
Mathematical Logic II

Dag Normann
The University of Oslo

Department of Mathematics
P.O. Box 1053 - Blindern

0316 Oslo
Norway

December 21, 2005

Contents

1 Classical Model Theory 6
1.1 Embeddings and isomorphisms 6
1.2 Elementary embeddings . 11
1.3 Complete Theories . 17

1.3.1 Categorical theories . 17
1.3.2 Elimination of Quantifiers 18
1.3.3 Real Closed Fields . 25

1.4 Element types . 28
1.5 Saturated structures . 34
1.6 ω-logic . 37

1.6.1 ω-logic . 38
1.6.2 ω-completeness . 39

1.7 Exercises to Chapter 1 . 41

2 Finitary Model Theory 46
2.1 The 0-1-law . 46
2.2 Second order languages . 51
2.3 Exercises to Chapter 2 . 53

3 Classical Computability Theory 55
3.1 The foundation, Turing’s analysis 55
3.2 Computable functions and c.e. sets 58

3.2.1 The primitive recursive functions 58
3.2.2 The computable functions 63
3.2.3 Computably enumerable sets 69
3.2.4 Crosses and naughts . 74

3.3 Degrees of Unsolvability . 74
3.3.1 m-reducibility . 74
3.3.2 Turing degrees . 78

3.4 A minimal degree . 84
3.4.1 Trees . 84
3.4.2 Collecting Trees . 86
3.4.3 Splitting Trees . 86
3.4.4 A minimal degree . 87

1

3.5 A priority argument . 88
3.5.1 C.e. degrees . 88
3.5.2 Post’s Problem . 88
3.5.3 Two incomparable c.e. degrees 89

3.6 Subrecursion theory . 91
3.6.1 Complexity . 91
3.6.2 Ackermann revisited . 92
3.6.3 Ordinal notation . 93
3.6.4 A subrecursive hierarchy 95

3.7 Exercises . 96

4 Generalized Computability Theory 104
4.1 Computing with function arguments 104

4.1.1 Topology . 105
4.1.2 Associates . 106
4.1.3 Uniform continuity and the Fan Functional 107

4.2 Computing relative to a functional of
type 2 . 109

4.3 2E versus continuity . 112
4.4 The Hyperarithmetical sets . 116

4.4.1 Trees . 116
4.4.2 Π0

k-sets etc. 118
4.4.3 Semicomputability in 2E and Gandy Selection 121
4.4.4 Characterising the hyperarithmetical sets 124

4.5 Typed λ-calculus and PCF . 125
4.5.1 Syntax of PCF . 125
4.5.2 Operational semantics for PCF 127
4.5.3 A denotational semantics for PCF 129

4.6 Exercises to Chapter 4 . 131

5 Non-trivial exercises and minor projects 135

6 Appendix:
Some propositions from a beginners course in logic 142

2

Preface

This compendium will be the curriculum text for the course “Mathematical
Logic II” at the University of Oslo, Spring 2006. This compendium is a revised
version of the compendium used for the same course in the Spring 2004. A few
details are added, some typos are corrected, some exercises that were unsolvable
has been rewritten and other minor details have been changed.
In its present form, this compendium may be used free of charge by anyone, but
if someone uses it for an organized course, the author would like to be informed.

Blindern, 13-12-05

Dag Normann

3

Introduction

This compendium is written primarily as a text for the course Mathematical
Logic II given at the University of Oslo, Norway. However, much more stuff
is included than what is needed for this; we have included material that is of
interest to the logic group in Oslo, and that the reader might like to learn by
self study. The course Mathematical Logic II is a continuation of the course
Mathematical Logic, and we assume that the reader has passed this course or is
familiar with logic up to the same level. In the Appendix we have collected some
propositions without proofs. These are precise versions of theorems assumed to
be known to the reader.

We will assume that the reader is familiar with first order logic at an ele-
mentary level, including the soundness theorem, the deduction theorem and the
completeness theorem for countable theories. We will assume knowledge of the
Henkin-style proof of the completeness theorem. The theorem of constants will
be used extensively. At some occasions we will use the full completeness theo-
rem, though a full proof use Zorn’s Lemma or comparative means. Since most
intended readers also will follow a course in axiomatic set theory, the verification
of Zorn’s Lemma from the Axiom of Choice is left for that course.

This compendium is essentially consisting of two parts, Model Theory and
Computability Theory. In model theory we mainly restrict ourselves to the clas-
sical topics like quantifier elimination and omitting/realizing types, but have
included a brief introduction to finite model theory. In the computability the-
ory part we use a Kleene-style introduction, and give an introduction to the
recursion theorem, c.e. sets, Turing degrees, a basic priority argument and the
existence of minimal degrees. We also include a chapter on generalized com-
putability theory.

Now we will settle some terminology and conventions that we will use in the
text. Our terminology and our conventions are chosen to be compatible with
the beginners course in logic at the University of Oslo, but our terminology is
sufficiently standard for this to cause no problems for readers with a different
background.

• L will be a first order language. Unless specified otherwise, L will be a
language with equality.

• c1, c2 etc. will be names (or constant symbols) in a formal language.

• f , g, etc. will be function symbols in a formal language. Sometimes it will
be convenient to consider a name as a function symbol of arity 0.

• R, P , Q etc. will be relation symbols in a formal language.

• v1, v2, . . . is the formal list of variables, but we will mainly use x, y etc.
instead.

• t1, t2 etc. will denote terms.

• φ, ψ, ξ, etc. will denote formulas or sentences.

4

• A structure A for a language L will consist of a domain A and interpre-
tations lA for each name, function symbol and relation symbol l (l for
‘letter’) in L. Whenever we use the Gothic letters A and B, we will use the
corresponding roman letters A and B for the domains of these structures
without always mentioning it.

• s will denote an assignment function, a function assigning an element of
a structure A to each variable vi. φ[s] will be used intuitively as the
formula φ where all free variables are replaced by names for elements in
A according to the assignment s.
Technically we define

cA[s] = cA,
vA
i [s] = s(vi),

(ft1 . . . tn)A[s] = fA(tA1 [s], . . . , tAn [s]).

A formula φ will technically be interpreted as a function φA from the set
of assignments to the set B = {>,⊥} of truth values. How this is done is
well known from any beginners course in logic.

• We will use the terminology tx1,...,xn

t1,...,tn and φx1,...,xn

t1,...,tn for simultaneous in-
stansiations of the terms t1, . . . , tn for the free occurrences of the variables
x1, . . . , xn. In the latter case we assume without saying that the terms
are substitutable for the variables in question.

• Since the notation above is hard to read, we will sometimes write

φ(x1, . . . , xn)

when φ is a formula with at most x1, . . . , xn free. When we use this
notation, we may write

φ(t1, . . . , tn)

instead of
φx1,...,xn

t1,...,tn .

We have chosen to use the notation

{· ; · ·}

instead of the commonly used
{· | · ·},

because in some expressions we would otherwise have a multiple purpose use of
| that might cause confused readers.

Each chapter 1-4 is supplied with a set of exercises at the end, some simple
and some hard. The exercises are integrated parts of the text, and at the end
the students are assumed to have worked through most of them.

Chapter 5 will consist of just exercises. These are not integrated parts, but
challenges the eager reader might like to face.

5

Chapter 1

Classical Model Theory

In model theory we investigate the connection between particular first order
theories or first order theories of a special kind and the class of models for that
theory. The completeness theorem is one of the most basic tools in model theory,
and some of the applications will refer to the actual proof of the completeness
theorem. We will also, without hesitation, use the axiom of choice.

1.1 Embeddings and isomorphisms

In this section we will discuss more systematically ways of comparing structures
of a 1. order language L. Some of these concepts may be known to the reader,
but for the sake of completeness we include all relevant definitions.

Definition 1.1.1 Let L be a first order language, A an L-structure with domain
A.
A substructure B with domain B will be an L-structure such that

1. B ⊆ A.

2. cB = cA whenever c is a name (constant symbol) in L.

3. fB(a1, . . . , an) = fA(a1, . . . , an) whenever f is a function symbol in L of
arity n and a1, . . . , an ∈ B.

4. RB = RA ∩Bn whenever R is a relation symbol in L of arity n.

Definition 1.1.2 A first order theory T is open if all non-logical axioms are
open, i.e. have no quantifiers.

Lemma 1.1.3 Let A be an L-structure.

a) Let B ⊆ A. Then B is the domain of a substructure B of A if and only if
B is closed under all interpretations fA where f is a function symbol (or
a constant) in L.

6

b) Let B be a substructure of A. Let φ be an open L-formula and s an
assignment over B (and then also over A.) Then φ[s] is true in B if and
only if it is true in A.

Proof
The proof of a) is trivial and the proof of b) is trivial by induction on the
subformula relation.

Given a structure A, it is sufficient to consider the class of substructures for
most purposes where this is relevant. However, sometimes we want to go the
other way, we might like to extend a structure. This is done e.g. in moving
from the natural numbers to the integers, further on to the rationals and maybe
continuing to the algebraic numbers, the real numbers or the complex numbers.
Whenever convenient we may consider a natural number as a complex number,
though using a standard representation of complex numbers in set theory, there
is a long way to go. In the extreme, a natural number will be a finite set
totally ordered by the ∈-relation, an integer will be an equivalence class of
pairs of natural numbers, a rational number will be an equivalence class of
pairs of integers, a real will be a Dedekind cut of rational numbers (or even
worse, an equivalence class of Cauchy sequences of rational numbers) and a
complex number will be an ordered pair of real numbers. Of course there is no
mathematical gain in thinking of complex numbers as such monsters, it is easier
to assume that N ⊂ Z ⊂ R ⊂ C and just base our mathematics on our intuitive
understanding of these sets.

When we in the context of a logic course want to extend a structure, it is
standard procedure to use the completeness theorem in such a way that we
ensure that a copy of the original structure will be a substructure. We have to
do some set-theoretical hocus pocus in order to obtain an actual extension.

We will now develop the concepts needed in order to make this precise:

Definition 1.1.4 let L be a first order language and let A and B be L-structures.

a) An embedding from B to A is a map π : B → A that is one to one and
such that

π(cB) = cA for each name c.

π(fA(a1, . . . , an)) = fB(π(a1), . . . , π(an)) for all a1, . . . , an ∈ B.

RB(a1, . . . , an) ⇔ RA(π(a1), . . . , π(an)) for all a1, . . . , an ∈ B.

b) An isomorphism will be an embedding that is onto.

Examples 1.1.5 a) If we consider 〈R, 0,+, <〉 and 〈R+, 1, ·, <〉 as two struc-
tures for the language with one name, one binary function and one binary
relation, then π(x) = ex is an isomorphism.

b) If we consider reals as sets of Dedekind cuts of rationals with the inherited
algebraic structure, then π(q) = {r ∈ Q ; r < q} will be an embedding of
Q into R.

7

c) If Z = 〈Z,+, ·, 0, 1〉 is seen as a structure for the language of ring theory,
then the set of non-negative integers with the inherited algebra will be a
substructure (but not a subring) of Z.

There are two traditions for defining the interpretation of a formula over a
structure. One is using assignments as we did in the introduction. Then we
define the truth value of any formula relative to a given assignment. The other
tradition is to extend the language with names for each element in the struc-
ture, and then only interpret the sentences in this extended language. These
approaches are equivalent, but it turns out that the latter approach is more easy
to use for many of the purposes in model theory.

Definition 1.1.6 Let L be a first order language, A an L-structure.

a) By L(A) we mean the language L where we add one new constant symbol
ca for each a ∈ A.

b) As a default, we will consider A as an L(A)-structure via the interpretation
cAa = a.

See Exercise 1.3 for the tedious, but simple observations that have to be made.
Recall that a literal is a formula that is either an atomic formula or the negation
of an atomic formula.

Definition 1.1.7 Let L be a first order language and let A be an L structure.
By the diagram of A, D(A), we mean the set of variable-free literals in L(A)
that are true in A.

Remark 1.1.8 In some textbooks, the diagram is defined as the theory where
all variable free sentences in L(A) that are true in A are axioms. This will be
an equivalent theory to ours, so the choice of definition is a matter of taste.

The diagram will play an important part when we want to show that we have
extensions of a structure A with some desired properties; we just have to show
that the diagram of A is consistent with the desired properties:

Lemma 1.1.9 Let L be a first order language, A and B L-structures.
Then the following are equivalent:

i) There is an embedding π of A into B.

ii) We may give an interpretation of the extra constants ca from L(A) in B
such that B becomes a model for D(A).

Proof
Assume i). Let (ca)B = π(a). With this interpretation, ii) is verified.
Assume ii). Let π(a) = (ca)B. Since L is a language with equality, and B is a
model for the diagram of A, π will be an embedding.

8

It will be a matter of taste if we talk about extensions of structures or of
embeddings into other structures, see Exercise 1.4. Our first result is a typical
model-theoretical one, we connect the logical form of the axioms in a theory
with the relations between models and their substructures. Recall that two first
order theories are equivalent if they have the same theorems. (A consequence
will be that they are based on the same language; why?)

Theorem 1.1.10 (Los-Tarski)
Let T be a first order theory over a language L. Then the following are equiva-
lent:

1. For all L-structures A and B, if B is a model for T and A is a substructure
of B, then A is a model for T .

2. T is equivalent to an open theory T ′.

Proof
By the completeness theorem, two theories will be equivalent if and only if they
have the same models. Thus 2.⇒ 1. is already proved.
Now assume that 1. holds. Let the non-logical axioms in T ′ be the open theorems
of T . Then T ′ is an open theory, and all models for T will be models for T ′. In
order to prove that T and T ′ are equivalent, we must prove the converse. So,
let A be a model for T ′. In order to prove that T ′ is a model for T , consider
the theory

T ∗ = D(A) ∪ T.

Claim
T ∗ is consistent.
Proof
Assume not. Then there are φ1, . . . , φn in the diagram of A such that
T ∪ {φ1, . . . , φn} is inconsistent, or alternatively, that T ` ¬(φ1 ∧ · · · ∧ φn).
Each φi will be an instance of some literal ψi in L, and we may let the same
name ca be substituted for the same variable z in all the literals under consider-
ation. Thus there are variables z1, . . . , zm, new names ca1 , . . . , cam and literals
ψ1, . . . , ψn in L such that

φi = (ψi)z1,...,zm
ca1 ,...,cam

for each i ≤ n.
The names caj will not occur in the non-logical axioms in T , so by the theorem
of constants, T ` ¬(ψ1 ∧ · · · ∧ ψn).
However, each φi is a literal that is true in A, so φ1 ∧ · · · ∧φn is a valid instance
of ψ1 ∧ · · · ∧ ψn. This contradicts that ¬(ψ1 ∧ · · · ∧ ψn) is valid in A, and the
claim is proved.

Let B be a model for T ∗. There will be an embedding of A into B. By Exercise
1.4, A is isomorphic to a substructure A′ of B, which by the assumption is a
model for T . Thus A is a model for T .
This ends the proof of the theorem

9

Sometimes in model theory we will construct a structure by piecewise ex-
tensions, quite often using the completeness theorem at each step. In order to
handle such constructions we need the concept of directed limit, a concept you
find in other parts of mathematics as well.

Definition 1.1.11 Let 〈I,<〉 be a partial ordering.
The ordering is called directed if

∀i ∈ I∀j ∈ I∃k ∈ I(i < k ∧ j < k).

A directed ordering is a generalization of an increasing sequence.

Definition 1.1.12 Let L be a first order language.

a) A directed system of L-structures will consist of

1. A directed ordering 〈I,<〉
2. An L-structure Ai for each i ∈ I
3. An embedding πij : Ai → Aj whenever i ≤ j in I

such that πii is the identity function on each Ai and such that whenever
i ≤ j ≤ k, then πik = πjk ◦ πij (where ◦ denotes composition).

b) Using the notation from a), a directed limit of the system will be an L-
structure A and embeddings πi : Ai → A for each i ∈ I such that

– If i ≤ j, then πi = πj ◦ πij .
– Let B be an L-structure and for each i ∈ I, let ηi be an embedding

from Ai to B such that ηi = ηj ◦ πij whenever i ≤ j.
Then there is a unique embedding η : A → B such that ηi = η ◦ πi
for each i ∈ I.

Remark 1.1.13 The concept of a directed limit is more general. In a category
theoretical context it is often known as a colimit.

Theorem 1.1.14 Each directed system

〈I,<, {A}i∈I , {πi,j}i≤j〉

will have a directed limit, and this is unique up to isomorphisms.

Proof
The reader should verify for her/himself that if A and B both satisfy the re-
quirements of a directed limit, then A and B are isomorphic, see Exercise 1.5.
Let X be the set of ordered pairs (i, a) such that i ∈ I and a ∈ Ai where Ai is
the domain of Ai.
We let (i, a) ≈ (j, b) if for some k ∈ I we have that i ≤ k, j ≤ k and
πik(a) = πjk(b).

10

This definition does not depend on the choice of k, and ≈ will be an equivalence
relation.
Let A be the set of equivalence classes [(a, i)], and let πi(a) = [(a, i)].
Whenever C1, . . . , Cn are equivalence classes, we may find an i ∈ I and
a1, . . . , an ∈ Ai such that Cj = [(i, aj)] for each j ≤ n. Here we use that 〈I,<〉
is a directed ordering.
We let

fA(C1, . . . , Cn) = [(i, fAi(a1, . . . , an))]

and
RA(C1, . . . , Cn) ⇔ RAi(a1, . . . , an)

whenever f and R are n-ary.
This definition does not depend on i.
If B and ηi are as in Definition 1.1.12 b), then η defined by

η([(a, i)]) = ηi(a)

will be the unique embedding satisfying ηi = η ◦ πi for each i ∈ I.
The details left out and the rest of the proof is left for the reader as Exercise
1.5.

1.2 Elementary embeddings

If two structures A and B for the same language L are isomorphic, they will
have the same logical properties. In fact, this must be true as long as a logical
property reflects the structure itself and not the underlying set-theoretical rep-
resentation of the domains or of other parts of the interpretations. In particular,
they will share the same properties expressible in higher order logic. Sometimes
a concept is defined to be logical if it is invariant under isomormhisms. In the
same spirit, we may call a concept algebraic if it is invariant under embeddabil-
ity. It is not certain that all researchers in algebra will agree.
Concepts like finite, well ordering, countable and complete are logical in this
sense, but they are not expressible in first order logic. In order to make a
discussion of this precise, we need a new concept:

Definition 1.2.1 Let L be a first order language, and let A and B be two
L-structures.
We say that A and B are elementary equivalent if

A |= φ⇔ B |= φ

whenever φ is a sentence in L.
Since it is useful to consider a structure as the same structure even if we in-
terpret several additional names, we refer to L in the notation for elementary
equivalence. We write

A ≡L B

when A and B are elementary equivalent with respect to sentences in L.

11

In the beginning of the Twentieth century some mathematicians hoped that
mathematics could be build on an even more solid ground by reducing it to
logic. The Norwegian logician Thoralf Skolem demonstrated the limitations of
this program.

Theorem 1.2.2 (Skolem)
Let L be the first order language of number theory with constants for ‘zero’ and
‘one’, function symbols for ‘addition’, ‘multiplication’ and ‘exponentiation’ and
a relation symbol for the ordering. Let

N = 〈N, 0, 1,+, ·, exp,<〉

be the standard model.
Then there is another L-structure N′ that is elementary equivalent to N, but
not isomorphic to N.

Proof
This is a consequence of the compactness theorem. Let c be a new name, let T
be the set of sentences in L valid in N, and let T ∗ be T extended by the axioms
kn < c for each n, where kn is the numeral in L denoting the number n.
Each finite subtheory of T ∗ may use N as a model interpreting c as a natural
number (depending on T ∗). Then by the compactness theorem, there is a model
N′ for T ∗. This model will be elementary equivalent to N because both are
models for T , but they are clearly not isomorphic.

Remark 1.2.3 The completeness theorem and the compactness theorem were
not available to Skolem. His argument used another form of model theoretical
construction, something we might call a reduced ultra-product construction, see
Exercise 5.3.

By a similar argument we may show that the mathematically important concept
of a well ordering is not definable in first order logic.

Definition 1.2.4 Let 〈X,<〉 be a total ordering. 〈X,<〉 is a well ordering if
every nonempty subset Y ⊆ X has a least element.

Theorem 1.2.5 There is no first order theory T with the class of well orderings
as its models.

Proof
The language of any such theory T must be the one with just one binary relation
symbol, we may as well denote it by <. A sentence φ in L will be a theorem in
T if and only if φ is true for all well orderings. So let T be the theory with all
sentences φ true for all well orderings as its non-logical axioms. We will show
that T has a model that is not a well ordering.

Extend L with new names ck for each natural number k and let T ∗ be T
extended with all axioms ck+1 < ck for k ∈ N.

12

Each finite subtheory T0 of T ∗ will have a model, since there are arbitrarily long
finite well orderings. By the compactness theorem, T ∗ has a model

A = 〈A,<A, {cAk }k∈N〉.

Clearly the set {cAk ; k ∈ N} has no least element, so 〈A,<A〉 is not a well
ordering.
However

〈A,<A〉 |= T,

so this structure has all the first order properties shared by all well orderings.

A concept of importance in logic in general and in model theory in particular
is completeness.

Definition 1.2.6 A first order theory T over a language L is complete if T is
consistent and T ` φ or T ` ¬φ for each sentence φ in L.

The following is a direct consequence of the completeness theorem:

Lemma 1.2.7 Let T be a first order theory over a language L. The following
are equivalent:

1. T is complete.

2. A ≡L B for all models A and B for T .

If L is a first order language, A and B are L-structures, and π is an embed-
ding from A to B, we may view B as a structure for L(A) using the interpreta-
tion

(ca)B = π(a).

An embedding of B into A is a 1-1 map π that preserves the basic algebra
of B. We will also be interested in maps that preserve the first order logic of A:

Definition 1.2.8 Let L be a first order language, and let A and B be two
L-structures.

a) Assume that A is a substructure of B. We say that A is an elementary
substructure of B if A ≡L(A) B.

b) Assume that π is an embedding from A to B and view B as a structure
for L(A) as above.
We call π an elementary embedding if A ≡L(A) B.

We used the diagram D(A) to axiomatize that A essentially is a substructure.
Likewise, we will need a formal theory that axiomatizes that A essentially is an
elementary substructure.

13

Definition 1.2.9 Let L be a first order language, A an L-structure. The theory
of A, Th(A), will have the sentences in L(A) that are true in A as the non-logical
axioms.

We make the following observation:

Lemma 1.2.10 Let L be a first order language, A and B two L-structures.
The following are equivalent:

1. There is an elementary embedding π from A to B.

2. There is an interpretation of each new constant in L(A) as an element in
B such that B becomes a model for Th(A).

Proof
Both directions are based on establishing the equality

π(a) = (ca)B.

1.⇒ 2.
Assuming 1., we interpret ca in B by (ca)B = π(a). Since π is elementary, we
have that A ≡L(A) B, and thus B will be a model for Th(A).
2.⇒ 1.
Assuming 2., we define π by π(a) = (ca)B.
Let φ be a sentence in L(A). Since B |= Th(A) we must have that

A |= φ⇒ B |= φ.

A |= ¬φ⇒ B |= ¬φ.

It follows that π is an embedding and that π is elementary.

Theorem 1.2.11 Let L be a first order theory, A and B two L-structures.
Then the following are equivalent:

1. A ≡L B.

2. There is an L-structure C with elementary embeddings π : A → C and
η : B → C.

Proof
2. ⇒ 1. is trivial, so assume that A and B are elementary equivalent. We will
extend L by adding names ca for each a ∈ A and a disjoint set of names db for
b ∈ B.
Let T = Th(A) ∪ Th(B). We will prove that T is consistent.
Assume not. We will use that the set of axioms in Th(A) and the set of axioms
in Th(B) are closed under ∧.
Then there are sentences φ in Th(A) and ψ in Th(B) such that ` ¬(φ ∧ ψ).

14

Let x1, . . . , xn, y1, . . . , ym be fresh and distinct variables and let φ′ and ψ′ be
L-formulas such that φ is of the form

(φ′)x1,...,xn
ca1 ,...,can

and ψ is of the form
(ψ′)y1,...,ym

db1 ,...,dbm
.

By the theorem of constants
` ¬(φ′ ∧ ψ′),

and using propositional logic and rules for quantifiers

` ∃x1 · · · ∃xnφ′ → ∀y1 · · · ∀ym¬ψ′.

Now ∃x1 · · · ∃xnφ′ will hold in A since a1, . . . , an makes φ′ true. Since A and B
are elementary equivalent, ∃x1 · · · ∃xnφ′ will be true in B as well.
As a consequence we must have that ∀y1 · · · ∀ym¬ψ′ is true in B. But this is
impossible, since there is an instance that makes ψ′ true in B, namely ψ. Thus
we have observed a contradiction.
The assumption was that T is not consistent, and our conclusion will be that T
is consistent and has a model C. By Lemma 1.2.10 we see that 2. holds. This
ends the proof of the theorem.

In Exercise 1.6 we give an application of this theorem.

In section 1.1 we discussed directed limits of directed systems. Such systems
where all embeddings are elementary are of a particular interest:

Definition 1.2.12 Let L be a first order language, 〈I,<〉 be a directed set and
let 〈{Ai}i∈I , {πij}i<j〉 be a directed system of L-structures.
We call the system elementary if each πij is an elementary embedding.

The limit embeddings of an elementary system will be elementary, see Exercise
1.7.

We will prove two important theorems about elementary extensions, the so
called Löwenheim-Skolem theorems. The theorems say that there is no way
first order logic can distinguish between infinities that dominate the size of the
language in question. One consequence will be the Skolem’s paradox;

there is an elementary countable substructure of the reals.

This is not a real paradox, it only demonstrates that first order logic is not
adequate for proving, or even stating, that R is uncountable.

Theorem 1.2.13 Let A be an infinite first order structure over the language
L. Let X be any set.
Then there is an elementary extension B of A and an injective map δ : X → B.
(We can find elementary extensions of A of arbitrarily large cardinality.)

15

Proof
Let L∗ be L(A) extended with a name db for each element b ∈ X. Let T be the
theory Th(A) extended with the axioms db 6= dc whenever b and c are distinct
elements of X.
Since A is infinite, A can be viewed as a model for each finite subtheory of T ∗,
so T ∗ has a model B. Using Exercise 1.4 adjusted to elementary embeddings,
we see that we may let B be an extension of A. Let δ(b) = (db)B. δ will be
injective, and the theorem is proved.

This was the easy upwards Löwenheim-Skolem theorem. We will now face the
downwards Löwenheim-Skolem theorem. Since we will not bother to get involved
in too much cardinality arithmetics, we restrict ourselves to the countable case,
which is the most important and best known case.

Theorem 1.2.14 Let L be a countable first order language, and let A be an
L-structure.
Then A has a countable elementary substructure.

Proof
Let φ be a formula in L, a1, . . . , an elements of A. In order to improve the
readability, we will let

φ(x1, . . . , xn)

mean that all free variables in φ are among x1, . . . , xn, and we will write

φ(a1, . . . , an)

instead of
φx1,...,xn
ca1 ,...,can

.

Let φ(y, x1, . . . , xn) be a formula in L. A Skolem function for φ is a function
h : An → A such that whenever a1, . . . , an are in A then

φ(h(a1, . . . , an), a1, . . . , an) is true in A

whenever

there is some b ∈ A such that φ(b, a1, . . . , an) is true in A.

For each such formula φ, we select one Skolem function hφ. If n = 0, hφ will
be a function of no variables, which will be just an element of A. In particular,
hy=y ∈ A. (We need the axiom of choice to justify the existence of Skolem
functions and to select one for each formula φ.)
If f is a function symbol in L, fA will be one of the Skolem functions: Let φ be
the formula y = f(x1, . . . , xn). Then fA = hφ
Since L is countable, the set of Skolem functions will be countable.
Let B0 be the empty set, and by recursion, let

Bk+1 = {h(a1, . . . , an) ; h is one of the Skolem functions hφ and a1, . . . , an ∈

16

Bk}.

By induction on k we see that each Bk will be countable, and that Bk ⊆ Bk+1.
Moreover, B1 6= ∅ since hy=y ∈ B1.
Let B be the union of the Bk’s. Then B is a countable subset of A, and by
construction, B is closed under all the Skolem functions. By Lemma 1.1.3, B
is the domain of a substructure B of A. It remains to prove that B is an
elementary substructure of A, which amounts to prove that whenever a1, . . . , an
are in B, then φ(a1, . . . an) is true in B if and only if it is true in A.
This is proved by induction on the complexity of φ:
If φ is atomic, the equivalence follows from the fact that B is a substructure of
A.
If φ = ¬ψ or φ = ψ1 ∨ ψ2, the induction step is trivial.
If φ(a1, . . . , an) = ∃yψ(y, a1, . . . an), and φ(a1, . . . , an) is true in B via some b,
then, by the induction hypothesis, it will be true in A via the same b.
If on the other hand φ(a1, . . . , an) is true in A via some b, it is true in A via
hψ(a1, . . . , an).
Since hψ(a1, . . . , an) ∈ B, we may use the induction hypothesis and see that
φ(a1, . . . , an) is true in B via hψ(a1, . . . , an).
This ends the proof.

Readers familiar with cardinal arithmetics will observe that the same argu-
ment can be used to prove the general version:

Theorem 1.2.15 Let κ be an infinite cardinal number. Let L be a first order
language of cardinality ≤ κ, and let A be an L-structure.
Then A has an elementary substructure B of cardinality at most κ.

1.3 Complete Theories

In the previous section, we defined a consistent first order theory to be complete
if all sentences of the language can be proved or disproved. In this section we
will look for criteria for a theory to be complete.

1.3.1 Categorical theories

A first order theory is categorical if all models are isomorphic. If a theory is
categorical, it is a consequence of the upwards Löwenheim-Skolem theorem that
all models are finite. Thus this concept is of a rather limited interest. The
following is more interesting:

Definition 1.3.1 Let L be a countable first order language, and T a theory
over L. T is ω-categorical if all countable models are isomorphic.

It is easy the see that a consistent ω-categorical theory must be complete, see
Exercise 1.8. In Exercise 1.12 we see that the converse is not true.

17

Example 1.3.2 Let DO be the first order theory over the language L with
equality and one binary relation symbol <, and with the following axioms:

DO-1 ¬(x < x)

DO-2 x < y ∧ y < z → x < z

DO-3 x < y ∨ y < x ∨ x = y

DO-4 x < y → ∃u∃v∃w(u < x ∧ x < v ∧ v < y ∧ y < w)

The first three axioms tells us that < is a total ordering, while DO-4 implies
that there is no largest element, no least elements, and that the elements in the
ordering are densely ordered. DO stands for dense ordering.
We claim that DO is ω-categorical. We give an outline of the proof, and leave
the details as Exercise 1.9
Let 〈A,<A〉 and 〈B,<B〉 be two countable models for DO. A finite partial
isomorphism will be an order preserving map p : K → B where K ⊆ A is finite.
The set of finite partial isomorphisms have the following extension properties:

• If p is a finite partial isomorphism and a ∈ A, then p can be extended to
a finite partial isomorphism q defined on a.

• If p is a finite partial isomorphism and b ∈ B, then p can be extended to
a finite partial isomorphism q with b in its range.

Given enumerations A = {an ; n ∈ N} and B = {bn ; n ∈ N} we can con-
struct an increasing sequence of finite partial ismorphisms {pn}n∈N securing
that p2n(an) is defined and that bn is in the range of p2n+1. The limit of these
finite partial isomorphisms will be an isomorphism between the two structures.

We will discuss ω-categoricity in more depth in the paragraph on element types
and in the chapter on finite model theory. The method of proof is for obvious
reasons called a back-and-forth construction. Sometimes in the literature, it is
called a zig-zag-construction.

1.3.2 Elimination of Quantifiers

One of the key success stories of model theory is that of proving completeness
of a theory via elimination of quantifiers, and thereby proving theorems about
algebraic theories of genuine interest. Our key example will be field theory, but
the main application is the theory of real closed fields. We have used traditional
texts on model theory as sources for our exposition in this and later sections on
model theory, in particular Sacks [2]. We will assume that the reader is familiar
with field theory, but give a brief introduction for the sake of completeness.

18

Field Theory

The language of field theory that we will use, will consist of three constants, 0,
1 and −1 and two binary function symbols + and ·. As logicians, we should
make a clear distinction between these symbols and the symbols we use for the
particular interpretations, but unless forced by the circumstances, we will not
do so.
Our axioms for field theory, F , will be:

F 01 (x+ y) + z = x+ (y + z)

F 02 x+ 0 = x

F 03 x+ (−1 · x) = 0

F 04 x+ y = y + x

F 05 (x · y) · z = x · (y · z)

F 06 x · 1 = x

F 07 x 6= 0 → ∃y(x · y = 1)

F 08 x · y = y · x

F 09 x · (y + z) = x · y + x · z

F 10 0 6= 1

We will use the standard algebraic notation like e.g. xy and −x for x · y and
(−1) · y resp.
A field will be a model for this theory. Each natural number n will have an
interpretation in a field F. If F is a field and p is a prime, we say that the field
have characteristic p if

F |= p = 0.

Zp = {0, . . . , p − 1} where addition and multiplication are carried out modulo
p (where p is a prime) is an example of a field of characteristic p. If the reader
is not familiar with this fact she/he should verify it by her/himself. A field
will be of characteristic 0 if it is not of characteristic p for any prime p (a non-
prime cannot be the characteristic of a field). The distinction between finite
and infinite characteristics cannot be made in first order logic, neither can the
distinction between finite and infinite fields. See Exercise 1.10 for more precise
statements about this.

Other familiar examples of fields are Q, R and C with the standard algebraic
structures. All these fields will have characteristic 0.

Definition 1.3.3 A field F is algebraically closed if each polynomial P of one
variable and degree > 0 will have a root. This can be expressed by the infinite
set of axioms

yn 6= 0 → ∃x(ynxn + yn−1x
n−1 + · · ·+ y0 = 0),

19

where xn has its usual mathematical meaning, and n ≥ 1.
We let ACF denote the theory of algebraically closed fields, and ACF (p) or
ACF (0) denote the extension where the characteristic of the field is specified.

Lemma 1.3.4 An algebraically closed field is never finite.

Proof
Let a1, . . . , an be elements of an algebraically closed field, and let

P (x) = (x− a1) · · · (x− an)− 1.

If P (x) = 0, then x 6= a1, . . . , an.

We will prove that ACF (0) and ACF (p) for each p are complete, combining
methods from logic and basic algebra. In proving this, we will isolate concepts
of a more general interest, and we will state and prove general lemmas and
theorems that will have the completeness of these theories as consequences. At
the end, we will introduce the theory of Real Closed Fields, and use our method
to prove completeness of this theory as well.

The isomorphism property

Definition 1.3.5 Let T be a first order theory.
We say that T has the isomorphism property if whenever A and B are models
for T , A0 and B0 are substructures of A and B resp. and π0 is an isomorphism
from A0 to B0, then π0 can be extended to an isomorphism between submodels
A1 and B1 of A and B.

