

#### Chapter 1 Foundations of Structural Kinesiology

#### Manual of Structural Kinesiology R.T. Floyd, EdD, ATC, CSCS

tural Kinesiology

Foundations of Structural Kinesiology

#### Kinesiology & Body Mechanics

- Kinesiology study of motion or human movement
- · Anatomic kinesiology study of human musculoskeletal system & musculotendinous
- · Biomechanics application of mechanical physics to human motion

uctural Kinesiologi

Foundations of Structural Kinesiology

#### Kinesiology & Body Mechanics

- Structural kinesiology study of muscles as they are involved in science of movement
- · Both skeletal & muscular structures are involved
- Bones are different sizes & shapes particularly at the joints, which allow or limit movement

unuan on ructural Kinesioloov

Equipolations of Structural Kinesiology

#### Kinesiology & Body Mechanics

- · Muscles vary greatly in size, shape, & structure from one part of body to another
- More than 600 muscles are found in human

ranuai oi tructural Kinesioloov

Foundations of Structural Kinesiology

#### Who needs Kinesiology?

· Anatomists, coaches, strength and conditioning specialists, personal trainers, nurses, physical educators, physical therapists, physicians, athletic trainers, massage therapists & others in health-related fields

Foundations of Structural Kinesiology

#### Why Kinesiology?

- · should have an adequate knowledge & understanding of all large muscle groups to teach others how to strengthen, improve, & maintain these parts of human body
- should not only know how & what to do in relation to conditioning & training but also know why specific exercises are done in conditioning & training of athletes

#### Why Kinesiology?

- · Through kinesiology & analysis of skills, physical educators can understand & improve specific aspects of physical conditioning
- · Understanding aspects of exercise physiology is also essential to coaches & physical educators

tural Kinesiolog

Foundations of Structural Kinesiology

#### Reference positions

- · basis from which to describe joint movements
  - Anatomical position
  - Fundamental position

uctural Kinesiologi

Foundations of Structural Kinesiology

#### Reference positions

- · Anatomical position
  - most widely used & accurate for all aspects of the body
  - standing in an upright posture, facing straight ahead, feet parallel and close, & palms facing forward
- · Fundamental position
  - is essentially same as anatomical position except arms are at the sides & palms facing the body



uuau oi ictural Kinesiologi

Foundations of Structural Kinesiology

#### Reference Lines

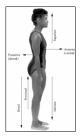
To further assist in understanding the location of one body part in relation to another

- Mid-axillary line
  - A line running vertically down the surface of the body passing through the apex of the axilla (armpit)
- Anterior axillary line
  - A line that is parallel to the mid- axillary line and passes through the anterior axillary skinfold
- Posterior axillary line
  - A line that is parallel to the mid-axillary line and passes through the posterior axillary skinfold

anuai oi ructural Kinesiology

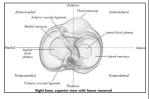
Foundations of Structural Kinesiology

#### Reference Lines


To further assist in understanding the location of one body part in relation to another

- Mid-clavicular line
  - A line running vertically down the surface of the body passing through the midpoint of the clavicle
- Mid-inguinal point
  - A point midway between the anterior superior iliac spine and the pubic symphysis

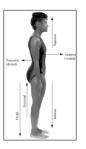
Foundations of Structural Kinesiology


#### Anatomical directional terminology

- · Anterior
  - in front or in the front part
- · Anteroinferior
  - in front & below
- Anterosuperior
  - in front & above



#### Anatomical directional terminology

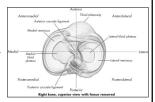

- Anterolateral
  - in front & to the side, especially the outside
- Anteromedial
  - in front & toward the inner side or midline
- · Anteroposterior
  - relating to both front & rear



Foundations of Structural Kinesiology

#### Anatomical directional terminology

- · Posterior
  - behind, in back, or in the rear
- Posteroinferior
  - behind & below; in back & below
- · Posterolateral
  - behind & to one side, specifically to the outside




ructural Kinesiolog

Foundations of Structural Kinesiology

#### Anatomical directional terminology

- · Posteromedial
  - behind & to the inner side
- Posterosuperior
  - behind & at the upper part



unuan on ructural Kinesioloov

Foundations of Structural Kinesiology

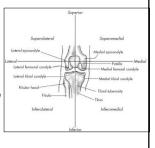
#### Anatomical directional terminology

- Contralateral
  - pertaining or relating to the opposite side
- Ipsilateral
  - on the same side
- Bilateral
  - relating to the right and left sides of the body or of a body structure such as the right & left extremities

anuai oi ructural Kinesiology

Foundations of Structural Kinesiology

#### Anatomical directional terminology


- · Inferior (infra)
  - below in relation to another structure; caudal
- · Superior (supra)
  - above in relation to another structure; higher, cephalic



Foundations of Structural Kinesiology

#### Anatomical directional terminology

- · Inferolateral
  - below & to the outside
- Inferomedial
  - below & toward the midline or inside
- · Superolateral
  - above & to the outside
- · Superomedial
- above & toward the midline or inside



