any program wants toresolve(translate) a name. The server then deals with
the request. There are alternative programs to provide the DNS but the basic operation of all is probably:

• if it is a local name in this system’s zone, lookup the table and return the number,

• search the cache to see if it has been recently requested and saved,

• contact a “top-level” server (all DNS programs know these numbers), and ask for the name,

• the top-level server will probably not know the full answer but it will know somebody who does
know, in other words it will match the rightmost part of the domain name and provide the address of
the name server for the next zone,

• the original name server then sends the same query to this next name server, and either get the answer
or another name server address,

• this continues until it either fails or gets the answer.

For example consider the picture 9.3.

• Some system on the internet has an application that asks its local name server for the address of
slink.feis.herts.ac.uk.

9.3. RESOLVING A NAME 71

slink.feis.herts.ac.uk

for .uk try 217.79.164.131

slink.feis.herts.ac.uk

for ac.uk. 128.16.5.32

slink.feis.herts.ac.uk

for herts.ac.uk 147.197.200.2

slink.feis.herts.ac.uk
for feis.herts.ac.uk 147.197.236.64slink.feis.herts.ac.uk147.197.236.188

application asks local

nameserver for

slink.feis.herts.ac.uk

local

name−

server

147.197.236.188

slink...

govuk

herts ucl

mil

geminiwwwfeis

slink

ac google

com198.41.0.4

co

128.16.5.32

217.79.164.131

helios

lawn pclab099

com

Figure 9.3: DNS query

• it isn’t a local name and the name is not cached so

• the name server contacts a top-level server, in this case198.41.0.4. The top-level server knows the
zone servers for.uk so returns one of the addresses217.79.164.131

• the local name server then sends the full request to217.79.164.131 which doesn’t know the answer
but does know the name servers for.ac.uk one of which is:128.16.5.32,

• the local name server again sends the full name and gets the address ofhelios on our campus,
147.197.200.2,

• it contactshelios which returns the address of the server for feis.herts.ac.uk, this islawn in computer
science and its address is147.197.236.64,

• the poor tired local server then sends its request again, this time tolawn, nowlawn does know the an-
swer, it is in its zone. It replies with147.197.236.188, the number forslink.feis.herts.ac.uk

• the server passes this address to the program that asked, (itthen collapses from exhaustion).

72 CHAPTER 9. THE DOMAIN NAME SERVICE DNS

Chapter 10

Peer to peer networks

10.1 Application architecture
There are two contrasting network application architectures:client-serverandpeer-to-peer. The definition
of what actually constututes peer-to-peer can be a bit unclear. The important characteristic seems to be that
a in client-server the client system always initiates the interact by sending a request, the server accepts the
connection and sends a response:

request
response

response

request

response

request

serverclient

client

client

With the peer-to-peer architecture any system can initiaterequests or act as a server and receive requests:

response

request

request

response

servent

servent servent

A

B C

in the above picture each participant is called aservent1, and servent B is acting as a server for servent C,
receiving a request and sending a response, but also behaving as a client and sending a request to servent A.

The definition concerns the way the parts of a network application interact, the nature of their protocol, it
is not necessarily about how the user perceives the system. It is possible to have a person-to-person system
such as a network message exchange where each participant seems both to send and receive messages,
however the program implementation could involve a centralserver that routes the messages, the client
programs initiate the connections to the central server, they don’t receive incoming requests.

In addition the difference between client-server and peer-to-peer is not anything to do with the under-
lying network operation or topology below the application layer where all systems can be considered to to
uniformly connected and all can open or receive connections.

10.2 Instant message systems
These are systems that allow people to hold remote conversations with each other using typed text messages,
example are Micros**t Messenger, ICQ (bought out by AOL), AIM from AOL, Yahoo Messenger, and
the open standard Jabber. In some ways most of these are not fully peer-to-peer systems as suggested
above. However some have more peer-to-peer features than others. In most the conversations between client

1“servent” is a term used in the Gnutella file sharing system, the word seems to be a mixture of “server” and “client”.

