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Abstract. In order for an autonomous agent to interact rationally a model of classical conditioning in order for an agent to learn to
within its environment, it must have knowledge of that environment.recognise increasingly complex sequences of events starting from a
Given that the wealth of knowledge that even small children evi-limited set of observed geometrical changes within its environment.
dently quickly acquire, it is infeasible for an agent to be directly The system that was developed to test and expand on this the-
encoded with much, if any, knowledge about the real world. Thisory, is comprised of three sub-systems that each provide data to one
means that it would be best to instead imbue the agent with the abienother forming a feedback loop to allow the system to find increas-
ity to learn the knowledge for itself. Given the non-triviality of the ingly complex sets of patterns. The first sub-system reads a stream
problem of programming an agent with this ability, this paper looksof events that describe simple geometrical changes within the ob-
at a system that qualitatively replicates one of the main psychologserved scene and recognises patterns of those events that occur in
ical processes that biological agents use to learn about their envits database of event patterns. The second sub-system takes both the
ronment, that of classical conditioning. Initial testing of the systembase events and the instances of the recognised patterns and provides
shows results that are inconclusive but are encouraging. This leads pmirings of event instances that satisfy temporal and event complex-
the conclusion that further work is needed to ascertain the utility ofity measures. The third sub-system takes the pairs of event instances

the approach. and provides a list of those event pairs that should be considered sig-
nificant to the first sub-system to use as its database of event patterns.
1 INTRODUCTION The third sub-system uses a model of classical conditioning to decide

which of the event pairs is significant.

Classical Conditioning is a phenomenon of learning that begins dur- The system was applied to the domain of visual extrinsic object
ing an early stage of development, according to Piaget's theory ofotion (i.e. object tracking) in order to evaluate the system. The test
cognitive development [18]. Due to its prevalence within animals itthat was done was that of a video of a person throwing a ball in the
can be argued to be central to any agent's development of its uriir. The prediction was that given the data derived from this scene, the
derstanding of its environment. The theory of classical conditioningsystem would infer that when the ball went up, that it would expect
primarily introduced by Pavlov [17], allows for an agent to passively that the ball would later come down. This would be evidence of the
learn about its environment. The principal mechanism of classicasystem having developed a simplistic account of gravity.
conditioning is that of an agent learning to associate two stimuli that This paper is structured as follows. Section 2 covers the back-
the agent observes as repeatedly occurring in pairs. The pair of stinground of the phenomena of classical conditioning and previous
uli is usually one stimulus that causes a reflex action in the agent andgork in the learning and recognition of event sequences. Section 3
another stimulus that, if encountered in isolation prior to any pairing,ooks at the workings of the system that learns the event sequences
would not cause any reflex. and how this is done by modelling the mechanisms of classical condi-

By considering examples of stimuli pairings that would becometioning. The work done to evaluate the system is presented in section
associated through classical conditioning in a natural environment of. Concluding remarks and potential future directions for this work
a biological agent, the utility of such a mechanism to the agent cais then covered in section 5.
be seen. The smell of a particular food pairing with its taste and the
sight of fire pairing with the sensation of heat are two examples of2 BACK GROUND
pairs of stimuli that a biological agent could conceivably learn to as-
sociate with one another in the course of its development in anatur&.1  Classical conditioning
environment. These sorts of examples suggest that classical con
tioning can be seen as a mechanism to infer relationships betwe
stimuli that can be treated as two aspects of the same, more compl

dl:;his theory is also known as Pavlovian Conditioning, named after

?van Pavlov, one of the primary people who introduced the theory.

stimulus without the agent having any prior knowledge. eIéétvlov’s widely-known experiments with dogs, first published in En-
glish in 1927 [17] were among the first experiments to demonstrate

With this conception of classical conditioning in mind, it suggests ! .
) ) o .- the collection of phenomena that are now collectively known as clas-
that the mechanisms of classical conditioning could be used to infer. T . . .
. . . . sical conditioning. Pavlov’s famous experiment conducted with dogs
relationships between pairs of events and so allowing the construc- ) . ;
. . . was to create an audible tone (mostly a bell or metronome) immedi-
tion of patterns and sequences of events in an unsupervised manner . . . ; .
. . . : ately prior to the dogs having a substance directly placed into their
with no prior knowledge. This paper introduces a system that uses ) L
mouth that would cause the reflex action of salivation (usually meat

