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This Lecture

－ This lecture provides theoretical basics useful for follow-up lectures
on resonators and waveguides

－ Introduction to Maxwell’s Equations
• Sources of electromagnetic fields

• Differential form of Maxwell’s equation 

• Stokes’ and Gauss’ law to derive integral form of Maxwell’s equation

• Some clarifications on all four equations

• Time-varying fields  wave equation

• Example: Plane wave

－ Phase and Group Velocity

－ Wave impedance
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Maxwell’s Equations

A dynamical theory of the electromagnetic field

James Clerk Maxwell, F. R. S.
Philosophical Transactions of the Royal Society of London, 1865 155, 459-512, 
published 1 January 1865



Maxwell’s Equations

Taken from Longair, M. 2015 ‘...a paper ...I hold to be great guns’: a commentary on Maxwell (1865) 
‘A dynamical theory of the electromagnetic field’. Phil. Trans. R. Soc. A 373: 20140473.

- Originally there were 20 equations



Sources of Electromagnetic Fields
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－ Electromagnetic fields arise from 2 sources:

• Electrical charge (Q)

• Electrical current (𝐼 =
𝑑𝑄

𝑑𝑡
)

－ Typically charge and current densities are utilized in Maxwell’s equations 
to quantify the effects of fields:

• ρ = 
𝑑𝑄

𝑑𝑉
electric charge density – total electric charge per unit volume V

(or 𝑄 = 𝑉 𝜌 𝑑𝑉)

• 𝐽 = lim
𝑆→0

𝐼(𝑆)

𝑆
electric current density – total electric current per unit area S

(or 𝐼 =  𝑆
 𝐽 ∙ 𝑑  𝑆)

Stationary charge creates electric field

Moving charge creates magnetic field

－ If either the magnetic or electrical fields vary in time, both fields are 
coupled and the resulting fields follow Maxwell’s equations



Maxwell’s Equations
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𝛻 ∙ 𝐷 = 𝜌

𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡

𝛻 ∙ 𝐵 = 0

𝛻 × 𝐻 =  𝐽 +
𝜕𝐷

𝜕𝑡

𝐷 = 𝜖0𝐸

𝐵 = 𝜇0𝐻

Differential Form

D = electric flux density/displacement field (Unit: As/m2)

E = electric field intensity (Unit: V/m)

ρ = electric charge density (As/m3)

H = magnetic field intensity (Unit: A/m)

B = magnetic flux density (Unit: Tesla=Vs/m2)

J = electric current density (A/m2)

𝛻 ∙ 𝐸 =
𝜌

𝜖0

𝜖0=permittivity of free space

𝛻 × 𝐵 = 𝜇0  𝐽 + 𝜇0𝜖0
𝜕𝐸

𝜕𝑡

µ0=permeability of free space

or

or

Gauss’s law

Gauss’s law for magnetism

Ampère’s law

Faraday’s law of induction

(1)

(2)

(3)

(4)

 𝐹 = 𝑞(𝐸 + v × 𝐵)
- Together with the Lorentz force these equations

form the basic of the classic electromagnetism
Lorentz Force



Divergence (Gauss’) Theorem
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Integral of divergence of vector field (  𝐹) over volume V inside closed boundary S equals

outward flux of vector field (  𝐹) through closed surface S

 

𝑉

(𝛻 ∙  𝐹) 𝑑𝑉 =  

𝑆

(  𝐹 ∙  𝑛)𝑑𝑆 =  

𝑆

 𝐹 ∙ 𝑑  𝑆

{ div

𝛻 ∙  𝐹 =
𝜕

𝜕𝑥
,
𝜕

𝜕𝑦
,
𝜕

𝜕𝑧
∙ 𝐹𝑥, 𝐹𝑦 , 𝐹𝑧 =

𝜕𝐹𝑥
𝜕𝑥
+
𝜕𝐹𝑦

𝜕𝑦
+
𝜕𝐹𝑧
𝜕𝑧



 

𝑆

(
𝜕𝐹𝑦(𝑥, 𝑦)

𝜕𝑥
−
𝜕𝐹𝑥(𝑥, 𝑦)

