9. INTEGRATION TECHNIQUES

We begin this chapter by reviewing all those results which we already know, and
perhaps a few we have yet to assimilate. In particular, | add the hyperbolic functions to
our required lexicon of functions. If you don’t know what the hyperbolic sine or cosine is
then you should look it up in the text book or perhaps read Chapter 2 of my notes.

The principle aim of this chapter is to complete your knowledge of basic integration
techniques. The methods presented here are foundational to other schemes. Moreover,
the algebraic insights implicit within our discussions have use far beyond integration. To
be honest, this chapter is about building mathematical character.

Improper integration involves either bounds which diverge or integrands which diverge.
In either case the integral is to be understood in terms of definite integral with a varying
bound. If the integrand diverges at some point in the integration region then we have to
take the limit of definite integrals that approach that point. On the other hand, if we
write that the upper integration bound is infinity then that is meant to indicate we take
the limit of definite integrals with ever increasing upper bounds. L'Hopital’s Rule is
sometimes needed to determine the behavior of the limits that arise from improper
integrations.

We conclude this chapter with an introductory discussion of numerical integration

techniques. The midpoint, trapezoid and Simpson’s Rule are contrasted. Some basic
ideas about error bounds are also discussed.
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9.1. BASIC INTEGRALS

| assume that you know the integrals (1-14) given below:
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sinh(x) dz = cosh(z) + ¢

The integrals that follow are also basic, but | don’t assume you have them memorized. If
there was a question on a test concerning these then | would give a hint.

15.) /Scch2(1:) dx = tanh(z) + ¢

dx = cosh™(z) + ¢

16.) / %
17, / ﬁ

1 -1
18.) / o dx = tanh™ (z) + ¢

dz = sinh™'(z) + ¢
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9.2. EXPLICIT SUBSTITUTIONS

An explicit substitution is often called a u-substitution. The basic idea here is that it may
be possible to recast a given non-basic integral in the initial variable (usually x) as a basic
integral in the substituted variable (usually u). In other words, the goal is to get back to
one of the known integrals listed in the last section.

Example 9.2.1: Consider [ z¢* dz. Choose u = 22 which produces

du =2xdr — xdr = dz—“. Thus the given integral simplifies as follows:

22 udu 1u ]_,JEQ
re® dr = 6—256 +c= 56 +c

Example 9.2.2: Consider [ cos(z) cos(sin(z)) dz. Choose u = sin(x) which yields
du = cos(x)dzx. Thus the given integral simplifies as follows:

/cos(m) cos(sin(z)) do = /cos(u)du = sin(u) + ¢ =|sin(sin(z)) + ¢

Example 9.2.3: Consider [ 21/z + 3 dx. Choose u = x + 3 so that z = 3 — 1 and
du, = dx. Thus the integral simplifies as follows:

/:L'\/mda;:/(S—u)\/ﬂdu
_ / (3vid — u? )du

oub = 2k 4
=2u? — —u? +c¢
5
3 2 5
= 2<$+3)2—g($+3>2+6

Example 9.2.4: Consider [ sec(z) di. Choose u = sec(z) + tan(x) so that
sec(z)dx = ‘i—“ (this is not really obvious, you should check this is true):

/sec(w) dzr = / du _ In |u| + ¢ =|In|sec(z) + tan(z)| + ¢
u

This integral is worth remembering, we’ll see it again. The examples given here are not
meant to be comprehensive. You might need to go review my calculus | notes if you are
rusty on u-substitution.
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Definite Integrals involving u-substitution:
There are two ways to do these. You should understand both methods.

iii. Find the antiderivative via u-substitution and then use the FTC to evaluate in
terms of the given upper and lower bounds in z. (see E18 below)

iv. Do the u-substitution and change the bounds all at once, this means you will use
the FTC and evaluate the upper and lower bounds in u. (see E17 below)

The notation is not decorative, it is necessary and important to use correct notation. If
the measure in your definite integral is “du” then you had best have bounds which refer

to the value of “u”

Method ii. illustrated:
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9.3. TRIGONOMETRY ALL GROWN UP

It is time we settled what is known and unknown about trigonometry. If you had
Calculus | with me then you have already heard many of these things but for the most
part | did not require you remember them. That time is over. | expect you to absorb the
material in this section one way or another. | do expect you remember all the
trigonometric identities | present in this section, more than that, | expect you learn how
to derive similar identities if the need arises.

Logically there are a variety of routes to remember this material. | choose the route that
allows us to derive as much as possible through essentially algebraic arguments. | call
this the imaginary exponential technique. There is nothing really “imaginary” about this,
its unfortunate terminology since complex numbers are just as “real” as real numbers.
Both real and imaginary numbers are well-defined mathematical objects. There are
rules and equations which govern them. Both provide a language which is used to
describe a plethora of physical systems (although, | would argue, that is not necessary
for them to be sensible mathematical objects)

9.3.1: What is a complex humber?
Complex numbers are pairs of real numbers that enjoy a certain rather beautiful
multiplication; (a, b) * (¢, d) = (ac — bd, ad + be). This is usually denoted

(a+ib)(c +id) = ac + iad + ibc + i*bd = ac — bd + i(ad + bc)

Where the observation i*> = (0,1) x (0,1) = (—1,0) = —1. We typically introduce this
by saying that i = \/—1 but this is the same as saying i2 = —1. Complex numbers can be
added, subtracted, multiplied and divided just the same as real numbers. Complex
number have a real and imaginary part,

Re(a,b) = Re(a+ib) =a  Im(a,b) = Im(a+ib) =b

In general if z € C then z = Re(z) + ilm(z). It should be emphasized that
Re(z),Im(z) € R so there is a natural correspondence between complex numbers and
the Cartesian Plane R?; | use this correspondence when | write (z,y) = x + iy. This
plane is called the complex plane. The x-axis is called the real-axis, the y-axis is called the
imaginary-axis.
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Every complex number 2 = z + iy has a complex-conjugate z* = = — 73. In the complex
plane the mapping 2 — z* is a reflection across the x-axis.