1 University of Leeds, United Kingdom, email: phy3taf@leedsi& powder or a weak acid). This was done multiple times. The same au-
2 University of Leeds, United Kingdom, email: B.Bennett@leedsik dible tone was then presented to the dogs without the presentation of




the substance. The result was that the dogs’ salivary responsdwas o immediately before the US appears. Trace conditioning is where
servable with the tone even when substance was not presented. Thisthe CS finishes with a period of inactivity before the US appears.
salivary response without the substance correlated with the number The inter-stimulus interval affects the rate of acquisition of a CS-
of presentations of the tone where the substance was jointly pre- US association. The rate follows a curve where small intervals
sented. Pavlov used this experiment and others like it to derive a are negligible, it then rapidly moves up to a peak and then gently
theory of animal learning. decays, similar to the curve of a log-normal distribution. The dif-
The derived theory of animal learning from this is that an arbi- ference between delay and trace conditioning is that the latter has
trary neutral stimulus can become associated with any non-neutral a much faster decay after the peak.
stimulus, (i.e. a stimulus that triggers a reflex response) based o# Intermittent Stimulus Facilitation — During conditioning, a
their similar co-occurrence in time. Thus when the neutral stimulus longer inter-stimulus interval gives a weaker CR. If a second CS
is presented alone, the subject gives a similar response to the uncon-is presented between the first CS and the US, the CR of the first
ditioned response, as it has come to expect that the non-neutral stim- CS is stronger.
ulus will follow. In the literature around classical conditioning, the e Conditioned Inhibition — Conditioned Inhibition refers to an ef-
names of the stimulus and the responses have particular names. Thefect where a CS can be made to create an inhibitory effect on a
neutral stimulus is known as the conditioned stimulus (CS) which CS-US association. This can be demonstrated in the following ex-
in Pavlov’s experiment corresponds to the generated tone. The non- periment: two CSs(CS: and CS, are conditioned separately to
neutral stimulus is termed the unconditioned stimulus (US) which in associate with the US. A third CESo, is then non-reinforced si-
Pavlov’s experiment corresponds to the substance placed in the dogs’ multaneously withCS; . Presenting’S, simultaneously wittCS»
mouths. The response to the non-neutral stimulus is called the uncon- will then not elicit a CR.
ditioned response (UR) which in Pavlov's experiment corresponds to
the salivary reflex the dogs had to the substance. The response to theEver since classical conditioning became widespread in the dis-
neutral stimulus after the association had been formed is the condéourse of psychology, there has been numerous models of classical
tioned response (CR) which in Pavlov’s experiment corresponds taonditioning that vary in complexity and fidelity. The most well-
the salivary response the dogs had to the tone when the substankeown model is Rescorla and Wagner’'s model that was presented in
was not present. 1972 [22]. This model has served as the basis of later models [12, 30]
There are several phenomena that have been observed in the int@ihe Rescorla-Wagner model works by calculating a difference be-
action of CSs and USs. The most notable of these are: Acquisitiortween the current association strength and what the new trial implies
Extinction, Reacquisition, Blocking, Secondary Conditioning, Theit should be. The rate of learning is based on the salience of both the
Inter-Stimulus Interval, Intermittent Stimulus Facilitation and Con- CS and the US. More recently, there has been a trend to use artifi-
ditioned Inhibition. cial neural networks to model classical conditioning [26, 25, 10, 7].
Balkenius and Magn [2] presented a comparative study of a number

e Acquisition — Acquisition is the process whereby the CS becomes°f modern models, including artificial neural network based models,
associated with the US and thus the CR. This is the phenomeno‘ﬁ10Se based on Rescorla and Wagner's model, among others.

that was discussed above. The strength of the association (e.g.

meas_,ured by the amount (_)f saliva produced) is a sigmoid-likey o Event sequence learning

function of the number of reinforcements of the CS (i.e. the num-

ber of presentations of the CS where the US follows). Research into learning patterns of event sequences mainly comes

e Extinction — Extinction is the process whereby a CS that is al-from two different fields of computer science research, namely data
ready associated with the US is repeatedly and consistently prenining and computer vision. Data mining applies the algorithms that
sented to the subject without the US. The strength of the assdearn event sequences to discover important frequent sequehces o
ciation is weakened and eventually returns to the same level oévents from data that has a temporal component. For example, within
association as observed prior to acquisition. the domain of shopping, finding rules that state that certain items

e Reacquisition — Reacquisition is the name given to the phe- have a tendency to be bought at the same time during particular
nomenon where a previously extinguished CS-US association ipoints in the day, or customers who bought one specific item later
acquired again. During reacquisition, it takes a fewer number ofeturn to buy another specific item. The main work in the area of
reinforcements to re-acquire the same strength association thanritining rules of association (independent of a temporal context) is
did the previous time that association was acquired. the work by Agrawal [1]. Work more directly involved with min-

e Blocking— Blocking is where a previously conditioned CS stops aing associations in a temporal domain is the work of Mannila [13],
second CS from acquiring an association with the US (i.e. demonamong others [31, 8, 19]. This work looks to mine sequential pat-
strating a CR) when the two CSs are reinforced simultaneously. terns of events that appear frequently. This area of data mining as a