Example 1.3.6 The theory DO has the isomorphism property:

Let 〈A,<〉 be an ordering. A gap in A will be an empty open interval (a, b),
(−, a) or (b,−) induced by a pair a < b with no c between them, a minimal a
or a maximal b. The gap structure reflects all instances of failure of the DO-
axioms.
If we have two dense orderings and two isomorphic suborderings, either these
suborderings are themselves dense, or they will have isomorphic gap structures.
Using the proof of the ω-categoricity of DO we see that each pair of gaps can
be filled by copies of Q taken from the given dense orderings. The result will
be isomorphic submodels. We leave the details for the reader.

Example 1.3.7 The theory of fields has the isomorphism property:

A substructure of a field will contain 0, 1 and −1, and will be closed under
summation and multiplication, so a substructure is actually a subring. Thus the
task is to show that isomorphic subrings can be extended to isomorphic subfields
inside the given fields. This is basic algebra, we have isomorphic ”quotient-
structures” of the two rings, and interpreting each quotient in the fields will
give isomorphic subfields.

We also use standard algebra to prove

20

Lemma 1.3.8 The theory ACF will have the isomorphism property

Proof
Since this compendium is not a textbook in algebra, we will not give all the
details.
Given a field F0 and an irreducible polynomial P (x) over that field we may
extend the field by a root of that polynomial in a purely algebraic way, by
considering the field of all polynomials Q(x) modulo P (x). If F0 is a subfield
of an algebraically closed field F, and a ∈ F is a root of P , then the map
Q(x) 7→ Q(a) is an isomorphism between the formal extension and a larger
subfield of F. (Euclid’s algorithm for the largest common divisor applied to
polynomial division is central here).
The algebraic closure of a field can be described as the result of a transfinite
sequence of such formal extensions, so the algebraic closures of isomorphic fields
within algebraically closed fields will be isomorphic.

In Exercise 1.11 we will give an alternative proof.

Lemma 1.3.9 Let T be a first order theory over a language L and assume that
T has the isomorphism property.
Let T ′ be obtained from T by adding new constants to L, but no new non-logical
axioms. Then T ′ has the isomorphism property.

The proof is trivial and is left for the reader.

The submodel property

Definition 1.3.10 Let φ be a formula in a first order language L. We call φ
simple if φ is of the form ∃xψ where ψ is open.

Definition 1.3.11 Let L be a first order language, T a theory over the language
L.
We say that T has the submodel property if whenever B is a model of T , A is
a submodel of B and φ is a simple sentence in L(A), then φ is true in A if and
only if it is true in B.

Example 1.3.12 The theory DO has the submodel property.

Dropping formalities, let φ be the sentence ∃xψ(x, a1, . . . , an). ψ can only ex-
press that x equals some ai or that it is larger than some ai’s and smaller than
others. If one such x can be found in some dense ordering extending {a1, . . . , an}
then it can be found in all such dense orderings.

Example 1.3.13 Field theory does not have the submodel property

Consider the statement ∃x(x · x = 2). This sentence is not true for the field of
rationals, but for the field of reals.

Lemma 1.3.14 The theory of algebraically closed fields has the submodel prop-
erty.

21

Proof
Let B be an algebraically closed field, and let A be an algebraically closed
subfield. Let φ = ∃xψ be a simple sentence in L(A). Then ψ is a Boolean
combination of atomic formulas ξ(x, a1, . . . , an), where a1, . . . , an are in A.
The function symbols are denoting plus and times, so each term t(x) in L(A)
will be equivalent to a polynomial in the variable x with coefficients from A.
Since = is the only predicate, each atomic formula ξ(x, a1, . . . , an) is equivalent
to a polynomial equation

Pξ(x) = 0

where Pξ has coefficients from A. Pξ will have a root in A if and only if it has
a root in B.
If φ is true in A, then φ is trivially true in B. On the other hand, assume that
φ is true in B via b, i.e. ψ(b, a1, . . . , an) is true in B. If one of the atomic
subformulas ξ are true for x = b, then b is the root of the polynomial Pξ with
coefficients from A, so b is in A. On the other hand, if none of the subformulas
ξ of ψ are true for x = b, we use that A is infinite (see Lemma 1.3.4), and that
a finite set of polynomials only will have a finite set of roots. Thus let x = a,
where a is in A and a is not making any of the subformulas ξ of ψ true. Then
a and b satisfy the same atomic subformulas of ψ, so ψ(a, a1, . . . , an) must be
true. This means that φ is true in A.

Lemma 1.3.15 Let L be a first order language and let T be a theory over L
that has the submodel property. Let T ′ be obtained from T by adding new names
to L but no new non-logical axioms.
Then T ′ has the submodel property.

The proof is easy and is left for the reader.

Elimination of quantifiers

Definition 1.3.16 Let L be a first order language, T a theory over L.
We say that T accepts elimination of quantifiers if we for each formula φ have
an open formula ψ such that

T ` φ↔ ψ.

Lemma 1.3.17 Let L be a first order language and T a theory over L. Then
T accepts elimination of quantifiers if and only if each simple formula in L is
equivalent in T to an open formula.

Proof
The ‘only if’-direction is obvious, so assume that each simple formula in L will
be equivalent in T to an open formula.
By induction on the complexity of a formula φ, we prove that it is equivalent
in T to an open formula, where we use the assumption to handle the quantifier
case.

22

Lemma 1.3.18 Let L be a first order language, T a theory over L.
Let φ be a sentence in L, and assume that whenever A and B are models for T
satisfying the same variable free sentences, then φ has the same truth values in
A and in B.
Then φ is equivalent in T to a variable free sentence in L.

Note
If a formula φ is variable free, it contains neither bound nor free variables,
and thus no quantifiers. Another way of describing such formulas are as open
sentences.

Proof
Let T0 be T extended with all variable free theorems in T ∪ {φ}. It is sufficient
to show that φ is a theorem in T0.
Assume not, and let A be a model for T0 ∪ {¬φ}.
Let ∆ be the set of variable free sentences true in A, and let B be a model for
T ∪∆. Then the same variable free sentences are true in A and in B (namely
∆), so ¬φ will hold in B as well.
B was an arbitrary model for T ∪∆, so by the completeness theorem,

T ∪∆ ` ¬φ.

Then there are ξ1, . . . , ξn ∈ ∆ such that

T, φ ` ¬(ξ1 ∧ · · · ∧ ξn).

Then ¬(ξ1 ∧ · · · ∧ ξn) is an axiom in T0 and

A |= ¬(ξ1 ∧ · · · ∧ ξn).

This contradicts that A |= ξi for each i.
The assumption was that φ is not a theorem in T0. This led to a contradiction,
so we are through.

Theorem 1.3.19 Let L be a first order language, T a theory over L that has
both the isomorphism property and the submodel property. Then T accepts elim-
ination of quantifiers.

Proof
By Lemma 1.3.17 it is sufficient to show that if φ = ∃xψ(x, x1, . . . , xn) where
ψ is open, then φ is equivalent in T to an open formula. We may without loss
of generality assume that n ≥ 1. Extend T to T ′ by adding names e1, . . . , en,
but no new non-logical axioms. By Lemmas 1.3.9 and 1.3.15, T ′ has the iso-
morphism and submodel properties.
We will show that ∃xψ(x, e1, . . . , en) is equivalent in T ′ to a variable free sen-
tence ξ(e1, . . . , en). Having done this, we conclude, using the theorem of con-
stants, that ∃xψ(x, x1, . . . , xn) is equivalent in T to ξ(x1, . . . , xn).

By Lemma 1.3.18 it is sufficient to show that whenever A and B are two models

23

for T ′ satisfying the same variable free formulas, then ∃xψ(x, e1, . . . , en) will
have the same truth values in A and in B.
If A and B satisfy the same variable free formulas, the respective minimal sub-
structures A0 and B0 consisting of all interpretations of closed terms will be
isomorphic. By the isomorphism property for T ′, this isomorphism can be ex-
tended to an isomorphism between two submodels A1 and B1 of A and B resp.
Since T ′ has the submodel property, we have that ∃xψ(x, e1, . . . , en) will have
the same truth values in A and A1 and in B and B1. Since A1 and B1 are
isomorphic, we are through.

Prime Models

Definition 1.3.20 Let L be a first order language with at least one constant
symbol. Let T be a first order theory over L, and let A be an L-structure. A is
called a prime model for T if A can be embedded into any model B for T .

Note: A prime model for T is not necessarily a model for T . Actually we have

Lemma 1.3.21 Let L be a first order language, T a theory over L and A a
prime model for T . Then A is a prime model for each extension T ′ of T over
L.

The (trivial) proof is left for the reader.

Example 1.3.22 Let L be the language of DO extended with the constants ci
for i ∈ N.
Let DO+ be the theory DO extended with the axioms ci < ci+1.
Then N with its usual ordering, and with i as the interpretation of ci, is a prime
model for DO+.

Examples 1.3.23 The theories ACF (0) and ACF (p) have prime models N
and Zp respectively. These are also prime models for the theories of fields with
a fixed characteristic.

In Exercise 1.12 We will see that DO+ is a complete theory that is not
ω-categorical.

Lemma 1.3.24 Let T be a first order theory over a language L, and assume
that L has at least one constant symbol. Then the following are equivalent:

1. T has a prime model.

2. Each variable free formula in L is decidable in T .

Proof
First assume 1. Let A be a prime model for T . Then for each model B for
T and each variable free φ (the constant symbol in L ensures that there are
variable free formulas), the truth value of φ in B will be the same as in A. Thus
the existence of a prime model ensures that each variable free formula either is

24

true in all models for T , and thus is a theorem, or is false in all models, and
thus is disprovable in T . Thus they are all decidable in T , and 2. is proved.
Now assume 2. For a model A of T , let A0 be the submodel consisting of all
interpretations of closed terms t in A.
If A and B are two models for T , we define π : A0 → B0 by π(tA) = tB. Since
all variable free formulas are decidable, π is well defined and an isomorphism.
This shows that A0 is a prime model for A whenever A |= T .

A completeness criterion

Theorem 1.3.25 Let L be a first order language and let T be a theory over L
such that

1. T is consistent.

2. The language L of T has at least one constant symbol.

3. T has a prime model.

4. T has the isomorphism property.

5. T has the submodel property.

Then T is complete.

Proof
By Theorem 1.3.19 we have that T accepts elimination of quantifiers.
Let φ be a sentence in L and let ψ be open such that T ` φ ↔ ψ. We may
assume that φ is variable free, since otherwise we may replace it by φ(c, . . . , c),
where c is a constant of the language.
Since T has a prime model, ψ is decidable in T by Lemma 1.3.24, so φ is
decidable in T , meaning that T ` φ or T ` ¬φ.

Corollary 1.3.26 The theories ACF (0) and ACF (p) for prime numbers p are
complete.

1.3.3 Real Closed Fields

One of the first success stories in model theory was the proof due to Tarski that
the theory of Real Closed Fields permits elimination of quantifiers, and thus
that it is complete.

Definition 1.3.27 Let the theory OF of ordered fields be field theory extended
with one binary relation <, the axioms for total orderings and the axioms

x < y → x+ z < y + z.

0 < x ∧ 0 < y → 0 < xy.

25

There are obvious models for OF , see Exercise 1.16.
Working with ordered fields we may use most of our intuition about subfields
of R, though there will be ordered fields that are not subfields of R. Let us
consider an example:

Example 1.3.28 Let Q be the standard ordered field of rationals. Then each
natural number n is the interpretation of some term n̄ in the language.
Let c be a new constant, let T = Th(Q) and let T ∗ be T extended with the
axioms n̄ < c for each number n.
By the compactness theorem, T ∗ has a model Q∗. This will be an ordered field,
but certainly not a subfield of R.

Lemma 1.3.29 OF ` 0 6= x→ x2 > 0.

Proof
By the first new axiom it follows that x < 0 → −x > 0. Since (−x)2 = x2 for
any field, we may split the argument in the two cases x > 0 and x < 0 and use
the second new axiom.

We will use standard algebraic properties of ordered fields without proving them
in detail from the axioms. The uneasy reader should fill in the details for
her/himself. We will show a little more care about facts that are proved using
methods from analysis.
Recall from basic analysis that an ordering is complete if each bounded nonempty
set has a least upper bound,

Lemma 1.3.30 Each ordered field F can be extended to an ordered field G where
the ordering is complete.

Proof
Let F be an ordered field with domain F . Let a < b be in F . then

a− 1 < a <
a+ b

2
< b < b+ 1,

so the ordering of F will be a model for DO.
In a dense ordering X, a Dedekind cut will be a set Y ⊆ X such that

Y is bounded in X.

Y is an initial segment of X.

Y has no largest element.

The Dedekind cuts are ordered by inclusion. The original ordering may be
embedded into the set of Dedekind cuts by

π(x) = {y ; y < x}.

If F is an ordered field, we may extend the algebra on F to an algebra on the
set of Dedekind cuts as follows

26

1. X +X ′ = {a− b ; a ∈ X ∧ b ∈ X ′}.

2. If X and Y both contains positive elements, let

X · Y = {z ∈ F ; ∃x ∈ X∃y ∈ Y (x > 0 ∧ y > 0 ∧ z ≤ x · y)}.

3. (−1) ·X = {−x ; x is an upper bound for X, but not a least upper bound
for X}.

4. For other pairs X and Y of Dedekind cuts we compute X ·Y using 2. and
3.

The set of Dedekind cuts with the induced algebra is called the topological
completion of F. The topological completion will itself be a field, and F will be
isomorphic to a subfield of the topological completion. The details are left as
Exercise 1.17.

For an ordered field F we may define continuity of functions f : F → F by the
standard ε− δ-definition. Then every polynomial P (x) will define a continuous
function. The details are left as Exercise 1.18.

Lemma 1.3.31 Let F be an ordered field, P (x) a polynomial over F of uneven
degree 2n+ 1. Then P (x) has a root in the topological completion.

Proof
The proof of this theorem for the reals, using the intermediate value theorem,
works without change for any topologically closed ordered field, and thus for
the topological closure of F.

We also have

Lemma 1.3.32 Let a > 0 in an ordered field. Then a has a square root in the
topological completion.

Proof
Let C = {b ; b ≤ 0 ∨ (0 < b ∧ b2 < a)}.
This is a Dedekind cut corresponding to

√
a.

Definition 1.3.33 The theory RCF of Real Closed Fields is obtained from OF
by adding the following axioms:

∃y(x > 0 → y2 = x).

y2n+1 6= 0 → ∃x(y0 + y1x+ · · ·+ y2n+1x
2n+1 = 0) for each number n.

Since the topological completion of the topological completion of an ordered
field F is isomorphic to just one topological completion of F, we just have shown
that the topological completion of an ordered field will be a real closed field.
The algebraic completion will be the least real closed subfield of the topological
completion containing the image of the original F under the embedding. All
the roots in the topological completion of a polynomial P (x) in F will be in the
algebraic completion. This is basic algebra.
The isomorphism property for RCF is a consequence of the following

27

Lemma 1.3.34 Let F and G be ordered fields where F is a subfield of G and G
is real closed.
Then the algebraic closure of F is isomorphic to a subfield of G.

Proof
Let F̄ and Ḡ be the topological completions of F and G resp.
Since F is a subfield of G, there is an inherited embedding π : F̄ → Ḡ.
G is isomorphic to a real closed subfield G′ of Ḡ and F is isomorphic to a
subfield F′ of F̄. Then F′ is a subfield of π−1(G), which is real closed, and by
our construction of the algebraic completion, the algebraic completion of F is
isomorphic to a subfield of π−1(G′) and thus to a subfield of G.

Lemma 1.3.35 RCF has the submodel property.

Proof
Let F and G be two real closed fields, F a subfield of G.
Let φ(x) be a quantifier free formula in L[F] and assume that G |= ∃xφ(x).
Each atomic formula ψ(x) in L[F] will be equivalent either to a polynomial
equation P (x) = 0 or to a polynomial inequation P (x) > 0. Let ψ1(x), . . . , ψk(x)
be the atomic subformulas of φ and let P1(x), . . . , Pk(x) be the corresponding
polynomials.
Let {a1, . . . , an} be the finite set of roots of the polynomials P1(x), . . . , Pk(x) in
increasing order. The complements in F and in G will be corresponding finite
unions of open intervals on which each of the polynomials Pi(x) will have a
constant signature ‘positive’ or ‘negative’ (if not Pi(x) will have a root in the
interval in the topological completion, and thus in the algebraic completion).
Let b ∈ |G| be such that G |= φ(b). If b is a root in one of the polynomials,
b ∈ |F| and we are through. If b is in one of the intervals, find a ∈ |F| in
the corresponding interval. Then a and b will make exactly the same atomic
subformulas of φ true, so φ(a) ⇔ φ(b), and we are through.
We may now conclude

Theorem 1.3.36 The theory RCF is consistent, has a prime model and per-
mits elimination of quantifiers.
Consequently RCF is complete.

1.4 Element types

Throughout this section, we will let L be a fixed countable first order language,
and we will let T be a complete theory over the language L.

Definition 1.4.1 An n-type is a maximal set X of formulas φ(x1, . . . , xn) such
that for all φ1, . . . , φk in X we have that

T ` ∃x1 · · · ∃xn(φ1 ∧ · · · ∧ φk).

28

We will use the term complete for this property. Each consistent set of formulas
with at most x1, . . . , xn free can be extended to an n-type.
An n-type will be closed under ∧, and for each formula φ with at most x1, . . . , xn
free the maximality of X will ensure that φ ∈ X or ¬φ ∈ X.

Definition 1.4.2 Let X be an n-type and A a model for T . We say that A
realizes X if for some a1, . . . , an in A, A |= φ(a1, . . . , an) for each φ ∈ X.
If A does not realize X we say that A omits X.

Example 1.4.3 Let N be the standard model for number theory and T =
Th(N). Let X be a complete extension of {kn < x ; n ∈ N} where kn is the
numeral for n in the language. This is a 1-type that is omitted by the standard
model. The construction of a nonstandard elementary extension of N used to
prove Theorem 1.2.2 amounts to constructing a model realizing this type.

The method used to prove Theorem 1.2.2 is quite general, and can be used to
prove the following

Theorem 1.4.4 Let X be an n-type. Then there is a model A for T realizing
X.

Proof
The proof is left as Exercise 1.20. Add new names for the n variables and use
the compactness theorem.

Some n-types will be realized by every model of T .

Definition 1.4.5 An n-type X is principal if for some φ ∈ X we have that

T ` φ→ ψ

for all ψ ∈ X. We call φ a generating formula. If X is not principal, we will use
the term non-principal.

Lemma 1.4.6 If X is a principal type, then X is realized in every model A of
T .

Proof
Any interpretation of x1, . . . , xn that satisfies the generating formula will realize
the type.

Lemma 1.4.7 Let n be fixed.
Then the following are equivalent:

1. There are infinitely many n-types.

2. There is a non-principal n-type.

29

Proof
First assume that there is a non-principal n-type X = {φi ; i ∈ N}. For each
i ∈ N there must be a ji > i such that

T 6` φ1 ∧ · · · ∧ φi → φji

since otherwise the type will be principal. Thus, {φ1, . . . , φi,¬φji} must be
consistent, and there is an n-type Xi extending this set. Clearly, if j ≥ ji, then
Xi and Xj are different, so there are infinitely many n-types.
Now assume that all types are principal. Since L is countable, we will only be
able to use countably many generating formulas, so the set of n-types is at most
countable.
With the aim of obtaining a contradiction, assume that this set is infinite.
Let {Xi}i∈N be an enumeration of all the n-types. Let φi be a generating
formula for Xi. Then, if i 6= j we must have that ¬φi ∈ Xj . In particular, if
j > max{i1, . . . , ik} we will have that ¬(φi1 ∧ . . . ∧ φik) ∈ Xj .
It follows that {¬φi ; i ∈ N} is a consistent set (here we use the assumption
that there are infinitely many principal n-types), and may thus be extended to
an n-type different from all the Xi’s. This contradicts the assumption that we
have enumerated them all, and the lemma is proved.

If A is a model for T and a1, . . . , an are elements in A (possibly with repe-
tition), then a1, . . . , an realizes exactly one n-type,

X = {φ(x1, . . . , xn) ; A |= φ(a1, . . . , an)}.

This indicates that the set of types may give us information about the class of
countable structures. One example of this is

Theorem 1.4.8 Assume that all n-types are principal for all n.
Then T is ω-categorical.

Proof
We will elaborate on the proof of the ω-categoricity for the theory DO.
Let A and B be two countable models for T with domains A and B. Let
A′ = {a1, . . . , an} ⊆ A and B′ = {b1, . . . , bn} ⊆ B be finite sets (without
repetition) and let p(ai) = bi. We call p a partial isomorphism if {a1, . . . , an}
and {b1, . . . , bn} realize the same n-type, we have that

Claim
If p is a partial isomorphism and a ∈ A, then p can be extended to a partial
isomorphism q defined on a.
Let us first see how to prove the theorem from the claim. The statement is
symmetrical in A and B, so given b ∈ B we may as well extend p to a q with
b in its range. A and B will be elementary equivalent since T is complete. We
may consider the empty function as a partial isomorphism defined on the empty
set. Using the extensions obtained from the claim, we then use the back-and-
forth strategy and build up a sequence of partial isomorphisms ensuring that

30

each a ∈ A will be in the domain of one of the partial isomorphisms, and each
b ∈ B will be in the range of one of the partial isomorphisms. In the end, we
have constructed a total isomorphism.
Proof of claim
Let X be the n + 1-type of {a1, . . . , an, a}. Since we have assumed that all
n + 1-types are principal, there is a generating formula φ(x1, . . . , xn, xn+1) in
X.
Since A |= φ(a1, . . . , an, a) we have that

A |= ∃xn+1φ(a1, . . . , an, xn+1).

Since {a1, . . . , an} and {b1, . . . , bn} realize the same n-type, we have that

B |= ∃xn+1φ(b1, . . . , bn, xn+1).

Choose b ∈ B such that φ(b1, . . . , bn, b) holds in B and let q(a) = b.
Let ψ ∈ X. Since

T ` φ(x1, . . . , xn, xn+1) → ψ(x1, . . . , xn, xn+1)

we see that ψ(b1, . . . , bn, b) will hold in B. This shows that X is the type realized
by {b1, . . . , bn, b}, and the claim is proved.

As a consequence we see that if the number of n-types is finite for each n,
then T is ω-categorical. We will prove the converse to this, but in order to
do so we need the theorem about omitting types. The proof of the omitting
type theorem is based on the Henkin-style proof of the completeness theorem
for countable, first order theories. In that proof we we first extend a theory T
to a Henkin theory TH by adding Henkin constants cφ and Henkin axioms

∃xφ→ φxcφ
,

and then extend TH to a complete theory TC . The model realizing the com-
pleteness theorem is then the term model of TC . In this argument there is an
amount of freedom, since there may be many ways to construct TC from TT .
This freedom will be used in the proof of the omitting type theorem.

Theorem 1.4.9 Let X be a non-principal n-type. Then there is a model for T
omitting X.

Proof
The idea of the proof is as follows: We extend the language L of T with Henkin
constants c1, c2, . . . and we extend T with Henkin axioms. Then, following
the proof of the completeness theorem, we must make a complete extension
of this extended theory and then form the term model. The term model will
consist of equivalence classes of closed terms, and in fact, via the Henkin con-
stant for ∃x(x = t), we see that each equivalence class will contain a Henkin
constant. Thus we must ensure, during the completion process, that for any

31

collection ci1 , . . . , cin of Henkin constants there is a formula φ ∈ X such that
¬φ(ci1 , . . . , cin) is added to the theory.

In the proof of the completeness theorem we ad Henkin constants and Henkin
axioms in waves. However, we prove that each wave is countable. Thus the set
of new constants is countable, and we may just organize them in a list as above
such that if cj is the Henkin constant of ∃xφ and ci occurs in φ, then i < j.
Recall that the Henkin axiom is

∃xφ(x) → φ(cj).

For the sake of simplicity, we will assume that n = 1.
For each Henkin constant ck we intend to find a formula φk ∈ X such that

T ∪ {¬φ1(c1), . . . ,¬φk(ck)}

is consistent with all Henkin axioms.
From Henkin’s proof of the completeness theorem we know that adding a Henkin
axiom introducing a new Henkin constant will preserve consistency. Thus, in
the process of verifying that φk(ck) is consistent with the extended theory so
far and all the Henkin axioms, we only need to be concerned with the Henkin
axioms involving c1, . . . , ck.
The ‘construction’ is by recursion on k, so assume that

T ∪ {¬φ1(c1), . . . ,¬φk−1(ck−1)}

is consistent with all the Henkin axioms.
Let ξ(c1, . . . , ck) be the conjunction of all ¬φj(cj) for j < i and all Henkin
axioms introducing c1, . . . , ck.
Then T, ξ(c1, . . . , ck) is consistent.
With the aim of obtaining a contradiction, assume that T, ξ(c1, . . . , ck),¬φ(ck)
is inconsistent for all φ ∈ X.
Then T ` ξ(c1, . . . , ck) → φ(ck) for all φ ∈ X.
By the theorem of constants

T ` ξ(y1, . . . , yk−1, x) → φ(x)

and thus
T ` ∃y1 · · · ∃yk−1ξ(y1, . . . , yk−1, x) → φ(x)

for all φ ∈ X. Since X is complete, there are two possibilities

1. ∃y1 · · · ∃yk−1ξ(y1, . . . , yk−1, x) ∈ X

2. ¬∃y1 · · · ∃yk−1ξ(y1, . . . , yk−1, x) ∈ X.

Case 1. contradicts that X is non-principal.
In case 2., we let φ = ¬∃y1 · · · ∃yk−1ξ(y1, . . . , yk−1, x) and see that

T ` ∃y1 · · · ∃yk−1ξ(y1, . . . , yk−1, x) → ¬∃y1 · · · ∃yk−1ξ(y1, . . . , yk−1, x).

32

By propositional logic it follows that

T ` ¬∃y1 · · · ∃yk−1ξ(y1, . . . , yk−1, x)

contradicting the induction hypothesis, i.e. that T, ξ(c1, . . . , ck) is consistent.
The assumption was that T, ξ(c1, . . . , ck),¬φ(ck) is inconsistent for each φ ∈

X. This led to a contradiction, so there is a φk ∈ X such that

T, ξ(c1, . . . , ck),¬φk(ck)

is consistent.
The choice of ξ was such that T,¬φ1(c1), . . . ,¬φk(ck) will be consistent with all
the Henkin axioms.
Let Tω be T extended with all ¬φk(ck) and all Henkin axioms. Tω will be a
consistent Henkin theory. Let T c be a completion of Tω. Then the term model
of T c will be a model for T omitting X.

In Exercise 1.24 we will discuss why the assumption that n = 1 is a harmless
one.

Corollary 1.4.10 If there are infinitely many n-types for some n, then T is
not ω-categorical.

Proof
If there are infinitely many n-types, one of them must be non-principal. Let X
be non-principal Then there is one model A realizing X and one model B
omitting X. These models cannot be isomorphic.

Suplementary material for the advanced reader

This tiny section can only be read with complete understanding by a
reader with a background from descriptive set theory and cardinality
arithmetics.

An n-type is a subset of the set of formulas φ(x1, . . . , xn), which is a countable
set. Via e.g. a Gödel enumeration we may consider an n-type to be a subset
of the natural numbers. The set of subsets of N forms a compact, metrizable
topological space in a natural way, homeomorphic to the Cantor space.
There are two requirements that have to be satisfied by an n-type. Given

φ1, . . . , φk ∈ X

we must have that T ` ∃x1 · · · ∃xn(φ1∧· · ·∧φk), and X must be complete. The
first requirement defines a Gδ-set and the second a closed set. Thus the set of
n-types is a Gδ-set of sets of formulas.
By a standard and classical result of descriptive set theory, any Gδ-set is either
finite, countable or has the cardinality of the continuum (this holds for a much
more general class than the Gδ-sets). Thus, if there are uncountably many n-
types for some n there will be as many isomorphism classes of countable models
for T as there are reals, since κ many countable models will at most realize ω×κ
many n-types, and if κ < 2ω then ω × κ < 2ω.

33

1.5 Saturated structures

In a sense we may say that the more n-types a model A for T realize, the richer
the model is. The most generous would have been if A realizes every n-type for
every n. Of course, if there are uncountably many n-types for some n, this is
impossible, a countable structure can realize at most countably many n-types.

Definition 1.5.1 Let A be a model for T , A0 ⊆ A.
Let L(A0) be L extended with names for each a ∈ A0. By abuse of notation
we will use a both as the name and for the object. Let T [A0] be the complete
theory of all L(A0)-sentences that are true in A.

There is no reference to A in the notation ‘T [A0]’. This will be harmless in the
proof of Theorem 1.5.6 by the following observation:

Lemma 1.5.2 Let A be an elementary substructure of B and let A0 ⊆ A be
finite.
Then T [A0] will be the same if we view A0 as a subset of A or as a subset of B.

Proof
This Lemma is just a reformulation of the definition of elementary substructures.

Definition 1.5.3 Let A be a model for T . We call A saturated if all 1-types in
T [A0] are realized in A whenever A0 is finite.

Lemma 1.5.4 Assume that T has only countably many n-types for each n. Let
A |= T . Let A0 ⊆ A be finite.
Then T [A0] has only countably many 1-types.

Proof
Let A0 = {a1, . . . , an} and let X be a 1-type in T [A0].
Let X ′ = {φ(x1, . . . , xn, x) ; φ(a1, . . . , an, x) ∈ X}.
Clearly, X ′ is a consistent set, so X ′ can be extended to an n+ 1-type.
If X and Y are different 1-types in T [A0], then for some φ(x) in L(A0), φ ∈
X ∧ ¬φ ∈ Y . It follows that X ′ and Y ′ cannot be extended to the same n+ 1-
type. Since there are at most countably many n + 1-types in T , there are at
most countably many 1-types in T [A0].

Lemma 1.5.5 Let A be a model for T , A0 ⊆ A a finite set and X a 1-type in
T [A0]. Then there is an elementary extension of A realizing X.

Proof
If X is principal, A will realize X. So assume that X is not principal. Then A
must be infinite (why?). Extend L by constants ca for each element a ∈ A, and
extend T to the complete theory Th(A).
Let c be a new constant and extend Th(A) to T ∗ by adding the axioms

φ(c) whenever φ ∈ X.

34

c 6= ca for all a ∈ A.

We then use the compactness theorem to see that T ∗ has a model B. B will be
an elementary extension of A realizing X.

Theorem 1.5.6 Assume that T has at most countably many n-types for each
n ∈ N.
Then T has a saturated model.

Proof
The final model will be the directed limit of an elementary directed system, and
if the reader has not solved Exercise 1.7 so far it is about time to do so before
any further reading of this proof.
We will start with a countable model A0 with domain A0. At stage k, assume
that we have constructed a countable model Ak with domain Ak. Then we
select a finite subset Bk ⊆ Ak and a 1-type Xk in T [Bk] and let Ak+1 be an
elementary extension of Ak realizing Xk. Here we use Lemma 1.5.5.
In order to obtain a saturated model in the end, we must organize the selection
of Bk and Xk such that the following are satisfied:

• Whenever B ⊆ Ak is finite, there are infinitely many k′ ≥ k such that
B = Bk′ .

• Whenever B ⊆ Ak is finite and X is a 1-type in T [B], then there is a
k′ ≥ k such that B = Bk′ and X = Xk′ .

This organization requires some standard techniques, and the reader acquainted
with those may skip the rest of the proof. For the rest of the readers, we offer
the details:
When Ak is constructed, let {Ci,k}i∈N be an enumeration of all the finite subsets
of Ak (that are not subsets of Ak−1 when k > 0; this is not essential). By Lemma
1.5.2 T [Ci,k] will be a fixed theory for the rest of the construction.
For each i and k, let {Xj,i,k}j∈N be an enumeration of all 1-types in T [Ci,k].
If k′ ≥ 1, we may write k′ in a unique way as

k′ = 2j3i5km

where m is not divisible by 2, 3 or 5. Then we let Bk′ = Ci,k and Xk′ = Xj,i,k.

Theorem 1.5.7 Let A and B be countable models for T where B is saturated.
Then there is an elementary embedding from A to B.
If both A and B are saturated, they are isomorphic.

Proof
We show how to construct an elementary embedding in the first case. The
isomorphism in the second case can be constructed by a back-and-forth con-
struction using our construction at each step.
Let A and B be the domains of A and B. Let A = {ak ; k ∈ N}, let

35

Ak = {a0, . . . , ak−1} and let πk : Ak → B be injective.
We say that πk is a partial elementary embedding if for all sentences φ in L(Ak),

A |= φ⇔ B |= φπk

where φπk is the sentence in L(B) obtained from φ by replacing each name for
an element a ∈ Ak by the name for πk(a). Observe that for k = 0, πk is the
empty function, and then it will be a partial elementary embedding just because
A and B are elementary equivalent.
Now let Bk = {πk(a) ; a ∈ Ak}.
Let X be the 1-type in T [Ak] realized by ak, and let X ′ be the corresponding
1-type in T [Bk] using the transformation φ 7→ φπk .
Since B is saturated, X ′ is realized by some b ∈ B.
We extend πk to πk+1 by πk+1(ak) = b where b ∈ B realizes X ′. Then πk+1 is
a partial elementary embedding and the construction can go on.
At the end, the union π of all the πk’s will be an elementary embedding from
A to B.

The number of countable models

The possible cardinalities of the set of isomorphism classes of countable models
of a complete countable theory is fully determined, the cardinalities can be

1, 3, 4, . . . ,ℵ0, ℵ1, 2ℵ0 .

That the number 2 is left out is not a typo, but is one of the more peculiar
results in model theory, a result we will discuss further.
The theory DO+ has three different models. Elaborating on this kind of con-
struction we may find theories where the number of models are any number 6= 2.
The theory ACF (0) has countably many models.
There are examples of theories with continuumly many models. One example
is DO!, an extension of DO defined as follows:

• Let {ci,j}i∈N,j∈N be new constants.

• Let ci,j < ci′,j′ be an axiom if i < i′ or if i = i′ and j < j′.

Then DO! is a complete theory because the restriction of DO! to a finite set of
constants will be ω-saturated.
DO! will have continuumly many non-isomorphic countable models. Each model
A will determine a subset XA of N by n ∈ XA if there is an element between all
the cn,j ’s and cn+1,0. All sets can be realized this way, and isomorphic structures
clearly define the same set.

In order to prove that other cardinalities are out of the question, we need to
go beyond first order logic, and we need background theorems from descriptive
set theory. This is outside the scope of this compendium. It is just recently
established (2002) that ℵ1 is a possible alternative, even in the case that the

36

continuum hypothesis fails. The construction behind this argument is far be-
yond our ambitions here.
We do however have the tools available in order to show that there are never
exactly 2 isomorphism classes of models. We give a sketch of the proof. The
reader is invited to fill in the details in the (minor) gaps in the proof of Lemma
1.5.9 and to prove Corollary 1.5.10

Definition 1.5.8 A model A for T is weakly saturated if each n-type is realized
in A for each n ∈ N.

