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9. INTEGRATION TECHNIQUES  
 

We begin this chapter by reviewing all those results which we already know, and 

perhaps a few we have yet to assimilate. In particular, I add the hyperbolic functions to 

our required lexicon of functions. If you don’t know what the hyperbolic sine or cosine is 

then you should look it up in the text book or perhaps read Chapter 2 of my notes. 

 

The principle aim of this chapter is to complete your knowledge of basic integration 

techniques. The methods presented here are foundational to other schemes. Moreover, 

the algebraic insights implicit within our discussions have use far beyond integration. To 

be honest, this chapter is about building mathematical character.  

 

Improper integration involves either bounds which diverge or integrands which diverge. 

In either case the integral is to be understood in terms of definite integral with a varying 

bound. If the integrand diverges at some point in the integration region then we have to 

take the limit of definite integrals that approach that point. On the other hand, if we 

write that the upper integration bound is infinity then that is meant to indicate we take 

the limit of definite integrals with ever increasing upper bounds. L’Hopital’s Rule is 

sometimes needed to determine the behavior of the limits that arise from improper 

integrations.  

 

We conclude this chapter with an introductory discussion of numerical integration 

techniques. The midpoint, trapezoid and Simpson’s Rule are contrasted. Some basic 

ideas about error bounds are also discussed.  
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9.1. BASIC INTEGRALS 
 

I assume that you know the integrals (1-14) given below:  

 

  

The integrals that follow are also basic, but I don’t assume you have them memorized. If 

there was a question on a test concerning these then I would give a hint. 
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9.2. EXPLICIT SUBSTITUTIONS 
 

An explicit substitution is often called a u-substitution. The basic idea here is that it may 

be possible to recast a given non-basic integral in the initial variable (usually x) as a basic 

integral in the substituted variable (usually u). In other words, the goal is to get back to 

one of the known integrals listed in the last section.  

 

Example 9.2.1: Consider . Choose  which produces 

.  Thus the given integral simplifies as follows: 

 

  

 

 

Example 9.2.2: Consider . Choose  which yields 

.  Thus the given integral simplifies as follows: 

 

 

 

 

Example 9.2.3: Consider . Choose  so that  and 

. Thus the integral simplifies as follows: 

 

  

 

Example 9.2.4: Consider . Choose  so that 

  (this is not really obvious, you should check this is true): 

 

  

 

This integral is worth remembering, we’ll see it again. The examples given here are not 

meant to be comprehensive. You might need to go review my calculus I notes if you are 

rusty on u-substitution. 
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Definite Integrals involving u-substitution: 

There are two ways to do these. You should understand both methods. 

 

iii. Find the antiderivative via u-substitution and then use the FTC to evaluate in 

terms of the given upper and lower bounds in . (see E18 below) 

 

iv. Do the u-substitution and change the bounds all at once, this means you will use 

the FTC and evaluate the upper and lower bounds in . (see E17 below) 

 

The notation is not decorative, it is necessary and important to use correct notation. If 

the measure in your definite integral is “du” then you had best have bounds which refer 

to the value of “u”.  

 

Method ii. illustrated: 

 

 
 

Method i. illustrated: 
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9.3. TRIGONOMETRY ALL GROWN UP 
 

It is time we settled what is known and unknown about trigonometry. If you had 

Calculus I with me then you have already heard many of these things but for the most 

part I did not require you remember them. That time is over. I expect you to absorb the 

material in this section one way or another. I do expect you remember all the 

trigonometric identities I present in this section, more than that, I expect you learn how 

to derive similar identities if the need arises. 

 

Logically there are a variety of routes to remember this material. I choose the route that 

allows us to derive as much as possible through essentially algebraic arguments. I call 

this the imaginary exponential technique. There is nothing really “imaginary” about this, 

its unfortunate terminology since complex numbers are just as “real” as real numbers. 

Both real and imaginary numbers are well-defined mathematical objects. There are 

rules and equations which govern them. Both provide a language which is used to 

describe a plethora of physical systems (although, I would argue, that is not necessary 

for them to be sensible mathematical objects) 

 

9.3.1: What is a complex number?  

Complex numbers are pairs of real numbers that enjoy a certain rather beautiful 

multiplication; . This is usually denoted 
 

  

 

Where the observation  We typically introduce this 

by saying that  but this is the same as saying . Complex numbers can be 

added, subtracted, multiplied and divided just the same as real numbers. Complex 

number have a real and imaginary part, 
 

  

 

In general if  then . It should be emphasized that 

 so there is a natural correspondence between complex numbers and 

the Cartesian Plane ; I use this correspondence when I write . This 

plane is called the complex plane. The x-axis is called the real-axis, the y-axis is called the 

imaginary-axis.  
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Every complex number  has a complex-conjugate . In the complex 

plane the mapping  is a reflection across the x-axis.  