B
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Z =X+ 1Yy
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&
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Recall that any polynomial with real-coefficients can be completely factored over the
complex numbers. For example, we usually say that 22 4 1 is an irreducible quadratic.
This is true with respect to real numbers, however if we use complex numbers to assist
with the factorization then we can factor 22 + 1 = (z — i)(x 4 7). Generally, a
quadratic polynomial ax? + bz + ¢ with b> — 4ac < 0 is called irreducible because we
cannot factor it over the real numbers. Notice that the quadratic formula still makes
sense in this case it just gives complex solutions. We can pull an i = v/—1 out of the
square root; Vb2 — 4ac = \/—1(4ac — b?) = iv/4ac — b where the quantity

Viac — b2 € R since 4ac — b > 0. If ax? 4+ bz2 + ¢ = 0 then it can be shown,

B —bE£ Vb2 — 4dac B —b 4 iv4ac — b2
a 2a a 2a

X

=axif

Where | have defined Re(z) = a = —% and Im(z) = = —W“‘;‘bz The quadratic
polynomial factors as follows in this case:

?+br+ce=a(z—(a+if))(z— (a+1ip))

The roots o + i3 and a« — i3 form a conjugate pair. Any polynomial with real
coefficients can be completely factored with the help of complex numbers. When an
irreducible quadratic appears in the factorization it gives rise to a pair of linear factors
whose roots form a conjugate pair. There is much more to say about complex numbers
but this little subsection will more than suffice for the purposes of this course.
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9.3.2: What is the complex exponential function?
We define exp : C — C by the following formula:

exp(z) = exp(Re(2) + ilm(2)) = ) (cos(Im(2)) + isin(Im(2)))

We can show that this definition yields the following desirable properties:

) exp(z 4+ w) = exp(z)exp(w)
) e = Re(eap(2))

) exp(ilm(z)) = cos(Im(z)) + isin(Im(z))
)

)

exp(0) =1
1

exp(z)

t

zp(—2)

™

Here e’“(*) denotes the plain-old real exponential function we discussed at length in
previous chapters. Essentially, the second condition says that the complex exponential
function must reproduce the real exponential function when the input is a complex
number with zero imaginary part. Condition 3.) is called Euler’s Identity.

Let me show you the proof of 1.). Suppose that z = x + iy and w = a + ib where
x,y,a,b € R. Observe:

exp(z +w) = exp(x + iy + a + ib)
=exp(z+a+i(y+0b))
= " (cos(y + b) + isin(y + b)), used the definition here

=e"e” (cos(y) cos(b) — sin(y) sin(b) + i (sin(y) cos(b) + cos(y) sin(b))>

In the last step we used the adding angles formulas for sine and cosine. These can be
derived geometrically. They follow from the law of cosines. On the other hand observe:

exp(z)exp(w) = exp(x + iy)exp(a + ib)
= ¢"(cos(y) + isin(y))e*(cos(b) + isin(b))

=e"e” <cos(y) cos(b) — sin(y) sin(b) + i (sin(y) cos(b) + cos(y) sin(b))>

Comparing the equations above we verify that exzp(z + w) = exp(z)exp(w). | will use
the notation exp(z) = e* from this point onward.
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9.3.3: Deconstructing sine and cosine

We can calculate that e = cos(+6) + i sin(+6) = cos(f) £ isin(6) because cosine is
even and sine is odd. If we add and subtract ¢’ = cos() + i sin(6) and

e~ = cos(6) — isin(#) then we obtain formulas for sine and cosine in terms of the
imaginary exponentials ¢, e~ as follows:

cos() = %(67"9 +e) sin(0) = Z(ew —e™)

Now we can derive pretty much any trigonometric identity you run across.

Example 9.3.3.1: Notice this gives us a way to calculate [ cos*(z) du
1/ . N1/ . ,
COSZ(ZE) — 5 (61,,7? + 6—7,.7?) 5 <67,;r + e—m)

1 1) 2 1x —1T —1x)\2

:Z(e)—i—Qee + (e7")
1 ;

— Z (621,.17 + 2 4 6_2”)
1 1 ; -

— § |:1 + 5 (621x _|_€—2m>:|
1

=3 (1 + cos(2:zc)> :

Example 9.3.3.2: Notice this gives us a way to calculate [ sin’(z) du

1 . . 1 . .
2 _ wo__ - wo -l
sin”(z) = 5 (e e ) 5 (e e )

1 . . . .
— @ ((61z>2 . 2621‘6—132 _|_ (e—u‘,>2>

1 ) .
— __4 <621.17 ) 4 6—27,,r>
1 . .
—Z|1== 2ix —2ix
()]
= — (1 — cos(2x)).

Notice that sin®(z) + cos®(z) = (1 — cos(2z)) 4+ 3(1 + cos(2z)) = 1. Another way to
look at this is that if you have either of these identities then you could use the
pythagorean identity to obtain the other one:

N[ = DN =

sin?(7) = 1 — cos*(7) = 1 — %(1 + cos(2x)) = %(1 — cos(2x)).
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Let’s see another application of the imaginary exponentials.

Example 9.3.3.3: The identity below makes the integration of cos(x) sin(4x) easy.

1/ N1/ . .
cos(x) sin(4x) = 5 <e”c + e”) % <e4”” - 64”>

= 4_ ((6”64133 - Cza:e—4m + C—zx64m . e—we—4u>
7
1 5ix —b5x i —ir
- 44 (6 € +e e >
11 Six —5ix + 11 i Cin
= ——1e€ e “— (e —e
221 29
1 1
= < sin(50) + 5 sin(a).

Example 9.3.3.4: The identity below makes the integration of cos(ax) cos(bx) easy.

1/ N1/ . _
cos(ax) cos(bx) = 5 (e““ + e‘“‘”) % (eb”” - eb””>

_ <6azr6bzx +eazre bix +e az,:vebzx +e aiz , bix

=3 cos((a + b)x) + %COS(((L — b)x)

| hope you can see the idea here. Perhaps you do not yet appreciate why we need to
find trigonometric identities for integration, but I’ll fix that in a quiz sometime soon...
insert maniacal laughter here...
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9.3.4: Identities that we can derive (or memorize)
The identities that follow are either geometrically motivated or can be derived via the
methods advertised at length in the last section.

1.) cos(A+ B) = cos(A) cos(B) — sin(A) sin(B)
2.) sin(A + B) = sin(A) cos(B) + cos(A) sin(B)
3.) sin(z + g) = cos(x)
4.) cos(z — g) = sin(z)

5) cos(z) = %(1 + 608(23;))

6.) sin’(z) = %(1 - cos(2x)>

7.) sin(2x) = 2sin(z) cos(x)

8.) cos(2r) = cos*(x) — sin®(z)

9.) cos(A)cos(B) = %COS(A - B)+ % cos(A+ B)

1 1
10.) sin(A)sin(B) = 5 cos(A— B) — 5 cos(A + B)

1
11.) sin(A) cos(B) = 5 sin(A — B) + %Sin(A + B)

| do expect you can derive or recall all of the identities above. As we will see in the next
subsection these identities will help us integrate many otherwise intractable integrals.
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9.3.5: Integrating powers and products of sine or cosine

Let’s begin with the easy cases:

Example 9.3.5.1: (all of these use u = cos(x))

/ i’ () dar = / sin2(z) sin(x) da
_ / (1 — cos?(x)) sin(z) dz

= /(u2 —1)du

1

=3 cos® () — cos(z) + ¢

/ sin®(z) do = / sin(z) sin(z) dz
/

= - /(1 —2u” + u?)du

(1 — cos®(x))? sin(x) dz

2
3

1

9}

=|—cos(z) + = cos’(z) — = cos’(z) + ¢

/ sin” () dar = / inS () sin(z) dz
/

= —/(1 — 3u® + 3u* — u®)du

(1 — cos?(x))? sin(z) da

3
=|—cos(z) + 7 608

. 3 -
}(x) — = cos® (1) + = cos’(z) + ¢

5

1

It should be obvious how to calculate [ sin’(z) dz in view of the calculations above.