Lemma 1.5.9 Assume that the number of models for T is finite, but > 1. Then
T has a model that is weakly saturated, but not saturated.

Sketch of proof
T has a countable, saturated model A. Let A1, . . . ,Ak be the other countable
models. Assume that neither of these are weakly saturated, and for each i ≤ k,
let Xi be an ni-type not realized in Ai. Without loss of generality, we may
assume that the variables used for the types Xi are distinct, so X1∪· · ·∪Xk can
be viewed as a set of formulas in the variables e.g. x1, . . . , xn where n =

∑k
i=1 ni.

Let X be an n-type extending X1 ∪ · · · ∪Xk. Then X cannot be realized in Ai
for any i ≤ k.
Let c1, . . . , cn be new names, and let T ∗ be T extended with the axioms
φ(c1, . . . , cn) for φ(x1, . . . xn) ∈ X. Since A is saturated, we may interpret
the constants c1, . . . , cn in A in such a way that A becomes a model for T ∗.
Moreover, two such models will be isomorphic. Thus T ∗ is ω-categorical and
there are finitely many n-types in T ∗ for each n. It follows that there are only
finitely many n-types in T for each n, which contradicts the assumption.
This ends the sketch.

Corollary 1.5.10 There is no complete countable first order theory with exactly
two isomorphism classes of countable models.

This corollary follows from the lemma and most of the results established ear-
lier in this section, but the proof will not require any new technical arguments.
There is no complete countable theory with exactly two non-isomorphic count-
able models.

1.6 ω-logic

The prime object of consideration in this chapter has been the model theory
of first order logic. We have seen that for many purposes, first order logic is
inadequate. Logicians have been studying other forms of logic where some of
the tools from first order logic can be used. There are at least three directions to
go, we may extend the use of quantifiers beyond the setting of first order logic,
we may consider infinitary proof trees and we may consider infinite connectives.
The first alternative is natural if we want to form logics adequate for mathe-
matical analysis or e.g. for the study of Noetherian rings. The third alternative

37

was used when the possible numbers of models for a complete first order theory
was characterized in full, something we chose not to do.
In this section we will consider a form of infinitary logic for models where the
natural numbers is a definable substructure. This actually requires infinite proof
trees, since we cannot have the compactness theorem to be valid in this case.

1.6.1 ω-logic

For the rest of this section, let L be a first order language with (among possibly
other symbols) a unary predicate symbol Ω, a constant 0 and a unary function
symbol S. We will let T be a first order theory over the language L.

Definition 1.6.1 Let A be a model for T .
We call A an ω-model if Ω is interpreted as N, 0 as zero and S as the successor-
function.

Definition 1.6.2 Let T be a theory as above. T is ω-sound if T has an ω-
model.
A formula φ in L is ω-valid if φ is valid in all ω-models for T .

We may formulate a logical system adequate for this concept of validity:

Definition 1.6.3 ω-logic will be first order logic extended with four axioms
and one infinitary rule:

• Let k0 be the constant 0, and let kn+1 be the term S(kn).

• Ω(0) and Ω(x) → Ω(S(x)) are new axioms in ω-logic.

• 0 6= S(x) and S(x) = S(y) → x = y are new axioms in ω-logic.

• If φxkn
is an ω-theorem in T for all n ∈ N, then ∀x(Ω(x) → φ) is an

ω-theorem in T .

• We will write T `ω φ when φ is an ω-theorem in T .

Remark 1.6.4 We will not give a precise definition of an ω-proof, because in
order to do so we need to develop a theory of infinite, well founded trees. The
important fact is that we have used recursion to define the class of ω-theorems,
and then we can prove lemmas and theorems about them using induction over
this construction.
In Exercise 5.14 we will make use of the concept of well founded trees introduced
in Chapter 4 and give a precise definition of an ω-proof. The present section
will only be technically sound on the basis of this exercise.

ω-logic is of interest for several reasons. One reason is that the induction
axiom in first order number theory is provable in ω-logic. Assume that we have
a proof of

φ(0)

38

and that we have a proof of

∀x(Ω(x) ∧ φ(x) → φ(S(x))).

We then clearly have ω-proofs for each φ(kn) and by the ω-rule we have a proof
of

∀x(Ω(x) → φ(x)).

In some odd respect, this is a simplification; the ω-logic version of Peano arith-
metic is better behaved from a proof-theoretical point of view, and analyzing
the ω-logic versions of proofs in number theory gives us information about the
strength of number theory. This kind of application requires a much deeper
involvement in proof theory than we are prepared for in this compendium.

1.6.2 ω-completeness

We will prove the completeness theorem for ω-logic. One motivation is to
demonstrate the power of the proof method of the first order version. We will
leave many of the details as exercises for the reader.

Definition 1.6.5 T is ω-consistent if there is no sentence φ ∧ ¬φ that is an
ω-theorem in T .

We have the standard equivalent versions of the completeness theorem for ω-
logic:

Lemma 1.6.6 The following are equivalent:

1. A formula φ is valid in all ω-models for T if and only if φ is an ω-theorem
in φ.

2. A theory T is ω-consistent if and only if T has an ω-model.

The proof is left as Exercise 1.25.

Lemma 1.6.7 The theorem of constants holds for ω-logic.

The proof is left as Exercise 1.26.

Lemma 1.6.8 Let L be as above, T be an ω-consistent theory over L and ∃xφ
be a sentence in L. Let r be a new name, not in L.
Then T,∃xφ→ φxr is also ω-consistent.

The proof is left as Exercise 1.27.

Using this lemma, we may construct the Henkin-extension of an ω-consistent
theory such that all finite subtheories are ω-consistent as well. We cannot
conclude that the full Henkin extension is ω-consistent, simply since
ω-consistency is not closed under directed unions of theories. We will see how
we can avoid this obstacle.

39

From now on, T is a fixed ω-consistent theory. Let r0, r1, . . . be the new
constants that we need in order to construct the Henkin extension H of T , and
let L∞ be the extended language. Let Hn be the subtheory of H where we only
added the constants r0, . . . , rn−1 to T and the corresponding Henkin axioms.
Then rn is not in the language of Hn.
Let {φn}n∈N be an enumeration of all sentences in L∞ such that φn is a sentence
in the language of Hn.

Lemma 1.6.9 Let S be an ω-consistent theory, φ a sentence in the language
of S. Then at least one of the theories S, φ and S,¬φ are ω-consistent.

The proof is left as Exercise 1.28.

Lemma 1.6.10 Let S be an ω-consistent theory, t a closed term in the language
of S and assume that S,Ω(t) is ω-consistent.
Then there is a number n such that S, t = kn is ω-consistent.

Proof
Assume that S, t = kn is inconsistent for all n.
Then t 6= kn is an ω-theorem in S for all n.
Using the ω-rule we obtain

S `ω ∀x(Ω(x) → x 6= t).

This means that S `ω ¬Ω(t), contradicting the assumption. This ends the proof
of the lemma.

We will now construct the theory T∞.
Let T0 = H0 = T .
Assume that Tn is an ω-consistent extension of Hn within the language of Hn.
By Lemma 1.6.8, T ∪Hn+1 will be ω-consistent.
If Tn ∪Hn+1, φn is not ω-consistent, we let

Tn+1 = Tn ∪Hn+1,¬φn.

If Tn ∪Hn+1, φn is ω-consistent, but φn is not of the form Ω(t), let

Tn+1 = Tn,Hn+1, φn.

If Tn ∩Hn+1, φn is ω-consistent, and φn is of the form Ω(t), we choose one m
such that

Tn+1 = Tn ∪Hn+1, t = km

is ω-consistent.
Let T∞ be the union of all Tn. We cannot prove directly that T∞ is ω-

consistent, but Tω is a complete Henkin theory in the traditional sense, so the
term model A of T∞ will be a model for T∞, and then in particular for T .
ΩA will be the set of equivalence classes of closed terms t such that T∞ ` Ω(t).
For each such t, there will be a number n ∈ N such that T∞ ` t = kn. Thus
ΩA will be isomorphic to N. This indirect argument shows that A is an ω-
model after all, and the completeness theorem for ω-logic is proved. Thus, T∞
is actually ω-consistent.

40

1.7 Exercises to Chapter 1

Exercise 1.1 Show that if π is an isomorphism, then π has an inverse π−1 that
is also an isomorphism.

Exercise 1.2 Show that if T is an open theory, A is a model for T and π :
B → A is an embedding, then B is a model for T . (This is the easy part of
 Los-Tarski’s theorem.)

Exercise 1.3 Let L be a first order language, A an L-structure and φ an L-
formula with at most x1, . . . , xn free.

a) Let s be an assignment over A. Then

tA[s] = (tx1,...,xn
cs(x1),...,cs(xn)

)A

whenever t is a term with at most x1, . . . , xn free.

A |= φ[s] ⇔ A |= φx1,...,xn
cs(x1),...,cs(xn)

whenever φ is a formula with at most x1, . . . , xn free.
This shows that the definition of interpretations via assignments and via
new names for all elements of the structure in question are equivalent.

b) Let t be a term with variables among x1, . . . , xn, and let u1, . . . , un and
r1, . . . , rn be two sequences of closed terms such that uA

i = rA
i for each i.

Then (tx1,...,xn
u1,...,un

)A = (tx1,...,xn
r1,...,rn

)A

c) Let φ be a formula with free variables among x1, . . . , xn, and let u1, . . . , un
and r1, . . . , rn be two sequences of closed terms such that uA

i = rA
i for each

i.
Then (φx1,...,xn

u1,...,un
)A ⇔ (φx1,...,xn

r1,...,rn
)A.

Exercise 1.4 Let A and B be given.
Show that the following are equivalent:

1. There is an embedding π from A to B.

2. A is isomorphic to a substructure A′ of B.

3. A is a substructure of some B′ isomorphic to B.

Exercise 1.5 Work out a complete proof of Theorem 1.1.14. In particular:

a) Show that if both A and B satisfy the requirements of a directed limit,
then they are isomorphic.

b) Show that the definition of ≈ is independent of the choice of k.

c) Show that if C1, . . . , Cn are equivalence classes, there is a common i ∈ I
such that each Cj have an element of the form (i, aj).

41

d) Show that the definitions of fA and RA are independent of the choice of
i.

e) Show that η as constructed in the proof is an embedding satisfying the
requirement of the theorem, and that this is the only one doing so.

Then write down a full proof where a) - e) are incorporated in a natural way.

Exercise 1.6 Let L be a first order language (with equality) and let T be a
complete theory over L.

a) Show that either is each model of T infinite or all models of T will have
the same finite cardinality.

b) Show that if T has a finite model, then all models are isomorphic.
Hint: Use Theorem 1.2.11.

Exercise 1.7 Let 〈{Ai}i∈I , {πij}i<j〉 be an elementary directed system with
directed limit 〈A, {πi}i∈I〉.
Uniformly in i ∈ I, show by induction on the complexity of a sentence φ in
L(Ai) that πi preserves the truth value of φ.

Exercise 1.8 Show that if T is a countable, ω-categorical theory, then T is
complete.

Exercise 1.9 Prove in detail that DO is ω-categorical

Exercise 1.10 a) Show that for each prime number p there is a finite ex-
tension F (p) of field theory such that the models are exactly the fields of
characteristic p.

b) Show that there is an extension F (0) of field theory such that the models
are exactly the fields of characteristic 0

c) Let φ be a sentence in field theory. Show that if φ is true in fields of
arbitrarily large finite characteristic, then φ is valid in some field of char-
acteristic 0.

d) Let φ be a formula in field theory. Show that if φ is valid in finite fields
of arbitrarily large cardinality, then φ is valid in some infinite field.

e) Show that the theory of finite fields or the theory of fields of finite char-
acteristics cannot be expressed in first order logic.

f) Show that the theory F (0) or the theory of infinite fields are not finitely
axiomatizable.

Exercise 1.11 (For readers familiar with Zorn’s Lemma).
Let A and B be algebraically closed fields and let A0 and B0 be isomorphic
substructures via the isomorphism π0.

42

a) Use Zorn’s lemma to show that π0 can be extended to a maximal isomor-
phism π1 between substructures A1 and B1.

b) Show that A1 and B1 are algebraically closed subfields of A and B.

Exercise 1.12 Let DO+ be the theory in Example 1.3.22.

a) The theory DO+ has three countable, non-isomorphic models. Find ex-
amples of these, and show that there are no more than three isomorphism
classes of countable models.
Hint: When you have found tree non-isomorphic examples, you may use
the proof of the ω-categoricity of DO to prove that there are no more.

b) Does DO+ have the isomorphism property?

c) Show that DO+ is complete.
Hint: Show that certain finite subtheories of DO+ are ω-categorical.

Exercise 1.13 a) Let T be a first order theory with both the isomorphism
and submodel properties. Let A be a model for T .
Show that T (A) = T∪D(A) has the isomorphism and submodel properties.

b) A theory T is called model complete if T ∪ D(A) is complete whenever
A |= T .
Show that if T is consistent and has the isomorphism and submodel prop-
erties, then T is model complete.

Exercise 1.14 Let F be a field, Pi(x1, . . . , xk) and Qj(x1, . . . , xk) be polyno-
mials over F for i ≤ n and j ≤ m.
Show that there is a solution to the simultaneous set of equations

Pi(x1, . . . , xk) = 0

and inequations
Qj(x1, . . . , xk) 6= 0

in some field extending F if and only if there is a solution in the algebraic closure
of F.
(This result is known as Hilbert’s Nullstellensatz.)

Exercise 1.15 A subset of Ck is called algebraic if it is the set of solutions of
a polynomial equation

P (x1, . . . , xk) = 0.

Show that whenever A ⊆ Ck is definable by a first order formula in the language
of field theory using parameters from C, then A is a Boolean combination of
algebraic sets.
What does this say about the expressive power of the language of field theory,
in e.g. relation to complex analysis?

43

Exercise 1.16 Show that Q, which is Q with the standard algebra and order-
ing, is a model for OF .
Show that Q is a prime model for OF .

Exercise 1.17 Carry out the definition of multiplication in the topological
completion for the remaining cases.
Verify that the topological completion is indeed an ordered field, and that the
original field F may be embedded into its topological completion.

Exercise 1.18 Show that each polynomial function over a real closed field is
ε− δ-continuous.

Exercise 1.19 Revisit Exercises 1.14 and 1.15.
Reformulate the results proved there to theorems about Real Closed Fields, and
prove them.

Exercise 1.20 Prove Theorem 1.4.4 in detail.

Exercise 1.21 Let T be the complete theory DO+ considered in Exercise 1.12.

a) Find a non-principal 1-type as the completion of some infinite set of for-
mulas.

b) Hard Describe all the 1-types and show that there is exactly one non-
principal 1-type.

c) Which of the three models of DO+ is the saturated one, which is the one
that is weakly saturated but not saturated and which is the one omitting
the one non-principal 1-type?

Exercise 1.22 Let DO! be the theory introduced on page 36. Show that there
is a countable model A for DO! such that all other models can be embedded
into A.
Why does it follow that DO! has only countably many n-types for every n?

Exercise 1.23 let L be the first order language (with equality) with an enu-
merable set {Pi}i∈N of unary predicate symbols.
Let T be the theory over L with non-logical axioms

∃x(ξ0(x) ∧ · · · ∧ ξn−1(x))

where each ξi is either Pi or ¬Pi.

a) Show that for each ξ0, . . . , ξn−1 as above and each number k we can for-
mulate and prove in T that there are at least k different objects satisfying
ξ0 ∧ · · · ∧ ξn−1.

b) Let Lk be L restricted to the predicate symbols P0, . . . , Pk−1 and let Tk
be the set of sentences in Lk that are theorems in T .
Show that Tk is ω-categorical.

44

c) Show that T is complete.

d) Show that T has uncountably many 1-types.

Exercise 1.24 Fill in the details in the following sketch of a proof of the omit-
ting type theorem for n-types in general:

• We may enumerate all ordered n-sequences of Henkin constants in a list
{(c1,k, . . . , cn,k)}k∈N.

• By induction on k, we may find a formula φk ∈ X such that

T ∪ {¬φk(c1,k, . . . , cn,k)}

is consistent with all the Henkin constants.

Exercise 1.25 Prove Lemma 1.6.6.

Exercise 1.26 Prove the theorem of constants for ω-logic.
Warning: The proof of the theorem of constants in the first order case use a
variable x that occurs nowhere in the proof. In this setting, we do not have
proofs, only provability. Moreover, if we had proofs, we might risk that all
variables are used in the proof. Discuss how we can overcome this obstacle.

Exercise 1.27 Prove Lemma 1.6.8.

Exercise 1.28 Prove Lemma 1.6.9.

45

Chapter 2

Finitary Model Theory

In Chapter 1 we have touched a little bit on the subject of model theory. To
a large extent we have been interested in countable structures; implicitly we
considered finite structures to be too simple and uncountable structures to be
too advanced. The main reason why we did not go on with more model theory
is that we need time and space for computability theory.
In some respects, the finite structures are simple, but in other respects they are
the only interesting mathematical structures there are. For instance, a database
is normally a finite, but dynamic, structure. Designing logical systems that are
adequate for database theory is a challenging task.

In this chapter we will offer the reader a glimpse of a growing field of logic,
finite model theory. We are going to prove one of the classical results, the
so called 0-1-law. In a sense, this result tells us that first order logic without
constants and function symbols have remarkably restricted expressive power,
and that we need higher order logic to say something intelligent about a finite
structure.
This chapter will have three sections. In the first section we will prove the 0-1-
law, in the second section we will extend the language to a 2. order language,
and see how the expressive power increases. The final section will be the set of
exercises.

2.1 The 0-1-law

For the rest of this chapter, L will be a fixed first order language without
constant symbols, without function symbols, and with finitely many predicate
symbols.

Definition 2.1.1 a) A complete open description will be an open formula
M(x1, . . . , xn) that is a maximal consistent conjunction of literals in the
variables x1, . . . , xn displayed.

46

b) If M(x1, . . . , xn) and N(x1, . . . , xn, y1, . . . , yk) are complete open descrip-
tions, then N is an extension of M if |= N →M .

Sometimes it is convenient to use an alternative notation for long conjunctions
and disjunctions. In the literature, the notations like

∧
i∈I φi and

∨
i∈I φi are

sometimes used to form infinitary formulas where conjunction and disjunctions
are taken over infinitely many subformulas. We will only use the notation when
the abbreviations φi1 ∧ · · · ∧ φik and φi1 ∨ · · · ∨ φik are a bit cumbersome. We
will also use the notation ~x to mean the list of variables x1, . . . , xn, and ∃~x will
be an abbreviation for ∃x1 · · · ∃xn.
When variables are displayed in a formula like M(~x) it is understood that there
will be no free variables that are not on display.

With these conventions in place, we will let T be the theory over L where
the non-logical axioms are all formulas of the form

∀~x((
∧
i 6=j

xi 6= xj ∧M(~x)) → ∃y(
∧
i

y 6= xi ∧N(~x, y)))

whenever M is an open complete description and N is an open complete de-
scription extending M .

Theorem 2.1.2 Let L and T be as above. Then T is consistent, has no finite
models, and is ω-categorical.

Proof
We first prove that T is consistent, by constructing a model A. The idea of the
proof is to ad one element at each step, and at each step make one instance of
one of the axioms true in the final structure.
Each step is simple, we take an object out of the blue and just make the instance
under consideration true by brute force. It is the way we organize the steps in
order to ensure that all instances from the final model of all axioms are taken
care of that may seem complicated to the reader. Readers with experience from
such arguments (similar to, but actually simpler than, our construction of a
saturated model for a theory with only countably many element types) may
skip parts of this argument.
We will construct an increasing sequence {Ak}k∈N of structures with domain
{0, . . . , k}.
Let A0 be the structure on {0} where RA0(0, . . . , 0) holds for all relation symbols
R in L.
Let {(Mi, Ni)}i∈N be an enumeration of all pairs of complete open descriptions
M(~x) and N(~x, y) such that N extends M .
Let ni be the arity of ~x in Mi.
For each i, let {~aj,i}j∈N be an enumeration of all non-repeating sequences of
natural numbers where the sequence has length ni. We may assume that each
component am,j,i is bounded by j.
Then at step k = 2i(2j+ 1) we know that ~ai,j is a non-repeating sequence from

47

the domain of Ak−1, so Mi(~aj,i) is a legal instance, with truth value ⊥ or >.
If Mi(~aj,i) is false, we extend Ak−1 to Ak by adding k to the domain and making
all new instances of atomic statements true.
If Mi(~aj,i) is true, we extend Ak−1 to Ak by adding k to the domain and
interpreting new instances of atomic formulas such that N(~aj,i, k) will hold.
This will be possible since N is an extension of M . If N does not tell us how
to interpret an instance of an atomic statement, let it be true.
In this way we will ensure that all the axioms of T will be valid in the limit
structure A on N, and we do have a model. Thus T is consistent.
Now assume that B is a finite model of T with a non-repeating enumeration
{b1, . . . , bn} of its domain. Let M(x1, . . . , xn) be the unique (up to equivalence)
complete open description satisfied by b1, . . . , bn.
M will have an extension to a complete open description N(x1, . . . , xn, y).
Since B |= T we have that

B |= ∃y(
∧
i

y 6= bi ∧M(b1, . . . , bn, y)),

which is impossible by the choice of b1, . . . , bn.
Finally we will show that T is ω-categorical. If A and B are two countable mod-
els for T , we will construct an isomorphism using a back and forth construction
like the ones we have seen before.
A partial isomorphism will, in this proof, be a map p : A0 → B0 where
A0 ⊆ A, B0 ⊆ B, p is 1-1 and onto and such that whenever a1, . . . , an are
in A0 and R is an n-ary relation symbol, then RA(a1, . . . , an) if and only if
RB(p(a1), . . . , p(an)).
Given a1, . . . , an there is a unique complete open description M(x1, . . . , xn)
(unique up to equivalence) such that M(a1, . . . , an) holds, and then we may
rephrase the definition of a partial isomorphism to:
If A0 = {a1, . . . , an}, B0 = {p(a1), . . . , p(an)} and M is the complete open
description of {a1, . . . , an} then M is also the complete open description of
{p(a1), . . . , p(an)}. Let p and a 6∈ A0 be given. Let M be the complete open
description of A0 described above, and let N be the complete open description
of A0 ∪ {a}. The axiom for M and N just implies that p can be extended to a
q defined on a.
By symmetry we also have that if p : A0 → B0 is a partial isomorphism and
b ∈ B, then p can be extended to a partial isomorphism q such that b is in the
range of q.
Then, as before, we can construct an isomorphism between A and B by piece-
wise extensions. This ends the proof.

We will now restrict our attention to L-structures A, where the domain A is a
set {0, . . . , n − 1}. Then the number of L-structures will be finite, let k(L, n)
denote this number.

Definition 2.1.3 Let φ be a sentence in L.

48

a) Let k(φ,L, n) be the number of L-structures over {0, . . . , n− 1} satisfying
φ and let the n-probability of φ be

µL,n(φ) =
k(φ,L, n)
k(L, n)

.

b) Let the asymptotic probability of φ be

µL(φ) = lim
n→∞

µL,n(φ)

provided the limit exists.

We will drop the subscript L from now on.

Lemma 2.1.4 If φ is an axiom of T , then µ(φ) = 1.

Proof
Let φ be the axiom

∀~x(
∧
i 6=j

xi 6= xj ∧M(~x) → ∃y(
∧
i

y 6= xi ∧N(~x, y)))

where ~x = x1, . . . , xm.
Assume that m < n. We will estimate µn(¬φ) from above, i.e.

an = µn(∃x1 · · · ∃xm(
∧
i 6=j

xi 6= xj ∧M(~x) ∧ ∀y(
∧
i

y 6= xi → ¬N(~x, y)))).

We will consider formulas where we have used elements from {1, . . . , n} as in-
stances, without making too much fuss about how to do this strictly according
to the book. The local probability of a sentence of this kind is defined in the
obvious way.
There are n(n− 1) · · · (n−m+ 1) ways of selecting distinct elements for
x1, . . . , xm, and by symmetry they are equally probable. Thus we have that

an =

n(n−1) · · · (n−m+1)·µn(M(0, . . . ,m−1)∧∀y(
∧
i

y 6= i→ ¬N(0, . . . ,m−1, y)))

which is bounded by

bn = nm · µn(M(0, . . . ,m− 1) ∧ ∀y(
∧
i

y 6= i→ ¬N(0, . . . ,m− 1, y)))

which again is bounded by

cn = nm · µn(∀y(
m−1∧
i=0

y 6= i→ ¬N(0, . . . ,m− 1, y))).

49

Let ξ1, . . . , ξl be all the literals in N with an occurrence of the variable y. Then

cn = nm · µn(∀y(
m−1∧
i=0

y 6= i→
l∨

j=1

¬ξj(0, . . . ,m− 1, y))).

For each k with m ≤ k ≤ n and j ≤ l, the probability of ξj(0, . . . ,m − 1, k) is
exactly 1

2 . Thus we may evaluate

cn = nm ·
n∏

i=m

µn(
l∨

j=1

¬ξj(0, . . . ,m− 1, i)) = nm(1− 1
2l

)n−m.

Since m and l are fixed and (1− 1
2l) < 1, we have that

lim
n→∞

nm(1− 1
2l

)n−m = 0.

This proves the theorem.

Corollary 2.1.5 Let L and T be as above, φ a sentence in L. Then µ(φ) = 1
or µ(φ) = 0.

Proof
Since T is ω-categorical, we know in particular that T is complete.
If T ` φ, there are axioms φ1, . . . , φk in T such that

φ1, . . . , φk ` φ.

Since

µn(φ1 ∧ · · · ∧ φk) ≥ 1−
k∑
i=1

(1− µn(φi))

it follows that µ(φ) = 1. By the same argument, if T ` ¬φ we have that
µ(φ) = 0 since µ(¬φ) = 1.

An application to graph theory

In this section we will let a directed graph simply be a binary relation R on a
set G. In order to get the feeling of a graph-theoretical environment, we will
call the ordered pairs (a, b) for oriented edges with tail a and head b, and we call
the elements of G for nodes. Graph theory also covers the case of non-oriented
edges, the possibility of several edges between two nodes, no edges from a node
to itself etc. For all these definitions of graphs, a similar phenomenon as the
one we will discuss takes place.

A path from a to b will be a finite sequence of edges e1, . . . , en such that

a is the head of e1.

b is the tail of en.

50

For all i < n, the head of ei is the tail of ei+1.

A path like this will have length n. We say that the graph is connected if there
is a path from a to b for all nodes a and b (this concept is more commonly
used for undirected graphs, so do not use it in a context independent of this
section). We will call a graph intimately connected (not a standard concept in
any context) if all nodes a and b are connected via a path of length at most 2.

Corollary 2.1.6 Let P (n) be the probability that an arbitrary graph on
{0, . . . , n} is intimately connected.
Then

lim
n→∞

P (n) = 1.

Proof
Let L be the language of graph theory, and let T be as above. Consider the
sentence

φ = ∀x∀y∃z(R(x, z) ∧R(z, y)).

φ will be a theorem in T , and thus have asymptotic probability 1.

This example shows that most finite graphs are non-interesting. In an effort
to make this corollary sound interesting, we claim that it demonstrates that one
must show some care when describing the virtue of probabilistic algorithms.
The probabilistic algorithm ‘Yes’ solves the problem ‘is G connected?’ with
better and better probability the larger the finite graph G is, but it is of course
absolutely worthless.
In Exercise 2.2 we show that most transitive finite binary relations are rather
non-interesting.

2.2 Second order languages

We have shown that the first order theory of algebraically closed fields of a fixed
characteristic is complete. We have shown that the natural numbers cannot be
characterized up to isomorphism by any first order theory. In this chapter we
have shown the 0-1-law of finite model theory for first order formulas.
These and other results indicate that first order languages are poor in expressive
power.
These languages are called first order because we only accept quantifiers over
the domain of the structure. A standard mathematical format of the induction
axiom for number theory is as follows:

∀A(0 ∈ A ∧ ∀x ∈ N(x ∈ A→ x+ 1 ∈ A) → ∀x ∈ N(x ∈ A)).

Here we let A vary over all sets, in particular over all subsets of N. Quantifiers
ranging over all subsets of a domain, or more generally, over all predicates of
some fixed arity on a domain, will be called second order. We will be more
precise in a while, but notice already now that the natural numbers can be
described up to isomorphism by second order formulas, see Exercise 2.4.

51

One problem with interpreting a second order quantifier is that the interpre-
tation is not absolute. By this we mean that the powerset of an infinite set is
not fully understood. There are second order sentences in number theory where
the truth value will depend on chosen axiomatisations of set theory. This will
be discussed at more depth in a course on axiomatic set theory. If we restrict
our attention to finite structures, the same argument against second order logic
in general is not valid. Given a finite set we have, at least theoretically, a full
control of the power set.

We will show that the expressive power of second order quantifiers is such
that the 0-1-law does not hold any more. A more systematical treatment of
second order logic and other extensions of first order logic is beyond the scope
of this text.

Definition 2.2.1 a) A second order language L2 will be a first order lan-
guage L extended with variables Xk

n for predicates of arity k.

b) If t1, . . . , tk are terms in L, then Xk
n(t1, . . . , tk) is a new atomic formula.

c) The class of second order formulas is closed under boolean connectives
and first order quantifiers in the same way as the first order formulas are.

d) If φ is a second order formula, then ∃Xk
nφ and ∀Xk

nφ are second order
formulas.

We will not go through the full definition of how second order formulas are
interpreted over an L-structure. The point is that they can be interpreted, and
that if A and B are isomorphic L-structures, then they will satisfy the same
second order sentences.

From now on we will restrict ourselves to the first order language L= of
equality, and its second order extension L2

=. Then there is exactly one structure
with domain {0, . . . , n− 1} for each n.

Theorem 2.2.2 There is a second order sentence that is true exactly for the
finite structures with an even number of elements.

Proof
In the sentence below, X will be a predicate variable of arity 1 and Y will be a
predicate variable of arity 2.
Let us first look at the sentence, and discuss why it works afterwards:

∃X∃Y [∀x∃yY (x, y) ∧ ∀y∃xY (x, y)

∧∀x∀y∀z(Y (x, y) ∧ Y (x, z) → y = z)

∧∀x∀y∀z(Y (x, y) ∧ Y (z, y) → x = z)

∧∀x∀y(Y (x, y) → (X(x) ↔ ¬X(y)))].

The first and third conjuncts express that Y is the graph of a function fY .
The second and fourth conjuncts express that fY is onto and one-to-one, i.e.

52

a bijection. The last conjunct expresses that fY is a bijection between X and
the complement of X. If the domain of the structure is finite, we may find
interpretations of X and Y satisfying this exactly when the total number of
elements is an even one.

Clearly the sentence above does not satisfy the 0-1-law, so we have proved

Corollary 2.2.3 The 0-1-law is not satisfied in general by second order sen-
tences.

In the proof of Theorem 2.2.2 we saw that we can express that Y is the graph
of a function and other properties of functions using first order expressions in
the variable Y . Other properties that we may express is

1. X1 is finite.

2. X1 is infinite.

3. 〈X1, Y 2〉 is a well ordering

4. A ring is Noetherian (which means that any decreasing sequence of ideals
is finite)

The verifications of the first three facts are left as Exercise 2.5. The proof of
Fact 4. is easy if you know the definitions of Noetherian rings and ideals, but
will be very hard if you do not know these definitions.

2.3 Exercises to Chapter 2

Exercise 2.1 Show that there is an upper bound on the length of a complete
open description M(x1, . . . , xn) depending on n and the signature of the lan-
guage, and that whenever M(x1, . . . , xn) is a complete open description and
y1, . . . , yk are new variables, then M has an extension to a complete open de-
scription N(x1, . . . , xn, y1, . . . , ym).

Exercise 2.2 In automata theory, in logic and also in other branches of math-
ematics or theoretical computer science we sometimes define a relation by con-
sidering the reflexive and transfinite closure of a one-step-relation (e.g. one-step
action of a Turing machine or one-step deduction in a formal theory). The
transitive closure of a binary relation cannot be axiomatized in first order logic
(if you did not know this, consider it as a part of this exercise to prove it) and
is defined by

R∗(a, b) ⇔ ∃n ∈ N∃a1, . . . , an(a = a1 ∧ b = an ∧ ∀i < n R(ai, ai+1)).

Let R be an arbitrary binary relation on {0, . . . , n}. Show that with asymptotic
probability 1, R∗(i, j) for all i, j ≤ n.
What are the asymptotic probabilities of the interesting properties

53

R is reflexive?

R is nowhere reflexive?

R is transitive?

R is symmetric?

Exercise 2.3 Let L be the language with = as the only symbol.

a) Show that for every sentence φ in L and every n we have that µn(φ) ∈
{0, 1}.

b) Show that the function n 7→ µn(φ) will be eventually constant for each
sentence φ.

c) Evaluate from where the function n 7→ µn(φ) is eventually constant, in
terms of some number related to φ, and use this to show that the pure
theory of equality is decidable.

Exercise 2.4 Find a set of first and second order sentences in the language of
number theory that will have isomorphic copies of N as the only models.

Exercise 2.5 A standard set-theoretical characterization of infinity is that a
set A is infinite exactly when there is a bijection between A and a proper subset
of A. Use this to show that we may express that a set is finite by a second order
formula.
Find a second order formula that express that Y 2 is a well ordering of X1.
If you want to go on with harder problems, we suggest that you continue with
Exercise 5.4.

54

Chapter 3

Classical Computability
Theory

3.1 The foundation, Turing’s analysis

In Leary [1] the recursive functions are defined as those that can be represented
in elementary number theory. f : Nk → N is recursive if there is a formula
φ(x1, . . . , xk, y) such that for all n1, . . . , nk,m we have that f(n1, . . . , nk) = m
if and only if

N ` φ(cn1 , . . . , cnk
, y) ↔ y = cm.

Here cn is the numeral for n, and N is elementary number theory.
The advantage of this definition is that it is well suited for proving Gödel’s

incompleteness theorem without introducing too many new concepts. The prob-
lem is that there is absolutely no conceptual analysis of the notion of computabil-
ity behind this definition.

Gödel defines a class of recursive functions by recursion (pun intended). His
aim is to define a sufficiently rich class for handling algorithms for e.g. substitu-
tion of a term for a variable, and for coding the meta-theory of a formal theory,
but sufficiently simple to enable us to show that any recursive function will be
definable, and actually, representable as described above. Gödel’s computable
functions are now known as the µ-recursive ones.

We are going to base our study of computability on an approach due to
Kleene, and we are going to restrict ourselves to computable functions defined
on the natural numbers. In many respects, computing can be described as
manipulation of symbols following a given set of rules. The symbols are not then
natural numbers, and different ways of representing natural numbers (binary,
decadic, via numerals, Roman figures etc.) might give different concepts of
computing with numbers.