 
Recall that any polynomial with real-coefficients can be completely factored over the 

complex numbers. For example, we usually say that  is an irreducible quadratic. 

This is true with respect to real numbers, however if we use complex numbers to assist 

with the factorization then we can factor .  Generally, a 

quadratic polynomial  with  is called irreducible because we 

cannot factor it over the real numbers. Notice that the quadratic formula still makes 

sense in this case it just gives complex solutions. We can pull an  out of the 

square root;    where the quantity 

 since . If  then it can be shown, 

 

   

 

Where I have defined  and . The quadratic 

polynomial factors as follows in this case: 

 

  

 

The roots  and  form a conjugate pair. Any polynomial with real 

coefficients can be completely factored with the help of complex numbers. When an 

irreducible quadratic appears in the factorization it gives rise to a pair of linear factors 

whose roots form a conjugate pair. There is much more to say about complex numbers 

but this little subsection will more than suffice for the purposes of this course. 
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9.3.2: What is the complex exponential function? 

We define  by the following formula: 
 

  

 

We can show that this definition yields the following desirable properties: 

 

  

 

Here  denotes the plain-old real exponential function we discussed at length in 

previous chapters. Essentially, the second condition says that the complex exponential 

function must reproduce the real exponential function when the input is a complex 

number with zero imaginary part. Condition 3.) is called Euler’s Identity.  

 

Let me show you the proof of 1.). Suppose that  and  where 

. Observe: 

 

  

 

In the last step we used the adding angles formulas for sine and cosine. These can be 

derived geometrically. They follow from the law of cosines. On the other hand observe: 

 

  

 

Comparing the equations above we verify that . I will use 

the notation  from this point onward. 
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9.3.3: Deconstructing sine and cosine  
We can calculate that  because cosine is 

even and sine is odd. If we add and subtract  and 

 then we obtain formulas for sine and cosine in terms of the 

imaginary exponentials  as follows: 
 

  

 

Now we can derive pretty much any trigonometric identity you run across.  

 

Example 9.3.3.1: Notice this gives us a way to calculate  
 

  

 

Example 9.3.3.2: Notice this gives us a way to calculate  
 

  

 

Notice that . Another way to 

look at this is that if you have either of these identities then you could use the 

pythagorean identity to obtain the other one: 
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Let’s see another application of the imaginary exponentials. 

 

Example 9.3.3.3: The identity below makes the integration of  easy. 

 

  

 

Example 9.3.3.4: The identity below makes the integration of  easy. 

 

 

 

I hope you can see the idea here. Perhaps you do not yet appreciate why we need to 

find trigonometric identities for integration, but I’ll fix that in a quiz sometime soon... 

insert maniacal laughter here… 
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9.3.4: Identities that we can derive (or memorize) 

The identities that follow are either geometrically motivated or can be derived via the 

methods advertised at length in the last section. 

 

  

 

I do expect you can derive or recall all of the identities above. As we will see in the next 

subsection these identities will help us integrate many otherwise intractable integrals. 
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9.3.5: Integrating powers and products of sine or cosine 

Let’s begin with the easy cases: 

 

Example 9.3.5.1: (all of these use  ) 

 

  

 

  

 

  

 

It should be obvious how to calculate  in view of the calculations above. 

Moreover, I hope you can see how to calculate  and so forth. 

For odd powers of cosine a substitution of  will prove useful. 
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Example 9.3.5.2: I’ll use   in what follows: 

 

  

 

The integral of  follows a similar pattern, 

 

  

 

If you understand this example then  shouldn’t be much more trouble. 

Integrals of  follow from very similar calculations. 

 

9.3.6: Powers of tangent and secant 

Essentially the calculations in this subsection follow from the identity 

 as well as the derivatives  and 

 which suggest substitutions of  or  when the 

opportunity presents itself. 

 

Example 9.3.6.1: 
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Example 9.3.6.2: 

 

  

 

We stumbled across the integral of  in the calculation above. You may recall we 

learned the integral of  in Ex. 9.2.4. The integrals of odd powers of secant are 

sometimes quite challenging. For example,  is not easy with the techniques we 

currently have discussed. On the other hand it should be clear enough that even powers 

and even products of tangent or secant can be tackled easily enough by calculations 

similar to those contained in the preceding example. 
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9.4. TRIGONOMETRIC SUBSTITUTIONS 
 

In principle these are really nothing more than an implicit u-substitution. If you keep the 

the identities  and  the technique of trig-

substitution is very natural. The principle aim of trig-substitution is to remove square 

roots, however the method is useful for a wider class of examples. Let us proceed by 

example, we’ll summarize the cases after we’ve played a little. 

