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Abstract

DBSCAN is a classical clustering algorithm, which can identify different shapes and isolate
noisy patterns from a dataset. Despite the above advantages, the bottleneck of DBSCAN
is its computation time for high dimensional datasets. This work, thus, presents a simple
and fast method to improve the efficiency of DBSCAN algorithm. We reduce the execution
time in two aspects. The first one is to reduce the number of points presented to DBSCAN
and the second one is to apply the HNSW technique instead of the linear search structure
for improving its efficiency. The experimental results show that our proposed algorithm
can greatly improve the clustering speed without losing or even obtaining better accuracy,
especially for large-scale datasets.

Keywords: Optimization of Neighborhood Query, Big Data, Density-based Clustering,
HNSW, DBSCAN

1. Introduction

Clustering is one of the major methods that have been intensively studied and widely used
in data mining and knowledge discovery for decades (Xu and Tian, 2015). In contrast to
supervised approaches (e.g., classification algorithms) (Caruana and Niculescu-Mizil, 2006),
clustering is an unsupervised technique (Jain et al., 1999) that does not rely on any prior
knowledge or ground truth of the data. To be more specific, clustering is able to group
the similar property data into the same cluster to achieve high similarity within clusters
and low similarity between clusters. As a result, the clustering technique is a major tool in
many engineering and scientific applications, including image analysis (Deutsch and Horn,
2018; Yu et al., 2014), document analysis (Carullo et al., 2009), and so forth (Xie et al.,
2018).

Among the clustering algorithms, Density Based Spatial Clustering of Applications with
Noise (DBSCAN) (Ester et al., 1996) is the pioneer of density-based clustering technique
which can discover clusters of arbitrary shapes and handle noise or outliers effectively.
In DBSCAN, the density is associated with a point obtained by the number of neighbor
points within a given radius of the range. The clusters will be construct according to two
parameters density threshold MinPts and € range, when the density threshold of a point
is higher than a given value. DBSCAN mainly consists of two steps. The first step is to
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execute the e-neighbor (region) query for each data point in a given dataset. This step
results in O(n?) time complexity, where n is number of data points. The second step is to
group the data points into different clusters based on the distance among them. As the
dimensional and volume of data increase, the efficiency of DBSCAN in big data becomes
a bottleneck. To address this problem, many algorithms (Ester et al., 1996; Mahran and
Mahar, 2008; Kim et al., 2019; Chen et al., 2018; He et al., 2017; Tsai et al., 2009; Kumar
and Reddy, 2016; Mai et al., 2016; Rodriguez and Laio, 2014; Bryant and Cios, 2017; Sarma
et al., 2019) have been proposed to enhance the performance of DBSCAN.

For example, a couple of approximate algorithms (Mahran and Mahar, 2008; Kim et al.,
2019) were proposed to optimize the runtime performance of DBSCAN in low-dimensional
problems. For high-dimensional problems, sampling-based DBSCAN algorithms (Chen
et al., 2018; He et al., 2017; Tsai et al., 2009) were introduced based on approximate neigh-
borhood query computations. Although the above methods can improve the clustering
efficiency, they compromise the clustering quality. Recently, a couple of algorithms (Kumar
and Reddy, 2016; Mai et al., 2016; Rodriguez and Laio, 2014) have been reported to accel-
erate the neighbor query while preserving the clustering quality. They can be extended to
large datasets by reducing time complexity using spatial index structures like kd-trees (Ro-
driguez and Laio, 2014) for finding neighbors of a pattern. Furthermore, the G-DBSCAN
(Kumar and Reddy, 2016), a fast DBSCAN clustering algorithm, was proposed. It uses
group to optimize neighborhood queries, and eliminates noise in advance in the process of
constructing clusters to reduces the number of distance calculations. To optimize the abil-
ity of handling large variations in cluster density (heterogeneous density), RNN-DBSCAN
(Bryant and Cios, 2017) was proposed. It is a new density-based clustering algorithm that
uses reverse nearest neighbor counts as an estimation of observation density. It only uses a
only one single parameter (choice of k nearest neighbors) to determine the density of each
point, which reduces the complexity of the algorithm and improves the quality of clustering.