The best mathematical model for computability and computations is due
to Alan Turing. He defined what is now known as Turing machines, small
finite state machines operating on an infinite one-dimensional tape and doing

55

symbol manipulations on this tape. The machine will, between each step of the
computation, be in one of finitely many states. It will read one of the symbols
on the tape, and dependent of the state it is in and the symbol on the tape that
it reads, it will according to a fixed rule change its state, rewrite the symbol and
move to the symbol to the right or to the left. It may of course stay in the same
state, it may of course keep the symbol on the tape as it is, and sometimes it
may be convenient to let it stay where it is. We think of the tape as consisting
of squares, like an old fashioned movie-tape.

A Turing machine M is determined by

1. A finite alphabet Σ including one special symbol Bl for an empty square
of the tape.

2. A finite set K of states, with one special state s ∈ K called the initial
state.

3. A partial function δ : (Σ × K) → (Σ × K × {L, S,R}), where L means
”left”, R means ”right” and S means ”stay where you are”.

In the literature you will find many variations in the definition of a Turing
machine, but they all have the same computational power. In this exposition,
we decided to let the function δ, which rules the action of the machine, be
partial. If δ(σ, p) is undefined, the machine will be in a halting situation, which
means that the computation comes to an end. We are not going to give a precise
definition of the operational semantics for Turing machines, but are content with
an intuitive description:

The operational semantics of Turing Machines

Let M = 〈Σ,K, s, δ〉 be a Turing machine.
The starting configuration of M will consist of a word w (called the input) in Σ
written on an otherwise blank tape that is infinite in both directions, a position
on the tape and the initial state s.
At each step, the machine M may enter a new state, rewrite the symbol at its
position on the tape and shift its position one square to the right or to the left,
all according to the function δ.
If M is in stage p and reads the symbol σ, and δ(σ, p) is undefined, M halts.
Then we who observe M will know this, and we will be able to read the content
of the tape, which will be called the output.

Normally there will be some conventions for how to organize the input con-
figuration, e.g. that there should be no blanks in the input word and that the
machine will be started at the first blank square to the left or to the right of
the input word. Then the following makes sense

Definition 3.1.1 Let Σ0 be an alphabet not containing the symbol Bl
Let Σ∗

0 be the set of finite words over Σ0.
Let f : Σ∗

0 → Σ∗
0 be a partial function.

We say that f is Turing computable if there is a Turing machine M over an

56

alphabet Σ ⊃ Σ0 such that if M is started with w ∈ Σ∗ on the tape, then it
halts if and only if f(w) is defined, and then with f(w) as the output word.

Turing claimed that a Turing machine can

• Search systematically for pieces of information.

• Remember pieces of information

• Rewrite contents

all according to fixed rules. As an example we may consider the map n 7→ n! and
the map m 7→ mm. We all agree that these maps are in principle computable,
but try to think about how a computation of 1010! could be carried out: We
would need a lot of book-keeping devices in order to be at the top of the situation
at each stage, but nothing that is not covered by the three items above.

We follow Turing in claiming that his model is a good mathematical model
for algorithmic computations. We are, however, not going to make this com-
pendium into a study of Turing machines. The interested reader should consult
other textbooks on the subject.

The two key results are:

Theorem 3.1.2 There is a fixed alphabet Σ such that for any alphabet Σ′, any
Turing machine M over Σ′ may be coded as a word [M] in σ and every word w
in Σ′ may be coded as a word [w] in Σ such that the partial function

U([M][w]) = [M(w)]

is Turing computable, where we write M(w) for the output word if the input
word is w.

This is known as the existence of a Universal Turing Machine.

The Halting Problem is the following:

Given a Turing machine M and an input w, will M eventually come to a halt
when started on w?

Theorem 3.1.3 There is no Turing machine H that solves the Halting Problem
in the following sense:
H([M][w]) will always halt, and will halt with an empty output word if and only
if M halts on w.

Our approach to computability will be more in the original style of Gödel, we
will study functions defined for natural numbers only. However, the results that
we obtain will be relevant for the more general approaches as well. This is based
on what is known as the Church-Turing Thesis, which we phrase like this:

All algorithms can be simulated by a Turing Machine,

and the fact that Turing-computability can be reduced to the notion we will
be working with. This is left as one of the minor projects in Chapter 5, see
Exercise 5.6.

57

3.2 Computable functions and c.e. sets

3.2.1 The primitive recursive functions

The basic definition

Recursion means ‘backtracking’, and in pre-Church/Kleene mathematics the
term recursive function was used for the functions defined by iterated recursion.
In this pre-Church/Kleene context a recursive definition will be a definition of
a function on the natural numbers, where we give one initial value f(0), and
define f(k+1) as a function of f(k) and k. E.g. Skolem used the term ‘recursive
function’ in this way. Following Kleene, we will call these functions primitive
recursive.

We let ~x and ~y etc. denote ordered sequences of natural numbers of some
fixed length. Normally the length will not be specified, but will be clear from
the context.

Definition 3.2.1 The primitive recursive functions f : Nn → N will be the
least class of functions satisfying:

i) f(x, ~y) = x+ 1 is primitive recursive.

ii) Ii,n(x1, . . . , xn) = xi is primitive recursive.

iii) f(~x) = q is primitive recursive for each q ∈ N.

iv) If g is n-ary and primitive recursive, and f1, . . . , fn arem-ary and primitive
recursive, then the composition

h(~x) = g(f1(~x), . . . , fn(~x))

is primitive recursive.

v) If g and h are primitive recursive of arity n and n + 2 resp., then f is
primitive recursive where

f(0, ~y) = g(~y)

f(x+ 1, ~y) = h(f(x, ~y), x, ~y)

We say that f is defined by primitive recursion or by the recursion operator
from g and h.

The pool of primitive recursive functions and sets

Standard number theoretical functions like addition, multiplication, exponenti-
ation and factorial will all be primitive recursive. For instance f(x, y) = x + y
may be defined by

- x+ 0 = x

- x+ (y + 1) = (x+ y) + 1.

58

Subtraction is not primitive recursive for the simple reason that it leads us
outside N. We define a modified subtraction. This will be primitive recursive,
see Exercise 3.1.

Definition 3.2.2 We let ·− be the modified subtraction defined by

x ·− y = x− y if y ≤ x

x ·− y = 0 if x ≤ y.

By the definition of the primitive recursive functions, all projection maps

Ii,n(x1, . . . , xn) = xi

are primitive recursive. We can use this to consider any function of a set of
variables as a function of a larger set of variables, as in

f(x1, x2, x3) = g(I1,3(x1, x2, x3), I3,3(x1, x2, x3)) = g(x1, x3).

Thus we will not need to be concerned with the requirement that every function
in a composition must be of the same arity. This will simplify some of the
descriptions of primitive recursive functions.

Definition 3.2.3 Let A ⊆ Nn. The characteristic function of A will be the
function

KA : Nn → N

that is 1 on A and 0 outside A.

Definition 3.2.4 A set A ⊆ Nn is primitive recursive if the characteristic func-
tion KA is primitive recursive.

The primitive recursive sets will form a Boolean algebra for every dimension,
see Exercise 3.2.

If A ⊆ Nk is primitive recursive and f, g : Nk → N are primitive recursive,
we may define a primitive recursive function h by cases as follows:

h(~x) = KA(~x) · f(~x) + (1 ·−KA(~x)) · g(~x)).

We see that h(~x) = f(~x) when ~x ∈ A and h(~x) = g(~x) otherwise.
Every set defined from = and < using propositional calculus will be prim-

itive recursive. We may also use functions known to be primitive recursive in
the definition of primitive recursive sets, and primitive recursive sets when we
describe primitive recursive functions. We will leave the verification of most of
this to the reader, just state the properties of primitive recursion that are useful
to us. The proofs are simple, and there is no harm leaving them as exercises.
We will however prove one basic (and simple) lemma:

59

Lemma 3.2.5 Let f : N1+n → N be primitive recursive. Then the function g
defined as the bounded product

g(x, ~y) =
∏
z≤x

f(z, ~y)

will be primitive recursive.

Proof
We define g by primitive recursion as follows
g(0, ~y) = f(0, ~y)
g(x+ 1, ~y) = g(x, ~y) · f(x+ 1, ~y)

By the same argument we can show that the primitive recursive functions
will be closed under bounded sums. What is more important to us is that
the primitive recursive sets will be closed under bounded quantification. This
is an important strengthening of the language we may use to define primitive
recursive sets and functions.

Lemma 3.2.6 Let A ⊆ N1+n be primitive recursive. Then the following sets
are primitive recursive

a) B = {(x, ~y) ; ∃z ≤ y((z, ~y) ∈ A)}

b) C = {(x, ~y) ; ∀z ≤ y((z, ~y) ∈ A)}
The proof is left as Exercise 3.3.

In computability theory, the µ-operator is important. Within primitive re-
cursion theory we may often use bounded search, or a bounded µ-operator:

Lemma 3.2.7 Let f : N1+n → N be primitive recursive. Then

g(x, ~y) = µ<xz.(f(z, ~y) = 0)

is primitive recursive, where g(x, ~y) is the least z such that f(z, ~y) = 0 if there
is one such z < x, while g(x, ~y) = x otherwise.

g can be defined using primitive recursion and definition by cases. The details
are left as Exercise 3.4.

The interplay between the primitive recursive functions and the primitive
recursive sets is ruled by the following principles:

Theorem 3.2.8 a) Every set definable from = and < using primitive recur-
sive functions, boolean operators and bounded quantifiers will be primitive
recursive.

b) Every function defined by the schemes of primitive recursion, bounded
search over a primitive recursive set and definition by cases over a finite
partition of Nn into primitive recursive sets will be primitive recursive.

There is no need to prove this theorem, since it in a sense is the synthesis of
what has been proved so far. The consequence is the level of freedom in defining
primitive recursive functions and relations we have obtained. This freedom will
be sufficient when we later claim that certain facts are trivial to prove.

60

Sequence numbers

One important use of primitive recursion is the coding of finite sequences. Gödel
needed an elaborate way of coding finite sequences via the so called β-function.
As we mentioned above, it was important for Gödel to show that the recursive
functions are definable in ordinary number theory. Since this is not important
to us to the same extent, we will use full primitive recursion in coding such
sequences. All proofs of the lemmas below are trivial and can safely be left for
the reader.

Lemma 3.2.9 a) The set of prime numbers (starting with 2 as the least
prime number) is primitive recursive.

b) The monotone enumeration {pi}i∈N of the prime numbers is primitive
recursive (with p0 = 2).

We now define the sequence numbers:

Definition 3.2.10 Let x0, . . . , xn−1 be a finite sequence of numbers, n = 0
corresponding to the empty sequence.
We let the corresponding sequence number 〈x0, . . . , xn−1〉 be the number

2n ·
n−1∏
i=0

pxi
i+1

If y = 〈x0, . . . , xn−1〉, we let lh(y) (the length of y) be n and (y)i = xi.
If x = 〈x0, . . . , xn−1〉 and y = 〈y0, . . . , ym−1〉, we let x ∗ y be the sequence
number of the concatenation, i.e.

x ∗ y = 〈x0, . . . , xn−1, y0, . . . , ym−1〉.

Sometimes, when it is clear from the context, we will misuse this terminology
and let

a ∗ 〈x0, . . . , xn−1〉 = 〈a, x0, . . . , xn−1〉.

Lemma 3.2.11 a) The set of sequence numbers is primitive recursive, and
the sequence numbering is one-to-one (but not surjective).

b) The function lh is the restriction of a primitive recursive function to the
set of sequence numbers.

c) The function coor(y, i) = (y)i (the i’th coordinate of y) defined for se-
quence numbers y of length > i is the restriction of a primitive recursive
function of two variables.

d) For each n, the function

seqn(x0, . . . , xn−1) = 〈x0, . . . , xn−1〉

is primitive recursive.

61

e) For all sequences x0, . . . , xn−1 and i < n, xi < 〈x0, . . . , xn−1〉

f) 1 is the sequence number of the empty sequence.

h) Concatenation of sequence numbers is primitive recursive.

It makes no sense to say that the full sequence numbering is primitive re-
cursive. However any numbering satisfying Lemma 3.2.11 can be used for the
purposes of this course, so there is no need to learn the details of this defini-
tion. Occasionally it may be useful to assume that the sequence numbering is
surjective. This can be achieved, see Exercise 3.5.

Primitive recursion is technically defined on successor numbers via the value
on the predecessor. Sometimes it is useful to use the value on all numbers less
than the argument x in order to define the value on x. In order to see that this
is harmless, we use the following construction and the result to be proved in
Exercise 3.6:

Definition 3.2.12 Let f : N → N.
Let f̄(n) = 〈f(0), . . . , f(n− 1)〉.

We will sometimes use an alternative coding of pairs that is both 1-1 and
onto:

Definition 3.2.13 Let

P (x, y) =
1
2

((x+ y)2 + 3x+ y)

It can be shown that P : N2 → N is a bijection. Let π1 and π2 be the two
projection maps such that for any x

P (π1(x), π2(x)) = x.

P , π1 and π2 are primitive recursive. The verifications are left for the reader as
Exercise 3.5 e).

Ackermann proved that there is a total computable function that is not
primitive recursive. His observation was that in the list of functions

f0(x, y) = x+ 1, f1(x, y) = x+ y, f2(x, y) = xy, f3(x, y) = xy

each function but the first is defined as a y-iteration of the previous one.
For n ≥ 3 we may then define

fn(x, 0) = 1, fn(x, y + 1) = fn−1(fn(x, y), x)

This defines the generalized exponentiations, or the Ackermann-branches. The
three-place function

f(n, x, y) = fn(x, y)

is not primitive recursive.
We will not prove Ackermann’s result as stated, but in Exercise 3.7 we will see
how we may define a function using a double recursion that is not primitive
recursive. It will be easier to solve this exercise after the introduction to Kleene
indexing.

62

3.2.2 The computable functions

The µ-operator

We extend the definition of the primitive recursive functions to a definition of
the computable functions by adding one principle of infinite search. We will
consider the construction

g(~x) = µx.f(x, ~x) = 0.

In order to understand this definition, we must discuss what we actually mean,
i.e. which algorithm this is supposed to represent.
Intuitively we want µx.g(x, ~x) = 0 to be the least x such that g(x, ~x) is 0.
If g(x, ~x) ∈ N for all x, this is unproblematic, we search for this least x by
computing g(0, ~x) , g(1, ~x) and so on until we find one value of x giving 0 as the
outcome. Now, if there is no such x we will search in vain, or in more technical
terms, our procedure will be non-terminating. This forces us to introduce partial
functions, i.e. functions being undefined on certain arguments. This further
forces us to be careful about our interpretation of the µ-operator, we may in the
search for the least x such that g(x, ~x) = 0 face a z for which g(z, ~x) is undefined
before we find a z for which g(z, ~x) = 0. In this case we will let µx.g(x, ~x) = 0
be undefined, realizing that the algorithm for computing this number that we
have in mind will be non-terminating.
With this clarification we ad the following

Definition 3.2.14 The computable functions is the least class of partial func-
tions f : Nn → N satisfying i) - v) in the definition of the primitive recursive
functions, together with the extra clause

vi) If g : Nn+1 → N is computable then

f(~x) = µx.g(x, ~x) = 0

is computable.

A set is computable if the characteristic function is computable.
A total computable function is a computable function terminating on all inputs
from the domain Nn.

Remark 3.2.15 Gödel’s µ-recursive functions will be the total computable
functions

We must have in mind that the characteristic function of a set is total, so
dealing with computable sets and with total computable functions will be much
of the same. This is made precise in the following lemma:

Lemma 3.2.16 Let f : Nn → N be total. Then the following are equivalent:

i) f is computable.

63

ii) The graph of f , seen as a subset of Nn+1, is computable.

Proof
Let A be the graph of f , KA the characteristic function of A.
If f is computable, then

KA(~x, y) = K=(f(~x), y)

and K= is primitive recursive, see Exercise 3.1, g) and e).
If KA is computable, then

f(~x) = µy.1 ·−KA(~x, y) = 0,

so f is computable.

Remark 3.2.17 This result will not hold for primitive recursion, there will be
functions with primitive recursive graphs that are not primitive recursive.

There is an interplay between the total computable functions and the com-
putable sets resembling Theorem 3.2.8 as follows

Theorem 3.2.18 a) Any set definable from computable sets and total com-
putable functions using boolean valued operators and bounded quantifiers
will be computable.

b) If A ⊆ Nn+1 is computable, then g is computable, where

g(~x) is the least number z such that (z, ~x) ∈ A.

The proof is trivial.

Kleene’s T -predicate

The definition of the computable functions is technically an inductive defini-
tion of a class of partial functions. It is, however, important to be aware of
the computational interpretation of this definition, the so to say ‘operational
semantics’. Every partial computable function is given by a term in a language
with constants for each number, the +1 function and symbols for the recursion
operator and the µ-operator.
This operational semantics then tells us that there are actual computations go-
ing on. Now we will define the concept of a computation tree. A computation
tree will be a number coding every step in a computation up to the final out-
come. In order to be able to do so, we need a Gödel numbering, or an indexing,
of the computable functions. Observe that the numbering will not be 1-1, we
will enumerate the algorithms or the terms, and then only indirectly enumerate
the computable functions.

Definition 3.2.19 For each number e and simultaneously for all n we define
the partial function φne of n variables ~x = (x1, . . . , xn) as follows:

64

i) If e = 〈1〉, let φne (~x) = x1 + 1.

ii) If e = 〈2, i〉 and 1 ≤ i ≤ n, let φne (~x) = xi.

iii) If e = 〈3, q〉, let φne (~x) = q.

iv) If e = 〈4, e′, d1, . . . , dm〉 let

φe(~x) = φme′ (φ
n
d1(~x), . . . , φndm

(~x)).

v) If e = 〈5, d1, d2〉 then
φn+1
e (0, ~x) = φnd1(~x)
φn+1
e (x+ 1, ~x) = φn+2

d2
(φn+1
e (x, ~x), x, ~x).

vi) If e = 〈6, d〉 then
φne (~x) = µz.φn+1

d (z, ~x) = 0

Otherwise If neither of i) - vi) above applies, let φne (~x) be undefined.

Remark 3.2.20 We have defined φe(~x) for every index e and every input ~x,
either as an undefined value or as a natural number. Indeed, if we get a natural
number, this number will be unique, see Exercise 3.8.
When no misunderstanding should occur, we will drop the superscript n and
write φe(~x) instead of φne (~x).

Definition 3.2.21 We write φe(~x)↓ if there is a y with φe(~x) = y. We then
say that φe(~x) terminates.

We are now ready to use the sequence numbering and this indexing to define
computation trees. Each terminating computation will have a unique computa-
tion tree, a number coding each step of the computation from the input to the
output. We will actually be overloading this code with information, but for our
purposes this is harmless. What is important to us is that information retrieval
will be easy.

Definition 3.2.22 Let φe(~x) = y. By primitive recursion on e we define the
computation tree of φe(~x) = y as follows, assuming that the index e will be the
index of the corresponding case:

i) 〈e, ~x, x1 + 1〉 is the computation tree for φe(x, ~y) = x+ 1.

ii) 〈e, ~x, xi〉 is the computation tree for φe(~x) = xi.

iii) 〈e, ~x, q〉 is the computation tree for φe(~x) = q.

iv) 〈e, t, t1, . . . , tn, y〉 is the computation tree in this case, where each ti is
the computation tree for φdi(~x) = zi and t is the computation tree for
φe′(~z) = y.

65

v) 〈e, 0, t, y〉 is the computation tree for φe(0, ~x) = y when t is the computa-
tion tree for φd1(~x) = y.
〈e, x + 1, t1, t2, y〉 is the computation tree for φe(x + 1, ~x) = y when t1 is
the computation tree for φe(x, ~x) = z and t2 is the computation tree for
φd2(z, x, ~x) = y.

vi) 〈e, t0, . . . , ty−1, ty, y〉 is the computation tree in this case, where ti is the
computation tree for φd(i, ~x) = zi 6= 0 for i < y and ty is the computation
tree for φd(y, ~x) = 0.

We say that t is a computation tree for φne (~x) if for some y, t is the computation
tree for φne (~x) = y.

We are now ready to define Kleene’s T -predicate:

Definition 3.2.23 Let
Tn(e, x1, . . . , xn, t)

if t is a computation tree for φe(x1, . . . , xn)

We will normally write T instead of T1.

Theorem 3.2.24 a) For each n, Tn is primitive recursive.

b) There is a primitive recursive function U such that if t is a computation
tree, then U(t) is the output of the corresponding computation.

c) (Kleene’s Normal Form Theorem)
For every arity n and all e we have

φe(x1, . . . , xn) = U(µt.Tn(e, x1, . . . , xn, t)).

Proof
It is only a) that requires a proof. The proof of a) is however easy, we construct
the characteristic function of Tn by recursion on the last variable t. Monotonisity
of the sequence numbering is important here. We leave the tedious, but simple
details for the reader.

Corollary 3.2.25 For each number n, the function

f(e, x1, . . . , xn) = φe(x1, . . . , xn)

is computable.

Remark 3.2.26 Corollary 3.2.25 is the analogue of the existence of a universal
Turing machine, we can enumerate the computable functions in such a way
that each computable function is uniformly computable in any of the numbers
enumerating it. This universal function is partial. There is no universal function
for the total computable functions, see Exercise 3.9.

66

The Recursion Theorem

The recursion theorem is one of the key insights in computability theory in-
troduced by Kleene. In programming terms it says that we may define a set
of procedures where we in the definition of each procedure refer to the other
procedures in a circular way. The proof we give for the recursion theorem will
be a kind of ‘white rabbit out of the hat’ argument based on the much more
intuitive Snm-theorem. So let us first explain the Snm-theorem. Let f be a com-
putable function of several variables. Now, if we fix the value of some of the
variables, we will get a computable function in the rest of the variables. The
Snm-theorem tells us that the index for this new function can be obtained in a
primitive recursive way from the index of the original function and the values
of the fixed variables. We have to prove one technical lemma:

Lemma 3.2.27 There is a primitive recursive function ρ (depending on n) such
that if

φne (x1, . . . , xn) = t

and
1 ≤ i ≤ n

then
φn−1
ρ(e,i,xi)

(x1, . . . , xi−1, xi+1, . . . , xn) = t.

Proof
We define ρ by induction on e, considering the cases i) - vi). We leave some of
the easy details for the reader, see Exercise 3.11.
φe(~x) = x1 + 1:
If 1 < i let ρ(e, i, xi) = e, while ρ(e, 1, x1) = 〈3, x1 + 1〉.
The cases ii) and iii) are left for the reader.
If e = 〈4, e′, d1, . . . , dn〉, we simply let

ρ(e, i, xi) = 〈4, e′, ρ(d1, i, xi), . . . , ρ(dn, i, xi)〉.

Case v) splits into two subcases. If 1 < i, this case is easy. For i = 1 we let
ρ(e, 1, 0) = d1.
ρ(e, 1, x+ 1) = 〈4, 〈3, x〉, ρ(e, 1, x), dx, 〈2, 1〉, . . . , 〈2, n〉〉
where 〈3, x〉 is the index for f(~x) = x and 〈2, i〉 is the index for the function
selecting xi from ~x. In this case the primitive recursion is replaced by an iterated
composition, the depth of which is determined by the value of x.
Case vi) is again easy, and is left for the reader.

Theorem 3.2.28 (The Snm-theorem)
Let n ≥ 1,m ≥ 1. There is a primitive recursive function Snm such that for all
e, x1, . . . , xn, ym, . . . , ym

φn+m
e (x1, . . . , xn, y1, . . . , ym) = φmSn

m(e,x1,...,xn)(y1, . . . , ym)

67

Proof
Let ρ be as in Lemma 3.2.27.
Let S1

m(e, x) = ρ(e, 1, x)
Let Sk+1

m (e, x1, . . . , xk+1) = ρ(Skm+1(e, x1, . . . , xk), 1, xk+1). By an easy induc-
tion on k we see that this construction works for all m.

The Snm-theorem is a handy tool in itself, and we will use it frequently
stating that we can find an index for a computable function uniformly in some
parameter. Now we will use the Snm-theorem to prove the surprisingly strong

Theorem 3.2.29 (The Recursion Theorem)
Let f(e, ~x) be a partial, computable function.
Then there is an index eo such that for all ~x

φe0(~x) ' f(e0, ~x).

Proof
Recall that by this equality we mean that either both sides are undefined or
both sides are defined and equal. Let

g(e, ~x) = f(S1
n(e, e), ~x)

and let ĝ be an index for g. Let

e0 = S1
n(ĝ, ĝ).

Then

φe0(~x) = φS1
n(ĝ,ĝ)(~x) = φĝ(ĝ, ~x) = g(ĝ, ~x) = f(S1

n(ĝ, ĝ), ~x) = f(e0, ~x).

Remark 3.2.30 Readers familiar with the fixed point construction in untyped
λ-calculus may recognize this proof as a close relative, and indeed it is essentially
the same proof. The recursion theorem is a very powerful tool for constructing
computable functions by self reference. In Chapter 4 we will use the recursion
theorem to construct computable functions essentially by transfinite induction.
Here we will give a completely different application, we will prove that there is
no nontrivial set of partial computable functions such that the set of indices for
functions in the class is computable.

Theorem 3.2.31 (Riece)
Let A ⊆ N be a computable set such that if e ∈ A and φe = φd then d ∈ A.
Then A = N or A = ∅.

Proof
Assume not, and let a ∈ A and b 6∈ A.
Let f(e, x) = φb(x) if e ∈ A and f(e, x) = φa(x) if e 6∈ A.
By the recursion theorem, let e0 be such that for all x

f(e0, x) = φe0(x).

If e0 ∈ A, then φe0 = φb so e0 6∈ A.
If e0 6∈ A, then φe0 = φa so e0 ∈ A.
This is a clear contradiction, and the theorem is proved.

68

Corollary 3.2.32 (Unsolvability of the halting problem)
{(e, x) ; φe(x)↓} is not computable.

Remark 3.2.33 Riece’s theorem is of course stronger than the unsolvability of
the Halting Problem, for which we need much less machinery.

3.2.3 Computably enumerable sets

Four equivalent definitions

An enumeration of a set X is an onto map F : N → X. For subsets of N we
may ask for computable enumerations of a set. A set permitting a computable
enumeration will be called computably enumerable or just c.e. The standard
terminology over many years has been recursively enumerable or just r.e., be-
cause the expression recursive was used by Kleene and many with him. We will
stick to the word computable and thus to the term computably enumerable.
Of course there is no enumeration of the empty set, but nevertheless we will
include the empty set as one of the c.e. sets.
In this section we will give some characterizations of the c.e. sets. One impor-
tant characterization will be as the semi-decidable sets. A computable set will
be decidable, we have an algorithm for deciding when an element is in the set
or not. In a semi-decidable set we will have an algorithm that verifies that an
element is in the set when it is, but when the element is not in the set, this
algorithm may never terminate. A typical semi-decidable set is the solving set
of the Halting Problem

{(e, x) ; φe(x)↓}.

Another example is the set of theorems in first order number theory or any
nicely axiomatizable theory. The set of words in some general grammar will
form a third class of examples.

We will show that the semi-decidable subsets of N will be exactly the c.e.
sets. A third characterization will be that the c.e. sets are exactly the sets of
projections of primitive recursive sets. In the literature this class is known as the
Σ0

1-sets. A fourth characterization will be as the ranges of partial, computable
functions.

This is enough talk, let us move to the definition:

Definition 3.2.34 Let A ⊆ N. We call A computably enumerable or just c.e.
if A = ∅ or A is the range of a total computable function.

Theorem 3.2.35 Let A ⊆ N. Then the following are equivalent:

i) A is c.e.

ii) A is the range of a partial computable function.

iii) There is a primitive recursive set S ⊆ N2 such that

A = {n ; ∃m(n,m) ∈ S}

69

iv) There is a partial computable function with domain A.

Proof
Since the empty set satisfies all four properties, we will assume that A 6= ∅.
i) ⇒ ii):
Trivial since we in this compendium consider the total functions as a subclass
of the partial functions.
ii) ⇒ iii):
Let A be the range of φe.
Then

n ∈ A⇔ ∃y(T (e, π1(y), π2(y)) ∧ n = U(π2(y)))

where π1 and π2 are the inverses of the pairing function P , T is Kleene’s T -
predicate and U is the function selecting the value from a computation tree.
The matrix of this expression is primitive recursive.
iii) ⇒ iv): Let

n ∈ A⇔ ∃m((n,m) ∈ S).

where S is primitive recursive. Then A is the domain of the partial computable
function

f(n) = µm.(n,m) ∈ S.

iv) ⇒ i):
Let A be the domain of φe and let a ∈ A (here we will use the assumption that
A is non-empty).
Let f(y) = π1(y) if T (e, π1(y), π2(y)), f(y) = a otherwise. Then f will be
computable, and A will be the range of f .
This ends the proof of the theorem.

Clearly characterizations ii) and iii) makes sense for subsets of Nn as well
for n > 1, and the equivalence will still hold. From now on we will talk about
c.e. sets of any dimension. The relationship between c.e. subsets of N and Nn
is given in Exercise 3.14.

The following lemma will rule our abilities to construct c.e. sets:

Lemma 3.2.36 Let A ⊆ Nn and B ⊆ Nn be c.e. Then

a) A ∩B and A ∪B are both c.e.

b) If n = m+ k and both m and k are positive, then

{~x ; ∃~y(~x, ~y) ∈ A}

will be c.e., where ~x is a sequence of variables of length m and ~y is of
length k.

Moreover, every computable set is c.e., the inverse image or direct image of a
c.e. set using a partial computable function will be c.e.

70

All these claims follow trivially from the definition or from one of the char-
acterizations in Theorem 3.2.35.

Let us introduce another standard piece of notation:

Definition 3.2.37 Let

We = {n ; φe(n)↓} = {n ; ∃tT (e, n, t)}.

Let
We,m = {n ; ∃t < mT (e, n, t)}.

We let K be the diagonal set

K = {e ; e ∈We}.

Lemma 3.2.38 a) {(e, n) ; n ∈We} is c.e.

b) K is c.e.

c) Each set We,m is finite.

d) {(e, n,m) ; n ∈We,m} is primitive recursive.

All proofs are trivial.

Selection with consequences

From now on we will prove lemmas and theorems in the lowest relevant dimen-
sion, but clearly all results will hold in higher dimensions as well.

Theorem 3.2.39 (The Selection Theorem)
Let A ⊆ N2 be c.e. Then there is a partial computable function f such that

i) f(n)↓⇔ ∃m(n,m) ∈ A.

ii) If f(n)↓ then (n, f(n)) ∈ A.

Proof
This time we will give an intuitive proof. Let A be the projection of the primitive
recursive set B ⊆ N3 (characterization iii).). For each n, search for the least m
such that (n, π1(m), π2(m)) ∈ B, and then let f(n) = π1(m).

Intuitively we perform a parallel search for a witness to the fact that (n,m) ∈
A for some m, and we choose the m with the least witness.

Corollary 3.2.40 Let A and B be two c.e. sets. Then there are disjoint c.e.
sets C and D with

C ⊆ A, D ⊆ B and A ∪B = C ∪D.

71

Proof
Let E = (A× {0}) ∪ (B × {1}) and let f be a selection function for E.
Let C = {n ; f(n) = 0} and D = {n ; f(n) = 1}.
Then C and D will satisfy the properties of the corollary.

Corollary 3.2.41 A set A is computable if and only A and the complement of
A are c.e.

One way is trivial, since the complement of a computable set is computable and
all computable sets are c.e. So assume that A and its complement B are c.e.
Let E be as in the proof of the corollary above, and f the selection function.
Then f is the characteristic function of A, so A is computable.

Corollary 3.2.42 Let f : N → N be a partial function. Then the following are
equivalent:

i) f is computable.

ii) The graph of f is c.e.

Proof
If the graph of f is c.e., then f will be the selection function of its own graph,
which is computable by the selection theorem. If on the other hand f is com-
putable, then the graph of f will be the domain of the following function g(n,m):
Compute f(n) and see if the result equals m.

Computably inseparable c.e. sets

In Exercise 3.16 we will see that two disjoint complements of c.e. sets can be
separated by a computable set. This is an improvement of Corollary 3.2.42.
Here we will show that a similar separation property does not hold for c.e. sets,
and we will draw some consequences of this fact.

Definition 3.2.43 Let A and B be two disjoint subsets of N. We say that A
and B are computably separable if there is a computable set C such that A ⊆ C
and B ∩ C = ∅. Otherwise A and B are computably inseparable.

Theorem 3.2.44 There is a pair of computably inseparable c.e. sets.

Proof
Let A = {e ; φe(e) = 0} and B = {e ; φe(e) = 1}.
Assume that C is a computable set that separates A and B, and assume that
e0 is an index for the characteristic function of C.
Then, if e0 ∈ C we have that φe0(e0) = 1. Then e0 ∈ B which is disjoint from
C.
Likewise, if e0 6∈ C we see that e0 ∈ A ⊆ C. In both cases we obtain a
contradiction, so the existence of C is impossible.

Now this theorem has some interesting consequences concerning the differ-
ence between classical and constructive mathematics. We will end our general

72

introduction to the basics of computability theory discussing some of the con-
sequences.

Definition 3.2.45 a) A binary tree is a non-empty set D of finite 0-1-
sequences such that any initial segment of an element in D is also in D. A
binary tree is computable if the set of sequence numbers of the sequences
in D is computable.

b) An infinite branch in a binary tree D is a function f : N → {0, 1} such
that (f(0), . . . , f(n− 1)) ∈ D for all n.

Lemma 3.2.46 (König’s Lemma)
An infinite binary tree has an infinite branch.

The proof of König’s lemma is trivial, but has very little to do with com-
putability theory. One constructs a branch by always extending the sequence
in a direction where the tree is still infinite.
Well known theorems proved by similar arguments will be that a continuous
function on a closed bounded interval will obtain its maximum and that any
consistent first order theory has a complete extension.

Remark 3.2.47 The version of König’s Lemma given above, restricting our-
selves to binary trees, is often called Weak König’s lemma. The full König’s
lemma then refers to infinite trees with finite branching, not just binary branch-
ing. There are results showing that Weak König’s lemma is equivalent, relative
to some very weak formal theory, to the mentioned theorems from analysis and
topology.

We will show a failure of a constructive version of König’s lemma:

Lemma 3.2.48 There is an infinite, computable binary tree without a com-
putable, infinite branch.

Proof
Let A and B be two computably inseparable c.e. sets and let {An}n∈N and
{Bn}n∈N be primitive recursive sequences of sets An and Bn contained in
{0, . . . , n− 1}, with A =

⋃
n∈N An and B =

⋃
n∈N Bn.