 

Examples 9.4.1 and 9.4.2: ( can you see the typo in E1? Its missing a 2 somewhere) 

 

 
I like to draw the triangle to illustrate the substitution. It also helps reverse the 

subsitutition. For example, given  it might not have been immediately 

obvious that . That fact should be clear from the triangle. 

In other cases the triangle cannot remove the ugliness, like in E1 where . I 

know of no particular way to clean that up. 
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Three Patterns we can reduce via Trigonmetric Subsitution: 

 

 
You can use could also use  in middle case. In each substiution the square-

root is eliminated. We trade an integral with a square root for a new integral of some 

trigonometric function. We know how to integrate a large variety of trigonometric 

functions so this is a good bargain for most examples. There are more advanced 

trigonometric substitutions, but we will focus on just these three basic cases.  

 

Examples 9.4.3  
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Examples 9.4.4 
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Examples 9.4.5 

 

 
I should remind you that last semester when I calculated the area of the circle I had to 

use a trigonometric substitution. You might go back and look at Example 7.3.6 of page 

166 in my notes. Perhaps the integration I did there will seem easy now. 
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9.5. PRODUCT RULE FOR INTEGRALS 
 

Students often seem to invent new, but wrong, methods of integration on tests. For 

example, a very popular mistake goes as follows:  [ incorrect !!!] 

This is almost never true. However, there is a way to deal with products in integrals. This 

method is known as  Integration By Parts (IBP):  what follows is the method and its 

proof, 

 

 
 

In practice, what makes this difficult is seeing how to choose what should be the “ ” 

and consequently what the “ ” ought to be. This often requires some trial and error 

before you arrive at a profitable path forward.  

 

Example 9.5.1( I draw the box to the side to organize my thoughts) 

 

 
 

Example 9.5.2 

 

 
Examples E1 and E2 show that we can remove  by a proper application of IBP.  

 

Example 9.5.3  
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Example 9.5.4 

 

 
By now you may be wondering, is there any good way to anticipate what to choose for  

in setting up IBP? The answer is, L.I.A.T.E. this works pretty good for most examples. 

 
 

A better answer, is to practice and then practice some more. Just as with u-substitution 

integration technique requires both skill of calculation and creative insight. 
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Example 9.5.5  

 

 
 

 

I hope you can see how to do  and so forth, it’s just a matter of patience and 

persistence. People tend to find the next example a little unsettling upon first exposure. 
 

 

Example 9.5.6 
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Remark: There is another way to calculate this if we allow ourselves the luxury of some 

complex variable calculus. Technically speaking, I probably should lay a little more 

ground work before showing you the calculation below, but you’ll forgive me I think, 
 

  

I made some major assumptions in the calculation above, I assumed that the integral of 

the complex exponential works according to the same calculus pattern as the real 

exponential. This is in fact true, and I will justify this in part in a later section. In your 

complex variables course you will learn the complete background to justify such 

integrations. In fact, the integration I just completed is not that exotic, no deep theorem 

of complex variables is required because the integrand is analytic everywhere, it has no 

poles in the complex plane. 

 

Example 9.5.7 

 
Example 9.5.8 
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Example 9.5.9  

Some people prefer these arguments over those which are based on trigonometric 

identities. Personally, I prefer the arguments we made in 9.3.5 since they are a bit more 

direct. Also, I see a need for students to learn more complex variables early on because: 

1.) it’s not really that hard, 2.) they’re really neat, 3.) there is a silly but undeniable bias 

against complex numbers simply because of their label “complex” , this bias must be 

confronted since it may cause the student to ignore or dismiss the best solution to many 

problems, 

 

 

 
(Actually this is problem 44a-b on page 494 of the version of Stewart we are using at 

the moment) 

 

 



 218

9.6. INTEGRATING RATIONAL FUNCTIONS 
 

We can integrate any polynomial, it’s easy, just use linearity and the power rule. What 

about rational functions? Is there some method to integrate an arbitrary rational 

function? It is just the quotient of two polynomials, how bad can it be? Pretty bad 

actually, pretty bad. However, the difficulty is not insurmountable.  