e Secondary Conditioning — Secondary Conditioning is where a whole looks more on optimising time, space and I/O write complex-
secondary CS can be conditioned to elicit a CR through reinforceity rather than trying to optimise the output rules themselves. There-
ment only with a primary CS (where the primary CS has beenfore this area, while being relevant in that it attempts to find the same
reinforced with the US). This effect is typically weak as the ex- sort of output, is not fully relevant to the work of this paper as the
tinction of the primary CS will happen while the secondary CS isemphasis of the field is more on optimising computational resources
being conditioned. rather than trying to have the rules more closely match that of human

e TheInter-Stimulus Interval — The inter-stimulus interval is the experience.
time between the start of the CS and the start of the US. This time Computer vision research in this area more looks at optimising the
gives rise to several situations that affect the acquisition procesautput itself against a calculated ground-truth with computational ef-
This leads to two modes of acquisition, Delay and Trace condificiency as a secondary goal. One of the influential works in this
tioning. Delay conditioning is where the CS overlaps or finishesfield, though looks at recognition rather than direct learning is that



of lvanov and Bobick [9] who presented the idea of finding patternsing [21]. The S-S (stimulus-stimulus) interpretation of conditioning

as being akin to parsing a stochastic variant of a context-free granstates that the CS becomes associated with the US, as opposed to the
mar. This allowed the powerful idea of looking for events at differentS-R (stimulus-response) interpretation where the CS becomes asso-
levels of abstraction, which is used in this current work. Another im-ciated with the UR. This supports the divergence as it shows that it
portant work in the area is that of Stauffer and Grimson [28], whois not a direct back-propagation of the response when two stimuli
extended their seminal work in object tracking [27] to learn clas-become associated.

sifications of activity sequences by applying statistical methods to The remainder of this section describes how the system operates.
determine co-occurrences. The system comprises of three component sub-systems that feed data

One approach that has been particularly successful in learningetween each other. Figure 1 shows the modules and the data that is
event sequences is to use Inductive Logic Programming. Inductiveassed between them.

Logic Programming [15], or ILP, is a branch of machine learning
that, through a variety techniques, attempts to find generalised logi-
cal rules that explain a set of specific relations. Typically, the rules are
expressed as first-order horn clauses. While the technique has been
used in the data mining aspect of event sequence learning [19], it has
had a larger impact on the computer vision aspect. There have been
two prominent works that have used the ideas of ILP to learn event
sequences. The first of these is Needham et al. [16], in which the sys-
tem presented is able to learn from observation only, the rules to a
number of simple games, such as paper-scissors-stone. Thiswas ac
complished by using an ILP system (PROGOL) [15] to learn generic
rules that state the required action given a particular game state. The
second work is that of Fern et al. [6], which does not directly use
an ILP system, as the authors came to the conclusion that first-order
logic horn clauses was a poor representation to use for learning tem-
poral event sequences. However, many of the ideas of ILP werk us
on a language specifically developed by the authors to represent tem-
poral events. This event system was then used to learn to recognise
a variety of verbs from the system being presented a video of that
action.

While the system does use first-order logic as to represent its
events, the system presented by this paper does not use ILP. The rea-
son for this is two-fold. Firstly, ILP systems in wide use are batch-
based programs, where the learning happens in a separate phase s input to the system, the system takes a series of time-ordered
the recognition and all the data the system is required to learn from igonding boxes for each object of interest in the observed scene. In
required before any recognition can be d_one. The seco_nd reaBon Ilpe case of the experiment, this input data would be the bounding
could not be used by the current system is that ILP requires examplgsyes for the ball and the person. This is then processed to find ge-

to be labelled as either positive or negative examples of a particula§metrical changes, which are used as events to be passed to the first
concept, meaning ILP methods are supervised learning methods. T'%%b-system.

system presented by this paper is an unsupervised system.

Module 1:
Recognition

Module 2:
Association

S9oUB)SUI JUaAS aAleBaN

Significant event pairs

Figurel. The three sub-systems and the data flows between them.

