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1 LOAD-DEFLECTION RELATION OF RC MEMBERS 

 
Concrete is a quasi-brittle material and its deformation capability is limited. However, 
it is possible to make concrete members ductile as shown in Figure 1.1 by combining 
brittle concrete with ductile reinforcing steel bars. 

 
 

 
Figure 1.1 Moment – curvature relation of a RC beam（6） 
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2 DESIGN FOR FLEXURAL CRACKING 
2.1 Introduction 
Concrete carries tensile force before cracking. The stiffness of members before 

cracking is higher than that after cracking. This chapters demonstrates how to obtain 
the cracking moment, cM . 

 
2.2 Basic assumptions 
 The following basic assumptions are made to compute the cracking moment, cM . 

 Bernoulli’s theorem is satisfied (plane-sections-remain-plane assumption). 
 Stress-strain relation of concrete is elastic. 
 Stress-strain relation of reinforcing bars is elastic. 
 Concrete carries tensile force. 

 
 
2.3 Cracking moment 
 
2.3.1 Equivalent moment of inertia 
Consider the section which has the center of the gravity of the section is located below 
the half depth by “e” as shown in Figure 2.1(a). Strictly speaking, the moment of inertia 
of this reinforced concrete section is expressed as: 

 2 2
1 3 ( 1) ( 1)e e t t c cI I n a y n a y          (2.1) 

 
where Ie3 is expressed in Eq.       
 (2.3). If the overlapping of concrete and reinforcement is allowed, the equation can 
be simplified as: 

 2 2
2 3e e t t c cI I na y na y         (2.2) 

 
Neglect the reinforcement and assume that the whole section is filled with concrete. 
The moment of inertia about the C.G. is expressed as: 

 
3

2
3 12e

bD
I bDe         (2.3) 

 
   (a) Section    (b)    Elevation 

Figure 2.1 A reinforced concrete beam 

D e 
× C.G 
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yc 
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2.3.2 Cracking moment 
Stress at the tensile fiber can be expressed as: 

 
2

c c
t

e e

M MD
f

I Z
         (2.4) 

 
where Ie is either of Ie1, Ie2 and Ie3. 
When the tensile stress reaches the modulus of rupture, rf , expressed as follows, the 
section cracks. 

 20.56 ' ( / )r cf f N mm       (2.5) 

 
Hence, the cracking moment can be expressed as: 
 c r eM f Z         (2.6) 

 
2.3.3 Example：Equivalent moment of inertial and the cracking moment 
 
Let us compute the cracking moment of the doubly reinforced concrete beam in Figure 
2.2. 
  400b mm  

  60c td d mm   

  640d mm  
  700D mm  
 

Concrete 
  Compressive strength ' 24cf MPa  

  Unit weight 324kN m   
 

Figure 2.2 Section of a reinforced concrete beam 

 Reinforcement 
  Tensile reinforcement   SD345 3-D22 2387 3 1161ta mm    

  Compressive reinforcement SD345 3-D22 2387 3 1161ca mm    

 
Young’s modulus of concrete and reinforcing bars are; 

 

1
2

3

1
2

3

2

'
33500

24 60

24 24
33500

24 60

24700 / 24.7

c
c

f
E

N mm GPa

       
   

       
   

 

     (2.7) 

 2205000 / 205sE N mm GPa       (2.8) 

 

b 

D 

dc 

d=D-dt 

dt 
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Then the modular ratio, n, is 

 
205

8.30
24.7

s

c

E GPa
n

E GPa
    

  (2.9) 
The modulus of rupture is: 

 20.56 ' 0.56 24 2.74 /r cf f N mm       (2.10) 

 
Strictly, the moment capacity is: 

  

3
2 2

1

3
22

10 4

( 1) ( 1)
12

400 700
(8.3 1) 1161 (350 60) (8.3 1) 1161 350 60

12

1.29 10

e t t c c

bD
I n a y n a y

mm

    


          

 

 (2.11) 

 

 

10 4
2

1

7 3

1.29 10

350

3.69 10

e
e

t

I mm
Z

H mm

mm


 

 

      (2.12) 

 

 
2 7 3

1 1 2.74 / 3.69 10

101.2
c r eM f Z N mm mm

kN m

   
 

    (2.13) 

 
If the overlapping of concrete and reinforcement is allowed, the moment capacity is: 

  

3
2 2

2

3
22

10 4

12

400 700
8.3 1161 (350 60) 8.3 1161 350 60

12

1.31 10

e t t c c

bD
I na y na y

mm

  


        

 

  (2.14) 

 

 
10 4

7 32
2

1.31 10
3.74 10

350
e

e
t

I mm
Z mm

H mm


        (2.15) 

 
 2 7 3

2 2 2.74 / 3.74 10 102.6c r eM f Z N mm mm kN m        (2.16) 

 
If reinforcement is neglected, the moment capacity is: 

 
3 3

10 4
3

400 700
1.14 10

12 12e

bD
I mm


        (2.17) 

 

 
10 4

7 33
3

1.14 10
3.27 10

350
e

e
t

I mm
Z mm

H mm


        (2.18) 
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 2 7 3
3 3 2.74 / 3.27 10 89.6c r eM f Z N mm mm kN m        (2.19) 

 
It is seen that Mc1 and Mc2 are nearly same but Mc3 is 11.5% less than Mc1. 
 
 
 
2.4 Axial force at cracking 
 
2.4.1 Compressive cracking force 
Under concentric compression, cracks do not form. 

 
2.4.2 Tensile cracking force 
When the stress reaches the tensile strength, 'tf , the tensile force can be obtained as 

follows assuming that concrete and reinforcement are elastic. 
 
(a) Equilibrium 
External and internal forces are equilibrated in axial direction. 
 c sN T T   

          (2.20) 
   cT ：Tensile resultant force of concrete 

   sT ：Tensile resultant force of reinforcement 

 
(b) Strain compatibility 
Strain at the section is uniform and expressed as: 
 st c          (2.21) 

 
(c) Stress-strain relation 
Since concrete and reinforcement are assumed elastic, stress and strain relations are 
expressed as: 
 c c cE     (concrete) 

          (2.22) 
 st s stE     (reinforcement) 

          (2.23) 
 
 
 
Combining Eqs. (2.20) through (2.23) for a column section in , 

  
  

1

1

c c c c st s st

c c c st c c

c c st c c

st c c

N A E a E

A E a nE

bhE a n E

bh a n E

 
 
 



 
 

  

  

      (2.24) 

where n is the section modulus in Eq.   (2.9) 
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When the concrete stress, c c cE   , reaches the cracking strength, 'tf , a crack forms 

and the tensile force can be expressed as: 
 
   1 'c st tN bh a n f         (2.25) 

 

 
Figure 2.3 Section of a reinforced concrete beam 

b 

ast: Total area of 
longitudinal 
reinforcement 

h 



Advanced RC Structures (2017) 
S. Kono 

 7

3 DESIGN FOR ULTIMATE FLEXURE 
 
3.1 Introduction 
It is important to know the ultimate flexural moment capacity at failure and the failure 

mode when the member is subjected to unexpectedly large load. It should be noted that 
concrete and reinforcement are not elastic anymore at this stage. 
 
3.2 Assumptions 
The following assumptions are made to compute the ultimate flexural strength, nM . 

 
 Bernoulli’s theorem is satisfied (plane-sections-remain-plane assumption). 
 Plastic condition of stress-strain relation of concrete is considered. Concrete stress 

block indices 1k , 2k , 3k , and the ultimate compressive strain, cu , are assumed 

to be known. 
 Elastic-plastic condition of stress-strain relation of reinforcing bars is considered. 
 Concrete DOES NOT carry tensile force. 

 
3.3 Ultimate flexural moment 
3.3.1 Stress-strain relations of concrete and equivalent stress block 
Assuming that the stress-strain relation of concrete is expressed in Figure 3.1, stress 

block coefficients represent the area under the curve and the location of the centroid. 
 
 1 3 'c cuk k f  ＝equivalent area under the curve 

 2 cuk  ＝the location of the centroid of the area under the curve in terms of cu  

 
 1k ：coefficient to represent the average stress when the compressive fiber reaches 

the ultimate compressive strain, cu . 

 2k ：coefficient to represent the location of centroid of the area under the curve in 

terms of cu . 

 3k ：coefficient to represent the difference in compressive strengths of test 

cylinders and members 
 

Table 3.1 Concrete stress block coefficients 

 f’c≦27.4 N/mm2 f’c＞27.4 N/mm2 
εcu 0.003 
k1 0.85 0.85-0.05(f’c – 27.4) / 6.84 
k2 0.85 
k3 0.5 k1 
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Figure 3.1 Stress – strain relation of concrete in structural members and the meaning of stress 

block（6） 

 

Figure 3.2  Stress – strain relation of reinforcing bars（6） 

Strain, εc 

Average 
stress  

Strain Strain 

Yield 
plateau 

Strain 
hardening 

Elasto-plastic 
assumption 

Elasto-plastic 
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Ordinary reinforcing bars 
with yield plateau 

Reinforcing bars without 
yield plateau 

Centroid

Stress 

Stress

Stress, σc 

σ-ε relation of standard 
cylinder 

εcu 0 

σc = g(εc) 

σ-ε relation of concrete 
in members 

f’c 

k3f’c 

k1k3f’c 

(1-k2)εcu

k2εcu 
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3.3.2 Ultimate flexure moment of doubly reinforced concrete beams 
3.3.2.1 Basic equations 
 
(a) Equilibrium 
External and internal forces should be equal in terms of axial force and moment. 
 
 
Equilibrium for axial force 
 c s sN C C T          (3.1) 

 
Equilibrium for moment 
      2c n n s n c s nM C x k x C x d T d x           (3.2) 

 
(b) Strain compatibility 
Based on the Bernoulli’s theorem, the strain at arbitrary height of the section can be 
expressed with the ultimate strain of compressive fiber, cu . 

  st sc cu

n n c nd x x d x

  
 

 
      (3.3) 

 
(c) Stress-strain relation 
It is defined that the ultimate flexural moment is reached when the strain at the 
compressive fiber reaches the ultimate strain（ 0.003c cu   ）. At this stage, concrete 

does not follow the elastic relation, c c cE   , anymore. Reinforcement is either 

elastic ( st s stE   ) or plastic ( st yf  ). 

 
 
 
 
 

 
 
(a)  Section           (b) Strain         (c) Stress    (d)Equivalent (e) External 

distribution      distribution       stress       force 

Figure 3.3 Ultimate condition of a rectangular reinforced concrete beam 

b 

Cc 

εcu 

xn 

dt 

d 

dc 

εst 

N 

Mn 

T= astσst 

k2xn 

σst 

asc 

ast 

εsc σsc 
Cs 
= ascσsc 
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3.3.2.2 Depth of the neutral axis, nx  

Flexural failure can be categorized into three failure modes; flexural tensile failure, 
flexural compression failure, and balanced failure. No matter which of three failure 
modes is taken, the strain at the compressive fiber always reaches the ultimate limit 
strain, cu , that is, 0.003c cu   . Hence, cC ， sC ， sT  can be computed based on 

the ultimate strain and the neutral axis depth, nx . 

 
Equivalent stress block is used to represent the compressive resultant force of concrete, 

cC . 

 1 3 'c c nC k k f x b        (3.4) 

The compressive resultant force of steel, sC , can be computed based on its strain, 

n c
sc cu

n

x d

x
 

 . 

 s y cC f a （yielded）or  s s sc cC E a （elastic）   (3.5) 

The tensile resultant force of steel, sT , can be computed based on its strain, 

n
st cu

n

d x

x
 

 , like sC . 

 s y tT f a （yielded）or  s s st tT E a （elastic）   (3.6) 

 
Substitute into the axial force equilibrium, c s sN C C T    to obtain nx . 

 
Case 1. When both compressive reinforce and tensile reinforcement have yielded, the 
equilibrium is: 
  1 30 'c n y c y tk k f x b f a f a        (3.7) 

Case 2. When compressive reinforcement is elastic and tensile reinforcement has 
yielded, the equilibrium is: 

  

 1 3

1 3

0 '

0 '

c n s sc c y t

n c
c n s cu c y t

n

k k f x b E a f a

x d
k k f x b E a f a

x





  

 
   

 

    (3.8) 

Case 3. When compressive reinforcement has yielded and tensile reinforcement is 
elastic, the equilibrium is: 

  

 1 3

1 3

0 '

0 '

c n y c s st t

n
c n y c s cu t

n

k k f x b f a E a

d x
k k f x b f a E a

x





  

 
   

 

    (3.9) 

Case 4. When both compressive reinforce and tensile reinforcement are elastic, the 
equilibrium is: 

  

   1 3

1 3

0 '

0 '

c n s sc c s st t

n c n
c n s cu c s cu t

n n

k k f x b E a E a

x d d x
k k f x b E a E a

x x

 

 

  

    
     

   

  (3.10) 
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Obtain nx  for four cases. Recompute the strains of compressive and tensile 

reinforcements, n c
sc cu

n

x d

x
 

  and n
st cu

n

d x

x
 

  and compare the results with the 

assumptions. There should be only one case in which the assumption and the result are 
consistent and this case turns out to be the correct answer. The assumption and the 
result in other cases are inconsistent and is judged as wrong. 
 
3.3.2.3 Ultimate flexural moment capacity, nM  

The ultimate flexural moment, nM , can be computed using the correct nx . When no 

axial force acts, the moment can be computed about any height of the section. In the 
computation, the coefficient 2k  is used. 
 