 

The key is realizing we can undo the algebraic maneuver of making a common 

denominator. If I have a product XY in the denominator then it can be split into a sum of 

a term with denominator X and another term with denominator Y. I call this idea reverse 

common “denominatoring”, but ok that’s not really word. 

 

Example 9.6.0  
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Integrals that motivate the algebra for partial fractions 

 

You will learn over the course of many examples that to do partial fractions means we 

rewrite a given rational function as a sum of other rational functions. It is not terribly 

surprising this alone is possible, what is perhaps surprising is that there are certain types 

of rational functions which integrate nicely. I call these special rational functions the 

“basic rational functions”.  A basic rational function is one which cannot be further 

reduced into a sum of other basic rational functions, loosely speaking.  

 

We can integrate the basic rational functions: (you’ll prove these in one of you 

homeworks, it’s a combination of u-substitution and trig-subst.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Known Integrals of Basic Rational Functions: 

1.) Let , then  is 

a polynomial. It can be shown   

     

 

2.) Let  then  is a basic rational function. It is the reciprocal 

of a linear factor. It can be shown 

     

 

3.) Let  and  such that  then  is a basic 

rational function. It is the reciprocal of a repeated linear factor.  

     

 

4.) Let  such that  then  is a  basic 

rational function. It is the reciprocal of an irreducible quadratic. Let 

 and  then the integral is given as follows: 

     

 

5.) Let  such that  then  is a  basic 

rational function. It is  over an irreducible quadratic. Let  and 

 then the integral is given as follows: 
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Cases 4.) and 5.) are considerably simplified in the case . For example, 

  

Many examples have this simplified form. It wouldn’t be unreasonable to ask you to 

integrate , this is a basic rational function. It is not possible to break it down 

further. The substitution  will make that integration work out nicely. Once 

you understand that example then you (by “you” I actually just mean me in this case) 

can do the general case for a repeated quadratic in the denominator:  

 
(if you take a close look you’ll see I’m using “ ” in the place  resided previously oops) 

It is not too hard to see that irreducible quadratics raised to higher powers will also be 

manageable by an appropriate trig-subst. There is also an iterative formula known to 
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tackle the integral of  for  such that . If you present 

and derive that iterative formula I will award 4 bonus points if you do a good job.  Ok, 

enough about all that, by in large we will only need to know 1-5.) and even then most 

often we have  in our examples. 

 

Example 9.6.1( I’d call the given function an improper rational function) 

 
 

Long division, thought you’d gotten away from it didn’t you. There is a small typo in E1 

can you find it? 
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Example 9.6.2 

 

 
 

Example 9.6.3 

 

 
Remark: you are probably curious, how do I know how to break it up into pieces? Why is 

there A,B for one problem then A,B,C for another? What is the algorithm? The examples 

that follow probably have enough variety for you to see the algorithm. 
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Example 9.6.4 and 9.6.5 

 

 

 
Example 9.6.6 
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I hope you see the idea now. There are additional examples in the suggested homework 

solutions posted on the course website. Let me sketch the general pattern now that we 

have a good sampling of examples: 

 

 
 

Personally, I think this belongs at the beginning of the section, but my students tell me 

examples first then the general story, you can thank them for this section being less 

than logically ordered. In any event, it should be clear we can integrate any rational 

function via these methods. In practice it would be wise to use Mathematica or a TI-89 

for complicated examples. I often use my TI-89 to check my partial fractions 

decomposition for silly errors. If you are going to buy a calculator the TI-89 is hard to 

beat, I probably shouldn’t tell you, but it can do most everything we learn this semester. 

Of course the same is true for Mathematica, but that is just inconvenient enough to 

keep you doing your homework. 

 

 

 

In-class Exercise 9.6.7: integrate the function below. 
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9.7. IMPROPER INTEGRATION 
 

Don’t worry. The Liberty Way will not be violated in this section. The “improper” here 

refers to one of two possibilities: 

 

1.) The integrand in  has a vertical asymptote at some  . 

2.) The integral is something like . 

 

In both cases the integral is defined in terms of a natural limiting process. In both cases 

the integrals may converge or diverge depending on the details of the limiting process. 

We will need to recall the various tricks and common sense observations we made 

about limits in calculus I. On occasion L’Hopital’s Rule may be necessary.  

 

Begin with case 2.). 