73

74 CHAPTER 10. PEER TO PEER NETWORKS

programs go through special purpose central servers but will support direct client to client connections for
file transfers or video links.

client

A

client

B

client

C

server

p−2−p

for file

transfer

interactive messages

A−B and B−A via

the server

Possible reasons for using a central server might be that:

• if extra clients (people) can be invited to join a conversation then the required number of inter-client
links would rise very fast if peer-to-peer connections wereused,

• there is less need to avoid legal attacks on a central system than with file sharing systems (see later),

• the actual data passing through the central server is not very high

• a central server is essential for notifying other when a new user logs in.

10.3 File sharing
These systems are quite recent but have spread and evolved quite fast. They enable users to search for
and download files (usually music or film files) from other users’ systems on a network. Examples are
(or have been, because with fast evolution there seem to quite a few deaths): Napster, Gnutella, Freenet,
Audiogalaxy and the Fastrack-Kazaa-(old)Morpheus family.

The earliest widely used system was Napster, it was used to provide access to mp3 music files. How it
operated:

• a client program would login to one of several central servers and upload a list of files the client was
prepared to make available,

• when a user wanted to search for a file they would send the search request to the central server and
receive a list of client machine addresses,

• the user would choose one of the systems and the client program would download directly from the
other system.

Initially because files were transfered from one individualto another it was hoped it would avoid copy-
right laws however the American music industry paid enough lawyers enough money for long enough that
eventually the Napster site was forced to close. This encouraged more decentralisation in peer-to-peer ap-
plication design, newer systems do not have a central serverwith a list of all available files, the search
became peer-to-peer aswell as the file transfers. With a reduced role (or no role at all) for a central server it
is hoped that the systems are less vulnerable to attack by lawyers.

10.4 Gnutella
Gnutella is an application network sitting on the internet,it has a continually changing topology as systems
are turned on and join or are disconnected, in addition it seems to generate a lot of traffic. Each active node
(servent, client or wahtever it is called) tries to maintaina small number of open TCP connections to other
nodes, usually between 3 and 10, this produces the network structure, if connections break (systems turned
off) a node establish new connections. There is no central server, and at the moment, no login procedure.

10.4.1 Distributed search
This section describes just the distributed search and file transfer, how the connections are found, set up and
maintained will be summarised afterwards. So to search:

• a node transmits a search request to all its connected neighbours (3–10), the search request has a
unique number, it also has TTL (time to live) count,

10.4. GNUTELLA 75

• the neighbours propogate or forward the message, each will:

– record the unique message number in a table with the address from which it was received,

– decrement the TTL count, and if it is not zero. . .

– pass the request on to all their neighbours (except on the link they received it on),

Note that if the same search request is received on another connection, which is highly likely because
of the tangled, arbitrary structure of the net, it can easilybe discarded because the search request’s
unique number has been recorded in the table.

• each node that receives the search request also performs thesearch on its files, and forms a search
response with a variable length list of files satisfying the search. The response will include the search
request’s unique identifier and also the address of node forming the reply. The response will be sent
back only on the connection from which it was received,

• any intermediate node will, in addition to forming its own search response, receive responses from
other systems it propogated the original search to. It will then forward these responses back to the
originator by using the unique number to look up its table to see which connection it got the original
request on.

• When the responses arrive back at the initiator they will be shown to the user who will select which
one to fetch. The file transfer uses the HTTP protocol’s GET request; each node program contains its
own code to act as a little HTTP server and client to deal with the file transfers. The HTTP connection
will be a single new direct connection to the selected file’s node–no viral propogation this time; this
is possible because the necessary IP address was included inthe search response.

10.4.2 Finding and maintaining connections
There is an unsettled question: how does a servent (node) getits connections? There is a special message:
“GNUTELLA CONNECT” that is sent to any other existing node that can be accepted “GNUTELLA OK”
or rejected. But how does a new node known what system to send this to? There has to be a handful of
“well-known addresses” of systems that are always running and connected. These are the initial contact
points. In some sense these are like special servers although there role is very limited; that is the problem of
a very distributed system–how to contact it. So some “server” is still needed until some efficient broadcast
method can be devised.

The whole problem is not solved, the new node only has one connection, where does it get the others?
There is a special message called “PING” (not the ICMP ping) which works like a contentless search
request, it:

• has a unique number

• has a TTL field

• is propogated like a search request, every node recording its incoming connection and number it the
table,

The use is that recipients respond to it with “PONG” replies.A PONG reply contains:

• the unique number of the PING it’s replying to,

• the IP address of the node that is replying, and

• the number, and total size of offered files on the replying system

These PONG messages get returned to the iniiator just like search replies. When PONGs get back the system
that started the PING it will have loads of IP addresses, it can then use these to try to open connections using
“GNUTELLA CONNECT”.

