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This Lecture

— This lecture provides theoretical basics useful for follow-up lectures
on resonators and waveguides

— Introduction to Maxwell’s Equations
Sources of electromagnetic fields
. Differential form of Maxwell’s equation
Stokes’ and Gauss’ law to derive integral form of Maxwell’s equation
Some clarifications on all four equations
Time-varying fields = wave equation
. Example: Plane wave

—  Phase and Group Velocity
—  Wave impedance
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Maxwell’s Equations

A dynamical theory of the electromagnetic field

James Clerk Maxwell, F. R. S.

Philosophical Transactions of the Royal Society of London, 1865 155, 459-512,
published 1 January 1865
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Maxwell’s Equations

- Originally there were 20 equations

Three equations of magnetic force (Hy, H.U' H.)

da, da, dA,  dA, dA,  dA,
v g, = 8 g = 2 9
dy . " & dx YRR dy

uHy =

Three equations of electric currents  (Jx, [y, J2)

dH,  dH, . dH, dH. ) dH, dH, . B=uH=curl A (B)
e i e et et '
Hedrn) =tr (] + 32 ©
cur =4am| =4am —
Three equations of electromotive force  (Ey,Ey, E;) Contqj, dt }”

dA dA
E:,{L(E!XH}fEquS:(UxBJfaquﬁ, (D)

dy dz" dA, dé
h ) dt dx’

Er=p (B2 g2
o “( dr - Var

z A dA
-E_u=#(Hx$* ,3),71’,%

Codt Tt dt  dy

E=kD, (E)
dx dy dA; d¢

Three equations of electric elasticity (D, Dy, ;)

dD
Ex=kDy, E,=kD, and E,=kD.. f{ =]+ ar’ (A)
Three equations of electric resistance (o) -
pe+V-D=0 (G)
Ex=—g]x, E!,‘ =—ofy and E;=—gf.
Three equations of total currents ([, IJ”.,HU dpe + v. I =0. (H)

dDy db, dD:

L=k+—r l=l+ and JL=].+——.

¥
dt dt
One equation of free electricity  (pe)

dD,  dDy dD;_O
dx  dy | dz

Pet

One equation of continuity  (dpe/df)
ane &y, di

dr T dx Ty dz

The result is 20 equations for the 20 variables which are:

electmmagnetic momentum Ax Ay Az
magnetic intensity Hy Hy H,
electromotive force Ey Ey, E,
current due to true conduction I L, I
electric displacement Dy Dy D.
total current (including variation of displacement) I I J
quantity of free electricity Pa )

electric potential b

Taken from Longair, M. 2015 “...a paper ...I hold to be great guns’: a commentary on Maxwell (1865) - 8
‘A dynamical theory of the electromagnetic field”. Phil. Trans. R. Soc. A 373: 20140473, Jefferson Lab



Sources of Electromagnetic Fields

— Electromagnetic fields arise from 2 sources:

*  Electrical charge (Q) —>  Stationary charge creates electric field

_ d
. Electrical current (I = d—(g)

Moving charge creates magnetic field

— Typically charge and current densities are utilized in Maxwell’s equations
to quantify the effects of fields:

d : : : :
e p= i electric charge density — total electric charge per unit volume V

(orQ = [ff, pdV)

. I(S : . . .
e J= 11m% electric current density — total electric current per unit area S

S-0
%

(or I = [, J - dS)

— |If either the magnetic or electrical fields vary in time, both fields are
coupled and the resulting fields follow Maxwell’s equations
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Maxwell’s Equations

Differential Form

(1) \7-1_5:,0 or V-E
2) [F-B=0
(3) |FXE = 0B
Ot
@ |Fxije | o
=J ot

Together with the Lorentz force these equations
form the basic of the classic electromagnetism

p
€ Gauss’s law
0
Gauss’s law for magnetism
Faraday’s law of induction
Lo OE -
VXB=u,+ Hoeoa Ampere’s law

F=q(E+V x B) Lorentz Force

—

D - EoE
€o=permittivity of free space

—

B=,Ll0ﬁ

HLo=permeability of free space

p = electric charge density (As/m?3)

J = electric current density (A/m?)