The first sub-system takes the stream of basic events and com-
pares these events with a database comprising of event patterns to
3 THE SYSTEM be recognised as more complex events. The sub-system recognises

both positive and negative instances of these complex events. Posi-
The purpose of the system is to find sequences of events that are tetive complex event instances are those event patterns where a pattern
porally associated with each other by utilising the theories of classiis observed. Negative complex event instances are those evenes wher
cal conditioning. This utilisation of the theory of classical condition- the first half of a pattern is observed, but the latter half of the pattern
ing makes one important divergence from most theories of classidoes not follow.
cal conditioning, namely that this system does not assume the need The second sub-system then identifies and outputs pairings of the
for there to be a reflex-causing stimulus at all, and that a neutrgbositive events whose temporal relationship satisfies a set of criteria
stimulus can gain association with another neutral stimulus via theuch that they can be said to happen together. Only those events that
same mechanism. The reflex response to particular stimuli and thieave an equal pattern length are compared for reasons of efficiency
response of stimuli conditioned to them allows for the effects of this The third sub-system has two input sources. The first input source
association to be measured. is the instances of the identified event pairings with the second input

There is evidence that supports this particular divergence. The firstource being the negative complex event instances. To these inputs,
piece of evidence is in the phenomenon of classical conditioninghe sub-system applies a functional model of classical conditioning.
known as secondary conditioning, as described in the previous setn the model, instances from first input source are treated as positive
tion. This supports the divergence by showing that an associatioreinforcements and the instances from the second input are treated as
can occur between two conditioned stimuli and that there is nothnegative reinforcements. This results in a list of pairs of types event
ing inherent in the nature of non-neutral stimuli that causes this asinstances (both complex and basic) together with a measure of their
sociation effect to happen. Another piece of supporting evidence iassociation strength. The pairs that have a high association strength
in Rescorla’s substantiation of the S-S interpretation of condition-measure are then fed back to the first sub-system. In the first sub-



system, these pairings are treated as a single composite event amdAppr oachi ng( X, Y) —XandY are approaching each other.
are added to the database of events that the first sub-system recag-Recedi ng( X, Y) —XandY are receding from each other.
nises. Should the association strength of an event pairing that has St ati c( X, Y) — The distance separating and Y does not
been allocated a composite event subsequently weaken such that itchange.

is no longer considered to have a high association strength, its corre- Mer geR( X, Y) —Xis merging withY on the right ofY.
sponding composite event is removed from that same list of events.e Mer geL( X, Y) —Xis merging withY on the left ofY.

e MergeT( X, Y) —Xis merging withY on the top ofy.

e Mer geB( X, Y) —Xis merging withY on the bottom of.

e Ener geR(X, Y) —Xis emerging fron¥ on the right ofY.

The recognition system recognises two types of event instance®, ETEr geL( X, Y) —Xis emerging from on the left ofY.
atomic events and composite events. Atomic event instances are geh-ETer geT(X, Y) —Xis emerging fron¥ on the top ofY.
erated through an analysis of processed sensor data provided as h-ETer geB(X, Y) —Xis emerging fron¥ on the bottom ofY.
put. The recognition system for atomic events is an expansion of th8 VBKeCR(X, Y) —Xhas made contact witfi on the right ofY.
system presented by dos Santos et al. [5]. Composite event instancsMKeCL( X, Y) —Xhas made contact witfion the left ofY.
are generated by matching their component events against the list 8f Mak€CT( X, Y) —Xhas made contact witfi on the top ofY.
generated events. Composite events may have either atomic eventsrVBK€CB( X, Y) —X has made contact witfi on the bottom of.
composite events as their component events but for reasons of corfi- Br €akCR(X, Y) —Xhas broken contact witkf on the right ofy.
putational efficiency, both component events of a composite everit Br €@kCL(X, Y) —Xhas broken contact withf on the left ofY.
must be of equal recursive depth. In other words, the depth of atomi@ Br €aKCT(X, Y) —Xhas broken contact witlf on the top ofy.
events is zero; the depth of composite events comprising of twd® Br €aKCB(X, Y) —Xhas broken contact witkf on the bottom of
atomic events is one; and the depth of a composite event compris- Y.

ing of two composite events that each both comprise of two atomi® MPVER ght (X) —Xhas moved right.
events is two. o Myveleft (X) —Xhas moved left.

3.1 Therecognition sub-system

The sub-system outputs positive and negative instances of events. MveUp(X) —Xhas moved up.

Positive event instances are instances of event pairings that have be® MoveDown(X) —Xhas moved down.

observed to happen. Negative event instances are instances bf ev@nL0St (X) —ObjectX has ceased to be detected.

pairings that were expected to happen but did not. An event is ex? Found(X) —ObjectX has been newly detected.

pected to happen when the first component event of a composite

event happens, but the second was not observed to happen. By thos

definitions, all atomic events are positive event instances. The posi-Figure2. The event types that the system uses to describe the teamsiti

tive event instances are passed to the association sub-system wherdgWween the states of one frame and the states of the nexefdothain of
. . . extrinsic motion.

the negative event instances are passed directly to the model of clas-

sical conditioning.