Moreover, | hope you can see how to calculate [ cos®(z)dz, [ cos®(z)dx and so forth.

For odd powers of cosine a substitution of © = sin(z) will prove useful.
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Example 9.3.5.2: I'll use cos?(z) = (1 + cos(2z)) in what follows:

/cosz(a:) dx = / %(1 + cos(2z)) dx
= %/(1 + cos(2z) ) da

—2 4SIHZL C

The integral of cos*(z) follows a similar pattern,

/0054(:17) dr = / %(1 + 005(2:1:))%(1 + cos(2z)) da

= i /(1 + 2 cos(2x) + cos” (2z) ) dx

1

=3 / {1 + 2 cos(2x) + %(1 + cos(4x)) } dx

3 1 1
= =+ = r) + — 4
/ {8 5 cos(2z) 1 cos(4x) ] dx

3 1 1
= g +7 sin(2z) + I sin(4z) + ¢

If you understand this example then [ cos®(z) dz shouldn’t be much more trouble.
Integrals of sin®(x), sin*(x), sin®(x) follow from very similar calculations.

9.3.6: Powers of tangent and secant
Essentially the calculations in this subsection follow from the identity
1 4 tan?(z) = sec®(x) as well as the derivatives 2*) — gec(2) tan(x) and

dx
dtan(n)) — sec? () which suggest substitutions of u = sec(z) or u = tan(z) when the

opportunity presents itself.

Example 9.3.6.1:

/tanz(x) dr = /(SGCZ(JI) —1)dz = |tan(z) —z + ¢
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Example 9.3.6.2:
/tan4(x) de = /(secz(x) -1 )de
= /(sec4(a7) — 2sec’(z) +1)da
= /( (1+ tan*(z)) sec®(z) — 2sec®(z) + 1 )dx

=z — 2tan(z) + /(1 +u*)du, where u = tan(z) so du = sec?(z)dx

1
=| z — tan(z) + 3 tan®(z) + ¢

We stumbled across the integral of sec*(x) in the calculation above. You may recall we
learned the integral of sec(z) in Ex. 9.2.4. The integrals of odd powers of secant are
sometimes quite challenging. For example, sec3(x) is not easy with the techniques we
currently have discussed. On the other hand it should be clear enough that even powers
and even products of tangent or secant can be tackled easily enough by calculations
similar to those contained in the preceding example.
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9.4. TRIGONOMETRIC SUBSTITUTIONS

In principle these are really nothing more than an implicit u-substitution. If you keep the

the identities sin®(6) + cos?(0) = 1and tan?(#) + 1 = csc?(6) the technique of trig-

substitution is very natural. The principle aim of trig-substitution is to remove square
roots, however the method is useful for a wider class of examples. Let us proceed by
example, we’ll summarize the cases after we’ve played a little.

Examples 9.4.1 and 9.4.2: ( can you see the typo in E1? Its missing a 2 somewhere)

2 S\he X dx = f%ase)(qasede) o . x=Usno |

o5 dx = Yes ©dO 1,
:iGSCo.S Bde ‘\Zlé x? = Nl6(I-sin?® '“"‘!cosé"z

-::i@g(‘ *‘C@S(Z@))&@ .................

Y

2(0 + sm(ze ) +C
- AE
Es‘m‘ (%) + Ysn(si' () + c] Vs

H

1t

‘»ij -x* Cos© ¢o50 40 =[ ;’“‘ ?.S//H.’ﬂ
@ j‘ 1 ok = qS SR A dx = 3ces & dE

2 2H
X 9§m '\SCI X’ — «ﬁ 95\1129 ‘35@59
(ottode

S(csciev -1)de@

-cof® -® + C

s =3:s® _ ©+ C
7?>sane

= w5 |

;
IR |

!

i

(]

L§]

"

| like to draw the triangle to illustrate the substitution. It also helps reverse the
subsitutition. For example, given z = 3 bin(é) it might not have been immediately

3C°S(0) = —cot(f) = -5 5=, That fact should be clear from the triangle.

obvious that —— Ol
In other cases the triangle cannot remove the ugliness, like in E1 where 6 = sin 1(%)

know of no particular way to clean that up.
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Three Patterns we can reduce via Trigonmetric Subsitution:

X = atmn®
No'+xt = 0 et it e = Asecie = a Esﬁcgj ‘0

e 2
AQ+x = a’sec’®

a:i X = asin® PR 3
X
Va* = Ja¥(i-sin?6) = o e waxiwél

'X‘E

0
~ &
. - 3 g T o ™
o 0% x® = coc 2 = Qs @ mi::‘@

X = & Sec®
X X0 v
. ~xL at = a*(sec*@-1) = aJta’e = @"’1%"9?;

X%a® = aPh® ©

You can use could also use = = a cos(f) in middle case. In each substiution the square-
root is eliminated. We trade an integral with a square root for a new integral of some
trigonometric function. We know how to integrate a large variety of trigonometric
functions so this is a good bargain for most examples. There are more advanced
trigonometric substitutions, but we will focus on just these three basic cases.

Examples 9.4.3

™ vg:u'w“ & Ot/ ! ) /
T et [l . wow) 1y ppe 1 it

X=24n ® = YixP= YrYtu"0 = G+t @) = Y cec®e
dx = 2 sec?@d® ¢ Ysxi= Yser2®© haiee

dx S‘ 2
- 2 sec 9&??9
3 ~Hrecto

§' secfg)de - )&ojz U= sec® ++m o
dU = fecotun @ +sec’® )do

i]
+
>
o

[

1

= jg’_?:l_ du = sec @ (secs ++mo)d Q|
i du = secode /
= Mlul+c E—

= fn] Seco + tme| + C
F I ﬁ[——?.‘_ Xf W 7 U,S%fa? ~p(%.~w‘e bele

b e J K,
%K A (l‘ "\*)& g se = (a} s W
rde §a X =D p | "l
Yo the swhd. ) 2 © tan © = i__,% = 2
b x=2hn0 / z
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BT L
vse Tz,
X = 3s5inO ”{?--—’

Examples 9.4.4
;O/X' —A
[:/ {,._.-—. - ~2R X< 3,
f 1-x -i"r\& W for yumrse[«?
- 3500d@

~
x = 3cs® ¢ dx =
-] m—— -
4 q-x%= 94-9es’® = Isin°Q

= S . )}
(3c05©)” (- 35/ & 0B) soce 500 o 1 Ky ge@<q’
J5né] J

Xex =
{ 9s/n%0
= -f 2% cos¥8 JO

= .27 f(/— Sin 29) Cae IO

= 27 ‘fﬂz-/ du z/{ ST
( ) 5{’*!::55:90/{9
= 27 [l;f~%“§ + ¢
nele Sing = m‘fg‘)f

~ 9s510°@ — 27508 + C
3
q<ﬂ Q’TX‘Z) ._2176_019__ K?) "
= qu +3“(Q‘XZ)?/2:+ Q

il

il

0< @ < 90° %/s:}. el =5in®@ >0
Tn

Sw\:.-\'\f, Remw'k : '
mp’iﬂl‘!’! WAEM f Simﬁ/ 7466‘}[ /VSIn 9 I~ 3'1’\@

T - yseJ

fl’/](;;
Z()‘/’ 57714{ case /leff*] Gecamse sm@ >0 ai'w/ S’gmar@rogh
are b convenfion F*”S/f“/%  Vba Hed O< @< 9°
Fllpws  Aom =3<X =3s0©@ <3 D ~[<shO<]
Feom Y beg\msﬂim» T hnew ‘Hfm:b
i« oot cead-val heed.

