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0 Introduction

0.1 About these notes

This is a working set of lecture notes for the Part A Electromagnetism course, which is part

of the mathematics syllabus at the University of Oxford. I have attempted to put together

a concise set of notes that describes the basics of electromagnetic theory to an audience

of undergraduate mathematicians. In particular, therefore, many of the important physical

applications are not covered. I claim no great originality for the content: for example, section

4.2 closely follows the treatment and notation in Woodhouse’s book (see section 0.3), while

section 4.4 is based on lecture notes of Prof Paul Tod.

Please send any questions/corrections/comments to sparks@maths.ox.ac.uk.

0.2 Preamble

In this course we take a first look at the classical theory of electromagnetism. Historically,

this begins with Coulomb’s inverse square law force between stationary point charges, dating

from 1785, and culminates (for us, at least) with Maxwell’s formulation of electromagnetism

in his 1864 paper, A Dynamical Theory of the Electromagnetic Field. It was in the latter pa-

per that the electromagnetic wave equation was first written down, and in which Maxwell first

proposed that “light is an electromagnetic disturbance propagated through the field according

to electromagnetic laws”. Maxwell’s equations, which appear on the front of these lecture

notes, describe an astonishing number of physical phenomena, over an absolutely enormous

range of scales. For example, the electromagnetic force1 holds the negatively charged elec-

trons in orbit around the positively charged nucleus of an atom. Interactions between atoms

and molecules are also electromagnetic, so that chemical forces are really electromagnetic

forces. The electromagnetic force is essentially responsible for almost all physical phenom-

ena encountered in day-to-day experience, with the exception of gravity: friction, electricity,

electric motors, permanent magnets, electromagnets, lightning, electromagnetic radiation

(radiowaves, microwaves, X-rays, etc, as well as visible light), . . . it’s all electromagnetism.

1Quantum mechanics also plays an important role here, which I’m suppressing.
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0.3 Bibliography

This is a short, introductory course on electromagnetism, focusing more on the mathematical

formalism than on physical applications. Those who wish (and have time!) to learn more

about the physics are particularly encouraged to dip into some of the references below, which

are in no particular order:

• W. J. Duffin, Electricity and Magnetism, McGraw-Hill, fourth edition (2001), chapters

1-4, 7, 8, 13.

• N. M. J. Woodhouse, Special Relativity, Springer Undergraduate Mathematics, Springer

Verlag (2002), chapters 2, 3.

• R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics, Volume

2: Electromagnetism, Addison-Wesley.

• B. I. Bleaney, B. Bleaney, Electricity and Magnetism, OUP, third edition, chapters

1.1-4, 2 (except 2.3), 3.1-2, 4.1-2, 4.4, 5.1, 8.1-4.

• J. D. Jackson, Classical Electrodynamics, John Wiley, third edition (1998), chapters 1,

2, 5, 6, 7 (this is more advanced).

0.4 Preliminary comments

As described in the course synopsis, classical electromagnetism is an application of the three-

dimensional vector calculus you learned in Moderations: div, grad, curl, and the Stokes and

divergence theorems. Since this is only an 8 lecture course, I won’t have time to revise

this before we begin. However, I’ve included a brief appendix which summarizes the main

definitions and results. Please, please, please take a look at this after the first lecture, and

make sure you’re happy with everything there.

We’ll take a usual, fairly historical, route, by starting with Coulomb’s law in electrostatics,

and eventually building up to Maxwell’s equations on the front page. The disadvantage with

this is that you’ll begin by learning special cases of Maxwell’s equations – having learned

one equation, you will later find that more generally there are other terms in it. On the

other hand, simply starting with Maxwell’s equations and then deriving everything else from

them is probably too abstract, and doesn’t really give a feel for where the equations have

come from. My advice is that at the end of each lecture you should take another look at

the equations on the front cover – each time you should find that you understand better

what they mean. Starred paragraphs are not examinable, either because they are slightly

off-syllabus, or because they are more difficult.

There are 2 problem sheets for the course, for which solution sets are available.
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1 Electrostatics

1.1 Point charges and Coulomb’s law

It is a fact of nature that elementary particles have a property called electric charge. In SI

units2 this is measured in Coulombs C, and the electron and proton carry equal and opposite

charges ∓q, where q = 1.6022 × 10−19 C. Atoms consist of electrons orbiting a nucleus of

protons and neutrons (with the latter carrying charge 0), and thus all charges in stable matter,

made of atoms, arise from these electron and proton charges.

Electrostatics is the study of charges at rest. We model space by R
3, or a subset thereof,

and represent the position of a stationary point charge q by the position vector r ∈ R
3.

Given two such charges, q1, q2 at positions r1, r2, respectively, the first charge experiences3

an electrical force F1 due to the second charge given by

F1 =
1

4πǫ0

q1q2

|r1 − r2|3
(r1 − r2) . (1.1)

Note this only makes sense if r1 6= r2, which we thus assume. The constant ǫ0 is called the

permittivity of free space, which in SI units takes the value ǫ0 = 8.8542 × 10−12 C2 N−1 m−2.

Without loss of generality, we might as well put the second charge at the origin r2 = 0,

denote r1 = r, q2 = q, and equivalently rewrite (1.1) as

F1 =
1

4πǫ0

q1q

r2
r̂ (1.2)

where r̂ = r/r is a unit vector and r = |r|. This is Coulomb’s law of electrostatics, and is an

experimental fact. Note that:

E1 : The force is proportional to the product of the charges, so that opposite

(different sign) charges attract, while like (same sign) charges repel.

E2 : The force acts in the direction of the vector joining the two charges, and

is inversely proportional to the square of the distance of separation.

The above two statements are equivalent to Coulomb’s law.

The final law of electrostatics says what happens when there are more than just two

charges:

E3 : Electrostatic forces obey the Principle of Superposition.

2where, for example, distance is measured in metres, time is measured in seconds, force is measured in
Newtons.

3Of course, if this is the only force acting on the first charge, by Newton’s second law of motion it will
necessarily begin to move, and we are no longer dealing with statics.
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That is, if we have N charges qi at positions ri, i = 1, . . . , N , then an additional charge q at

position r experiences a force

F =
N∑

i=1

1

4πǫ0

qqi

|r − ri|3
(r − ri) . (1.3)

So, to get the total force on charge q due to all the other charges, we simply add up (superpose)

the Coulomb force (1.1) from each charge qi.

1.2 The electric field

The following definition looks completely trivial at first sight, but in fact it’s an ingenious

shift of viewpoint. Given a particular distribution of charges, as above, we define the electric

field E = E(r) to be the force on a unit test charge (i.e. q = 1) at position r. Here the

nomenclature “test charge” indicates that the charge is not regarded as part of the distribution

of charges that it is “probing”. The force in (1.3) is thus

F = q E (1.4)

where by definition

E(r) =
1

4πǫ0

N∑

i=1

qi

|r − ri|3
(r − ri) (1.5)

is the electric field produced by the N charges. It is a vector field4, depending on position r.

As we have defined it, the electric field is just a mathematically convenient way of describing

the force a unit test charge would feel if placed in some position in a fixed background of

charges. In fact, the electric field will turn out to be a fundamental object in electromagnetic

theory. Notice that E also satisfies the Principle of Superposition, and that it is measured in

N C−1.

1.3 Gauss’ law

From (1.2), the electric field of a point charge q at the origin is

E(r) =
1

4πǫ0

q

r2
r̂ =

q

4πǫ0

r

r3
. (1.6)

Since on R
3 \ {0} we have ∇ · r = 3 and ∇r = r/r, it follows that in this domain

∇ · E =
q

4πǫ0

(
3

r3
−

3r · r

r5

)
= 0 . (1.7)

4defined on R
3 \ {r1, . . . , rN}.
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It immediately follows from the divergence theorem A.2 that if R is any region of R
3 that

does not contain the origin, then
∫

Σ=∂R
E · ndS =

∫

R
∇ · EdV = 0 . (1.8)

Here n is the outward unit normal vector to Σ = ∂R. One often uses the notation dS for

ndS. The integral
∫
Σ E · dS is called the flux of the electric field E through Σ.

Consider instead a sphere Σa of radius a, centred on the origin. Since the outward unit

normal to Σa is n = r/r, from (1.6) we have
∫

Σa

E · dS =
q

4πa2ǫ0

∫

Σa

dS =
q

ǫ0
. (1.9)

Here we have used the fact that a sphere of radius a has surface area 4πa2.