The external input to the recognition system used within this papared with the states of the previous frame. Based on the changes in
per is data that represents the extrinsic motion of objects within theach state type, multiple atomic events are generated based on each
agent's field of view (i.e. objects moving around a scene, rather thagatomic event’s logical definition encoded within the system. Figure 2
the movement of sub-components of the object while the object itselfists the names and English definitions of the events that can be gen-
is static). This data is split into temporal frames. In each frame eaclrated. Note that the last two events are generated by comparing the
object is represented as a bounding box labelled with an identifiefists of objects present in a frame rather than from any of the states
unique to that object. Itis expected that the system is general enougjenerated. These atomic events are those that have been identified as
to be applicable to different domains. being pertinent to the test domain of the extrinsic motion of objects.

For each frame, a set of state information regarding the objects The list of atomic events is then compared with the list of com-
present within the frame is generated. The set of state variables inbosite event types (which is initially empty and is grown by the feed-
tially includes the x and y position of the centre of each box. Theback from the model of classical conditioning sub-system). Where
remainder of the state variables are based on each pair of objecign atomic event is the first event of a composite event that appears in
Each pair of objects has four state variables that describe their relane list, an event instance of the type of the matched composite event
tionship. The first state variable is the distance between the centres gf generated and is marked as being a potential event (as the second
each box. The next state variable represents one of the mutually exub-event has yet to be observed). A potential event is an everg that
clusive possible states th is coalescent with B'(which means that  believed to be currently ongoing but there is not the evidence to know
the boxes of the two objects A and B overlap to the extent that thor sure. The generated potential event is then recursively coaipare
two objects cannot be reliably distinguishet,is externally con-  with the list of composite event types to generate further potential
nected with B”(the two boxes are touching but do not significantly events of increasing complexity.
overlap) oA is disconnected with B'(the two boxes are distinctly  After the potential events have been generated, they need to be
separate). These three possible states are based on a variant ef thegwn to so they can represent their true observed duration. The seto
gion connection calculus [20, 24]. The third state variable representsoth the atomic and potential events of the time in-between the cur-
one of the possible mutually exclusive statass to the left of B",  rent and previous frame are compared with the events that were gen-
“Bis to the left of A”or“Both A and B are in-line in the X axis'The  erated when the now-previous frame was the current frame. Where
final state variable represents one of the possible mutually exclusivghe same event has been generated in both consecutive frames, the
states'A is above B", “B is above A" or “Both A and B are in-line  event token of the event in the previous frame is extended to cover

inthe Y axis” the current time frame of the event and the duplicate newly generated
After these states have been generated for a frame, they are co@vent instance is removed.



At the next stage, the list of potential events that are within a prediagram, event 8 is starting, event 7 is stopping and events 5 and
determined window of time before the current frame is comparedL1 are continuinglV is the length of time of the window; again,
to the list of atomic events that were generated during the currerthis is inclusive at both ends so that the system would generate an
frame. If any of the atomic events are the second event of a poterpairing instance for events 8 and 9. In fact, for this diagram only 3
tial event, the potential event instance in its entirety is replaced wittof all possible pairings of the events would not be generated, being
an actual event as that potential event has now been confirmed. TI3&8, 3&12 and 9&12. The density of the events is for illustration
set of newly confirmed potential events is then recursively comparegurposes and in the practical example of the test case, the events are
with the list of potential events to generate further confirmed eventsnore sparse.
of increasing complexity.

Where a potential event has yet to see its second event, but the
first event has finished and its finishing time was longer ago than the
width of the predetermined window of time before the current frame,
then the potential event is classed as a negative event instance and is
passed as such to the model of classical conditioning.

These stages outlined above are repeated for every subsequent pair
of frames provided as input. Note that the system has been designed
to be able to be used in an on-line manner. This on-line nature was
required so that the system may continuously learn new associations
throughout the lifetime of the agent.