      2n c n n s n c s nM C x k x C x d T d x           (3.11) 

 
3.3.2.4 Amount of reinforcement for balanced failure 
There is a case that the tensile reinforcement yields exactly when strain of concrete at 

the compression fiber reaches the ultimate strain. This failure is called balanced failure. 
 
 
3.3.2.5 Example of computing the ultimate flexural moment capacity 
The ultimate flexural moment for a RC beam in Section 2.3.3 is computed in this 

section. 
 
Case 2 (compressive reinforcement is elastic and tensile reinforcement has yielded is 
assumed. 
 
 1 3 ' 0.85 0.85 24 400c c n nC k k f x b MPa x mm       

 260
205 0.003 1161n c n

s s cu c
n n

x d x mm
C E a GPa mm

x x


    
    
   

  (3.12) 

 2345 1161s y tT f a MPa mm    

 
Substitute the above three terms into the equilibrium, c s sN C C T    and solve for 

nx . It is noted that 0N   since the beam has no axial force. 

 59.1nx mm  

 
Strain of the compressive reinforcement is: 

59.1 60
0.003 0.000042 0.00168

59.1
n c

sc cu y
n

x d mm mm

x mm
   

         as assumed. 

 
Strain of the tensile reinforcement is: 
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640 59.1
0.003 0.0294 0.00168

59.1
n

st cu y
n

d x mm mm

x mm
   

      as assumed. 

 
Since the assumptions on the reinforcement strain is satisfied, this case turns out to be 
right. The force resultants are: 
 
 1 3 ' 0.85 0.85 24 59.1 400 410c c nC k k f x b MPa mm mm kN        

   2205 ( 0.000042) 1161 9.915s s sc cC E a MPa mm kN       

 (3.13) 
 2345 1161 401s y tT f a MPa mm kN     

 
These terms satisfies the equilibrium, 0 c s sN C C T    . The ultimate flexural 

moment can be computed about any height of the section. It is computed about the 
neutral axis here. 
 

 

     

  
  

2

410 (59.1 0.425 59.1 )

9.92 59.1 60

401 640 59.1

247

n c n n s n c s nM C x k x C x d T d x

kN mm mm

kN mm mm

kN mm mm

kNm

      

  

  

 



    (3.14) 
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4 DESIGN FOR SHEAR 
4.1 Introduction 
 It may be said that the behavior and failure mechanisms of reinforced concrete 
members subjected to pure bending has already been studied sufficiently and 
understood very well. Also, the behavior of a reinforced concrete member under pure 
bending can be rationally predicted based on the Bernoulli’s theory which uses a simple 
assumption that plane sections before bending remain plane after bending. 
Therefore, with respect to flexural design concept and methods, there is little 
disagreement between the design codes of various countries. 
 On the other hand, progress in the understanding of the behavior and failure 
mechanisms of members subjected to shear with flexure and/or axial load has been 
somewhat slow and hundreds of publications speak for the complexity of the problem. 
Nonetheless, all aspects of shear behavior have not been taken into account in any shear 
design methods currently used. 
 Since the data obtained from shear tests scatter more widely than those obtained 
from flexural tests, in general, the shear strength of a member is estimated more 
conservatively than the flexural strength in the current design codes. This can be seen 
from the fact that, in the ACI code as well as others, the semi-empirical equations to 
calculate the nominal shear strength of a member have been derived as to give a line 
close to the lower bound of the background test data. Also a higher safety factor is used 
in the design for shear than for flexure. For example, in the ACI code, the strength 
reduction factor φof 0.85 is adopted in the design for shear while φof 0.90 is used 
for the flexure. 
 A shear failure of a reinforced concrete member can occur in a brittle manner if the 
reinforcing details are inadequate. Consequently an attempt must be made to suppress 
such a failure. In earthquake-resistant structures in particular, heavy emphasis is placed 
on ductility, and for this reason the designer must ensure that a shear failure can never 
occur. This implies that when ductility is essential, the shear strength of the member 
must be higher than flexural strength which could possibly develop at an ultimate state, 
even if a frame analysis indicates that the maximum moment induced in the member 
under design loads does not reach to the flexural strength of the member. This design 
concept has been typically introduced in the Capacity Design of the New Zealand 
Code (NZS3101:1995). 
 It is still expedient to use the classical concepts of shear stresses in homogeneous, 
isotropic, elastic bodies when predicting initial crack formation. However, with the 
development of cracks an extremely complex pattern of stresses ensues, and it becomes 
difficult to predict precisely the actual behavior of the member. To solve this problem, 
extensive experimental and theoretical work, particularly in recent years, has greatly 
extended the identification of various shear resisting mechanisms. Thus the approach to 
the design for shear in reinforced concrete has been significantly improved in the 
design codes of various countries. 
 In this class note, basic theories for shear and bond are briefly reviewed and then 
shear design methods adopted in the ACI 318-08 code, the AIJ Standard based on 
allowable stress design (1999) and the AIJ Design Guidelines based on inelastic 
displacement concept (1997) are to be introduced. 
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4.2 The Concept of Shear Stresses 
 
 The following text was composed by extracting passages from the book entitled 
“Reinforced Concrete Structures” by R. Park and T. Paulay published by John Wiley & 
Sons, Inc. in 1975, with modifications. It is old from the viewpoint of the published 
year but still the best book to understand the background of the shear design concepts 
and the methods adopted in the current design codes of various countries. 
 
4.2.1 Shear stress for an elastic and homogeneous member 
 
Consider a simply supported beam under loading as shown in  Figure 4.1(a). 

Equilibrium condition in horizontal direction for the free body in Figure 4.1(f) is 
 
       ydTdxybyv   

(4.1) 
 
 

 
(a) A simply supported beam under vertical load 

 

 
 

(b) Free body     (c) Normal Strain    (d) Normal stress  (e) Shear stress 
 
 

 
(f) Stresses acting on the shaded free body 

Figure 4.1 Shear stress for elastic and homogeneous member 

M 

dx 

x 

y h 

V+dV 

V 

M+dM 

T+dT 

compression 

 v y  

T 

 y   y  

 v y  

 y     y d y   

tension 

compression 

tension 

x 

y 

dx 



Advanced RC Structures (2017) 
S. Kono 

 15

where  yv  is the shear stress,  yb  is the section width, and  yT  is the tension 

resultant action on the shaded free body. The increment in  yT  at distance dx  is 

 ydT and it can be expressed as: 
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(4.2) 
 

where  xI  is the second moment of inertia and  yS  is the first moment of inertia 
about y=0 where the center of gravity locates. From Eqs. (4.1) and (4.2)), 
 

     
 

   
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   xIyb

ySxV

xIdxyb

ySxdM

dxyb

ydT
yv









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(4.3) 
 

 For a prismatic beam with a rectangular section,    3
0

2

V x
v y

bh
   can be obtained 

from  
2

0
2 4 8

bh h bh
S y      and 

3

( )
12

bh
I x   

 
4.2.2 Shear stress for a reinforced concrete member before cracking 
 Using the notation in Figure 4.2, the equilibrium of the shaded part of the beam 
element will be satisfied when the horizontal shear stress is  
 

       
   xIyb

ySxV
yv




  

(4.4) 
 
Since the distance between the compression and tension resultants, z, is expressed as 

     
 

,
I x

z x y
S y

 . 

(4.5) 
Hence, 

     
   ,

V x
v y

b y z x y



 

(4.6) 
It is seen that the stress state before cracking is identical to the state in 
Section 4.2.1. 
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4.2.3 Shear stress for a reinforced concrete member after cracking 
 Consider a reinforced concrete beam with cracking as shown in Figure 4.3. The 
equilibrium of an arbtrary free body located below the neutral axis is written as: 
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(4.7) 
or 

       
jd

V

dx

xdT
ybyvq w   

(4.7)’ 
 
where q is the bond force per unit length of the member and termed shear flow. 
 As Figure 4.3 shows, the horizontal force transferred across the cracked zone of 
the section remains constant; hence the shear flow in the tension zone is constant. It is 
evident that shear stress depends on the width of the web, illustrated for a particular 
example in Figure 4.3. Since the concrete below the neutral axis (NA) is assumed to be 
in a state of pure shear, this equation has been used as the measure of diagonal tension 
in the cracked tension zone of a reinforced concrete beam. This also implies that 
vertical shear stresses are transmitted in this fashion across sections, irrespective of the 
presence of flexural cracks. 
 In many design codes including the AIJ Standard, this traditional shear stress 
equation is still used. It is a convenient " index " to measure shear intensity, but it 
cannot be considered as a shear stress at any particular locality in a cracked reinforced 
concrete beam. For convenience the ACI adopted, as an index of shear intensity, the 
simple equation 
 

  
db

V
v

w

  

(4.8) 
 
 In certain cases, the maximum shear stress could occur at a fiber other than at the 
web of the section. When the flange of a T section carries a large compression force, as 
over the shaded area to the right of section 1 in Figure 4.3, the shear at the flange-web 
junction may become critical, and horizontal reinforcement in the flange may be 

Assume that jd=constant 
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needed. In beams supporting floors of buildings, the flexural reinforcement in the slab 
is usually adequate for this purpose. 
 

 
Figure 4.2 Shear force, shear flow, and shear stresses in a homogeneous isotropic elastic beam 

 
Figure 4.3 Shear stress across an idealized cracked reinforced concrete section 

Shear flow varies 
across the section. 

Shear flow 
is constant 
below the 
neutral axis. 

(a) 

(b) 

(c) (d) (e) (f) (g) 

(a) (b) (c) (d) 

Section 1-1 may be critical in shear. 
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4.3 The Mechanism of Shear Resistance in Reinforced Concrete Beams 
without Web Reinforcement 

---------------------------------------------------------------------------------------------------------
- 
In practical design, web reinforcement is normally required to be provided for beams in the form of 
stirrups. Hence, you may wonder why the mechanism of shear resistance in beams without web 
reinforcement is discussed in the following sections. The reason may be explained as follows. The shear 
strength of beams provided by so-called beam action and arch action could be identified through the 
study for the case of beams without web reinforcement. Also, based on such studies, the most of the 
current design codes assess the contribution of concrete to the shear resistant capacity of reinforced 
concrete members. For example, in the ACI code, the nominal shear strength of beams, Vn, is calculated 
as the sum of the strength provided by concrete, Vc, and that by shear reinforcement Vs, that is, Vn = Vc + 
Vs. In this equation, Vc is calculated using the empirical equations obtained from the shear tests on beams 
without shear reinforcement. 
---------------------------------------------------------------------------------------------------------
- 
 
4.3.1 The Formation of Diagonal Cracks 
 In a reinforced concrete member, flexure and shear combine to create a biaxial 
state of stress. Cracks form when the principal tensile stresses reach the tensile strength 
of the concrete. In a region of large bending moments, these stresses are greatest at the 
extreme tensile fiber of the member and are responsible for the initiation of flexural 
cracks perpendicular to the axis of the member. In the region of high shear force, 
significant principal tensile stresses, also referred to as diagonal tension, may be 
generated at approximately 45 degree to the axis of the member as can be seen in 
Figure 4.4. These may result in inclined (diagonal tension) cracks. With few exceptions 
these inclined cracks are extensions of flexural cracks. Only in rather special cases, as 
in webs of flanged beams, are diagonal tension cracks initiated in the vicinity of the 
neutral axis. The principal stress concept is of little value in the assessment of 
subsequent behavior unless the complex distribution of stresses in the concrete after 
cracking is considered. Either a reinforced concrete flexural member collapses 
immediately after the formation of diagonal cracks, or an entirely new shear carrying 
mechanism develops which is capable of sustaining further load in a cracked beam. 
 The diagonal cracking load originating from flexure and shear is usually much 
smaller than would be expected from principal stress analysis and the tensile strength of 
concrete. This condition is largely due to  
 

1. the presence of shrinkage stresses,  
2. the redistribution of shear stresses between flexural cracks, and  
3. the local weakening of a cross section by transverse reinforcement, which 

causes a regular pattern of discontinuities along a beam.  
 
In the early stages of reinforced concrete design, diagonal cracking was considered to 
be undesirable. However, it is now recognized that diagonal cracking under service 
load conditions is acceptable, provided that crack widths remain within the same limits 
accepted for flexure. 
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Figure 4.4 Trajectories of principal stresses in a homogeneous isotropic beam 

 
4.3.2 Equilibrium in the Shear Span of a Beam 
 Figure 4.5(a) shows part of a simply supported beam over which the shear force is 
constant. The internal and external forces that maintain equilibrium for this free body, 
bounded on one side by a diagonal crack, can be identified. It may be seen that the total 
external transverse force V, is resisted by the combination of 
 

1. a shear force across the compression zone Vc, 
2. a dowel force transmitted across the crack by the flexural reinforcement Vd, and 
3. the vertical components of inclined shearing stresses va transmitted across the 

inclined crack by means of interlocking of the aggregate particles. 
  sin  aa vV  

 
 To simplify the equilibrium statement, we assume that shear stresses transmitted 
by aggregate interlock can be lumped into a single force G, whose line of action passes 
through two distinct points of the section (see Figure 4.5(b)). With this simplification 
the force polygon in Figure 4.5(c) represents the equilibrium of the free body. This 
condition can also be stated in the form 
 
  dac VVVV   

(4.9) 
 
representing the contribution of the compression zone, aggregate interlock, and dowel 
action to shear resistance in a beam without web reinforcement. 
 