𝜕𝑦
) 𝑑𝑆 =  

𝜕𝑆

𝐹𝑥𝑑𝑥 + 𝐹𝑦𝑑𝑦

Curl (Stokes’) Theorem
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𝑆

(𝛻 ×  𝐹) · 𝑑  𝑆 =  

𝑆

((𝛻 ×  𝐹) ∙  𝑛)𝑑𝑆 =  

𝜕𝑆

 𝐹 ∙ 𝑑 𝑙

Green’s Theorem

{ curl

𝒆. 𝒈. : 𝑭𝒛 = 𝟎 → 𝛻 ×  𝐹 =
𝜕𝐹𝑦(𝑥, 𝑦)

𝜕𝑥
−
𝜕𝐹𝑥(𝑥, 𝑦)

𝜕𝑦
 𝑘

Integral of curl of vector field (  𝐹) over surface S equals

line integral of vector field (  𝐹) over closed boundary dS defined by surface S

;  𝑘 =  𝑛Curl vector is perpendicular to surface S

𝛻 ×  𝐹 =

 𝑖  𝑗  𝑘
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝐹𝑥 𝐹𝑦 𝐹𝑧

=
𝜕𝐹𝑧

𝜕𝑦
−
𝜕𝐹𝑦

𝜕𝑧
 𝑖 +
𝜕𝐹𝑥

𝜕𝑧
−
𝜕𝐹𝑧

𝜕𝑥
 𝑗+
𝜕𝐹𝑦

𝜕𝑧
−
𝜕𝐹𝑥

𝜕𝑦
 𝑘



Example: Curl (Stokes’) Theorem
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Integral of curl of vector field (  𝐹) over surface S equals

line integral of vector field (  𝐹) over closed boundary dS defined by surface S

 

𝑆

(𝛻 ×  𝐹) · 𝑑  𝑆 =  

𝑆

((𝛻 ×  𝐹) ∙  𝑛)𝑑𝑆 =  

𝜕𝑆

 𝐹 ∙ 𝑑 𝑙

{curl



Example: Curl (Stokes) Theorem
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𝑆

(𝛻 ×  𝐹) · 𝑑  𝑆 =  

𝑆

((𝛻 ×  𝐹) ∙  𝑛)𝑑𝑆 =  

𝜕𝑆

 𝐹 ∙ 𝑑 𝑙

Example: Closed line integrals of various vector fields

{curl

Integral of curl of vector field (  𝐹) over surface S equals

line integral of vector field (  𝐹) over closed boundary dS defined by surface S

No curl Some curl Stronger curl No net curl



Maxwell’s Equations
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𝛻 ∙ 𝐷 = 𝜌

𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡

𝛻 ∙ 𝐵 = 0

𝛻 × 𝐻 =  𝐽 +
𝜕𝐷

𝜕𝑡

Differential Form Integral Form

D = electric flux density/displacement field (Unit: As/m2)

E = electric field intensity (Unit: V/m)

}

H = magnetic field intensity (Unit: A/m)

B = magnetic flux density (Unit: Tesla=Vs/m2)

J = electric current density (A/m2)

Gauss’ theorem

Stokes’ theorem

𝐷 = 𝜖0𝐸

𝐵 = 𝜇0𝐻

𝜖0=permittivity of free space

µ0=permeability of free space

 

𝑆

𝐷 ∙ 𝑑  𝑆 = 

𝑉

𝜌 𝑑𝑉

 

𝑆

𝐵 ∙ 𝑑  𝑆 = 0

 

𝜕𝑆

𝐸 ∙ 𝑑 𝑙 = − 

𝑆

𝜕𝐵

𝜕𝑡
∙ 𝑑  𝑆

 

𝜕𝑆

𝐻 ∙ 𝑑 𝑙 =  

𝑆

 𝐽 ∙ 𝑑  𝑆 + 

𝑆

𝜕𝐷

𝜕𝑡
∙ 𝑑  𝑆

Gauss’s law

Gauss’s law for magnetism

Ampère’s law

Faraday’s law of induction

 

