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Abstract. In order for an autonomous agent to interact rationally
within its environment, it must have knowledge of that environment.
Given that the wealth of knowledge that even small children evi-
dently quickly acquire, it is infeasible for an agent to be directly
encoded with much, if any, knowledge about the real world. This
means that it would be best to instead imbue the agent with the abil-
ity to learn the knowledge for itself. Given the non-triviality of the
problem of programming an agent with this ability, this paper looks
at a system that qualitatively replicates one of the main psycholog-
ical processes that biological agents use to learn about their envi-
ronment, that of classical conditioning. Initial testing of the system
shows results that are inconclusive but are encouraging. This leads to
the conclusion that further work is needed to ascertain the utility of
the approach.

1 INTRODUCTION

Classical Conditioning is a phenomenon of learning that begins dur-
ing an early stage of development, according to Piaget’s theory of
cognitive development [18]. Due to its prevalence within animals it
can be argued to be central to any agent’s development of its un-
derstanding of its environment. The theory of classical conditioning,
primarily introduced by Pavlov [17], allows for an agent to passively
learn about its environment. The principal mechanism of classical
conditioning is that of an agent learning to associate two stimuli that
the agent observes as repeatedly occurring in pairs. The pair of stim-
uli is usually one stimulus that causes a reflex action in the agent and
another stimulus that, if encountered in isolation prior to any pairing,
would not cause any reflex.

By considering examples of stimuli pairings that would become
associated through classical conditioning in a natural environment of
a biological agent, the utility of such a mechanism to the agent can
be seen. The smell of a particular food pairing with its taste and the
sight of fire pairing with the sensation of heat are two examples of
pairs of stimuli that a biological agent could conceivably learn to as-
sociate with one another in the course of its development in a natural
environment. These sorts of examples suggest that classical condi-
tioning can be seen as a mechanism to infer relationships between
stimuli that can be treated as two aspects of the same, more complex,
stimulus without the agent having any prior knowledge.

With this conception of classical conditioning in mind, it suggests
that the mechanisms of classical conditioning could be used to infer
relationships between pairs of events and so allowing the construc-
tion of patterns and sequences of events in an unsupervised manner
with no prior knowledge. This paper introduces a system that uses
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a model of classical conditioning in order for an agent to learn to
recognise increasingly complex sequences of events starting from a
limited set of observed geometrical changes within its environment.

The system that was developed to test and expand on this the-
ory, is comprised of three sub-systems that each provide data to one
another forming a feedback loop to allow the system to find increas-
ingly complex sets of patterns. The first sub-system reads a stream
of events that describe simple geometrical changes within the ob-
served scene and recognises patterns of those events that occur in
its database of event patterns. The second sub-system takes both the
base events and the instances of the recognised patterns and provides
pairings of event instances that satisfy temporal and event complex-
ity measures. The third sub-system takes the pairs of event instances
and provides a list of those event pairs that should be considered sig-
nificant to the first sub-system to use as its database of event patterns.
The third sub-system uses a model of classical conditioning to decide
which of the event pairs is significant.

The system was applied to the domain of visual extrinsic object
motion (i.e. object tracking) in order to evaluate the system. The test
that was done was that of a video of a person throwing a ball in the
air. The prediction was that given the data derived from this scene, the
system would infer that when the ball went up, that it would expect
that the ball would later come down. This would be evidence of the
system having developed a simplistic account of gravity.

This paper is structured as follows. Section 2 covers the back-
ground of the phenomena of classical conditioning and previous
work in the learning and recognition of event sequences. Section 3
looks at the workings of the system that learns the event sequences
and how this is done by modelling the mechanisms of classical condi-
tioning. The work done to evaluate the system is presented in section
4. Concluding remarks and potential future directions for this work
is then covered in section 5.

2 BACKGROUND

2.1 Classical conditioning

This theory is also known as Pavlovian Conditioning, named after
Ivan Pavlov, one of the primary people who introduced the theory.
Pavlov’s widely-known experiments with dogs, first published in En-
glish in 1927 [17] were among the first experiments to demonstrate
the collection of phenomena that are now collectively known as clas-
sical conditioning. Pavlov’s famous experiment conducted with dogs
was to create an audible tone (mostly a bell or metronome) immedi-
ately prior to the dogs having a substance directly placed into their
mouth that would cause the reflex action of salivation (usually meat
powder or a weak acid). This was done multiple times. The same au-
dible tone was then presented to the dogs without the presentation of



the substance. The result was that the dogs’ salivary response was ob-
servable with the tone even when substance was not presented. This
salivary response without the substance correlated with the number
of presentations of the tone where the substance was jointly pre-
sented. Pavlov used this experiment and others like it to derive a
theory of animal learning.