Diagonal tension stress 
acting at the mid-height. 
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 The moment of resistance of the beam is expressed by 
 
           jdVTVxM jdxdjdxxx    cotcotcot  

(4.10) 
 
If the contribution of the dowel force toward flexural resistance is ignored (a justifiable 
step for design purposes, particularly in the absence of stirrups the moment of 
resistance simplifies to 
 
      jdTM jdxx   cot  

(4.11) 
 
 It is important to note that the moment and the tension force, related to each other 
in Figure 4.5(b) and Eq. (4.11), do not occur at the same cross section of the beam. It is 
seen that the tension in the flexural reinforcement at distance (x - jd cotα) from the 
support is governed by the moment at a distance x from the support of the beam. The 
increase in the steel stresses clearly depends on the slope of the idealized diagonal 
crack. When α is a little less than 45 degree, jd cotα is nearly equal to d. This must be 
taken into account when the curtailment of the flexural reinforcement is determined 
(see Eq. 28 in Art .17 of the AIJ Standard 1991). 
 

 
Figure 4.5 Equilibrium requirements in the shear span of a beam 
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4.3.3 The Principal Mechanisms of Shear Resistance 
 When the relationship between the external moment and the internal moment of 
resistance given by Eq. (4.11) are combined with the well-known relationship between 
shear and the rate of change of bending moment along a beam, the following modes of 
internal shear resistance result: 
 

  
dx

jdd
T

dx

dT
jd

dx

jdTd

dx

dM
V

)()(
  

(4.12)  
 
 
 
The term jd(dT/dx) expresses the behavior of a true prismatic flexural member in 
which the internal tensile force T acting on a constant lever arm jd changes from point 
to point along the beam, to balance exactly the external moment intensity. The term 
dT/dx, the rate of change of the internal tension force, is termed the bond force, q, 
applied to the flexural reinforcement per unit length of beam. (See also Figure 4.3). If 
the internal lever arm remains constant (a normally accepted assumption of the elastic 
theory analysis of prismatic flexural members) so that   0d jd dx  , the equation of 

perfect "beam action" is obtained thus 
 

  V= 
dx

dT
jd  = q jd 

(4.13) 
 
The same result was obtained in Eq. (4.7)’, where q, the bond force per unit length of 
the member at and immediately above the level of the flexural reinforcement, was 
termed the shear flow. It is evident that such simplification of behavior is possible only 
if the shear flow or bond force can be efficiently transferred between the flexural 
reinforcement and the concrete surrounding it. It gives rise to the phenomenon of bond. 
 
 When for any reason the bond between steel and concrete is destroyed over the 
entire length of the shear span, the tensile force T cannot change, hence 0dT dx  . 
Under such circumstances the external shear can be resisted only by inclined internal 
compression. This extreme case may be termed "arch action". Its shear resistance is 
expressed by the second term on the right-hand side of Eq. (4.12), namely, 
 

  
dx

jdd
C

dx

jdd
TV

)()(
  

(4.14) 
 
Here the internal tension T is replaced by the internal compression force C, to signify 
that it is the vertical component of a compression force, with constant slope, which 
balances the external shear force. 

Beam 
action 

Arch 
action 
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 In a normal reinforced concrete beam in which (owing to slip, cracking, and other 
causes) the full bond force q required for beam action cannot be developed, the two 
mechanisms, as expressed by Eq. (4.12), will offer a combined resistance against shear 
forces. The extent, to which each mechanism contributes to shear resistance at various 
levels of external load intensity, depends on the compatibility of deformations 
associated with these actions. 
 
4.3.3.1 Beam Action in the Shear Span 
 Cracks induced by load on a simply supported beam divide the tension zone into a 
number of blocks (see crack patterns in Figure 4.7). Each of these blocks may be 
considered to act as a cantilever with its base at the compression zone of the concrete 
and its free end just beyond the flexural tension reinforcement. Because of the analogy, 
the blocks will be referred to as "concrete cantilevers." (These cantilevers were called 
“comb teeth” in the paper entitled “The Riddle of Shear Failure and Its Solution” by G. 
N. J. Kani, Journal of ACI, Proc. Vol.61, No.4, April 1964, pp.441-467) 
 It was shown in Eq. (4.13) that for perfect beam action to take place, the full bond 
force q must be effectively resisted. It remains to be seen how the concrete cantilevers 
can fulfill such a requirement. The resistance may be examined in more detail if we first 
identify all the actions to which a typical cantilever is subjected. The components of the 
cantilever action (see Figure 4.6) are as follows: 

1. The increase of the tensile force in the flexural reinforcement between adjacent 
cracks produces a bond force, ΔT = Tl - T2. 

2. Provided shear displacements occur at the two faces of a crack, shear stresses 
val and va2 may be generated by means of aggregate interlocking. 

3. The same shear displacements may also induce dowel forces Vdl and Vd2 across 
the flexural reinforcement. 

4. At the "built-in" end of the cantilever, an axial force P, a transverse shearing 
force Vh, and a moment Mc are induced to equilibrate the above-mentioned 
forces on the cantilever. 

 

Figure 4.6 Actions on a concrete cantilever in the shear span of a beam 
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 It will be noticed that the cantilever moment exerted by the bond force, ΔT, is 
resisted by dowel and aggregate interlock forces in addition to the flexural resistance of 
Mc of the concrete. Tests by R.C. Fenwick and T. Paulay have enabled a quantitative 
comparison between these three modes of cantilever resistance. The flexural resistance 
of the concrete depends largely on the tensile strength of the concrete, the stress pattern 
resulting from the actions of P, Vh, and Mc (see Figure 4.6), and the depth sc of the 
critical cantilever section. The depth sc is often quite small, particularly at advanced 
stages of cracking. Beam 5 in Figure 4.7, which shows a series of beams tested by 
Leonhardt and Walther, is a good example of this phenomenon. Experiments conducted 
by R.C. Fenwick and T. Paulay have indicated that in beams of normal dimensions at 
the most 20% of the bond force could be resisted by flexure at the "built-in end" of the 
concrete cantilevers. 
 
 When shear displacement along an inclined crack occurs, a certain amount of 
shear will be transferred by means of the dowel action of the flexural reinforcement. 
Where the bars bear against the cover concrete, the dowel capacity will be limited by 
the tensile strength of the concrete. Once a splitting crack occurs, the stiffness, hence 
the effectiveness, of the dowel action is greatly reduced. This splitting also adversely 
affects the bond performance of the bars. The splitting strength of the concrete in turn 
will depend on the effective concrete area between bars of a layer across which the 
tension is to be resisted. Of particular importance is the relative position of a bar at the 
time the concrete is cast. Because of increased sedimentation and water gain under 
top-cast bars, they require considerably larger shear displacements than bottom-cast 
bars of a beam to offer the same dowel resistance. The basic mechanism of dowel 
action across the shear interface is illustrated in Figure 4.8. 
 
 Tests by H. P. J. Taylor and by R.C. Fenwick and T. Paulay indicated that in 
beams without web reinforcement the contribution of dowel action does not exceed 
25% of the total cantilever resistance. However, dowel action is more significant when 
stirrup reinforcement is used because a flexural bar can more effectively bear against a 
stirrup that is tightly bent around it. Nevertheless, cracks will develop approximately 
parallel to the flexural bars before the stirrups contribute to carrying dowel forces. The 
stiffness of the dowel mechanism depends greatly on the position of a crack relative to 
the adjacent stirrups which would be capable of sustaining a dowel force. Taylor, 
Baumann and Rüsch, and others have studied the characteristics of dowel action in 
beams with pre-formed smooth diagonal cracks. Qualitative load-displacement 
relationships for dowel action are presented in Figure 4.9. When the shear displacement 
is large enough, and the flexural bars are firmly supported on stirrups, dowel forces can 
be transferred by kinking of the bars as studied by A. J. O’Leary. This is particularly 
relevant within plastic hinges where the flexural reinforcement has yielded or along 
joints where sliding shear can occur. 
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Figure 4.7 Crack pattern in beams tested by Leonhardt and Walther 

 

 

Figure 4.8 The mechanism of dowel action across a shear interface 
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Figure 4.9 General dowel shear-dowel displacement relationship 

 
 When the two faces of a flexural crack of moderate width are given a shear 
displacement to each other, a number of coarse aggregate particles projecting across 
such a crack will enable small shear forces to be transmitted. Clearly among many 
variables, the width and coarseness of the crack, the shear displacement, and the 
strength of embedment (i.e., concrete strength), are likely to be the most important. 
Surprisingly, a very considerable force can be transmitted this way. Measurements on 
test beams without web reinforcement (conducted by H. P. J. Taylor and by R.C. 
Fenwick and T. Paulay) indicated that 50 to 70% of the bond force, acting on the 
concrete cantilever shown in Figure 4.6, was resisted by the aggregate interlock 
mechanism. Fenwick demonstrated this convincingly by comparison with a beam in 
which the aggregate interlock mechanism across smooth pre-formed cracks was 
eliminated. 
 The maximum capacity of the three mechanisms of beam action (dowel action, 
aggregate interlock, and the flexural strength of the fixed end of the cantilever) are not 
necessarily additive when failure is imminent. The advance of inclined cracks toward 
the compression zone reduces the “fixed end” of the cantilever considerably. This 
results in the large rotations, particularly at the “free end” of the cantilever, which 
means that the dowel capacity can be exhausted. The formation of dowel cracks and 
secondary diagonal cracks near the reinforcement, visible particularly in beam 8/1 of 
Figure 4.7, affects the aggregate interlock action, which at this stage carries most of the 
load. 
 A sudden reduction of the aggregate interlock force, such as  2av  in Figure 4.6, 

on one side of the cantilever causes imbalance. Such tensile forces normally lead to 
further crack propagation, while it cannot be seen in slender beams. This is referred to 
as diagonal tension failure. It is particularly undesirable because it usually occurs very 
suddenly. Beams 7/1 and 8/1 (Figure 4.7) are good examples of the failure of the beam 
action in the shear span. 
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 We customarily refer to the shear strength of the compression zone of a beam, on 
the assumption that aggregate interlock and dowel actions are not viable means of shear 
resistance. However, recent experiments have shown again that this is not the case. 
Taylor examined the compression zones of the concrete above diagonal cracks and 
found that the shear carried in this area (Vc in Figure 4.5) increased slowly to a 
maximum of 25 to 40 % of the total shear force across the section as the beams 
approached failure. The remainder of the shear must therefore be carried below the 
neutral axis in the tension zone of the beam. After the breakdown of the aggregate 
interlock and the dowel mechanisms, the compression zone is generally unable to carry 
the increased shear, in addition to the compression force resulting from flexure, and the 
beam fails. 
 
4.3.3.2 Arch Action in the Shear Span 
 The second term of Eq. (4.12) signifies that shear can be sustained by inclined 
compression in a beam, as illustrated in Figure 4.10. Arch action requires substantial 
horizontal reaction at the support, which is provided by the flexural reinforcement in a 
simply supported beam. This imposes heavy demands on the anchorage, and indeed it 
accounts for the most common type of arch failure. In the idealized beam of Figure 
4.10, full anchorage is assumed, thus a constant tensile force can develop in the bottom 
reinforcement over the full length as required. The shaded area indicates the extent of 
compressed concrete outside which cracks can form. By considering requirements of 
strain compatibility, and by assuming linear strain distribution across the full concrete 
section, a unique position of the line of thrust may be determined. The total extension 
of the reinforcement between anchorages must equal the total elongation of the concrete 
fiber situated at the same level. Where the concrete is cracked, the elongation can be 
derived from linear extrapolation of the strains in the compression zone. Having 
satisfied these criteria, the translational displacement of the steel relative to surrounding 
concrete (i.e., the slip), can be determined. A typical slip distribution along the shear 
span is shown in Figure 4.10. 

 

Figure 4.10 Slip associated with arch action in an idealized beam  
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Three points worth noting emerged from the study of such an idealized beam. 

 
1. Arch action can only occur at the expense of slip (i.e., of complete loss of bond 

transfer). 
2. The translational displacements required for complete arch action increase 

toward the load point and attain a value approximately equal to the total 
extension of the steel in the shear span. 

3. In the vicinity of the load point the line of thrust, hence the neutral axis, rises 
well above the position predicted by standard flexural theory. 

 
 In real beams, particularly when deformed bars are used, no appreciable slip can 
take place between steel and concrete. The translational displacement occurs mainly as 
a result of  

1. the flexural deformation or the failure of the concrete cantilevers formed 
between diagonal cracks and  

2. the bending of the compression zone above the top of these cracks. 
 
Also in a real beam, the transition from beam action to arch action is gradual, and 
this can be determined if the development of the tension force along the reinforcement, 
hence the variation of the internal lever arm in test beams, is observed. The full strength 
of arch and beam actions cannot be combined because of the gross incompatibility of 
the deformations associated with the two mechanisms. 
 The available strength from arch action is largely dependent on whether the 
resulting diagonal compression stresses can be accommodated. For given steel force 
and beam width, the intensity of the diagonal compression stresses depends on the 
inclination of the line of thrust. The shear span to depth ratio (a/d in Figure 4.10) is a 
measure of this inclination. It can also be expressed in terms of the moment and the 
shear as follows: 
 

  
Vd

M

dV

aV

d

a
  

(4.15)  
 

In the AIJ Standard, the above factor is expressed as 
Qd

M
, see 

1

4




Qd

M
  in AIJ -Eq. 

22 (Section 7.2.1 in this classnote). 
 
Excluding loss of anchorage, arch failures may be placed in three groups. 
 