#### Anatomical directional terminology

- Caudal
  - below in relation to another structure: inferior
- · Cephalic
  - above in relation to another structure; higher, superior

tural Kinesiology

Foundations of Structural Kinesiology

#### Anatomical directional terminology

- - beneath or below the surface; used to describe relative depth or location of muscles or tissue
- Superficial
  - near the surface; used to describe relative depth or location of muscles or tissue

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Anatomical directional terminology

- Distal
  - situated away from the center or midline of the body, or away from the point of origin
- Proximal
  - nearest the trunk or the point of



nual of uctural Kinesiology

Foundations of Structural Kinesiology

#### Anatomical directional terminology

- Lateral
  - on or to the side; outside, farther from the median or midsagittal plane
- Medial
  - relating to the middle or center; nearer to the medial or midsagittal plane
- Median
  - Relating to the middle or center; nearer to the median or midsagittal



Aanual of tructural Kinesiology

Foundations of Structural Kinesiology

#### Anatomical directional terminology

- - relating to, or situated to the right or on the right side of something
- Sinister
  - relating to, or situated to the left or on the left side of something

Foundations of Structural Kinesiology

#### Anatomical directional terminology

- - the body lying face downward; stomach lying
- Supine
  - lying on the back; face upward position of the body

ructural Kinesiology

Foundations of Structural Kinesiology

#### Anatomical directional terminology

- Dorsal
  - relating to the back; being or located near, on, or toward the back, posterior part, or upper surface of
- Ventral
  - relating to the belly or abdomen, on or toward the front, anterior part of

al of ural Kinesiology

Foundations of Structural Kinesiology

#### Anatomical directional terminology

- Palmar
  - relating to the palm or volar aspect of the
- Volar
  - relating to palm of the hand or sole of the

- relating to the sole or undersurface of the foot

Foundations of Structural Kinesiology

**Body Regions** uctural Kinesioloo Foundations of Structural Kinesiology

#### Body regions

- Axial
  - -Cephalic (Head)
  - -Cervical (Neck)
  - -Trunk
- · Appendicular
  - -Upper limbs
  - -Lower limbs

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Body regions

- Axial
  - -Cephalic (Head)
    - · Cranium & Face
  - -Cervical (Neck)
  - -Trunk
    - Thoracic (Thorax), Dorsal (Back), Abdominal (Abdomen), & Pelvic (Pelvis)

Foundations of Structural Kinesiology

#### Body regions

- · Appendicular
  - -Upper limbs
    - Shoulder, arm, forearm, & manual
  - -Lower limbs
    - Thigh, leg, & pedal

#### Planes of Motion


- Imaginary two-dimensional surface through which a limb or body segment is moved
- Motion through a plane revolves around an axis
- There is a ninety-degree relationship between a plane of motion & its axis

Manual of Structural Kinesiology

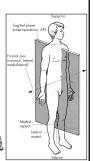
Foundations of Structural Kinesiology

#### Cardinal planes of motion

- · 3 basic or traditional
  - in relation to the body, not in relation to the earth
- Anteroposterior or Sagittal Plane
- · Lateral or Frontal Plane
- Transverse or Horizontal Plane



Manual of Structural Kinesiology


Foundations of Structural Kinesiology

#### Cardinal planes of motion

- Sagittal or Anteroposterior Plane (AP)
  - divides body into equal, bilateral segments
  - It bisects body into 2 equal symmetrical halves or a right & left half
  - Ex. Sit-up

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

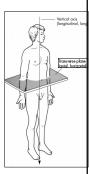


#### Cardinal planes of motion

- Frontal, Lateral or Coronal Plane
  - divides the body into (front) anterior & (back) posterior halves
  - Ex. Jumping Jacks

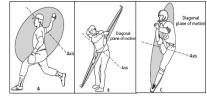





Manual of Structural Kinesiology Foundations of Structural Kinesiology

#### Cardinal planes of motion

- Transverse, Axial or Horizontal Plane
  - divides body into (top) superior & (bottom) inferior halves when the individual is in anatomic position
  - Ex. Spinal rotation to left or right




Foundations of Structural Kinesiology



#### Diagonal Planes of Motion

- · High Diagonal
- · Low Diagonal
- Low Diagonal



#### Diagonal Planes of Motion

- · High Diagonal
  - -Upper limbs at shoulder joints
  - -Overhand skills
  - -EX. Baseball Pitch



Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Diagonal Planes of Motion

- · Low Diagonal
  - -Upper limbs at shoulder joints
  - -Underhand skills
  - -EX. Discus Thrower
- · Low Diagonal
  - -Lower limbs at the hip joints
  - -EX. Kickers & Punters



Manual of Structural Kinesiolog

Foundations of Structural Kinesiology

#### Axes of rotation

- For movement to occur in a plane, it must turn or rotate about an axis as referred to previously
- The axes are named in relation to their orientation

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Axes of rotation

- Frontal, coronal, lateral or mediolateral axis
  - Has same orientation as frontal plane of motion & runs from side to side at a right angle to sagittal plane of motion
  - Runs medial / lateral
  - Commonly includes flexion, extension movements



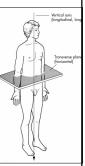
Manual of Structural Kinesiology Foundations of Structural Kinesiology