If σ is a 0-1-sequence of length n, we let σ ∈ D if for all i < n: i ∈ An ⇒ σ(i) = 1
and i ∈ Bn ⇒ σ(i) = 0. σ will be a characteristic function on {0, . . . , n − 1}
separating An and Bn.
Now the characteristic function of any set separating A and B will be an infi-
nite branch in D. Since A and B are disjoint, D will be an infinite, binary tree.
Moreover, D will be primitive recursive. A computable, infinite branch will on
the other hand be the characteristic function of a computable set separating A
and B, something assumed not to exist. This ends the proof.

In Exercises 3.17 and 3.18 we will give an application of this lemma to
propositional calculus and to constructive analysis.

73

3.2.4 Crosses and naughts

Once upon the time there was a popular game known as “Crosses and naughts”.
This game requires two players and a potentially large piece of paper split into
squares. Player no. 1 writes a cross in one of the squares, player no. 2 writes
a naught in one of the empty squares, player no. 1 writes a cross in one of
the empty squares and so on. The first player who fills a row of five symbols,
up-down, sideways or along a diagonal has won the game.

In order to turn this into a mathematical problem, we make two assumptions:

• The sheet of paper is infinite in all directions.

• Each player must write a symbol within a prefixed distance of the game
played so far at each move, e.g. in a square sharing at least one point with
a square alreaddy filled.

IWe will see that it is impossibe for player 2 to have a winning strategy. If player
2 had a winning strategy, player 1 could pretend that she/he was player 2 and
base her/his game on that strategy and on an imagined first move from the real
player 2. If player 2 later makes this imagined move, player 1 just base her/his
further game on a new imagined move. This will enable player 1 to winn.

This leaves us with two possibilities:

1. Player 1 will have a winning strategy.

2. Player 2 has a strategy for dragging the game into infinite time.

It follows by weak König’s lemma that one of the two will hold.

Conjecture 3.2.49 Player 2 has a strategy for a never-ending game, but there
is no computable strategy to this effect.

It is a consequence of König’s lemma that if Player 1 has a winning strategy,
there is an upper limit to how man moves Player 1 will need in order to win
the game. Then we may even abandon the assumption that the sheet of paper
is infinite. To the author, this seems rather unlikely. This supports one part of
the conjecture. The other part is not really supported by a belief, but by the
appealing possibility that you might beat any computer in this game, if you get
hold of how it is programmed, but you may not be able to beat an improvising
human being.

3.3 Degrees of Unsolvability

3.3.1 m-reducibility

Discussion

Having introduced the main concepts of computability theory there are several
options. One option will be to give a further analysis of the computable functions

74

and subclasses of them. This will lead us to complexity theory or to subrecursive
hierarchies (see Section 3.6). One key concept then will be that one set or
function can be reduced to another in some simple way.
We will not consider such a fragmentation of the computable functions into
interesting subclasses yet. Instead we will ask for reductions between possible
non-computable functions and sets, using the complexity of computability itself
for defining the notion of reduction. The connection between this approach and
the ones mentioned above is that both the formation of interesting concepts and
the methodology of those approaches to computability theory are based on the
experience gained from investigating computable reductions in general. Thus,
in an introductory course, where one should learn the computability theorists
way of thinking, this section is basic.

Definition 3.3.1 Let A and B be two subsets of N.
We say that A is m-reducible to B, A <m B, if there is a total computable
function f such that for all n:

n ∈ A⇔ f(n) ∈ B.

We read this as ‘many-one-reducible’, since f may be a many-one function. If
we insist on f being injective, we will get 1-reducibility.

There is no way we can reduce N to ∅ and vice versa, and we will exclude
those trivial sets from our further discussion. We then get the observations:

Lemma 3.3.2 a) If A is computable and B 6= N, ∅, then A <m B.

b) A <m B ⇔ (N \A) <m (N \B).

c) <m is transitive.

The proofs are easy and are left for the reader.

Definition 3.3.3 We call two sets A and B m-equivalent if A <m B and
B <m A. We then write A ≡m B.

Clearly ≡m will be an equivalence relation with a partial ordering inherited
from <m. We call the set of equivalence classes with this induced ordering the
m-degrees.

Remark 3.3.4 Let us briefly discuss the distinction between a complexity class
and a degree. A complexity class will consist of all functions and/or sets that
may be computed or decided with the aid of a prefixed amount of computing
resources. Resources may be the time or space available (normally as functions
of the input), but to us it may also be the possible service of a non-computable
oracle. This will be better explained later. A degree, on the other hand, will
be some mathematical object measuring the complexity of a function or a set.
It has turned out that the most useful object for this purpose simply is the

75

class of functions of the same complexity as the given object. It is like the old
Frege semantics where 17 is interpreted as the set of all sets with 17 elements,
and in general a property is interpreted as the set of all objects sharing that
property. It remains to decide what we mean by ‘having the same complexity’,
and we will consider two (out of many in the literature) possible choices. Being
m-equivalent is one, and later we will learn about Turing-equivalent functions.

The m-degrees have some properties easy to establish:

Lemma 3.3.5 a) Let X be a finite set of m-degrees. Then X has a least
upper bound.

b) Let X be a countable set of m-degrees. Then X has an upper bound.

Proof
The computable sets will form the minimal m-degree. Thus the empty set of
m-degrees has a least upper bound. In order to prove the rest of a) it is sufficient
to show that {A,B} will have a least upper bound. Let

A⊕B = {2n ; n ∈ A} ∪ {2n+ 1 ; n ∈ B}.

This will define the least upper bound, see Problem 3.19.
In order to prove b), Let {An ; n ∈ N} be a countable family of sets. Let

A = Σn∈NAn = {〈n,m〉 ; m ∈ An}.

Then the m-degree of A will bound the m-degrees of An for each n ∈ N.

We will invest most of our efforts in analyzing the Turing degrees below. We
will however prove one negative result, the m-degrees do not represent a linear
stratification of all nontrivial sets into complexity classes.

Lemma 3.3.6 There are two nontrivial sets A and B such that A 6<m B and
B 6<m A.

Proof
Let A be c.e. but not computable. Let B = N \A.
If C <m A, C will be c.e., so B is not m-reducible to A. It follows from Lemma
3.3.2 that A is not m-reducible to B.

An m-complete c.e. set

We proved that the computable inverse of a c.e. set is c.e. A reformulation of
this will be

Lemma 3.3.7 Let A <m B. If B is c.e., then A is c.e.

Thus the c.e. sets form an initial segment of all sets pre-ordered bym-reductions.
First we will show that this set has a maximal element:

76

Lemma 3.3.8 Let K = {e ; φe(e)↓}. Then any other c.e. set is m-reducible to
K.

Proof
Let A = {d ; φe(d) ↓}. Adding a dummy variable we can without loss of
generality assume that A = {d ; φe(d, x)↓} where the outcome of φe(d, x) is
independent of x. Then A <m K by

A = {d ; S1
1(e, d) ∈ K}.

A natural question is now if there are c.e. sets that are not m-equivalent
to K or the computable sets; are there more m-degrees among the c.e. sets?
This was answered by Emil Post, when he classified a whole class of c.e. sets
‘in between’.

Simple sets

Definition 3.3.9 A c.e. set A is simple if the complement of A is infinite, but
does not contain any infinite c.e. sets.

A simple set cannot be computable (why?). We will prove that there exist
simple sets, and that K cannot be reduced to any simple sets.

Lemma 3.3.10 There exists a simple set.

Proof
Let B = {(e, x) ; 2e < x ∧ φe(x)↓}.
Let g be a computable selection function for B, i.e. g(e)↓ when (e, x) ∈ B for
some x, and then g(e) selects one such x.
Let A be the image of g. Then A is c.e.
Since g(e) > 2e when defined, the complement of A will be infinite. This is
because each set {0, . . . , 2e} will contain at most e elements from A.
If We is infinite, We will contain a number > 2e, and g(e) will be defined. Then
A ∩We 6= ∅, so We is not contained in the complement of A. This shows that
A is simple.

Lemma 3.3.11 Let K <m A where A is c.e.
Then the complement of A contains an infinite c.e. set.

Proof
Let f be total and computable such that

e ∈ K ⇔ f(e) ∈ A.

We will construct a computable sequence {xi}i∈N of distinct numbers outside
A, and use the recursion theorem to glue the whole construction together.
The induction start will be the empty sequence.

77

Assume that Bn = {x0, . . . , xn−1} has been constructed such that Bn is disjoint
from A.
Let ρ(n) be such that Wρ(n) = {e ; f(e) ∈ Bn}. By the uniformity of the
construction, ρ will be computable. We will let xn = f(ρ(n)).
If xn ∈ Bn we have that xn 6∈ A, so ρ(n) 6∈ K, and ρ(n) 6∈ Wρ(n). This
contradicts the assumption that xn ∈ Bn and the definition of Wρ(n). Thus
xn 6∈ Bn.
On the other hand, if xn ∈ A, then ρ(n) ∈ K, ρ(n) ∈Wρ(n) and by construction,
xn ∈ Bn, which we agreed was impossible. Thus xn is a new element outside A.
We can then continue the process and in the end produce an infinite c.e. set
outside A.

Corollary 3.3.12 There is a non-computable c.e. set A such that K is not
m-reducible to A.

3.3.2 Turing degrees

Relativised computations

In the previous section we considered a notion of reducibility between sets based
on the idea ‘A is simpler than B if we can gain information about A by making
one computable call about membership in B’. Now, if we imagine that we
are given the superhuman ability to decide membership in B, we must also
permit ourselves to ask more intricate questions about B in order to decide
membership in A, and still claim that we use our superhuman power to make
A decidable. There are several notions of reductions based on the idea that
we may be allowed any computable set of questions about membership in B
and draw the conclusions from the answers. We will not consider any of those
intermediate notions of reduction in this introductory course, but take the most
drastic approach: We extend the definition of the computable functions by
adding some extra functions as initial ones. This is technically described in the
following definition:

Definition 3.3.13 Let f1, . . . , fk be a finite list of partial functions fi : N → N.

a) We extend the definition of φe(~x) to a definition of

φf1,...,fk
e (~x)

by adding a new clause
vii) If e = 〈7, i, k〉 then φf1,...,fk

e (x, ~x) = fi(x). If fi(x) is undefined, then
this computation does not terminate.

b) The computation tree will in this case be 〈7, i, k, x, fi(x)〉.

We call these algorithms relativized algorithms meaning that the concept of
computation has been relativized to f1, . . . , fk. One important aspect of this
definition is the finite use principle. Even if we in reality accept functions as
inputs in algorithms as well, no terminating algorithm will use more than a
finite amount of information from the functions involved.

78

Lemma 3.3.14 Assume that φf1,...,fk
e (~x) = z. Then there are finite partial

subfunctions f ′1, . . . , f
′
k of f1, . . . , fk resp. such that

φ
f ′1,...,f

′
k

e (~x) = z

with the same computation tree.

The proof is by a tedious but simple induction on e, using the fact that a
sequence number is larger than all parts of the sequence.

We have given and used an enumeration of all ordered sequences of natural
numbers. In the same fashion we can construct an enumeration {ξi}i∈N of
all finite partial functions such that the following relations will be primitive
recursive:

- ξi(x)↓

- ξi(x) = y

- dom(ξi) ⊆ {0, . . . , n}.

The reader is free to ad any other important properties, as long as they are
correct.

Example 3.3.15 In order to avoid that the reader will focus on inessential
details, we offer the construction of ξi in the guise of an example.
Let p0, p1, p2, . . . be an enumeration of the prime numbers, starting with p0 = 2,
p1 = 3 and so on.
Define ξi by

ξi(n) = m if there are exactly m+ 1 factors of pn in i.

ξi↑ if pn is not a factor in i.

For example, if i = 23 · 74 · 11, then ξi(0) = 2, ξi(3) = 3 and ξi(4) = 0. For all
other inputs x, ξi(x) will be undefined.

The properties above are sufficient to prove the extended Kleene T-predicate:

Lemma 3.3.16 For each n and k the following relation is primitive recursive:
Tn,k(e, ~x, i1, . . . , ik, t) ⇔ t is the computation tree of φ

ξi1 ,...,ξik
e (~x).

In order to save notation we will from now on mainly consider computations
relativized to one function. Using the coding

〈f0, . . . , fk−1〉(x) = fπ1(x)(mod k)(π2(x))

we see that there is no harm in doing this.

Lemma 3.3.17 There is a primitive recursive function c such that for any
partial functions f , g and h, if for all x, f(x) = φge(x) and for all x, g(x) =
φhd(x), then for all x, f(x) = φhc(e,d)(x).

79

Proof
c(e, d) is defined by primitive recursion on e, dividing the construction into cases
i) - xi).
For cases i) - iii), we let c(e, d) = e.
For the cases iv) - viii) we just let c(e, d) commute with the construction of
e from its subindices, i.e., if the case is e = expr(e1, . . . , en) then c(e, d) =
expr(c(e1, d), . . . , c(en, d)), where expr can be any relevant expression.
If e = 〈9, 1, 1〉 we have φge(x, ~x) = g(x) = φhd(x), so we let c(e, d) = d′ where
φhd′(x, ~x) = φhd(x). d′ is primitive recursive in d.

Remark 3.3.18 There is an alternative proof of this lemma. By the finite use
principle we see that if g is computable in h and f is computable in g, then the
graph of f will be c.e. relative to h. Everything will be uniform, so we may
extract c from this proof as well.

We can use the concepts introduced here to talk about computable function-
als, and not just about computable functions.

Definition 3.3.19 Let F : NN → N, a functional of type 2.
We call F computable if there is an index e such that for all total f : N → N we
have

F (f) = φfe (0).

All computable functionals of type 2 will be continuous with respect to the
canonical topologies. Kleene extended the notion of relativized computation to
cover all functionals of any finite type as possible inputs. This will be discussed
briefly in Chapter 4.

The second recursion theorem

We are now in the position to state and prove the second recursion theorem:

Theorem 3.3.20 Let F (f, x) = φfe (x) be a computable functional.
Then there is a computable f such that for all x,

f(x) = F (f, x).

Moreover, f will be the least such function in the sense that if

∀x(g(x) = F (g, x)),

then f ⊆ g as graphs.

Proof
Let f0 be the everywhere undefined function, and by recursion let fn+1(x) =
F (fn, x).
Since f0 ⊆ f1 we see by induction on n that fn ⊆ fn+1 for all n.
Let f =

⋃
{fn ; n ∈ N}. By the finite use principle we see that

F (f, x) = y ⇔ ∃nF (fn, x) = y ⇔ ∃nfn+1(x) = y ⇔ f(x) = y.

80

Clearly f is the minimal solution to the equation, the minimal fixed point of F .
It remains to show that f is computable, i.e. that the graph of f is c.e.
We will use the effective enumeration of all finite partial functions and the
effective coding of sequences. Let ξ with indices vary over all finite partial
functions. Then we can rewrite the following characterization of the graph of f
int a Σ0

1-form:
f(x) = y ⇔ ∃n∃〈ξ1, . . . , ξn〉(∀zξ0(z)↑

∧∀i < n(∀z ∈ dom(ξi+1)(ξi+1(z) = F (ξi, z)) ∧ ξn(x) = y)).

Remark 3.3.21 The existence of a computable fixed point for F follows by the
recursion theorem. It is possible to show that the index obtained by the proof
of the recursion theorem will be an index for the least fixed point, see Exercise
3.20.

Turing Degrees

We will now restrict ourselves to total functions.

Definition 3.3.22 Let f and g be two functions. We say that f is computable
in g if there is an index e such that for all x,

f(x) = φge(x).

We write f <T g. We will then say thet f is Turing reducible to g.

The key properties of Turing reducibility is given by

Lemma 3.3.23 a) <T is a transitive relation.

b) If f is computable and g is any function, then f <T g.

c) If f and g are functions, there is a function h such that for any other
function h′:

f <T h and g <T h.

If f <T h′ and g <T h′ then h <T h
′.

Proof
a) is a consequence of Lemma 3.3.17, b) is trivial, and to prove c), let
h(2n) = f(n) and h(2n+ 1) = g(n).

Definition 3.3.24 Let f and g be two functions. f and g are Turing equivalent ,
in symbols f ≡T g, if f <T g and g <T f .

≡T will be an equivalence relation. The equivalence classes will be called Turing
degrees or Degrees of unsolvability. We will simply call them degrees. We will
let bold-face low case letters early in the alphabet , a, b, etc. denote degrees.
The set of degrees has a canonical ordering < inherited from <T .

We can summarize what we have observed so far in

81

Lemma 3.3.25 The ordered set of degrees is an upper semi-lattice with a least
element such that every countable set is bounded, and every initial segment is
countable.

We leave the verifications for the reader. We will now see that there is no
maximal degree:

Lemma 3.3.26 Let a be a degree. Then there is a degree b such that

a < b.

Proof
Let f ∈ a. Let g(x) = φfπ1(x)

(π2(x)) + 1 if φfπ1(x)
(π2(x))↓, otherwise g(x) = 0.

The proof of the unsolvability of the halting problem can be relativized to f so
g is not computable in f . On the other hand, clearly f is computable in g.

The g constructed in the proof above is called f ′, the jump of f . The jump
operator is indeed a degree-operator, see Exercise 3.21.

We have shown that there are incomparable m-degrees. The same method
can be used to show that there are incomparable Turing degrees, see Exer-
cise 3.22. We will prove a stronger result, showing that no strictly increasing
sequence of degrees will have a least upper bound.

Theorem 3.3.27 Let {ai}i∈N be a strictly increasing sequence of degrees. Then
there are two degrees b and c that are both upper bounds for the sequence, such
that for any degree d, if d < b and d < c, then d < ai for some i ∈ N.

A pair b, c as above is called a perfect pair for the sequence. The degrees in
a perfect pair for a sequence will be incomparable. Further, the existence of a
perfect pair shows that the sequence will have no least upper bound.

Proof
Let {fi}i∈N be a sequence of total functions of increasing Turing degrees. We
will construct the functions g and h as the limits of approximations gx and hx,
where we in the construction of gx+1 and hx+1 want to ensure that if e1 = π1(x)
and e2 = π2(x) and φge1 = φhe2 are total, then φge1 is computable in fx. In order
to simplify the notation, we let g and h be defined on N2, but this will alter
nothing.
In the construction we will preserve the following properties:

1. If i < x, then gx(i, n) and hx(i, n) are defined for all n.

2. If i < x, then gx(i, n) = fi(n) for all but finitely many n.

3. If i < x, then hx(i, n) = fi(n) for all but finitely many n.

4. gx(i, n) is defined only for finitely many (i, n) with x ≤ i.

5. hx(i, n) is defined only for finitely many (i, n) with x ≤ i.

82

This will ensure that gx and hx are equivalent to fx−1 for x ≥ 0.
Let g0 and h0 both be the empty function.
Now, let x ≥ 0 and assume that gx and hx are defined satisfying 1. - 5. above.
Let e1 = π1(x) and e2 = π2(x). What we will do next will depend on the answer
to the following question:
Can we find an n and finite extensions g′ of gx and h′ of hx such that
φg

′

e1(n) 6= φh
′

e2(n) and both are defined?
(By a finite extension we mean that we ad a finite number of elements to the do-
main.) If the answer is ‘no’, we extend gx to gx+1 by letting gx+1(x, n) = fx(n)
whenever this is not in conflict with the construction of gx (a conflict that can
appear at at most finitely many places), and we construct hx+1 from hx and fx
in the same way.
If the answer is ‘yes’, we first choose two such finite extensions, and then we
construct gx+1 and hx+1 from these extensions as above. This ends our con-
struction.

We let g(x, n) = gx+1(x, n) and h(x, n) = hx+1(x, n). In the construction
we have tried as hard as possible to avoid that φge = φhd . The point is that we
have tried so hard that if they after all turn out to be equal, they will both be
computable in one of the fi’s.
Claim 1
fi is computable in both g and h.
Proof
We have that fi(n) = g(i, n) except for finitely many i, so fi is computable in
g. The same argument holds for h.
Claim 2
For x ≥ 0 we have that gx and hx both are computable in fx−1

Proof
This is a trivial consequence of properties 1. - 5.
Claim 3
If φge = φhd and both are total, then φge is computable in fx for some x.
Proof
Let x = P (e, d) where P is the pairing from Definition 3.2.13. Then in the
construction of gx+1 and hx+1 we ask for a y and finite extensions g′ and h′ of
gx and hx such that φg

′

e (y) 6= φh
′

d (y). If we had found some, we would let g and
h be further extensions of one such pair of finite extensions, and then we would
have preserved that φge(y) 6= φgd(y), contradicting our assumption on e and d.
On the other hand, for every y we can, by the assumption and the finite use
principle, find finite extensions such that φg

′

e (y)↓ and φh
′

d (y)↓. The point is that
all these values must be equal, otherwise we could have found two extensions
giving different values. Thus we can give the following algorithm for computing
φge(y) from gx which again is computable in fx−1: Search for any finite extension
(by searching through the finite partial functions consistent with gx) g′ of gx
such that φg

′

e (y)↓ The value we obtain will be the correct value.
This ends the proof of our theorem.

83

3.4 A minimal degree

3.4.1 Trees

In the constructions of degrees we have performed so far, we have been using
brute force. For instance, when we want to construct a minimal pair, we start
with three properties:

1. f is not computable.

2. g is not computable

3. If h is computable in both f and g, then h is computable.

We then split these properties into infinite lists of requirements, which we try
to satisfy during the construction:

R1,e If φe is total, then f 6= φe.

R2,e If φe is total, then g 6= φe.

R3,e,d If φfe = φgd is total, then φfe is computable.

Now, for any of these requirements and any pair σ and τ of finite sequences
there will be finite extensions σ′ and τ ′ such that any further total extension f
and g of σ′ and τ ′ resp. will satisfy the requirement. Thus by a step-by-step
construction we can construct f and g via finite approximations satisfying one
requirement at the time. The reader is invited to work out the full proof, see
Exercise 3.23.

We will now face a problem which we cannot solve by this simple method.
We will show that there is a non-computable function f such that there is no
function of complexity strictly between f and the computable functions. Again
we will set up the relevant properties of f , and fragmentize them into a sequence
of requirements we want to satisfy during the construction. The problem will be
that we cannot ensure that these requirements are satisfied by considering just
a finite approximation of f . Instead we will use trees, and we will satisfy the
various requirements by insisting that f is a branch in a given binary tree. Before
we can go into details with the argument, we will reconsider our definition of a
binary tree, give a formulation that will be handy for this particular application.
We will not distinguish between finite sequences and sequence numbers here, but
whenever we say that a function defined from a set of finite sequences to the set
of finite sequences is computable, we mean that the corresponding function on
sequence numbers is computable.

Definition 3.4.1 Let D be the set of finite 0-1-sequences.

a) If σ ∈ D we let σ ∗ 0 and σ ∗ 1 be σ extended by 0 or 1 resp. We extend
this to the concatenation σ ∗ τ in the canonical way.

b) If σ and τ are two sequences, and i < lh(σ), i < lh(τ) and σ(i) 6= τ(i), we
say that σ and τ are inconsistent.

84

c) f : D → D is monotone if f(σ) is a proper subsequence of f(τ) whenever
σ is a proper subsequence of τ .

d) A tree is a monotone function T : D → D mapping inconsistent sequences
to inconsistent sequences.

e) If S and T are trees, then S is a subtree of T if there is a tree T ′ such that
S = T ◦ T ′.

f) If T is a tree and f : N → {0, 1}, then f is a branch in T if for every n
there is a sequence σ of length n such that T (σ) is an initial segment of
f .

Remark 3.4.2 These trees will sometimes be called perfect trees, the set of
branches will form a perfect subset of the set {0, 1}N in the topological sense,
i.e. a set that is closed and without isolated points.
Our intuition should be focused on the set Set(T) of sequences that are initial
segments of the possible T (σ)’s. This will be a binary tree in the traditional
sense, and we will have the same set of infinite branches. If S is a subtree of T ,
then Set(S) ⊆ Set(T). The converse will not hold in general.

Lemma 3.4.3 Let {Tn}n∈N be a sequence of trees such that Tn+1 is a subtree
of Tn for all n. Then there is a function f that is a branch in all trees Tn.

Proof
Consider the set X of σ such that σ ∈ Set(Tn) for all n.
X will be a binary tree. The empty sequence is in X. If σ ∈ X, then for all
n, σ ∗ 0 ∈ Set(Tn) or σ ∗ 1 ∈ Set(Tn). At least one of these has to hold for
infinitely many n and, since we are dealing with subtrees, for all n. Thus X is
not a finite tree and by König’s Lemma has an infinite branch, which will be a
common branch for all Tn’s.

Remark 3.4.4 Using topology we might just say that the intersection of a
decreasing sequence of nonempty compact sets is nonempty, in order to prove
this lemma.

We will now see that certain computable trees can be used to meet natural
requirements. As a first case, let us prove:

Lemma 3.4.5 Let T be a computable tree and assume that φe is total. Then
there is a computable subtree S of T such that φe is not a branch in S.

Proof
If φe is not a branch in T , we can use S = T . If φe is a branch in T , one of T (0)
and T (1) will be inconsistent with φe, since they are inconsistent themselves.
(here 0 is the sequence of length 1 with entry 0). Assume that φe is inconsistent
with T (0).
Let S(σ) = T (0∗σ). Then S is a subtree as desired. The other case is essentially
the same.

85

3.4.2 Collecting Trees

Now we will describe a property on computable trees that will ensure that if f
is a branch in the tree and φfe is total, then φfe is computable.

Definition 3.4.6 Let T be a computable tree, e an index.
T is e-collecting if for all finite sequences σ, τ and all x ∈ N, if φT (σ)

e (x)↓ and
φ
T (τ)
e (x)↓, then

φT (σ)
e (x) = φT (τ)

e (x).

Lemma 3.4.7 Let T be a computable e-collecting tree and let f be a branch in
T . If φfe is total, then φfe is computable.

Proof
We will give an algorithm for computing φfe (x) from x.
Since φfe (x)↓, there will be a 0-1-sequence σ such that φT (σ)

e (x)↓, and since T
is e-collecting, the value φT (σ)

e (x) will be independent of the choice of σ. Thus
our algorithm will be:
Search for a finite sequence σ such that φT (σ)

e (x)↓ and let the answer be the
output of our algorithm.

Remark 3.4.8 There is more information to be gained from this proof. We
see that the function φfe itself is independent of f as long as it is total and f is
a branch in an e-collecting tree.

3.4.3 Splitting Trees

We will now find a criterion that will ensure that f is computable in φfe whenever
f is a branch in a computable tree and φfe is total:

Definition 3.4.9 Let T be a computable tree, and let e be an index.
We call T e-splitting if for all finite 0-1-sequences σ and τ , if σ and τ are
inconsistent, then there exists a number x such that

φ
T (σ)
e (x)↓ , φT (τ)

e (x)↓ with φ
T (σ)
e (x) 6= φ

T (τ)
e (x).

Lemma 3.4.10 Let T be an e-splitting computable tree , let f be a branch in
T and assume that φfe is total. Then f is computable in φfe .

Proof
We will compute an infinite 0-1-sequence {ki}i∈N from φfe such that T (σn) is an
initial segment of f for all n, where σn = (k0, . . . , kn−1). The empty sequence
σ0 of course satisfies this. Assume that σn is constructed. Then one of T (σn ∗0)
and T (σn ∗ 1) will be an initial segment of f . We will just have to determine
which one. Now φ

T (σn∗1)
e and φ

T (σn∗1
e) will be inconsistent, so exactly one of

them will be inconsistent with φfe . We can then use φfe to find the inconsistent
one, which means that we can decide which direction is along f and which is
not. This provides us with the induction step, and we can move on. This ends
the proof of the lemma.

86

Remark 3.4.11 In the case of T being an e-splitting tree, we see that φfe is a
one-to one-function of the branch f , and what we just argued for is that we can
compute the inverse.

3.4.4 A minimal degree

Using Lemmas 3.4.3, 3.4.5, 3.4.7 and 3.4.10 we can show the existence of a
minimal degree from the following:

Lemma 3.4.12 Let T be a computable tree and let e be an index. Then there
is a computable subtree S that is either e-collecting or e-splitting.

Proof
Case 1: There is a sequence σ such that for all τ and τ ′ extending σ, φT (τ)

e and
φ
T (τ ′)
e are equal where both are defined. Let S(τ) = T (σ ∗ τ). Then S will be a

subtree of T and S will be e-collecting.
Case 2: Otherwise. Then for every σ there will be extensions τ0 and τ1 such
that φT (τ0)

e and φT (τ1)
e are inconsistent. Further, we can find these τ0 and τ1 as

computable functions t0(σ) and t1(σ).
We then define the subtree S by

S(()) = T (()), i.e. S and T are equal on the empty sequence.

If S(σ) is defined, let S(σ ∗ 0) = T (t0(σ)) and S(σ ∗ 1) = T (t1(σ)).

This defines a subtree that will be e-splitting.

We have now proved all essential steps needed in the construction of a min-
imal degree:

Theorem 3.4.13 There is a non-computable function f such that if g <T f
then either g is computable or g is equivalent to f .

Proof
Using the lemmas above we construct a family {Tn} of computable trees such
that Tn+1 is a subtree of Tn for all n, and such that for all e:

If φe is total, then φe is not a branch in T2e+1.

T2e+2 is either e-collecting or e-splitting.

Then by Lemma 3.4.3 there is an f that is a branch in all Tn’s, and this f will
have the property wanted.

87

3.5 A priority argument

3.5.1 C.e. degrees

In the constructions of minimal pairs and functions of minimal degrees we have
not been concerned with the complexity of the sets and functions constructed.
We can decide upper bounds on the complexity of the objects constructed in the
proofs by analyzing the complexity of properties like ‘φe is total’ and counting
in depth how many number quantifiers we will need in order to write out a
definition of the object constructed. If we, however, are interested in results
about degrees with some bounded complexity, we must be more careful in our
constructions. In this section we will be interested in degrees with at least one
c.e. set in it:

Definition 3.5.1 Let a be a degree.
a is an c.e. degree if a contains the characteristic function of a c.e. set. We say
that f is of c.e. degree if the degree of f is a c.e. degree.

There is a nice characterization of the functions of c.e. degree. We leave the
proof as an exercise for the reader, see Exercise 3.26.

Theorem 3.5.2 Let f be a function. Then the following are equivalent:

i) f is of c.e. degree.

ii) There is a primitive recursive sequence {fi}i∈N converging pointwise to f
such that the following function

g(x) = µn.∀m ≥ n(fm(x) = f(x))

is computable in f .

3.5.2 Post’s Problem

So far we only know two c.e. degrees, O, the degree of the computable sets and
functions, and O′, the degree of the halting problem or of K. Post’s Problem
asks if there are more c.e. degrees than those two. This is of course a nice,
technical problem, but it has implications beyond that. One of the reasons
why c.e. sets are so interesting is that the set of theorems in an axiomatizable
theory is c.e. If there were no more c.e. degrees than those two known to us, a
consequence would be that there are two kinds of axiomatizable theories, those
that are decidable and those that share the complexity of Peano Arithmetic.
As a consequence of Gödel’s proof of the incompleteness theorem, the set of
Gödel-numbers of theorems in Peano Arithmetic is a complete c.e. set, and
actually of even the same m-degre as K.

Now, in 1957 two young mathematicians, Friedberg and Muchnic, indepen-
dently constructed c.e. sets of in-between degrees. They both developed what
is now known as the priority method. The problem we have to face when con-
structing c.e. sets is that we must give an algorithm for adding elements to the

88

set, but we cannot give an algorithm for keeping objects out of the set. If we
did that, the set constructed would become computable. Thus when we have
made an attempt to approximate a set with positive and negative information,
we must be allowed to violate the negative information. However, we must
not violate the negative information to such an extent that we ruin our global
goal. We solve this dilemma by introducing priorities to our requirements. If
an effort to satisfy one requirement will ruin the attempt to satisfy another re-
quirement, we let the requirement with highest priority win. This idea will work
when two properties are satisfied by the construction: If we make an attempt
to satisfy a requirement and we never ruin this attempt, we actually manage to
satisfy the requirement. Further, if we after a stage in the construction never
make an attempt to satisfy a requirement, the requirement will automatically
be satisfied.

Thus we are bound to satisfy the requirement of highest priority, either
because we make an attempt which will not be ruined, or because there is no
need to make an attempt.
Then we are bound to satisfy the next requirement, either because we make an
attempt after the final attempt for the first requirement, or because there is no
need to make such an attempt,
and so on.... In the finite injury lemma we will give a full proof along this line
of arguing.

3.5.3 Two incomparable c.e. degrees

Post’s problem was solved by constructing two incomparable c.e. degrees a and
b. We will see below why this actually solves the original problem.

Theorem 3.5.3 There are two c.e. sets A and B that are not computable
relative to each other.

Remark 3.5.4 If A and B are not computable in each other, neither can be
computable, because any computable set will be computable in any set. More-
over neither can have the same degree as K, because every c.e. set is computable
in K. Thus we have not just produced an in-between degree, but two in-between
degrees. In Exercise 3.27 we will see that there are infinitely many in-between
c.e. degrees, and that any countable partial ordering can be embedded into the
ordering of the c.e. degrees.

Proof
We will construct two c.e. sets A and B satisfying

R2e: N \A 6= WB
e

R2e+1: N \B 6= WA
e

or in other terms: The complement of A is not c.e. relative to B and vice versa.
If we achieve this for all e, we will have proved the theorem, since a set A is

89

computable in B if and only if both A and the complement of A are c.e. in
B, and since A is c.e. we have that A is computable in B if and only if the
complement of A is c.e. in B.

We will construct two primitive recursive increasing sequences {An}n∈N and
{Bn}n∈N of finite sets . We let

A0 = B0 = ∅.

We call each step in the process a stage. If n = 〈1, e, x〉 we will consider to make
an attempt to satisfy R2e at stage n, while if n = 〈2, e, x〉 we will consider to
make an attempt to satisfy R2e+1.
An attempt to satisfy R2e will consist of selecting a q ∈ An+1 ∩WBn+1

e , and
then put up a protection, the set of points used negatively in the verification of
q ∈ W

Bn+1
e . If we can keep all objects in this protection out of B throughout

the construction, we will have

q ∈ A ∩WB
e

and R2e will be satisfied. We call the protection active at a later stage m if Bm
is disjoint from this protection.

There is some little minor trick to observe, we will use disjoint infinite sup-
plies of numbers that we may put into A (or B) in order to satisfy R2e (or
R2e+1). We will use this to show that if we make only finitely many attempts,
we will succeed after all.