Figure 1: Region R, with boundary Σ, containing a point charge q. We divide R into a small
ball Ba of radius a, with boundary sphere Σa, and a region U with boundaries Σ and Σa.

It is now straightforward to combine these two calculations to prove that for any closed

surface Σ bounding a region R

∫

Σ
E · dS =






q

ǫ0
if the charge is contained in the region R bounded by Σ

0 otherwise .
(1.10)

To see this, notice that if R contains the charge, we may write the former as the union of

a small ball Ba centred on the charge, with boundary sphere Σa of radius a, and a region

U not containing the charge, with boundaries Σ and Σa – see Figure 1. We then sum the

results above:
∫

Σ
E · dS =

∫

Σa

E · dS +

∫

U
∇ · EdV (divergence theorem)

=

∫

Σa

E · dS =
q

ǫ0
. (1.11)
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This is easily extended to the case of a distribution of multiple point charges. Note first

that the electric field (1.5) has zero divergence on R
3 \{r1, . . . , rN} – the ith term in the sum

has zero divergence on R
3 \ {ri} by the same calculation as (1.7). Suppose that a region R

contains the charges q1, . . . , qm, with m ≤ N . Then one may similarly write R as the union

of m small balls, each containing one charge, and a region containing no charges. For the ith

ball the electric flux calculation (1.9) proceeds in exactly the same way for the ith term in

the sum in (1.5); on the other hand, the remaining terms in the sum have zero divergence in

this ball. Thus essentially the same calculation5 as that above proves

Gauss’ law: For any closed surface Σ bounding a region R,
∫

Σ
E · dS =

1

ǫ0

m∑

i=1

qi =
Q

ǫ0
(1.12)

where R contains the point charges q1, . . . , qm, and Q is the total charge in R.

Note that this extension from a single charge to many charges is an application of the

Principle of Superposition, E3 .

1.4 Charge density and Gauss’ law

For many problems it is not convenient to deal with point charges. If the point charges

we have been discussing are, say, electrons, then a macroscopic6 object will consist of an

absolutely enormous number of electrons, each with a very tiny charge. We thus introduce

the concept of charge density ρ(r), which is a function giving the charge per unit volume.

This means that, by definition, the total charge Q = Q(R) in a region R is

Q =

∫

R
ρ dV . (1.13)

We shall always assume that the function ρ is sufficiently well-behaved, for example at least

continuous (although see the starred section below). For the purposes of physical arguments,

we shall often think of the Riemann integral as the limit of a sum (which is what it is).

Thus, if δR ⊂ R
3 is a small region centred around a point r ∈ R

3 in such a sum, that region

contributes a charge ρ(r)δV , where δV is the volume of δR.

With this definition, the obvious limit of the sum in (1.5), replacing a point charge q′ at

position r′ by ρ(r′)δV ′, becomes a volume integral

E(r) =
1

4πǫ0

∫

r
′∈R

ρ(r′)

|r − r′|3
(r − r′) dV ′ . (1.14)

5Make sure that you understand this by writing out the argument carefully.
6
* A different issue is that, at the microscopic scale, the charge of an electron is not pointlike, but rather

is effectively smeared out into a smooth distribution of charge. In fact in quantum mechanics the precise
position of an electron cannot be measured in principle!
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Here {r ∈ R
3 | ρ(r) 6= 0} ⊂ R, so that all charge is contained in the (usually bounded) region

R. We shall come back to this formula in the next subsection. Similarly, the limit of (1.12)

becomes
∫

Σ
E · dS =

1

ǫ0

∫

R
ρ dV (1.15)

for any region R with boundary ∂R = Σ. Using the divergence theorem A.2 we may rewrite

this as
∫

R

(
∇ · E −

ρ

ǫ0

)
dV = 0 . (1.16)

Since this holds for all R, we conclude from Lemma A.3 another version of Gauss’ law

∇ · E =
ρ

ǫ0
. (1.17)

We have derived the first of Maxwell’s equations, on the front cover, from the three simple

laws of electrostatics. In fact this equation holds in general, i.e. even when there are magnetic

fields and time dependence.

* If (1.17) is to apply for the density ρ of a point charge, say at the origin, notice that
(1.7) implies that ρ = 0 on R

3 \ {0}, but still the integral of ρ over a neighbourhood
of the origin is non-zero. This is odd behaviour for a function. In fact ρ for a point
charge is a Dirac delta function centred at the point, which is really a “distribution”, or
a “generalized function”, rather than a function. Unfortunately we will not have time to
discuss this further here – curious readers may consult page 26 of the book by Jackson,
listed in the bibliography. When writing a charge density ρ we shall generally assume it
is at least continuous. Thus if one has a continuous charge distribution described by such
a ρ, but also point charges are present, then one must add the point charge contribution
(1.5) to (1.14) to obtain the total electric field.

1.5 The electrostatic potential and Poisson’s equation

Returning to our point charge (1.6) again, note that

E = −∇φ (1.18)

where

φ(r) =
q

4πǫ0r
. (1.19)

Since the curl of a gradient is identically zero, we have

∇∧ E = 0 . (1.20)

Equation (1.20) is another of Maxwell’s equations from the front cover, albeit only in the

special case where ∂B/∂t = 0 (the magnetic field is time-independent).
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Strictly speaking, we have shown this is valid only on R
3 \{0} for a point charge. However,

for a bounded continuous charge density ρ(r), with support {r ∈ R
3 | ρ(r) 6= 0} ⊂ R with R

a bounded region, we may define

φ(r) =
1

4πǫ0

∫

r
′∈R

ρ(r′)

|r − r′|
dV ′ . (1.21)

Theorem A.4 then implies that φ is differentiable with −∇φ = E given by (1.14). The proof

of this goes as follows. Notice first that

∇

(
1

|r − r′|

)
= −

r − r′

|r − r′|3
, r 6= r′ . (1.22)

Hence7

−∇φ(r) =
1

4πǫ0

∫

r
′∈R

[
−∇

(
1

|r − r′|

)]
ρ(r′) dV ′

=
1

4πǫ0

∫

r
′∈R

ρ(r′)(r − r′)

|r − r′|3
dV ′ = E(r) . (1.23)

Theorem A.4 also states that if ρ(r) is differentiable then ∇φ = −E is differentiable. Since E

is a gradient its curl is identically zero, and we thus deduce that the Maxwell equation (1.20)

is valid on R
3.

* In fact ∇ ∧ E = 0 implies that the vector field E is the gradient of a function (1.18),
provided the domain of definition has simple enough topology. For example, this is true
in R

3 or in an open ball. For other domains, such as R
3 minus a line (say, the z-axis), it

is not always possible to write a vector field E with zero curl as a gradient. A systematic
discussion of this is certainly beyond this course. The interested reader can find a proof
for an open ball in appendix B of the book by Prof Woodhouse listed in the Bibliography.
From now on we always assume that E is a gradient (1.18), which in particular will be
true if we work on the whole of R

3 or an open ball.

The function φ is called the electrostatic potential. Recall from Moderations that forces F

which are gradients are called conservative forces. Since F = q E, we see that the electrostatic

force is conservative. The work done against the electrostatic force in moving a charge q along

a curve C is then the line integral

W = −

∫

C
F · dr = −q

∫

C
E · dr = q

∫

C
∇φ · dr = q (φ(r1) − φ(r0)) . (1.24)

Here the curve C begins at r0 and ends at r1. The work done is of course independent of

the choice of curve connecting the two points, because the force is conservative. Notice that

one may add a constant to φ without changing E. It is only the difference in values of φ

that is physical, and this is called the voltage. If we fix some arbitrary point r0 and choose

7One should worry about what happens when r ∈ R, since 1/|r − r
′| diverges at r

′ = r. However, the
steps above are nevertheless correct as stated – see the proof of Theorem A.4 in the lecture course “Calculus
in Three Dimensions and Applications” for details.

6



φ(r0) = 0, then φ(r) has the interpretation of work done against the electric field in moving a

unit charge from r0 to r. Note that φ in (1.19) is zero “at infinity”. From the usual relation

between work and energy, φ is also the potential energy per unit charge.

Figure 2: The field lines, which represent the direction of the electric field, and equipotentials
around a positive point charge.