𝑉

(𝛻 ∙  𝐹) 𝑑𝑉 =  

𝑆

 𝐹 ∙ 𝑑  𝑆

 

𝑆

(𝛻 ×  𝐹) · 𝑑  𝑆 =  

𝜕𝑆

 𝐹 ∙ 𝑑 𝑙

ρ = electric charge density (C/m3=As/m3)

}
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; 𝐷 = 𝜖0𝐸

1. Uniform field

Electric Flux & 1st Maxwell Equation

𝐸 = 𝐸 ∙  𝑆 = 𝐸 ∙  𝑛 𝑆 = 𝐸 ∙ 𝑆 ∙ 𝑐𝑜𝑠 𝜃 [𝑉𝑚]

; 𝑐𝑖𝑟𝑐𝑙𝑒 𝑆 = 𝜋𝑅2

 

𝑆

𝜖0𝐸 ∙ 𝑑  𝑆 = 𝜖0 𝐸 𝜋𝑅
2 = 

𝑖

𝑞𝑖 = 𝑄𝑐𝑖𝑟𝑐𝑙𝑒

𝐸 =
𝑄𝑐𝑖𝑟𝑐𝑙𝑒
𝜖0𝜋𝑅

2

- angle between field and normal vector
to surface matters

 

𝑆

𝜖0𝐸 ∙ 𝑑  𝑆 = 𝜖0 𝑬 = 

𝑉

𝜌 𝑑𝑉 = 

𝑖

𝑞𝑖

Gauss: Integration over closed surface

𝐸=
 𝑖 𝑞𝑖
𝜖0

2. Non-Uniform field

𝑑𝐸 = 𝐸 ∙ 𝑑  𝑆 = 𝐸 ∙  𝑛 𝑑𝑆

𝐸 = 

𝑆

𝐸 ∙ 𝑑  𝑆

Example: Metallic plate,
assume only surface 
charges on one side

Definition of Electric Flux
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Gauss: Integration over closed surface

𝐸 = 0

𝐸=
𝑄𝑐𝑖𝑟𝑐𝑙𝑒
𝜖0

+
−𝑄𝑐𝑖𝑟𝑐𝑙𝑒
𝜖0

= 0

𝐸 = 0

Example: Capacitor

Electric Flux & 1st Maxwell Equation

1. Uniform field

𝐸 = 𝐸 ∙  𝑆 = 𝐸 ∙  𝑛 𝑆 = 𝐸 ∙ 𝑆 ∙ 𝑐𝑜𝑠 𝜃 [𝑉𝑚]

- angle between field and normal vector
to surface matters

2. Non-Uniform field

𝑑𝐸 = 𝐸 ∙ 𝑑  𝑆 = 𝐸 ∙  𝑛 𝑑𝑆

𝐸 = 

𝑆

𝐸 ∙ 𝑑  𝑆

Definition of Electric Flux

; 𝐷 = 𝜖0𝐸

 

𝑆

𝜖0𝐸 ∙ 𝑑  𝑆 = 𝜖0 𝑬 = 

𝑉

𝜌 𝑑𝑉 = 

𝑖

𝑞𝑖

𝐸=
 𝑖 𝑞𝑖
𝜖0
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Integration of over closed spherical surface S

𝑬(𝑟) =
𝑄

𝜖04𝜋𝑟
2
∙  𝒓

; 𝑠𝑝ℎ𝑒𝑟𝑒 𝑆 = 4𝜋𝑟2

Examples of non-uniform fields

Point charge Q

 

𝑆

𝜖0𝐸 ∙ 𝑑  𝑆 = 𝜖0𝑬(𝑟)4𝜋𝑟
2 = 𝑄

 

𝑆

𝜖0𝐸 ∙ 𝑑  𝑆 = 

𝑉

𝜌 𝑑𝑉 = 

𝑖

𝑞𝑖 = 𝑄𝑠𝑝ℎ𝑒𝑟𝑒

𝐸=
 𝑖 𝑞𝑖
𝜖0
=
𝑞

𝜖0
+
−𝑞

𝜖0
= 0 𝐸=

3𝑞

𝜖0
=
𝑄𝑠𝑝ℎ𝑒𝑟𝑒

𝜖0

Principle of Superposition holds:

𝐸(𝑟) =
1

𝜖04𝜋

𝑞1
𝑟𝑐1 − 𝑟 2

 𝑟𝑐1+
𝑞2

𝑟𝑐2 − 𝑟 2
 𝑟𝑐2+

𝑞3
𝑟𝑐3 − 𝑟 2

 𝑟𝑐3+⋯

Electric Flux & 1st Maxwell Equation

𝐸 𝐸

pointing out radially

Add charges



𝐵 = 𝐵 ∙  𝑆 = 𝐵 ∙  𝑛 𝑆 = 𝐵 ∙ 𝑆 𝑐𝑜𝑠 𝜃 [𝑊𝑏 = 𝑉𝑠]
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Uniform field

Magnetic Flux & 2nd Maxwell Equation
Gauss: Integration over closed surface

𝑀= 0

Non-Uniform field

𝑑𝐵 = 𝐵 ∙ 𝑑  𝑆 = 𝐵 ∙  𝑛 𝑑𝑆

𝐵 = 

𝑆

𝐵 ∙ 𝑑  𝑆

Definition of Magnetic Flux

 

𝑆

𝐵 ∙ 𝑑  𝑆 = 0

- There are no magnetic monopoles
- All magnetic field lines form loops

𝐵

Closed surface:
Flux lines out = flux lines in

What about this case?
Flux lines out > flux lines in ?

- No. In violation of 2nd Maxwell’s law, i.e. 
integration over closed surface, no holes allowed

𝐵

- Also: One cannot split magnets into separate 
poles, i.e. there always will be a 
North and South pole
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𝜕𝑆

𝐸 ∙ 𝑑 𝑙 = −
𝑑

𝑑𝑡
 

𝑆

𝐵 ∙ 𝑑  𝑆 = −
𝑑𝐵
𝑑𝑡

Magnetic Flux & 3rd Maxwell Equation

𝐵(𝑡 = 𝑡1)

Faraday’s law of induction

If integration path is not changing in time

; 𝐵=  𝑆 𝐵 ∙ 𝑑
 𝑆

- Change of magnetic flux induces an electric field along a closed loop

- Note: Integral of electrical field over closed loop may be non-zero, 
when induced by a time-varying magnetic field

Ɛ =  

𝜕𝑆

𝐸 ∙ 𝑑 𝑙 [𝑉]

- Electromotive force (EMF) Ɛ:

- Ɛ equivalent to energy per unit
charge traveling once around loop 
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; 𝐵=  𝑆 𝐵 ∙ 𝑑
 𝑆

- Change of magnetic flux induces an electric field along a closed loop

 

𝜕𝑆

𝐸 ∙ 𝑑 𝑙 = −
𝑑

𝑑𝑡
 

𝑆

𝐵 ∙ 𝑑  𝑆 = −
𝑑𝐵
𝑑𝑡

Magnetic Flux & 3rd Maxwell Equation

Ɛ =  

𝜕𝑆

𝐸 ∙ 𝑑 𝑙 [𝑉]

- Electromotive force (EMF) Ɛ:

- Note: Integral of electrical field over closed loop may be non-zero, 
when induced by a time-varying magnetic field

𝐵(𝑡)

If integration path is not changing in time

- Ɛ equivalent to energy per unit
charge traveling once around loop 

- or voltage measured at end of open loop

Faraday’s law of induction



18

Ampère's (circuital) Law or 4th Maxwell Equation

- Note that  𝑆
 𝐽 ∙ 𝑑  𝑆 is a surface integral, but S may 

have arbitrary shape as long as ∂S is its closed 
boundary

- What if there is a capacitor?