> 0<@< 90° . ‘
B Ix|< 3 because obhecuige  Yhe mire%mmj
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Examples 9.4.5

ES dx 2
[—) f{25xz..qm ﬁr P-4 /’é

look & lthe w¥g?  fut nef ﬁwﬁégeéﬁ e m{%@éw«n om ¥4

{25y = ~[25(x% 4g4)
== S“*}){a_ (2/'5) Svaaﬁ@;ﬁs’ we use X = i Sec &

X -%"’"-sec(@)
dx = Z secl@)+tmode =

<B4 = (54 [se6 - ] = (2 tun)

dx — | [dx
Sl?S)é’w"l 5 J } 2/5
- ij‘ z Sed@)—f—m(@)cﬁ@
5 (2 +an 9)

= SLS seco d©

=—§"in§¢¢9+4&”€3}+ C Usiﬂg @:/

[ﬁn Mﬁ;ﬁ-/+67

| should remind you that last semester when | calculated the area of the circle | had to
use a trigonometric substitution. You might go back and look at Example 7.3.6 of page
166 in my notes. Perhaps the integration | did there will seem easy now.
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9.5. PRODUCT RULE FOR INTEGRALS

Students often seem to invent new, but wrong, methods of integration on tests. For
example, a very popular mistake goes as follows: [ fgdz = [ fdz [ gdz [ incorrect 1!1]
This is almost never true. However, there is a way to deal with products in integrals. This
method is known as Integration By Parts (IBP): what follows is the method and its
proof,

Zluv) = u;;""f» vl s ydt o L) - vy
Vo ws in-fe:gﬂuﬁ

ju AV dy = 5{15(2,“/} dx - jvg._g. olx

XTUCIV = UV - st/afuj

In practice, what makes this difficult is seeing how to choose what should be the “dv”
and consequently what the “u” ought to be. This often requires some trial and error
before you arrive at a profitable path forward.

Example 9.5.1( | draw the box to the side to organize my thoughts)

JE jxe"d‘x = juyif =z Xe‘gx_.ﬂ Se)‘cﬁx —] u=x | dv=e"adx

= - e~
____m du = dx V=g

Example 9.5.2

E2)

f)( cosax = XCM(X?“ SEEI)CX]&X 4—“,11_'-= % d\/:cogcx)o{x
= (X ces (%) + cos(x) + C] [du = dx v =sin(x)

Examples E1 and E2 show that we can remove z by a proper application of IBP.

Example 9.5.3

@ gkr)(X) dx = xAnl) -gx% g IW";“O@X
= XMb)y-X + ¢ du = 9x I Yoy
:ix(ﬂn{x),;j * C} |
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Example 9.5.4

EY _ ’ =
= Jf“” G)dx = o) - gmx dx 4-*@?,_2"“_”'_%( %V}fﬁ

\":)?'2 ,.,.xz
:: i ‘n-l - | i
% tu ) ?S‘%%J_ - W= |+x* ]
dw= Zxdx |

= X o' (%) - 1 ool 4¢

:i 1 M oy TT— Nede |+ X3> 0
b4 +m (x) —iQn(H X ) + C I ;jmwe Con drop
Yrhe abscluAn

Nalue, barg,

By now you may be wondering, is there any good way to anticipate what to choose for u
in setting up IBP? The answer is, L.I.A.T.E. this works pretty good for most examples.

L O%Af‘;‘Hf\miC 'thc,‘H@ﬁ & ‘i5+£cg ”
: order of
I nverse -(:Avxc"{on Qkoasin%, .

A l%ebf’a ic '{\:.n &“&'\o«\

Tf‘ \\%an evnete c -QA " c,'irs",,;m
\Expmeam Lonctian

“For mmng QXum)a/eJ ﬁ/ it a/‘? eors 7’—':: be |
Ix‘?l’) we con choose U 9 simply Geing
U whetever

#hrie  Jif and W?M/’Z}

N\ Jaw’n : J
we Jee ﬂCf‘/{f?L, Z eFs S how Fhis  werke
@ j Xe)(d)( has X and X  which are :é?a?rm'c
and expmwﬁ»{ fonchions respechively.
L e  les ar inverse
,<—’““> : } = U= X
A [ our exempls hesomw of P LT 2
T e >
€
E3 T = @ ey Chuse U= Ja(x)
&3 j)(?n (<] dx  hus 6 /angf m -
’
&) forchn =
69 ‘5 N e Au ynverse atdion =2 o
L\) '{bﬂ {"f} X (/3( e /09, ﬂ,g../‘) (—A‘E‘:\‘ _‘3:;) o= ,;avn (X}
. 7 |

A better answer, is to practice and then practice some more. Just as with u-substitution
integration technique requires both skill of calculation and creative insight.
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Example 9.5.5
/‘"""”’"““"“““‘“““Iafv ew_j

ES
D JX eXdX - Xge _EKX exax du= - Ixdx| v
fus= x| OlV“ﬁ"dx.lf

= 3)(_ 2, X X
wE 3[)( e - 23)(6 O‘X] Hue Xdx| TV = ex

= Xe- e (et (o] s LR

N

i

3
= Xe'- 3[XeX-2xe™+ 2] + ¢
= X% - e X+ bx e - LeX + C

$F(X3w3xz+5x-6) + Cj,

I hope you can see how to do [ z*¢” dx and so forth, it’s just a matter of patience and
persistence. People tend to find the next example a little unsettling upon first exposure.

Example 9.5.6
."‘ X
j € cas (x) dx

i

e ¢os () = fsm 0 €%dlx

1

) ,
Q (Cos(x) - [sin(x) Se €esix) dx] <

we've come hull-circle

-~ ‘x ¢ i g
= e (m[x)vsm{x)) E Se"‘cgsfx) dx ¢ boch o hare o besat
o-C whire Wk Desen,

= 2 Xexmtx}dx = ex(cfo:(x)w S}nﬁ@)
=) Sexm(x} dx gziﬁ"(m(x) =8in(x)) + c7
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Remark: There is another way to calculate this if we allow ourselves the luxury of some
complex variable calculus. Technically speaking, | probably should lay a little more
ground work before showing you the calculation below, but you’ll forgive me | think,

/e‘” cos(z)dx = /ez%(e”’ +e ) da
— l/(e(l-l—i)r + 6(1—i)w )d(L

2

N = N~ DN~

2

= 1(cos(a;) +sin(z))e” +c.

| made some major assumptions in the calculation above, | assumed that the integral of
the complex exponential works according to the same calculus pattern as the real
exponential. This is in fact true, and | will justify this in part in a later section. In your
complex variables course you will learn the complete background to justify such
integrations. In fact, the integration | just completed is not that exotic, no deep theorem
of complex variables is required because the integrand is analytic everywhere, it has no

poles in the complex plane.