The surfaces of constant φ are called equipotentials. Notice that the electric field is always

normal to such a surface. For, if t is a vector at a fixed point r that is tangent to the

equipotential for φ(r), then t · ∇φ = 0 at this point. This means that ∇φ = −E is normal to

a surface of constant φ.

From Gauss’ law (1.17) we immediately have (cf. (1.21) and Theorem A.4)

∇2φ = −
ρ

ǫ0
(1.25)

which is called Poisson’s equation. It reduces to Laplace’s equation when ρ = 0.

1.6 Boundary conditions and surface charge

We have now reduced electrostatics to a single equation for the electrostatic potential φ,

(1.25), for a given charge density ρ. The solution for φ in terms of ρ is given by (1.21),

as in Theorem A.4. Recall here that we are always free to add a constant to φ, so (1.21)

corresponds to a particular choice of this constant. For a continuous charge density ρ in a

bounded region R, (1.21) implies that φ = O(1/r) as r → ∞. The proof of the asymptotics

of φ is on Problem Sheet 1.
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More interesting is when the distribution of charge is not described by a continuous charge

density. We have already encountered point charges. For many problems it is useful to

introduce the concepts of surface charge density σ on a surface S, say for a charge distribution

on a thin metal sheet, and also line charge density λ on a curve C, say for a charge distribution

in a thin wire. These will be taken to be appropriately well-behaved functions on S and C,

representing charge per unit area and charge per unit length, respectively.

In fact the concept of surface charge density doesn’t require a thin metal sheet to be useful,

for the following reason. An electrical conductor is a material where some of the electrons

(“conduction electrons”) are free to move in the presence of an electric field. In a static

situation, the electric field inside the conducting material must be zero. Why? Because if it

weren’t, then the conduction electrons in the interior would experience a force, and thus move

by Newton’s second law. Imagine what happens if we now switch on an external electric field:

a conduction electron will move in the opposite direction to the field (because it is negatively

charged), until either (a) it gets to the boundary of the material, or (b) the electric field

inside the material has relaxed to its equilibrium of zero. This way, one ends up with lots of

electrons at, or very near, the surface of the material; their distribution (and the distribution

of other immobile charges) throughout the material produces an electric field which precisely

cancels the external field inside the material. Since ρ = 0 inside the material by (1.17), the

charge must be described by a surface charge density.

Surface and line charge densities of course contribute to the total charge and electric field

via surface and line integrals, respectively. For example, a surface S with surface charge

density σ gives rise to an electric field

E(r) =
1

4πǫ0

∫

r
′∈S

σ(r′)

|r − r′|3
(r − r′) dS′ . (1.26)

Notice that for r in R
3 \S and σ smooth the integrand is smooth. However, it turns out that

E is not continuous across S! One can prove using (1.26) that the components of E tangent

to S are continuous across S, but that the normal component of E is not. More precisely, if

n is a unit normal vector field to the surface pointing into what we’ll call the “+ side”, then

E+ · n − E− · n =
σ

ǫ0
(1.27)

at every point on the surface. A general rigorous proof of this would take a little too long,

so we will content ourselves with the following argument, which is the one usually found in

most textbooks.

Consider a surface S which has a surface charge density σ. Consider the cylindrical region

R on left hand side of Figure 3, of height ε and cross-sectional area δA. Gauss’ law gives us
∫

∂R
E · dS =

1

ǫ0
(total charge inR) . (1.28)

8



In the limit ε → 0 the left hand side becomes (E+ ·n−E− ·n)δA for small δA, where E± are

the electric fields on the two sides of S and the unit normal n points into the + side. The

right hand side, on the other hand, tends to σδA/ǫ0. Thus there is necessarily a discontinuity

in the component of E normal to S given by (1.27).

Figure 3: The surface S.

Consider, instead, the rectangular loop C on the right hand side of Figure 3, of height ε

and length δL, bounding the rectangular surface Σ. By Stokes’ theorem A.1 we have
∫

C
E · dr =

∫

Σ
(∇∧ E) · dS = 0 (1.29)

where we have used the electrostatic Maxwell equation (1.20). If t denotes a unit tangent

vector along C on the + side, then in the limit ε → 0 we obtain

(
E+ · t − E− · t

)
δL = 0 (1.30)

for small δL. Thus the components of E tangent to S are continuous across S

E+ · t = E− · t . (1.31)

1.7 Electrostatic energy

In this subsection we derive a formula for the energy of an electrostatic configuration as an

integral of a local energy density. We shall return to this subject again in section 3.5.

We begin with a point charge q1 at r1. This has potential

φ(1)(r) =
1

4πǫ0

q1

|r − r1|
. (1.32)

Consider now moving a charge q2 from infinity to the point r2. From (1.24), the work done

against the electric field in doing this is

W2 = q2 φ(1)(r2) =
1

4πǫ0

q2q1

|r2 − r1|
. (1.33)
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Next move in another charge q3 from infinity to the point r3. We must now do work against

the electric fields of both q1 and q2. By the Principle of Superposition, this work done is

W3 =
1

4πǫ0

(
q3q1

|r3 − r1|
+

q3q2

|r3 − r2|

)
. (1.34)

The total work done so far is thus W2 + W3.

Obviously, we may continue this process and inductively deduce that the total work done

in assembling charges q1, . . . , qN at r1, . . . , rN is

W =
1

4πǫ0

N∑

i=1

∑

j<i

qiqj

|ri − rj |
=

1

2
·

1

4πǫ0

N∑

i=1

∑

j 6=i

qiqj

|ri − rj |
. (1.35)

This is also the potential energy of the collection of charges.

We now rewrite (1.35) as

W =
1

2

N∑

i=1

qi φi (1.36)

where we have defined

φi =
1

4πǫ0

∑

j 6=i

qj

|ri − rj |
. (1.37)

This is simply the electrostatic potential produced by all but the ith charge, evaluated at

position ri. In the usual continuum limit, (1.36) becomes

W =
1

2

∫

R
ρ φdV (1.38)

where φ(r) is given by (1.21). Now, using Gauss’ law (1.17) we may write

φ
ρ

ǫ0
= φ∇ · E = ∇ · (φE) −∇φ · E = ∇ · (φE) + E · E , (1.39)

where in the last step we used (1.18). Inserting this into (1.38), we have

W =
ǫ0
2

[∫

Σ=∂R
φE · dS +

∫

R
E · EdV

]
(1.40)

where we have used the divergence theorem on the first term. Taking R to be a very large

ball of radius r, enclosing all charge, the surface Σ is a sphere. For boundary conditions8

φ = O(1/r) as r → ∞, this surface term is zero in the limit that the ball becomes infinitely

large, and we deduce the important formula

W =
ǫ0
2

∫

R3

E · EdV . (1.41)

When this integral exists the configuration is said to have finite energy. The formula (1.41)

suggests that the energy is stored in a local energy density

U =
ǫ0
2

E · E =
ǫ0
2
|E|2 . (1.42)

8See Problem Sheet 1, question 3.

10



2 Magnetostatics

2.1 Electric currents

So far we have been dealing with stationary charges. In this subsection we consider how to

describe charges in motion.

Consider, for example, an electrical conductor. In such a material there are electrons (the

“conduction electrons”) which are free to move when an external electric field is applied.

Although these electrons move around fairly randomly, with typically large velocities, in the

presence of a macroscopic electric field there is an induced average drift velocity v = v(r).

This is the average velocity of a particle at position r. In fact, we might as well simply ignore

the random motion, and regard the electrons as moving through the material with velocity

vector field v(r).

Figure 4: The current flow through a surface element δΣ of area δS.

Given a distribution of charge with density ρ and velocity vector field v, the electric current

density J is defined as

J = ρv . (2.1)

To interpret this, imagine a small surface δΣ of area δS at position r, as shown in Figure

4. Recall that we define δS = n δS, where n is the unit normal vector to the surface δΣ.

The volume of the oblique cylinder in Figure 4 is v δt · δS, which thus contains the charge

ρv δt · δS = J · δS δt. In the time δt this is the total charge passing through δΣ. Thus J is

a vector field in the direction of the flow, and its magnitude is the amount of charge flowing

per unit time per unit perpendicular cross-section to the flow.