The above algorithms are utilised for optimizing the clustering quality of DBSCAN. The
approximate DBSCAN algorithm was first proposed to optimize the running time efficiency
of DBSCAN, and they improved the running time of the algorithm. But when considering
high-dimensional data sets, these algorithms are not very applicable. Based on the above
studies, a sampling-based method is proposed to improve the efficiency fo DBSCAN in
large-scale datasets. A common problem for clustering algorithm is that when the running
rate is relatively increased in a high-dimensional dataset, the quality of clustering cannot be
guaranteed. Therefore, in order to ensure the quality of the clustering results and increase
the speed, some exact DBSCAN algorithms have been proposed. Based on the above
research, we propose a novel, simple but fast DBSCAN algorithm, A~-DBSCAN. It can
accelerate the algorithm’s neighbor query while ensuring the quality of clustering, making
it suitable for high-dimensional problems. The main contributions of this article are as
follows:

(1) High efficiency. In the e-neighbor region query, empty points are deleted in advance
to reduce the redundant calculation, which improve the running efficiency of the algorithm
and provide the exact DBSCAN clusters.

(2) Suitable for high-dimensional problems. Our proposed algorithm can not only speed
up indexing but also make it suitable for solving high-dimensional problems by using Hierar-
chical Navigable Small World (HNSW) (Malkov and Yashunin, 2018) as an index structure.
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The rest of this paper is organized as follows: in Section 3, we briefly introduce the
DBSCAN and characteristics of HNSW; Section 4 presents the details of our proposed
clustering algorithm; Section 5 demonstrates the experimental results of the proposed al-
gorithms on various datasets, and Section 6 draws the conclusion and highlights our future
works.

2. Related Work

Due to the high running time of the original DBSCAN, researchers have developed many
methods to improve the performance of DBSCAN (Boonchoo et al., 2019). Here we broadly
categorize the related papers in the literature into four categories as follows.

The study of improving the runtime of DBSCAN has been received a considerable
amount of attention for decades. For example, Mahran and Mahar (2008) proposed GriDB-
SCAN using grid partitioning and merging to enhance the performance of DBSCAN. It is
a well-developed algorithm whose complexity is improved to O(nlogn) in 2D space, while
requiring 2(n4/3) computation time when dimension >3. Kim et al. (2019) presented an
approximate algorithm by proposing a new tree structure based on a quadtree to accelerate
the runtime performance. However, these DBSCAN variants cannot work well on large
datasets with high performance.

To solve the problems with high dimensional data, NQ-DBSCAN (Chen et al., 2018)
was proposed. It improves the traditional DBSCAN by applying an efficient neighbor query
to reduce the search space. It assumes that any nearby points should have similar neigh-
boring points, and uses the information of neighboring points to speed up the algorithm
by performing the distance calculation with only necessary points to expand the cluster.
Recently, sampling-based DBSCAN algorithms are deigned to improve the efficiency of
e-neighbor region query operation in DBSCAN. He et al. (2017) proposed a seed point
selection method based on influence space and k neighborhood similarity. It can improve
the efficiency by selecting some seed points instead of all the neighborhood during clus-
ter expansion and thus decreasing the number in region queries. Another sampling-based
method, called GF-DBSCAN (Tsai et al., 2009), is a grid-based clustering algorithm that
can reduce the number of searches. Nevertheless, these methods cannot produce the exact
results as required.

A graph-based DBSCAN (G-DBSCAN) (Kumar and Reddy, 2016) was introduced to
optimize the neighborhood query computations by making groups of data points (initial
clusters) and pruning noise points based on the group information. It performs neighbor-
hood queries for all the points in the dataset (except noise points) in an optimized way
and obtains exact DBSCAN clustering results. The authors claimed its time complexity
is O(n?), where d is the average number of points in 5*¢ region of a point. However, d
can be as large as n. In addition, AnyDBC (Mai et al., 2016) is an anytime density-based
clustering algorithm which gives clustering results at anytime with some approximation.
The algorithm executes in an iterative fashion. The greater number of iterations, the better
accuracy /closeness of the clustering to the DBSCAN. Exact DBSCAN clustering is obtained
after a large number of iterations. To speed up the range query process, Rodriguez and
Laio (2014) proposed a clustering algorithm named “Clustering by fast search and find of
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density peaks”. It uses kd-trees for indexing data, and performs substantially fewer range
queries compared to DBSCAN while still guaranteeing the exact final results of DBSCAN.