D = electric flux density/displacement field (Unit: As/m?)

E = electric field intensity (Unit: V/m)

H = magnetic field intensity (Unit: A/m)

B = magnetic flux density (Unit: Tesla:Vs/mz)Jﬁﬂégnn Lab
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Divergence (Gauss’) Theorem

div

surface S

-

Integral of divergence of vector field (F) over volume V inside closed boundary S equals

-

outward flux of vector field (F) through closed surface S

S 0 0 0 0F, 0F, OF,
V.F_< 0y’ >.(Fx'Fy'FZ)_6x+ay+az

7 ﬂggun Lab



Curl (Stokes’) Theorem

curl boundary of surface &S
—N— e
. surface 5
ﬂ(Vxﬁ)-df:#((Vxﬁ)-ﬁ)ds= jéﬁ-d*
S S 2S —
. n

Integral of curl of vector field (F) over surface S equals

-

line integral of vector field (F) over closed boundary dS defined by surface S

VxF = = (Lo 22)p4(%x 25 (22 - Ok

- ady 0z 0z 0x 0z ady

NER I

xﬁ ng.) ~>
< Qe

0F,(x,y) 0F(xy) 7
0x ady

Curl vector is perpendicular to surface S ; k =7

e.g .F,=0 - Vxﬁ:(

dy

dF, (x, JoF, (x,

U( y(,g ) — 2 y)) dS = 74 F.dx + E,dy Green’s Theorem
X

S as

8 J;ﬁféngnn Lab



Example: Curl (Stokes’) Theorem

curl

JSJ(Vxﬁ).d§:j{;}g((vxﬁ),ﬁ)dsziﬁ.de

-

Integral of curl of vector field (F) over surface S equals

-

line integral of vector field (F) over closed boundary dS defined by surface S

boundary of surface 35

.a-"'"f-f

9 JTgffﬁélgnn Lab



Example: Curl (Stokes) Theorem

curl
'-M—> - - - -
Jf(VxF)-dS=#((|7xF)-ﬁ)dS= fF-d
S S as
Integral of curl of vector field (ﬁ) over surface S equals

-

line integral of vector field (F) over closed boundary dS defined by surface S

Example: Closed line integrals of various vector fields

$F-di=0 $F-di=2b-Fy $Fdi=2(b-Fx +aFy) | | $Fdl= 2(b-Fx +aFy) $F-di=0
1 oS Y [8S LS Y |55 v 5S
$Ed=-b-Fy $Edi= bF, $E-di= b-F, $F-di= 2b-1/2F, $Ed= 0
N 1. | 1 L \X A N A
: IO FRIN R et ==l
A g T X Y T (K
$Edl= b-F, $F-dl=b-F, $F.di=b-F, = $F-di= 20-112F, = i $Fdi=0 =
X N X X = X
No curl Some curl Stronger curl No net curl

10 Jygff;e_lgnn Lab



Maxwell’s Equations

Differential Form Integral Form

V-D

LRL = ﬁfpdv Gauss’s law
v

»
»

p } W(V-ﬁ)dl/:#ﬁ-ﬁ

Gauss’ theorem

Gauss’s law for magnetism

U
ool
[l
o
it i e |t i
wol}
Q.
Ly
|
o

FxF=_2 E.dl = f _B Faraday’s law of induction
ot ﬂ(Vxﬁ)~d§=fﬁ-d7 ot
5 35 N aS S
. . . aD } Stokes’ theorem ) Ampére’s |
VxH=]+— i - dl=Ui S+ﬂ— ds MPEresfaw
dS

- 5 ,o = electric charge density (C/m3—As/m3)

D = ek = electric current density (A/m?)

€g=permittivity of free space D electric flux density/displacement field (Unit: As/m?2)

. . E = electric field intensity (Unit: V/m)

B = poH H = magnetic field intensity (Unit: A/m)

Uo=permeability of free space B = magnetic flux density (Unit: Tesla=Vs/m?)