The derived theory of animal learning from this is that an arbi-
trary neutral stimulus can become associated with any non-neutral
stimulus, (i.e. a stimulus that triggers a reflex response) based on
their similar co-occurrence in time. Thus when the neutral stimulus
is presented alone, the subject gives a similar response to the uncon-
ditioned response, as it has come to expect that the non-neutral stim-
ulus will follow. In the literature around classical conditioning, the
names of the stimulus and the responses have particular names. The
neutral stimulus is known as the conditioned stimulus (CS) which
in Pavlov’s experiment corresponds to the generated tone. The non-
neutral stimulus is termed the unconditioned stimulus (US) which in
Pavlov’s experiment corresponds to the substance placed in the dogs’
mouths. The response to the non-neutral stimulus is called the uncon-
ditioned response (UR) which in Pavlov’s experiment corresponds to
the salivary reflex the dogs had to the substance. The response to the
neutral stimulus after the association had been formed is the condi-
tioned response (CR) which in Pavlov’s experiment corresponds to
the salivary response the dogs had to the tone when the substance
was not present.

There are several phenomena that have been observed in the inter-
action of CSs and USs. The most notable of these are: Acquisition,
Extinction, Reacquisition, Blocking, Secondary Conditioning, The
Inter-Stimulus Interval, Intermittent Stimulus Facilitation and Con-
ditioned Inhibition.

• Acquisition – Acquisition is the process whereby the CS becomes
associated with the US and thus the CR. This is the phenomenon
that was discussed above. The strength of the association (e.g.
measured by the amount of saliva produced) is a sigmoid-like
function of the number of reinforcements of the CS (i.e. the num-
ber of presentations of the CS where the US follows).

• Extinction – Extinction is the process whereby a CS that is al-
ready associated with the US is repeatedly and consistently pre-
sented to the subject without the US. The strength of the asso-
ciation is weakened and eventually returns to the same level of
association as observed prior to acquisition.

• Reacquisition – Reacquisition is the name given to the phe-
nomenon where a previously extinguished CS-US association is
acquired again. During reacquisition, it takes a fewer number of
reinforcements to re-acquire the same strength association than it
did the previous time that association was acquired.

• Blocking – Blocking is where a previously conditioned CS stops a
second CS from acquiring an association with the US (i.e. demon-
strating a CR) when the two CSs are reinforced simultaneously.

• Secondary Conditioning – Secondary Conditioning is where a
secondary CS can be conditioned to elicit a CR through reinforce-
ment only with a primary CS (where the primary CS has been
reinforced with the US). This effect is typically weak as the ex-
tinction of the primary CS will happen while the secondary CS is
being conditioned.

• The Inter-Stimulus Interval – The inter-stimulus interval is the
time between the start of the CS and the start of the US. This time
gives rise to several situations that affect the acquisition process.
This leads to two modes of acquisition, Delay and Trace condi-
tioning. Delay conditioning is where the CS overlaps or finishes

immediately before the US appears. Trace conditioning is where
the CS finishes with a period of inactivity before the US appears.
The inter-stimulus interval affects the rate of acquisition of a CS-
US association. The rate follows a curve where small intervals
are negligible, it then rapidly moves up to a peak and then gently
decays, similar to the curve of a log-normal distribution. The dif-
ference between delay and trace conditioning is that the latter has
a much faster decay after the peak.

• Intermittent Stimulus Facilitation – During conditioning, a
longer inter-stimulus interval gives a weaker CR. If a second CS
is presented between the first CS and the US, the CR of the first
CS is stronger.

• Conditioned Inhibition – Conditioned Inhibition refers to an ef-
fect where a CS can be made to create an inhibitory effect on a
CS-US association. This can be demonstrated in the following ex-
periment: two CSs,CS1 andCS2 are conditioned separately to
associate with the US. A third CS,CS0, is then non-reinforced si-
multaneously withCS1. PresentingCS0 simultaneously withCS2

will then not elicit a CR.

Ever since classical conditioning became widespread in the dis-
course of psychology, there has been numerous models of classical
conditioning that vary in complexity and fidelity. The most well-
known model is Rescorla and Wagner’s model that was presented in
1972 [22]. This model has served as the basis of later models [12, 30].
The Rescorla-Wagner model works by calculating a difference be-
tween the current association strength and what the new trial implies
it should be. The rate of learning is based on the salience of both the
CS and the US. More recently, there has been a trend to use artifi-
cial neural networks to model classical conditioning [26, 25, 10, 7].
Balkenius and Moŕen [2] presented a comparative study of a number
of modern models, including artificial neural network based models,
those based on Rescorla and Wagner’s model, among others.