Now let n = 〈1, e, x〉 and assume that An and Bn are constructed. Assume
further that we constructed certain protections, some of them active at stage n,
others not. We write the following procedure for what to do next:
Let Bn+1 = Bn.
Question 1: Is there a protection for R2e active at stage n?
If the answer is ‘yes’, let An+1 = An. and continue to the next stage.
If the answer is ‘no’, ask
Question 2: Is there a y < n such that φBn

e,n(〈y, e〉) ↓ and y is in no active
protection for any requirement R2d+1 where 2d+ 1 < 2e?
If the answer is ‘no’, let An+1 = An and proceed to the next stage.
If the answer is ‘yes’, choose the least y, let An+1 = An ∪ {〈y, e〉}, construct a
protection {0, . . . , n} \Bn for R2e and move on to the next stage.
If n = 〈2, e, x〉 we act in the symmetric way, while for other n we just move on
to the next stage, not adding anything to A or B.
This ends the construction.
Claim 1 (The Finite Injury Lemma)
For each requirement Rs there is a stage ns after which we do not put up or
injure any protection for Rs.
Proof
We prove this by induction on s, and as an induction hypothesis we may assume
that there is a stage ms after which we never put up a protection for any
requirement Rt with t < s. Then after stage ms we will never injure a protection

90

for Rs. Thus if we never put up a protection for Rs after stage ms we can let
ns = ms, while if we construct a protection, this will never be injured and we
can let ns be the stage where this protection is constructed.
Now let A =

⋃
n∈N An and B =

⋃
n∈N Bn. Then A and B are c.e. sets.

Claim 2
Each requirement Rs will be satisfied.
Proof
We prove this for s = 2e. There are two cases.
1. There is a protection for Rs active at stage ns.
If this is the case, there will be a y such that 〈y, e〉 ∈ Ans ∩WBn

e . Since the
protection is not injured, we will have that 〈y, e〉 ∈ A∩WB

e and the requirement
is satisfied, A and WB

e are not complementary.
2. There is no such protection.
There are only finitely many objects of the form 〈y, e〉 in A, because we ad at
most one such object for each stage before ns, and never any at a stage after
ns.
On the other hand, there can be only finitely many objects of the form 〈y, s〉 in
WB
e , since otherwise we could choose one that is not in any protection for any

Rt for t < s, and sooner or later we would at some stage after ns make a new
attempt to satisfy Re, which we are not. Thus A ∪WB

e contains only finitely
many objects of the form 〈y, e〉 and the sets are not the complements of each
other. Thus the requirement will be satisfied in this case as well.

We have shown that all the requirements are satisfied in this construction,
so the theorem is proved.

3.6 Subrecursion theory

3.6.1 Complexity

What is to be considered as complex will be a matter of taste. Actually, the
same logician may alter her/his taste for complexity several times a day. The
generic logician may give a class on automata theory in the morning, and then
the regular languages will be the simple ones, while context free languages are
more complex. Still, context free languages are decidable in polynomial time,
and while our logician spends an hour contemplating on the P = NP-problem
any context free language is by far simpler than the satisfiability problem for
propositional logic. If our logician is working mainly in classical computability
theory, all decidable languages are simple, while the undecidable ones are the
complex ones. If, however, our logician is a set theorist, all definable sets are
simple, maybe all subsets of subsets of subsets of R are simple, we have to move
high up in cardinality in order to find sets of a challenging and interesting com-
plexity.
In this section, our view on complexity will be one shared by many proof theo-
rists. One of the aims in proof theory is to characterize the functions and sets
provably computable in certain formal theories extending elementary number

91

theory. The idea is that if we know the functions provably computable in T , we
know something worth knowing about the strength of the theory T .

We will not be concerned with proof theory in this compendium, and any
references to proof-theoretical results should not be considered as a part of any
curriculum based on this text.

3.6.2 Ackermann revisited

In Section 3.2.1 we defined the Ackermann branches. The idea of Ackermann
was that each use of the scheme for primitive recursion involves an iteration of
a previously defined function. Then diagonalising over a sequence of functions
defined by iterated iteration would break out of the class of primitive recursive
functions.

The Ackermann branches were defined using functions of two variables. We
will be interested in pushing his construction through to the transfinite level,
in order to describe more complex functions from below. Then it will be conve-
nient, from a notational point of view, to use functions of one variable.

Definition 3.6.1
• Let F0(x) = x+ 1

• Let Fk+1(x) = F x+2
k (x)

In Exercise 3.30 we will see that diagonalising over the Fk’s will lead us
outside the class of primitive recursive functions.

From now on in this section we will let PA be first order Peano arithmetic;
i.e. elementary number theory with the axiom scheme for first order induction.
Our first order language L will be the language of PA.

Definition 3.6.2 A function f : N → N is provably computable if there is a
formula A(x, y) = ∃zB(x, y, z) in L where A defines the graph of f , B has only
bounded quantifiers and

PA ` ∀x∃yA(x, y).

This definition is extended in the obvious way to functions of several variables.

We will assume that the reader is familiar with the method of arithmetisa-
tion, sequence numbering and so forth.

Lemma 3.6.3 Let f(k, x) = Fk(x). Then f is provably computable.

Outline of proof
Essentially we have to prove that F0 is total and that if Fk is total then Fk+1

is total as well. This induction step is proved by induction, where we actually
must prove

∀x∀y∃zF yk (x) = z

by induction on y.
In order to write a complete proof, we have to write down the formal definition

92

of the graph of F and the establish a proof tree for the formula required to be
a theorem in PA. This is tedious and not very exiting; the exiting part is to
decide how much induction that is required.

3.6.3 Ordinal notation

The concept of an ordinal number will be properly introduced in a course on
set theory. We have defined the concept of well orderings. An ordinal number
will be a set that in a canonical way represents an isomorphism class of well
orderings. For our purposes it will be sufficient to think about order types of
well orderings, and we will use a term language for such order types. Exercise
5.11 is a self-service introduction to ordinal numbers.

Definition 3.6.4 ω is the smallest infinite ordinal number, and it denotes the
order-type of N with the standard ordering.

All natural numbers will be ordinals numbers as well.
We may extend the arithmetical operations plus, times and exponentiation to
operations on orderings, or actually, on order types. The sum of two orderings
〈A,<A〉 and 〈B,<B〉 will be the set

C = A⊕B = ({0} ×A) ∪ ({1} ×B)

with the ordering <C defined by

• 〈0, a〉 <C 〈1, b〉 whenever a ∈ A and b ∈ B.

• 〈0, a1〉 <C 〈0, a2〉 if and only if a1 <A a2.

• 〈1, b1〉 <C 〈1, b2〉 if and only if b1 <B b2.

The product of two orderings will for our purposes be the anti-lexicographical
ordering on the product of the domains.

The formal definition of the exponential of orderings is less intuitive, but it helps
to think of exponentiation as iterated multiplication. Our definition only works
for special orderings 〈A,<A〉, including all well orderings.

Definition 3.6.5 Let 〈A,<A〉 and 〈B,<B〉 be two orderings where A has a
least element a0.
Let p ∈ C if p is a map from B to A such that p(b) = a0 for all but finitely
many b ∈ B.
If p 6= q are in C, there will be a maximal argument b such that p(b) 6= q(b).
We then let p <C q ⇔ p(b) < q(b) for this maximal b.

Lemma 3.6.6 If 〈A,<A〉 and 〈B,<B〉 are two well orderings then the sum,
product and exponential will be well orderings.

93

The proof is left as Exercise 3.31

As a consequence, every arithmetical expression in the constant ω and con-
stants for the natural numbers, and using ’plus’, ’times’ and ’exponents’, will
have an interpretation as an ordinal number.
The least ordinal number that cannot be described by an expression as above
is baptized ε0. As for ordinary arithmetics, ω0 = 1. This is a special case of the
more general rule

ωα · ωβ = ωα+β .

A consequence is that each ordinal α < ε0 can be written in a unique way as

α = ωαn + · · ·+ ωα0

where {α0, · · · , αn} is an increasing (not necessarily strictly) sequence of ordi-
nals less than α. We call this the Cantor Normal Form of α. If α0 = 0 the
ordinal α will be a successor ordinal, otherwise it will be a limit ordinal.

We extended the Ackermann hierarchy to the first transfinite level by diago-
nalising over the Ackermann branches. One advantage with the Cantor normal
form is that we may find a canonical increasing unbounded sequence below ev-
ery limit ordinal between ω and ε0. Actually, it is possible to do so for ordinals
greater than ε0 too, but readers interested in how this is done and why someone
would like to do it are recommended to follow a special course on proof theory
and ordinal denotations.

Definition 3.6.7 Let
α = ωαm + · · ·+ ωα0

be given on Cantor normal form, and assume that α0 > 0.
We define the n’th element α[n] of the fundamental sequence for α as follows:

Case 1 α0 = β + 1:
Let α[n] = ωαm + · · ·+ ωα1 + n · ωβ .

Case 2 α0 is a limit ordinal:
We may then assume that α0[n] is defined, and we let

α[n] = ωαm + · · ·+ ωα1 + ωα0[n]

We may consider the map α 7→ α[n] as an extension of the predecessor function
to limit ordinals:

Definition 3.6.8 Let 0 < α < ε0. We define the n-predecessor of α by

a) If α is a successor ordinal, the predecessor of α will be the n-predecessor
of α.

b) If α is a limit ordinal, α[n] will be the n-predecessor of α.

94

c) We say that β <n α if β can be reached from α by iterating the n-
predecessor map.

Lemma 3.6.9 Let α < ε0, β <m α and m < n. Then β <n α.

Proof
It is sufficient to prove that if m < n and α is a limit ordinal, then α[m] <n α.
This is left as a non-trivial exercise for the reader, see Exercise 5.7.

Lemma 3.6.10 Let α < ε0 and let β < α. Then there is an n such that β <n α.

Proof
This is proved by induction on α with the aid of Lemma 3.6.9. The details are
left as a nontrivial exercise for the reader, see Exercise 5.7

3.6.4 A subrecursive hierarchy

We will now extend the alternative Ackermann hierarchy to all ordinals less
than ε0:

Definition 3.6.11 Let α < ε0. We define Fα(x) by recursion on α as follows:

• F0(x) = x+ 1

• Fβ+1(x) = F x+2
β (x)

• Fα(x) = Fαx when α is a limit ordinal.

Proof theorists have shown that if a function f : N → N is provably computable,
then f will be bounded almost everywhere by one of the Fα’s where α < ε0.
The proof involves the translation of a proof in PA to a proof in ω-logic, then
a cut-elimination procedure in ω-logic and finally an analysis of cut-free proofs
in ω-logic of the totality of computable functions. This analysis is far beyond
the scope of this compendium, and the reader is not recommended to work out
the details.
In Exercises 5.7 and 5.8, the reader is challenged to prove that each Fα is
provably computable and establish the hierarchical properties of the {Fα}α<ε0-
hierarchy. The main results are:

Lemma 3.6.12 Let n < x and β <n α < ε0.
Then

Fβ(x) ≤ Fα(x).

Theorem 3.6.13 If β < α < ε0, then

∃x0∀x > x0(Fβ(x) < Fα(x)).

Remark 3.6.14 There are many aspects about subrecursive hierarchies that
we have not discussed in this section. We have not discussed complexity classes.
For instance, the class Hα of functions computable in polynomial time relative
to a finite iteration of Fα represents a stratification of the set of all provably
computable functions into a complexity hierarchy, where each complexity class
is closed under composition and closed under polynomial time reductions. We
will not discuss such matters further here.

95

3.7 Exercises

Exercise 3.1 Prove that the following functions are primitive recursive:

a) f(x, y, ~z) = x+ y

b) f(x, y, ~z) = x · y

c) f(x, y, ~z) = xy

d) f(x, ~y) = x!

e) f(x, ~y) = x ·−1

f) f(x, y, ~z) = x ·−y

g) f(x, y, ~z) = 0 if x = y

f(x, y, ~z) = 1 if x 6= y

h) f(x, y, ~z) = 0 if x < y

f(x, y, ~z) = 1 if x ≥ y

Exercise 3.2 Prove the following facts:

a) Nn and ∅ are primitive recursive as subsets og Nn.

b) The complement of a primitive recursive set is primitive recursive. More-
over, the union and intersection of two primitive recursive subsets of Nn
will be primitive recursive.

Exercise 3.3 a) Prove Lemma 3.2.6.

b) Prove that we can replace the inequalities by strict inequalities in Lemma
3.2.6.

Exercise 3.4 Prove Lemma 3.2.7.

Exercise 3.5 a) Prove Lemma 3.2.11.

b) Prove that the sequence numbering is monotone in each coordinate.

c) Prove that the monotone enumeration SEQ of the sequence numbers is
primitive recursive.
Hint: Find a primitive recursive bound for the next sequence number and
use bounded search.

d) Define an alternative sequence numbering as follows:
〈〈x0, . . . , xn−1〉〉 is the number z such that

SEQ(z) = 〈x0, . . . , xn−1〉.

Show that this alternative numbering is surjective and still satisfies Lemma
3.2.11

96

e) Prove that the pairing function P in Definition 3.2.13 is 1-1 and onto.

Exercise 3.6 Let X be a set of functions closed under the schemes of primitive
recursion.
Show that for any function f : N → N we have

f ∈ X ⇔ f̄ ∈ X.

Exercise 3.7 We define the function f(k, e, y) by recursion on k and subrecur-
sion on e as follows:

1. For all k, if e = 〈1〉 and y = 〈x, x1, . . . , xn〉 we let

f(k, e, y) = x+ 1.

2. For all k, if e = 〈2, i〉, y = 〈x1, . . . , xn〉 and 1 ≤ i ≤ n we let

f(k, e, y) = xi.

3. For all k, if e = 〈3, q〉 we let

f(k, e, y) = q.

4. For all k, if e = 〈4, e′, d1, . . . , dn〉 we let

f(k, e, y) = f(k, e′, 〈f(k, d1, y), . . . , f(k, dn, y)〉).

5. For all k > 0, if e = 〈5, e1, e2〉 we let

* f(k, e, 〈0, x1, . . . , xn〉) = f(k − 1, e1, 〈x1, . . . , xn〉)
** f(k, e, 〈m+ 1, x1, . . . , xn〉) =

f(k − 1, e2, 〈f(k, e, 〈m,x0, . . . , xn〉,m, x1, . . . , xn〉)

6. In all other cases, we let f(k, e, y) = 0.

a) Prove that f is well defined, and that f is computable.

b) Prove that if g of arity n is primitive recursive, there is a number k and
an index e such that

g(x1, . . . , xn) = f(k, e, 〈x1, . . . , xn〉)

for all x1, . . . , xn ∈ Nn.

c) Prove that f is not primitive recursive.

Exercise 3.8 Prove that if φe(~x) = y and φe(~x) = z, then y = z.
Hint: Use induction on e.
Discuss why this is something that needs a proof.

97

Exercise 3.9 Let {fn}n∈N be a sequence of total functions such that

g(n,m) = fn(m)

is computable.
Show that each fn is computable, and that there is a total computable function
not in the sequence.
Hint: Use a diagonal argument.

Exercise 3.10 Show that there is a total computable function Φ(n, x) of two
variables that enumerates all primitive recursive functions of one variable.
Is it possible to let Φ be primitive recursive?

Exercise 3.11 Complete the proof of Lemma 3.2.27.

Exercise 3.12 Prove Corollary 3.2.32.

Exercise 3.13 a) Prove that every non-empty c.e. set is the image of a
primitive recursive function (easy) and that every infinite c.e. set is the
image of an injective computable function (not that easy, but still...).

b) Prove that the range of a strictly increasing total computable function is
computable.

Exercise 3.14 Let A ⊆ Nn. Show that A is c.e. (by characterization ii) or iii)
in Theorem 3.2.35) if and only if

{〈x1, . . . , xn〉 ; (x1, . . . , xn) ∈ A}

is c.e.

Exercise 3.15 Give an explicit description of the selection function in the proof
of Theorem 3.2.39.

Exercise 3.16 Let A and B be two disjoint sets whose complements are c.e.
Show that there is a computable set C such that A ⊆ C and B ∩ C = ∅.
Hint: Use Corollary 3.2.40.

Exercise 3.17 Let L be the language of propositional calculus over an infinite
set {Ai}i∈N of propositional variables. Discuss the following statement:
There is a primitive recursive consistent set of propositions with no computable
completion.

Exercise 3.18 a) Show that there is an enumeration {In}i∈N of all closed
rational intervals contained in [0, 1] such that the relations In ⊆ Im, In ∩
Im = ∅ and |In| < 2−m are computable, where |In| is the length of the
interval.

A real number x is computable if there is a computable function h such
that

98

i) |Ih(n)| < 2−n

ii) For all n, x ∈ Ih(n)

b) Let f : [0, 1] → [0, 1] be a continuous function.
We say that f is computable if there is a total computable function g :
N → N such that

i) In ⊆ Im ⇒ Ig(n) ⊆ Ig(m)

ii) x ∈ In ⇒ f(x) ∈ Ig(n)

iii) For all x and m there is an n with x ∈ In and |Ig(n)| < 2−m.

Show that any computable function will be continuous. Show that there
is a computable function that does not take its maximal value at any
computable real.

Exercise 3.19 Show that if A ≡m B and C ≡m D, then A ⊕ C ≡m B ⊕ D.
Show that if A <m E and B <m E then A⊕ B <m E. Show that A⊕ B then
represents the least upper bound of A and B in the m-degrees.

Exercise 3.20 Show that the second recursion theorem can be extracted from
the proof of the recursion theorem.
Hint: Let F (g, x) be computable. Use the recursion theorem on

f(e, x) = F (φe, x).

Let e0 be the index obtained from the proof of the recursion theorem.
Show that if φe0(x) = y and we make an oracle call for φe0(z) in the computation
of F (φe0 , x) then φe0(z) is a subcomputation of φe0(x).

Exercise 3.21 Show that if f1 ≡T f2, then the jumps f ′1 and f ′2 are also Turing
equivalent.

Exercise 3.22 Make a direct construction and show that there are two total
functions f and g such that f 6<T g and g 6<T f .

Exercise 3.23 Prove that there is a minimal pair of Turing degrees, i.e. a pair
{a,b} of degrees of non-computable functions, such that the degree O of com-
putable functions is the greatest lower bound of a and b.
Hint: You may use the main idea in the proof of Theorem 3.3.27, the present
theorem is just simpler to prove. You may also get some ideas from the discus-
sion of this proof in the text.

Exercise 3.24 Let O be the degree of the computable functions.
Recall the definition of the jump operator in the proof of Lemma 3.3.26, cfr.
Exercise 3.21. We define the arithmetical hierarchy as follows:

A Σ0
1-set is a c.e. set (of any dimension).

99

A Π0
1-set is the complement of a Σ0

1-set

A Σ0
k+1-set is the projection of a Π0

k-set

A Π0
k+1-set is the complement of a Σ0

k+1-set

A ∆0
k set is a set that is both Σ0

k and Π0
k.

Let O(n) be the degree obtained from O using the jump-operator n times.

a) Prove that if A is Σ0
k or A is Π0

k, then (the characteristic function of) A
has a degree a ≤ O(k).

b) Show that for k ≥ 1 we have that A is ∆0
k+1 if and only if the degree of A

is bounded by O(k).
Hint: Use the relativized version of the fact that a set is computable if
and only if both the set and its complement are c.e.

Exercise 3.25 Show that there are continuumly many minimal degrees.
Hint: Instead of constructing one tree Tn at level n we might construct 2n trees
Tσ,n for lh(σ) = n, ensuring for each e that the branches of different trees will
not be computable in each other via index e. The proof requires some clever
book-keeping.

Exercise 3.26 Prove Theorem 3.5.2.

Exercise 3.27 Let B ⊆ N2 be a set. For each n ∈ N, we let Bn = {m ; (n,m) ∈
B} and we let B−n = {(k,m) ∈ B ; k 6= n}.

a) Show that there is a c.e. set B such that for all n, Bn is not computable
in B−n.
Hint: Use an enumeration of N2 to give all the requirements

R(n,e) : N \Bn 6= WB−n
e

a priority rank.

b) Consider a computable partial ordering ≺ on the natural numbers.
Show that there is an order-preserving map of ≺ into the c.e. degrees.
Hint: Use the construction in a), and let
Cn = {(k,m) ∈ B ; k � n}.

There is one computable partial ordering ≺ such that any other partial ordering
of any countable set can be embedded into ≺, see Exercise 5.2. Thus this shows
that any countable partial ordering can be embedded into the ordering of the
c.e. degrees.

Exercise 3.28 Fill in the details in the proof of the following theorem:

Theorem 3.7.1 Let a > O be an c.e. degree. Then there are two incomparable
c.e. degrees b and c such that a = b⊕ c.

100

This theorem is called The splitting theorem. We split the c.e. degree a into
two simpler c.e. degrees.
Proof
Let A be a non-computable c.e. set. It is sufficient to construct two disjoint c.e.
sets B and C such that
A = B ∪ C, A is not computable in B and A is not computable in C.
Let f be a 1-1 enumeration of A. At each stage n we will put f(n) into B or
f(n) into C, but not into both.
Let Bn be the numbers put int B before stage n and Cn be the set of numbers
put into C before stage n. Further, we let
An = {f(0), . . . , f(n− 1)}, so An = Bn ∪ Cn.
We put up requirements

R2e : KA 6= φBe .

R2e+1 : KA 6= φCe .

which we give priorities in the usual way.
For each requirement Rs we define three auxiliary functions. For s = 2e they
will be:

The match function

m(s, n) = µk < n.∀x ≤ k(φBn
e,n(x) = KAn(x)).

The bar function

b(s, n) = max{m(s, n′) ; n′ ≤ n}.

The protection function
p(s, n) = {y ; y is used negatively in computing φBn

e,n(x) for some x ≤
b(s, n)}.
In this case we call this a protection of B.

Now the construction at stage n is as follows: If f(n) 6∈ p(s, n) for any s ≤ n, put
f(n) into B. Otherwise, consider the requirement Rs of highest priority such
that f(n) ∈ p(s, n). If this is a protection of B, we put f(n) into C, otherwise
we put f(n) into B.
When we put an element into a protection of B we injure that requirement. We
will prove that for any requirement Rs there is a stage ns after which we will
never injure that requirement, and simultaneously that the bar-function b(s, n)
is bounded when s is fixed.
Assume that this holds for all s′ < s. Then there is a stage ns after which f(n)
is not in the protection for any s′ < s, and then, after stage ns, Rs will not be
injured.
This in turn means that if x < b(s, n) for n ≥ ns and φBn

e,n(x)↓, then φBe (x) =
φBn
e,n(x).

Now, if limn→∞ v(s, n) = ∞ we can use the increasing matching and the stability

101

of φBn
e,n to show that A is computable, which it is not.

On the other hand, if KA = φBe we will get increasing matching. Thus at
the same time we prove that the construction of the bar and protection for Rs
terminates and that the requirement is satisfied at the end.

Exercise 3.29 Post hoped to prove that a simple set cannot be of the same
degree as the complete c.e. set K. This will not be the case, which will be clear
when you have solved this problem.

LetA be a non-computable c.e. set and f a total computable 1-1-enumeration
of A. We know that f cannot be increasing (why?).
Let

B = {n ; ∃m > n(f(m) < f(n))}

This is called the deficiency set of the enumeration.

a) Show that B is c.e. and that B is computable n A.

b) Show that A is computable in B.
Hint: In order to determine if x ∈ A it is sufficient to find n 6∈ B such
that f(n) > x.

c) Show that B is simple.
Hint: If the complement of B contains an infinite c.e. set, the algorithm for
computing A from B in b) can be turned into an algorithm for computing
A.

Exercise 3.30 Let F (k, x) = Fk(x) be the alternative Ackermann function.

a) Show that x < F (k, x) for all k and x.

b) Show that F is monotone in both variables.

c) Let f : Nm → N be primitive recursive.
For ~x = (x1, . . . , xm), let

∑
~x = x1 + · · · + xm. Show that there is a

number k such that
f(~x) ≤ F (k,

∑
~x)

for all ~x ∈ Nm.
Hint: Use induction on the construction of f .
In the cases f(x, ~x) = x+ 1 and f(~x) = xi you may use k = 0.
In the case f(~x) = q, use a k such that F (k, 0) ≥ q.
In the case of composition, you may find it convenient to increase k by
more than one, while in the case of primitive recursion, you should increase
k by exactly one.

d) Show that F is not primitive recursive.
Hint: Show that G(k) = F (k, k) + 1 cannot be primitive recursive, using
c).

Exercise 3.31 Prove Lemma 3.6.6

102

Exercise 3.32 Let P be the set of polynomials P (x) where we only use + (not
’minus’) and where all coefficients are natural numbers.
We order P by

P (x) ≺ Q(x) ⇔ ∃n∀m ≥ n(P (m) < Q(m)).

Show that ≺ is a well ordering of order-type ωω.

103

Chapter 4

Generalized Computability
Theory

4.1 Computing with function arguments

When we introduced the Turing degrees, we first introduced the notion of rela-
tivized computations via the notation

φf1,...,fn
e (x1, . . . , xm).

By a small change of notation, we may view this as a partial functional

φe(x1, . . . , xm, f1, . . . , fn)

where some of the inputs may be numbers and some may be functions.

Definition 4.1.1 Let F : Nm × (NN)n → N.
We say that F is computable if there is an index e such that for all ~f ∈ (NN)n

and ~f ∈ Nm we have that

F (~x, ~f) = φe(~x, ~f).

We will concentrate our attention to computable functionals F : NN → N.
Let us first see why we may expect to face all relevant theoretical problems even
then.

Lemma 4.1.2 Let n > 0 and m ≥ 0. Then there is a computable bijection
between Nm × (NN)n and NN.

Proof
We will produce the bijections between (NN)2 and NN and between N×NN and
NN. The rest then follows by iterating the two constructions.
Let 〈f, g〉(x) = 〈f(x), g(x)〉 where we use a computable pairing function with

104

computable projections on N.
Clearly 〈f, g〉 is computable from f and g in the sense that

F (x, f, g) = 〈f, g〉(x)

is computable. In the same sense, f and g will be computable from 〈f, g〉.
If f ∈ NN and x ∈ N, let

〈x, f〉(0) = x

〈x, f〉(y + 1) = f(y)

This clearly defines a bijection, and it is computable in the sense above.

4.1.1 Topology

All these spaces are actually topological spaces, even metrizable spaces. The
topology on N will be the discrete topology, and the natural metric will be the
one where distinct numbers have distance 1.
The topology on NN will be the standard product topology. Since there may be
readers not familiar with the product topology, we give a direct definition.

Definition 4.1.3 Let O ⊂ NN. O will be open if whenever f ∈ O there is a
number n such that for all g : N → N we have that g ∈ O whenever f and g
agrees for all arguments between and including 0 and n− 1.

In more technical terms, this can be expressed by

f ∈ O ⇒ ∃n∀g(f̄(n) = ḡ(n) ⇒ g ∈ O).

If σ is a finite sequence of numbers, σ determines an open neighborhood

Bσ = {f ∈ NN ; f̄(lh(σ)) = σ}

i.e. the set of functions f extending σ. These sets Bσ will form a basis for the
topology.

There is a close connection between topology and computability. There are
many examples of this in the literature. Although the use of topology is re-
stricted to fairly elementary general topology, it is very hard to read the current
literature on computability on non-discrete structures without any knowledge
of topology at all. In this section we will give one example of this connection.

Theorem 4.1.4 Let F : NN → N. Then the following are equivalent:

a) F is continuous.

b) There is a function f : N → N such that F is computable relative to f .

105

Proof
First let F be computable relative to f , i.e. there is an index e such that

F (g) = φe(f, g)

for all g.
For a fixed g, the computation tree of φe(f, g) is finite, and thus application of g
will only be used a finite number of times in the computation tree. Let n be so
large that if g(x) occurs in the computation tree, then x < n. As a consequence
we see that if h̄(n) = ḡ(n) then the computation trees of φe(f, g) and φe(f, h)
will be identical. The further consequence is that

∀h ∈ NN(h̄(n) = ḡ(n) ⇒ F (g) = F (h))

and this just means that F is continuous.
Now, let us prove the converse, and let F be continuous. Let {σn}n∈N be a

computable enumeration of all finite sequences. Let X = {n ; F is constant on
Bσn

}. Let f be defined by

f(n) = 0 if n 6∈ X

f(n) = m+ 1 if F is constant m on Bσn .

Then for each g ∈ N → N we have that

F (g) = f(µn.f(n) > 0 ∧ σn ≺ g)− 1 (4.1)

where σ ≺ g means that the finite sequence σ is an initial segment of the infinite
sequence g.

4.1.2 Associates

In the proof of Theorem 4.1.4 we constructed a function f such that f(n) > 0
if and only if F is constant on Bσn

and in this case, f(n) = F (g) + 1 for all
g ∈ Bσn . Following Kleene, we call this f the principal associate of F . This is
of course an important concept, but from a computability theory point of view
it is not completely satisfactory:

Lemma 4.1.5 There is a computable functional F such that the principal as-
sociate is not computable.

Proof
Let A = We be c.e. but not computable, i.e.

n ∈ A⇔ ∃mT (e, n,m)

where T is Kleene’s T -predicate.
Define the computable F by

• F (g) = 0 if ∃m < g(1)T (e, g(0),m)

106

• F (g) = 1 otherwise.

Let f be the principal associate of F . Let ν(n) = 〈n〉, i.e. the sequence number
of the one-point sequence containing just n. F will be constant on B〈n〉 if and
only if n 6∈ A, and then the constant value is 1, so we have

n 6∈ A⇔ f(ν(n)) = 2.

Since ν is computable and A is not computable, f cannot be computable.

When we showed that any functional F computable in f will be continuous,
we referred to the computation tree of φe(f, g). When we look at the example
showing Lemma 4.1.5 we see that the computation tree for F (g) always will
make use of g(0) and of g(1). Let f be defined by

• If lh(σn) < 2, let f(n) = 0.

• If lh(σn) ≥ 2 and ∃m < σn(1)T (e, σn(0),m), let f(n) = 1.

• If lh(σn) ≥ 2 and ∀m < σn(1)¬T (e, σn(0),m), let f(n) = 2.

Then Equation 4.1 will hold for this F and f .
This leads us to the following definition:

Definition 4.1.6 Let F : NN → N be continuous.
An associate for F will be a function f : N → N such that

i) If σn ≺ σm and f(n) > 0 then f(m) = f(n).

ii) If f(ḡ(m)) > 0 then f(ḡ(m)) = F (g) + 1.

iii) ∀g ∈ NN∃m(f(ḡ(m)) > 0).

It is then clear that any continuous functional will be computable in any of its
associates via equation 4.1, and any computable functional will have a com-
putable associate, see Exercise 4.2

4.1.3 Uniform continuity and the Fan Functional

It is well known that any continuous function on a compact metric space is
uniformly continuous. In R, a set will be compact if and only if it is closed and
bounded. We have a similar characterization for NN:

Definition 4.1.7 a) We will consider the following partial ordering of NN :

f ≤ g ⇔ ∀n(f(n) ≤ g(n))

b) For f ∈ NN, let Cf = {g ; g ≤ f}.

The following is left for the reader as Exercise 4.3

107

Lemma 4.1.8 Let A ⊆ NN. Then A will be compact if and only if A is closed
and A ⊆ Cf for some f .

As a result, each continuous F will be uniformly continuous on each Cf . Let us
see what this actually means. The formal definition is that for any ε > 0 there
is a δ > 0 such that for all g and h in Cf , if d(g, h) < δ then d(F (g), F (h)) < ε.
The metric on N is trivial, so let ε = 1

2 and choose δ > 0 accordingly. Choose n
such that 2n−1 < δ. Then ḡ(n) = h̄(n) ⇒ F (g) = F (h) whenever g and h are
in Cf . These considerations give us

Lemma 4.1.9 Let F : NN → N be continuous. Then

∀f ∈ NN∃n∀g ∈ Cf∀h ∈ Cf (ḡ(n) = h̄(n) → F (g) = F (h))

We suggest an alternative proof in Exercise 4.4.

Lemma 4.1.9 suggests that we may consider the operator Φ defined by:

Definition 4.1.10 The Fan Functional Φ is defined on all continuous F : NN →
N and defines a function Φ(F) : NN → N by

Φ(F)(f) = µn.∀g ∈ Cf∀h ∈ Cf (ḡ(n) = h̄(n) → F (g) = F (h)).

Theorem 4.1.11 Let Φ be the fan functional. Then Φ(F) is continuous when-
ever F is continuous.

Proof
Let f be given, and let α be an associate for F . For each n there will be a finite
set of sequences σ of length n that are bounded by f . Using König’s lemma
we may find an n such that α(σ) > 0 for each σ in this set. This n can be
found effectively in f and α, and will be an upper bound for Φ(F, f). We only
need information from f̄(n) in order to verify that this n is a good one, and we
may compute Φ(F)(f) from the information at hand. The details are left as an
exercise for the reader.

Remark 4.1.12 In some sense originally made precise by Kleene and indepen-
dently by Kreisel, the fan functional is continuous, see Exercise 4.5. In the next
section we will consider a concept of computation where we may accept even
functionals as inputs. This begs the question if the fan functional is even com-
putable. The answer to this is not unique, since there is no canonical choice
of a concept of computability in this case. En Exercise 4.5 we give a positive
answer to this question for one possible notion of computability.

We characterized the continuous functionals as those having associates. In
a way this is an old fashioned approach. In the current literature one often use
domains as an entry to the theory of continuous functionals. We did not do so,
because then we would have to introduce a lot of simple, but new, concepts. A
reader interested in learning more about this kind of generalized computability
is advised to consult some introduction to domain theory.

108

4.2 Computing relative to a functional of
type 2

A major step in the process of generalizing computability came when Kleene
and others started to relativize computations to functionals of type 2 and higher
types in general. For certain indices e, we have defined the partial function
φe(x1, . . . , xn, f1, . . . , fm), and of course there is no harm in accepting function-
als F1, . . . , Fk as dummy arguments. The problem is how we, in any sensible
way, can use Fj actively in a computation.

The strategy will be that whenever we can supply Fj with an argument f ,
then we get the value Fj(f) from some oracle call scheme.

Definition 4.2.1 Let Ψ : Nn+1 × (NN)m × (NN → N)k → N be given.
Let ~a ∈ Nn, ~f ∈ (NN)m and let ~F ∈ (NN → N)k.
By

λx.Ψ(x,~a, ~f, ~F)

we mean the function g : N → N defined by

g(x) = Ψ(x,~a, ~f, ~F).

This makes sense even when ψ is a partial functional, but then λx.Ψ(x,~a, ~f, ~F)
may not be total.

Kleene suggested something equivalent to

Definition 4.2.2 We extend the definition of φe(~a, ~f) to a definition of
φe(~a, ~x, ~F) by adding the clauses:

x) If e = 〈8, d, j〉 and
λx.φd(x,~a, ~f, ~F)

is total, then
φe(~a, ~f, ~F) = Fj(λx.φd(x,~a, ~f, ~F)).

xi) If e = 〈9〉 then
φe(d,~a, ~f, ~F) = φd(~a, ~f, ~F).

This is an example of what is generally called an inductive definition. A large
part of generalized computability theory is about inductive definitions and the
computational principles that are behind them. In this case, we have to assume
that each element in an infinite set of subcomputations will terminate before we
accept some computations to terminate. In order to handle this properly, we will
have to introduce a generalized concept of computation tree, now a computation
tree may be an infinite, well founded tree with countable branching at certain
nodes.