The electric current I = I(Σ) through a surface Σ is defined to be

I =

∫

Σ
J · dS . (2.2)

This is the rate of flow of charge through Σ. The units of electric current are C s−1, which is

also called the Ampère A.
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2.2 The continuity equation

An important property of electric charge is that it is conserved, i.e. it is neither created nor

destroyed. There is a differential equation that expresses this experimental fact called the

continuity equation.

Suppose that Σ is a closed surface bounding a region R, so ∂R = Σ. From the discussion

of current density J in the previous subsection, we see that the rate of flow of electric charge

passing out of Σ is given by the current (2.2) through Σ. On the other hand, the total charge

in R is

Q =

∫

R
ρ dV . (2.3)

If electric charge is conserved, then the rate of charge passing out of Σ must equal minus the

rate of change of Q:

∫

Σ
J · dS = −

dQ

dt
= −

∫

R

∂ρ

∂t
dV . (2.4)

Here we have allowed time dependence in ρ = ρ(r, t). Using the divergence theorem A.2 this

becomes

∫

R

(
∂ρ

∂t
+ ∇ · J

)
dV = 0 (2.5)

for all R, and thus

∂ρ

∂t
+ ∇ · J = 0 . (2.6)

This is the continuity equation.

In magnetostatics we shall impose ∂ρ/∂t = 0, and thus

∇ · J = 0 . (2.7)

Such currents are called steady currents.

2.3 The Lorentz force and the magnetic field

The force on a point charge q at rest in an electric field E is simply F = q E. We used this

to define E in fact.

When the charge is moving the force law is more complicated. From experiments one finds

that if q at position r is moving with velocity u = dr/dt it experiences a force

F = q E(r) + q u ∧ B(r) . (2.8)
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Here B = B(r) is a vector field, called the magnetic field, and we may similarly regard the

Lorentz force F in (2.8) as defining B. The magnetic field is measured in SI units in Teslas,

which is the same as N s m−1 C−1.

Since (2.8) may look peculiar at first sight, it is worthwhile discussing it a little further.

The magnetic component may be written as

Fmag = q u ∧ B . (2.9)

In experiments, the magnetic force on q is found to be proportional to q, proportional to

the magnitude |u| of u, and is perpendicular to u. Note this latter point means that the

magnetic force does no work on the charge. One also finds that the magnetic force at each

point is perpendicular to a particular fixed direction at that point, and is also proportional

to the sine of the angle between u and this fixed direction. The vector field that describes

this direction is called the magnetic field B, and the above, rather complicated, experimental

observations are summarized by the simple formula (2.9).

In practice (2.8) was deduced not from moving test charges, but rather from currents in

test wires. A current of course consists of moving charges, and (2.8) was deduced from the

forces on these test wires.

2.4 The Biot-Savart law

If electric charges produce the electric field, what produces the magnetic field? The answer is

that electric currents produce magnetic fields! Note carefully the distinction here: currents

produce magnetic fields, but, by the Lorentz force law just discussed, magnetic fields exert a

force on moving charges, and hence currents.

The usual discussion of this involves currents in wires, since this is what Ampère actually

did in 1820. One has a wire with steady current I flowing through it. Here the latter is

defined in terms of the current density via (2.2), where Σ is any cross-section of the wire.

This is independent of the choice of cross-section, and thus makes sense, because9 of the

steady current condition (2.7). One finds that another wire, the test wire, with current I ′

experiences a force. This force is conveniently summarized by introducing the concept of a

magnetic field: the first wire produces a magnetic field, which generates a force on the second

wire via the Lorentz force (2.8) acting on the charges that make up the current I ′.

Rather than describe this in detail, we shall instead simply note that if currents produce

magnetic fields, then fundamentally it is charges in motion that produce magnetic fields. One

may summarize this by an analogous formula to the Coulomb formula (1.6) for the electric

9use the divergence theorem for a cylindrical region bounded by any two cross-sections and the surface of
the wire.
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field due to a point charge. A charge q at the origin with velocity v produces a magnetic field

B(r) =
µ0 q

4π

v ∧ r

r3
. (2.10)

Here the constant µ0 is called the permeability of free space, and takes the value µ0 = 4π ×

10−7 N s2 C−2. Compare (2.10) to (1.6).

Importantly, we also have that

The magnetic field obeys the Principle of Superposition.

We may easily compute the magnetic field due to the steady current I in a wire C by

summing contributions of the form (2.10):

B(r) =
µ0 I

4π

∫

C

dr′ ∧ (r − r′)

|r − r′|3
. (2.11)

To see this, imagine dividing the wire into segments, with the segment δr′ at position r′.

Suppose this segment contains a charge q(r′) with velocity vector v(r′) – notice here that

v(r′) points in the same direction as δr′. From (2.10) this segment contributes

δB(r) =
µ0 q

4π

v ∧ (r − r′)

|r − r′|3
. (2.12)

to the magnetic field. Now by definition of the current I we have I δr′ = ρv · δS δr′, where

we may take δΣ of area δS to be a perpendicular cross-section of the wire. But the total

charge q in the cylinder of cross-sectional area δS and length |δr′| is q = ρ δS |δr′|. We thus

deduce that I δr′ = q v and hence that (2.11) holds.

The formula (2.11) for the magnetic field produced by the steady current in a wire is called

the Biot-Savart law. In fact (2.10) is also often called the Biot-Savart law.

Example: the magnetic field of an infinite straight line current

As an example, let’s compute the magnetic field due to a steady current I in an infinitely

long straight wire. Place the wire along the z-axis, and let P = r be a point in the x − y

plane at distance s from the origin O, as in Figure 5. Let Q = r′ be a point on the wire

at distance z from the origin. Then in the Biot-Savart formula we have r′ = ez z, where

ez is a unit vector in the z-direction (i.e. along the wire), and so dr′ = ez dz. The vector

dr′ ∧ (r − r′) points in a direction that is independent of Q = r′: it is always tangent to the

circle of radius s in the x− y plane. We thus simply have to compute its magnitude, which is

|QP |dz sin θ = sdz, where θ is the angle between OQ and QP , as shown. Thus from (2.11)

we compute the magnitude B(s) = |B| of the magnetic field to be10

B(s) =
µ0 I

4π

∫ ∞

−∞

s

(s2 + z2)3/2
dz

=
µ0 I

2π s
. (2.13)

10Hint : put z = s tan ϕ to do the integral.
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Figure 5: Computing the magnetic field B around a long straight wire carrying a steady
current I.

2.5 Magnetic monopoles?

Returning to the point charge at the origin, with magnetic field (2.10), note that since

r/r3 = −∇(1/r) we have

∇ ·
(v ∧ r

r3

)
= v · curl

(
∇

(
1

r

))
= 0 . (2.14)

Here we have used the identity (A.12) and the fact that the curl of a gradient is identically

zero. Thus we have shown that ∇ · B = 0, except at the origin r = 0. However, unlike the

case of the electric field and Gauss’ law, the integral of the magnetic field around the point

charge is zero. To see this, let Σa be a sphere of radius a centred on the charge, and compute

∫

Σa

B · dS =
µ0 q

4π

∫

Σa

(v ∧ r

r3

)
·
(r

r

)
dS = 0 . (2.15)

By the divergence theorem, it follows that

∫

R
∇ · B dV = 0 (2.16)

for any region R, and thus

∇ · B = 0 . (2.17)

This is another of Maxwell’s equations on the front cover. It says that there are no magnetic

(mono)poles that generate magnetic fields, analogous to the way that electric charges generate

electric fields. Instead magnetic fields are produced by electric currents. Although we have
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only deduced (2.17) above for the magnetic field of a moving point charge, the general case

follows from the Principle of Superposition.

You might wonder what produces the magnetic field in permanent magnets, such as bar

magnets. Where is the electric current? It turns out that, in certain magnetic materials, the

macroscopic magnetic field is produced by the alignment of tiny atomic currents generated

by the electrons in the material (in others it is due to the alignment of the “spins” of the

electrons, which is a quantum mechanical property).

* Mathematically, it is certainly possible to allow for magnetic monopoles and magnetic
currents in Maxwell’s equations. In fact the equations then become completely symmetric
under the interchange of E with −cB, cB with E, and corresponding interchanges of
electric with magnetic sources and currents. Here c2 = 1/ǫ0µ0. There are also theoretical
reasons for introducing magnetic monopoles. For example, the quantization of electric
charge – that all electric charges are an integer multiple of some fixed fundamental quantity
of charge – may be understood in quantum mechanics using magnetic monopoles. This
is a beautiful argument due to Dirac. However, no magnetic monopoles have ever been
observed in nature. If they existed, (2.17) would need correcting.