2.2 Event sequence learning

Research into learning patterns of event sequences mainly comes
from two different fields of computer science research, namely data
mining and computer vision. Data mining applies the algorithms that
learn event sequences to discover important frequent sequences of
events from data that has a temporal component. For example, within
the domain of shopping, finding rules that state that certain items
have a tendency to be bought at the same time during particular
points in the day, or customers who bought one specific item later
return to buy another specific item. The main work in the area of
mining rules of association (independent of a temporal context) is
the work by Agrawal [1]. Work more directly involved with min-
ing associations in a temporal domain is the work of Mannila [13],
among others [31, 8, 19]. This work looks to mine sequential pat-
terns of events that appear frequently. This area of data mining as a
whole looks more on optimising time, space and I/O write complex-
ity rather than trying to optimise the output rules themselves. There-
fore this area, while being relevant in that it attempts to find the same
sort of output, is not fully relevant to the work of this paper as the
emphasis of the field is more on optimising computational resources
rather than trying to have the rules more closely match that of human
experience.

Computer vision research in this area more looks at optimising the
output itself against a calculated ground-truth with computational ef-
ficiency as a secondary goal. One of the influential works in this
field, though looks at recognition rather than direct learning is that



of Ivanov and Bobick [9] who presented the idea of finding patterns
as being akin to parsing a stochastic variant of a context-free gram-
mar. This allowed the powerful idea of looking for events at different
levels of abstraction, which is used in this current work. Another im-
portant work in the area is that of Stauffer and Grimson [28], who
extended their seminal work in object tracking [27] to learn clas-
sifications of activity sequences by applying statistical methods to
determine co-occurrences.

One approach that has been particularly successful in learning
event sequences is to use Inductive Logic Programming. Inductive
Logic Programming [15], or ILP, is a branch of machine learning
that, through a variety techniques, attempts to find generalised logi-
cal rules that explain a set of specific relations. Typically, the rules are
expressed as first-order horn clauses. While the technique has been
used in the data mining aspect of event sequence learning [19], it has
had a larger impact on the computer vision aspect. There have been
two prominent works that have used the ideas of ILP to learn event
sequences. The first of these is Needham et al. [16], in which the sys-
tem presented is able to learn from observation only, the rules to a
number of simple games, such as paper-scissors-stone. This was ac-
complished by using an ILP system (PROGOL) [15] to learn generic
rules that state the required action given a particular game state. The
second work is that of Fern et al. [6], which does not directly use
an ILP system, as the authors came to the conclusion that first-order
logic horn clauses was a poor representation to use for learning tem-
poral event sequences. However, many of the ideas of ILP were used
on a language specifically developed by the authors to represent tem-
poral events. This event system was then used to learn to recognise
a variety of verbs from the system being presented a video of that
action.

While the system does use first-order logic as to represent its
events, the system presented by this paper does not use ILP. The rea-
son for this is two-fold. Firstly, ILP systems in wide use are batch-
based programs, where the learning happens in a separate phase to
the recognition and all the data the system is required to learn from is
required before any recognition can be done. The second reason ILP
could not be used by the current system is that ILP requires examples
to be labelled as either positive or negative examples of a particular
concept, meaning ILP methods are supervised learning methods. The
system presented by this paper is an unsupervised system.

3 THE SYSTEM

The purpose of the system is to find sequences of events that are tem-
porally associated with each other by utilising the theories of classi-
cal conditioning. This utilisation of the theory of classical condition-
ing makes one important divergence from most theories of classi-
cal conditioning, namely that this system does not assume the need
for there to be a reflex-causing stimulus at all, and that a neutral
stimulus can gain association with another neutral stimulus via the
same mechanism. The reflex response to particular stimuli and the
response of stimuli conditioned to them allows for the effects of this
association to be measured.

There is evidence that supports this particular divergence. The first
piece of evidence is in the phenomenon of classical conditioning
known as secondary conditioning, as described in the previous sec-
tion. This supports the divergence by showing that an association
can occur between two conditioned stimuli and that there is noth-
ing inherent in the nature of non-neutral stimuli that causes this as-
sociation effect to happen. Another piece of supporting evidence is
in Rescorla’s substantiation of the S-S interpretation of condition-

ing [21]. The S-S (stimulus-stimulus) interpretation of conditioning
states that the CS becomes associated with the US, as opposed to the
S-R (stimulus-response) interpretation where the CS becomes asso-
ciated with the UR. This supports the divergence as it shows that it
is not a direct back-propagation of the response when two stimuli
become associated.

The remainder of this section describes how the system operates.
The system comprises of three component sub-systems that feed data
between each other. Figure 1 shows the modules and the data that is
passed between them.

Module 1:
Recognition

Module 2:
Association

Module 3:
Model
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Figure 1. The three sub-systems and the data flows between them.

As input to the system, the system takes a series of time-ordered
bounding boxes for each object of interest in the observed scene. In
the case of the experiment, this input data would be the bounding
boxes for the ball and the person. This is then processed to find ge-
ometrical changes, which are used as events to be passed to the first
sub-system.

The first sub-system takes the stream of basic events and com-
pares these events with a database comprising of event patterns to
be recognised as more complex events. The sub-system recognises
both positive and negative instances of these complex events. Posi-
tive complex event instances are those event patterns where a pattern
is observed. Negative complex event instances are those events where
the first half of a pattern is observed, but the latter half of the pattern
does not follow.