#### Axes of rotation

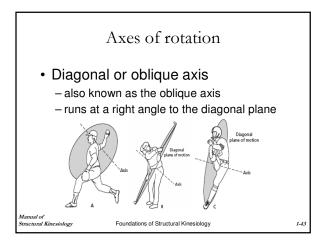
- Sagittal or anteroposterior axis
  - Has same orientation as sagittal plane of motion & runs from front to back at a right angle to frontal plane of motion
  - Runs anterior / posterior
  - Commonly includes abduction, adduction movements

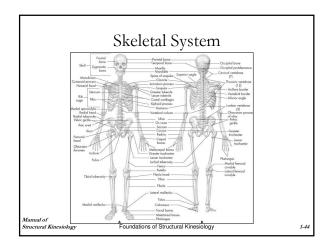


Foundations of Structural Kinesiology




Axes of rotation


- Vertical, long or longitudinal axis
  - Runs straight down through top of head & is at a right angle to transverse plane of motion
  - Runs superior/ inferior
  - Commonly includes internal rotation, external rotation movements




Foundations of Structural Kinesiology



7





#### Osteology

- · Adult skeleton
- 206 bones
  - Axial skeleton
    - 80 bones
  - Appendicular
    - 126 bones
- · occasional variations

nual of ctural Kinesiology

Foundations of Structural Kinesiology

#### Skeletal Functions

- 1. Protection of heart, lungs, brain, etc.
- 2. Support to maintain posture
- Movement by serving as points of attachment for muscles and acting as levers
- 4. Mineral storage such as calcium & phosphorus
- 5. Hemopoiesis in vertebral bodies, femurs, humerus, ribs, & sternum
  - process of blood cell formation in the red bone marrow

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Types of bones

- · Long bones humerus, fibula
- · Short bones carpals, tarsals
- · Flat bones skull, scapula
- Irregular bones pelvis, ethmoid, ear ossicles
- · Sesamoid bones patella

Foundations of Structural Kinesiology

#### Types of bones

- · Long bones
  - Composed of a long cylindrical shaft with relatively wide, protruding ends
  - shaft contains the medullary canal
  - Ex. phalanges, metatarsals, metacarpals, tibia, fibula, femur, radius, ulna, & humerus

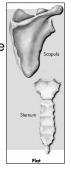
Foundations of Structural Kinesiology



8

#### Types of bones

- · Short bones
  - -Small, cubical shaped, solid bones that usually have a proportionally large articular surface in order to articulate with more than one bone
  - -Ex. are carpals & tarsals

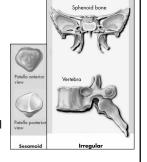



Manual of Structural Kinesiolos

Foundations of Structural Kinesiology

#### Types of bones

- Flat bones
  - Usually have a curved surface & vary from thick where tendons attach to very thin
  - -Ex. ilium, ribs, sternum, clavicle, & scapula

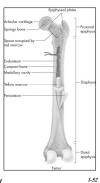



Structural Kinesiology

inesiology Foundations of Structural Kinesiology

#### Types of bones

- · Irregular bones
  - Include bones throughout entire spine & ischium, pubis, & maxilla
- Sesamoid bones
  - Patella, 1st metatarsophalangeal




Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Typical Bony Features

- Diaphysis long cylindrical shaft
- Cortex hard, dense compact bone forming walls of diaphysis
- Periosteum dense, fibrous membrane covering outer surface of diaphysis



Manual of Structural Kinesiology

Foundations of Structural Kinesiology

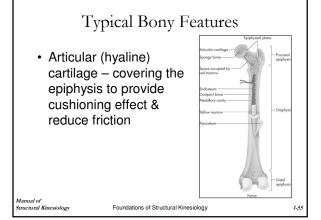
#### Typical Bony Features

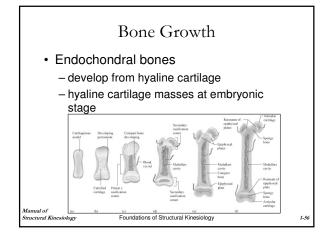
- Endosteum fibrous membrane that lines the inside of the cortex
- Medullary (marrow) cavity

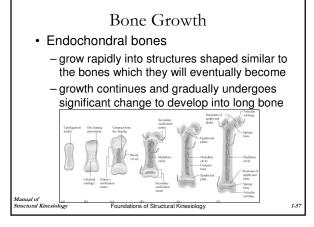
   between walls of
   diaphysis, containing
   yellow or fatty marrow



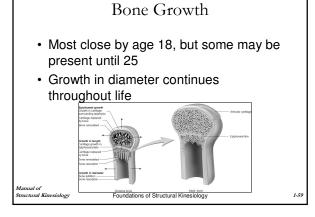
Manual of


Foundations of Structural Kinesiology


#### Typical Bony Features


- Epiphysis ends of long bones formed from cancelleous (spongy or trabecular) bone
- Epiphyseal plate -(growth plate) thin cartilage plate separates diaphysis & epiphyses