11 J;]Eﬁégnn Lab



Electric Flux & 15t Maxwell Equation

Definition of Electric Flux
1. Uniform field

Oy =E-S=E-AS=E-S -cos(6)[Vm]

- angle between field and normal vector
to surface matters

S

s

2. Non-Uniform field

- -

do, =E-dS=E-AdS

CDE:UE-d

S

Ly

Gauss: Integration over closed surface

#eoﬁ-d§=eo®5=jjjpdV=zqi
S 174 [

E_ .
€o N
L] n
. B =90 deqg.
Example: Metallic plate, ° I . f"s
' A h
assume only surface [ | J & E
. ; n
charges on one side |n :,- o ( G=0deg
. L]
||.l._..'l -] ll'.,“_.III
N lu—ﬁ[ﬁl deg.
_\‘,"‘C, n

rfinitely lomeg rmetal plate

# EOE : d§ = EOlElﬂ'R2 = z qi = Qcircle
S i

0. :circle S = TR?
__ Xcircle

El =
Bl €oTR? B
12 J;ffegnn Lab




Electric Flux & 15t Maxwell Equation

Definition of Electric Flux
1. Uniform field

Oy =E-S=E-AS=E-S -cos(6)[Vm]

- angle between field and normal vector
to surface matters

S

2. Non-Uniform field

- -

do, =E-dS=E-AdS

CDE:HE-d

S

Ly

Gauss: Integration over closed surface

#eoﬁ-d§=eo®5=jjjpdV=zqi
S 174 [

—
EoE

2 g ;D =
(DE -
€o
Example: Capacitor
\um
n @
1#3 =80 deg, é
|"r . v II'H"I
|I : E @
0 =0 deg. .
|| I!‘ L I|
II'\ A ® l'k !
- 0 =90 deg ]
E| =0 | 0
irfinitely leng metal plates
Qcircle _Qcircle
Q= + =0
€o €o

13 Jygff;e_lgnn Lab




Electric Flux & 15t Maxwell Equation

Examples of non-uniform fields

Point charge Q
E(r) e,
| ﬁ.‘-""//'goeg
: 7B
= vds._.

Integration of over closed spherical surface S

# EOE . dS = EOE(T)4T[7”2 =(Q
S

_ _ 2
; Sphere S = 4mr pointing out radially

Add charges

- -
. = — —
#EOE as ﬂjﬂdv E qi Qsphere
S V l
oo @ e ane &4 - 4 o tsans U I TR S Yy y—
— 3280 e A E o f e RSO
4E L BB SRR S ey N VI T JERY e Al M
+ 9 F QI I
-+ S bid X - Nt Ara- O N I R e
- % % %Ny X bR A= fF P A A A~
"01"\\¥‘0—\ff1444- ;;:::::::
- W w W 5 o= N e e - - B
- s N - MR S s i«"{‘*---
PR . L i:::::::::
- *a & 2 2 P 2K =¥ NN S - "‘.“\‘_"_
+ o PoF p PR SEEEEY VN W W e Lt R W R O
R o U PR GG R v S T O T 0 TR T T
3 $ L3 vy -
LSO (RS SORRC RN TS RSN SO Y I e A S - ‘ PR W T
NP PR g an g gt yenge— + g L e o e
O _ZiQi _q q —0 3q Qsphere
== — = Dp=—=
€0 € €0 €0 €0

Principle of Superposition holds:

E(r) = 1 it Tep+ 12 Topt s Togt oo
€odm \(re1 —1)2 ¢ (rez —1)? ¢ (r;3 —1)? ¢
14 JTgffegnn Lab



Magnetic Flux & 2" Maxwell Equation

Definition of Magnetic Flux
Uniform field

CDB=§°§=§'ﬁS=B'SCOS(9)[Wb=VS]

S

Gauss: Integration over closed surface

#ﬁ-d§=0 D=0
S

- There are no magnetic monopoles

- All magnetic field lines form loops
R R N W U W - b
B #uxevaxiKit?
YVyayb et tr?
NMAMN et F A
e T S N N e e d
i R N

A2 22 wed N NNX
12 Pt Rwayd YV VY

LAY

RRRK e rwld ) AR RN RS
Closed surface: What about this case?