The second sub-system then identifies and outputs pairings of the
positive events whose temporal relationship satisfies a set of criteria
such that they can be said to happen together. Only those events that
have an equal pattern length are compared for reasons of efficiency.

The third sub-system has two input sources. The first input source
is the instances of the identified event pairings with the second input
source being the negative complex event instances. To these inputs,
the sub-system applies a functional model of classical conditioning.
In the model, instances from first input source are treated as positive
reinforcements and the instances from the second input are treated as
negative reinforcements. This results in a list of pairs of types event
instances (both complex and basic) together with a measure of their
association strength. The pairs that have a high association strength
measure are then fed back to the first sub-system. In the first sub-



system, these pairings are treated as a single composite event and
are added to the database of events that the first sub-system recog-
nises. Should the association strength of an event pairing that has
been allocated a composite event subsequently weaken such that it
is no longer considered to have a high association strength, its corre-
sponding composite event is removed from that same list of events.

3.1 The recognition sub-system

The recognition system recognises two types of event instance,
atomic events and composite events. Atomic event instances are gen-
erated through an analysis of processed sensor data provided as in-
put. The recognition system for atomic events is an expansion of the
system presented by dos Santos et al. [5]. Composite event instances
are generated by matching their component events against the list of
generated events. Composite events may have either atomic events or
composite events as their component events but for reasons of com-
putational efficiency, both component events of a composite event
must be of equal recursive depth. In other words, the depth of atomic
events is zero; the depth of composite events comprising of two
atomic events is one; and the depth of a composite event compris-
ing of two composite events that each both comprise of two atomic
events is two.

The sub-system outputs positive and negative instances of events.
Positive event instances are instances of event pairings that have been
observed to happen. Negative event instances are instances of event
pairings that were expected to happen but did not. An event is ex-
pected to happen when the first component event of a composite
event happens, but the second was not observed to happen. By those
definitions, all atomic events are positive event instances. The posi-
tive event instances are passed to the association sub-system whereas
the negative event instances are passed directly to the model of clas-
sical conditioning.

The external input to the recognition system used within this pa-
per is data that represents the extrinsic motion of objects within the
agent’s field of view (i.e. objects moving around a scene, rather than
the movement of sub-components of the object while the object itself
is static). This data is split into temporal frames. In each frame each
object is represented as a bounding box labelled with an identifier
unique to that object. It is expected that the system is general enough
to be applicable to different domains.

For each frame, a set of state information regarding the objects
present within the frame is generated. The set of state variables ini-
tially includes the x and y position of the centre of each box. The
remainder of the state variables are based on each pair of objects.
Each pair of objects has four state variables that describe their rela-
tionship. The first state variable is the distance between the centres of
each box. The next state variable represents one of the mutually ex-
clusive possible states of“A is coalescent with B”(which means that
the boxes of the two objects A and B overlap to the extent that the
two objects cannot be reliably distinguished),“A is externally con-
nected with B”(the two boxes are touching but do not significantly
overlap) or“A is disconnected with B”(the two boxes are distinctly
separate). These three possible states are based on a variant of the re-
gion connection calculus [20, 24]. The third state variable represents
one of the possible mutually exclusive states“A is to the left of B”,
“B is to the left of A” or “Both A and B are in-line in the X axis”. The
final state variable represents one of the possible mutually exclusive
states“A is above B”, “B is above A” or “Both A and B are in-line
in the Y axis”.

After these states have been generated for a frame, they are com-

• Approaching(X,Y) – X andY are approaching each other.
• Receding(X,Y) – X andY are receding from each other.
• Static(X,Y) – The distance separatingX and Y does not

change.
• MergeR(X,Y) – X is merging withY on the right ofY.
• MergeL(X,Y) – X is merging withY on the left ofY.
• MergeT(X,Y) – X is merging withY on the top ofY.
• MergeB(X,Y) – X is merging withY on the bottom ofY.
• EmergeR(X,Y) – X is emerging fromY on the right ofY.
• EmergeL(X,Y) – X is emerging fromY on the left ofY.
• EmergeT(X,Y) – X is emerging fromY on the top ofY.
• EmergeB(X,Y) – X is emerging fromY on the bottom ofY.
• MakeCR(X,Y) – X has made contact withY on the right ofY.
• MakeCL(X,Y) – X has made contact withY on the left ofY.
• MakeCT(X,Y) – X has made contact withY on the top ofY.
• MakeCB(X,Y) – X has made contact withY on the bottom ofY.
• BreakCR(X,Y) –X has broken contact withY on the right ofY.
• BreakCL(X,Y) – X has broken contact withY on the left ofY.
• BreakCT(X,Y) – X has broken contact withY on the top ofY.
• BreakCB(X,Y) – X has broken contact withY on the bottom of
Y.