1. After the failure of the beam action, the propagation of an inclined crack 
reduces the compression zone excessively. A slope is reached when the 
available area of concrete in the vicinity of the load point becomes too small to 
resist the compression force and it crushes. This is known as a “shear 
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compression failure”. Beams 4, 5, and 6 of Figure 4.7 are good examples of 
such a failure. 

2. The line of thrust may be so eccentric that a flexural tension failure occurs in 
the "compression zone." An example of such behavior is beam 7/1 in Figure 4.7. 
The failure is very sudden. 

3. When the line of thrust is steeper (i.e., when a/d is less than 2), considerable 
reserve strength may be available owing to more efficient arch action. Failure 
may eventually be due to diagonal compression crushing or splitting, which 
can be likened to a transverse splitting test performed on a standard concrete 
cylinder (see beam 1 in Figure 4.7). Frequently the flexural capacity of a beam 
is attained because the arch mechanism is sufficient to sustain the required shear 
force (see beam 2 in Figure 4.7). 

 
 It is important to note that arch action in beams without web reinforcement can 
occur only if loads are applied to the compression zone of the beam. This was the case 
for all the test beams in Figure 4.7. The load situation may be more serious when a 
girder supports secondary beams near its bottom edge. It is evident that effective arch 
action cannot develop in a beam when the external shear force is transmitted to the 
tension zone. The arch action must be the dominant mode of shear resistance in deep 
beams loaded in the compression zone. 
 
4.3.4 Size Effects 
 For obvious reasons most shear tests have been carried out on relatively small 
beams. Recently it has been found that the results of such laboratory tests cannot be 
directly applied to full size beams. The shear strength of beams without web 
reinforcement appears to decrease as the effective depth increases as shown in Figure 
4.11. Kani, in his experiments, has demonstrated this very effectively. If proper scaling 
of all properties is taken into account, the effect of the absolute size of a beam on its 
shear strength is not so large. Dowel and aggregate interlock actions in particular can be 
considerably reduced in large beams if aggregate and reinforcing bar sizes are not 
correctly scaled. Experiments at the University of Stuttgart indicated, however, that the 
relative loss of shear strength of large beams was not significant when beams with web 
reinforcement were compared. 
 
---------------------------------------------------------------------------------------------------------
- 
M. P. Collins, University of Toronto, has conducted shear tests using large scale beams with section of, 
for example, 295mm × 1,000 mm. He pointed out that: 
1.  As a reinforced concrete element is scaled up in size, the crack spacings and hence the crack widths, 

will increase. 
2.  An increase in the crack width will reduce the average tensile stress that can be carried in the 

cracked concrete, and hence will reduce the shear stress at failure. 
3.  This effect is still ignored in many country codes. 
 
---------------------------------------------------------------------------------------------------------
- 
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Figure 4.11 Shear stress at failure as a function of the shear span to depth ratio 

 
4.3.5 Shear Failure Mechanisms 
 Shear failure mechanisms of simply supported beams, loaded with point loads of 
the types previously described, fall into three approximate bands of a/d ratios. These 
can be observed on the beams tested by Leonhardt and Walther (Figure 4.7). The failure 
moments and the ultimate shear forces for the 10 beams of Figure 4.7 are plotted 
against the shear span to depth ratio in Figure 4.12. The beams contained no stirrups 
and the material properties of all specimens were nearly identical. 
 

I. Failure of the beam mechanism at or shortly after the application of the 
diagonal cracking load, when 3 < a/d < 7. The subsequent arch 
mechanism is not capable of sustaining the cracking load. 

II. Shear compression or flexural tension failure of the compression zone 
above diagonal cracking load. This is usually a failure of arch action when 2 
< a/d < 3. 

III. Failure by crushing or splitting of the concrete (i.e., a failure of arch 
action), when a/d < 2.5. 

 
Figure 4.12 reveals that when 1.5 < a/d < 7, the flexural capacity of the beams is not 
attained. Hence shear governs the design. 
 By considering the beam action of shear resistance, as outlined previously, it 
becomes clear that the magnitude of the bond force, ΔT, transmitted between two 
adjacent cracks, is limited by the strength of the cantilever block (Figure 4.6) formed 
between the cracks. By assuming that the strength of each cantilever in the shear span 
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of a prismatic beam is the same, ΔTmax = qmax Δx, the maximum moment that can be 
developed by beam action becomes 
 
     max max max maxxM jdT jd q q jd x     

 (4.16) 
 
where qmax is the maximum bond force per unit length of beam, Δx is the distance 
between cracks and x is the distance of the maximum moment section from the support. 
When this moment is less than the flexural strength of the section Mu, shear strength 
associated with beam action governs the capacity of the beam. From Eq.  (4.16) it is 
evident that the moment sustained by the concrete cantilevers of the beam action in the 
shear span increases with the distance x from the support. Beam action also implies 
constant shear strength, limited by qmax, which is independent of the shear span to 
depth ratio a/d. 
 The flexural and shear capacity of beam action are designated by dashed lines in 
Figure 4.12. When compared with observed ultimate values, they demonstrate that 
beam action governs the behavior when a/d is larger than 3. When a/d is larger than 7, 
the shear strength exceeded the flexure strength of these beams; hence flexure governs 
their strength. The discrepancy between the theoretical flexural capacity and the 
observed shear strength of these beams is indicated by the shaded area in Figure 4.12. 
The flexural steel content for the beams represented in Figure 4.12 was 2%. 
 

 

Figure 4.12 Moments and shears at failure plotted against shear span to depth ratio 

 

Eq. (4.16) 
in this class 
note. 
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4.4 The Mechanism of Shear Resistance in Reinforced Concrete Beams 
with Web Reinforcement 

 
4.4.1 The Role of Web Reinforcement 
 The inclusion of web reinforcement such as stirrups does not change 
fundamentally the previously described mechanism of shear resistance. The concrete 
cantilevers, which are the principal elements of the beam mechanism, will act as tied 
cantilevers. In addition to the bond force, ΔT, resisted by the combination of aggregate 
interlock, dowel, and flexural actions of the cantilevers, another bond force ΔT' can be 
sustained by what is traditionally termed "truss action". In this truss, the cantilevers act 
as diagonal compression members (see Figure 4.13). 
 The presence of stirrups is beneficial to beam action in a number of other aspects, 
as well. Stirrups contribute to the strength of the shear mechanisms by the following 
means: 
 

1. Improving the contribution of the dowel action. A stirrup can effectively 
support a longitudinal bar that is being crossed by a flexural shear crack close 
to a stirrup. 

2. Suppressing flexural tensile stresses in the cantilever blocks by means of the 
diagonal compression force Cd, resulting from truss action. 

3. Limiting the opening of diagonal cracks unless stirrup steel yields, thus 
enhancing and preserving shear transfer by aggregate interlock. 

4. Providing confinement, when the stirrups are sufficiently closely spaced, thus 
increasing the compression strength of localities particularly affected by arch 
action. 

5. Preventing the breakdown of bond when splitting cracks develop in anchorage 
zones because of dowel and anchorage forces. 

 
It may be said that suitably detailed web reinforcement will preserve the integrity, 
therefore the strength, of the previously defined beam mechanism Vc, allowing 
additional shear forces Vs to be resisted by the truss mechanism. 
 

 

Figure 4.13 Concrete cantilevers acting as struts 
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4.4.2 The Truss Mechanism 
 The analogy between the shear resistance of a parallel chord truss and a 
web-reinforced concrete beam is an old concept of concrete structures. The analogy, 
postulated by Mörsch at the beginning of the century, implies that the web of the 
equivalent truss consists of stirrups acting as tension members and concrete struts 
running parallel to diagonal cracks, generally at 45 degree to the beam axis. The 
flexural concrete compression zone and the flexural reinforcement form the top and 
bottom chords of this analogous pin-jointed truss. The forces in the truss can be 
determined from considerations of equilibrium only. The behavior of the truss is similar 
to the previously defined "perfect beam action" to the extent that it can sustain discrete 
bond forces ΔT' at the hypothetical pin-joints along the flexural reinforcement, thus 
resisting variable external moments on a constant internal lever arm. 
 The deformations associated with beam or arch action and the truss mechanism 
within the beam are not compatible. This strain incompatibility, traditionally ignored, 
becomes progressively less significant as ultimate (i.e., plastic) conditions are 
approached. 

 

Figure 4.14 Internal forces in an analogous truss 

 The analogous truss appearing in Figure 4.14 depicts the general case of web 
reinforcement inclined at an angle β to the horizontal. It will serve to illustrate the 
relation between the external shear force Vs, to be resisted by the truss, and the various 
internal forces. The diagonal compression struts, resisting a force Cd, are inclined at an 
angle α to the horizontal. From the equilibrium force polygon drawn for joint X in 
Figure 4.14, it is evident that 
 
  sin sins d sV C T    

 (4.17) 
 
where Ts is the resultant of all stirrup forces across the diagonal crack. The web steel 
force per unit length of beam is Ts/s, where from the geometry of the analogous truss, 
the spacing between stirrups is 
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    cotcot  jds  
(4.18) 

 
From Eqs.  (4.17) and (4.18), the stirrup force per unit length is 
 

  
s

fA

jd

V

s

T svss 



)cot(cotsin 

 

(4.19) 
 
where Av is the area of the web reinforcement spaced at a distance, s, along the beam 
and fs is the stirrup stress. 
 For design purposes it is convenient to express shear in terms of nominal stresses. 
The total shear Vu is assumed to be resisted partly by the truss mechanism (Vs) and 
partly by the previously described beam or arch mechanisms (Vc). In terms of stresses, 
this is expressed as 
 
  vu =vc + vs 

(4.20) 
where 

  
db

V

jdb

V
v

w

s

w

s
s   

(4.21) 
 
Combining Eqs. (4.19) and (4.21), the required area of web reinforcement at ideal 
strength, when fs = fy becomes 
 

  
y

ws
v f

bsv
A

)cot(cotsin  
  

(4.22) 
 
 The diagonal compression force Cd is assumed to generate uniform stresses in the 
struts of the truss. The struts have an effective depth of s' = s sinα = jd sinα (cotα + 
cotβ). Thus the diagonal compression stresses due to the truss mechanism can be 
approximated by 
 

  
)cot(cotsin)cot(cotsin' 22  




 s
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V
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f  

(4.23) 
 
For the case of vertical stirrups, β= 90 degree, and compression diagonals atα=45 
degree, Eqs. (4.22) and (4.23) can be simplified as follows: 
 

  
y

w
sv f

bs
vA   
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(4.22)’ 
  scd vf 2  

(4.23)’ 
 
 The slope of the compression diagonals has been traditionally assumed to be 45 
degree to the beam axis. It has been observed, however, that the slope of the diagonal 
cracks at the boundaries of the struts vary along the beam. Studies based on strain 
energy considerations show that the optimum angle of the struts is about 38 degree. 
From Eq. (4.22) it is evident that the web steel demand is reduced as the angle of the 
compression diagonals becomes less than 45 degree, because more stirrups are 
encountered across a flat crack. This is often the case, and design equations based on 
compression struts at 45 degree are conservative. On the other hand, the struts are 
steeper in the vicinity of point loads. However, in these areas local arch action boosts 
the capacity of the other shear carrying mechanisms. Generally in a beam having high 
concrete strength and low web steel content, representing a less rigid tension system, 
the compression struts are at an angle less than 45 degree, hence the stirrups are more 
effective than in a 45 degree truss. Conversely with large web steel content and low 
concrete strength, the load on the concrete will be relieved at the expense of larger 
stirrups participation. 
 
 When assessing the compression strength of the web of beams, it is necessary to 
consider the following additional factors: 
 
1. The diagonal struts are also subjected to bending moments if they participate in 

beam action (see Figure 4.6). Secondary moments are introduced because of the 
absence of true "pin joints" in the truss. 

2. Stirrups transmit tension to these struts by means of bond, so that generally a biaxial 
state of strains prevails. The compression capacity of concrete is known to be 
drastically reduced when simultaneous transverse tensile strains are imposed. 

3. The compression forces are introduced at the "joints" of the analogous truss, and 
these forces are far from being evenly distributed across the web. Eccentricities and 
transverse tensile stresses may be present. 

4. Some diagonals may be inclined at an angle considerably smaller than 45 degree to 
the horizontal, and this will result in significant increase in diagonal compression 
stresses. 