 

𝑆

 𝐽 ∙ 𝑑  𝑆 = 𝐼

- While current is still be flowing (charging capacitor):

 

𝑆

 𝐽 ∙ 𝑑  𝑆 = 𝐼 =
𝑑𝑄

𝑑𝑡

 

𝜕𝑆

𝐻 ∙ 𝑑 𝑙 =  

𝑆

 𝐽 ∙ 𝑑  𝑆 + 

𝑆

𝜕𝐷

𝜕𝑡
∙ 𝑑  𝑆

; 𝐵 = 𝜇0𝐻

; 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐶 = 2𝜋𝑟

 

𝜕𝑆

𝐵 ∙ 𝑑 𝑙 = 𝑩 𝑟 2𝜋𝑟 = 𝜇0𝐼

𝐵Example:

tangential to a circle at any 
radius r of integration

{
conduction current I

|𝑩 𝑟 | =
𝜇0𝐼

2𝜋𝑟

Right hand side of equation:

Left hand side of equation:
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Ampère's (circuital) Law or 4th Maxwell Equation

 

𝜕𝑆

𝐻 ∙ 𝑑 𝑙 =  

𝑆

 𝐽 ∙ 𝑑  𝑆 + 

𝑆

𝜕𝐷

𝜕𝑡
∙ 𝑑  𝑆

; 𝐵 = 𝜇0𝐻

; 𝑐𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝐶 = 2𝜋𝑟

 

𝜕𝑆

𝐵 ∙ 𝑑 𝑙 = 𝑩 𝑟 2𝜋𝑟 = 𝜇0𝐼

|𝑩 𝑟 | =
𝜇0𝐼

2𝜋𝑟

{

displacement current I

 

𝑆

𝜕𝐷

𝜕𝑡
∙ 𝑑  𝑆 =

𝑑

𝑑𝑡
 

𝑆

𝐷 ∙ 𝑑  𝑆 =
𝑑𝑄

𝑑𝑡
= 𝐼𝐷 = 𝜖0

𝑑𝐸
𝑑𝑡

- But one may also place integration surface S between 
plates  current does not flow through surface here

 

𝑆

 𝐽 ∙ 𝑑  𝑆 = 0

𝑤ℎ𝑖𝑙𝑒 𝐵 ≠ 0 ?

- This is when the displacement field is required as a 
corrective 2nd source term for the magnetic fields

tangential to a circle at any 
radius r of integration

; Gauss’s law

𝐵

𝐸

|𝑩 𝑟 | =
𝜇0𝐼𝐷
2𝜋𝑟

{
conduction current I

𝐵Example:

Left hand side of equation:

 

𝜕𝑆

𝐻 ∙ 𝑑 𝑙 = 𝐼 + 𝜖0
𝑑𝐸
𝑑𝑡
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𝜕𝑆

𝐻 ∙ 𝑑 𝑙 =  

𝑆

 𝐽 ∙ 𝑑  𝑆 +  

𝑆

𝜕𝐷

𝜕𝑡
∙ 𝑑  𝑆

{
conduction current

𝐵

{

displacement current

- In resistive materials the current density J is proportional to the electric field

 𝐽 = 𝐸 =
1

𝜌
𝐸

with  the electric conductivity (1/(Ω·m) or S/m), respectively
=1/ the electric resistivity (Ω·m)

- Generally (ω, T) is a function of frequency and temperature

Presence of Resistive Material
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- We can derive a wave equation:

Time-Varying E-Field in Free Space

𝛻 × 𝐸 = −
𝜕𝐵

𝜕𝑡
;Faraday’s law of induction

𝛻 × 𝛻 × 𝐸 = −𝛻 ×
𝜕𝐵

𝜕𝑡
= −

𝜕

𝜕𝑡
𝛻 × 𝐵

; curl of curl  𝛻 × 𝛻 ×  𝐴 = 𝛻 𝛻 ∙  𝐴 − 𝛻2  𝐴

; || curl

𝛻 𝛻 ∙ 𝐸 − 𝛻2𝐸 = −𝜇
𝜕

𝜕𝑡
 𝐽 +
𝜕𝐷

𝜕𝑡

; Ampère’s law

𝛻
𝜌

𝜖0
− 𝛻2𝐸 = −𝜇

𝜕

𝜕𝑡
𝐸 + 𝜖

𝜕𝐸

𝜕𝑡

; Gauss’s law ;  𝐽 = 𝐸

𝛻2= Δ = Laplace operator

𝛻2𝐸 − 𝜇𝜖
𝜕2𝐸

𝜕𝑡2
= 0

; we presumed no charge

- Assume charge-free, homogeneous, linear, and isotropic medium

; 𝛻 × 𝐻 =  𝐽 +
𝜕𝐷

𝜕𝑡

Homogeneous wave equation
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Time-Varying B-Field in Free Space