• MoveRight(X) – X has moved right.
• MoveLeft(X) – X has moved left.
• MoveUp(X) – X has moved up.
• MoveDown(X) – X has moved down.
• Lost(X) – ObjectX has ceased to be detected.
• Found(X) – ObjectX has been newly detected.

Figure 2. The event types that the system uses to describe the transition
between the states of one frame and the states of the next for the domain of

extrinsic motion.

pared with the states of the previous frame. Based on the changes in
each state type, multiple atomic events are generated based on each
atomic event’s logical definition encoded within the system. Figure 2
lists the names and English definitions of the events that can be gen-
erated. Note that the last two events are generated by comparing the
lists of objects present in a frame rather than from any of the states
generated. These atomic events are those that have been identified as
being pertinent to the test domain of the extrinsic motion of objects.

The list of atomic events is then compared with the list of com-
posite event types (which is initially empty and is grown by the feed-
back from the model of classical conditioning sub-system). Where
an atomic event is the first event of a composite event that appears in
the list, an event instance of the type of the matched composite event
is generated and is marked as being a potential event (as the second
sub-event has yet to be observed). A potential event is an event thatis
believed to be currently ongoing but there is not the evidence to know
for sure. The generated potential event is then recursively compared
with the list of composite event types to generate further potential
events of increasing complexity.

After the potential events have been generated, they need to be
grown to so they can represent their true observed duration. The set of
both the atomic and potential events of the time in-between the cur-
rent and previous frame are compared with the events that were gen-
erated when the now-previous frame was the current frame. Where
the same event has been generated in both consecutive frames, the
event token of the event in the previous frame is extended to cover
the current time frame of the event and the duplicate newly generated
event instance is removed.



At the next stage, the list of potential events that are within a pre-
determined window of time before the current frame is compared
to the list of atomic events that were generated during the current
frame. If any of the atomic events are the second event of a poten-
tial event, the potential event instance in its entirety is replaced with
an actual event as that potential event has now been confirmed. The
set of newly confirmed potential events is then recursively compared
with the list of potential events to generate further confirmed events
of increasing complexity.

Where a potential event has yet to see its second event, but the
first event has finished and its finishing time was longer ago than the
width of the predetermined window of time before the current frame,
then the potential event is classed as a negative event instance and is
passed as such to the model of classical conditioning.

These stages outlined above are repeated for every subsequent pair
of frames provided as input. Note that the system has been designed
to be able to be used in an on-line manner. This on-line nature was
required so that the system may continuously learn new associations
throughout the lifetime of the agent.

3.2 The association sub-system

The purpose of the association system is to systematically record
each pairing of event instances that are temporally close enough to-
gether that, based on defined criteria, they can be said to happen to-
gether.

The criteria that define the notion of two events happening together
is based on the modes of conditioning that are a part of the inter-
stimulus interval phenomena of classical conditioning, namely delay
and trace conditioning. Delay conditioning notes that the period of
the conditioned stimulus can either stop at the start of, or overlap,
the period of the unconditioned stimulus. Whereas trace condition-
ing shows that end of the conditioned stimulus can have a short gap
before the start of the conditioned stimulus, though the longer the gap
the slower any association is formed. These ideas suggest for criteria
for the notion of two events happening together, either the two events
must temporally overlap or that the first event must have its finishing
point within a defined window of time before the beginning of the
second.

Due to these criteria, the association sub-system calculates its pair-
ings based on whether an event is starting, stopping or continuing. An
event instance is considered to be starting if the event that was gener-
ated in the current frame but not in the previous frame. An event in-
stance is considered to have stopped if was generated in the previous
frame but not in the current frame. An event instance is considered
to be continuing if it was generated in both the current frame and the
previous frame.

For every starting event that the recognition system generates, the
association system records the list of events that occurred within the
defined window of time before the current frame including those that
are ongoing. Where an event is ongoing, it is marked as so in the list.

As each event finishes, the association system looks for all the
occurrences of that event in the list of event pairings and notes its
finishing time against those listings, removing the marker that it is a
continuing event. As the parings get to the stage where both events
have finished, they are passed to the model of classical conditioning
sub-system.

Figure 3 depicts the moving window and 12 intervals of events.
Each interval is inclusive at both ends, so for instance, event interval
1 is over six time steps. The current time step is marked ast, meaning
that in the diagram, event 12 has not started happening yet. In the

diagram, event 8 is starting, event 7 is stopping and events 5 and
11 are continuing.W is the length of time of the window; again,
this is inclusive at both ends so that the system would generate an
pairing instance for events 8 and 9. In fact, for this diagram only 3
of all possible pairings of the events would not be generated, being
3&8, 3&12 and 9&12. The density of the events is for illustration
purposes and in the practical example of the test case, the events are
more sparse.
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Figure 3. A demonstration of the window in relation to a series of events.
Note that the vertical grouping of event intervals in the diagram is arbitrary.