Additionally PINGs can be sent out later to get more IP addresses if nodes that are used for connections
are turned off.

76 CHAPTER 10. PEER TO PEER NETWORKS

10.4.3 Summary of protocol
• to open a new TCP connection there is the GNUTELLA CONNECT message, these is a before the

real protocol can be used,

• once a connection is open fixed format binary messages can be sent, these constitute the real protocol.
They all have a unique number, a TTL, a length field and a message type. The message types are:

– PING, to discover more addresses, they are propogated,

– PONG, the reply to PING containing the reponders IP address,

– SEARCH, containing a file search string, propogated like PING,

– SEARCH REPLY, that contains the names of files, and machine address, from each node re-
sponding to the search,

– PUSH, used to start data transfers from systems that are behind firewalls, necessary but not a
major part of the operation.

These constitute the messages sent along the TCP connections.

• Lastly there are HTTP GET request and replies that will be sent directly between systems to fetch
files once they have been found.

10.4.4 Issues in Gnutella
• It is very decentralised, it is very robust, connections andnodes come and go but the network is

always there,

• it is an open published protocol and there are many client programs (servents) available,

• it is more secure against attacks from lawyers, the lack of a permanent central server containing all
the search functions means it is harder to find anybody to taketo court,

• at the moment it doesn’t contain much internal security, anybody can connect (good) but anybody
could write programs that flood the system with corrupt searches or pings (bad),

• additionally this basic version of Gnutella might not scaleup very well as the number of users in-
creases the traffic they produce rises exponentially. Each search spreads across the net like a virus
(until the TTL gets to zero). Also each machine that runs a Gnutella client (servent) program is going
to be used by other systems to search and pass on searches; yourun the program, sit back, do nothing,
but your machine and network connection are immediately very busy.

• there are already some improvements and suggestions for improvements in the protocol that might
reduce the load on the internet,

• it is a very new idea and there is not yet enough experience to know exactly how things like this will
evolve.

There are a couple or links for further information:
http://www.gnutelliums.com/, http://www.limewire.com/,
http://www.rixsoft.com/Knowbuddy/gnutellafaq.html,
http://www.gnutelladev.com/protocol/gnutella-protocol.html,
and the current home of the standard:
http://rfc-gnutella.sourceforge.net/.

Chapter 11

Network security

11.1 Some cryptographic concepts
A very important component in any secure system will be some form of encryption, the use of akey to
“mangle” a message so that nobody else can read it except somebody else having a suitable decoding key.
There are many different encryption schemes and algorithmswith very different properties. The following
brief notes summarise three schemes (no details of the actual algorithm, I’m not a mathematican).

11.1.1 Secret key encryption
This scheme uses one algorithm and key that can both encode and decode a message. So if Alice wants to
send a message to Bob, she encrypts the message:

E = encrypt(K,M)

whereM is the “plain-text” message,K is the key,E is the encrypted message, andencryptis the secret key
encryption algorithm, for example DES. The only way the message can be decrypted is with the same key
K, Bob has the key aswell so he does:

M = decrypt(K,E)

and can read the message. Nobody else can read it, unless theyknow the secret key. Features of secret key:

• quite efficient and fast, can encode streams of data,

• has the problem ofkey distribution, how do you pass secret keys around safely?

11.1.2 Public/private key encryption
This scheme generates a complementary pair of keys, called the public keyand theprivate key, with the
property that anything encrypted with the private key can only be decrypted using the matching public key
and vice versa. One of the most famous algorithms is RSA.

Public private key pairs belong to individuals, and they will publish, or make available, their public key
but hide their private key.