Example 9.5.7

gsg_n"(x) dx = Sin(x) - j{-_.‘

= S (x) x4

= S0+ T+ €

} U= ) AV = dx \‘
e S |
CIU wﬁ: V = X ]

S

=80 'x) + T + C7

Example 9.5.8

58]
"'éff cos (b ) dx = Xeos(fain) + S Sin( Jax1)dx
~ = Xeos{ Inta) + [Xsinfﬁn&)j-— &Cos (Qn(x))o%&- u= s 54?”‘}”"3)

= X(Ce&f@n f)ri)-ksih(fw(fx))} -

= [=-x* )
du = -2xdx %E‘ = «m)(@(}( ,’

U= coslheto). | dV=dx |
du = =sin (lpa)dx | v =x |
5

= caf.

li:‘ = -é— X(Cos{fy b‘.}} + S‘;/p fﬂ;?{jw))) + C7
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Example 9.5.9
Some people prefer these arguments over those which are based on trigonometric

identities. Personally, | prefer the arguments we made in 9.3.5 since they are a bit more
direct. Also, | see a need for students to learn more complex variables early on because:
1.) it’s not really that hard, 2.) they’re really neat, 3.) there is a silly but undeniable bias
against complex numbers simply because of their label “complex” , this bias must be
confronted since it may cause the student to ignore or dismiss the best solution to many
problems,

= ]

e

Ces "G dx = X&S"”’{x)as(x}dx ’{ L "”“

= e el (L ) v
[X.}g!/?t/)() XSM{XJ(hq)@;%(_mM) V)

- =l 1 o
Cos " (X)Si009 + iy = )Ssm?*(x) cas" ) dx

W

Cos ™ (x) 90 X) + (n=1) E(ﬁ = €o5%(x) ) os"h dx

£y — n‘\ 5
= Ces” (x)Sinx) "'(h")(SCmS "0dx  + Sc@s " (x) o\x)
. Wﬂ“ix)&x = - r(x) g ) + WM S':M;é[“}dj %72':“3 s
Let nez fhen we Ffind:
Cos*(x)dlx = L fpn ’ . N —
j x)d x 3 C09) sip () + @‘ff&;x mé(&wx):ﬁ?&)* X/ i \}
Let n=3 pam: . ]
j\caw(x}alx = é..m?(x}:é}a(x)+ %K@&w dx
\ " il )
=3 Cot*(x) $in (k) + 3» S oy + C /'/"h;s is problem . (\
\J”Sm(?() (Caf?(x) + 1) . a A;? 3‘/@ #‘A J{f‘/
SN e M e e . / va .qu Q{/
Pemo\rk this s dhe other Fe?v\ar md}\o@i 4o COMMe L\»«m\/w_m P,

e fals of ?@\uﬂsuf cosing , Yoee s also
o simlar “ceomeence mko&mn for 5100,

(Actually this is problem 44a-b on page 494 of the version of Stewart we are using at
the moment)
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9.6. INTEGRATING RATIONAL FUNCTIONS

We can integrate any polynomial, it’s easy, just use linearity and the power rule. What
about rational functions? Is there some method to integrate an arbitrary rational
function? It is just the quotient of two polynomials, how bad can it be? Pretty bad
actually, pretty bad. However, the difficulty is not insurmountable.

The key is realizing we can undo the algebraic maneuver of making a common
denominator. If | have a product XY in the denominator then it can be split into a sum of
a term with denominator X and another term with denominator Y. | call this idea reverse
common “denominatoring”, but ok that’s not really word.

Example 9.6.0
E O How o inkyrate s2ieiss 2 Upto now nene of the

) X +Sx + &
previous %échntg,wes Teem o help with iy one, So netics
Pk we  can breake wp s frackion into two Frackions
X+ 5 A

—Cn\[owima, from dha fachrization of X3+ Sx+6 = (x+2)(x4"3)/

_ ., _® This quass \s verified
(x+ 2)(x+3) X+3 X+ 2 by oobra below

We  ten ﬁ\egmre ovd the new unhtnewn A $ B ac 'Cn“uw.:, Fiest
mm\%—‘\fﬂv& ‘0\8 deneminntor o ab%ir‘\/

" + X+ 9 _— + [ A s ]
(X 2)(><’ 3)m = (X+2)(>< E)Lx.ﬂg ¥ x-%:.?_j

Which geves tha (simple 4o solve) e5”)
X+8 = (x+2)A +(x+3)8

Se plug in 4ha Coots xm--xzo Yhen X= -3 o %p(:
~2+5 = 3 = £243)A+(243)8 = B . [B=7)
-3+ = 2 = {-3-&2){%*%% = =f

'ﬂ'\vs we ‘wve b\g‘w\i %\%ﬂ-’b‘““ a/é:we/

(x+2)(x+3) X+3 X+ 2

Now we can iln*fiég/’m“‘f‘t e RHS of &é@ve/ remember few?

X-——&i——-—dx:—zj L dx+ 3 [—L—dx

(x+2)(x+3) X+3 | x+2
_ . U= X+32
_— "2. g"%‘f‘{" + 3 JT%{VK W = X A2

= [-az Jn [x+3 + 3 fn|x+2] + CJ
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Integrals that motivate the algebra for partial fractions

You will learn over the course of many examples that to do partial fractions means we
rewrite a given rational function as a sum of other rational functions. It is not terribly
surprising this alone is possible, what is perhaps surprising is that there are certain types
of rational functions which integrate nicely. | call these special rational functions the
“basic rational functions”. A basic rational function is one which cannot be further
reduced into a sum of other basic rational functions, loosely speaking.

We can integrate the basic rational functions: (you’ll prove these in one of you
homeworks, it’s a combination of u-substitution and trig-subst.)

Known Integrals of Basic Rational Functions:
1.) Leta,,an_1,...a1,a0 € R, then P(z) = a,2" + -+ - + asz* + a1z + ag is
a polynomial. It can be shown

/P(a;)d:l: = —ncrlajnﬂ + o+ %Jjg—f— %;{;24—@01‘—1—0

2.) Leta € R then R(x) = ——is a basic rational function. It is the reciprocal
of a linear factor. It can be shown

1
/ de =In|z+a|+C
rT+a

3.) Leta € Rand n € Nsuchthatn > 2then R(x) = — is a basic

= (x+a)n
rational function. It is the reciprocal of a repeated linear factor.