It will lead us too far in this introductory course to define all the concepts
needed for a mathematically stringent handling of computability relative to
functionals. As an appetizer, let us mention two kinds of problems:

109

1. What are the computable functionals of type 3?

2. What are the functions computable in a fixed functional?

Question 1 is actually hard to answer, there is no obvious characterization of
this set. We know that the fan functional, which is defined only for continuous
functionals of type 2, is not computable in the sense of Kleene. There are a few
other positive and negative results about which functionals that are Kleene-
computable, but nothing that is both general and informative. We know more
about the answer to the second question, we will address this partly in the next
section and partly as a small project discussed in Chapter 5. However, there
is no complete and satisfactory characterization of the class of sets of functions
that may turn out as the set of functions computable in some functional.

Remark 4.2.3 Scheme ix) may seem a bit dubious, and was actually consid-
ered to be a cheat. When we work with Turing machines or with Kleene’s
definition of computations relative to functions, the existence of a universal al-
gorithm is an important theorem. However, without scheme ix) we will not
be able to prove the existence of a universal algorithm for computations rela-
tive to functionals. We will follow Kleene, be pragmatic about it, and claim
that including scheme ix) will give us a much more fruitful concept. However,
introducing scheme ix) makes the two schemes v) for primitive recursion and
vi) for the µ-operator redundant. This, and other facts about computability in
functionals, are discussed in the nontrivial Exercise 4.9.

Definition 4.2.4 Let F be a functional of type 2, f a function of type 1. We
say that f is Kleene-computable in F , f <K F , if for some index e we have that

f(x) = φe(x, F)

for all x ∈ N.
This definition is extended in the canonical way to the concept f <K ~f, ~F .
We let the 1-section of F , 1− sc(F) be the set

1− sc(F) = {f ; f <K F}.

The next sequence of lemmas should be considered as a small project on which
the reader might write an essay:

Lemma 4.2.5 If f <K ~f, ~F and each fi in ~f is computable in ~g, ~F , then
f <K ~g, ~F .

Proof
We may find a primitive recursive function ρ such that if

f(x) = φe(x, ~f, ~F)

for all x and if
fi(y) = φdi(y,~g, ~F)

110

for all y and i, then
f(x) = φρ(e,e1,...,em)(~g, ~F)

for all x.

Lemma 4.2.6 Let F and G be functionals of type 2. Assume that F (f) = G(f)
whenever f ∈ 1− sc(F). Then 1− sc(F) = 1− sc(G).

Proof
By induction on the ordinal rank of the computation tree we show that if
φe(~a,G) = a then φe(~a, F) = a with the same computation tree.

One of Kleene’s motivations for studying computations relative to function-
als was to have a tool for investigating the computational power of quantifiers.
Quantification over the natural numbers is captured by the discontinuous func-
tional 2E defined by:

Definition 4.2.7 Let

1. 2E(f) = 1 if ∃a ∈ N(f(a) > 0).

2. 2E(f) = 0 if ∀a ∈ N(f(a) = 0).

Definition 4.2.8 Let F and G be functionals of type 2.

a) F <K G if there is an index e such that F (f) = φe(G, f) for all functions
f : N → N.

b) F is normal if 2E <K F .

The choice of the term ‘normal’ for these functionals reflects the focus of the
early workers of higher type computability. We will investigate computability
in 2E more closely in section 4.4. We end this section by showing that the
1-section of a normal functional will be closed under jumps, see the proof of
Lemma 3.3.26 for the definition.

Lemma 4.2.9 Let F be a normal functional. Then 1 − sc(F) is closed under
jumps.

Proof
Generalizing Kleene’s T -predicate, we see that if g = f ′, there is a computable
predicate T such that

g(a) = b↔ ∃nT (a, b, n, f).

Given f and a we can use 2E to decide if there are b and n such that T (a, b, n, f)
holds.
If it does, we may search for the relevant b and output b+ 1. If it does not, we
output 0.

111

4.3 2E versus continuity

Let fi be defined as

fi(i) = 1.

fi(j) = 0 if i 6= j.

Then limi→∞ fi is the constant zero function f while 2E(f) 6= limi→∞
2E(fi).

This shows that 2E is not continuous. Another way to see this is to observe
that (2E)−1({0}) is not an open set, while {0} is open in N.

We will now restrict ourselves to considering computations of φe(~a, F), i.e. com-
putations in one functional argument and some number arguments. We do this
in order to save notation, there is no theoretical reason for this restriction.

We will define the n’th approximation φne (~a, F) to a computation of φe(~a, F).
There will be four properties to observe

• φne (F,~a) will always be defined.

• If φe(~a, F)↓ and φe(~a, F) = limn→∞ φne (~a, F), then we can tell, in a uni-
form way, from which n0 the limit is reached.

• If φe(~a, F)↓ and φe(~a, F) 6= limn→∞ φne (~a, F) we can compute 2E from F
in a uniform way.

• If φe(~a, F)↓ we can computably distinguish between the two cases.

We will give most of the details, but the reader should be warned: The
rest of this section is an example of how advanced arguments in computability
theory might look like. (They often look more advanced than what they really
are.)

Definition 4.3.1 We define φne (~a, F) following the cases for the definition of
φe(~a, F) ignoring schemes v), vi) and vii).

i) If e = 〈1〉, we let φne (~a, F) = φe(~a, F).

ii) If e = 〈2, i〉, we let φne (~a, F) = φe(~a, F).

iii) If e = 〈3, q〉, we let φne (~a, F) = φe(~a, F).

iv) If e = 〈4, e′, d1, . . . , dm〉, let

φ0
e(~a, F) = 0.

φn+1
e (F,~a) = φne′(φ

n
d1

(~a, F), . . . , φndm
(~a, F)).

viii) If e = 〈8, d, 1〉, then

φ0
e(~a, F) = 0.

φn+1
e (~a, F) = F (λx.φnd (x,~a, F)).

112

ix) If e = 〈9〉, let

φ0
e(d,~a, F) = 0.

φn+1
e (d,~a, F) = φnd (~a, F).

φne (~a, F) = 0 in all other cases.

Theorem 4.3.2 There are three partial computable functions π, η and ν de-
fined on the natural numbers such that φπ(e)(~a, F), φη(e)(~a, F) and φν(e)(~a, F)
terminate whenever φe(~a, F) terminates, and then

• φπ(e)(~a, F) = 0 ↔ φe(~a, F) = limn→∞ φne (~a, F).

• If φe(~a, F) = limn→∞ φne (~a, F) then φne (~a, F) = φe(~a, F) whenever
n ≥ φη(e)(~a, F).

• If φe(~a, F) 6= limn→∞ φne (~a, F) then 2E is computable in F via the index
φν(e)(~a, F).

Proof
We will construct π, η and ν using the recursion theorem, so we will take the
liberty to assume that we know the indices for these functions while defining
them.
We will not hide the intuition behind a technically accurate construction of
these functions, but to some extent describe in words what to do and why it
works. When we explain this, we will assume as an induction hypothesis that
our construction works for computations of lower complexity.
We will tell what to do when e corresponds to one of the schemes we have con-
sidered. The ‘otherwise’-case is trivial, since we do not have to prove anything
in this case, φe does not terminate on any input.
If e corresponds to scheme i), ii) or iii), let π(e) be the index for the constant
zero, η(e) the same, and we may without loss of consequences let ν(e) also be
the same.
Let e = 〈4, e′, d1, . . . , dm〉.
Let π(e) be the index for the following enumerated algorithm in (~a, F):

1. If φπ(e′)(~a, F) = φπ(d1)(~a, F) = · · · = φπ(dm)(~a, F) = 0, let φπ(e)(~a, F) = 0
and go to 2., otherwise let φπ(e)(~a, F) = 1 and go to 3.

2. Let φη(e)(~a, F) = 1 +max{φη(e′)(~a, F), φη(d1)(~a, F), . . . , φη(dm)(~a, F)}.

3. Select the least index d ∈ {e′, d1, . . . , dm} such that φπ(d)(~a, F) 6= 0. Then
use the index φν(d)(F,~a) for 2E to decide if φe(~a, F) = limn→∞ φne (~a, F)
or not. If it is, move to 4., otherwise to 5.

4. We let φπ(e)(~a, F) = 0. We use 2E to compute the proper value of
φη(e)(~a, F).

5. We let φπ(e)(~a, F) = 1, and we let φν(e) = φν(d).

113

The case ix) is handled in the same way, so we restrict our attention to case
viii):

φe(~a, F) = F (λx.φd(x,~a, F)).

Let f(x) = φe(x,~a, F) and let fn(x) = φne (x,~a, F).

For each m ∈ N, define gm(x) by the following algorithm:

1. Ask if f(x) = limn→∞ fn(x). If yes, continue with 2., otherwise continue
with 3.

2. If F (f) = F (fn) for all n such that m ≤ n ≤ φη(d)(x, F,~a), let gm(x) =
fφη(d)(x,~a,F)(x).
Otherwise choose the least n ≥ m such that F (f) 6= F (fn) and let gm(x) =
fn(x).

3. By the induction hypothesis, φν(d)(x,~a, F) provides us with an index to
compute 2E from F . Use 2E to ask if

∃n ≥ m(F (f) 6= F (fn)).

If not, let gm(x) = f(x), otherwise let gm(x) = fn(x) for the least such n.

In both cases, we will let gm(x) = f(x) if F (f) = F (fn) for all n ≥ m, while
gm(x) = fn(x) for the least counterexample otherwise. In the case 3. this is
done explicitly. In case 2. we must use that if n > φη(d)(~a, F), then fn(x) =
fφη(d)(x,F,~a)(x), a fact that follows from the induction hypothesis.
Thus for each m we may computably decide if ∃n ≥ m(F (f) 6= F (fn)) by

∃n ≥ m(F (f) 6= F (fn)) ⇔ F (f) = F (gm)). (4.2)

From 4.2 we can decide if

∃n(F (f) 6= F (fn)).

If not, we let φπ(e)(~a, F) = φη(e)(~a, F) = 0.
If there exists one such n we want to decide in a computational way if there are
infinitely many of them or not. We may use the same kind of construction as
that of gm(x) to compute a function h(x) such that h = f if F (f) 6= F (fn) for
infinitely many n, while h = fn for the largest n such that F (f) 6= F (fn) other-
wise. We must split the construction into the same cases as for the construction
of gm(x), and we must rely on 4.2 when 2E is not available. Then we get

∃n∀m ≥ n(F (f) = F (fm)) ⇔ F (f) 6= F (h)). (4.3)

In case both sides of equivalence 4.3 are positive, we can use equivalence 4.2
and the µ-operator to find φη(e)(~a, F). It remains to show how to compute 2E
from F in case both sides of equivalence 4.3 are negative. Actually, we will use
the same trick one third time. Assume that F (f) 6= F (fn) for infinitely many
n. Let g be given. We want to decide

∃x(g(x) 6= 0).

We construct f ′(x) as follows:

114

• If f(x) 6= limn→∞ fn(x) use 2E to decide if ∃x(g(x) 6= 0). If this is the
case, select the least such x, select the least n ≥ x such that F (f) 6= F (fn)
and let f ′(x) = fn(x). If it is not the case, let f ′(x) = f(x).

• Otherwise, ask if there is an x ≤ φη(d)(x,~a, F) such that g(x) 6= 0. In
both cases, do as above.

Then
∃x(g(x) 6= 0) ⇔ F (f) 6= F (f ′))

and we are through.
This ends our proof of the theorem.

Remark 4.3.3 Our use of the recursion theorem is sound, but requires some
afterthought by the inexperienced reader. What is required in order to make the
definition of π, η and ν sound is to view them as Turing-computable functions
operating on indices for computable functionals of higher types. We have given
explicit constructions of φπ(e) etc. with self reference, and analyzing exactly
which combinations of the schemes that are required, we can express π(e) etc.
as functions of the Turing indices for π, η and ν. Then, by the recursion theorem,
a solution exists.

This theorem has an interesting corollary. A dichotomy theorem is a theorem
stating that a general situation splits into two nice, in a sense opposite, cases.
One case should then contain more information than just the negation of the
other. We have observed that if F is a normal functional, then 1 − sc(F) will
be closed under jump. This is actually a characterization, but in a very strong
sense. Clearly any 1-section will be closed under the relation ‘computable in’.
We defined a function to be of c.e.degree if it is Turing equivalent with the
characteristic function of a c.e. set. This concept may of course be relativized
to any function g. Finally, we say that a set Y of functions is generated from a
set X of functions if Y consists of all functions computable in some g1, . . . , gn
from X. We then have

Corollary 4.3.4 Let F be a functional of type 2. Then one of two will be the
case:

1. 2E <K F , i.e. F is normal.

2. There is some f ∈ 1 − sc(F) such that 1 − sc(F) is generated by the
elements in 1− sc(F) of c.e.(f)-degree.

Proof
If there is one terminating computation φe(~a, F) such that

lim
n→∞

φne (~a, F) 6= φe(~a, F)

then F is normal by Theorem 4.3.2.
Otherwise, let f(〈e, n,~a〉) = φne (~a, F). Clearly, f ∈ 1− sc(F). Let g ∈ 1− sc(F)

115

be given, g(x) = φe(x, F) for all x. Then g is computable in f and the c.e.(f)
set

A = {(x, n) ; ∃m ≥ n(φme (x, F) 6= φne (x, F))}

which again is computable in F via λx.φη(e)(x).

Kleene computability is extended to functionals of all finite types, and this
dichotomy actually still holds. However, working with functionals in which 2E
is not computable, one may as well work with what is known as the hereditarily
continuous functionals. We will touch a little bit on this in section 4.5.

4.4 The Hyperarithmetical sets

Definition 4.4.1 A set is hyperarithmetical if it is computable in 2E.

We have cheated a bit, and used a characterization due to Kleene as our defini-
tion. For a more systematical introduction to hyperarithmetical sets and higher
computability theory in general, see Sacks [3].

The term ‘hyperarithmetical’ indicates that this is an extension of the arith-
metical sets in a natural way, and this is exactly what the intention is. The
arithmetical sets will be the sets that can be defined by first order formulas in
number theory. For each Gödel number a of a first order formula ψ(x) with one
free variable, we can, in a primitive recursive way, find an index π(a) such that

λx.φπ(a)(x, 2E)

will be the characteristic function of

{x ; ψ(x)}.

Using the enumeration scheme ix) we can then find a subset B of N × N
that is computable in 2E and such that each arithmetical set A is a section
Bx = {y ; (x, y) ∈ B} of B. Then every set arithmetical in B will also be
hyperarithmetical, and so forth. In a sense, we may say that 2E provides the
‘arithmetical’ while the enumeration scheme provides the ‘hyper’.

4.4.1 Trees

If we want to analyze computations relative to functionals more closely, we need
a precise notion of a computation tree. Although there is a common intuition
behind all our concepts of trees, various needs require various conventions. For
the rest of this section we will use

Definition 4.4.2 a) A tree will be a nonempty set T of sequences of natural
numbers, identified with their sequence numbers, that is closed under
initial segments. The elements of T will be called nodes.

b) 〈〉, i.e. the empty sequence, is the root node of the tree.

116

c) A leaf node of a tree T will be a node in T with no proper extension in T .

d) A branch in a tree T will be a maximal, totally ordered subset of T . If a
branch is infinite, we identify it with the corresponding function f : N → N
and if a branch is finite, we identify it with its maximal element.

e) A decorated tree will be a tree T together with a decoration, i.e. a map
f : T → N.

f) If Ti is a tree for each i ∈ I, where I ⊆ N, we let 〈Ti〉i∈I be the tree T
consisting of the empty sequence together with all sequences i ∗ σ such
that i ∈ I and σ ∈ Ti.

g) If a ∈ N and (Ti, fi) are decorated trees for each i ∈ I, we let

〈a, (Ti, fi)〉i∈I

be the decorated tree (T, f) defined by

– T = 〈Ti〉i∈I
– f(〈〉) = a

– f(i ∗ σ) = fi(σ) when i ∈ I and σ ∈ Ti.

A computation tree will be a decorated tree. Since it actually is the decorations
that will be of interest, we sometimes take the liberty to identify them with
the corresponding nodes with decoration in the tree. This liberty will be visible
when we discuss the root and the leaves of a computation tree.

Definition 4.4.3 Let φe(2E,~a) = b. We define the computation tree of the
computation by recursion as follows

i) e = 〈1〉: Let the root node also be the only leaf node and be decorated
with 〈e,~a, b〉.

ii) e = 〈2, i〉. Act as in case i).

iii) e = 〈3, q〉. Act as in case i).

iv) e = 〈e′, d1, . . . , dm〉: Let (T1, f1), . . . , (Tm, fm) be the computation trees
of φdi(

2E,~a) = ci resp. and let (Tm+1, fm+1) be the computation tree of
φe′(2E, c1, . . . , cm) = b.
Let the computation tree of φe(2E,~a) = b be

〈〈e,~a, b〉, Ti〉m+1
i=1 .

vii) e = 〈8, d〉: For each i ∈ N, let (Ti, fi) be the computation tree of φd(i,~a, 2E)
and let the computation tree of φe(~a, 2E) = b be

〈〈e,~a, b〉, (Ti, fi)〉i∈N.

117

The rest of the cases are similar, and the details are left for the reader.

Lemma 4.4.4 Whenever φe(~a, 2E) terminates, then the computation tree will
be computable in 2E.

Proof
We see how the computation tree is constructed from the computation trees
of the immediate subcomputations. This construction is clearly computable in
2E, and using the recursion theorem for computations relative to 2E we get a
uniform algorithm for computing the computation tree from a computation.

Recall that a tree is well founded if there is no infinite branch in the tree. It is
easy to see that the computation trees of terminating computations will be well
founded.

Definition 4.4.5 A pre-computation tree will be a decorated tree that locally
looks like a computation tree, i.e. each node will be of the form 〈d,~a, b〉, the leaf
nodes will correspond to initial computations, and other nodes relate to their
immediate subnodes as in Definition 4.4.3.

Lemma 4.4.6 a) The concept of a pre-computation tree is arithmetical.

b) A pre-computation tree that is well founded is actually a computation tree.

c) If φe(~a, 2E) terminates, there is exactly one pre-computation tree with a
root node on the form 〈e,~a, b〉, and then b will be the value of φe(~a, 2E).

Proof
a) is trivial. In order to prove b) we observe that a subtree of a well founded
pre-computation tree is itself a well founded pre-computation tree. Since facts
may be proved by induction on the subtree ordering of well founded trees, we
may use this kind of induction to prove the statement. The details are trivial.
The set of computations relative to 2E was defined by induction, and then we
may prove facts by induction over this construction. c) is proved this way in a
trivial manner.

4.4.2 Π0
k-sets etc.

In this section we will let ‘computable’ mean ‘Turing-computable’.

Definition 4.4.7 a) A product set will be any product of the sets N and NN

in any finite number and order. We define the arithmetical hierarchy of
subsets of product sets X as follows:

i) A set A is a Σ0
0-set and a Π0

0-set if A is computable. (In the literature
you may find that A is supposed to be definable using only bounded
quantifiers in order to be in these classes. This distinction does not
matter for our applications.)

118

ii) A set A ⊂ X is Σ0
k+1 if for some Π0

k subset B of N×X we have that

~x ∈ A⇔ ∃x ∈ N((x, ~x) ∈ B).

iii) A set A ⊂ X is Π0
k+1 if for some Σ0

k subset B of N×X we have that

~x ∈ A⇔ ∀x ∈ N((x, ~x) ∈ B).

iv) A is a ∆0
k-set if A is both Π0

k and Σ0
k.

b) We define the analytical hierarchy in the same fashion, but will only need
the first level here:

i) A set A ⊆ X is Π1
1 if there is some arithmetical set B ⊆ NN×X such

that
~x ∈ A⇔ ∀f ∈ NN((f, ~x) ∈ B).

ii) A set A ⊆ X is Σ1
1 if there is some arithmetical set B ⊆ NN×X such

that
~x ∈ A⇔ ∃f ∈ NN((f, ~x) ∈ B).

iii) A is ∆1
1 if A is both Σ1

1 and Π1
1.

Lemma 4.4.8 Let X be a product set, A ⊆ X. Then A is Σ0
1 if and only if A

is the domain of a partial computable function of arity X.

Proof
For product sets where all factors are N, these are two of the characterizations
of c.e.-sets. The proof of the equivalence generalizes trivially to all product sets.

In section 4.1 we showed how each product class either is homeomorphic to N or
to NN. We used pairing-functions 〈−,−〉 for pairs of numbers, pairs of functions
or for a pair consisting of one number and one function for this. These functions
can be used to show that multiple quantifiers of the same kind can be reduced
to one, and that number quantifiers can be ‘eaten up’ by function quantifiers.
For a complete proof, we need one more homeomorphism:

Lemma 4.4.9 (NN)N is homeomorphic to NN.

Proof
We use the observation (NN)N ≈ NN×N ≈ NN since N × N ≈ N. Precisely, if
{fi}i∈N is a sequence of functions, we code it as one function by

〈fi〉i∈N(〈n,m〉) = fn(m).

This is a computable bijection.

All these coding functions will have inverses for each coordinate. We use (−)i
for the inverse at coordinate i, letting pairing functions have coordinates 1 and
2. We can then perform the following reductions of quantifiers. Note that all
the dual reductions will also hold.

119

Lemma 4.4.10 For each relation R the following equivalences hold:

i) ∃n∃mR(n,m) ⇔ ∃kR((k)1, (k)2).

ii) ∃f∃gR(f, g) ⇔ ∃hR((h)1, (h)2).

iii) ∃f∃nR(f, n) ↔ ∃gR((g)1, (g)2) (Where the decoding is different from the
one in ii).).

iv) ∀n∃mR(n,m) ⇔ ∃f∀nR(n, f(n)).

v) ∀n∃fR(n, f) ⇔ ∃g∀nR(n, (g)n).

The proofs are trivial and are left for the reader as Exercise 4.10.

Lemma 4.4.11 a) The classes Σ0
k, Π0

k, Σ1
1 and Π1

1 are closed under finite
unions and finite intersections. Moreover, the Σ-classes are closed under
∃n ∈ N and the Π-classes are closed under ∀n ∈ N.

b) The classes Π1
1 and Σ1

1 are closed under number quantifiers.

c) Π1
1-normal form theorem

If A ⊆ X is Π1
1, there is a computable set R ⊆ NN × N×X such that

~x ∈ A⇔ ∀f∃nR(f, n, ~x).

In the proof we use standard prenex operations and the reductions described in
Lemma 4.4.10 The details are left for the reader, see Exercise 4.10.

Theorem 4.4.12 Let Γ be one of the classes Π0
k, Σ0

k (k ≥ 1), Π1
1 or Σ1

1 (or
Π1
k, Σ1

k as defined in Exercise 4.11). For each product set X there is a universal
Γ-set A in N×X, i.e. such that for each Γ-set B ⊆ X there is an n ∈ N such
that for all ~x ∈ X:

~x ∈ B ⇔ (n, ~x) ∈ A.

Proof
Let Γ̃ be the dual of Γ, i.e. the set of complements of sets in Γ. Clearly, if the
property holds for Γ, it also holds for Γ̃. Since the Π- and Σ-classes are duals
of each other, it is sufficient to prove the lemma for one of each pair.
The existence of universal algorithms together with Lemma 4.4.8 ensures the
theorem to hold for Σ0

1. Then any class Γ of sets definable from Σ0
1-sets using a

fixed quantifier prefix will have universal sets for each product set. Each of our
classes Γ is either one of these or the dual to one of these. For Π1

1 we need the
normal form theorem, see Lemma 4.4.11 c).

We will end this subsection by viewing the connection between Π1
1-sets and well

founded trees.
Let A ⊆ N be a Π1

1-set written in its normal form

m ∈ A⇔ ∀f∃nR(m,n, f).

120

Since R is computable, there is, by the finite use property, a computable relation
R+ on N3 such that

m ∈ A⇔ ∀f∃n∃kR+(m,n, f̄(k)).

For each m we let Tm be the tree of finite sequences σ such that

∀n ≤ lh(σ)∀τ ≺ σ¬R+(m,n, τ).

Then Tm will be a tree, and we will have

m ∈ A⇔ Tm is well founded.

If we put a bit more effort into the arguments, we can actually show that we
may choose R+ to be primitive recursive, this is connected with the relativized
Kleene’s T -predicate, and thus each Π1

1 subset of N is m-reducible to the set of
indices for well founded primitive recursive trees. On the other hand, this set
is easily seen to be Π1

1 itself. Thus the class of Π1
1-sets contains an m-maximal

element, just like the c.e. sets.
In the next subsection we will se more analogies between the c.e. sets and the
Π1

1-sets.

4.4.3 Semicomputability in 2E and Gandy Selection

Definition 4.4.13 A subset A ⊆ N is semicomputable in 2E if there is an index
e such that for all a ∈ N:

φe(a, 2E)↓⇔ a ∈ A,

where ↓ still means ‘terminates’.

Lemma 4.4.14 All Π1
1 subsets of N are semicomputable in 2E.

Proof
Clearly the set of indices for computable trees is computable in 2E, so it is
sufficient to show that the concept of a well founded tree is semicomputable.
This can be done with a careful use of the recursion theorem: Let e be any
index. Using the enumeration scheme and 2E we can define a computable
function Φ(e, T) such that

• Φ(e, T, 2E) = 0 if T consists of exactly the empty sequence.

• Φ(e, T, 2E) = 2E(λnφe(Tn)) if T is a more complex tree, where Tn is the
set of sequences σ such that n ∗ σ ∈ T .

By the recursion theorem for 2E, there is an index e0 such that Φ(e0, T, 2E) =
φe0(T, 2E) for all T .
By induction on the well founded trees it is easy to se that φe0(T) will terminate
whenever T is well founded. In order to prove the other direction, we must
inspect the proof of the recursion theorem and see that in this particular case, if
φe0(T) terminates, then either T consists of the empty sequence only or φe0(Tn)

121

must terminate for each n and be a subcomputation. This is because we only
used e as an index in connection with the enumeration scheme in defining Φ. It
follows that T must be well founded.

Theorem 4.4.15 Let A ⊆ N. Then the following are equivalent:

i) A is Π1
1.

ii) A is semicomputable in 2E.

Proof
Lemma 4.4.14 gives us one direction.
The set C of computation tuples 〈e,~a, b〉 such that φe(2E,~a) = b is defined by a
positive induction, i.e. there is a formula Φ(x,X) such that atomic subformulas
t(x) ∈ X will occur positively and such that C is the least set such that

C = {a ; Φ(a,C)}.

Then
c ∈ C ⇔ ∀B(B ⊆ {a ; Φ(a,B)} → c ∈ B).

Remark 4.4.16 This proof is trivial provided the reader has been through a
quick introduction to inductive definitions.
In Exercise 5.9 we offer a self-service introduction.

Now is the time to assume that the reader is familiar with well orderings and
preferably with ordinal numbers. For readers unfamiliar with this, we offer
Exercise 5.11, a guided self-service introduction to the topic.

Definition 4.4.17 Let T be a well founded tree on N.

a) The rank |T | of T , is the ordinal rank of T seen as a well founded relation,
where σ ≤ τ ⇔ τ ≺ σ.

b) The rank |σ|T of σ ∈ T , is the value of the rank function for T on σ.

c) If T is not well founded, we let |T | = ∞ considered to be larger than any
ordinal number.

Theorem 4.4.18 There is a two-place function Φ partially computable in 2E
such that φ(T, S) terminates exactly when both S and T are trees, and at least
one of them is well founded, and then

1. If |T | ≤ |S| then Φ(T, S) = 0

2. If |S| < |T | then Φ(T, S) = 1.

Proof
We will use the recursion theorem for 2E, and the argument is an elaboration
on the argument showing that the set of well founded trees is semicomputable
in 2E.

122

We define Φ(S, T) by cases, using self reference, and the solution using the
construction behind the recursion theorem will give us the result. The set of
trees is computable in 2E, so for the sake of convenience, we assume that both
T and S are trees. Then

• If T consists of only the empty sequence, let Φ(T, S) = 0.

• If S consists of only the empty sequence, but T contains more, let Φ(T, S) =
1.

• If neither T nor S contains just the empty sequence, let

Φ(S, T) = 0 ⇔ ∀n∃m(Φ(Tn, Sm) = 0),

where we use 2E to decide this, and let 1 be the alternative value.

It is easy to see by induction on the rank that if one of the trees is well founded,
then Φ does what it is supposed to do. If neither T nor S are well founded,
Φ(T, S) will not terminate. This is however not important, and we skip the
argument.

Since every terminating computation is associated with a well founded compu-
tation tree, we may think of the rank of the computation tree as a measure of
the length of the computation.

Definition 4.4.19 Let φe(2E,~a) = b. The length |〈e,~a, b〉| of the computation
will be the ordinal rank of the corresponding computation tree. If 〈e,~a, b〉 is not
the tuple of a terminating computation, we let |〈e,~a, b〉| = ∞.

Theorem 4.4.18 has an interesting application, the Stage Comparison Theorem:

Corollary 4.4.20 There is a function Ψ partially computable in 2E such that
whenever σ = 〈e,~a, b〉 and σ′ = 〈e′,~a′, b′〉 are tuples, then Ψ(σ, σ′) terminates if
and only if at least one of σ and σ′ is a genuine computation tuple, and then

Ψ(σ, σ′) = 0 ⇔ |σ| ≤ |σ′|.

We have proved a selection theorem for ordinary c.e. sets, the selection was
performed by searching for the least pair where the second element was a witness
to the fact that the first element was in the c.e. set in question. Gandy showed
how we may combine this idea and the ordinal length of computations to prove
a selection theorem for computations in 2E:

Theorem 4.4.21 (Gandy Selection)
Let A ⊆ N×N be c.e. in 2E. Then there is a selection function for A computable
in 2E.

Proof
We will use the recursion theorem for 2E. Let

A = {(a, b) ; φe0(a, b, 2E)↓}.

Let f be computable in 2E satisfying

123

1. f(e, a, k) = 0 if |〈e0, a, k〉| < |〈e, a, k + 1〉|.

2. f(e, a, k) = f(e, a, k + 1) + 1 if φe(a, k + 1, 2E) ↓ and |〈e, a, k + 1〉| ≤
|〈e0, a, k〉|.

By the recursion theorem there is an index e1 such that

f(e1, a, k) = φe1(a, k, 2E).

We claim that λa.φe1(a, 0, 2E) is a selection function for A. Let a ∈ N be given.
First observe that if φe0(a, k, 2E)↓ then f(e, a, k) will terminate, so φe1(a, k, 2E)↓.
Moreover, observe that if φe1(a, k, 2E)↓ then φe1(a, k′, 2E)↓ whenever k′ < k.
Thus

∃kφe0(a, k, 2E)↓⇒ φe1(a, 0, 2E)↓ .

Now assume that φe1(a, 0, 2E)↓. If we look at the computation of φe1(a, 0, 2E)
we see that we will have φe1(a, 1, 2E), φe1(a, 2, 2E),... as subcomputations as
long as part 2 of the algorithm for f is followed. The ranks of these computations
will be a decreasing sequence of ordinals, and this sequence must come to an
end. It comes to an end exactly when we hit a k0 such that

|〈e0, a, k0〉| < |〈e1, a, k0 + 1〉|.

Then (a, k0) ∈ A and backtracking the value of φe1(a, k′, 2E) for k′ ≤ k0 we see
that φe1(a, k′, 2E) = k0 − k′.
Consequently λa.φe1(a, 0, 2E) will be a selection function for A

Remark 4.4.22 This proof is of course uniform in e0.

Corollary 4.4.23 Let A ⊆ N. Then the following are equivalent:

i) A is computable in 2E.

ii) Both A and N \A are semicomputable in 2E.

Proof
Clearly, if A is computable in 2E, then both A and its complement will be
semicomputable in 2E.
Now assume that both A and N \A are semicomputable in 2E.
Let

B = {(0, n) ; n ∈ A} ∪ {(1,m) ; m 6∈ A}.

B is semicomputable, and B is the graph of a function. By Gandy selection this
function must be computable in 2E. The result follows.

4.4.4 Characterising the hyperarithmetical sets

There is almost nothing left for us to do in this subsection. We have shown that
a set A is semicomputable in 2E if and only if it is Π1

1. We have shown that a
set B is computable in 2E if both B and its complement are semicomputable
in 2E. This gives us

124

Corollary 4.4.24 A set is hyperarithmetical if and only if it is ∆1
1.

Remark 4.4.25 Our proof of Corollary 4.4.24 is flavored by computability the-
ory, but there are alternative proofs in the literature. The result, in a different
form, goes back to Suslin in 1917. He essentially showed that a set A ⊆ NN is
Borel if and only if both A and its complement are projections of closed sets in
(NN)2, i.e. that relativized ∆1

1 is the same as Borel.

There are numerous analogies between the pair (Computable, computably enu-
merable) and the pair (∆1

1,Π
1
1). Some of these are left for the reader as Exercise

4.12.
There is a close connection between hyperarithmetical theory and fragments of
set theory. For readers familiar with axiomatic set theory, we offer a self-service
introduction in Exercise 5.12.

4.5 Typed λ-calculus and PCF

Kleene’s definition of computations relative to functionals can be extended to
functionals of even higher types than two. This will, however, be a too spe-
cialized topic to be introduced in this text. Kleene’s concept turned out to be
useful in definability theory, the theory of what may be defined with the help
of certain principles, but we have moved quite a bit away from what what we
might call “genuine computability”.

The concept of higher type computability is nevertheless of interest also when
genuine computability is the issue, e.g. in theoretical computer science. In this
section we will give a brief introduction to PCF . PCF is a formal programming
language for computing with typed objects. It has its roots in work by Platek,
Scott developed the first version of it as a formal logic for computability and
Plotkin gave it the form we will be investigating. The intuition should be that
we are operating with hereditarily partial, monotone and continuous functionals.
We will explain this better when needed.

4.5.1 Syntax of PCF

Definition 4.5.1 We define the formal types, or just types as a set of terms for
types as follows:

1. ι and o are types. These are called the formal base types.

2. If σ and τ are types, then (σ → τ) is a type.

Remark 4.5.2 When we give a semantical interpretation of PCF , we will as-
sociate a mathematical object to each formal type. We think of ι as denoting
the set of natural numbers, o as denoting the set of boolean values and (σ → τ)
as denoting the relevant set of functions mapping objects of type σ to objects
of type τ . Since we will use these objects to interpret algorithms, we have to

125

interpret nonterminating algorithms as well. We will do so by including an el-
ement for ‘the undefined’ in the base types, and carry this with us for higher
types.

As usual the term language will consist of variables, constants and combined
terms. What is new is that each term will be typed, that some constants are
treated as function symbols, and that we need type matching when forming
combined terms.

Definition 4.5.3 The terms in PCF are inductively defined as follows:

1. Variables:
For each type σ there is an infinite list xσi of variables of type σ.

2. Constants:
In PCF we have the following typed constants:

kn of type ι for each natural number n.

tt and ff of type o.

Z of type ι→ o.