2.6 Ampère’s law

There is just one more static Maxwell equation to discuss, and that is the equation involving

the curl of B. This is Ampère’s law. In many treatments of magnetostatics, this is often

described as an additional experimental result, and/or is derived for special symmetric con-

figurations, having first solved for B using the Biot-Savart law (2.10) or (2.11). However, it

is possible to derive Ampère’s law directly from (2.10).

We first use (2.10) and the Principle of Superposition to write B generated by a current

density J as a volume integral

B(r) =
µ0

4π

∫

r
′∈R

J(r′) ∧ (r − r′)

|r − r′|3
dV ′ . (2.18)

This follows directly from the definition J = ρv in (2.1) and taking the limit of a sum of

terms of the form (2.10). R is by definition a region containing the set of points with J 6= 0.

We next define the vector field

A(r) =
µ0

4π

∫

R

J(r′)

|r − r′|
dV ′ . (2.19)

One easily computes (cf. Theorem A.4 with f = µ0Ji / 4π)

∂Ai

∂xj
(r) = −

µ0

4π

∫

R

Ji(r
′)

|r − r′|3
(xj − x′

j) dV ′ (2.20)

and thus

B(r) = ∇∧ A(r) . (2.21)
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Note that (2.21) directly implies ∇ · B = 0.

We next take the curl of (2.21). Using

∇∧ (∇∧ A) = ∇(∇ · A) −∇2 A , (2.22)

which holds for any vector field A, we obtain

∇∧ B(r) =
µ0

4π
∇

[∫

R
J(r′) · ∇

(
1

|r − r′|

)
dV ′

]
− ∇2 A(r) . (2.23)

We first deal with the first term. It is important that the integrand is in fact integrable over a

neighbourhood of r = r′. One can see this using spherical polar coordinates about the point

r – see the proof of Theorem A.4. Now using

∇

(
1

|r − r′|

)
= −∇′

(
1

|r − r′|

)
, r 6= r′ , (2.24)

where ∇′ denotes derivative with respect to r′, the term in square brackets is
∫

R
J(r′) · ∇

(
1

|r − r′|

)
dV ′ = −

∫

R
∇′ ·

(
J(r′)

|r − r′|

)
dV ′

+

∫

R

1

|r − r′|

(
∇′ · J(r′)

)
dV ′ . (2.25)

The second term on the right hand side of equation (2.25) is zero for steady currents (2.7).

Moreover, we may use the divergence theorem on the first term to obtain a surface integral

on ∂R. But by assumption J vanishes on this boundary, so this term is also zero.

Thus ∇ · A = 0 and we have shown that

∇∧ B = −∇2 A . (2.26)

We now use Theorem A.4, again with f = µ0Ji / 4π for each component Ji of J, to deduce

∇∧ B = µ0 J . (2.27)

This is Ampère’s law for magnetostatics. It is the final Maxwell equation on the front cover,

albeit in the special case where the electric field is independent of time, so ∂E/∂t = 0. Note

this equation is consistent with the steady current assumption (2.7).

We may equivalently rewrite (2.27) using Stokes’ theorem as

Ampère’s law: For any simple closed curve C = ∂Σ bounding a surface Σ
∫

C=∂Σ
B · dr = µ0

∫

Σ
J · dS = µ0I (2.28)

where I is the current through Σ.

As an example, notice that integrating the magnetic field B given by (2.13) around a circle

C in the x − y plane of radius s and centred on the z-axis indeed gives µ0I.
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2.7 The magnetostatic vector potential

In magnetostatics it is possible to introduce a magnetic vector potential A analogous to the

electrostatic potential φ in electrostatics. In fact we have already introduced such a vector

potential in (2.21) and (2.19):

B = ∇∧ A (2.29)

where A is the magnetic vector potential.

* Notice that (2.29) is a sufficient condition for the Maxwell equation (2.17). It is also
necessary if we work in a domain with simple enough topology, such as R

3 or an open ball.
A domain where not every vector field B with zero divergence may be written as a curl is
R

3 with a point removed. Compare this to the corresponding starred paragraph in section
1.5. Again, a proof for an open ball is contained in appendix B of Prof Woodhouse’s book.

Notice that A in (2.29) is far from unique: since the curl of a gradient is zero, we may add

∇ψ to A, for any function ψ, without changing B:

A → Â = A + ∇ψ . (2.30)

This is called a gauge transformation of A. We may fix this gauge freedom by imposing

additional conditions on A. For example, suppose we have chosen a particular A satisfying

(2.29). Then by choosing ψ to be a solution of the Poisson equation

∇2ψ = −∇ · A (2.31)

it follows that Â in (2.30) satisfies

∇ · Â = 0 . (2.32)

This is called the Lorenz gauge (Mr Lorenz and Mr Lorentz were two different people). As

you learned11 in the Moderations course on vector calculus, the solution to Poisson’s equation

(2.31) is unique for fixed boundary conditions.

Many equations simplify with this choice for A. For example, Ampère’s law (2.27) becomes

µ0 J = ∇∧ (∇∧ A) = ∇(∇ · A) − ∇2 A (2.33)

so that in Lorenz gauge ∇ · A = 0 this becomes

∇2 A = −µ0 J . (2.34)

Compare with Poisson’s equation (1.25) in electrostatics. Notice that we showed in the

previous subsection that A in (2.19) is in Lorenz gauge.

* Gauge invariance and the vector potential A play a fundamental role in more advanced
formulations of electromagnetism. The magnetic potential also plays an essential physical
role in the quantum theory of electromagnetism.

11Corollary 7.3.
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3 Electrodynamics and Maxwell’s equations

3.1 Maxwell’s displacement current

Let’s go back to Ampère’s law (2.28) in magnetostatics
∫

C=∂Σ
B · dr = µ0

∫

Σ
J · dS . (3.1)

Here C = ∂Σ is a simple closed curve bounding a surface Σ. Of course, one may use any such

surface spanning C on the right hand side. If we pick a different surface Σ′, with C = ∂Σ′,

then

0 =

∫

Σ
J · dS −

∫

Σ′

J · dS

=

∫

S
J · dS . (3.2)

Here S is the closed surface obtained by gluing Σ and Σ′ together along C. Thus the flux of

J through any closed surface is zero. We may see this in a different way if we assume that

S = ∂R bounds a region R, since then
∫

S
J · dS =

∫

R
∇ · J dV = 0 (3.3)

and in the last step we have used the steady current condition (2.7).

But in general, (2.7) should be replaced by the continuity equation (2.6). The above

calculation then changes to
∫

Σ
J · dS −

∫

Σ′

J · dS =

∫

S
J · dS

=

∫

R
∇ · J dV

= −

∫

R

∂ρ

∂t
dV

= −ǫ0

∫

R

∂

∂t
(∇ · E) dV

= −ǫ0

∫

S=∂R

∂E

∂t
· dS

= −ǫ0

∫

Σ

∂E

∂t
· dS + ǫ0

∫

Σ′

∂E

∂t
· dS . (3.4)

Notice we have used Gauss’ law (1.17), and that we now regard E = E(r, t) as a vector field

depending on time. This shows that
∫

Σ

(
J + ǫ0

∂E

∂t

)
· dS =

∫

Σ′

(
J + ǫ0

∂E

∂t

)
· dS (3.5)

for any two surfaces Σ, Σ′ spanning C, and thus suggests replacing Ampère’s law (2.27) by

∇∧ B = µ0

(
J + ǫ0

∂E

∂t

)
. (3.6)
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This is indeed the correct time-dependent Maxwell equation on the front cover. The addi-

tional term ∂E/∂t is called the displacement current. It says that a time-dependent electric

field also produces a magnetic field.