 
Sometimes a set of stirrups, crossed by a continuous diagonal crack, yields; 
 
1. unrestricted widening of that crack then commences, and  
2. one of the important components of shear resistance, aggregate interlock action, 

becomes ineffective. 
3. The shear resistance so lost cannot be transferred to the dowel and the truss 

mechanisms, because they are already exhausted, 
4. hence failure follows, with little further deformation. 
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To prevent such nonductile failure it is good practice indeed, in seismic design it is 
mandatory, to ensure that stirrups will not yield before the flexural capacity of the 
member is fully exhausted. 
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5 DESIGN FOR BOND 
5.1 Introduction 
 For main longitudinal reinforcement in structural concrete members, deformed 
bars are normally used. This is because it is easier to ensure the development of bond 
and the anchorage of such main reinforcement compared with the case of plain bars. 
Even if the anchorage of the plain bars is secured by hooks or some other measures, 
still it is not so adequate to use plain bars for the main reinforcement of beams and 
columns. This is because, when plain bars are used instead of deformed bars, flexural 
cracks are more concentrated in a particular section of the member and such cracks 
opens wider. Hence the use of plain bars is not so convenient from the view point of the 
durability especially related to the corrosion of steel and may also lead to a significant 
reduction of member stiffness after cracking.  
 For the above reasons, in the ACI code (ACI318-08), it is specified that deformed 
bars shall be used for reinforcement, while plain bars are allowed for spirals or 
prestressing steel. In case of the New Zealand code (NZS3101:1995), plain bars are 
also permitted for stirrups and ties in addition to spirals and tendons. This is because 
the minimum diameters of bends required for plain bars are half of those required for 
deformed bars, and hence the stirrups and ties with plain bars can be bent with smaller 
diameter around the main reinforcement than those with deformed bars. Thus, for 
stirrups and ties, the use of plain bars may be more effective in order to constrain 
tightly the main longitudinal reinforcement than the use of deformed bars. Such 
effective constraint of longitudinal reinforcement is essential to prevent buckling of 
longitudinal reinforcement in an early stage of seismic loading more effectively. 
 In AIJ standard, plain bars used to be permitted even for main longitudinal 
reinforcement (see Art 14 for beams and Art 15 for columns in the AIJ Standard:1991). 
However, plain bars are seldom used for main longitudinal bars in recent years and 
round bars are not allowed for longitudinal reinforcement in 1999 AIJ standard. Also, 
in the AIJ structural design guidelines (1990), the use of deformed bars is specified for 
main longitudinal reinforcement. 
 
5.2 Basic Theory for Bond 
 If we consider a simply supported beam subjected to a concentrated load as shown 
in Figure 5.1, the relation between M1 and M2 acting at the two cracked sections can be 
expressed as M2 = M1 + ΔM. The moment, M, can be expressed as M = T jd. By 
transforming this equation, the tension force in the reinforcement can be expressed by 
 

  
dj

M
T  

(5.1) 
 
The increment of tension force in the reinforcement from section 1 to section 2, ΔT can 
be expressed as 
 
  xdT b   )(  

(5.2) 
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where bd  is the bar diameter and   is the bond stress. 

 

 
Figure 5.1 Average flexural bond stress (J.G. MacGregor, ‘Reinforced Concrete’, Prentice Hall, 

1988) 

 
If we assume the perfect beam action discussed in the section 2.2.3, the internal lever 
arm, jd, is constant. In this case, from Eq. (5.1), the increment of tension force T  
can be expressed as 
 

  
dj

M
T


  

(5.3) 
From Eqs. (5.2) and (5.3), 
 

  djd
X

M
b  )(




 

(5.4) 
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From the free body diagram in Figure 5.1(c), XVM  . Substituting this into Eq. 
(5.4), 
 
  djdV b  )(  

(5.5) 
 
By transforming Eq. (5.5), 
 

  
djd

V

b )(
  

(5.6) 
 
Eq. (5.6)) corresponds to the following formula presented in the AIJ Standard,  
 

  aa f
j

Q



  

(AIJ-27) 
Notation: 

Q = design shear force; design shear for the short-term loading shall conform to 
(3) of Item 2 in Art. 16 or (2) of Item 3 in Art. 16 
j = distance between tensile and compressive resultants of a flexural section and 
may be assumed to be (7/8)d 
  = sum of perimeter of tensile reinforcing bars 

af  = allowable bond stress (see Table 6, Art. 6). 
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6  SHEAR DESIGN OF RC MEMBERS BASED ON ‘DESIGN GUIDELINES 
FOR EARTHQUAKE RESISTANT REINFORCED CONCRETE BUILDINGS 
BASED ON INELASTIC DISPLACEMENT CONCEPT’ (1997) 
 
6.1 Fundamental concept 
6.1.1 Plastic theory 
6.1.1.1 The lower bound theorem 
 If the load has such a magnitude that it is possible to find a stress distribution 
corresponding to stresses within the yield surface and satisfying the equilibrium 
condition and the statistical boundary conditions for the actual load, then this load will 
not be able to cause collapse of the body. 
 
6.1.1.2 The upper bound theorem 
 If various geometrically possible strain fields are considered, the work equation 
can be used to find values of the load carrying capacity that are greater than or equal to 
the true one. 
 
6.1.1.3 Scope 
 Philosophy of shear design in this guidelines is summarized as follows. 

1.  Ensure that the reliable shear strength is larger than design shear when the 
failure mechanism is reached. 

2.  The deformation capacity at the plastic hinge is considered in shear design. 
3.  Prevent a bond splitting failure. 

 
6.1.1.4 Shear resisting mechanisms 
 Arch action and truss action shown in Figure 6.1 are assumed to be the 
mechanisms resisting the shear force in this section. Use of the lower bound theory 
implies that the equilibrium condition is satisfied but the compatibility of 
deformation in two actions is neglected. 
 
 

 
(a) Arch action    (b) Truss action 

 

 
(c) Detailed truss action  (d) Equilibrium at shadow point in (c) 

Figure 6.1 Idealized shear resisting mechanisms based on arch and truss actions 

Bond force 

Force of 
stirrups Compressive force of 

concrete strut
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6.2 Design for shear of beams and columns 
 
6.2.1 Code equations for shear strength of beams and columns 
 
6.2.1.1 Equations for shear strength 
 Shear strength can be expressed as the minimum of the following three equations. 
Same equations shall be used to members with axial force . 

 
5

tan
2

we wy
u we wy e e B

p b D
V p b j


    


   

        
 

 

(6.1) 
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(6.2) 

 ee
B

u jbV 

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2


 

(6.3) 
 
where 

b  is the width of the member as shown in Figure 6.2. 
D  is the depth of the member as shown in Figure 6.2. 

eb  is the effective width for the truss actions. 

ej  is the effective depth and taken as the distance between the outermost stirrups. 

wy  is the reliable strength of web reinforcement. 

sb

a
p

e

w
we   is the effective stirrup ratio where wa  is the section area of a set of 

stirrups, s  is the spacing of stirrups. 

pR202   is the coefficient to express the angle of compression strut of truss 

mechanism where pR  is the rotation angle at the plastic hinge. pR  can 

be assumed 0 when the plastic hinge is not expected. 
  is the effective compressive strength of concrete expressed as 

  0201   pR  

0 is the effective compressive strength at non-hinge region expressed as 

200
7.00

B
   where B  is the compressive strength of concrete in 

N/mm2. 
  is the effective depth coefficient for truss action expressed as 

1
2 4

s

e e

bs

j j
     

sb  is the maximum horizontal distance of web reinforcement as shown in Figure 

6.2. If web reinforcement is placed evenly in the section, sb  can be 



Advanced RC Structures (2017) 
S. Kono 

 41

expressed as
1

e
s

s

b
b

N



 where sN  is the number of intermediate web 

reinforcement. 
  is the angle of compression strut of arch mechanism. 

0tan   when the member is subjected to tensile force. 

L

D

2
9.0tan   when 5.1

D

L
 and the member is subjected to 

compressive force or no axial force. 

D

LDL 


22

tan  when 5.1
D

L
 and the member is subjected to 

compressive force or no axial force. 
 

where L  is the clear length of member as shown in Figure 6.3. 
 

If the member does not have a plastic hinge, the web reinforcement may be reduced to 
 pR101  times the amount necessary for the plastic hinge region. 

 

 
(a) No intermediate stirrups (b) Intermediate stirrups (c) Octagonal stirrups 

 
(d) Slabs on both sides (e) Slab on one side 

Figure 6.2 Definition of dimensions related to section geometry 

 
Figure 6.3 Definition of column clear height 
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6.2.1.2 Amount of web reinforcement inside/outside the plastic hinge region 
Amount of web reinforcement outside the plastic hinge region may be reduced by a 

factor of  1 10 pR . 

 
6.2.2 Explanations on shear strength without plastic hinge rotation 
6.2.2.1 Shear capacity of truss action, Vt, and the angle of compressive strut,  
 
 Assuming the web reinforcement has yielded, the shear capacity from truss 
mechanism, tV , is expressed as Eq. (6.4) by considering the Figure 6.4, 
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

 

(6.4) 

 
Figure 6.4 Equilibrium of shear force in truss action 

Angle   should take a certain range of value from the following three reasons. 
 
(a) Effect of stress transfer across cracks 

As   becomes smaller, or cot  becomes greater, compressive stress transferred 
across cracks needs to become greater and the stress transfer becomes difficult. 
Upper limit of cot  is set 2 in this guidelines, that is, 
 2cot   

(6.5) 
 
(b) Effect of strain of longitudinal reinforcement 

Note that the nominal yield strength of longitudinal reinforcement should be less than 
390 MPa as the guidelines define. If the yield strength is larger than 390 MPa, the 
crack width tends to be larger and the compressive stress transfer across cracks 
becomes difficult. In this case, the upper limit of cot  is suggested to be smaller 
than 2.0. However, this effect is not taken into account in this code. 

 
(c) Effect of compressive stress of compression strut 

From the equilibrium shown in Figure 6.5(b), 
 

      222
coscot1  eetwyw jba   

(6.6) 
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Substituting Eq. (6.4) into Eq. (6.6), 

      222 coscot1cot  eeteewywe jbjbp   

(6.7) 

 
   (a) Free body diagram  (b) Equilibrium at nodal point 

Figure 6.5 Equilibrium at a nodal point in truss action 
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(6.8) 
Solving Eq. (6.8) for 21 cot  , 

 
wywe

t

p 


  2cot1  

(6.9) 
Solving Eq. (6.9) for t  and substituting it into Bt  0  
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(6.10) 
Then, 

 1cot 0 
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(6.11) 
 
Here the equations are summarized. 
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Substituting Eq. (6.5) into (6.4), 
 eewywet jbpV  2  

(6.12) 
Substituting Eq. (6.11) into (6.4), 

 10 
wywe

B
eewywet p

jbpV



  

(6.13) 
 
Shear capacity can be expressed by the smaller of Eqs. (6.12) and (6.13). Two 
equations are expressed by Line OA and Line OABC in Figure 6.6(a). Line AB, or Eq. 
(6.13), can be approximated by the straight line as, 
 

 ee
wyweB

t jb
p

V 



3

0 
 

(6.14) 
 
Line OABC has a negative slope after Point B since the web reinforcement was 
assumed to yield. However, if the amount of web reinforcement is greater than Point B, 
the compression strut reaches compressive strength before yielding of the web 
reinforcement. For this reason, the shear capacity after Point B is constant and 
expressed as, 

 ee
B

t jbV 
2
0

 

(6.15) 
Equations for three shear capacities are shown in Figure 6.6(b). 

 
(a) Equations (6.12) and (6.13)  (b) Three design equations 

Figure 6.6 Shear capacity due to truss action 

Eq. (6.12) 
Eq. (6.13) 

Eq. (6.12) 

Eq. (6.14) 
Eq. (6.15) 
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Figure 6.7 Effective region in truss action 

 
6.2.2.2 Shear capacity from arch action, Va 
From Eq. (6.10), the compressive stress in the compressive strut in truss action is 
 

 



 2cot1 wywe
t

p
 

(6.16) 
 
This can be expressed as Figure 6.8. When 2cot  , that is, Bt  0 , the 

remaining axial compressive strength of the compressive strut, a , can be expressed as 

 

 



 wywe
Ba

p 


5
0  

(6.17) 

 
Figure 6.8 Compressive stress due to truss action 

Bt  0  
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(a) Realistic force flow 

 
    (b) Simplified model   (c) Equilibrium 

Figure 6.9 Shear capacity due to arch action 

 
The realistic stress flow in Figure 6.9(a) is modeled as Figure 6.9(b) for simplicity and 
shear capacity based on the arch action is expressed as; 
 

 



 tan
2

5
tan

2 0









 





DbpDb
V wywe

Baa  

(6.18) 

where 
D

LDL 


22

tan  from 
 

2
tan

tan 2

D

L D






 which is geometrically 

derived from Figure 6.9(b).  As shown in Figure 6.10, tan  is asymptotically 
L

D

2
 

as 
D

L
 becomes greater and the equation for tan  is conservative when 5.1

D

L
. 
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Figure 6.10 Simplified equation for tan  

 



 tan
2

5
2 0









 


Dbp
jbpV wywe

Beewyweu  

(6.19) 

 ee
wyweB

u jb
p

V 



3

0 
 

(6.20) 

 ee
B

u jbV 



2
0 

 

(6.21) 

2 2

tan
L D L

D
  




Advanced RC Structures (2017) 
S. Kono 

 48

???  Why do we take a depth of arch as D/2? 
Assume that the depth of arch is x . Then the width of triangle under hydrostatic 
pressure, y , is tanx  . To maximize aV , tany x   needs to be maximized. 

 
Figure 6.11 Depth of arch 

 
Assume that the depth of arch is x . Then the width of triangle under hydrostatic 
pressure, y , is tanx  . To maximize aV , tany x   needs to be maximized. 

 
From regular triangle,  
 

 tan
tan

D x

L x








, and hence 
 2 4

tan
2

L L x x D

x


   
 . 

(6.22) 
 
Since y  is positive, the following may be obtained. 
 

 
 2 4

2

L L x x D
y

   
  

Function y  becomes maximum when  2 4L x x D   takes maximum, which 

happens at 
2

D
x  . This can be understood by thinking the relation between the 

rectangle and triangle. By substituting 
2

D
x   in (6.22), the angle of arch normally 

takes  
 

  2 21
tan

2
L D L     

 
This can be also understood from the geometry in Figure 6.11. 
 

x 
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The relation between shear strength and the web reinforcement is shown in Figure 6.12. 

Arch action diminishes when 
5

we wy

B

p  


 . 