A scalable RNN-DBSCAN (Bryant and Cios, 2017) solution was investigated to improve
DBSCAN by using an approximate KNN algorithm. RNN-DBSCAN needs to traverse each
data in the dataset to determine whether it is the core point according to the number of
similar positions in the first place of each point. The computational complexity of RNN-
DBSCAN depends on its solution to the nearest neighbor problem. More specifically, the
reverse nearest neighbor approaches to RNN-DBSCAN is dependent on the all K nearest
neighbor problems, while the time complexity is O(k * n?).

3. Background

3.1. Density-Based Clustering Algorithm

DBSCAN is designed to discover arbitrary-shaped clusters in any dataset X with n points
n=|X|, and at the same time can distinguish noise points. More specifically, DBSCAN
accepts two parameters radius value € and density threshold MinPts, measure distance

between two points based on distance function, dist(x,y) = Z?Zl (x; — y;)?, where z € X:

z € R% Some concepts and terms to explain the BDSCAN algorithm can be defined as
follows (Mai et al., 2016).
Definitions 1(e-neighbor): The e-neighbor of a point z € X, is a set of points inside an ¢
radius around z. e-neighbor={y € X |dist (z,y) < e}

We denote neighbor, as x’s e-neighbor, and |neighbor,| is the number of e-neighbor.
Definitions 2(Core Property): An observation z is called a:

(1) Core point, denoted as core, iff |neighbor,| > MinPts.
(2) Border point, denoted as border,, iff |neighbor,| < MinPts A Ineighbor,, is core,.

(3) Noise point, denoted as noise,, otherwise.

Definitions 3(directly Density — reachable): A point x is directly density-reachable from
a point y if:

(1) x € neighbor,
(2) y is a core point.

Directly density-reachable is non-symmetric for non-core observations, and not guaran-
teed to be symmetric in the case of core observations. The latter of the two cases being due
to the fact that the nearest neighbor relationship is non-symmetric, and the former as no
observation is reachable from a non-core observation (Bryant and Cios, 2017).
Definitions 4(Density-reachability): A point z is directly density-reachable from point
y, iff z is core, and dist(z,y) < e.

Definitions 5(Density-connected): Two points x and y are density-connected, iff there is
a point t such that both z and y are density-reachability from t. A cluster is a maximal
set of density-connected points (Sarma et al., 2019).

Definitions 6(Cluster) (Mai et al., 2016): A cluster C' with respect to € and MinPts is a
non — empty subset of x satisfying the following conditions:
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(1) Va,y : if € C and z is density-reachable from x with respect to € and MinPts,
then y € C(Mazximality).

(2) Va,y € C : z is density-connected y with respect to e and MinPts(Connectivity) .

The algorithms starts with the first point « in dataset X, and find the neighbor within
¢ distance. If the number of neighbor, more than MinPts x is core point, then create a
new cluster. The neighbor, and core x is assigned into this new cluster. Then, it iteratively
collects the neighbors within e distance from the core points. The process is repeated until
all of the points have been processed.

3.2. Hierarchical NSW

HNSW is an algorithm for approximating the K-nearest neighbor search based on naviga-
ble small world graphs with controllable hierarchy. It is a multi-layer approximate graph
structure. The graph is constructed by inserting data points in consecutive. The integer
maximum layers [ is determined by random selection with an exponentially decaying prob-
ability distribution. The insertion process mainly consists of two steps. The first step is
to find the K closest neighbors in current layer from the top layer to the bottom layer.
After that, the algorithm continues the search entry point into the next layer from the K
closest neighbors. Repeating the procedure until all the data points have found K closest
neighbors. The structure of HNSW is show in Fig. 3.

Give a dataset with N data points, the expected time complexity of the maximum layer
index by the construction scales is O(log(/N)) while the overall complexity scaling of the
overall complexity scaling is O(log(N)). This is in agreement with the simulations on low
dimensional datasets. The insertion complexity scaling with respect to N is the same as
the one for the search. This means that, at least for relatively low dimensional datasets,
the construction time scale is O(N - log(N))) (Malkov and Yashunin, 2018).