3.2 Faraday’s law

The electrostatic equation (1.20) is also modified in the time-dependent case. We can motivate

how precisely by the following argument. Consider the electromagnetic field generated by a

set of charges all moving with constant velocity v. The charges generate both an E and a B

field, the latter since the charges are in motion. However, consider instead an observer who

is also moving at the same constant velocity v. For this observer, the charges are at rest, and

thus he/she will measure only an electric field E′ from the Lorentz force law (2.8) on one of

the charges! Since (or assuming) the two observers must be measuring the same force on a

given charge, we conclude that

E′ = E + v ∧ B . (3.7)

Now since the field is electrostatic for the moving observer,

0 = ∇∧ E′

= ∇∧ E + ∇∧ (v ∧ B)

= ∇∧ E + v(∇ · B) − (v · ∇)B

= ∇∧ E − (v · ∇)B . (3.8)

Here we have used the identity (A.11), and in the last step we have used ∇ · B = 0. Now,

for the original observer the charges are all moving with velocity v, so the magnetic field at

position r + vτ and time t + τ is the same as that at position r and time t:

B(r + vτ, t + τ) = B(r, t) . (3.9)

This implies the partial differential equation

(v · ∇)B +
∂B

∂t
= 0 (3.10)

and we deduce from (3.8) that

∇∧ E = −
∂B

∂t
. (3.11)

This is Faraday’s law, and is another of Maxwell’s equations. The above argument raises

issues about what happens in general to our equations when we change to a moving frame.

This is not something we want to pursue further here, because it leads to Einstein’s theory
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of Special Relativity ! This will be studied further in the Part B course on Special Relativity

and Electromagnetism.

As usual, the equation (3.11) may be expressed as an integral equation as

Faraday’s law: For any simple closed curve C = ∂Σ bounding a fixed surface Σ

∫

C=∂Σ
E · dr = −

d

dt

∫

Σ
B · dS . (3.12)

This says that a time-dependent magnetic field produces an electric field. For example,

if one moves a bar magnet through a loop of conducting wire C, the resulting electric field

from (3.11) induces a current in the wire via the Lorentz force. This is what Faraday did, in

fact, in 1831. The integral
∫
Σ B · dS is called the magnetic flux through Σ.

* The current in the wire then itself produces a magnetic field of course, via Ampère’s
law. However, the signs are such that this magnetic field is in the opposite direction to the
change in the magnetic field that created it. This is called Lenz’s law. The whole setup
may be summarized as follows:

changing B
Faraday
−→ E

Lorentz
−→ current

Ampère
−→ B . (3.13)

3.3 Maxwell’s equations

We now summarize the full set of Maxwell equations.

There are two scalar equations, namely Gauss’ law (1.17) from electrostatics, and the

equation (2.17) from magnetostatics that expresses the absence of magnetic monopoles:

∇ · E =
ρ

ǫ0
(3.14)

∇ · B = 0 . (3.15)

Although we discussed these only in the time-independent case, they are in fact true in

general.

The are also two vector equations, namely Faraday’s law (3.11) and Maxwell’s modification

(3.6) of Ampère’s law (2.27) from magnetostatics:

∇∧ E = −
∂B

∂t
(3.16)

∇∧ B = µ0

(
J + ǫ0

∂E

∂t

)
. (3.17)
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Together with the Lorentz force law

F = q (E + u ∧ B)

which governs the mechanics, this is all of electromagnetism. Everything else we have dis-

cussed may in fact be derived from these equations.

Maxwell’s equations, for given ρ and J, are 8 equations for 6 unknowns. There must

therefore be two consistency conditions. To see what these are, we compute

∂

∂t
(∇ · B) = −∇ · (∇∧ E) = 0 , (3.18)

where we have used (3.16). This is clearly consistent with (3.15). We get something non-

trivial by instead taking the divergence of (3.17), which gives

0 = ∇ · J + ǫ0
∂

∂t
(∇ · E)

= ∇ · J +
∂ρ

∂t
, (3.19)

where we have used (3.14). Thus the continuity equation arises as a consistency condition

for Maxwell’s equations: if ρ and J do not satisfy (3.19), there is no solution to Maxwell’s

equations for this choice of charge density and current.

3.4 Electromagnetic potentials and gauge invariance

In the general time-dependent case one can introduce electromagnetic potentials in a similar

way to the static cases. We work in a suitable domain in R
3, such as R

3 itself or an open ball

therein, as discussed in previous sections. Since B has zero divergence (3.15), we may again

introduce a vector potential

B = ∇∧ A , (3.20)

where now A = A(r, t). It follows from Faraday’s law that

0 = ∇∧ E +
∂B

∂t
= ∇∧

(
E +

∂A

∂t

)
. (3.21)

Thus we may introduce a scalar potential φ = φ(r, t) via

E +
∂A

∂t
= −∇φ . (3.22)

Thus

B = ∇∧ A (3.23)

E = −∇φ −
∂A

∂t
. (3.24)
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Notice that we similarly have the gauge transformations

A → A + ∇ψ, φ → φ −
∂ψ

∂t
(3.25)

leaving (3.23) and (3.24) invariant. Again, one may fix this non-uniqueness of A and φ by

imposing certain gauge choices. This will be investigated further in Problem Sheet 2. Note

that, by construction, with (3.23) and (3.24) the Maxwell equations (3.15) and (3.16) are

automatically satisfied.

3.5 Electromagnetic energy and Poynting’s theorem

Recall that in section 1.7 we derived a formula for the electrostatic energy density Uelectric =

ǫ0 |E|2 / 2 in terms of the electric field E. The electrostatic energy of a given configuration is

the integral of this density over space (1.41). One can motivate the similar formula Umagnetic =

|B|2 / 2µ0 in magnetostatics, although unfortunately we won’t have time to derive this here.

A natural candidate for the electromagnetic energy density in general is thus

U =
ǫ0
2
|E|2 +

1

2µ0
|B|2 . (3.26)

Consider taking the partial derivative of (3.26) with respect to time:

∂U

∂t
= ǫ0 E ·

∂E

∂t
+

1

µ0
B ·

∂B

∂t

=
1

µ0
E · (∇∧ B − µ0 J) −

1

µ0
B · (∇∧ E)

= −∇ ·

(
1

µ0
E ∧ B

)
− E · J . (3.27)

Here after the first step we have used the Maxwell equations (3.17) and (3.16), respectively.

The last step uses the identity (A.12). If we now define the Poynting vector P to be

P =
1

µ0
E ∧ B (3.28)

then we have derived Poynting’s theorem

∂U

∂t
+ ∇ · P = −E · J . (3.29)

Notice that, in the absence of a source current, J = 0, this takes the form of a continuity

equation, analogous to the continuity equation (2.6) that expresses conservation of charge. It

is thus natural to interpret (3.29) as a conservation of energy equation, and so identify the

Poynting vector P as some kind of rate of energy flow density. One can indeed justify this

by examining the above quantities in various physical applications.

Integrating (3.29) over a region R with boundary Σ we obtain

d

dt

∫

R
U dV = −

∫

Σ
P · dS −

∫

R
E · J dV . (3.30)
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Given our discussion of U , the left hand side is clearly the rate of increase of energy in R.

The first term on the right hand side is the rate of energy flow into the region R. When

J = 0, this is precisely analogous to our discussion of charge conservation in section 2.2.

The final term in (3.30) is interpreted as (minus) the rate of work by the field on the sources.

To see this, remember that the force on a charge q moving at velocity v is F = q (E + v∧B).

This force does work at a rate given by F · v = q E · v. Recalling the definition (2.1) of

J = ρv, we see that the force does work on the charge q = ρ δV in a small volume δV at a

rate F · v = E · J δV .

4 Electromagnetic waves

4.1 Source-free equations and electromagnetic waves

We begin by writing down Maxwell’s equations in vacuum, where there is no electric charge

or current present:

∇ · E = 0 (4.1)

∇ · B = 0 (4.2)

∇∧ E +
∂B

∂t
= 0 (4.3)

∇∧ B −
1

c2

∂E

∂t
= 0 (4.4)

where we have defined

c =

√
1

ǫ0 µ0
. (4.5)

If you look back at the units of ǫ0 and µ0, you’ll see that ǫ0 µ0 has units (C2 N−1 m−2) ·

(N s2 C−2) = (m s−1)−2. Thus c is a speed. The great insight of Maxwell was to realise it is

the speed of light in vacuum.