3.3 The model of classical conditioning

The purpose of the model of classical conditioning as a sub-system is
to create a mapping from a list of instances of event pairings and a list
of negative event instances to a measure of the association strength
for that pairing each event type present. While the other parts of the
system also are responsible for modelling some of the phenomena
of classical conditioning, it is this sub-system that attempts to model
the main phenomena.

The model presented by this paper is a relatively simplistic model
that does not claim to be able to compete neither on fidelity nor on
complexity with those models that were developed as an exercise in
of themselves. This raises the question of why the effort was un-
dertaken to produce a new model at all, after all, if there are better
models already in existence, why was one of these models not im-
plemented instead? The reason is due to the divergence in the theory
stated at the beginning of this section, that neutral stimuli can as-
sociate together without the presence of a reflex-causing stimulus.
All of the models that have been encountered make the assumption
that there is a natural strength of reflex of the reflex-causing stimu-
lus that can be propagated across an association and is available to
be factored into the calculation of the association strength. This as-
sumption means that they cannot be used in this system. This is due
to the very definition of being neutral stimulus, they cause no reflex
action and so do not have any measure of the strength of reflex that
could be propagated. So the model in this system attempts to be a
proof-of-concept model.

The two inputs of the sub-system, the list of event pairings from
the association sub-system and the list of negative event instances
from the recognition sub-system, represent the twin notions of rein-
forcements and non-reinforcements. This sub-system treats them as
such in the modelling.



The model was primarily developed through examining and at-
tempting to approximate in a function, the response curves of the var-
ious phenomena as described in [2]. While this approach does not at-
tempt to provide any explanatory power, it does allow for the desired
responses. This approach has led to the production of three functions
that determine different aspects of the association strength. All three
functions are designed so that they perform in an iterative manner. In
other words, the functions output the amount the current association
strength (YN ) should be changed by (δY ), rather than calculating the
new association strength (YN+1) directly. This means that only the
current association strength needs to be stored in memory rather than
retaining all the inputs to each of the functions. Note that the associa-
tion strength is real-valued and constrained to the range0 ≤ Y ≤ 1.
The new association strength is updated according to equation 1.

YN+1 = YN + δY (1)

The first function, shown in equation 2, models the curve observed
in the acquisition phenomenon. This function is applied for each re-
inforcement of an event pairing. As described previously in the back-
ground section, the acquisition phenomenon follows a sigmoid-like
curve. In the equation,δX is the amount one reinforcement instance
is to be counted (this is normally equal to 1),k1 is a constant rep-
resenting the learning rate of acquisition andZ is the output of the
functions that model the effect of a change in the inter-stimulus in-
terval.

δY = Z
(1 − YN )ek1δX + YN − 1

ek1δX + YN + 2

YN
− 3

(2)

The next function, shown in equation 3, models the effect of ex-
tinction. This function is applied for each non-reinforcement (i.e. a
negative event instance) the sub-system receives for a given pair of
events. Note that the functions that model the effect of changes in
the inter-stimulus interval are not applied to the extinction function.
This is because in the case of a negative instance, the size of the
second event is not available, this means there is no inter-stimulus
interval to be measured and so the functions cannot be applied. [2]
did not provide any description of the extinction decay curve, how-
ever, Pavlov provided a small sample of data in lecture 4 of [17] that
suggests a linear decay. In the equation,δX is the amount one non-
reinforcement instance is to be counted (this is normally equal to 1)
andk2 is a constant representing the learning rate of extinction.

δY = −k2δX (3)

The final functions, are the functions that model the change in re-
sponse due to changes in the inter-stimulus interval. These functions
are only applied when dealing with reinforcements, as opposed to
non-reinforcements. The reason that these functions have not been
merged into equation 2 is due to the complexity of the equations.
To allow for these functions to alter the output of acquisition func-
tion, its output is constrained to0 ≤ Z ≤ 1. As described previ-
ously in the background section, the phenomena due to changing the
inter-stimulus interval suggests a curve similar to the curve of the
log-normal distribution. In these equations,Z is the factor that the
output of the acquisition function is to be multiplied by,I andJ are
intermediary values used to allow the function to be shown in a sim-
pler form,AS is the start time of the first event,AE is the end time
of the first event,BS is the start time of the second event,BE is the
end time of the second event andW is the defined size of the mov-
ing window. Figure 3 shows these variables in relation to the pair of
events 1 and 2 in that diagram.
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1

2
−

(
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0,
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)

2

)
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(
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W

)

2

)

(4)

J = max (0, (|BS − AS | − 2I)) (5)

Z =
2(2 − I)e

−2(ln(J)−1)2

(2+I)2

J(2 + I)
√

π

2

(6)

When an association strength goes above a certain defined thresh-
old, that pairing is added to the list of rules that the first sub-system
uses to recognise as a composite event. If a pairing drops below the
threshold through the extinction processes, that pairing is removed
from the list.