E = encrypt(Kpriv,M)

whereM is the “plain-text” message,Kpriv is the key,E is the encrypted message, to decrypt: aswell so he
does:

M = decrypt(Kpub,E)

Also the converse holds:
M = decrypt(Kpriv,encrypt(Kpub,M))

How can it be used? Firstly if Alice wants to send a message to Bob that only he will be able to read she
encodes it using Bob’s public key knowing that nobody but Bob(the owner of the matching private key)
will be able to decode it. So Alice does:

E = encrypt(Kpub−bob,M)

and sends it to Bob, he decodes it:
M = decrypt(Kpriv−bob,E)

Alternatively Alice might want to send a message to Bob in such a way that he will know she is the only
one that could have sent it, this ismessage authentication. Also she will not be able to deny that she sent
it, this isnon-repudiation. (These are only the case so long as her private key is not disclosed.) So she will
encrypt it with her private key:

E = encrypt(Kpriv−alice,M)

and Bob (or anybody else) will be able to decode it:

M = decrypt(Kpub−alice,E)

The 2 can be put together. Alice will encrypt with her privatekey and then encrypt the result with Bob’s
public key:

77

78 CHAPTER 11. NETWORK SECURITY

E = encrypt(Kpub−bob,encrypt(Kpriv−alice,M))

so that only Bob can decode it. Secret and authenticated.
Features of secret key:

• quite inefficient and slow, can only encode small amounts of data,

• provides a solution to the problem ofkey distribution,

• there still remains the problem of knowing that the person who claims to own a public key really does
own it.

11.1.3 Message digests
A message digestis a a specialhash codeformed from a message, a sort of cryptographic checksum. One
widely used digest algorithm is MD5. If:

D = MD(M)

whereM is the message, the document, the file,MD is a message digest function andD is the computed
message digest hash code. The digestD is usually at least 128 bits long, it is not possible to infer anything
aboutM from D, it is almost impossible that any other documentM′ will produce the sameD, any change
to M, however small, will changeD. You could almost say it is a unique fingerprint.

One use of message digest is to reassure users of the safety and authenticity of files and programs that
are being distributed. If the file distributor, Alice, has a file F to distribute they calculate the digestD and
“sign” it using their private key producingED which they put on the server along withF .

ED = encrypt(Kpriv−alice,MD(F)

Now Bob wants to download the programF and be confident nobody has altered it or added a virus, so he
dowmloadsF andED. He first computes theD of F using the same algorithmMD, then decryptsED using
Alice’s public key, and finally compares them.

MD(F) = decrypt(Kpub−alice,ED)

If they are the same he knows nobody has tampered withF since Alice calculateD, and nobody but Alice
could have done it.

11.1.4 Certificates
There is a remaining problem: how to you know that a public keybelongs to the person who presents it?
The solution is to use a “well known authority” to verify thata public key belongs to a specific person. It
uses acertificate. If Bob wants a certificate he:

• goes to a well known authority (there are many, including companies like Verisign)

• proves who he is using an ID card, a driving license or something else,

• has a public-private key pair generated for him

• pays some money, and receives a certificate consisting of hispublic key and a statement of his identity
(name, email, address etc.) all hashed and signed with the private key of the authenticating company
(the “well known authority”).

Then Alice (or anybody else) can verify his public key belongs to him, they compute the hash key, and
compare it with the “signature” decoded with the public key of the authenticator.

11.1.5 SSL
There are many protocols and applications of encryption, PEM and PGP can be used to encrypt e-mail,
IPSec encrypts IP network connections, Kerberos deals withuser authentication, and many others. One of
the best known protocols is SSL (and its newer standardised version TLS), it is used for authenticating and
encrypting program to program (transport) connections. Itis nearly always used by Web servers that require
a credit card number to be submitted.

The server system (being run by Bob) has its own certificate (yes computers can have certificates).
Alice wants to buy a Linux palm computer from his site so she will initiate an HTTPS connection (one
using SSL):

11.2. SYSTEM SECURITY WITHOUT NETWORKING 79

browser message server
→ algo. preferences +Rc →
← algo. choice +Rs ← server chooses algorithm

check certificate← server certificate ←
← request client cert. or done ←

assume no req.→ encrypt(Kpub−serv,SK′) →
SK= f (SK′,Rc,Rs) SK= f (SK′,Rc,Rs)

→ use encryption withSK →
→ done SSL handshake →
← acknowledge done SSL ←

exchange data encypted with SK

• the client sends initial request and suggests some encryption preferences, also a random numberRc,
the random number is used later,

• server responds with a choice from encryption preferences,and its random numberRs

• server sends certificate which is checked by the client, if the server wants the client to authenticate
itself using its certificate it asks for it now, the process will be similar, otherwise it says “done” so
they can move on to the next step,

• client sends a value to be used as a secret key (stage 1) for encrypting the whole session after the
handshake is complete. This is encrypted with the server’s public key.