 

 
(a) Shear capacity and amount of stirrups (b) Reduction of shear capacity due to plastic hinge rotation 

Figure 6.12 Design diagram for ductile member 

6.2.3 Truss mechanism at a transition region  
 
Pending. 河野進書く。 
 
 

 
 
 
 

(a) Truss action in a beam  (b) Stress concentration near Point F 

Figure 6.13 Angle of compression struts in truss action 

Eq. (6.1) 

Eq. (6.2) 
Eq. (6.3) 

Eq. (6.1) 

Eq. (6.2)

Eq. (6.3) 

Stress 
concentration 

Transition 
zone

Plastic hinge  
region 1.5D 

Stirrups ratio wep  

Stirrups ratio wenp  

Arch action 

Truss 
action 
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6.2.4 Reduction of shear capacity due to plastic hinge rotation 
 
Shear transfer becomes difficult at the plastic hinge region from the following two 
reasons. 
 Reduction of effective compressive strength of concrete. 

Concrete compression strut needs to form in the cracked region as shown in 
Figure 6.14 and the compressive strength of concrete is considered less than that 
of cylinder test. Hence, the compressive strength is reduced by a factor, 0 , as 

shown in Figure 6.15(a) as a function of plastic hinge rotation, pR . Although 

0  may also be a function of crack width, this effect is neglected for simplicity. 

 
 Change of angle of compressive strut of truss action. 

In non-plastic hinge region, cot  is limited to be less than 2.0. However, 
widths of diagonal cracks become so large in the plastic hinge region that the 
compressive stress is difficult to transfer across cracks. Hence, the upper limit of 
cot ,  , is reduced as shown in Figure 6.15(b) as a function of plastic hinge 

rotation, pR . If 0.05pR  rad, angle of compression strut in truss action is 

fixed to 45 degrees. 
 

   
(a) Shear cracking    (b) Transfer of compressive force across cracks 

Figure 6.14 Concrete compression strut 

 

 
(a) Effective concrete compressive strength factor,   (b)   or upper limit of cot  

Figure 6.15 Assumption related to plastic deformation 



  
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6.2.5 Validation of the equations 
 Validation of the equations is shown in Figure 6.16. The ordinate is the ratio of 
experimental shear strength, expV , and the computed ultimate flexural strength, fV , 

and the abscissa is the ratio of computed shear strength, calV , and fV . Mean value and 

coefficient of variation of exp fV V  are 1.31 and 23.1% for 32 specimens with wp =0, 

and 1.22 and 14.5% for 47 specimens with wp >0 and sufficient bond strength. These 

47 specimens were reported to have failed in shear before flexural yielding.  
Figure 6.17 shows the validation of equations in terms of six variables; concrete 

compressive strength, yield strength of web reinforcement, yield strength of 
longitudinal reinforcement, axial load level, web reinforcement ratio, shear span ratio. 
▽ represents specimens with wp =0. 

 

 
(a) wp =0 (32 specimens)  (b) Accuracy of equations for wp =0 

 
 (c) wp >0 and sufficient bond (308 specimens)  (d) 50 out of 308 specimens which failed in 

shear 
       before the flexural yielding 

Figure 6.16 Comparison between the computed shear capacity and experimental results 

 

Shear failure before 
flexural yielding 

Specimens with shear failure 
before flexural yielding 
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   (a) Concrete strength   (b) Yield strength of web reinforcement 

 
 (c) Yield strength of longitudinal reinforcement  (d) Axial load level 
 

 
  (e) Web reinforcement ratio    (f) Shear span ratio 

Figure 6.17 Accuracy of proposed equations for each variable 

Axial load level 

Shear span ratio 
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6.2.6 Design examples 
 
6.2.6.1 Beam ( taken from Section 7.1.1 on p. 381 of Ref. 5 ) 
 Compute the shear strength of the beam shown in Figure 6.18 with the following 
properties. 
 

600 900b D mm mm    

600eb mm  since the beam has slab on both sides. 

740ej mm  

Web reinforcement: 4 legs of D13 were set at 150 mm spacing for plastic hinge 
region, and 200 mm spacing for non-plastic hinge region 
MPaB 42  

0.02pR rad  

MPawy 800  

88LV kN  is the design shear force under the dead load 

1060muV kN  is the design shear force for the ultimate limit state 

200sb mm  

 

        
   (a)  Elevation     (b) Section 

Figure 6.18 Section configuration of a beam 

 
 

2 20 2 20 0.02 1.60pR        

 

     01 20 1 20 0.02 0.7 42 / 200 0.6 0.49 0.294pR             

 

Since 
6000 950

1.5
900

L

D


  , 

 
 

0.9 0.9 900
tan 0.802

2 2 6000 950

D

L
 
  

 
 

 
150 200

1 1 0.831
2 4 2 740 4 740

s

e e

bs

j j
       

 
 

 

beam with slab on 
both sides 
(600x900)

column 
(950x950) 

column 
(950x950) 

L=5050 mm 

6000 mm 

je=740 900 

600 
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Amount of web reinforcement outside the plastic hinge region may be increased by a 

factor of  1 10 0.80pR  . Since spacing at the non-plastic region is 200mm, the 

effective web reinforcement ratio inside the plastic hinge region is recomputed based on 
spacing at 200 0.80 160mm mm   

00529.0
160600

508





sb

a
p

e

w
we  

 

1

5
tan

2

5 0.00529 800 600 900 0.0802
1.60 0.00529 800 600 740 0.294 42

0.831 2

600 900 0.0802
3006 (12.4 25.5)

2

3006 284

we wy
u we wy e e B

p b D
V p b j

kN

kN kN


    


    

        
 

             
 

 
   

 

2722kN
 

2

0.831 0.294 42 0.00529 800
600 740

3 3
2145

B we wy
u e e

p
V b j

kN

          
     



 

 

3

0.831 0.294 42 600 740

2 2
2278

B
u e eV b j

kN

       
   


 

 
 1 2 3min , ,u u u uV V V V =2145kN 

 

88 1.30 1060 1466 2145
L mu

u

V V V

kN kN kN V kN

 
     

   OK!!! 

 
 
Let us compute the shear strength with ACI code. Reduction factor for shear (＝0.85) 
is not considered. 
 
 544 2134 2678n c sV V V kN      

  
' 600 840 42

544
6 6

w cb d f mm mm MPa
Vc kN

 
    

  
2508 800 840

2134
160

v y
s

A f d mm MPa mm
V kN

s mm

 
    

The each term should be positive. Hence, Vu1 is 
wrong. 
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6.2.6.2 Column ( taken from Section 7.1.2 on p. 383 of Ref. 5 ) 
 Compute the shear strength of column shown in Figure 6.19 with the following 
properties. 

950 950b D    
835eb mm  

835ej mm  

Web reinforcement: 4 legs of D13 were set at 100 mm spacing for both plastic 
hinge region and non-plastic hinge region 
MPaB 42  

01.0pR  radian 

MPawy 800  

 

        
   (a)  Elevation    (b) Section 

Figure 6.19 Section configuration of a column 

 
2 20 2 20 0.01 1.80pR        

 

     01 20 1 20 0.01 0.7 42 / 200 0.8 0.49 0.392pR             

 
100 345

1 1 0.837
2 4 2 835 4 835

s

e e

bs

j j
       

 
 

 
0.9 0.9 950

tan 0.164
2 2 2600

D

L
 
  


 

 

beam 
(600x900) 

column 
(950x950) 

L=2600 mm 

je=835 950 

950 
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1

5
tan

2

5 0.00608 800 950 950 0.164
1.80 0.00608 800 835 835 0.392 42

0.837 2

5172

we wy
u we wy e e B

p b D
V p b j

kN


    


    

        
 

             
 


 

 

2

0.837 0.392 42 0.00608 800
835 835 4333

3 3
B we wy

u e e

p
V b j kN

          
      

 
 

3

0.837 0.392 42 835 835
4804

2 2
B

u e eV b j kN
       

      

 
 1 2 3min , , 4333u u u uV V V V kN   

 

       2 2 2 2
1.45 1556 1.41 930 2610X mX Y mY uV V V kN V          OK!!! 

 
Let us compute the shear strength with ACI code. 
 
 924 3658 4582n c sV V V kN      

  
' 950 900 42

924
6 6

w cb d f mm mm MPa
Vc kN

 
    

  
2508 800 900

3658
100

v y
s

A f d mm MPa mm
V kN

s mm

 
    
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6.3 Design for bond 
6.3.1 Code equations 
6.3.1.1 Design bond stress 
 
 Consider design bond stress from the flexural action, f , in Figure 6.21. 

Assuming that the bond stress along a single reinforcing bar at the ultimate condition, 

f , is constant, the equilibrium for length (L-d) in the axial direction is expressed as 

follows. 

   dLd
d

bf
b  




4

2

     (6.23) 

 
Solve the equation for f . 

 

  dL

db
f 




4


       (6.24) 

Here,   may be computed using the following equation. 
 

 

2 ( )

( )

2 ( )

yu

yu y

y

Bothends have plastic hinges

Oneend has a plastic hinge

No plastic hingeis planned

 

 



 

 



  

(6.25) 
Bond stress,  , for reinforcement of the second layer may be computed using the 
following equation. 
 

 

1.5 ( )

0.5 ( )

1.5 ( )

yu

yu y

y

Bothends have plastic hinges

Oneend has a plastic hinge

No plastic hingeis planned

 

 



 

 



 

(6.26) 
 
 

 
Figure 6.20 Stresses acting on a reinforcing bar 

bond stress, τf 

L-d 

tensile stress, σ1 tensile stress, σ2 
difference of tensile stresses on two sides, 
⊿σ＝σ2 - σ1 

db 
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6.3.1.2 Bond strength 
 
Reliable bond strength, bu , is computed with the following equation. 

   stBitbu kb   11.0086.0  (N/mm2) 

(6.27) 
 
where t is the strength reduction factor for the top layer reinforcement and expressed 

as, 
 

 
0.75 / 400 Reinforcement in the top layer of beams

1 Other reinforcement
B

t





 


 (Unit: N/mm2) 

         (6.28) 
 
and ib  is the length ratio of the bond splitting failure and expressed as, 

  min ,i si cib b b  

 1

1

b
si

b

b N d
b

N d


  

 
 2 cs ct b

ci
b

d d d
b

d

 
  

(6.29) 
 
Now, b  is the section width, 1N  the number of reinforcing bars in the first layer, csd  

the thickness of the side cover, ctd  the thickness of the top/bottom cover. The effect of 

web reinforcement, stk , is expressed as follows. 

 

 

 
1

47
56 1

146

w
si w ci si

st

w
ci si

b

N
b p for b b

N
k

A
for b b

d s

 
   

  
 

  (Unit: N/mm2) 

(6.30) 
 
where wN  is the number of legs of web reinforcement ( 2sN  ), wp  web 

reinforcement ratio, wA  the section area of a single reinforcing bar, s  the spacing of 

web reinforcing bar. 
 
Reliable bond strength of the second layer web reinforcement, 2bu , is expressed as, 

   2222 11.0086.0 stBbitbu kb    (N/mm2)  (6.31) 

 2
2

2

b
si

b

b N d
b

N d


       (6.32) 
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where 2N  is the number of reinforcing bars in the first layer. 
 
   wsist pbk 1103 22    (N/mm2)   (6.33) 

Index 2  is supposed to be determined from the bond strength between the first and 
second layer reinforcement but may be determined from the following equation.  
 
 2 0.6         (6.34)) 
 
6.3.2 Effect of bond strength on Shear strength 
Considering the bond strength, shear capacity, buV , is the minimum of Eq. (6.35) and 

Eq. (6.36). 

    2.5
tan

2
bu

bu bu e B
e

bD
V j

b

 
   


     
  

  

(6.35) 

 
2

B
bu e eV b j


  

(6.36) 
 
where 

     
1 2 2

1 2 21 10

bu bu

bu
p bu bu

No plastic hinge possible

R Plastic hinge possible

   
 

   

  
 

   
 

(6.37) 
 

1  is the sum of peripheral length of the first layer web reinforcing bars, 2  is 

that for the second layer.  
 
6.3.3 Design examples 
6.3.3.1 Beam (taken from Section 7.2.1 on p. 385 of Ref. 5 ) 
 Compute the bond strength of the beam shown in Figure 6.21(a) with the 
following properties. 
 

600 1000b D mm mm    
Web reinforcement: 4 legs of D13 were set at 150 mm spacing for plastic hinge 

region, and 200 mm spacing for non-plastic hinge region 
48B MPa   

400y MPa   

1.25 500yu y MPa    

5050L mm  is the clear span length 
915d mm  is the effective depth 
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   (a)  Elevation     (b) Section 

Figure 6.21 Section configurations of a beam 

First, it was assumed that the beam have plastic hinges at both ends. The design bond 
stress for the first layer rebars, 1f , is based on 2 2 500yu MPa      (Eq. (6.25)) 

  
   1

38 2 500
2.3

4 4 5050 915
b

f

d
MPa

L d

   
  

  
 

 
From Eq. (6.28), 
 
  0.75 / 400 0.75 48 / 400 0.87t B       

 
From Eq. (6.29), 

  

   

 

 

1

1

2
min , min ,

2 23.5 13 38 / 2 23.5 13 38 / 2 38600 4 38
min ,

4 38 38

min 2.947,3.13 2.947

cs ct bb
i si ci
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From (6.30), 
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  

 

 
The reliable bond strength, 1bu , is from Eq. (6.27), 

 

 
     

154.2

72.14811.0947.2086.087.011.0086.0

f

stBitbu

MPa

kb








  
Since it is assumed that the beam have plastic hinges at both ends, the design bond 
stress for the second layer rebars, 2f , is based on 1.5 1.5 500yu MPa      

(Eq.(6.26)), 
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   2

38 1.5 500
1.72

4 4 5050 915
b

f

d
MPa

L d

   
  

  
 

 
From (6.32), 
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2

2

600 4 38
2.947

4 38
b
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b

b N d
b

N d

  
  


 

From (6.33), 
     2 2103 1 103 2.947 1 0.00423 16.86st st wk b p        

   河野，SIでやり直し。 
 
From  (6.31), 
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f

b k
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   



  

     

  

 

 

 
6.3.3.2 Column ( taken from Section 7.2.2 on p. 387 of Ref. 5 ) 
 Compute the bond strength of the column shown in Figure 6.22 with the following 
properties. 
 