This feedback of information is one of the central ideas of the sys-
tem as it both allows for patterns of arbitrary length to be built up yet
does not allow any combinatorial explosion to take place. It also has
to be recognised that this can mean that the more complex the com-
posite event the system needs to learn, the more examples it requires.
This means that this list builds up simple representations first, creat-
ing the event representations that have a minimum description length
before updating them with longer ones as required. With the ability
to remove sequences that no longer have a strong enough evidence
base, the system is able to retract locally maximal artifacts that are
due to coincidences.

4 EVALUATING THE SYSTEM

The intention of the system was for it to passively learn about its
presented environment without any initial data regarding that envi-
ronment. To this end, the system was tested to see if it could find any
patterns of events that can be argued to be semantically important
with reference to the environment. The domain of extrinsic object
motion was chosen due to its prevalence within computer vision and
that it was the domain used by the work of dos Santos et al. [5] that
formed one of the bases of this work. The domain also allows for the
use of the principles of physical mechanics to form predictions.

The environment that was chosen was that of observing a person
repeatedly throwing a ball in the air and catching it. The prediction
was that the system would find a pattern of events that would repre-
sent the ball being thrown upwards followed by it falling downwards.
This would mean that the system has come to expect (and through
the system of potential events, generates expectations) that whenever
the ball moves upwards, it will at some point come down again, this
would be an expectation of gravity to enact on the ball.

Note that this application domain may appear to be similar to the
application domain presented Bennett et al. [3]. However, this is not
the case. The domain in Bennett et al. [3] used a basketball-like do-
main with multiple moving people as well as a moving ball as a
source of complex movement to test the capabilities of the presented
tracking system. The domain of the current paper uses a single, static
person and a moving ball to allow for a domain simple enough to
allow for a testable prediction to be made of what the system should
learn.

An approximately 2:45 minute video (5006 frames at 30fps) was
shot of a person throwing a ball in the air. This video was then hand-
processed using the ViPER annotation tools [4, 14] so that the ex-
trinsic motion of the relevant objects within the viewer could be ex-
tracted without need for an object tracking system, so that the inaccu-
racies of a tracking system could be avoided. The tracking data was



then converted into a suitable format and input into to the system.
The system was run with a window size of 30 frames, a rule associ-
ation strength threshold of 0.85 and equation constantsk1 andk2 set
at 3 and 0.1 respectively.

The list of rules that had been generated by the system after it
had completed processing every frame had 30 rules. None of these
rules were compound rules. On inspection of the list of all association
strengths, the majority of the associations were for compound events,
and some were only marginally outside the threshold.

Figure 4 shows those pairings of events that were above the thresh-
old. These are a mixture of encouraging results with a couple of
anomalous results. For an effect that was reasonably expected, there
is the tendency of groupings of related concepts. For example, results
2 to 5 indirectly imply that when static(A,B) holds that static(B,A)
holds and that when an object A makes contact with the bottom of
an object B, then object B has made contact with the top of object A.
The knowledge of these implications is not coded into the system in
any capacity as each atomic event is independently searched for and
generated.

The main encouraging results given the prediction made, is that of
7 & 8 and 11 to 14. 7 & 8 show that the system is expecting for the
ball to be receding from the person when it is moving up, and 11 to
14 show that the system expects that when the ball emerges from the
bounding box of the person, that it also breaks contact with the box.

The majority of the anomalous results relate to the relations show-
ing various types of stasis. A number of these can be explained by the
nature of the recorded video. The video recording was of a relatively
low quality, which included the movement being jerky in places. The
prevalence of the static events could be attributed to this. This throws
up the question of the utility of recording the stasis events at all.

One interesting and unexpected rule is number 29. It was unex-
pected as the person does not make many movements other than with
the arms. This result is due to the person moving their arms up above
their head to throw the ball up. This makes the bounding box of the
person taller and so the centre point of the bounding box moves up.

5 CONCLUSIONS AND FURTHER WORK

The results found in testing the system presented in this paper appear
to be inconclusive but encouraging. The best explanation that can be
offered for the lack of composite rules is that the video used was
too short to give the system the time that would be needed to see
these rules gain a high enough association strength to be included.
The results are encouraging though, as several parts that would be
required for a full composite rule that would expect gravity to enact
on the ball are present.

Further work in the short term would be to re-run the experiment
for a longer period of footage that is recorded with higher quality
equipment. From this, a more concrete conclusion could be formed.

Beyond that, the first area of improvement to the system would
be to create a model of classical conditioning that models a greater
number of the phenomena in better quality. For instance, reacquisi-
tion, blocking and inhibitory phenomena are not implemented in the
model presented.

Within a wider field, the system could be adapted to also model
operant (instrumental) conditioning, this could be done by adding in
agent actions as events in the system along with reward and punish-
ment events. The work by Touretzky et al. [29, 23] may be useful in
assisting work towards this goal.