S and P of type ι→ ι.

⊃ι and ⊃o of types o→ (ι→ (ι→ ι)) and o→ (o→ (o→ o)) resp.

Yσ of type (σ → σ) → σ for each type σ.

3. Combined terms:

If M is a term of type σ → τ and N is a term of type σ, then (MN)
is a term of type τ . This construction is called application.

If M is a term of type τ and x is a variable of type σ, then (λx.M)
is a term of type σ → τ .
This construction is called abstraction.

The intuition behind these constants and terms are as follows:
0 will denote the zero-element in N, tt and ff the two truth values.
Z will test if a number is zero or not.
S and P are the successor and predecessor operators on the natural numbers.
⊃ will select the second or third argument depending on the boolean value of
the first argument. Thus there will be one for each base type.
Yσ will denote the fixed point operator. The idea is that whenever f : σ → σ,
then f will have a least fixed point a of type σ. Our challenge will be to formalize
this in the formal theory and to find mathematical interpretations of these types
such that this makes sense.
Application (MN) simply mean that M is thought of as a function, N as an
argument and (MN) then just denotes the application. It may be confusing
that we are not using the more conventual notation M(N), but this has turned
out to be less convenient in this context.

126

If M is a term of type τ , M may contain a variable x of a type σ. The intuition is
that M denotes an unspecified object of type τ , an object that becomes specified
when we specify the value of x. (λx.M) will denote the function that maps the
specification of x to the corresponding specification of M .

The reader may have noticed that we have omitted a few parentheses here and
there. We will do so systematically, both for types and terms.
If f is a function of type (σ → (τ → δ)) we will view f as a function of two
variables of types σ and τ . We will write σ, τ → δ for such types. If then M is
of type σ, τ → δ, N is of type σ and K is of type τ we will write MNK instead
of (((M)(N))(K)).This means that the application is taken from left to right.

Lemma 4.5.4 Each type will be of the form σ = τ1, . . . , τn → b where n ≥ 0
and b is one of the base types.

The proof is easy by induction on the length of σ seen as a word in an alphabet.

With this convention we see that the type of ⊃ι is o, ι, ι→ ι and the type of ⊃o
is o, o, o→ o. We then view these as functions of three variables.

4.5.2 Operational semantics for PCF

An operational semantics for a language designed to describe algorithms will be
the specification of how to carry out step-by-step calculations or computations.
The operational semantics for PCF will be a set of rules for how to rewrite
terms in order to ‘ compute’ the value. This is of course most relevant when we
are dealing with combined terms of base types.

In PCF we have a similar distinction between free and bounded occurrences of
variables as in first order logic, x becomes bounded in λx.M . As for first order
languages, one term N may be substituted for a variable x in a term M if no
variables free in N becomes bounded after the substitution. We write Mx

N for
the result of the substitution, always assuming that N is substitutable for x in
M .

Definition 4.5.5 We define the relation −→, denoted by a long arrow, as the
reflexive and transitive closure of the following one-step reductions (we assume
that the typing is correct):

Zk0 −→ tt.

Zkn+1 −→ ff .

Pkn+1 −→ kn.

Skn −→ kn+1.

⊃b ttMN −→M where b is a base type.

127

⊃b ffMN −→ N where b is a base type.

(λx.M)N −→Mx
N .

YσM −→M(YσM).

M −→M ′ ⇒MN −→M ′N .

N −→ N ′ ⇒MN −→MN ′.

λxM −→ λyMx
y .

The last item tells us that we may replace a bounded quantifier with another
one not occurring in M . As an example we will see how we may compute f(x)
= 2x on the natural numbers:

Example 4.5.6 The function f(x) = 2x is defined by primitive recursion from
the successor operator as follows:

• f(0) = 0

• f(S(x)) = S(S(f(x)).

For the sake of readability, let g be a variable of type ι→ ι. Consider the term
M of type ι→ ι defined by

M = Yι→ιλg.λx
ι(⊃ι (Zx)k0S(S(g(Px)))).

If we look at the expression λg.λxι(⊃ (Zx)k0S(S(g(Px)))) we see that to each
g we define a function that takes the value 0 on input 0 and g(x − 1) + 2 for
positive inputs x. The least fixed point of this operator is exactly the function
f . The verification of e.g. Mk2 −→ k4 is a lengthy process.

Example 4.5.7 We will show how the µ-operator can be handled by PCF ,
i.e. we will define a term of type (ι → ι) → ι that must be interpreted as the
µ-operator.
Note that F (f) = µx.f(x) = 0 can in the same sense be defined in the following
way: F (f) = G(f, 0) where

G(f, k) = 0 if f(k) = 0.

G(f, k) = G(f, k + 1) + 1 if f(k) > 0.

G will be the fixed point of a PCF -definable operator, and then the µ-operator
is definable.

The conditionals ⊃o and ⊃ι can be extended to conditionals ⊃σ for all types σ,
see Exercise 4.13

Definition 4.5.8 Let f : N → N be a partial function. We say that f is PCF -
definable if there is a term M of type ι→ ι such that the following are equivalent
for all numbers n and m:

128

1. Mkn −→ km

2. f(k) is defined and f(n) = m.

We used the expression ‘PCF -definable’ also for the µ-operator, trusting that
the reader accepts this yet not clarified terminology. We then have

Theorem 4.5.9 The PCF -definable functions are exactly the partial computable
ones.

Proof
We have shown how to handle the µ-operator and indicated how to handle
primitive recursion. The full details are then easy and are left for the reader as
Exercise 4.14.

4.5.3 A denotational semantics for PCF

The operational semantics for PCF explains how we may rewrite a term in
such a way that we eventually may read off a number or a boolean value as
the interpretation of the term. When we give a denotational semantics, we
will interpret each term as a mathematical object in some set. One important
aspect will be that the reductions of the operational semantics should not alter
the denotational interpretations. If we look at the term M for the f(x) = 2x
function, we obtain that Mk2 −→ k4 in the operational semantics, while we
want [[Mk2]] = 4, where we will use [[·]] for the denotational semantics.

For the rest of this section, we leave out essentially all details. It is not expected
that the reader will be able to fill in the details without consulting a textbook
on domain theory or some other introduction to a similar topic. Most lemmas
etc. will be left without proof.
Consider the term N = Yιλx.S(x). If we try to evaluate Nk0 we see that we
get an infinite reduction sequence. Thus the only sensible way to interpret this
term is by accepting ‘undefined’ as a possible value, and then using it in this
case.

Definition 4.5.10 Let N⊥ and B⊥ be the set N of natural numbers and the
set B of boolean values {true, false} extended with a new element ⊥ for the
undefined.

We will interpret each type σ as a set D(σ), and we let D(ι) = N⊥ and D(o) =
B⊥.
Each of these sets will be partial orderings by letting ⊥ be the smallest element
and the rest maximal elements that have no ordering between them. Such
ordered sets are called flat domains.

Definition 4.5.11 A partial ordering (D,v) is called bounded complete if

1. Each bounded set has a least upper bound.

2. Each directed subset X ⊆ D is bounded, with least upper bound tX.

129

It is easy to see that N⊥ and B⊥ both are bounded complete.

Definition 4.5.12 Let (D,vD) and (E,vE) be two partial orderings that are
bounded complete.
A function f : D → E is called continuous if f is monotone and for all directed
subsets X of D we have

tDX = tE{f(x) ; x ∈ X}.

Lemma 4.5.13 Let (D,v) be bounded complete and let f : D → D be contin-
uous. Then f has a least fixed point in D.

Proof
The empty set has a least upper bound, which we call ⊥D.
Then

⊥D vD f(⊥D) vD f(f(⊥D)) v · · · .

The least upper bound of this sequence will be the least fixed point of f .

Definition 4.5.14 Let (D,vD) and (E,vE) be two orderings that are bounded
complete.
Let D → E be the set of continuous maps from D to E.
If f ∈ D → E and g ∈ D → E, we let f vD→E g if

∀x ∈ D(f(x) v g(x)).

Lemma 4.5.15 Let (D → E,vD→E) be as above. This partial ordering will be
bounded complete.

Not mentioning the ordering, we now interpret each type σ by recursion on σ
as follows:

D(σ → τ) = D(σ) → D(τ).

What remains to be done can briefly be described as follows:

1. An assignment will be a map from a set of typed variables xσi to elements
of D(σ). The set of assignments can be viewed as elements of cartesian
products of some D(σ)’s, and will be ordered in a bounded complete way
by the coordinate-wise ordering.

2. Each term M of type σ will be interpreted as a continuous function [[M]]
from the set of assignments to D(σ). It will sometimes be convenient
to consider assignments restricted to the free variables of M , sometimes
convenient to accept dummy variables.

3. We must show that the least fixed point operator is a continuous map
from (D,v D) to D. This is used to define [[Yσ]].

4. We must show that application is a continuous map from (D → E) ×D
to E. This is used to define [[MN]] from [[M]] and [[N]].

130

5. We must show that abstraction is a continuous map from D × E → F to
D → (E → F). This is used to define [[λx.M]] from [[M]].

6. We must give interpretations to the constants kn, S, P , Z, ⊃ι and ⊃o.
This can easily be done by the reader.

7. We must show that if M −→ N then [[M]] = [[N]]. The only case that
requires some work is the reduction

(λx.M)N −→Mx
N

where we must show by induction on M that

[[M]](sx[[N]](s)) = [[Mx
N]](s).

The proof by induction is not very hard.

The denotational semantics for PCF that we have given is the one used
originally by Scott when he formed the logic LCF that was turned into the
programming language PCF by Plotkin . There are however alternative ways
of interpreting PCF -terms reflecting interesting aspects of PCF . One conse-
quence of the existence of a denotational semantics is that a closed term of type
ι cannot be interpreted as two different numbers. Consequently, though the use
of −→ is a non-deterministic process, there is no canonical way of performing
the next step, we do not risk to obtain different values to the same term.
We end this section by stating the converse, due to Plotkin, without any hints
of proof:

Theorem 4.5.16 Let M be a closed term og type ι. If [[M]] = n, then M −→
kn.

4.6 Exercises to Chapter 4

Exercise 4.1 A continued fraction is a finite or infinite tree of fractions

1
1 + n0 + 1

1+n1+
1

1+n2+···

.

A finite continued fraction will be a rational number while the value of an
infinite continued fraction is defined as the limit of the finite subfractions. This
limit will always exist. Why? (This part is not an exercise in logic, rather in
elementary analysis.)

a) Show that if 0 < a < 1, then there is a unique continued fraction with
value a.

b) Show that the continued fraction of a will be infinite if and only if a is
rational.

131

c) Show that the bijection obtained between the irrational elements in [0, 1]
and NN using continued fractions is a homeomorphism.

d) Discuss in which sense we may claim that the homeomorphism in c) is
computable.

Exercise 4.2 Show that if F is a computable functional of type 2, then F will
have a computable associate.

Exercise 4.3 Prove lemma 4.1.8.

Exercise 4.4 Let F : NN → N be continuous, and let T (F, f) be the set of
finite sequences σ bounded by f such that F is not constant on Bσ.
Show that T (F, f) will be a tree of sequences, and use König’s lemma to show
that T (F, f) is finite for each f ∈ NN. Use this to give an alternative proof of
Lemma 4.1.9.

Exercise 4.5 Show that there is a continuous function Φ̂ : NN → NN such
that whenever α is an associate for a continuous F : NN → N, then Φ̂(α) is an
associate for Φ(F).
Show that Φ̂ can be chosen to be computable in the sense that

G(x, α) = Φ̂(α)(x)

is computable.

Exercise 4.6 Tait showed that the fan functional is not Kleene-computable.
Fill out the details in the following proof of Tait’s result:

1. A quasi-associate for F is a function α : N → N such that

• α(n) = m+ 1 ⇒ F (f) = m when σn ≺ f .

• α(n) > 0 ∧ σn ≺ σm ⇒ α(m) = α(n).

• If f ∈ 1− sc(F) then for some n, σn ≺ f and α(n) > 0.

If φe(~a, F)↓ and α is a quasi-associate for F , then there is some n such
that whenever G has an associate extending (α(0), . . . , α(n)) and φe(~a,G)↓
then

φe(~a,G) = φe(~a, F).

Hint: Use Use induction on the ordinal rank of the computation tree for
φe(~a, F).

2. There is a quasi-associate for the constant zero function 2O and a non-
computable f : N → {0, 1} such that α(f̄(n)) = 0 for all n.

3. For any finite part ᾱ(n) of α there is an associate β extending ᾱ(n) for a
functional that is not constant on {0, 1}N.

132

4. Combining 2. and 3. we obtain a contradiction from the assumption that
the fan functional is computable.

Exercise 4.7 If F : NN → N, let Fi(f) = F (〈i, f〉).
Show that there is a total functional Γ satisfying the equation

Γ(F) = F0(λx.Γ(Fx+1)),

and that we may compute Γ(F) uniformly from an associate for F .
The historical interest is that Γ is not computable in the fan functional. This
is too hard to be considered as an exercise.

Exercise 4.8 Work out detailed proofs of Lemmas 4.2.5, 4.2.6 and 4.2.9.
This cannot be seen as a simple exercise, but rather as a minor project.

Exercise 4.9 We reduce the definition of φe(~a, ~f, ~F) by ignoring schemes v)
and vi), and technically work with a subsystem.

a) Prove the Snm-theorem for computations with function and functional ar-
guments as well as number arguments.

b) Prove the recursion theorem for computations with function and functional
arguments as well as number arguments.

c) Use the recursion theorem to show that scheme v) is redundant in the
original definition, i.e. that the class of functional computable in the
subsystem is closed under primitive recursion.

d) Use the recursion theorem to show that scheme vi) is redundant in the
original definition, i.e. that the µ-operator is definable in the subsystem.
Hint: You may look at how the µ-operator is defined in PCF .

Exercise 4.10 Prove Lemma 4.4.10 and Lemma 4.4.11 in detail.

Exercise 4.11 We actually have a hierarchy for sets definable by second order
formulas as well. Let

• A ⊆ X is Π1
k+1 if for some Σ1

k set B ⊆ NN ×X,

~x ∈ A⇔ ∀f ∈ NN((f, ~x) ∈ B).

• A ⊆ X is Σ1
k+1 if for some Π1

k set B ⊆ NN ×X,

~x ∈ A⇔ ∃f ∈ NN((f, ~x) ∈ B).

a) Prove that the class of Π1
k sets are closed under finite unions and intersec-

tions, number quantifiers and universal function quantifiers. Prove that
there are universal Π1

k sets for any k ≥ 1 and any dimension.

133

b) Formulate and prove the analogue results for the Σ1
k-classes.

Exercise 4.12 a) Let f : N → N be computable in 2E. Show that the
image of f will also be computable in 2E. Discuss what this means for
the relation between semicomputable sets and c.e. sets relative to 2E.

b) Show that the class of sets semicomputable in 2E is closed under finite
unions and intersections, but not under complements.

c) Show that two disjoint Σ1
1-sets can be separated by a ∆1

1-set.
Hint: Use Gandy selection.

d) Show that there are disjoint Π1
1-sets that cannot be separated by any ∆1

1-
sets.
Hint: Use an analogue of the construction of two computably inseparable
c.e. sets.

Exercise 4.13 Let σ = τ1, . . . , τn → b be a type, where b is a base type.
Show that there is a term ⊃σ of type

o, σ, σ → σ

such that whenever s and t are terms of type σ, then,

⊃σ (tt)st −→ λxτ11 · · ·λxτn
n .sx1 · · ·xn.

⊃σ (ff)st −→ λxτ11 · · ·λxτn
n .tx1 · · ·xn.

Exercise 4.14 Prove Theorem 4.5.9 in detail.

134

Chapter 5

Non-trivial exercises and
minor projects

In this chapter we have collected some exercises or minor projects that are
based either on the material in more than one chapter or that are too hard to
be considered as exercises in the ordinary sense. We call them exercises, though
some of the items in this chapter are much more demanding than ordinary
exercises.

Exercise 5.1 Let L be a finite language. Show that the relation ‘φ is true in
all finite L-structures’ is decidable if all predicates are unary, while it in general
is complete co-c.e.

Exercise 5.2 Show that there is a computable partial ordering (N,≺) such
that every countable partial ordering (X ′, <′) can be embedded into (N,≺).

Exercise 5.3 In this exercise we will explore Skolem’s construction of a non-
standard model for number theory. We adjust the proof to the setting that we
have been using in this compendium.
Let Dk be the set of subsets of Nk definable in the language of Theorem 1.2.2.
We let D = D1.
If f : N → N, we let f ∈ Dfunc if the graph of f is in D2.

a) Show that D is countable.

b) Show that there is a maximal, nonprincipal filter F on D, i.e. a set F ⊆ D
such that

- N ∈ F .

- F has no finite elements.

- If D ∈ F and D ⊆ E ∈ D, then E ∈ F .

- If D ∈ F and E ∈ F , then D ∩ E ∈ F .

135

- If D ∈ D, then D ∈ F or N \D ∈ F .

c) For f, g ∈ Dfunc, let
f ≡F g

if
{n ; f(n) = g(n)} ∈ F .

Show that ≡F is an equivalence relation.

d) Let N ∗ ve the set of ≡F -equivalence classes [f], with the interpretations
of the non-logical symbols in L as follows:

0∗ and 1∗ are the equivalence classes of the respective constant func-
tions.

Addition, multiplication and exponentiation of equivalence classes
are defined via the corresponding pointwise operations on represen-
tatives.

[f] <∗ [g] ⇔ {n ; f(n) < g(n)} ∈ F .

Work out the details and show that these concepts are well defined, i.e.
independent of the choice of representatives.

e) Let φ(x1, . . . , xk) be a formula in L.
Let f1, . . . , fk ∈ Dfunc.
Show that

N ∗ |= φ([f1], . . . , [fk]) ⇔ {n ; N |= φ(f1(n), . . . , fk(n))} ∈ F .

Hint: Use induction on φ.

f) Show that N and N ∗ are not isomorphic, and describe an elementary
embedding of N into N ∗.

Exercise 5.4 For the sake of notational simplicity we extend the second order
languages with variables for functions as well.

a) Find a second order formula that expresses that if X is a set, f : X → X
and x ∈ X then Y = {fn(x) ; n ∈ N}.

b) Discuss to what extent our formal definition of a finite set is in accordance
with your intuition about set theory.

c) It is a fact of set theory that every set accepts a total ordering. Use
this and our formal definition of infinity to show that the following are
equivalent.

1. X is finite.

2. Every total ordering of X is a well ordering.

136

Exercise 5.5 Let L= be the language of equality. We say that a subset A of
N is definable in second order finitary logic if there is a sentence φ in L2

= such
that n ∈ A if and only if {0, . . . , n− 1} |= φ.
Discuss the properties of the class of sets definable in second order finitary logic
in terms of decidability, complexity and closure properties.

Exercise 5.6 Let Σ be a fixed alphabet. Show that there is an enumeration
{Mi}i∈N of the set of Turing machines over Σ and a one-to-one enumeration
{wj}j∈N of the set of words in Σ∗ such that the function f satisfying the equation

f(i, j) ' k ⇔Mi(wj) = wk

is computable, where ' means that either is both sides undefined, or both sides
are defined and with the same value.

Exercise 5.7 In the text we have indicated how to establish some of the prop-
erties of the hierarchy {Fα}α<ε0 . Work out all the details and write a small
essay about it. You may well combine this with Exercise 5.8.

Exercise 5.8 Show that if α < ε0 then Fα is provably computable. Suggest a
fundamental sequence for ε0 and thus a function Fε0 . If properly defined, Fε0
will not be provably computable in PA, but in some second order extension.
Discuss how we may formulate a proof of the totality of Fε0 in some second
order extension of PA.

Exercise 5.9 Let L be a first order language, and let X be a new predicate
symbol of arity 1. Let L′ be L extended with X. Let φ(x,X) be a formula in
L′ with at most x free.
The predicate X (which we may think of as a set variable) is

positive in φ if X does not occur in φ, if φ is of the form X(t), if φ is of
one of the forms ψ1 ∨ψ2 or ∃yψ1 where X is positive in ψ1 and ψ2 or if φ
is of the form ¬ψ where X is negative in ψ.

negative in φ if X does not occur in φ, if φ is of the form ¬X(t), if φ is of
one of the forms ψ1 ∨ ψ2 or ∃yψ1 where X is negative in ψ1 and ψ2 or if
φ is of the form ¬ψ where X is positive in ψ.

Now, let X be positive in φ(x,X). Let A be an L-structure, B ⊆ A. Let
Γφ(B) = {a ∈ A ; φ(a,B)}.

a) Show that Γφ is a monotone operator on the set of subsets of A, i.e. that
if B ⊆ C then Γφ(B) ⊆ Γφ(C).

b) Show that Γφ will have a least fixed point, i.e. there is a least set B such
that Γφ(B) = B.

c) Now let L be the language of number theory and A the standard model
N of number theory (i.e. the natural numbers as a structure). Let X be
positive in φ(x,X). Show that the least fixed point of Γφ is a Π1

1-set.

137

d) Show that there is an m-maximal Π1
1-set that can be defined by positive

induction.

e) Hard! Show that there is a Π1
1-set that is not the least fixed point of any

Γφ.

f) Optional! Show that if X is positive in φ, then Γφ will have a maximal
fixed point.
Show that if φ is a positive Π0

1-formula, i.e. we do positive induction over
N, then the maximal fixed point of Γφ will also be Π0

1.

Exercise 5.10 Let L be a finite first order language with equality as the only
relation symbol. Let A be a countable L-structure.
We say that A is computable if there is an onto map α : N → A and computable
functions f̂ : Nk → N for each function symbol f of arity k such that

α(f̂(n1, . . . , nk)) = FA(α(n1), . . . , α(nk)) for each function symbol f .

{(n,m) ; α(n) = α(m)} is c.e.

Warning! Our definition is customized to this exercise, and the term ‘com-
putable structure’ may be used in a different way elsewhere in the literature.

a) Trivial! Show that there exist computable fields of any characteristics.

b) Harder! Show that the algebraic closure of a computable field is itself
computable.

c) Hard! Is there a computable field such that the set of irreducible polynomi-
als is not computable? What is the best you can say about the complexity
of the set of irreducible polynomials in a computable field?

Exercise 5.11 Recall that a well ordering will be a total ordering (X,<) such
that any nonempty subset of X will have a least element. An initial segment of
a well ordering (X,<) will be a subset Y of X such that y ∈ Y ∧x < y ⇒ x ∈ Y ,
together with the ordering < restricted to Y .

a) Show that an initial segment of a well ordering is itself a well ordering.

b) Show that if (X1, <1) and (X2, <2) are two well orderings and π1 and π2

are two isomorphisms between initial segments of (X1, <1) and (X2, <2)
resp. , then π1(x) = π2(x) if they are both defined.
Hint: Assume not. Consider the maximal initial segment where they
agree, and show that they must agree on the ‘next’ element as well.

c) Show that if (X1, <1) and (X2, <2) are two well orderings then they are
either isomorphic or one is isomorphic to a proper subset of the other. In
all cases the isomorphism is unique.
Hint: Let π be the union of all isomorphisms between initial segments of
the two well orderings. Then π is the unique isomorphism in question.

138

An ordinal number will be a set α such that

α is transitive, i.e. if β ∈ α then β is a set and if moreover γ ∈ β, then
γ ∈ α.

(α,∈) is a well ordering.

d) Show that the empty set ∅ is an ordinal number, and that ∅ ∈ α for all
non-empty ordinal numbers. Describe the three smallest ordinal numbers.

e) Show that if α is an ordinal number and β ∈ α, then β is an ordinal
number.

f) Show that if α and β are two ordinal numbers, then α = β, α ∈ β or
β ∈ α.
Hint: Show that identity functions are the only possible isomorphisms
between initial segments of ordinal numbers.

g) Show that if α is an ordinal number, then α+ 1 defined as α ∪ {α} is an
ordinal number.

h) Show that the union of any set of ordinal numbers is an ordinal number.

A binary relation (X,R) is well founded if each nonempty subset Y of X has
an R-minimal element x, i.e. an element x ∈ Y such that y 6∈ Y whenever yRx.

i) Let (X,R) be a well founded relation. Let R∗ be the transitive (but not
reflexive) closure of R. Show that R∗ is a well founded relation.

j) Show that if (X,R) is a well founded relation, there is a unique function
ρ mapping X into the ordinal numbers such that

∀x ∈ X(ρ(x) =
⋃
{ρ(y) + 1 ; yR∗x}).

Hint: Use well foundedness to show that there is a maximal partial solution
to the function equation for ρ, and once again to show that this maximal
solution will be defined on all of X.

The function ρ will be called the rank function of R. The image of ρ will be an
ordinal number and will be called the rank of R.

Exercise 5.12 This exercise requires the combined knowledge of some ax-
iomatic set theory, standard computability theory and computability in 2E.
Let X be a hereditarily countable set, A a binary relation on B ⊆ N. We say

that A is a code for X if B,A is isomorphic to the transitive closure of {X}∪X
with the ∈-relation.

a) Show that the set of codes is Π1
1.

139

b) Show that equality between the corresponding sets is a property of the
codes computable in 2E. (Given two codes, 2E can decide if they are
codes for the same element or not.)
Hint: Use the recursion theorem for 2E.

c) Show that there are operators on the codes that are computable in 2E
and that simulates finite unions, unordered pairs and set subtraction on
sets.

An ordinal number α is called computable if α has a computable code. Observe
that if α is computable and β < α, then β is computable.

d) Show that if α is a computable ordinal number, then every X ∈ L(α) will
have a hyperarithmetical code.
(Here L(α) is level no. α in Gödel’s hierarchy of constructible objects.)

Let ωCK1 (omega-1-Church-Kleene) be the least non-computable ordinal.

e) Show that the ordinal rank of a computable well founded tree will be
computable.
Hint: Show that the partial ordering σ ≤ τ ⇔ τ ≺ σ on a computable
well founded tree can be extended to a total, computable well ordering by
combining it with the lexicographical ordering. (This combined ordering,
if constructed correctly, is called the Kleene-Brouwer ordering).

f) Show that the ordinal rank of any ∆1
1-well founded tree will be a com-

putable ordinal.
Hint: Show that if this is not the case, we may use stage comparison
to show that the set of computable well founded trees is computable in
2E. This will contradict that this set is uniformly Π1

1 and that there are
Π1

1-sets that are not hyperarithmetical.

g) Show that every hyperarithmetical set is in L(ωCK1).
Hint: Show that the set of computations of length < α, where the argu-
ments may be 2E and numbers, will be in L(α+ 1).

h) Show that L(ωCK1) satisfies ∆0-comprehension and replacement.
Hint: For the replacement axiom you may find Gandy selection useful.

If you have worked through all items in this rather extensive exercise, you have
proved that L(ωCK1) is a model of what is known as Kripke-Platek set theory,
a much studied fragment of set theory.

Exercise 5.13 Work out all the details in Section 4.5.3

Exercise 5.14 Recall that a tree is a set of finite sequences, and that a tree
will be well founded if there is no infinite branch.
A proof tree in an ω-logic T will be a well founded tree T of sequences (φ0, . . . , φn)
of formulas φi with n ≥ 0 such that

140

• If (φ0, . . . , φn) and (φ′0, . . . , φ
′
m) are in T , then φ0 = φ′0.

• If (φ0, . . . , φn) ∈ T is a leaf node, then φn is an axiom in T .

• If (φ0, . . . , φn) ∈ T is not a leaf node, then φn is a consequence of
{φ ; (φ0, . . . , φn, φ) ∈ T } by the rules of ω-logic.

By a suitable Gödel numbering, we may view the proof trees as trees over the
natural numbers.
If T is a proof tree, we call it an ω-proof for φ0.

a) Show that for any formula φ, T `ω φ if and only if there is an ω-proof for
φ.

b) One technical obstacle in ω-logic is that an ω-proof may be infinite and
consume all variables. Show that this is a minor obstacle, i.e. show that
whenever y1, . . . , yn are substitutable for x1, . . . , xn in φ, and T `ω φ, then
T `ω φx1,...,xn

y1,...,yn
.

Hint: Use induction on the ordinal rank of the proof tree.
Show that the proof tree of T x1,...,xn

y1,...,yn
is computable in 2E, the proof tree

for φ and the set of Gödel numbers for the axioms in T .

c) Prove the theorem of constants for ω-logic in detail.

Exercise 5.15 In the sections on model theory we focused on countable mod-
els and on finite models. This is of course only a part of model theory. In
this exercise we will consider a tiny fragment of model theory for uncountable
structures.

Definition 5.1 Let L be a first order language and κ a cardinal number. We
say that an L-structure A is κ-saturated if for all sets B ⊆ A = |A| of cardinality
< κ and all 1-types X in L[B] (relative to the theory of L[B]-sentences true in
A) are realized in A. A is fully saturated if A is κ-saturated where κ is the
cardinality of |A|.

Our definition of saturated corresponds to ω-saturated.

a) Show that for any consistent theory T on L and cardinal number κ there
exists a κ-saturated model for T .

b) Assume the existence of an unbounded class of inaccessible cardinals.
Show that for any consistent theory T there exists a fully saturated model
for T of arbitrary large cardinality.

141

Chapter 6

Appendix:
Some propositions from a
beginners course in logic

Proposition 6.1 The Completeness Theorem, two versions

a) Let T be a first order theory. Then T is consistent if and only if T has a
model.

b) Let T be a first order theory over the language L and let φ be a formula
in L. Then

T ` φ⇔ T |= φ

Proposition 6.2 The Compactness Theorem
Let T be a first order theory. Then T has a model if and only if each finite
subtheory T0 of T has a model.

Proposition 6.3 The Deduction Theorem
Let T be a first order theory over a language L, let φ be a sentence in L and ψ
a formula in L. Then

T, φ ` ψ ⇔ T ` φ→ ψ.

Proposition 6.4 The Theorem of Constants
Let T be a first order theory over a language L and let c1, . . . , cn be constants
that are not in L. Let L′ be the extended language.
Let T ′ be the theory over L′ with the same non-logical axioms as T , and let φ
be a formula in L. Then for all lists x1, . . . , xn of variables

T ` φ⇔ T ′ ` φx1,...,xn
c1,...,cn

.

142

Index

1− sc(F), 110
Cf , 107
PCF -definable, 128
Snm-theorem, 67
We, 71
∆0
k, 119

∆1
1, 119

Π1
1, 119

Π1
1-normal form, 120

Σ1
1, 119

f̄ , 62
K, 71, 77
↓, 65
ε0, 94
λx.−−, 109
µ-recursive functions, 63
ω, 93
ω-logic, 38
ω-model, 38
ω-valid, 38
ωCK1 , 140
φe, 64
equivL, 11
k(L, n), 48
m-degrees, 75
m-equivalent sets, 75
m-reducibility, 75
n-probability, 49
n-types, 28
2E, 111
 Los, 9

abstraction, 126
Ackermann, 62, 92, 94, 95
ackermann branches, 62
algebraic completion of an ordered field,

27

algebraic concept, 11
algebraically closed fields, 19
application, 126
arithmetical hierarchy, 118
associate, 107
asymptotic probability, 49

binary tree, 73
bounded complete, 129
branch in a tree, 117

c.e., 69
c.e. degrees, 88
cantor normal form, 94
categorical, 17
characteristic function, 59
characteristic of a field, 19
Church, 58
Church-Turing Thesis, 57
code for a set, 139
collecting trees, 86
complete open description, 46
complete set of formulas, 29
complete theory, 13
computable function, 63
computable functional, 104
computable functional of type 2, 80
computable ordinal, 140
computable set, 63
computable structure, 138
computable tree, 73
computably enumerable, 69
computably enumerable set, 69
computably inseparable sets, 72
computably separable sets, 72
computation tree, 65, 117
computations relative to functionals, 109

143

concatenation, 61
continued fraction, 131

decorated tree, 117
degrees, 81
degrees of unsolvability, 81
diagram, 8
directed limit, 10
directed ordering, 10
directed system, 10
domain, 5
downwards Löwenheim-Skolem theorem,

16

elementary directed system, 15
elementary embedding, 13
elementary equivalence, 11
elementary substructure, 13
elimination of quantifiers, 22
embedding, 7

fan functional, 108
field theory, 19
fields, 19
formal types, 125
Friedberg, 88
fundamental sequence, 94

Gödel, 33, 55, 57, 88, 116, 140
Gandy, 123
generating formula, 29

halting problem, 57, 69
hyperarithmetical, 116

inductive definition, 109
initial state of a Turing machine, 56
input word, 56
isomorphism, 7

jump, 82, 111

Kleene, 4, 55, 58, 64, 66, 67, 69, 70, 79,
80, 106, 108–111, 116, 125

Kleene’s T -predicate, 66
Kleene-Brouwer ordering, 140
Kripke-Platek set theory, 140

Löwenheim-Skolem’s theorem, 16
leaf node, 117
length of a computation, 123
limit ordinal, 94
literal, 8
logical concept, 11

model complete, 43
modified subtraction, 59
Muchnic, 88

node, 116
non-principal type, 29
normal functional, 111

omitting a type, 29
open theory, 6
operational semantics, 127
order of NN, 107
ordered fields, 25
ordinal number, 139
output of a turing machine, 56

perfect trees, 85
Platek, 125
Plotkin, 125, 131
positive induction, 122
Post, 77, 102
prime models, 24
primitive recursive function, 58
primitive recursive set, 59
principal associate, 106
principal type, 29
priority method, 88
provably computable, 92

quantifier elimination, 22

r.e., 69
rank function, 139
rank of a relation, 139
rank of a tree, 122
real closed fields, 27
realising a type, 29
recursive, 55
recursively enumerable set, 69
relativized computations, 78

144

Riece, 68
root node, 116

Sacks, 18, 116
saturated model, 34
Scott, 125, 131
second order language, 52
second order quantifier, 51
semicomputable in 2E, 121
sequence numbers, 61
simple formula, 21
simple set, 77
Skolem, 12, 15, 58
skolem function, 16
splitting theorem, 101
splitting trees, 86
stage comparison, 123
state, 56
substructure, 6
successor ordinal, 94
Suslin, 125

Tarski, 9, 25
the compactness theorem, 142
the completeness theorem, 142
the deduction theorem, 142
the isomorphism property, 20
the recursion theorem, 68
the submodel property, 21
the theorem of constants, 142
topological completion, 27
topology on NN, 105
total computable function, 63
transitive set, 139
Turing, 4, 55, 57
turing computable, 56
turing degrees, 81
turing equivalence, 81
turing machines, 55
Turing reducible, 81
types, 125

universal turing machine, 57
uppwards Löwenheim-Skolem theorem,

16

weakly saturated model, 37

well founded, 139
well ordering, 12, 138

145

Bibliography

[1] Christopher C. Leary, A Friendly Introduction to Mathematical Logic, Pren-
tice hall, 2000.

[2] G. E. Sacks, Saturated model theory, W.A. Benjamin Inc. 1972.

[3] G. E. Sacks, Higher Recursion Theory, Springer-Verlag (1990)

146