1 —1
. e=——_4cC
/(x—l—a)” v n(x+a)’1+

4.) Leth,c € R suchthat b* — 4c < Othen R(z) = —

rational function. It is the reciprocal of an irreducible quadratic. Let
a = —b/2and = y/c — b%/4 then the integral is given as follows:

1 1 1
/—:L'z—l—bx—l—('dx = Btan_1 |:B<J,—(,l/):| +C

is a basic

5.) Letb,c € R such that b — 4¢ < 0 then R(7) = 37— isa basic
rational function. It is = over an irreducible quadratic. Let « = —b/2 and
[ = y/c — b%/4 then the integral is given as follows:
, 1 b 1
/ Ry _{_iy s dr = 5 111(:1)2 +br+c)— ﬁ tan™! {B (:1: — a)} +C
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Cases 4.) and 5.) are considerably simplified in the case o = 0. For example,

dzx 1 T rdx 1
tan™!| = C —— = _In(2*+4 C

/x2+4 2 <2>+ /a:2+4 g (e +4) +
Many examples have this simplified form. It wouldn’t be unreasonable to ask you to

integrate m, this is a basic rational function. It is not possible to break it down
further. The substitution z = 2 tan(6) will make that integration work out nicely. Once

you understand that example then you (by “you” | actually just mean me in this case)
can do the general case for a repeated quadratic in the denominator:

f&’% f[(x* b,)? +o<]

= | e 3

= | @ty T &

) L
= 0 —— 2  xdu H ;
e ey = k1. ool
_ S.ﬂ—.w |
= 0(3 Q*M;)a
Lett  wnsider iy /ﬂ%ﬁﬁ/uj :e;?"/% A a Moo
T Ty s
e & uw sea '® do |
= S w’@'
sec
= { Cos? 4®
= | %(l&»m“z’f@)&@
- L ‘a_\{ Ve PG
de + 4 {esw & dv-2d®

|
z
= 28 + ql-s'\m(ze)) + C

Cdapt(u) + J..sm\ 2 ton () } + C

N

b owr ory ;}mj AL f:
= _{:,{va -}Aqw[yﬁ} -+ _-/ ity {3 “f&ﬂwf/'v?)}} e [

=|(c- )f mhm%;) ]

+dsin (2 (ke <+ %)/)j +C

///@m a3 fe*/u(z?lh;;}

.
5?}?"-} bx+ ) dx

R

(if you take a close look you’ll see I’'m using “«” in the place [ resided prewously oops)
It is not too hard to see that irreducible quadratics raised to higher powers will also be
manageable by an appropriate trig-subst. There is also an iterative formula known to
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tackle the integral of f(z) = (2% 4+ bz + ¢)™" for n € Nsuch that n > 1. If you present

and derive that iterative formula | will award 4 bonus points if you do a good job. Ok

enough about all that, by in large we will only need to know 1-5.) and even then most
often we have a = 0 in our examples.

Example 9.6.1( I’d call the given function an improper rational function)

Pagriae Fracmons :
Gav«f b ‘

1yeN  Sem e fuf)@a‘?a«f A’N&&ﬁ‘c}ﬂ ‘1[)(3(/ ﬁ(}&‘ /nf:jy 4“"(:{::! zfi::{.

SIS g U

7 { me/'}ce H Lc"f‘(g /o&f‘:}‘}wf /’/Adff‘uf ﬂé’ Cwyﬁe AR ﬂg ;’/}?’g@w f'«e\.ﬂlﬁ“’
//Az (Za;lc fcdl‘iwaaj; ﬂﬂﬁﬁ{;‘ﬂﬁﬁ #7%1@ re mm(f’&

@ \Cm = XL'+ X?a— ZXZ‘\'?}X” Z ‘e ijz o de lorn 7
t-3X 472
X aYx +12
Wi-3x +2 fx’* exXF e +3x -2
RO LY N
Ux® +0¢ + 3Ix -2
(B = 12¢ + 3x)

2%: =5 =2
-z xt - %X uw)

s o=
ﬂ‘3x + 2
") Con ke ofi we'll uge PN-};A ‘
Yoy e P(ob[gm ) FLractions to b(‘emif e 4.
SLELTES . = A @._.. b Paetiod F?‘Mwé :D!E\CABMP,
(’ii:}(j‘%‘) T X-2 p Sl '@aw d.\'{‘i'lncﬂj( lineo 'C&‘Cﬁvcs‘,
y - -
s 3ix-26 = AL+ B&2) o Mgy Yy (-2 )(X-1)
’_Xzis 9 = -8
X”"?;j 36 = A

B A ST TR B s M BSOS L s 5
W X 4+ .+ 2+ .%:; - 7

| 0 Ivet] 4
&Q(x)éx,': }‘;* 2xFh 2% + BBQV\\N”‘?‘«- 5 ‘{mh\ Ig + C7

P

Long division, thought you’d gotten away from it didn’t you. There is a small typo in E1
can you find it?
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Example 9.6.2

- Pix) = X*ZX*}’" s X443 A . Bx «C
‘“’ x*e X X (xF+1) X XE+

W r2x+ 3 = ALPH) + @x+c)(X]

xX=e¢f |3 M”Al
x=ll & = 2R+ B+C = G=6+48+C = 8= ~-C
x=2l Il = S5A +4YR+2C D || = I§-4C+2C DA = Cm2
i A=3, B8=-2, C=2
=\ 2d 2 _ o [ex
j‘-{(x)o\x 5" dx + gx‘zﬂ dx gx 24 dx
= x|+ 2hd'0) - {24 L= Xl |
3hn x| + 2 (x) ot e |
= R0l + 20 b) < Ju bl ]+ C]
Example 9.6.3
- z_ z_ A 8 9
( 7,)( 3 - % 3 - - R + =
6= +1) (¢3=1) () (Y1) (xvr)  Ox4) X=1
2x-3 = AKH](x4) + B (x-1)+ ¢ (x+1)
X=-1] -| =-28 & [B=%] '
x=) - = MC o [C="'4]
X%=0] -3=-A-B+C = -A-¥% =D -127-4YR-T
= —~ Y rwzifx\
> [RE )
= _.&t&m " ,', _! ox
j C’{)M j ‘ Y * 2 J(x+1)?
— 9 [ dy U= X+t du=dx |
R j “lw = x-1 dwede |

faful - -’fn/W/ - 4L ¢

X*"”‘QV' ’/ - '::* Xx+1) - C /

e ——

9
Y
1

E

11

Remark: you are probably curious, how do | know how to break it up into pieces? Why is
there A,B for one problem then A,B,C for another? What is the algorithm? The examples
that follow probably have enough variety for you to see the algorithm.
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Example 9.6.4 and 9.6.5

B s e

¢+ ) (x=2) ¢ ) (R4 2 (R 43)?