3.2 Theassociation sub-system

The purpose of the association system is to systematically record
each pairing of event instances that are temporally close enough to-
gether that, based on defined criteria, they can be said to happen te&igure3. A demonstration of the window in relation to a series of events
gether. Note that the vertical grouping of event intervals in thegdéan is arbitrary.
The criteria that define the notion of two events happening together
is based on the modes of conditioning that are a part of the inter-
stimulus interval phenomena of classical conditioning, namely delay
and tracg _conditio_ning. Delay c_onditioning notes that the period o§_3 The model of classical conditioning
the conditioned stimulus can either stop at the start of, or overlap,
the period of the unconditioned stimulus. Whereas trace conditionThe purpose of the model of classical conditioning as a sub-system is
ing shows that end of the conditioned stimulus can have a short gajo create a mapping from a list of instances of event pairings and a list
before the start of the conditioned stimulus, though the longer the gapf negative event instances to a measure of the association strength
the slower any association is formed. These ideas suggest for criterfar that pairing each event type present. While the other parts of the
for the notion of two events happening together, either the two eventsystem also are responsible for modelling some of the phenomena
must temporally overlap or that the first event must have its finishingf classical conditioning, it is this sub-system that attempts to model
point within a defined window of time before the beginning of the the main phenomena.
second. The model presented by this paper is a relatively simplistic model
Due to these criteria, the association sub-system calculates its paihat does not claim to be able to compete neither on fidelity nor on
ings based on whether an event is starting, stopping or continuing. Aoomplexity with those models that were developed as an exercise in
event instance is considered to be starting if the event that was genesf themselves. This raises the question of why the effort was un-
ated in the current frame but not in the previous frame. An event indertaken to produce a new model at all, after all, if there are better
stance is considered to have stopped if was generated in the previoo®dels already in existence, why was one of these models not im-
frame but not in the current frame. An event instance is considereglemented instead? The reason is due to the divergence in the theory
to be continuing if it was generated in both the current frame and thetated at the beginning of this section, that neutral stimuli can as-
previous frame. sociate together without the presence of a reflex-causing stimulus.
For every starting event that the recognition system generates, thl of the models that have been encountered make the assumption
association system records the list of events that occurred within théhat there is a natural strength of reflex of the reflex-causing stimu-
defined window of time before the current frame including those thatus that can be propagated across an association and is available to
are ongoing. Where an event is ongoing, it is marked as so in the lisbe factored into the calculation of the association strength. This as-
As each event finishes, the association system looks for all theumption means that they cannot be used in this system. This is due
occurrences of that event in the list of event pairings and notes it the very definition of being neutral stimulus, they cause no reflex
finishing time against those listings, removing the marker that it is aaction and so do not have any measure of the strength of reflex that
continuing event. As the parings get to the stage where both eventould be propagated. So the model in this system attempts to be a
have finished, they are passed to the model of classical conditioningroof-of-concept model.
sub-system. The two inputs of the sub-system, the list of event pairings from
Figure 3 depicts the moving window and 12 intervals of eventsthe association sub-system and the list of negative event instances
Each interval is inclusive at both ends, so for instance, event intervdfom the recognition sub-system, represent the twin notions of rein-
1is over six time steps. The current time step is markedrmganing  forcements and non-reinforcements. This sub-system treats them as
that in the diagram, event 12 has not started happening yet. In thguch in the modelling.



The model was primarily developed through examining and at-
tempting to approximate in a function, the response curves of the var- 1 (max (0 Ap—Bs ) > (max (07 Bs—Ap ) )
5 4)
2

ious phenomena as described in [2]. While this approach does not at- I = éBE_BS 5
tempt to provide any explanatory power, it does allow for the desired
responses. This approach has led to the production of three functions

that determine different aspects of the association strength. All three J =max (0, (|Bs — As| — 21)) (5)
functions are designed so that they perform in an iterative manner. In

other words, the functions output the amount the current association —2(n()H)-1?

strength ¥') should be changed byY), rather than calculating the _22-De ©+17 ©)
new association strength’{ ;1) directly. This means that only the J(2+ I)\/§

current association strength needs to be stored in memory ratherthanWhen an association strength goes above a certain defined thresh-

r_etaining all the inputs to each of the fun_ctions. Note that the aSSOCiac')ld, that pairing is added to the list of rules that the first sub-system
tion strength is regl-valued anq constrained to the rangey’ S, L. uses to recognise as a composite event. If a pairing drops below the
The new association strength is updated according to equation 1. threshold through the extinction processes, that pairing is removed
from the list.
Y =Yy +0Y @ This feedback of information is one of the central ideas of the sys-
The first function, shown in equation 2, models the curve observedem as it both allows for patterns of arbitrary length to be built up yet
in the acquisition phenomenon. This function is applied for each redoes not allow any combinatorial explosion to take place. It also has
inforcement of an event pairing. As described previously in the backto be recognised that this can mean that the more complex the com-
ground section, the acquisition phenomenon follows a sigmoid-likgoosite event the system needs to learn, the more examples it requires.
curve. In the equatio, X is the amount one reinforcement instance This means that this list builds up simple representations first, creat-
is to be counted (this is normally equal to k), is a constant rep- ing the event representations that have a minimum description length
resenting the learning rate of acquisition a%ids the output of the  before updating them with longer ones as required. With the ability
functions that model the effect of a change in the inter-stimulus into remove sequences that no longer have a strong enough evidence
terval. base, the system is able to retract locally maximal artifacts that are

due to coincidences.
(1 - YN)6k15X + YN —1 (2)

k15X + Yy + - — 3 4 EVALUATING THE SYSTEM

. The next_functlo_n, s_hown n equation 3, mode_ls the effect qf ®XThe intention of the system was for it to passively learn about its
tinction. This function is applied for each non-reinforcement (i.e. a

ti tinst th b ; . f venfoai $resented environment without any initial data regarding that envi-
negative event instance) € sub-system receives for.a givenipair g, ment, To this end, the system was tested to see if it could find any
events. Note that the functions that model the effect of changes

the inter-stimulus int | i lied to th tinction funcii IBatterns of events that can be argued to be semantically important
€ Inter-stimulus Interval are not applied to the exunclion UNCUON. . reference to the environment. The domain of extrinsic object