Structural Kinesiolo











## Internal layer of periosteum builds new concentric layers on old layers Simultaneously, bone around sides of the medullary cavity is resorbed so that diameter is continually increased Osteoblasts - cells that form new bone Osteoclasts - cells that resorb old bone

Bone Growth

#### Bone Properties

- · Composed of calcium carbonate, calcium phosphate, collagen, & water
  - -60-70% of bone weight calcium carbonate & calcium phosphate
  - -25-30% of bone weight water
- · Collagen provides some flexibility & strength in resisting tension
- · Aging causes progressive loss of collagen & increases brittleness

Foundations of Structural Kinesiology

#### Bone Properties

- · Most outer bone is cortical with cancellous underneath
- Cortical bone low porosity, 5 to 30% nonmineralized tissue
- Cancellous spongy, high porosity, 30 to
- Cortical is stiffer & can withstand greater stress, but less strain than cancellous
- Cancellous is spongier & can undergo greater strain before fracturing

Foundations of Structural Kinesiology

#### Bone Properties

- · Bone size & shape are influenced by the direction & magnitude of forces that are habitually applied to them
- · Bones reshape themselves based upon the stresses placed upon them
- Bone mass increases over time with increased stress

uuau oi ictural Kinesiologi

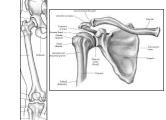
Foundations of Structural Kinesiology

#### Bone Markings

- · Processes (including elevations & projections)
  - Processes that form ioints
    - · Condyle
    - Facet
    - Head

tanuai oi tructural Kinesioloev Foundations of Structural Kinesiology

#### Bone Markings


- Processes (elevations & projections)
  - Processes to which ligaments, muscles or tendons attach
    - Crest
    - · Epicondyle
    - Line
    - Process
    - · Spine (spinous process)
    - Suture
    - Trochanter
    - Tubercle
    - Tuberosity



Foundations of Structural Kinesiolog

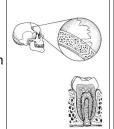
#### Bone Markings

- · Cavities (depressions) including opening & grooves
  - Facet
  - Foramen
  - Fossa
  - Fovea
  - Meatus
  - Sinus
- Sulcus (groove)



#### Classification of Joints

- Articulation connection of bones at a joint usually to allow movement between surfaces of bones
- 3 major classifications according to structure & movement characteristics
  - -Synarthrodial
  - -Amphiarthrodial
  - -Diarthrodial

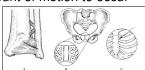

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

|                           |                 | Structural classification |                            |                                                                                |
|---------------------------|-----------------|---------------------------|----------------------------|--------------------------------------------------------------------------------|
|                           |                 | Fibrous                   | Cartilagenous              | Synovial                                                                       |
| Functional classification | Synarthrodial   | Gomphosis<br>Suture       |                            |                                                                                |
|                           | Amphiarthrodial | Syndesmosis               | Symphysis<br>Synchondrosis |                                                                                |
|                           | Diarthrodial    |                           |                            | Arthrodial<br>Condyloidal<br>Enarthrodial<br>Ginglymus<br>Sellar<br>Trochoidal |

#### Synarthrodial

- · immovable joints
- Suture such as Skull sutures
- Gomphosis such as teeth fitting into mandible or maxilla




Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Amphiarthrodial

- slightly movable joints
- · allow a slight amount of motion to occur
  - -Syndesmosis
  - -Synchondrosis
  - -Symphysis



Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Amphiarthrodial

- Syndesmosis
  - Two bones joined together by a strong ligament or an interosseus membrane that allows minimal movement between the bones
  - Bones may or may not touch each other at the actual joint
  - Ex. Coracoclavicular joint, distal tibiofibular jt.



Manual of

Foundations of Structural Kinesiology

#### Amphiarthrodial

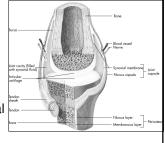
- Synchondrosis
  - Type of joint separated by hyaline cartilage that allows very slight movement between the bones
  - Ex. costochondral joints of the ribs with the sternum



Structural Kinesiolo

Foundations of Structural Kinesiology

#### Amphiarthrodial


- Symphysis
  - Joint separated by a fibrocartilage pad that allows very slight movement between the bones
  - Ex. Symphysis Pubis & intervertebral discs



Foundations of Structural Kinesiology

#### Diarthrodial Joints

- · known as synovial joints
- · freely movable
- · composed of sleevelike joint capsule
- · secretes synovial fluid to lubricate joint cavity



Foundations of Structural Kinesiology

#### Diarthrodial Joints

 capsule thickenings form tough, nonelastic ligaments that provide additional support against abnormal movement or joint opening



nual of ictural Kinesiology

Foundations of Structural Kinesiology

#### Diarthrodial Joints

- Articular or hyaline cartilage covers the articular surface ends of the bones inside the joint cavity
  - absorbs shock
  - protect the bone
- slowly absorbs synovial fluid during joint unloading or distraction
- secretes synovial fluid during subsequent weight bearing & compression
- some diarthrodial joints have specialized fibrocartilage disks

anuai oi ructural Kinesiolooi

Foundations of Structural Kinesiology

#### Diarthrodial Joints

- · Diarthrodial joints have motion possible in one or more planes
- · Degrees of freedom
  - motion in 1 plane = 1 degree of freedom
  - motion in 2 planes = 2 degrees of freedom
  - motion in 3 planes = 3 degrees of freedom