= A " 8 s C Ix+ €

(x+) ) x7)  (x2)° ~~E+ T “
C + Fxb + Hx+T - &M%k lx+ M 4 NMx+ O
%%z (x*+2p %3 C’“? g)z (x*+3)
Tl et %‘“‘"ﬁ o fid AR LN, O & 9o wb it chedd
Le Clese hew Yuw wowld e :.QU w‘fD i,
Es] fx) = xz(+ﬁ2x ,) 2
T (x-3

A 8 c D =
T S ey v © s )°

Example 9.6.6

i
-

A LG Bﬁ"}{é ““““““ il e
Ee| i) @j/’ﬁtz)z N wt have

x-2)*
o rand o de \m«a, /.

4
x‘ix+w)x+0x+ =~>—>—<-l-3;-«:1+—°é-:—:-‘2=—5-;

- - Mx £ ) x-2)
‘-lx -1
e . YX-t = A 8
Wﬁw wee Lo o /oaf/{mj {;’a&ﬁwr o tx2)* 7<-‘,_—£-- s Fz)e

Y- = Alx-2) + B
xze) - = -ZA+8

x= E'_"”@ > 2A=7+ - [A=4]

Sﬂx}f}»x‘:: &(\-&- -)-E——z-— + -&?—aa)dx
X + L/j-é{—duvL'-?f‘a’?d” € Zifgx /

i

= X+ Y fu) - ‘-}—‘ +C
<X+ Y n [x-2| —————- + C]
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| hope you see the idea now. There are additional examples in the suggested homework
solutions posted on the course website. Let me sketch the general pattern now that we
have a good sampling of examples:

The g»wff;bn s how o ;hf%mﬁ a1y rahonad fanchon €(<) = Pex)

/ i : / : Q)
7'/),'_( ((/;iuwa lga Pdéﬁ&?mm;fw( /.:u"xg @ff‘fqmﬁ 73 #42 ffu‘/m o/ lﬂ?li‘g}/mﬁy
Rix)

_F(x) — S(x} o+ W

Wheee Rix) i€ the emaindec so ﬂ(% (Rx)) < d&% (Q(K)) Se  how
'/Lo " f&zla}ﬁz &?é(xs in 2@*’7@/««9 ? (Mﬂ'ée S(TK} e &mjg, ! awéﬂlif&m vad
we.  {ar "nf/‘%fuﬂb 'f’/‘lou, o plnéf»f{ﬁm )a ﬁ?én 7£/o'm m/g,e}/a mwe

hnow M»\&,ﬂ émg, Porymaniial  £ix) can be fuckhvced +e
-f(’x’) o (///I/?ewr Aa/e)/f ')(ﬂlrf‘(‘e‘a/* ;’}«mm&/ -#fas‘;zm/}

Hence R(<) & Qix) car be A ctoeed /,[;gﬁwuef <\c((&‘mums \r(duc}(:[e>
i?(’il o (/i)ww ﬁfcﬁw;f/) /‘//'é?@/ gn/mf ffﬁfga/}

& {x) - ( Jrar gvr Awi@a / ¢ resed. ,?@@.J S i / B
= _.’E\——- e @ 2_,_;,,4. __C._X_"L“Q,_. + t>j+[:.2+”,
X=X, (x=1) XAbx +C (x%bx+C)
e Am—?@w/”ﬁw HHHHHH o Sl

) ;:: Ay
ohreh and Do mony of #wa.e \Ua.(/c- M‘me«.j“
termr A@ﬂ@w?d’ﬁ o tha  defeilr
oF R 4 Qix).

Personally, | think this belongs at the beginning of the section, but my students tell me
examples first then the general story, you can thank them for this section being less
than logically ordered. In any event, it should be clear we can integrate any rational
function via these methods. In practice it would be wise to use Mathematica or a TI-89
for complicated examples. | often use my TI-89 to check my partial fractions
decomposition for silly errors. If you are going to buy a calculator the TI-89 is hard to
beat, | probably shouldn’t tell you, but it can do most everything we learn this semester.
Of course the same is true for Mathematica, but that is just inconvenient enough to
keep you doing your homework.

In-class Exercise 9.6.7: integrate the function below.

J(z) = x31+x
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9.7. IMPROPER INTEGRATION

Don’t worry. The Liberty Way will not be violated in this section. The “improper” here
refers to one of two possibilities:

1.) The integrand in fab f(z) dx has a vertical asymptote at some ¢ € [a, b].
2.) The integral is something like faoof(x)dsv.

In both cases the integral is defined in terms of a natural limiting process. In both cases
the integrals may converge or diverge depending on the details of the limiting process.
We will need to recall the various tricks and common sense observations we made
about limits in calculus I. On occasion L’Hopital’s Rule may be necessary.

Begin with case 2.).

Defl/ Assuming Hhe Wty below  exist)
%0 L
a) U fmdx = Lim | F0adx
o Lo Yo

- . b -
b Jrwax = M [, £0adox

RS i 4,

i

©0 g\t’& ¥ o QA, i é
c') & Coagx = ‘:3 £y + S $1x) A% (\J}v\. m%% war. O «qy)
[N
-0

These we ol (:,@mw%wda \Amﬁmﬁé , whan these [(anite exict. ,
When 4 \mits dene  we rey the Yhe ;’“\M@f*’“&? ol Jwﬁf@w?&
k. v

| S

Example 9.7.1

) k=0 °© &
= R\ M = Q“x l >
) o
h~ }\\ fa (—k;t ot 1 ) TR x
R <, ;m%,wt Calewhetio
- E_] Ha Pidw'éd aren,

| suppose it may be surprising that we can have a shape with an infinite length on one
side yet in total a finite area. The non-intuitive feature that makes this possible is that

the height of the object gets very small very quickly so the net area does not blow up. It
is not enough that the height goes to zero, we’ll see that soon.
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Example 9.7.2

- &« ' t
\t S‘ ltdx = i&mm &‘ ?Q\X
e =, )

= ‘@ “H’\‘u olEan

s OPPNMH«Q, 1.

Example 9.7.3

o . N7
| e = f [

- 1y "
=, () «
= fim (}Qn(ﬂ) ares not faite,

A 220

l

= ©0 (d erginit )

Now here is the example | was referring to after E1. The integrand % goes to zero as

x — oo yet the total area under the curve diverges to infinity. What does that mean? It
means that as we take larger and larger upper bounds the area under the curve from
one up to those bounds keeps changing, it never settles down to just one value. Instead
with each higher bound we’d find the area gets larger and larger without any end in
sight. In E1 and E2 we found the limits converged to one, geometrically this means that
if we actually calculate those integrals for very large upper bounds we would find the
values got very close to one. The next example has a different kind of divergence.

Example 9.7.4

0 fe 3
g Sin &s)dx = Qim Skmngx)d\)@ Y

Y = sin (x)

Soa *--00 i
= Qim (~eof (,x}l; @ N W %
== id,)
p,,,m (— | + Cos /;H)

A= - N

= d/ne ( o /’VQ/’Q,MVYS becunse caslt }‘;ch/mler afm')
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Example 9.7.5

| (* \tt i U= }"52 Z/(O)‘: o
= %w\ g ) G = wxhN  ult) = AF

= fie -famdf u) / ,?,‘“j)

: (hn“'(;e - 4l ,

}fwam

e

Example 9.7.6

Sometimes we need to use some integration technique before applying the appropriate

limiting process. Here | do a u-substitution before applying the definition of improper
integration for the given limits.