• now both ends can compute the final secret session key based onthe random numbers exchanged
earlier and the stage 1 session key sent by the client,

• client says switch to using session key, server acknowledges,

• all the transaction messages encrypted using the symmetricsecret key just generated.

11.2 System security without networking
Without networking the problem of policing an operating system is relatively simple. If users can only
access the system through local terminals then they are easier to physically protect (no link tapping). Users
canonlyaccess the system through terminals (no network servers accepting connections from elsewhere), so
good password security can stop unauthorised users. The main problems arise from enforcing the different
access policies and authorisation within the system (oftencalled “protection” in opsy textbooks).

11.3 System security with networking
With networking there are thousands of ways in.

• Use of stolen or unprotected user accounts viatelnet and similar programs,

• At the data-link layer, for example Ethernet, packets can beobserved and examined by any system
attached to the Ethernet. These are calledpacket sniffers. Passwords, credit card numbers or confi-
dential data are stolen.

• At the network layer people can install false routing systems to intercept and even change packets.
This can be done by masquerading as DNS servers.

• Systems can be flooded with traffic at the application or the transport layer causing services to fail.
These are “denial of service attacks”.

• At the application layer there are many types of attack.

– CGI programs on WWW servers are often insecure,

– network filesystems (NFS, SMB etc.) can be very insecure,

– many server programs have known vulnerabilities that allowintruders in,

80 CHAPTER 11. NETWORK SECURITY

11.4 How can networking be more secure?
• Install audit programs so that attacks can be detected (and sometimes) repaired. They usually work

by recording the state of important files and checking for unexpected changes,

• Use better authentication for passwords and remove old or unused accounts,

• Many systems have network servers that are not used or are badly configured: remove any unused
services,

• check that all local network fileservers are secure (don’t permit setuid programs from insecure file
systems),

• Use authenticated and encrypted network connections, thismeans that the only people making or
receiving connections to or from your systems are ones that can beauthenticatedand afterwards you
are safe from sniffer attacks because ofencryption.

• Use firewalls to filter and monitor all network traffic entering and leaving a local network. A firewall
is a system between a local network and the rest of the Internet that can monitor all packet traffic. It
can recognize attacks and reject packets.

• read regular network security reports about newly discovered weaknesses in any server programs you
use and get new, fixed versions.

11.5 Firewalls, Proxies, and Masquerading
• Many related solutions depend on a “box” between the networkto be protected and the rest of the

internet.

• The “box” provides more functions than a simple gateway or router, it must provide some privacy or
prevent some of the forms of attack from the outside,

• The sorts of protection it can give are:

– to hide services and make it harder for port scanners,

– to prevent some of datagram fragment attacks,

– to prevent incorrect source address spoofing,

– to hide machine and their identities

– to prevent ICMP flooding,

• Sometimes fancy routers also provide firewall functions, sometimes they are separated.

• Very often firewalls are used to monitor and restrict outgoing security so that employers and owners
of networks can spy on, or control what their employees or users are doing.

11.6 Position of firewall
__________ +--- ...

_/__/_ | PPP gate/| | _______________
| | | Firewall | (LAN) | |

/ Internet \----| System |--(HUB)--| Workstation |
_ _ _ _/ |__________| |_______________|

\/ \/ \/ | _______________
| | |
+----| Workstation |

|_______________|

• Here is a simple ISDN, cable modem or phone line linking a small network to the internet.

• I’ve got one at home,

_________ __________
_/__/_ | Router | | | ____________
| | | or | (DMZ) | Firewall | (LAN) | |
/ Internet \--|Cable Mdm|-(HUB)-| System |-(HUB)-|Workstations|
_ _ _ _/ |_________| | |__________| |____________|

11.7. ENCRYPTING NETWORK CONNECTIONS 81

\/ \/ \/ |
(Outside)
(Server)

• Here is a more complicated system with a special router

• there is a separate firewall to do packet filtering

• this is suitable for a large net with legal addresses.