950 950b D mm mm    
Web reinforcement: 4 legs of D13 were set at 80 mm spacing for both plastic 

hinge and non-plastic region. 
48B MPa   

400y MPa   

1.25 500yu y MPa    

3000L mm  is the clear span length 
860d mm  is the effective depth 

 
First, it is assumed that the beam has a plastic hinge at one end and non-plastic hinge at 
the other end. The design bond stress for the first layer reinforcement, 1f , is based on 

 500 400yu y MPa          (Eq. (6.25)) 

  
 

 
 1

38 500 400
4.0

4 4 3000 860
b

f

d
MPa

L d


 

  
  

 

Since reinforcement in the column is under consideration, t  is automatically 1 from 

Eq. (6.28). 
 
  1.0t   
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   (a)  Elevation    (b) Section 

Figure 6.22 Section configuration of a column 

 
From Eq. (6.29)  
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From (6.30), 
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The reliable bond strength, 1bu , is from Eq.(6.27), 

 

  

  
  

1

1

0.086 0.11

1.0 0.086 4.0 0.11 48 3.13

6.27

bu t i B st

f

b k

MPa

  



  

    

 

 

beam 
(600x900) 

column 
(950x950) 

L=3000 mm 

je=835 950 

950 



Advanced RC Structures (2017) 
S. Kono 

 63

6.4 Design for shear of shearwalls 
6.4.1 Shear cracking strength 
Shear strength of shearwalls can basically be designed using the same except for beams 
and columns. 
 

 scr w w
c

w

t l
V




  

(6.38) 

  
    
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4 1 1
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  


 
 

(6.39) 

  
'

'
w

w

l
u

l D



 

(6.40) 

  wtv
b

  

(6.41) 
where wt  is the thickness of shearwall, wl  the center-center distance between 

boundary columns, 'wl  the clear span between boundary columns, D  the depth of 

boundary columns, b  the width of boundary columns, 0  the compressive stress of 

the shearwall due to vertical load, T  tensile strength of concrete and defined by the 
following equations. 
 

 0.313T B    (N/mm2) 

(6.42) 
河野進 図 

 
 

6.4.2 Shear strength and   for a hinge region 
Shear strength of shearwalls can be expressed as  

  1
cot tan 1

2u w w s sy w wa BV t l p t l        

(6.43) 
where 

  
2

B
s syp

   when 
2

B
s syp

   

(6.44) 
  400sy MPa   when 400sy MPa   

(6.45) 
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tan 1w w

wa wa

h h

l l
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(6.46) 

  
 21 cot s sy

B

p 





  

(6.47) 
  cot 1.0   

(6.48) 
 
where sy  is the yield strength of web reinforcement and, wt  the thickness of 

shearwall, sp  the web reinforcement ratio of shearwall, wh  the height of shear wall 

and may be taken as the story height,   the angle of concrete compression strut, and 

wal  and wbl  are the equivalent shearwall depths for truss and arch mechanisms, 

respectively. 
 
The strength enhancement due to confining effect of boundary columns are taken into 
account in (6.43) by increasing the effective wall width. The effective width of the 
shearwall can be expressed as follows for truss and arch mechanisms, respectively. 
 
 'wa w wal l D l     

(6.49) 
 'wb w wbl l D l     

(6.50) 
 
where 'wl  is the clear width of shearwall, D  is the depth of boundary columns, and 

wal  and wbl  are expressed as: 
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(6.51) 
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(6.52) 
 
where ceA  is the effective area of boundary columns. 

  cc
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(6.53) 
 
where cA  is the area of compression column, ccN  is the axial force. When the 

effective width for the arch mechanism is computed using (6.49), the shear strength of 
side column should satisfy the following equation. 
 

  
 2

2
2

1 tan

2

wa
a tc

wa

l D
V V

l


 
 




 

(6.54) 
where aV  is the shear strength due to the arch mechanism, tan  is the angle of arch 

mechanism, tcV  is the shear strength due to the truss mechanism of the boundary 

column. The effective width of the side column is: 
 

  ce
e w

A
b t

D
    

(6.55) 
where   is the contribution of truss mechanism to the shear strength of shearwall. 
 
 
  o   for 0.005uR   

(6.56) 
   1.2 40 u oR    for 0.005 0.02uR   

(6.57) 
  0.4 o   for 0.02 uR  

(6.58) 
where uR  is the rotation angle of plastic hinge region. 
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6.4.3 Design examples 
6.4.3.1 Shearwall No. 1 ( taken from Section 7.4 on p. 391 of Ref. 5 ) 
 
 Long term vertical load  1070 10486LN tf kN   

 Overturning moment   14430 141414wtM tf m kN m     

 Additional seismic vertical load coming from the frame transverse to the wall
      1070 12564LN tf kN   
 
 0.01uR   

 cot 1.0   
 
 249.0 /B N mm   

 ' 7050wl mm  

 
Boundary columns 
 950cD mm , 816wy kN  , 0.00668wp  , 770tj mm  

Shearwall 
 300wt mm , 2306 /sy N mm  , 0.00663sp  ,  

 Since 0.01uR  , 0 0.7 49.0 / 200 0.455     

 
 
 

 

Figure 6.23 Shearwall 

beam 
(600x1000) 

column 
(950x950) 

column 
(950x950) 7050 mm 
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7 AIJ STANDARD FOR STRUCTURAL CALCULATION OF REINFORCED 
CONCRETE STRUCTURES, REVISED IN 1991 
 
7.1 Introduction 
 The articles which relate to shear and bond in the AIJ standard (1991) are listed in 
the following Sections 7.2 and 7.3. Most parts are extracted from the English version of 
the AIJ standard attached to the “AIJ Structural Design Guidelines for Reinforced 
Concrete Buildings (1994)”, but some modification of words and expressions were 
made for this lecture. Also, some private comments were attached. 
 
7.2 Design for Shear  
 As mentioned in the introduction of this lecture note, in earthquake-resistant 
structures heavy emphasis is placed on ductility. When ductility is essential, the shear 
failure of structural members must be prevented in any case. In recent years, some 
theory-based shear design methods have been proposed, like the Nielsen truss analogy 
and the modified compression field theory by M. P. Collins. However, with respect to 
the shear problem, it seems too complicated to solve with a simple theory so far. 
Therefore, the semi-empirical equations proposed by Ohno and Arakawa, which are 
adopted in the following articles, are still being used. 
 
7.2.1 Art. 16 Shear Reinforcement in Beams and Columns 
Item 1. 
 Design for shear in a rectangular or T-shaped beam or column shall satisfy the 
provisions in this article. Design for bond of longitudinal reinforcing bars shall satisfy 
the provisions of Item 1, Art.17. A member with other sectional shape shall be designed 
in conformance with the provisions above. 
 If the amount of shear reinforcement provided is confirmed to be sufficient by test 
or by other method, (1) and (2) in Item 2, and (3) in Item 3 need not be satisfied. 
 
Item 2. Beams 
(1) Allowable shear force AQ  of beams shall be calculated by the following formula: 
 
   )002.0(5.0  wtwsA pffjbQ   

(AIJ-22) 
 

  where 
1

4




dQ

M
  and 1≦ ≦2 

 
If value of wp  is greater than 1.2 percent, allowable shear force shall be calculated 

with wp  equal to 1.2 percent. 

 
Notation: 

b= width of beam or web width for a T-shaped beam 
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j = distance between compressive and tensile resultants, and may be assumed to be 
(7/8)d 
d= effective depth of beam 

wp  = transverse shear reinforcement ratio = )(/ xbaw  

wa  = sectional area of a set of transverse shear reinforcement 

x = spacing of transverse shear reinforcement 

sf  = allowable shear stress of concrete 

tw f  = allowable tensile stress of transverse shear reinforcement 

  = coefficient as a function of shear span ratio M/Qd 
M = maximum design bending moment in the beam 
Q = maximum design shear force in the beam 

 
(2) When bent-up bars are used with stirrups, equivalent reinforcement ratio, wep , 

given by the following equation, may be used in Eq. (AIJ-22) instead of wp , for a 

region over j/2 on both sides from the ends of bent-up bars. The contribution of bent-up 
bars shall be ignored in a member subjected to load reversals. 
 

  w
tw

t
we p

f

f

jb

a
p 

sin
 

(AIJ-23) 
  for a set of bent-up bars. 
 

Notation: 
a = sectional area of a set of bent-up bars 
  = angle of a bent-up bar with respect to the member axis (ordinarily, 45 
degrees) 

tf  = allowable tensile stress of a bent-up bar for shear 

 
(3) Design shear force DQ  under the short-term loading shall be calculated by Eq. 
(24). If design shear force under lateral loading, calculated in accordance with Item 1 in 
Art. 7, is multiplied by 1.5, Eq. (AIJ-24) need not be used. 
 

  
'

 y
LD

M
QQ  

(AIJ-24) 
 
 

Notation: 

LQ  = shear force under the long-term loading 

 yM  = sum of absolute yield moments at both beam ends 

'  = clear span length of beam. 
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(4) In addition to the provisions above, shear reinforcement shall be provided to 
satisfy the following requirements: 

1) Size of stirrups shall be not less than φ9 mm for plain bars and not less than 
D10 for deformed bars, except in the case of light shear reinforcement. 

2) Spacing of stirrups shall not exceed (1/2)D nor 25 cm for φ9 mm plain bars 
or D10 deformed bars, with or without bent-up bars. If larger size bars are used 
or more effective reinforcement is provided, the spacing may be increased 
within a limit of (1/2)D and 45 cm. 

3) Shear reinforcement ratio shall be not less than 0.2 percent. 
4) Stirrups shall enclose tension and compression reinforcing bars, and shall be 

arranged to confine the core concrete inside the longitudinal bars. The ends of 
stirrups shall be anchored by bending more than 135 degrees or the ends shall 
be welded together. 

5) Angle of bent-up bars with the member axis shall be not less than 30 degrees. 
 
 
Item 3. Columns 
(1) Allowable shear force LAQ  of columns for the long-term loading and allowable 

shear force SAQ  for the short-term loading shall be calculated by the following 

equations: 
 
  sLA fjbQ    

   )002.0(5.0  wtwsSA pffjbQ  

(AIJ-25) 
 
where, 
 

  
1

4




dQ

M
  and 1≦ ≦2 

 
 If the value of wp  is greater than 1.2 percent, allowable shear force shall be 

calculated with wp  equal to 1.2 percent. 

 
Notation:  

b = width of column 
j = distance between tensile and compressive resultants and may be assumed to be 
(7/8)d 
d= effective depth of column 

wp  = transverse shear reinforcement ratio = )(/ xbaw  

wa  = sectional area of a set of transverse shear reinforcement 

x = spacing of transverse shear reinforcement 

sf  = allowable shear stress of concrete 
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tw f  = allowable tensile stress of transverse shear reinforcement 

  = coefficient as a function of shear span ratio M/Qd of column 
M = maximum design bending moment at column end 
Q = maximum design shear force in the column 

 
(2) Design shear force for the short-term loading shall be a shear force at flexural 
yielding of the frame that includes the column under consideration. The value may be 
calculated using Eq. (AIJ-26) if an exact analysis is not performed. If design shear force 
under lateral loading, calculated in accordance with Item 1 in Art. 7, is multiplied by 
1.5, Eq. (AIJ-26) need not be used. 
 

  
'h

M
Q y

D
  

(AIJ-26) 
Notation: 

yM  = sum of absolute yield moments at the top and bottom of a column. If one 

half of the sum of yield bending moments of beams connected to the column top is 
smaller than the yield moment of the column top, the smaller value may be used as 
the yield bending moment of that column top, except for the case of top story 
column. For the top of a top-story column, the sum of yield bending moments of 
beams, instead of half of it, must be compared with the yield moment of the 
column top. 
h' = clear height of column 

 
(3) In addition to the above provisions, shear reinforcement shall satisfy the following 
requirements: 

1) Size of a hoop shall be not less than φ9 mm for plain bars and not less than 
D10 for deformed bars except for the case that spiral reinforcement is used or 
light shear reinforcement is sufficient. 

2) 2)Spacing of hoops shall not exceed 10 cm for φ9 mm plain bars or D10 
deformed bars. In a region more than 1.5 times maximum diameter of the 
column from the top and bottom, the spacing may be increased up to 1.5 times 
the above limit. If larger size bars are used or more effective reinforcement is 
provided, the spacing may be increased to 20 cm, appropriately. 

3) Shear reinforcement ratio shall be not less than 0.2 percent. 
4) Hoops shall enclose longitudinal bars, and shall be arranged to confine the core 

concrete inside the longitudinal bars. The ends of hoops shall be anchored by 
bending more than 135 degrees. 