This is becauge in the case of a negative |nstapce, the size of ttPf'aiotion was chosen due to its prevalence within computer vision and
_second event is not available, this means there is no mter-st_lmul at it was the domain used by the work of dos Santos et al. [5] that
|n_terval to b_e measured a_nd_ so the funct!ong cannot be applied. | rmed one of the bases of this work. The domain also allows for the
did not provide any description of the eXt'nCt'.On decay curve, hOW_use of the principles of physical mechanics to form predictions.
Sver, Pavlov_prowded a small sample_of d_ata in lecture 4 of [17] that The environment that was chosen was that of observing a person
su'ggests a Ilne_ar decay: In the equatioi, |s.th-e amount one non- epeatedly throwing a ball in the air and catching it. The prediction
remforgement Instance Is to b.e counted (thls 1S normally eqlual ol as that the system would find a pattern of events that would repre-
andk is a constant representing the learing rate of extinction. sent the ball being thrown upwards followed by it falling downwards.
This would mean that the system has come to expect (and through
0Y = —ky0X ®) the system of potential events, generates expectations) that whenever
The final functions, are the functions that model the change in rethe ball moves upwards, it will at some point come down again, this
sponse due to changes in the inter-stimulus interval. These functionsould be an expectation of gravity to enact on the ball.
are only applied when dealing with reinforcements, as opposed to Note that this application domain may appear to be similar to the
non-reinforcements. The reason that these functions have not beapplication domain presented Bennett et al. [3]. However, this is not
merged into equation 2 is due to the complexity of the equationsthe case. The domain in Bennett et al. [3] used a basketball-like do-
To allow for these functions to alter the output of acquisition func- main with multiple moving people as well as a moving ball as a
tion, its output is constrained © < Z < 1. As described previ- source of complex movement to test the capabilities of the presented
ously in the background section, the phenomena due to changing thieacking system. The domain of the current paper uses a single, static
inter-stimulus interval suggests a curve similar to the curve of theperson and a moving ball to allow for a domain simple enough to
log-normal distribution. In these equatiors,is the factor that the allow for a testable prediction to be made of what the system should
output of the acquisition function is to be multiplied byand.J are learn.
intermediary values used to allow the function to be shown in a sim- An approximately 2:45 minute video (5006 frames at 30fps) was
pler form, Ag is the start time of the first eventi ; is the end time  shot of a person throwing a ball in the air. This video was then hand-
of the first eventBs is the start time of the second eveB is the processed using the VIPER annotation tools [4, 14] so that the ex-
end time of the second event afid is the defined size of the mov- trinsic motion of the relevant objects within the viewer could be ex-
ing window. Figure 3 shows these variables in relation to the pair ofracted without need for an object tracking system, so that the inaccu-
events 1 and 2 in that diagram. racies of a tracking system could be avoided. The tracking data was

Y =27




then converted into a suitable format and input into to the systenil. st ati cX(personA), noveDown(per sonA)
The system was run with a window size of 30 frames, a rule assoc®. st ati c(personA, ball), nakeCB(personA,
ation strength threshold of 0.85 and equation constangdk, set bal I')

at 3 and 0.1 respectively. 3. static(ball, personA), nakeCB(personA,

The list of rules that had been generated by the system after it bal | )
had completed processing every frame had 30 rules. None of thede st ati c(personA, ball), nakeCT(ball,
rules were compound rules. On inspection of the list of all association per sonA)
strengths, the majority of the associations were for compound events, st ati c(ball, personA), nmakeCT(ball,
and some were only marginally outside the threshold. per sonA)

Figure 4 shows those pairings of events that were above the threshi- st at i cX( per sonA), noveR ght ( per sonA)
old. These are a mixture of encouraging results with a couple of. noveUp(bal |l ), recedi ng(personA, ball)
anomalous results. For an effect that was reasonably expectesl, th& noveUp(bal | ), receding(ball, personA)
is the tendency of groupings of related concepts. For example, resulls novelLeft (bal | ), static(personA, ball)
2 to 5 indirectly imply that when static(A,B) holds that static(B,A)10. noveLeft (ball), static(ball, personA)
holds and that when an object A makes contact with the bottom bf. ermrer geB( per sonA, ball), breakCB(personA,
an object B, then object B has made contact with the top of object A. bal |)