N I N

Figure 1: Empty point with radius=e  Figure 2: Inner-Core, with radius=e,
MinPts=4

4. The Proposed Algorithm: h-DBSCAN
4.1. h-DBSCAN Definitions

Definitions 7(Empty,): An observation x is an empty point if it does not contain any
e-neighbor points, (see Fig. 1). Empty, = {x € X|neighbor, = 0}
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Definitions 8(Inner-Core;): The Inner- C’orex of core, is defined as follows, (see Fig. 2):
Inner-Core, = {y|y € neighbory A dist(z,y) 2}
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4.2. Overview of h-DBSCAN

Algorithm 1 and Fig. 3 show the process of h-DBSCAN performing clustering, as defined
in Section 3, given dataset X, radius ¢ and density threshold MinPts. After traversing all
the observations in an arbitrary order to find the e-neighbor (Algorithm 2), the observation
will be assigned to a new cluster when it is a core observation and has yet assigned to any
cluster. This new cluster is expanded by a breadth first search of all reachable observations
and density-connected cluster will be merged (Algorithm 3). Finally, the border point will
filter by Algorithm 4 without perform e range query.

Algorithm 1: ~-DBSCAN
Require: Data List X, [e, MinPts];
Ensure: Cluster;
1: Initialize CoreSet=0, BorderSet=0, Initial Cluster=0, cluster|Ve € X]=
UNCLASSIFIED:;
2: K=MinPts
3: for z € X do
if cluster[x]=UNCLASSIFIED then
neighbor,=HNSW::RangeQuire(x, K) //find e-neighbor alg. 2;
if |neighbory| > K then
if |inner-core;| > K then
| CoreSet = CoreSetU inner-core,
end
Cluster = Cluster U [neighbory]
end
if |neighbor,| < K then
if |neighbor;| # 0 then
‘ BorderSet = BorderSet U x;
end
else
cluster[x] = noise;
Delete x from the data set X that still needs to be queried;

end
end
end
end

4: MergeCore(Cluster, CoreSet) //merge clusters alg. 3;
5: FiltNoise(BorderSet) //filter noise point from border set alg. 4;
6: return Cluster;

Step 1: Building initial cluster. In this step, we insert each point in dataset to
construct graph structure of HNSW. Thereafter, all point e-neighbor range queries are
based on this structure. Then, all the points in the dataset are traversed to determine their
type. In this step, we process each point x € X and do the following:
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(1) If 0 < |neighbory| < MinPts: x is marked as a border point, and it will be assign to
the set of BorderSet. Otherwise z will be assigned to the set of the CoreSet, and if x
has not yet assigned to any cluster, then create a new cluster and merge the neighbor,
and z into it.

(2) If |neighbory| = 0: then x is an empty point and marked as noise. At the later range
queries e-neighbor, other points do not operate on it. Remove it from the HNSW
structure.

(3) If |inner-core;| > MinPts: then put Va € inner-core, into the core set, and they
are deleted from the remaining dataset that needs to be queried, as show in Fig. 2.

Algorithm 2: FindNeighbor
Require: query point x; the K value of HNSW;
Ensure: neighbor,;
1: neighbor, = (;
2: neighbor = HNSW :: RangeQuire(z, K);
3: for i in neighbor do
if dist(i,z) < e then
| neigbor, = neigbor, + 1
end

end
4: return neighbor,

Algorithm 3: MergeCore
Require: Cluster, CoreSet;
Ensure: cluster;
1: k=-1
2: for x in Cluster do
k=k+1;
for each i in neighbor, do
if ¢ € CoreSet then
neighbor, = neighbor, U neighbor;;
cluster[neighbor,] = k;

end
end

end
3. return cluster

Step 2: Clusters Merging. After finishing the above steps, we have built the initial
cluster including the core point and itse-neighbor, and find the core point in inner-core,
that satisfy the definition of core point. In the rest points, if they belong to the e-neighbor
and besides inner-core,, we have not identify their property, they may be the core point.
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Algorithm 4: FilterNoise
Require: BorderSet,;
Ensure: cluster;
1: for each x in BorderSet do
if neighbor, N CoreSet # Null then

return cluster[z] = cluster|core] else
\ return cluster[z] = noise

end

end
end
2: return cluster

i.e. the density-connected cluster have not merged yet. Therefore, in this step, our main
task is to merge points that belong to the same cluster. After the above steps, we have all
the core points in the CoreSet. Therefore, when identify their property, we only need to
query whether they are in CoreSet (Algorithm 3).

Step 3: Filter Noise. After the above steps, we have clustered the core points and
their density-connected points into a cluster. In this step, our main task is to filter the
border points that have not assigned to any cluster yet. We traverse through the neighbors
of the border point, select the border point with the core point, and then assign the border
point to the cluster where the core point neighbors are located. This step doesn’t require
any additional neighborhood queries, as they are pre-computed and stored in the previous
step (Algorithm 4).