Foundations of Structural Kinesiology

#### Diarthrodial Joints

- six types
- · each has a different type of bony arrangement

-Arthrodial

-Condyloid

-Ginglymus

-Enarthrodial

-Trochoid

-Sellar

#### Diarthrodial Joints

- · Arthrodial (Gliding) joints
  - –2 plane or flat bony surfaces which butt against each other
  - Little motion possible in any 1 joint articulation
  - Usually work together in series of articulations

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

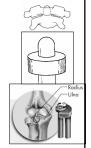
#### Diarthrodial Joints

- · Arthrodial (Gliding) joints
  - -Ex. Vertebral facets in spinal column, intercarpal & intertarsal joints
  - -Motions are flexion, extension, abduction, adduction, diagonal abduction & adduction, & rotation, (circumduction)

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

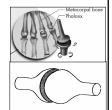
#### Diarthrodial Joints


- Ginglymus (Hinge) joint
  - -a uniaxial articulation
  - articular surfaces allow motion in only one plane
  - -Ex. Elbow, knee, talocrural (ankle)

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Diarthrodial Joints


- Trochoid (Pivot) joint
  - -also uniaxial articulation
  - Ex. atlantoaxial joint odontoid which turns in a bony ring, proximal & distal radio-ulnar joints



Manual of Structural Kinesiology Foundations of Structural Kinesiology

#### Diarthrodial Joints

- · Condyloid (Knuckle Joint)
  - biaxial ball & socket joint
  - one bone with an oval concave surface received by another bone with an oval convex surface



Manuai oi Structural Kinesiology Foundations of Structural Kinesiology

#### Diarthrodial Joints

- Condyloid (Knuckle Joint)
  - -EX. 2nd, 3rd, 4th, & 5th metacarpophalangeal or knuckles joints, wrist articulation between carpals & radius
  - flexion, extension,abduction & adduction(circumduction)



Structural Kinesiology

Foundations of Structural Kinesiology

#### Diarthrodial Joints

- Enarthrodial
  - Multiaxial or triaxial ball & socket joint
  - Bony rounded head fitting into a concave articular surface
  - Ex. Hip & shoulder joint
  - Motions are flexion, extension, abduction, adduction, diagonal abduction & adduction, rotation, and circumduction



Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Diarthrodial Joints

- Sellar (Saddle) Joint
  - unique triaxial joint
  - 2 reciprocally concave & convex articular surfaces
  - Only example is 1<sup>st</sup> carpometacarpal joint at thumb
  - Flexion, extension, adduction & abduction, circumduction & slight rotation



Manual of Structural Kinesiology Foundations of Structural Kinesiology

#### Movements in Joints

- Some joints permit only flexion & extension
- Others permit a wide range of movements, depending largely on the joint structure
- Goniometer is used to measure amount of movement in a joint or measure joint angles



Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Range of Motion

- area through which a joint may normally be freely and painlessly moved
- measurable degree of movement potential in a joint or joints
- measured with a goniometer in degrees 00 to 3600

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Movements in Joints

- Goniometer axis is placed even with the axis of rotation at the joint line
- As joint is moved, goniometer arms are held in place either along or parallel to long axis of bones on either side of joint
- · Joint angle is then read from goniometer
- Normal range of motion for a particular joint varies in people



Manual of

Foundations of Structural Kinesiology

#### Movements in Joints

- Terms are used to describe actual change in position of bones relative to each other
- · Angles between bones change
- Movement occurs between articular surfaces of joint
  - "Flexing the knee" results in leg moving closer to thigh
  - "flexion of the leg" = flexion of the knee

Structural Kinesiology

Foundations of Structural Kinesiology

#### Movements in Joints

- Movement terms describe movement occurring throughout the full range of motion or through a very small range
  - Ex. 1 flex knee through full range by beginning in full knee extension (zero degrees of knee flexion) & flex it fully so that the heel comes in contact with buttocks, which is approximately 140 degrees of flexion

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Movements in Joints

- -Ex. 2 begin with knee in 90 degrees of flexion & then flex it 30 degrees which results in a knee flexion angle of 120 degrees, even though the knee only flexed 30 degrees
- -In both ex. 1 & 2 knee is in different degrees of flexion

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Movements in Joints

- -Ex. 3 begin with knee in 90 degrees of flexion and extend it 40 degrees, which would result in a flexion angle of 50 degrees
- Even though the knee extended, it is still flexed

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Movements in Joints

- Some movement terms describe motion at several joints throughout body
- Some terms are relatively specific to a joint or group of joints
  - Additionally, prefixes may be combined with these terms to emphasize excessive or reduced motion
    - · hyper- or hypo-
  - Hyperextension is the most commonly used

Manual of Structural Kinesiology Foundations of Structural Kinesiology

Manual of Structural Kinesiology

Manual of Structural Kinesiology

Manual of Structural Kinesiology

1.95

#### **GENERAL**

- Abduction
  - Lateral movement away from midline of trunk in lateral plane
  - raising arms or legs to side horizontally