5) When shear force applied to a column likely reaches to a considerably large 
magnitude, the use of closed-shape hoops, which enclose the longitudinal bars 
and the ends of which are welded to each other, is desirable to ensure ductile 
behavior of the column. 
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---------------------------------------------------------------------------------------------------------
-- 
Comments 
 Figure 7.1 and Figure 7.2 show the background data which gave the basis of Eqs. (AIJ-22) and 
(AIJ-25). The technical term “shear intensity” used for the captions of these figures is defined in Section 
4.2 in this lecture note. The plotted data in those figures were obtained from shear tests on about 1,200 
beams conducted in Japan and overseas. The size effects of the tested beams were taken into account in 
the analyses of the test data as shown by the curves in Figure 7.3, in which the abscissa is for the 
effective depth of beams, d (cm) and the ordinate is for kc (modification factor for cracking shear stress) 
and ku (modification factor for shear stress at failure). The size effects were referred in Section 4.3.4. 
 When the tension reinforcement ratio, pt = As /bd, is high in the shear span, the widths of flexural 
shear cracks are narrower at a given load, and this will enable aggregate interlock and dowel actions to 
carry larger load. The increased strength of the beam action due to larger flexural tension reinforcement 
has been demonstrated by some tests. This effect has been taken into account in Eq (11-5) in the 
ACI318-02 code. In the AIJ standard, this effect was neglected as can be seen from Eqs. (AIJ-22) and 
(AIJ-25), maybe assuming that such effect is negligible, compared with other factors, for a range of pt 
from about 0.4 to 1 % which is normally used in practical design. When the test data were plotted in 
Figure 7.2, the effect of the tension reinforcement ratio was eliminated using the modification factor, kp , 
shown in Figure 7.4. 
 The equivalent reinforcement ratio for a set of bent-up bars in Eq. (AIJ-23) was derived from the 
geometry of the bent-up bars with the assumed 45 degree cracks shown in Figure 7.5. In Figure 7.5, the 
spacing and the inclination of bent up bars are denoted by x’ and  , respectively. Also, the tension 
stress on the potential cracked surface is denoted by   in the figure. The derivation of Eq. (AIJ-23) 
can be seen in the commentary of the original AIJ standard (1991). A similar exercise has been 
conducted in Section 4.3.5 ( see Figure 4.14). 
 The notation of ΣMy for Eq. (AIJ-26) is illustrated in Figure 7.6. It was assumed that the beams 
connected to the bottom end of the column will unlikely yield because the section size of those beams 
would be larger than that of the beams connected to the top end of the column. However, it is noted that, 
when a frame is designed so as to achieve the total yield mechanism (= beam side-sway mechanism) 
shown in Fig. C 3.2 in the AIJ Structural Design Guidelines, such assumption is not conservative. 
---------------------------------------------------------------------------------------------------------
-- 
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Figure 7.1 Relationship between Shear Stress Intensity at Shear Cracking and M/Qd 

 

Figure 7.2 Relationship between Shear Stress Intensity at Shear Failure and M/Qd 
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Figure 7.3 Size Effects on Shear Strength 

 

Figure 7.4 Effects of Tension Reinforcement Ratio on Shear Strength 

 

Figure 7.5 Geometry to Determine Equivalent Reinforcement Ratio for Bent-up Bars, pwe 

 

Figure 7.6 Design Shear Force for Columns 
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7.3 Design for Development, Anchorage and Lap Splices 
 
Art. 17 Bond, Anchorage and Lap Splices 
 
Item 1. Bond 
(1) Bond stress, a , along a tensile reinforcing bar in a flexural member due to shear 

shall be calculated by Eq. (AIJ-27), except when the provisions of Clause (2) are 
satisfied. 
 

  aa f
j

Q



  

(AIJ-27) 
Notation: 

Q = design shear force; design shear for the short-term loading shall conform to 
(3) of Item 2 in Art. 16 or (2) of Item 3 in Art. 16 
j = distance between tensile and compressive resultants of a flexural section and 
may be assumed to be (7/8)d 
  = sum of perimeter of tensile reinforcing bars 

af  = allowable bond stress (see Table 6, Art. 6). 

 
(2) Distance, dl , from critical section of tensile reinforcement in a flexural member to 

the end of the reinforcement in a span shall be calculated by Eq. (AIJ-28), except when 
the provisions in Clause (1) is satisfied (see Fig. 11). 
 

  j
f

a
l

a

t
d 



8.0

 

(AIJ-28) 
Notation:  

dl  = distance from critical section to the end of a reinforcing bar 

t  = tensile stress of a reinforcing bar at the critical section, the value may be 

reduced to two thirds if the bar is hooked at the end 
a  = sectional area of a reinforcing bar 
  = perimeter of a reinforcing bar 

af  = allowable bond stress and values in Table 6, Art. 6 

j  = distance between tensile and compressive resultants of a section in a flexural 
member, and may be assumed to be (7/8)d 
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Item 2. Anchorage and lap splices 
(1) Development length of a longitudinal bar in a beam-column joint or length of a lap 
splice shall be calculated by Eq. (AIJ-29). 
 

  




a

t
d f

a
l   

(AIJ-29) 
Notation: 

dl  = development length or length of a lap splice, excluding the length of a hook 

t  = maximum stress in an anchor part or at a lap splice, but value shall, in 

ordinary cases, be allowable stress for a lap splice. The value may be reduced to 
two-thirds if a bar is hooked at the end 
a  = sectional area of a reinforcing bar 

af  = allowable bond stress for top reinforcement, as specified in Table 6 in Art. 6 

irrespective of position of the bar. The value may be increased by 1.5 times if the 
stress of reinforcement is compression, or if a deformed bar is anchored in a 
beam-column connection where bond split cracking is not anticipated, and 
  = perimeter of a reinforcing bar 
 

(2) A lap splice shall, in general, be located at a region where both the member stress 
and reinforcement stress are small. 
 
(3) Minimum anchor length and lap splice length shall be as specified in Table 10. 
The development length of bottom reinforcement in a floor slab and roof slab in a 
connection may be 15 cm for a plain bar with hook, and 10 d and 15 cm for a deformed 
bar for all steel grades and for all design standard strength and types of concrete. 
Anchor length of bottom reinforcement in a floor beam into a connection shall be 25d 
with hook for a plain bar, and 25d or 15d with hook for all steel grades and for all 
design standard strength and types of concrete. 
 
(4) Plain bars of not less than 28 mm diameter and deformed bars not less than size 
D29 shall not be lap-spliced. 
 
(5) A reinforcing bar shall be hooked at the ends. Deformed bars may not be hooked 
at the ends except in the following cases:  
a) Corners of columns and beams, except in foundation beams 
b) Chimneys.  
Inside radius of a hook and of a bend shall conform to the provisions of "JASS 5." 
 
(6) In a lap splice of welded wire mesh, the lap length between end transverse wires 
shall be not less than the sum of spacing of transverse wires and 5 cm nor less than 15 
cm. 
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(7) In the anchorage region of welded wire mesh to the member fixed end, distance 
from the fixed face to the end transverse wire, shall be not less than the sum of spacing 
of transverse wires and 5 cm nor less than 15 cm. 
---------------------------------------------------------------------------------------------------------
- 
Comments 
 When the perfect beam action is achieved as assumed in Section 5.2, Eq. (AIJ-27) is adequate. This 
assumption will be acceptable for the service load condition which is normally not so severe. However, 
at an ultimate state under severe seismic loading, the diagonal tension cracks will open wide in the 
critical sections of members as shown in Figure 7.7(a). In this case, such assumption will not be 
legitimate any more. Equation (AIJ-28) seems to be more legitimate than Eq. (AIJ-27) for the purpose of 
securing the flexural strength of members.  
 When large diameter bars are placed over a length passing through interior beam-column joints of 
a frame, serious bond slip occurs and stiffness of the frame is significantly reduced under severe seismic 
actions as observed in many tests. Equation (AIJ-29) is not supposed to be applied to such a case as 
mentioned in the commentary of the AIJ Standard. In case of the New Zealand code, using formulae, the 
ratio of bar diameter to the column depth, bd / hc ,is limited to about 1/20 to 1/35 to prevent such 
situation. Those formulae allow for the location of bars (top or bottom in the beam section) and also 
benefit of transverse pressure on the bars applied by column axial load. In case of the ACI code, it has 
been proposed to limit the ratio of bd / hc to be less than 20. 
---------------------------------------------------------------------------------------------------------
- 

 

Figure 7.7 Effect of Diagonal Cracking on Development Length of Tension Reinforcement 
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8 SHEAR DESIGN OF RC MEMBERS BASED ON ‘DESIGN GUIDELINES 
FOR EARTHQUAKE RESISTANT REINFORCED CONCRETE BUILDINGS 
BASED ON ULTIMATE STRENGTH CONCEPT’ (1991) 
 
8.1 Plastic theory 
8.1.1 The lower bound theorem 
 If the load has such a magnitude that it is possible to find a stress distribution 
corresponding to stresses within the yield surface and satisfying the equilibrium 
condition and the statistical boundary conditions for the actual load, then this load will 
not be able to cause collapse of the body. 
 
8.1.2 The upper bound theorem 
 If various geometrically possible strain fields are considered, the work equation 
can be used to find values of the load carrying capacity that are greater than or equal to 
the true one. 
 
8.2 Scope 

1.  Ensure that the reliable shear strength is large than design shear when the 
failure mechanism is reached 

2.  Ensure that the deformation capacity at the plastic hinge. 
3.  Prevent a bond splitting failure. 

 
8.3 Shear strength of beams and columns 
 Shear strength can be expressed with the following equation. Use 
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and 
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2cot1
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(8.3) 
 
Based on the lower bound theorem in Limit analysis by Nielsen 
 Equilibrium  with respect to the shear force 
 Plastic criteria  shear rebar reached yielding 
    Concrete strut reached its effective strength B  
Longitudinal rebar is assumed infinitely strong. 

Truss 
action 

Arch 
action 
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8.3.1 The first term (contribution from the truss action) 

 

Figure 8.1 Truss mechanism 

 
The equilibrium of the free body in the vertical direction is,  
     sincos ttct jbV  

(8.4) 
Since the vertical components of forces in diagonal strut and the stirrup need to be 
same. 
  wywjttc pxbxb   sinsin  

(8.5) 
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Hence we have 
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(8.7) 
8.3.2 The second term (contribution from the arch action) 

 

Figure 8.2 Arch mechanism 

After truss mechanism takes up tc  out of B   which is the compressive capacity 

of concrete strut, tcB    can be used for the arch action. Neglecting the angle of 

truss and arch, 
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(8.8) 
8.3.3 Integration of the truss and arch actions 
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Figure 8.3 General characteristics of design equation 

The value of cot  is the minimum of 

  2cot   (implies that 6.26 ) 
(8.10) 
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 ( Btc    in the truss mechanism) 

(8.12) 
 
 
8.3.4 Coefficients for members without plastic hinges 
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(8.13) 
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8.3.5 Coefficients for members with plastic hinges 
 Assume that pR  denotes the rotational angle at the yield hinge, then the 

effectiveness factor   can be expressed by the following two equations or Figure 8.4. 
    opR  150.1   for 05.00  pR  

(8.14) 
  o  25.0  for 05.0pR  

(8.15) 

 

Figure 8.4 Relationship between the guaranteed hinge rotation Rp and  

The value of cot  is the minimum of the following four equations. The first two 
equations are shown in Figure 8.5. 
 
  pR500.2cot   for 02.00  pR  

(8.16) 
  0.1cot   for pR02.0  

(8.17) 
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Figure 8.5 Relationship between the guaranteed hinge rotation Rp and cot 
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8.3.6 Minimum reinforcement 
0.2% for all beams and columns 
 
8.4 Shear strength of walls 
8.4.1 Shear strength 
Basically the same except 
 

1.  yf  should be smaller than 400 MPa. 

2.  0.1cot   

3.    and o  have been set especially for the wall 

4.  Column size is taken into account for arch action. 
5.  Shear is check for each story and hence the method assuring the shear transfer 

between stories is provided. 
 
8.4.2 Equivalent wall widths 
 Equivalent wall widths are different for truss action and arch action. 
 
8.4.3 Effective factor of concrete for a non-hinge region 
 Eq. (8.13)) in Section 8.3.4 can be used. 
 
8.4.4 Effective factor of concrete for a hinge region 
  o   for 005.0pR  

(8.20) 
    opR  402.1   for 02.0005.0  pR  

(8.21) 
  o  4.0  for pR02.0  

(8.22) 

 

Figure 8.6 Effectiveness factor of concrete, vm, and deformation capacity 
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8.4.5 Beam between stories 
A fraction of shear carried by the arch mechanism of the upper story is directly 
transferred to the arch mechanism of the lower story. The rest of the shear carried by 
the arch mechanism of the upper story needs to be transferred to the lower story 
through the tensile action of beams or the truss mechanism in the lower story. 
8.4.6 Minimum reinforcement 
0.25% for walls. 
0.3% for plastic hinge region of the boundary columns. 
 
8.5 Bond 
8.5.1 Design bond stress 
 

f  from a flexural action 
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(8.25) 

t  from a truss mechanism 

  xT t    

(8.26) 
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(8.28) 
8.5.2 Bond strength 
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(8.29) 
 
Bond strength for the top reinforcement of a beam shall be reduced to 0.8 times the 
value in Eq. (8.29)). 
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