-x? . _ W 7:—};:? ~~~~~~~~~~~~~
fx Tox = J3etde M/d%;_%ﬁ%ﬁ
oy
de v
2=
[ X% dx = j Xze’xdf + fim j % 25~ olx
J'w ;(/w)”‘m f—im
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Example 9.7.7

22X

U ‘;:3%(;)&}( ey ﬂ-‘;?‘nix,) -

= b fi(x) +

Zx*
-1
%2 (ﬂm(x)
S /QVE {x) - QIW\ X
x® k=00 Vi
, o f
- g‘/‘n 2)‘:
£ _
= fim (Iw/fh% o Anlis ‘/_z,)
Lim ( __._.f{&m) + L e pulled thy oo bofire
~ (2) A->w -Y% Y doiny ﬁ»Ha&ZMg Rule
' j( - | on #he | & derm,
= lim Kz + =
f‘wf:m ( ‘?’Eé? “
7 0
-

In E6 and E7 | decided to complete the integration then apply the limiting process to the
appropriate integral. There is also notation to do this all at once. Care must be taken to
change bounds in the other notation, | avoid the issue by just completing the
antiderivative separately in E6 and E7.

Lets continue on to case 2.).

'Da.p?/ Provide the limitz below exist (are real numbers)

Q.) S:.F(x)cb( = ;(‘ﬂ:?_ jt.fc'x}c/x (é & d’ﬂm ///)

b b
b.) S#mgdx &é.{;m+ L'—,ﬁ{fx; olx (cz & Jom [#5’/)

b b
) (Ywdx = [Feds + [tode (<& dom (4))
(8 a “/c
L.Tf tha limit in @ bor € dne we Sey the /m/egrw/r a//wra,e, .
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Example 9.7.8

N

= Jim ()Mi)-—ﬁ&z’i&)):@ divecaeb.
L= o? o o

Example 9.7.9

oo shideg ]
‘S ;A'ﬁ'\i'}'e;

Example 9.7.10

7 ~ e
/E/'/ f “ ese *)dx = tiw j ese’lx) ox

0 Aot %
e ,plﬁz [“EQ‘{‘{X}/ ﬁ‘;
=0
- fh? r__ & iy ., @}&/J{* ] ; U0
X@Z g cot ;/a;) + £ O{:; )Jf Q/W'é’ o)
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Example 9.7.12
It is possible for the answer to be negative in examples like this one. The integral

calculates the signed-area which can be negative in certain cases.

/@ e = ﬁa; ” {'t__..l,mm alx
im ﬁg““"(’q %'.«‘ i\i G

/f—m (2 [ 9f/3/ )
“f (305 16T
==e]

Example 9.7.13
Our final example combines cases 1.) and 2.)

— S e
T o

]—E/’i/ &0k : 3 dx 20 x Q"z‘f QOTH TVPES 0;\
| j xa j = j X LTy ety
2 : : (vp ~E x=2)
B See!( Lx) % C m, frorm the Hrig- swbst. X= 2sec®.
S K2 - ( Z ) { 4 -\—U;V:'ef‘ o ‘.rH‘ie wurk +f~a ﬂ’ T

=2 =8 = (1)) ,

\gec (3/2 - ég\()

~ i »
i =l (129

| = fn (sec() = sec( 9‘,‘3)/}
—~ = }77}/2 - SQC—Y(%)7

o
LX «(QSI;T = Sg@/(’/z - seg ( %) = .

In-Class Exercise 9.7.14: Calculate / tan?(x) dz.
0

1
In-Class Exercise 9.7.15: Calculate —dx.
T
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9.8. APPROXIMATE INTEGRATION
Nu MERICAL L

lwre'GR’AﬂaN : AN TNrmrRepueTION
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For the most part this section closely mirrors Stewart’s text. | also feel no need to justify
these wild claims about the error bounds. Proof by example is not proof. A good
graduate course in numerical methods would derive these results. Error bounds are
important since they tell us the worst case scenario when we replace the true integral
with a much easier to calculate finite sum. However, math aside, beware the machine

232



epsilon seeks to devour and corrupt. Just because the mathematics says the error
should be smaller than a particular value does not mean the machine we are using is
capable of the precision we assume. And, | haven’t even bothered to factor in the robot
holocaust. That said, | don’t plan on doing Simpson’s rule without a computer.

g/z’hpfa 7' /?u/(x. » @
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s,

Th"(4) Ear Boawo Fan Smesow's Rode : fub 17 (x)] 2 K
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Perhaps this section has left you a little dazed. Why are we doing this anyway? Didn’t
the methods we used earlier in this chapter give better, nice exact results? The answer
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is that yes those methods do give exact results but there are many problems which
simply do not admit a nice closed-form answer in terms of elementary functions. For
example,

1.) / Sm(x)dx arises in study of optics
x

2.) / e da the bell curve from probability

3.) / Va2 cos?(t) + b2 cos?(t) ellipitical function

In a few special cases 3.) does permit an solution in terms of elementary functions. It
can be shown that the integral converges for piecewise continuous functions. However,
there is no guarantee that the antiderivative for the given integrand has a nice formula.
We will find approximations to the antiderivative in a later chapter using power series
arguments. This section has dealt only with the less challenging question of how to
approximate a definite integral.

Some definite integrals require we take a brute-force like approach. That is in essence
what this section is. When we can’t find the antiderivative for the integrand, or when
there is no formula given for the integrand, in such cases we have no alternative but to
use brute force. This discussion in this section is just quibbling over which type of brute
we want to be. In practice, the thing most people do is to use Mathematica or the
Wolfram Integrator (it’s online) to calculate definite integrals which defy closed form
solutions. If you could look inside Mathematica odds are you’d find something like
Simpson’s Rule being used to find the answer.

Finally, there is a nice summary section in Stewart giving some grand advice about how
to integrate. It might help you gather your thoughts. Try reading section 8.5. | don’t plan
to formally cover integration tables. Who needs a table when you can create the table?
And if you can’t do the integral then Mathematica beats the table 99.9% of the time. |
would strongly caution over using Mathematica, you need to suffer when doing the
homework from this chapter. The burning sensation in your brain may be needed for
you to level-up mathematically speaking.

As usual there are some additional examples in the suggested homework solutions.
Remark: we are skipping Chapter 9 for now. I'd like to do some of the sections in
Chapter 9 from a “parametric viewpoint”. That’s hard if we haven’t yet discussed what

the “parametric viewpoint” is. Stewart takes a purely Cartesian viewpoint so he avoids
the problem. I'd like to do it right the first time around so we’ll wait on Chapter 9.
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