Taking the curl of (4.3) we have

0 = ∇(∇ · E) − ∇2 E + ∇∧
∂B

∂t

= −∇2 E +
∂

∂t
(∇∧ B)

= −∇2 E +
1

c2

∂2E

∂t2
. (4.6)

Here after the first step we have used (4.1), and in the last step we have used (4.4). It follows

that each component of E satisfies the wave equation

2 u = 0 (4.7)
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where u = u(r, t), and we have defined the d’Alembertian operator

2 =
1

c2

∂2

∂t2
−∇2 . (4.8)

You can easily check that B also satisfies 2B = 0.

The equation (4.7) governs the propagation of waves of speed c in three-dimensional space.

It is the natural generalization of the one-dimensional wave equation

1

c2

∂2u

∂t2
−

∂2u

∂x2
= 0 , (4.9)

which you met in the Moderations courses “Fourier Series and Two Variable Calculus”, and

“Partial Differential Equations in Two Dimensions and Applications”. Recall that this has

particular solutions of the form u±(x, t) = f(x ∓ ct), where f is any function which is twice

differentiable. In this case, the waves look like the graph of f travelling at constant velocity

c in the direction of increasing/decreasing x, respectively. The general12 solution to (4.9) is

u(x, t) = f(x − ct) + g(x + ct).

This naturally generalizes to the three-dimensional equation (4.7), by writing

u(r, t) = f(e · r − ct) (4.10)

where e is a fixed unit vector, |e|2 = 1. Indeed, note that ∇2 u = e · e f ′′, ∂2u/∂t2 = c2 f ′′.

Solutions of the form (4.10) are called plane-fronted waves, since at any constant time, u is

constant on the planes {e · r = constant} orthogonal to e. As time t increases, these plane

wavefronts propagate in the direction of e at speed c. However, unlike the one-dimensional

equation, we cannot write the general solution to (4.7) as a sum of two plane-fronted waves

travelling in opposite directions.

4.2 Monochromatic plane waves

An important special class of plane-fronted waves (4.10) are given by the real harmonic waves

u(r, t) = α cos Ω(r, t) + β sinΩ(r, t) (4.11)

where α, β are constants, and we define

Ω(r, t) =
ω

c
(ct − e · r) (4.12)

where ω > 0 is the constant frequency of the wave. In fact it is a result of Fourier analysis

that every solution to the wave equation (4.7) is a linear combination (in general involving

an integral) of these harmonic waves.

12see the Mods course on PDEs referred to above.
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Since the components of E (and B) satisfy (4.7), it is natural to look for solutions of the

harmonic wave form

E(r, t) = α cosΩ(r, t) + β sinΩ(r, t) (4.13)

where α, β are constant vectors, and Ω = Ω(r, t) is again given by (4.12). This of course

satisfies the wave equation, but we must ensure that we satisfy all of the Maxwell equations

in vacuum. The first (4.1) implies

0 = ∇ · E =
ω

c
(e · α sinΩ − e · β cos Ω) (4.14)

which implies that

e · α = e · β = 0 , (4.15)

i.e. the E-field is orthogonal to the direction of propagation e. Next we look at (4.3):

−
∂B

∂t
= ∇∧ E =

ω

c
(e ∧ α sinΩ − e ∧ β cos Ω) . (4.16)

We may satisfy this equation by taking

B(r, t) =
1

c
e ∧ E(r, t) =

1

c
[e ∧ α cos Ω(r, t) + e ∧ β sinΩ(r, t)] . (4.17)

It is now simple to verify that the last two Maxwell equations (4.2), (4.4) are satisfied by

(4.13), (4.17) – the calculation is analogous to that above, so I leave this as a short exercise.

Notice that the B-field (4.17) is orthogonal to both E and the direction of propagation.

The solution to Maxwell’s equations with E and B given by (4.13), (4.17) is called a

monochromatic electromagnetic plane wave. It is specified by the constant direction of prop-

agation e, |e|2 = 1, two constant vectors α, β orthogonal to this direction, e · α = e · β = 0,

and the frequency ω. Again, using Fourier analysis one can show that the general vacuum

solution is a combination of these monochromatic plane waves.

Notice from the first equality in (4.17) that the Poynting vector (3.28) for a monochromatic

plane wave is

P =
1

µ0c
|E|2 e =

√
ǫ0
µ0

|α cos Ω + β sin Ω|2 e (4.18)

which is in the direction of propagation of the wave. Thus electromagnetic waves carry energy,

a fact which anyone who has made a mircowave pot noodle can confirm.

4.3 Polarization

Consider a monochromatic plane wave with E given by (4.13). If we fix a particular point in

space, say the origin r = 0, then

E(0, t) = α cos (ωt) + β sin (ωt) . (4.19)
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(a) Linear polarization (b) Circular polarization

Figure 6: Polarizations of monochromatic electromagnetic plane waves, viewed from the
direction of propagation.

As t varies, this13 sweeps out an ellipse in the plane spanned by α and β.

As a simple example, taking α = α e1, β = β e2 where e1, e2 are orthonormal vectors, so

that e = e3 is the direction of propagation, then the 1 and 2 components of E in (4.19) are

E1 = α cos (ωt) (4.20)

E2 = β sin (ωt) (4.21)

and thus

E2
1

α2
+

E2
2

β2
= 1 . (4.22)

This is an ellipse with semi-major(minor) axis length α, semi-minor(major) axis length β,

centred on the origin.

There are two special choices of α and β, which have names:

Linear polarization: If α is proportional to β, so that the ellipse degenerates to a line,

then the monochromatic plane wave is said to be linearly polarized. In this case, E and B

oscillate in two fixed orthogonal directions – see Figure 6a.

Circular polarization: If α ·β = 0 (as in the example above) and also |α| = |β|, so that

the ellipse is a circle, then the monochromatic plane wave is said to be circularly polarized. In

this case, E and B rotate at constant angular velocity about the direction of propagation –

see Figure 6b. Moreover, a circularly polarized wave is said to be right-handed or left-handed,

depending on whether β = e ∧ α or β = −e ∧ α, respectively.

In general, electromagnetic waves are combinations of waves with different polarizations.

13Similar remarks apply to the B-field.
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(a) Incident ray in direction e
i (b) Reflected ray in direction e

r

Figure 7: Incident and reflected rays, striking a mirror at x = 0.

4.4 Reflection

In this final subsection we derive the laws of reflection from what we’ve learned so far. The

argument is straightfoward, but a little fiddly.

Suppose we have a plane mirror at x = 0, as shown in Figure 7a, and consider a linearly

polarized incident wave of the form

Ei = αi j cos Ωi (4.23)

where i, j, k denote the standard orthonormal basis vectors for R
3 in Cartesian coordinates

(x, y, z), and

Ωi =
ωi

c

(
ct − ei · r

)
. (4.24)

This is polarized in the direction j, which is normal to Figure 7a, and has frequency ωi > 0.

Since Ei is orthogonal to the unit vector direction of propagation ei we have ei · j = 0 and

thus

ei = (cos θi, 0 , sin θi) (4.25)

where θi is the angle of incidence. It follows from (4.24) that Ei is independent of the

coordinate y.

We suppose that this wave arrives from x < 0 and that the mirror is a conductor14, so

that E = 0 for x > 0. We suppose that the reflected wave takes the monochromatic form

Er = αr cos Ωr + βr sinΩr (4.26)

14See the discussion in section 1.6.
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where

Ωr =
ωr

c
(ct − er · r) . (4.27)

The total electric field is thus

E = Ei + Er . (4.28)

From the boundary conditions deduced in section 1.6, we know15 that the components of

E = Ei + Er parallel to the boundary surface at x = 0 are continuous across the surface.

Thus at x = 0

(
Ei + Er

)
· j |x=0 = 0 (4.29)

(
Ei + Er

)
· k |x=0 = 0 . (4.30)

Notice from (4.29) that Er · j 6= 0 identically, as otherwise from (4.23) Ei = 0. Since Ei is

independent of y, it thus follows from (4.29) that so is Er, and hence er · j = 0. That is,

R1 : The incident ray, normal, and reflected ray are coplanar.

This is the first law of reflection. We may now write

er = (− cos θr, 0 , sin θr) (4.31)

with θr the angle of reflection, as shown in Figure 7b.