; Ampère’s law

𝛻 × 𝛻 × 𝐵 = 𝜇 𝛻 ×  𝐽 + 𝜇𝜖 𝛻 ×
𝜕𝐸

𝜕𝑡

𝛻 𝛻 ∙ 𝐵 − 𝛻2𝐵 = 𝜇 𝛻 ×  𝐽 − 𝜇𝜖
𝜕2𝐵

𝜕𝑡2

; Faraday’s law

𝛻 × 𝐵 = 𝜇 𝐽 + 𝜇𝜖
𝜕𝐸

𝜕𝑡

; Gauss’s law for magnetism 𝛻 ∙ 𝐵 = 0 

; no moving charge (  𝐽=0)

𝛻2𝐵 − 𝜇𝜖
𝜕2𝐵

𝜕𝑡2
= 0 Similar homogeneous wave equation as for E-Field

- We can derive a wave equation:

- Assume charge-free, homogeneous, linear, and isotropic medium

; || curl

; curl of curl  𝛻 × 𝛻 ×  𝐴 = 𝛻 𝛻 ∙  𝐴 − 𝛻2  𝐴
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- In many cases one has to deal with purely harmonic fields (~𝑒𝑖𝜔𝑡)

Time-Harmonic Fields

𝛻2𝐸 − 𝜇𝜖
𝜕2𝐸

𝜕𝑡2
= 0

𝛻2𝐵 = −𝜇𝜖𝜔2𝐵

𝛻2𝐸 = −𝜇𝜖𝜔2𝐸

𝛻2𝐵 − 𝜇𝜖
𝜕2𝐵

𝜕𝑡2
= 0



Example: Plane Wave in Free Space

 𝐴( 𝑟, 𝑡) =  𝐴0 ∙ 𝑒
−𝑖 𝑘∙  𝑟∙ 𝑒𝑖𝜔𝑡 =  𝐴0 ∙ 𝑒

𝑖(𝜔𝑡−𝑘∙  𝑟)

- k is a wave vector pointing in direction of wave propagation

 𝐴( 𝑟, 𝑡) = 𝑅𝑒  𝐴

- Wave is unconstrained in plane orthogonal to wave direction, i.e. has surfaces of constant phase 
(wavefronts), wave vector k is perpendicular to the wavefront 

- In Cartesian coordinates:  𝐴(𝑥, 𝑦, 𝑧, 𝑡) =  𝐴0 ∙ 𝑒
−𝑖𝑘𝑧 ∙ 𝑒𝑖𝜔𝑡

- One may align propagation of wave (k) with z-direction, which simplifies the equation

𝛻2  𝐴 = −𝑘2  𝐴 = −𝜇𝜖𝜔2  𝐴

- Magnitude of field (whether it is E or B) is constant everywhere on plane, but varies with time and 
in direction of propagation

𝑘2 = 𝜇𝜖𝜔2

𝘷 =
1

𝜇𝜖

- Applying homogeneous wave equation 𝛻2  𝐴 = −𝜇𝜖𝜔2  𝐴 (with 𝛻2  𝐴 =
𝜕𝐴𝑥

𝜕𝑥2
+
𝜕𝐴𝑦

𝜕𝑦2
+
𝜕𝐴𝑧

𝜕𝑧2

- We know speed of light in linear medium:

𝑘2 = 𝜇𝜖𝜔2 =
𝜔2

𝘷2



Example: Plane Wave in Free Space

Wikipedia CC BY-SA 2.0
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Example: Plane Wave in Free Space

k is the wavenumber [1/m]