4.3. h-DBSCAN Complexity

The time complexity of h-DBSCAN (worst case) =initial cluster construction + merging
time + filtering noise= O(log(N))) + O(N - log(N)))+O(m * k) + O(l), where m is the
initial cluster number, k is the number of |neighbor;| and [ is the number of border point.
The space occupied by graph construct, noise set, core set and border set. Thus the total
space complexity is O(n +m +1).

5. Experiments and Performance Evaluation

In this section, we present the experimental results based on both real-world and synthetic
datasets.

5.1. Experimental Settings

In this section, to evaluate the correctness and effectiveness of the proposed approach,
several experiments are conducted on different datasets using the environment of Intel Core
i7-3630 CPU @2.50 GHz, 8G RAM. For the comparison experiments, we mainly compare
the proposed algorithm with DBSCAN (Ester et al., 1996), RNN-DBSCAN (Bryant and
Cios, 2017), G-DBSCAN (Kumar and Reddy, 2016) and pure kd-trees based DBSCAN. We
programmed the proposed h-DBSCAN using the Python programming language.
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Table 1: Artificial Datasets

data number classes dimensions
Aggregation 788 5 2

t4.8k 8000 7 2

D31 3100 30 2

Table 2: Real-World Datasets

data number dimensions classes

Iris 150 4 3
htru2 17898 8 2
Ecoil 336 7 8

Ctg 2126 19 10

Digits 1797 64 10
HIGGS13D 10000 13 2
HIGGS28D 1800 28 2
3DSRN3D 10873 3 -
HOUSEHOLD 18000 7 -

5.2. Datasets

We benchmark our proposed algorithms with their respective existing solutions to vari-
ous real-world datasets commonly used in the literature for evaluating density-based clus-
tering algorithms. The artificial, shaped-based clustering datasets were downloaded from
(https://cs.joensuu.fi/sipu/datasets/), including Aggregation, t4.8k and D31 were used. We
also downloaded a few real-world datasets from UCI(http://archive.ics.uci.edu/ml/datasets),
including 3D Road Net-work (3DSRN) (Kaul et al., 2013) contains vehicular GPS data,;
HOUSEHOLD Power (HOUSEHOLD); HIGGS (Baldi et al., 2014), HIGGS datasets have
been sampled for various dimensions (13 and 28); iris (iris plant type); ctg (cardiotocog-
raphy fetal state); digits (optical recognition of handwritten digits); ecoli (ecoli protein
localization sites); htru2 (pulsar candidates) (Lyon et al., 2016). The details of the artificial
datasets are shown in Table 1 while the real-world datasets are shown in Table 2. For com-
parative experimental study, we used the implementations to compare algorithms that were
made publicly available by their respective authors except for programming G-DBSCAN
by us.

5.3. Experimental Results

In this section, we demonstrate the experimental results. All the reported running time of
the compared methods are based the average of 3 runs of clustering. It is worth noting that
when comparing the running time of algorithms, three steps are included, namely, cluster
construction, cluster merging, and noise filtering.
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5.3.1. CLUSTERING RESULT QUALITY

To test whether clustering algorithm can cluster the same clusters as DBSCAN (clustering
accuracy ), we use the number of clusters in DBSCAN as a benchmark. The clustering results
are in Table 3, which shows our algorithm and K-DBSACNA produce exactly the same
results as the original DBSCAN on all the measured datasets. This means our proposed
algorithm is able to group all the points into the clusters exactly the same as the original
DBSCAN does while G-DBSCAN and RNN-DBSCAN have similar results to DBSCAN.

(9)

ARI=0.54

Figure 5: Clustering results for artificial dataset DBSCAN (right) A-DBSCAN (center)
RNN-DBSCAN (left). Aggregation dataset (1): e=1.6 MinPts=3; D31 dataset
(2): e=0.8 MinPts=30; t48.k dataset (3): e=8.5 MinPts=15.

To further test the performance of our algorithm, two indicators are used, ARI (Hu.Be.Rt
and Arabie, 1985) and Normalized Mutual Information (NMI) (Bryant and Cios, 2017),
(Cover et al., 1991), for evaluation. ARI represents the similarity measure between two
clustering that is adjusted for chance and is related to accuracy, while NMI quantifies the
amount of information obtained about one clustering, through the other clustering (i.e., the
mutual dependence between the two). In the case of observations being identified as noise,
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each noise observation was treated as a distinct singleton cluster for both ARI and NMI. For
ARI results, clustering Purity is also presented which is a weighted average of the percentage
of observations belonging to the dominant class in each cluster. Noise observations were
ignored in the calculation of purity (Bryant and Cios, 2017).