Structural Kinesiology

Foundations of Structural Kinesiology

#### **GENERAL**

- Adduction
  - Movement medially toward midline of trunk in lateral plane
  - lowering arm to side or thigh back to anatomical position



ual of tural Kinesiology

Foundations of Structural Kinesiology

#### **GENERAL**

- Flexion
  - Bending movement that results in a ▼ of angle in joint by bringing bones together, usually in sagittal plane
  - elbow joint when hand is drawn to shoulder



uctural Kinesiologi

Foundations of Structural Kinesiology

#### **GENERAL**

- Extension
  - Straightening movement that results in an ▲ of angle in joint by moving bones apart, usually in sagittal plane
  - elbow joint when hand moves away from shoulder



uuuu oi uctural Kinesioloov

Foundations of Structural Kinesiology

#### **GENERAL**

- Circumduction
  - Circular movement of a limb that delineates an arc or describes a cone
  - combination of flexion, extension, abduction, & adduction
  - when shoulder joint & hip joint move in a circular fashion around a fixed point
  - also referred to as circumflexion

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### **GENERAL**

- Diagonal abduction
  - Movement by a limb through a diagonal plane away from midline of body
- Diagonal adduction
  - Movement by a limb through a diagonal plane toward & across midline of body

Foundations of Structural Kinesiology

#### **GENERAL**

- · External rotation
  - Rotary movement around longitudinal axis of a bone away from midline of body
  - Occurs in transverse plane
  - a.k.a. rotation laterally, outward rotation, & lateral rotation



Foundations of Structural Kinesiology

#### **GENERAL**

- · Internal rotation
  - Rotary movement around longitudinal axis of a bone toward midline of body
  - Occurs in transverse plane
  - a.k.a. rotation medially, inward rotation, & medial rotation



tural Kinesiology

Foundations of Structural Kinesiology

#### ANKLE & FOOT

- Eversion
  - Turning sole of foot outward or laterally
  - standing with weight on inner edge of foot
- Inversion
  - Turning sole of foot inward or medially
  - standing with weight on outer edge of foot

uctural Kinesiologi

Foundations of Structural Kinesiology

ANKLE & FOOT

#### ANKLE & FOOT

- · Dorsal flexion
  - Flexion movement of ankle that results in top of foot moving toward anterior tibia bone
- · Plantar flexion
  - Extension movement of ankle that results in foot moving away from body



1-105

uuau oi ictural Kinesiologi

Foundations of Structural Kinesiology

- · Pronation
  - A combination of ankle dorsiflexion, subtalar eversion, and forefoot abduction (toe-out)
- Supination
  - A combination of ankle plantar flexion, subtalar inversion, and forefoot adduction (toe-in)

Aanual of tructural Kinesiology

Foundations of Structural Kinesiology

1-106

#### RADIOULNAR JOINT

- · Pronation
  - Internally rotating radius where it lies diagonally across ulna, resulting in palm-down position of forearm
- Supination
  - Externally rotating radius where it lies parallel to ulna, resulting in palm-up position of forearm



Foundations of Structural Kinesiology

#### SHOULDER GIRDLE

- Depression
  - Inferior movement of shoulder girdle
  - returning to normal position from a shoulder shrug
- · Elevation
  - Superior movement of shoulder girdle
  - shrugging the shoulders

#### SHOULDER GIRDLE

- Protraction
  - Forward movement of shoulder girdle away from spine
  - Abduction of the scapula
- Retraction
  - Backward movement of shoulder girdle toward spine
  - Adduction of the scapula

Foundations of Structural Kinesiology

#### SHOULDER GIRDLE

- · Rotation downward
  - Rotary movement of scapula with inferior angle of scapula moving medially & downward
- · Rotation upward
  - Rotary movement of scapula with inferior angle of scapula moving laterally & upward

uctural Kinesiologi

Foundations of Structural Kinesiology

SHOULDER JOINT

- · Horizontal abduction
  - Movement of humerus in horizontal plane away from midline of body
  - also known as horizontal extension or transverse abduction
- · Horizontal adduction
  - Movement of humerus in horizontal plane toward midline of body
  - also known as horizontal flexion or transverse adduction

uuu oi ctural Kinesioloov

Foundations of Structural Kinesiology

SPINE

- Lateral flexion (side bending)
  - Movement of head and / or trunk laterally away from midline
  - Abduction of spine
- · Reduction
  - Return of spinal column to anatomic position from lateral flexion
  - Adduction of spine

tanuai oi tructural Kinesioloev

1-111

1-113

Foundations of Structural Kinesiology

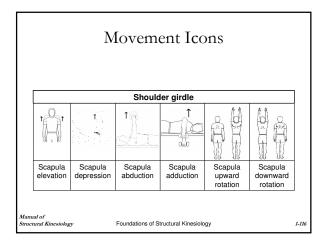
1-112

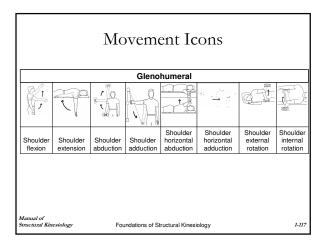
#### WRIST & HAND

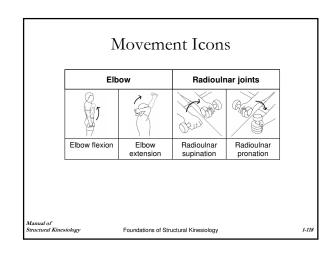
- · Palmar flexion
  - Flexion movement of wrist with volar or anterior side of hand moving toward anterior side of forearm
- · Dorsal flexion (dorsiflexion)
  - Extension movement of wrist in the sagittal plane with dorsal or posterior side of hand moving toward posterior side of forearm