𝘷𝑔𝑟 ≡
𝑑𝜔

𝑑𝑘
=
1

𝜇𝜖
= 𝘷𝑝ℎ

𝘷𝑝ℎ ≡
𝜔

𝑘
=
1

𝜇𝜖
= 𝑐0

1

𝜇𝑟𝜖𝑟

𝑘 = 𝑘 ∙  𝑘𝑧

Phase velocity

Group velocity

𝑘 =
2𝜋

λ
=
2𝜋𝑓

𝘷

- Acknowledging that k is generally a vector:

𝑘 =
2𝜋𝑓

𝘷
 𝑘𝑧 =

2𝜋

λ
 𝑘𝑧

- Inserting the just derived equation 𝑘2 =
𝜔2

𝘷2
, i.e. a dependency with the angular frequency, 

we can denote the relation of k with the wavelength

= Phase velocity = speed of light
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Wave Impedance

;𝛻 ×  𝐹 =
𝜕𝐹𝑧

𝜕𝑦
−
𝜕𝐹𝑦

𝜕𝑧
 𝑖 +
𝜕𝐹𝑥

𝜕𝑧
−
𝜕𝐹𝑧

𝜕𝑥
 𝑗+
𝜕𝐹𝑦

𝜕𝑧
−
𝜕𝐹𝑥

𝜕𝑦
 𝑘

𝜕𝐻𝑥
𝜕𝑧
= 𝑖𝜀𝜔𝐸𝑦

𝜕𝐻𝑦

𝜕𝑧
= −𝑖𝜀𝜔𝐸𝑥−

𝜕𝐻𝑦

𝜕𝑧
 𝑖 +
𝜕𝐻𝑥

𝜕𝑧
 𝑗 = 𝑖𝜀𝜔𝐸 = 𝑖𝜀𝜔𝐸𝑥  𝑖 + 𝑖𝜀𝜔𝐸𝑦  𝑗

- Similarly for the magnetic field considering

- All field components are orthogonal to propagation direction
 this means that the plane wave is a Transverse-Electric-Magnetic (TEM) wave

𝛻 × 𝐸 = −𝜇
𝜕𝐻

𝜕𝑡
= −𝜇𝜔𝐻

𝛻 × 𝐻 = 𝜀
𝜕𝐸

𝜕𝑡
= 𝜀𝜔𝐸

- We then can find for the electrical field components considering

- Considering the absence of charges in free space and 4th Maxwell equation, we find:

- Furthermore for plane wave, due to 3rd Maxwell equation we know that magnetic field is 
orthogonal to electrical field and can derive for time-harmonic field:

−
𝜕𝐸𝑦

𝜕𝑧
 𝑖 +
𝜕𝐸𝑥

𝜕𝑧
 𝑗 = −𝑖𝜇𝜔𝐻 = −𝑖𝜇𝜔𝐻𝑥  𝑖 − 𝑖𝜇𝜔𝐻𝑦  𝑗 𝜕𝐸𝑥

𝜕𝑧
= −𝑖𝜇𝜔𝐻𝑦

𝜕𝐸𝑦

𝜕𝑧
= 𝑖𝜇𝜔𝐻𝑥
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Wave Impedance

𝜕𝐸𝑥
𝜕𝑧
= −𝑖𝜇𝜔𝐻𝑦

𝜕𝐸𝑦

𝜕𝑧
= 𝑖𝜇𝜔𝐻𝑥

𝜕𝐻𝑥
𝜕𝑧
= 𝑖𝜀𝜔𝐸𝑦

𝜕𝐻𝑦

𝜕𝑧
= −𝑖𝜀𝜔𝐸𝑥

- We obtained two sets of independent equations, that lead to two linearly independent solutions

;𝛻2  𝐴 =
𝜕𝐴𝑥

𝜕𝑥2
+
𝜕𝐴𝑦

𝜕𝑦2
+
𝜕𝐴𝑧

𝜕𝑧2
𝜕2𝐸𝑥
𝜕𝑥2

= −𝑘2𝐸𝑥
𝜕2𝐸𝑦

𝜕𝑥2
= −𝑘2𝐸𝑦

- The wave equation for the electric field components yields: 