Table 4 shows the ARI performance, Purity, number of clusters, and number of obser-
vations identified as noise for DBSCAN, h-DBSCAN, RNN-DBSCAN, G-DBSCAN, and
k-DBSCAN on real-world datasets. It can be seen from the results that our algorithm is
basically consistent with the results of DBSCAN, and the results of G-DBSCAN are very
close to DBSCAN. The performance of RNN-DBSCAN in the digits dataset is slightly bet-
ter than DBSCAN. In addition, we can see the consensus that all the measures confirm that
our algorithm can group all the points into the clusters exactly the same as the original
DBSCAN does. We also provide the 2D visualization of the compared methods in Fig. 6.
As we can see from the figure, the accuracy of RNN-DBSCAN is slightly lower than our
method with the same parameters used (Bryant and Cios, 2017).

Table 3: Clusters produced by the clustering methods.

Dataset Paremeters Clusters
dimensions number e MinPts DBSCAN h-DBSCAN RNN-DBSCAN G-DBSCAN K-DBSCAN
3DSRN3D 3 10873 0.1 20 4 4 8 4 4
HOUSEHOLD 7 18000 1 40 9 9 11 9 9
HIGGS13D 13 10000 2 5 2 2 2 2 2
HIGGS28D 28 1800 24 5 2 2 2 2 2

Table 4: Cluster quality performance on real-world dataset.

DataSet Method Method Method Method Method
DBSCAN h-DBSCAN RNN-DBSCAN G-DBSCAN K-DBSCAN
ari clu pur noi ari  clu pur noi ari  clu pur noi ari clu pur noi ari clu pur noi

iris 0703 7 0978 16 0.703 7 0.978 16 0.644 4 0.963 16 07 6 0969 16 0.703 7 0978 16
htru  0.552 4 0.977 2289 0.552 4 0.977 2288 0.334 204 0.976 236 0.55 5 0.977 2189 0.552 4 0.977 2289
ecol 0.639 3 0.582 100 0.639 3 0.581 98 0.526 8 0.736 10 0.64 3 0581 8 0.639 3 0.582 100
ctg  0.992 13 1 5 0.992 13 1 5 0951 10 1 91 0992 13 1 5 0.992 10 1 6

digits  0.684 21 0.983 355 0.684 21 0.983 355 0.739 34 0.936 104 0.684 21 0.983 355 0.684 15 0.989 155

5.3.2. RUNTIME COMPARISONS

In this section, to further validate our proposed method for large-scale dataset, the big
datasets of 3DSRN, HOUSEHOLD and HIGGS with different dimensions are used in the
experiments. We compare the runtime performance of h~-DBSCAN with that of original DB-
SCAN and its variants that use kd-trees as indexing structure (K-DBSCAN), G-DBSCAN,
as well as the latest proposed RNN-DBSCAN. The results presented in Table 5 show that
h-DBSCAN has performed consistently better than the remaining four algorithms in com-
pared for all the datasets.

We also report the peak memory consumption of ~-DBSCAN and compare with other
algorithms for various datasets (see Table 6). The results show that the peak memory
consumption for ~-DBSCAN is much less than DBSCAN, especially for high dimensional
datasets. The peak memory consumption of K-DBSCAN, RNN-DBSCAN and G-DBSCAN
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Table 5: Runtime comparison (in seconds) of h-DBSCAN with other algorithms

Dateset Parameter Time
dimensions number & MinPts DBSCAN h-DBSCAN RNN-DBSCAN G-DBSCAN K-DBSCAN
Aggregation 2 788 1.5 6 4.381 0.21 0.35 2.03 1.998
t48.k 2 8000 8.5 15 456.262 4.045 5.297 132.45 188.576
D31 2 3100 0.8 30 65.716 0.958 1.019 15.79 21.576
Iris 4 150 049 0.165 0.014 0.136 0.099 0.016
htru2 8 17898 0.3 15 2350.679 13.855 125.108 92.353 39.588
Ecoil 7 336 0.8 30 0.861 0.193 0.218 0.432 0.363
Ctg 19 2126 1.5 6 4.381 0.21 0.35 2.03 1.998
Digits 64 1797 85 15 456.262 4.045 5.297 132.45 188.576
3DSRN3D 3 10873 0.1 20 798.537 4.755 37.766 252.72 613.309
HOUSEHOLD 7 18000 1 40 2164.763 38.869 130.086 1115.86 1274.393
HIGGS13D 13 10000 2 5 692.274 7.344 14.745 256.17 416.324
HIGGS28D 28 1800 245 22.182 0.160 0.917 16.22 19.462