Flux lines out = flux lines in Flux lines out > flux lines in ?

LR N e
Ceaer NN

- No. In violation of 2" Maxwell’s law, i.e.
integration over closed surface, no holes allowed

- Also: One cannot split magnets into separate

poles, i.e. there always willbea
15 North and South pole Js,fﬁeu%nn Lab



Magnetic Flux & 3™ Maxwell Equation

If integration path is not changing in time

/
- - d — - dq)B — -
jE-dl——aﬂB-dS——T = [f, B-dS
S S

- Change of magnetic flux induces an electric field along a closed loop

- Note: Integral of electrical field over closed loop may be non-zero,
when induced by a time-varying magnetic field

L

;-1 \\\bsll

- E ive force (EMF) E&: b _ RIS R
lectromotive ( ) W B(t=1t,) G
PRSI TE 7 S Bt S0 T N S S TR

LRI S PR - A S

. R \\\\\;,‘ BN s ¢ ¢y

NN R R R R B & & 4

E:fE°dl [V] \\\\5}'\_ > oy
Rttt S ',."vo-o-.-.

aS 4-0-0-.-"" "_c-c-o-o..

E . | . r'll: .,g,l‘v.\‘-

- equlivalent to ener er unit vevn R~
9 . gy p N e BER R % n
charge traveling once around loop R R
VAP S o e S P

TR TR T T T U R T B S I |

F RN TR N T S R T T SN O SN |

£ VN WS WSt ok g pugicpl

L T R U W SRR R R T R R R B |

L T N N U e o S R S I B )

Faraday’s law of induction

16 Jygfﬁ-e;gnn Lab



Magnetic Flux & 3™ Maxwell Equation

If integration path is not changing in time

/
- - d — - dq)B — -
jg.au_—aﬂB-als_—F = [f, B-dS
S S

- Change of magnetic flux induces an electric field along a closed loop
- Note: Integral of electrical field over closed loop may be non-zero,

. ' [ i i - Por ottt ottt
when induced by a time-varying magnetic field = * ' 111 il Il
E(t)bb&OJJt*\-Kt?r!r’rﬂ-o

. M T t 7?72~

- Flectromotive force (EMF) & AR RS e
:::u\\ttlt-—‘\tf)fﬁpaa-

-o-.\\\hl‘tr.~\!f’ﬁﬂ.n.-o.

:-o-‘\\'!\il‘\"li\flll.la-::

E - dl e ) f s
E:jég.dl [V] 1 % YESEE
o8 g s

- € equivalent to energy per unit = s Sl
. > o RARS X 352

charge traveling once around loop sanaa : 2

> o n 8L P ~ e

- a n x A} * eyl

- or voltage measured at end of open loop - > y
—l}'f’f A ‘;b)\o

it L

Faraday’s law of induction

’
17 s 0N Lab



Ampere's (circuital) Law or 4t Maxwell Equation

fﬁ di—jf* d§+J oD as
=)/ ot
S S S

conductlon current |
Example: )

Left hand side of equation:

f B.-dl= B(r) 2nir = gl
S

tangential to a circle at any
radius r of integration

- —

;B =uoH
; circumference C = 2nr

|IB(r)| = =—

Right hand side of equation:

Note that [f, J - dS is a surface integral, but S may

have arbitrary shape as long as 0S is its closed
boundary

lf.d§=

What if there is a capacitor? &

apad™®’

While current is still be flowing (charging capacitor):

capar’“d

18 J;ﬁerfnn Lab



Ampere's (circuital) Law or 4t Maxwell Equation

conduction current | \
Example: B .-~

Left hand side of equation:

f B.-dl= B(r) 2nir = gl
S

N — tangential to a circle at any
’ B = .UOH radius r of integration

; circumference C = 2nr

Hol
B = —
B =5

N

But one may also place integration surface S between
plates = current does not flow through surface here

ff.dfzo
S
While§¢0?