The knowledge of these implications is not coded into the systemi2. ener geT(bal |, personA), breakCB(personA,
any capacity as each atomic event is independently searched for andbal | )
generated. 13. enmer geB( personA, ball), breakCT(ball,

The main encouraging results given the prediction made, is that of per sonA)
7 & 8 and 11 to 14. 7 & 8 show that the system is expecting for thet. ener geT(bal |, personA), breakCT(ball,
ball to be receding from the person when it is moving up, and 11 to per sonA)
14 show that the system expects that when the ball emerges from1be novelLeft (bal | ), approachi ng( personA, ball)
bounding box of the person, that it also breaks contact with the bok6. movelLeft (bal | ), approachi ng(ball, personA)
The majority of the anomalous results relate to the relations shot?. st ati c(personA, ball), nergeB(personA,
ing various types of stasis. A number of these can be explained by the bal | )
nature of the recorded video. The video recording was of a relativel@. st ati c(ball, personA), mergeB(personA,
low quality, which included the movement being jerky in places. The bal |)
prevalence of the static events could be attributed to this. This throh®. st ati c(personA, ball), nergeT(ball,
up the question of the utility of recording the stasis events at all. per sonA)
One interesting and unexpected rule is number 29. It was un&®@. st ati c(ball, personA), nergeT(ball,
pected as the person does not make many movements other than withper sonA)
the arms. This result is due to the person moving their arms up ab@# st ati cX(ball), staticY(ball)
their head to throw the ball up. This makes the bounding box of tl22. st ati cX( personA), staticY(ball)
person taller and so the centre point of the bounding box moves up3. st ati cX( per sonA), noveDown(bal | )
24. staticY(personA), noveDown(ball)

25. stati cX(personA), staticY(personA)
5 CONCLUSIONSAND FURTHER WORK 26. stati cX(personA), moveRi ght (bal |)

The results found in testing the system presented in this paper apgearSt ati cX(bal 1), moveRi ght (bal I')
to be inconclusive but encouraging. The best explanation that candde Stati cX(bal 1), noveDown(bal l)
offered for the lack of composite rules is that the video used w&S- ”DVG_UIO( personA), noveUp(ball)
too short to give the system the time that would be needed to et Stati cX(personA), noveleft (personA)
these rules gain a high enough association strength to be included.
The results are encouraging though, as several parts that would be
required for a full composite rule that would expect gravity to enact Figure4. The resultant pairs of events that the system considereel to b
on the ball are present. compound events after processing all the input data.
Further work in the short term would be to re-run the experiment
for a longer period of footage that is recorded with higher quality
equipment. From this, a more concrete conclusion could be formedFor instance, an animal can associate the sound of a rock slide with
Beyond that, the first area of improvement to the system wouldhe sight of falling rocks. It can also be learn to actively avoid be-
be to create a model of classical conditioning that models a greaténg hit by a rock. Only when both passive and active learning are to-
number of the phenomena in better quality. For instance, reacquisgether can the animal associate the sound of a rock slide with danger,
tion, blocking and inhibitory phenomena are not implemented in thewithout actually being caught in a rock slide. For another example,
model presented. consider using a hairdryer to move a toy sailing ship. For a planning
Within a wider field, the system could be adapted to also modebkystem to decide that course of action, the agent would need to have
operant (instrumental) conditioning, this could be done by adding impassively associated air currents with moving sailing ships and ob-
agent actions as events in the system along with reward and punisherved that the action of activating a hairdryer causes an air current.
ment events. The work by Touretzky et al. [29, 23] may be useful in During the development of the system, a question kept surfacing
assisting work towards this goal. about randomised outcomes to event sequences. How should the sys-
It can be observed that animals learn both passively and actively. tem deal with event sequences where the outcome event is not deter-
is argued that an effective agent must be able learn using both modesinistic but can be one of a set of outcomes? For an example, the



rolling of a die; here there is a definite sequence of events leading3]
up to the outcome. However there is not a single outcome but a def-
inite set of outcomes. For example, one would not expect a seven E94]
appear on a standard six-sided die. There are methods that do learn
stochastic event sequences [11] but these operate in a batch manner.
Ifitis possible for the system presented in this paper to learn stochas-
tic events, then the system would be capable of adapting its existing
hypotheses as new examples of the patterns of events are presented.
This system, when combined with an extension to account for instry5]
mental conditioning, could, in an unsupervised manner, dynamically
learn about how an agent expects its environment to behave, in a w&lf!
that allows adaptation to changes in that environment.
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