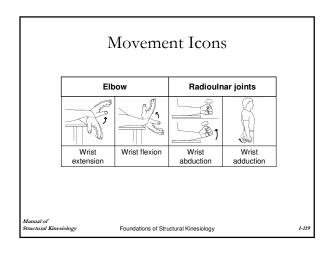
Foundations of Structural Kinesiology

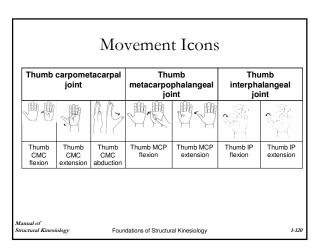
WRIST & HAND

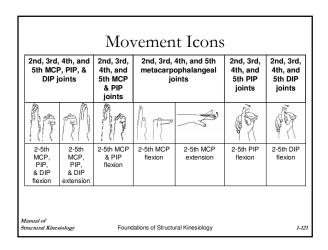

- · Radial flexion (radial deviation)
  - Abduction movement at wrist of thumb side of hand toward forearm
- Ulnar flexion (ulnar deviation)
  - Adduction movement at wrist of little finger side of hand toward forearm

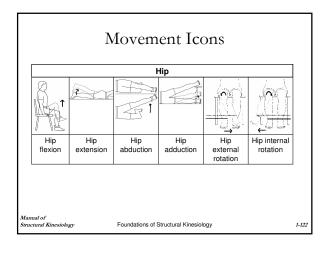


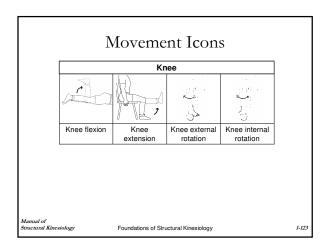


#### **WRIST & HAND**

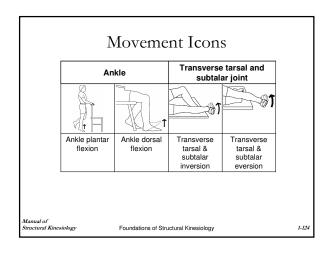

- · Opposition of the thumb
  - Diagonal movement of thumb across palmar surface of hand to make contact with the hand and/or fingers
- · Reposition of the thumb
  - Diagonal movement of the thumb as it returns to the anatomical position from opposition with the hand and/or fingers

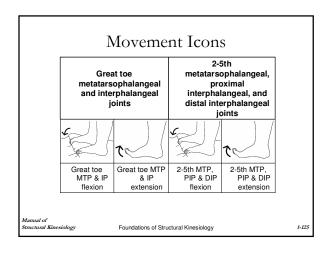

Manual of Structural Kinesiology

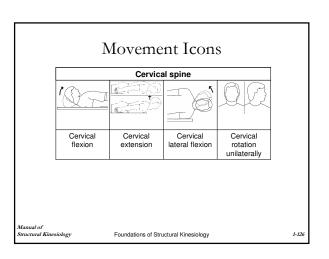













# Lumbar spine Lumbar spine Lumbar lateral flexion extension lexion unilaterally Manual of Structural Kinesiology Foundations of Structural Kinesiology 1-127

### Physiological movements vs. accessory motions

- Physiological movements flexion, extension, abduction, adduction, & rotation
  - occur by bones moving through planes of motion about an axis of rotation at joint
- Osteokinematic motion resulting motion of bones relative to 3 cardinal planes from these physiological

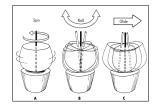
Manual of Structural Kinesiology

Foundations of Structural Kinesiology

Physiological movements vs. accessory motions

- For osteokinematic motions to occur there must be movement between the joint articular surfaces
- Arthrokinematics motion between articular surfaces

Manual of Structural Kinesiology


Foundations of Structural Kinesiology

## Physiological movements vs. accessory motions

• 3 specific types of accessory

motion

- -Spin
- -Roll
- Glide



Manual of Structural Kinesiology

1-129

Foundations of Structural Kinesiology

Physiological movements vs. accessory motions

- If accessory motion is prevented from occurring, then physiological motion cannot occur to any substantial degree other than by joint compression or distraction
- Due to most diarthrodial joints being composed of a concave surface articulating with a convex surface roll and glide must occur together to some degree

Manual of

Foundations of Structural Kinesiology

## Physiological movements vs. accessory motions

- Ex. 1 as a person stands from a squatted position the femur must roll forward and simultaneously slide backward on the tibia for the knee to extend
  - If not for the slide the femur would roll off the front of the tibia
  - If not for the roll, the femur would slide off the back of the tibia