11.7 Encrypting network connections
Use authenticated and encrypted network connections, thismeans that the only people making or receiving
connections to or from your systems are ones that can beauthenticatedand afterwards you are safe from
sniffers and man-in-the-middle attacks because ofencryption. There are 2 levels:

• application level authentication and encryption of connections, such as SSL between WWW servers
and browsers. The data is encrypted by the network applications.

– these are between individual programs, not systems or sites,

– it is used by secure servers and browsers for passing credit card numbers.

– a system needs no special encryption or prior arrangement with another system.

• network level authentication and encryption, called IPSec(also called: Virtual Private Networks
VPNs). All traffic leaving a site to one or more remote sites isencrypted.

– typically done on a firewall system as traffic enters and leaves a site,

– no extra work for applications, all traffic encrypted by firewall

– IPSec must be arranged between sites so it cannot be used for arbitrary connections to single
remote server programs,

– traffic emerging from the firewall is vulnerable to attack inside the local network before it
reaches the application

11.8 Encrypting network traffic: IPSec
• IPSec is also known as VPN virtual private networks,

• all IP packets to or from given destinations are encrypted and decrypted at a gateway or firewall
system. Applications making connections to systems and programs on the remote destination site
will have all their packets made secure as they leave the site.

• this only works between sites or dialup systems that have made prior arrangements, for example:
different sites of a company of salesmen contacting their home site.

• It supports traffic encryption and authentication of the remote sites to establish the secure link. Key
exchange and management is vital for links to be establishedsafely.

• systems often change the public key used to encrypt the connection to reduce the risk of cracking.

82 CHAPTER 11. NETWORK SECURITY

11.9 Encrypting network traffic: IPSec

other site

network

other site

network

other site

network

other site

network other site

network

Firewall with
IPSEC

Dialup
system with
IPSEC

Firewall with

IPSEC

site A site B

Remote host C

encrypted packetsIPSec

• Here sites A and B and the remote host C share a secure private network.

• no other systems on the network can spy on their traffic as it crosses the internet,

• any computer on site A contacting a computer on site B will have its traffic encrypted,

• connections can be made from computers on sites A or B to systems elsewhere on the internet but
their traffic won’t then be encrypted.

11.10 Application level encryption (SSL)

• SSL is a library of routines that applications can use to makesecure connections,

• the best known example is “HTTPS”, secure WWW connections,

• another example is OpenSSH (and the original SSH) that provides secure encrypted login sessions, it
is a secure replacement fortelnet,

• it usessecret keyencryption for traffic and provides routines to support authentication usingpublic
keyencryption,

• with WWW servers there are usually two main goals: encryptedtraffic and authenication of the
server, so you don’t give your credit card number to the wrong system. The validation and authen-
tication of the server is done usingcertificatesrecognised by browsers and issued by well known
authorities. This is support by SSL but is really part of the application.

11.11. USING SSL 83

11.11 Using SSL

other site

network

other site

network

other site

network

other site

network other site

network

site A site B

client
using
SSL

server
using
SSL

• the client program on a computer on site A connects to a program on a computer on site B,

• no other programs or systems on each site know about this or are needed to support it.

11.12 Openssh
• openssh is an end to end secure replacement fortelnet, rlogin andrsh,

• it authenticates the human client and the remote server,

• it encrypts all the network traffic transmitted between the client and the server,

• openssh is an open source derivative ofssh that has become a commercial product,

• it supports 1024 bit user RSA public/private keys for authentication

• it has a choice of conventional cyphers for encrypting, currently 3DES and Blowfish,

• it is implemented on top ofopenssl the open source Secure socket layer, it is SSL that encrypts the
data that is transmitted.

• (unfortunately it doesn’t seem very easy to set up!).

11.13 Structure
There are two main programs:

• sshd the daemon that must be running on the server that receives connections. It must be run privi-
leged (asroot). This program is responsible for:

– accepting connections

– authenticating itself to clients

– authenticating clients,

– establishing the session: starting a shell etc.

• ssh the client program that makes the connection. It is not privileged. It does:

– authenticating the remote server computer,

– depending on various local files and the users configuration it selects and tries different user
authentication methods on behalf of the user,

– it requests other secure channels from the server, if required, for X display etc.