We next define αr = αr · j, βr = βr · j, so that

E · j = αi cos Ωi + αr cosΩr + βr sinΩr . (4.32)

By (4.29), this must vanish at x = 0. In fact, if we further put z = 0 then Ωi = ωi t, Ωr = ωr t,

and thus

f(t) ≡ E · j |x=z=0 = αi cos ωi t + αr cos ωr t + βr sinωr t = 0 . (4.33)

This is to hold for all t. Hence

f(0) = 0 ⇒ αi + αr = 0 (4.34)

ḟ(0) = 0 ⇒ βr = 0 (4.35)

f̈(0) = 0 ⇒ (ωi)2 αi + (ωr)2 αr = 0 . (4.36)

Combining (4.34) and (4.36) implies ωi = ωr ≡ ω, and thus

15The alert reader will notice that the derivation in section 1.6 was for electrostatics. However, the same
formula (1.31) holds in general. To see this, one notes that the additional surface integral of ∂B/∂t in (1.29)
tends to zero as ε → 0.
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The reflected frequency (colour) is the same as the incident frequency (colour).

We have now reduced (4.29) to

α
[
cos

ω

c

(
ct − z sin θi

)
− cos

ω

c
(ct − z sin θr)

]
= 0 , (4.37)

where α ≡ αi. Thus sin θi = sin θr. Hence θi = θr ≡ θ and we have shown

R2 : The angle of incidence is equal to the angle of reflection.

This is the second law of reflection.

Finally, note that (4.30) is simply Er ·k = 0. Since Er · er = 0, from (4.31) we see that Er

is parallel16 to j. Hence

The reflected wave has the same polarization as the incident wave.

The final form of E (for x < 0) is then computed to be

E = 2α sin
[ω

c
(ct − z sin θ)

]
sin

[ω

c
x cos θ

]
j . (4.38)

16Note this follows only if θ 6= π/2. If θ = π/2 the waves are propagating parallel to the mirror, in the
z-direction.
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A Summary: vector calculus

The following is a summary of some of the key results of the Moderations course “Calculus in

Three Dimensions and Applications”. As in the main text, all functions and vector fields are

assumed to be sufficiently well-behaved in order for formulae to make sense. For example,

one might take everything to be smooth (derivatives to all orders exist). Similar remarks

apply to (the parametrizations of) curves and surfaces in R
3.

A.1 Vectors in R
3

We work in R
3, or a domain therein, in Cartesian coordinates. If e1 = i = (1, 0, 0), e2 = j =

(0, 1, 0), e3 = k = (0, 0, 1) denote the standard orthonormal basis vectors, then a position

vector is

r =
3∑

i=1

xi ei (A.1)

where x1 = x, x2 = y, x3 = z are the Cartesian coordinates in this basis. We denote the

Euclidean length of r by

|r| = r =
√

x2
1 + x2

2 + x2
3 (A.2)

so that r̂ = r/r is a unit vector for r 6= 0. A vector field f = f(r) may be written in this basis

as

f(r) =
3∑

i=1

fi(r) ei . (A.3)

The scalar product of two vectors a, b is denoted by

a · b =
3∑

i=1

aibi (A.4)

while their vector product is the vector

a ∧ b = (a2b3 − a3b2) e1 + (a3b1 − a1b3) e2 + (a1b2 − a2b1) e3 . (A.5)

A.2 Vector operators

The gradient of a function ψ = ψ(r) is the vector field

gradψ = ∇ψ =
3∑

i=1

∂ψ

∂xi
ei . (A.6)

The divergence of a vector field f = f(r) is the function (scalar field)

div f = ∇ · f =

3∑

i=1

ei ·
∂f

∂xi
=

3∑

i=1

∂fi

∂xi
(A.7)
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while the curl is the vector field

curl f = ∇∧ f =
3∑

i=1

ei ∧
∂f

∂xi

=

(
∂f3

∂x2
−

∂f2

∂x3

)
e1 +

(
∂f1

∂x3
−

∂f3

∂x1

)
e2 +

(
∂f2

∂x1
−

∂f1

∂x2

)
e3 . (A.8)

Two important identities are

∇∧ (∇ψ) = 0 (A.9)

∇ · (∇∧ f) = 0 . (A.10)

Two more identities we shall need are

∇∧ (a ∧ b) = a(∇ · b) − b(∇ · a) + (b · ∇)a − (a · ∇)b , (A.11)

∇ · (a ∧ b) = b · (∇∧ a) − a · (∇∧ b) . (A.12)

The second order operator ∇2 defined by

∇2ψ = ∇ · (∇ψ) =
3∑

i=1

∂2ψ

∂x2
i

(A.13)

is called the Laplacian. We shall also use the identity

∇∧ (∇∧ f) = ∇ (∇ · f) − ∇2f . (A.14)

A.3 Integral theorems

Definition (Line integral) Let C be a curve in R
3, parametrized by r : [t0, t1] → R

3, or r(t)

for short. Then the line integral of a vector field f along C is

∫

C
f · dr =

∫ t1

t0

f(r(t)) ·
dr(t)

dt
dt . (A.15)

Note that τ (t) = dr/dt is the tangent vector to the curve – a vector field on C. The value

of the integral is independent of the choice of oriented parametrization (proof uses the chain

rule).

A curve is simple if r : [t0, t1] → R
3 is injective (then C is non-self-intersecting), and is

closed if r(t0) = r(t1) (then C forms a loop).

Definition (Surface integral) Let Σ be a surface in R
3, parametrized by r(u, v), with (u, v) ∈

D ⊂ R
2. The unit normal n to the surface is

n =
tu ∧ tv

|tu ∧ tv|
(A.16)
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where

tu =
∂r

∂u
, tv =

∂r

∂v
(A.17)

are the two tangent vectors to the surface. These are all vector fields defined on Σ. The

surface integral of a function ψ over Σ is
∫

Σ
ψ dS =

∫∫

D
ψ(r(u, v))

∣∣∣∣
∂r

∂u
∧

∂r

∂v

∣∣∣∣ du dv . (A.18)

The sign of n in (A.16) is not in general independent of the choice of parametrization.

Typically, the whole of a surface cannot be parametrized by a single domain D; rather, one

needs to cover Σ with several parametrizations using domains DI ⊂ R
2, where I labels the

domain. The surface integral (A.18) is then defined in the obvious way, as a sum of integrals

in DI ⊂ R
2. However, in doing this it might not be possible to define a continuous n over

the whole of Σ (e.g. the Möbius strip):

Definition (Orientations) A surface Σ is orientable if there is a choice of continuous unit

normal vector field n on Σ. If an orientable Σ has boundary ∂Σ, a simple closed curve, then

the normal n induces an orientation of ∂Σ: we require that τ ∧n points away from Σ, where

τ denotes the oriented tangent vector to ∂Σ.

We may now state

Theorem A.1 (Stokes) Let Σ be an orientable surface in R
3, with unit normal vector n and

boundary curve ∂Σ. If f is a vector field then
∫

Σ
(∇∧ f) · ndS =

∫

∂Σ
f · dr . (A.19)

Definition (Volume integral) The integral of a function ψ in a (bounded) region R in R
3 is

∫

R
ψ dV =

∫∫∫

R
ψ(r) dx1 dx2 dx3 . (A.20)

Theorem A.2 (Divergence) Let R be a bounded region in R
3 with boundary surface ∂R. If

f is a vector field then
∫

R
∇ · f dV =

∫

∂R
f · ndS (A.21)

where n is the outward unit normal vector to ∂R.

Note that the surface Σ in Stokes’ theorem has a boundary ∂Σ, whereas the surface ∂R in

the divergence theorem does not (it is itself the boundary of the region R).

We finally state two more results proved in the Moderations calculus course that we shall

need:
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Lemma A.3 (Lemma 8.1 from “Calculus in Three Dimensions and Applications”) If f is a

continuous function such that

∫

R
f dV = 0 (A.22)

for all bounded regions R, then f ≡ 0.

Theorem A.4 (Theorem 10.1 from “Calculus in Three Dimensions and Applications”) Let

f(r) be a bounded continuous function with support {r ∈ R
3 | f(r) 6= 0} ⊂ R contained in a

bounded region R, and define

F (r) =

∫

r
′∈R

f(r′)

|r − r′|
dV ′ . (A.23)

Then F is differentiable on R
3 with

∇F (r) = −

∫

r
′∈R

f(r′)

|r − r′|3
(r − r′) dV ′ . (A.24)

Both F and ∇F are continuous and tend to zero as r → ∞. Moreover, if f is differentiable

then ∇F is differentiable with

∇2F = −4πf . (A.25)
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