Table 6: Peak memory consumption of h-DBSCAN and others algorithms

Dataset Parameter Memory
dimensions number ¢ MinPts DBSCAN h-DBSCAN RNN-DBSCAN G-DBSCAN K-DBSCAN
3DSRN3D 3 10873 0.1 20 33.44MB 4.04MB 6.52MB 7™B 5.21MB
HOUSEHOLD 7 18000 5 10 66.87MB 6.57MB 9.11MB 26.33MB 35.24MB
HIGGS13D 13 10000 2 5 28.12 MB 4.13MB 32.18177 10.24MB 16.25MB
HIGGS28D 28 1800 245 0.64MB 0.61MB 1.23MB 0.55MB 0.78MB

Table 7: Split-up of execution time of various steps of h-DBSCAN (in seconds)

Dataset Steps
dimensions number HNS.W. Co?s.t r.uctlon and Clusters Merging Filter Noise Total time
Building initial cluster
3DSRN 3 10873 22.670181 3.58 0.24 26.490181
HOUSEHOLD 7 18000 95.371852 7.542595 0.001001 103.308221
HIGGS13D 13 10000 22.19886 7.0554 0.673404 29.927664
HIGGS28D 28 1800 7.56304 0.04996 0.01 7.67296

are less than DBSCAN as well. This is because K-DBSCAN uses a simple kd-tree that
occupies less memory than original DBSCAN while RNN-DBSCAN and G-DBSCAN do
not need any indexing structure. As we can see from the table, the runtime performance of
h-DBSCAN has been far superior to the methods being compared and the memory required
is less than the others for all datasets except for HIGGS28D dataset with similar memory
consumption with G-DBSCAN.

In order to check the split-up execution times of each step in h-DBSCAN algorithm,
we also record the calculation time for each step of the algorithm. As the results shown in
Table 7, the initial cluster build takes significant portion of the execution time because this
step includes the neighborhood range query.

To verity the importance of MinPts on runtime performance of DBSCAN, and RNN-
DBSCAN, we present the results based on the change of MinPts in Fig. 6. As we can see
from the figures, the runtime increases with the increase of MinPts. This is because, with
the increase in MinPts, the time for initial clusters formation and dentist-reachable cluster
identification decreases, and time for post processing of inner-core points increases.
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Figure 6: Runtime distrubutions with the changeing MinPts on four datasets respectively.

From Table 7 and Fig. 6, we can infer that: 1) the complexity of ~~-DBSCAN mainly
depends on the execution e-neighbor query; 2) h-DBSCAN prefers less MinPts in the same
case as €, which yields less executions of core, identified;

6. Conclusions

In this study, we proposed an improved DBSCAN (A-DBSCAN) to improve the clustering
efficiency of the DBSCAN. The strategies used for reducing the computation time include:
1) using improved HNSW instead of linear search for region query, which is an approximate
multi-layer graphic structure that distributes data points into different layers, and it retains
all the data point in the structure and can run faster without sacrificing the quality of the
clustering; 2) recognizing empty, as noise and inner-core, as core in advance to reduce
e-neighbor queries. By comparing our proposed algorithm with DBSCAN and its variants,
our proposed method outperformed the others methods in terms of efficiency, especially for
large-scale datasets. In addition, in most cases, the accuracy of our h-DBSCAN is better
than G-DBSCAN and RNN-DBSCAN algorithms.

Although the runtime performance of the proposed algorithm can be significantly im-
proved, there is still room for improving the clustering accuracy. Therefore, in the future
work we will investigate different ways to improve the accuracy of the algorithm without
losing efficiency (e.g. weights for data points). Moreover, considering the clustering qual-
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ity of traditional DBSCAN is greatly influenced by ¢ and MinPts, we will explore the
optimization algorithms to automatically select the parameters for DBSCAN.
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