It can be observed that animals learn both passively and actively. It
is argued that an effective agent must be able learn using both modes.

1. staticX(personA), moveDown(personA)
2. static(personA, ball), makeCB(personA,

ball)
3. static(ball, personA), makeCB(personA,

ball)
4. static(personA, ball), makeCT(ball,

personA)
5. static(ball, personA), makeCT(ball,

personA)
6. staticX(personA), moveRight(personA)
7. moveUp(ball), receding(personA, ball)
8. moveUp(ball), receding(ball, personA)
9. moveLeft(ball), static(personA, ball)

10. moveLeft(ball), static(ball, personA)
11. emergeB(personA, ball), breakCB(personA,

ball)
12. emergeT(ball, personA), breakCB(personA,

ball)
13. emergeB(personA, ball), breakCT(ball,

personA)
14. emergeT(ball, personA), breakCT(ball,

personA)
15. moveLeft(ball), approaching(personA, ball)
16. moveLeft(ball), approaching(ball, personA)
17. static(personA, ball), mergeB(personA,

ball)
18. static(ball, personA), mergeB(personA,

ball)
19. static(personA, ball), mergeT(ball,

personA)
20. static(ball, personA), mergeT(ball,

personA)
21. staticX(ball), staticY(ball)
22. staticX(personA), staticY(ball)
23. staticX(personA), moveDown(ball)
24. staticY(personA), moveDown(ball)
25. staticX(personA), staticY(personA)
26. staticX(personA), moveRight(ball)
27. staticX(ball), moveRight(ball)
28. staticX(ball), moveDown(ball)
29. moveUp(personA), moveUp(ball)
30. staticX(personA), moveLeft(personA)

Figure 4. The resultant pairs of events that the system considered to be
compound events after processing all the input data.

For instance, an animal can associate the sound of a rock slide with
the sight of falling rocks. It can also be learn to actively avoid be-
ing hit by a rock. Only when both passive and active learning are to-
gether can the animal associate the sound of a rock slide with danger,
without actually being caught in a rock slide. For another example,
consider using a hairdryer to move a toy sailing ship. For a planning
system to decide that course of action, the agent would need to have
passively associated air currents with moving sailing ships and ob-
served that the action of activating a hairdryer causes an air current.

During the development of the system, a question kept surfacing
about randomised outcomes to event sequences. How should the sys-
tem deal with event sequences where the outcome event is not deter-
ministic but can be one of a set of outcomes? For an example, the



rolling of a die; here there is a definite sequence of events leading
up to the outcome. However there is not a single outcome but a def-
inite set of outcomes. For example, one would not expect a seven to
appear on a standard six-sided die. There are methods that do learn
stochastic event sequences [11] but these operate in a batch manner.
If it is possible for the system presented in this paper to learn stochas-
tic events, then the system would be capable of adapting its existing
hypotheses as new examples of the patterns of events are presented.
This system, when combined with an extension to account for instru-
mental conditioning, could, in an unsupervised manner, dynamically
learn about how an agent expects its environment to behave, in a way
that allows adaptation to changes in that environment.
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Léon Bottou, and Michael L. Littman, pp. 505–512, Montreal, Canada,
(June 2009). ACM.

[12] Nicholas J. Mackintosh, ‘A theory of attention: Variations in the asso-
ciability of stimuli with reinforcement’,Psychological Review, 82(4),
276–298, (July 1975).

[13] Heikki Mannila, Hannu Toivonen, and A. Inkeri Verkamo, ‘Discovery
of frequent episodes in event sequences’,Data Mining and Knowledge
Discovery, 1(3), 259–289, (September 1997).

[14] Vladimir Y. Mariano, Junghye Min, Jin-Hyeong Park, Rangachar Kas-
turi, David Mihalcik, Huiping Li, David Doermann, and Thomas
Drayer, ‘Performance evaluation of object detection algorithms’, in
Proceedings of the 16th International Conference on Pattern Recogni-
tion, eds., Rangachar Kasturi, Denis Laurendeau, and Ching Y. Suen,
volume 3, pp. 965–969, Quebec City, QC, Canada, (August 2002).
IEEE.

[15] Stephen Muggleton, ‘Inverse entailment and progol’,New Generation
Computing, 13, 3–4, (December 1995).

[16] Chris J. Needham, Paulo E. Santos, Derek R. Magee, Vincent Devin,
David C. Hogg, and Anthony G. Cohn, ‘Protocols from perceptual
observations’,Artificial Intelligence, 167(1–2), 103–136, (September
2005).

[17] Ivan P. Pavlov,Conditioned Reflexes: An Investigation of the Physio-
logical Activity of the Cerebral Cortex, Oxford University Press, 1927.

[18] Jean Piaget, ‘The origins of intelligence in children’, in The Essential
Piaget, eds., Howard E. Gruber and J. Jacques Vonèche, 215–249, Basic
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