Structural Kinesiology

Foundations of Structural Kinesiology

1-132

## Physiological movements vs. accessory motions

- Spin may occur in isolation or in combination with roll & glide
- As the knee flexes & extends spin occurs to some degree
  - In Ex. 1, the femur spins medially or internally rotates as the knee reaches full extension



1-133

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

#### Physiological movements vs. accessory

#### motions

- Roll (rock) a series of points on one articular surface contacts with a series of points on another articular surface
- Glide (slide) (translation) a specific point on one articulating surface comes in contact with a series of points on another surface



Structural Kinesiology

Foundations of Structural Kinesiology

## Physiological movements vs. accessory motions

- Spin A single point on one articular surface rotates about a single point on another articular surface
  - Motion occurs around some stationary longitudinal mechanical axis in either a clockwise or counterclockwise direction



1-135

1-137

Manual of

Structural Kinesiology

Foundations of Structural Kinesiology

#### Web Sites

#### **BBC Science & Nature**

www.bbc.co.uk/science/humanbody/body/interactives/3djigsaw 02/index.shtml?skeleton

- Allows interactive placement of bone and joint structures

#### Skeletal system

www.bio.psu.edu/faculty/strauss/anatomy/skel/skeletal.htm

Pictures of dissected bones and their anatomical landmarks

#### Pictures of dissected bones and their all ExRx Articulations

www.exrx.net/Lists/Articulations.html

 Detailed common exercises demonstrating movements of each joint and listing the muscles involved

#### Human Anatomy Online

www.innerbody.com/image/skelfov.html

Interactive skeleton labeling

Manual of Structural Kinesiology

Foundations of Structural Kinesiology

1-136

#### Web Sites

#### Radiographic Anatomy of the Skeleton

www.rad.washington.edu/radanat/

- X-rays with and without labels of bony landmarks

#### Virtual skeleton

www.uwyo.edu/RealLearning/4210qtvr.html

 A 3-dimensional human osteology with Quicktime movies of each bone

#### Forensic Anthropology

www-personal.une.edu.au/~pbrown3/skeleton.pdf

 A detailed discussion of skeletal anthropology with excellent pictures of dissected bones

fanual of

tanuai oi tructural Kinesiolog Foundations of Structural Kinesiology

#### Web Sites

#### Anatomy & Physiology Tutorials:

www.gwc.maricopa.edu/class/bio201/index.htm

#### BBC Science & Nature

www.bbc.co.uk/science/humanbody/body/factfiles/skeleton an

atomy.shtml

Describes each bone and allows viewing of each from different angles

#### BBC Science & Nature

www.bbc.co.uk/science/humanbody/body/factfiles/joints/ball\_a nd\_socket\_joint.shtml

 Describes each type of joint and allows viewing of how the joint moves within the body.

Manual or

Structural Kinesiology

Foundations of Structural Kinesiology

#### Web Sites

#### University of Michigan Learning Resource Center, Hypermuscle: Muscles in action

www.med.umich.edu/lrc/Hypermuscle/Hyper.html#flex

 Describes each motion and allows viewing of the motion preformed.

#### Articulations

http://basic-anatomy.net/

A thorough discussion of the articulations

#### Foss Human Body

http://sv.berkeley.edu/showcase/pages/bones.html

- An interactive site which allows assembly of the skeleton Functions of the Skeletal System

http://training.seer.cancer.gov/module\_anatomy/unit3\_1\_bone\_functions.html

Several pages with information on bone tissue, bone development and growth, and the joints

ctural Kinesiology

Foundations of Structural Kinesiology

1-139

1-141

#### Web Sites

#### Introductory Anatomy: Joints

www.leeds.ac.uk/chb/lectures/anatomy4.html – Notes on joint articulations

#### The Interactive Skeleton

www.pdh-odp.co.uk/skeleton.htm

www.puir-oup.co.uwskeietoin.tim

— Point and click to detailed skeletal illustrations

Radiographic Anatomy of the Skeleton

www.szote.u-szeged.hu/Radiology/Anatomy/skeleton.htm

— X-rays with and without labels of bony landmarks

Skeleton: The Joints

www.zoology.ubc.ca/~biomania/tutorial/bonejt/outline.htm

Point and click to detailed joint illustrations

#### TeachPE.com

www.teachpe.com/Interactivelearning.htm

Interactive questions on bones, joints, muscles

uctural Kinesiology

Foundations of Structural Kinesiology

#### Web Sites

Wireframe Skeleton www.2flashgames.com/f/f-220.htm

Move around the skeleton's limbs arms legs body and make it do funny things

#### eSkeletons Project

www.eskeletons.org/
 An interactive site with a bone viewer showing the morphology, origins, insertions, and articulations of each bone

Skeleton Shakedown
 www.harcourtschool.com/activity/skel/skel.html
 Help put a disarticulated skeleton back together

#### **KLB Science Department Interactivities**

www.klbschool.org.uk/interactive/science/skeleton.htm

Skeleton labeling exercises

Manual of Structural Kinesiology Foundations of Structural Kinesiology