This is when the displacement field is required as a
corrective 2" source term for the magnetic fields

L L SRTAL
B “dr DT
S

: Gauss’s law ey

displacement current |

. .
’ Menyy Y B
] . SO 2.9
5 - R ) B/ )
S SR R
G G b vt B r —
Ay % =
19 TN, e
TeNIIERRST 2mr




Presence of Resistive Material

— - -> - al—j -
fH-dl= ﬂ]-dS + U—-dS
dt
as S S
— —
conduction current displacement current

- Inresistive materials the current density J is proportional to the electric field

f:cﬁ:

1.
—E
p

with o the electric conductivity (1/(Q-:m) or S/m), respectively
p=1/c the electric resistivity (Q-m)

- Generally o(w, T) is a function of frequency and temperature

20 B Eféngnn Lab



Time-Varying E-Field in Free Space

Assume charge-free, homogeneous, linear, and isotropic medium

We can derive a wave equation:

VxE = _a_B ;Faraday’s law of induction
ot
L o o8 0 .
VX(VXE)=—-VX—=——(VXB 1| curl
( ) ot at( )
>/ = a - al_j
V(V-E)—=V2E = —y— _)
(v-E) “ae\ 5
VxH=]+2 ; Ampére’s law

€0

; Gauss'’s law

-

) 0%E
V‘E —ue—=20

dot2

Homogeneous wave equation

; we presumed no charge

21

V2= A = Laplace operator

< curl of curl 7 x (17 XA)) = 17(17/1)) — 724
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Time-Varying B-Field in Free Space

- Assume charge-free, homogeneous, linear, and isotropic medium

- We can derive a wave equation:

VxB=u + ueaa—E ; Ampére’s law
t
Vx(VxB)=u(Vx])+ue\7x—=] |illcr
|7(|7 : §) — V2B = M(\? xf) — ‘ue—62§ scurlof curl 7 x (V x A) = V(V - A) — V%A
at?
; Faraday’s law
., 9%B - . .
V2B — ue 5z = 0 Similar homogeneous wave equation as for E-Field
t

; Gauss’s law for magnetism 7 - B =0
; no moving charge (/=0)

22 Jgﬂéngnn Lab



Time-Harmonic Fields

In many cases one has to deal with purely harmonic fields (~ei“’t)

.~  0%B = =
VB—H€W=O — VB = —uew“B
V2E OZE_ 0 —| V2E = —pew?E

He9e2 ~

23
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Example: Plane Wave in Free Space

/T(;’ t) = /TO Le—lkT, plwt _ /TO . pl(@t—k-F) |A(#,t)| = Re(4)

- kis a wave vector pointing in direction of wave propagation

- Wave is unconstrained in plane orthogonal to wave direction, i.e. has surfaces of constant phase
(wavefronts), wave vector k is perpendicular to the wavefront

wavefronts

- Magnitude of field (whether it is E or B) is constant everywhere on plane, but varies with time and
in direction of propagation

- One may align propagation of wave (k) with z-direction, which simplifies the equation

- In Cartesian coordinates: /T(x, y,z,t) = /To e lkz | plwt

) . . 21— 27 . 27 0Ayx aAy 04,
Applying homogeneous wave equation V<4 = —uew~A (with V<A = vz T vz T az2
2 - 1,2 - _ 2 - . 2 2 a)Z
VeiA = —k“A = —uew<A k“ = uew — k2=uea)2=7
- We know speed of light in linear medium: | v = NG Jﬂg.?nn Lab




Example: Plane Wave in Free Space

y y y
A A
= X / / - X » X
L//
"

linear polarization elliptical polarization circular polarization
(can be superposition of horizontally (superposition of two lineared  (similar to elliptical polarization
and vertically polarized wave polarizations with phase shift  but with phase shift of +- 90 deg.
with same amplitude and phase) between waves) between waves)

Y

Wikipedia CC BY-SA 2.0 JﬂEgnn Lab



Example: Plane Wave in Free Space

- Acknowledging that k is generally a vector: | g = -k,

2
- Inserting the just derived equation k? = — , i.e. a dependency with the angular frequency,

we can denote the relation of k with the wavelength

i anE\_ZnE\ f
v ' A ﬁx‘a
2 2nf
k_k_ y -2

k is the wavenumber [1/m]