 
 

Example 9.7.1 

 

 
 

I suppose it may be surprising that we can have a shape with an infinite length on one 

side yet in total a finite area. The non-intuitive feature that makes this possible is that 

the height of the object gets very small very quickly so the net area does not blow up. It 

is not enough that the height goes to zero, we’ll see that soon. 
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Example 9.7.2 
 

 
 

Example 9.7.3 
 

 
 

Now here is the example I was referring to after E1. The integrand    goes to zero as 

 yet the total area under the curve diverges to infinity. What does that mean? It 

means that as we take larger and larger upper bounds the area under the curve from 

one up to those bounds keeps changing, it never settles down to just one value. Instead 

with each higher bound we’d find the area gets larger and larger without any end in 

sight. In E1 and E2 we found the limits converged to one, geometrically this means that 

if we actually calculate those integrals for very large upper bounds we would find the 

values got very close to one.  The next example has a different kind of divergence. 

  

Example 9.7.4 
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Example 9.7.5 

 

 
 

Example 9.7.6 

Sometimes we need to use some integration technique before applying the appropriate 

limiting process. Here I do a u-substitution before applying the definition of improper 

integration for the given limits. 
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Example 9.7.7 

 

 
 

In E6 and E7 I decided to complete the integration then apply the limiting process to the 

appropriate integral. There is also notation to do this all at once. Care must be taken to 

change bounds in the other notation, I avoid the issue by just completing the 

antiderivative separately in E6 and E7. 

 

Lets continue on to case 2.). 
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Example 9.7.8 

 

 
 

Example 9.7.9 

 

 
 

Example 9.7.10 

 

 
 

Example 9.7.11 
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Example 9.7.12  

 It is possible for the answer to be negative in examples like this one. The integral 

calculates the signed-area which can be negative in certain cases. 

 

 
 

Example 9.7.13 

Our final example combines cases 1.) and 2.) 

 

 
 

 

In-Class Exercise 9.7.14: Calculate   . 

 

In-Class Exercise 9.7.15: Calculate  . 
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9.8. APPROXIMATE INTEGRATION 
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For the most part this section closely mirrors Stewart’s text. I also feel no need to justify 

these wild claims about the error bounds. Proof by example is not proof. A good 

graduate course in numerical methods would derive these results. Error bounds are 

important since they tell us the worst case scenario when we replace the true integral 

with a much easier to calculate finite sum. However, math aside, beware the machine 
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epsilon seeks to devour and corrupt. Just because the mathematics says the error 

should be smaller than a particular value does not mean the machine we are using is 

capable of the precision we assume. And, I haven’t even bothered to factor in the robot 

holocaust. That said, I don’t plan on doing Simpson’s rule without a computer.  

 

 
Perhaps this section has left you a little dazed. Why are we doing this anyway? Didn’t 

the methods we used earlier in this chapter give better, nice exact results? The answer 
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is that yes those methods do give exact results but there are many problems which 

simply do not admit a nice closed-form answer in terms of elementary functions. For 

example, 

 

  

 

In a few special cases 3.) does permit an solution in terms of elementary functions. It 

can be shown that the integral converges for piecewise continuous functions. However, 

there is no guarantee that the antiderivative for the given integrand has a nice formula. 

We will find approximations to the antiderivative in a later chapter using power series 

arguments. This section has dealt only with the less challenging question of how to 

approximate a definite integral. 

 

Some definite integrals require we take a brute-force like approach. That is in essence 

what this section is. When we can’t find the antiderivative for the integrand, or when 

there is no formula given for the integrand, in such cases we have no alternative but to 

use brute force. This discussion in this section is just quibbling over which type of brute 

we want to be. In practice, the thing most people do is to use Mathematica or the 

Wolfram Integrator (it’s online) to calculate definite integrals which defy closed form 

solutions. If you could look inside Mathematica odds are you’d find something like 

Simpson’s Rule being used to find the answer. 

 

Finally, there is a nice summary section in Stewart giving some grand advice about how 

to integrate. It might help you gather your thoughts. Try reading section 8.5. I don’t plan 

to formally cover integration tables. Who needs a table when you can create the table? 

And if you can’t do the integral then Mathematica beats the table 99.9% of the time. I 

would strongly caution over using Mathematica, you need to suffer when doing the 

homework from this chapter. The burning sensation in your brain may be needed for 

you to level-up mathematically speaking. 

 

As usual there are some additional examples in the suggested homework solutions. 

 

Remark: we are skipping Chapter 9 for now. I’d like to do some of the sections in 

Chapter 9 from a “parametric viewpoint”. That’s hard if we haven’t yet discussed what 

the “parametric viewpoint” is. Stewart takes a purely Cartesian viewpoint so he avoids 

the problem. I’d like to do it right the first time around so we’ll wait on Chapter 9. 

 