- Utilizing the Ansatz: 𝐸𝑥 = 𝐸𝑥,𝑝𝑒
−𝑖𝑘𝑧 + 𝐸𝑥,𝑟𝑒

+𝑖𝑘𝑧 𝐸𝑦 = 𝐸𝑦,𝑝𝑒
−𝑖𝑘𝑧 + 𝐸𝑦,𝑟𝑒

+𝑖𝑘𝑧

𝐻𝑥 = −
𝑘

𝜇𝜔
𝐸𝑦,𝑝𝑒

−𝑖𝑘𝑧 − 𝐸𝑦,𝑟𝑒
+𝑖𝑘𝑧𝐻𝑦 =

𝑘

𝜇𝜔
𝐸𝑥,𝑝𝑒

−𝑖𝑘𝑧 − 𝐸𝑥,𝑟𝑒
+𝑖𝑘𝑧

1a) 2a) 2b)1b)

;2a);1a)

we can derive the corresponding magnetic field components:

𝑍 =
𝜇𝜔

𝑘
=
𝜇𝜔

𝜇𝜖𝜔
=
𝜇

𝜖
≈
𝜇0
𝜀0

𝜇𝑟
𝜀𝑟

; 𝑘2 = 𝜇𝜖𝜔2

- Using the substitution 𝑍 =
𝑘

𝜇𝜔
:

𝑍0 =
𝜇0
𝜀0
≈ 120𝜋 Ω ≈ 376.73 Ω

vacuum impedanceZ is the wave impedance in Ohms

𝐻𝑦 =
1

𝑍
𝐸𝑥,𝑝𝑒

−𝑖𝑘𝑧 − 𝐸𝑥,𝑟𝑒
+𝑖𝑘𝑧 𝐻𝑥 = −

1

𝑍
𝐸𝑦,𝑝𝑒

−𝑖𝑘𝑧 − 𝐸𝑦,𝑟𝑒
+𝑖𝑘𝑧
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Presence of Dielectric Material
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- For linear materials

𝜖 = 𝜖𝑟𝜖0

𝜇 = 𝜖𝑟𝜖0

r is relative permittivity

r is relative permeability

- Particularly, the displacement current was conceived by Maxwell as the separation (movement) 
of the (bound) charges due to the polarization of the medium (bound charges slightly separate 
inducing electric dipole moment)

𝐷 = 𝜖𝐸 = 𝜖0𝐸 + 𝑃

- For homogeneous, linear isotropic dielectric material

𝑃 = 𝜖0(𝜖𝑟−1)𝐸 (𝜖𝑟−1) = c𝑒 c𝑒= electric susceptibility

- For anisotropic dielectric material  𝑃 = 

𝑗

𝜖0 c𝑖,𝑗𝐸𝑗

- Material may be non-linear, i.e. P is not proportional to E( hysteresis in ferroelectric materials)

- Generally P(ω) is a function of frequency, since the bound charges cannot act immediately to 
the applied field (c𝑒(ω)  this gives rise to losses

P is polarization density (‘polarization’) is the density of 
permanent and induced electric dipole moments



Similar Expressions for Magnetization

𝐵 = 𝜇0 ∙ 𝐻 = 𝜇0 𝐻 +𝑀 = 𝜇0 1 + 𝒳𝑣 𝐻

- For magnetic fields the presence of magnetic material can give rise to a magnetization by 
microscopic electric currents or the spin of electrons

- The magnetization vector describes the density of the permanent or induced magnetic dipole 
moments in a magnetic material

- Herein 𝒳𝑣 is the magnetic susceptibility, which described whether is material if appealed or 
retracted by the presence of a magnetic field 

- The relative permeability of the material can then be denoted as:

𝜇𝑟 = 1 +𝒳𝑣

- Magnetization may occur in directions other than that of the applied magnetic field

- Example: If a ferromagnet (e.g. iron) is exposed to a magnetic field, the microscopic dipoles 
align with the field and remain aligned to some extent when the magnetic field vanishes 
(magnetization vector M)  a non-linear dependency between H and M occurs 