_w 1 1
= k \/— m Phase velocity
dw 1
v E — - V . = . = .
I = Jk N ph Group velocity = Phase velocity = speed of light

26
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Wave Impedance

- Furthermore for plane wave, due to 3™ Maxwell equation we know that magnetic field is

orthogonal to electrical field and can derive for time-harmonic field:

- Considering the absence of charges in free space and 4™ Maxwell equation, we find:

P xE =l i
X = —|y— = —
“at e
. . OF S
VXH=¢—=cwE
ot

- We then can find for the electrical field components considering

. 5 (9F7  O0Fy\ .
,VxF—§%< M)z

_

- Similarly

- All field components are orthogonal to propagation direction
—> this means that the plane wave is a Transverse-Electric-Magnetic (TEM) wave

(G- ) (=)

e
N\

for the magnetic field considering

O0Hy . O0Hy .

aleaz]:

lewE = lewEyl + lewEy]

27

/

I

IE,
E = l[la)Hx
Ok, .
o7 = —luwH,
oH
a_Zy = —iS(UEx
0H
a_Zx = iea)Ey

J;ﬁféngnn Lab



Wave Impedance

- We obtained two sets of independent equations, that lead to two linearly independent solutions

1a) 1b) 2a) 2b)
0E, ol oH i 6E H. 0oH, g
— = —Uw — = —[EWw = [Uw — = lEW
9z MMy 9z 5 9z " oz y
- The wave equation for the electric field components yields:
2 2 N
OEx _ _pop, || ZEr L e | s el
0x2 x 0x?2 Y
- Utilizing the Ansatz: | Ex = Ex,e %2 + E, .e*k? || E, = E, ,e "% 4 E, e*kz
we can derive the corresponding magnetic field components:
Hy - (Ex’pe—ikz . Ex’re+ikz) ;1a) ( —lkZ yreﬂkz)
Uw
- Using the substitution Z = Ly
Uw
1
Hy (Expe tkz Exreﬂkz _ ( e—ikz _ yre+lkz)
7 = HY _ \f ’”0 ’”’” 7 = pew? | Zo= |2 ~120mQ ~ 376730
k \/ EW ’ —H €0

Z is the wave impedance in Ohms

28
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Appendix
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Presence of Dielectric Material

- For linear materials

€ = €€

H = €r€p

&. is relative permittivity

L, is relative permeability

- Particularly, the displacement current was conceived by Maxwell as the separation (movement)
of the (bound) charges due to the polarization of the medium (bound charges slightly separate

inducing electric dipole moment)

—

D

=e§=eoﬁ+ﬁ

P is polarization density (‘polarization’) is the density of
permanent and induced electric dipole moments

- For homogeneous, linear isotropic dielectric material

P= €o (e,,—1)1?7>

(e,—1) =c Ce= electric susceptibility

- For anisotropic dielectric material

e
P = z €o Ci,jEj
j

- Material may be non-linear, i.e. P is not proportional to E(=> hysteresis in ferroelectric materials)

- Generally P(w) is a function of frequency, since the bound charges cannot act immediately to
the applied field (c.(w) =2 this gives rise to losses

30 Jgfﬁén%:n Lab



Similar Expressions for Magnetization

- For magnetic fields the presence of magnetic material can give rise to a magnetization by
microscopic electric currents or the spin of electrons

- Example: If a ferromagnet (e.g. iron) is exposed to a magnetic field, the microscopic dipoles
align with the field and remain aligned to some extent when the magnetic field vanishes
(magnetization vector M) = a non-linear dependency between H and M occurs

- Magnetization may occur in directions other than that of the applied magnetic field

- The magnetization vector describes the density of the permanent or induced magnetic dipole
moments in a magnetic material

-

B=u0-ﬁ=uo(ﬁ+ﬁ)=u0(1+xv)ﬁ

- Herein X, is the magnetic susceptibility, which described whether is material if appealed or
retracted by the presence of a magnetic field

- The relative permeability of the material can then be denoted as:

wr =1+ X,

Jgﬂéngnn Lab



